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Abstract. We consider the solution to the two-dimensional Navier—Stokes equations around the
Poiseuille flow (y2,0) on T x R with small viscosity v > 0. Via a hypocoercivity argument, we prove
that the z-dependent modes of the solution to the linear problem undergo the enhanced dissipation
effect with a rate proportional to v2. More(Z)ver, we study the nonlinear enhanced dissipation effect
and we establish a transition threshold of 31 for initial data in L2. Namely, when the L2 norm of

2
the perturbation of the Poiseuille flow is size at most 1/§+,lits size remains so for all times and the

enhanced dissipation persists with a rate proportional to v2.
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1. Introduction. We study the two-dimensional (2D) Navier—Stokes equations
(1) U+ (U-V)U+VP—-vAU =0,
V.U =0,

defined on the domain T x R. U = (Uy,Us) is the velocity vector field, P is the scalar
pressure, and v is the viscosity coefficient of the fluid, proportional to the inverse of the
Reynolds number. Defining the vorticity of U as Q =V - U, where V+ = (—0y,0yz),
it is possible to remove the pressure term and to rewrite the above system as

BHQ+U-VQ—vAQ =0,
(2) Q =AU,
U=viw.

Here W is the corresponding stream function for the vector field U. It is easy to see
that the so-called Poiseuille Flow

UP:(yQaO)v QP:72y

is a stationary solution of (2). To study the dynamic near the Poiseuille flow we
consider a small perturbation of it. We set U = Up +u, so Q =Qp 4w, where u,w are
the perturbations for the velocity field and the vorticity, respectively. The vorticity
formulation for w reads as follows:

Oww + Y2 0w — 20,0 — vVAw = —u - Vw,
(3) w = A1,
u=V1t.
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TRANSITION THRESHOLD FOR THE POISEUILLE FLOW 4411

The boundary conditions here are set to be periodic for the x variable, while for the
y direction w is assumed to have sufficient decay at infinity. The stability of the
Poiseuille flow can then be seen as the decay of the solution to (3). An overview of
the paper is presented in the following subsections of the introduction. The first part
is devoted to the analysis of the linear problem while the second part focuses on the
transition threshold problem for the fully nonlinear equation.

1.1. Linear enhanced dissipation and estimates for £,. We define the
linear operator

(4) L, =—y?0, + 20, A" + VA

associated to the linearized counterpart of (3). In the first part, we establish some
decay estimates for the semigroup generated by £, in the usual L? norm. Our first
result is the following; here P is the projection on the nonzero z-Fourier modes.

THEOREM 1.1. Let v < 1 and g € L*(T x R). There exist constants Cy,co > 0
independent of v such that

1
(5) |5 P2 (9)]| 2 < Coe™ " [Px(g)l -

for all t > 0.

This result gives a quantitative estimate of the linear enhanced dissipation effect.
Indeed, the timescale obtained for the nonzero modes of the initial datum is propor-
tional to »~/2, which is much faster than the heat equation timescale, proportional
to v~ L.

We refer to enhanced dissipation as the phenomenon where the mixing properties
of the fluid allow one to improve the natural heat dissipation timescale O(v~!) to a

faster timescale O(d(v)~!) that satisfies

lim —

v d(v)
This phenomenon has been widely studied in the physics literature (see, for example,
[11, 16, 17]) and mathematics literature [7, 8]. In the context of the Navier-Stokes
equations near shear flows, we cite results for the well known Couette flow [4, 20],
with a dissipation timescale O(r~'/3), and the Kolmogorov flow [12, 21, 22], where
the rate is known to be O(v~/2). Regarding the Poiseuille flow, the first linear
enhanced dissipation result was given by Coti Zelati, Elgindi, and Widmayer [9] for the
unbounded 2D domain (x,y) € T x R. In their paper the linear enhanced dissipation
effect is established around the Poiseuille flow. The rate obtained is proportional to
v1/2(1+|logv|)~! in the weighted L? space with norm

2 2 2
11 = 111z + w2 -

Ding and Lin [10] proved the same decay rate, without the logarithmic correction, for
the Poiseuille flow in a bounded 2D channel T x [—1,1] with Navier—Slip boundary
conditions. We cite also the paper by Chen, Wei, and Zhang [6], where a O(v—1/2)
rate is obtained for the 3D pipe Poiseuille flow. The approach used in the last two
papers is completely different from the hypocoercivity method. It relies on resolvent
estimates and a Gearhart—Priiss type theorem introduced by Wei in [19].

Our first result is a sharpening of [9]; indeed we are able to remove the loga-
rithmic correction and to get a decay rate of O(r~/2) in L?(T x R). The proof of

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/27/23 to 155.198.10.117 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

4412 AUGUSTO DEL ZOTTO

Theorem 1.1 relies on a hypocoercivity argument [18], similar to the one in [9]. Here,
we construct an energy functional following Wei and Zhang’s idea [21], namely, each
term of the functional has a time dependent weight. Theorem 1.1 follows then from an
iteration argument. Furthermore, thanks to the time dependent weights of the energy
functional, we are able to prove additional estimates on the semigroup e“»* generated
by the linearized operator £,. These estimates play a crucial role in establishing the
transition threshold.

1.2. Nonlinear enhanced dissipation and transition threshold. Our sec-
ond result concerns the transition threshold for the 2D Poiseuille flow. The asymptotic
stability of fluid motion between parallel plates was first analyzed by Kelvin [13], who
introduced the following concept: the stability may depend on the viscosity coeffi-
cient v in such a way that the stability threshold decreases whenever v decreases.
The mathematical formulation of this problem can be given as follows. Given a norm
Il |lx, find a v =~(X) such that

ully <Y = stability,
b's
llull y >vY = instability;

here u is a perturbation of the flow.

The transition threshold problem for the Couette flow has been deeply studied
recently [1, 2, 3, 5], in both the frameworks of Sobolev spaces and Gevrey classes. In
the 2D case the transition threshold is known to be v < 1 [15].

For the 2D Kolmogorov flow in the periodic box, it holds that v < % + ¢ for any
€ > 0 (see [22]). For the Poiseuille flow, it has been proved by Coti Zelati, Elgindi,
and Widmayer [9] that ¥ < 2 + ¢ in T x R and by Ding and Lin [10] that v < 3 in
T x [—1,1] with Navier-slip boundary conditions, i.e., w(+1) =1 (+1) =0.

In the second part of this paper we are going to show a transition threshold for the
Poiseuille Flow on T x R with v < % + e. We are able to prove the following theorem
using the linear enhanced dissipation and the estimates on the semigroup generated
by the linearized operator.

THEOREM 1.2. There exist constants g € (0,1),C1 > 0,¢1 > 0 such that for all
0<v <1 and for every uin,w;, € L* with

lwinll 2 + [Potwin]l 12 < g0(1+ |logw|2) =102/,
the solution w(t) of (3) is global in time with the bound

—eqvl/2
P (@) ()l 2 < Cre™ P (win) | e -

The proof is based on careful estimates of the nonzero modes of the nonlinear
term in (3). We remark that our theorem gives a better transition threshold for
the planar Poiseuille flow in T x R, bringing it from vit to I/%*, more precisely
(1+|logv|2)~1ws.

Structure of the paper. In section 2 we define the modified energy functional
(11). We prove Theorem 2.1, which describes the key behavior of the energy func-
tional needed to deduce the enhanced dissipation for the linear problem (10). Sec-
tion 3 is devoted to proving Lemma 3.1, which establishes additional estimates on the
semigroup generated by the linearized operator. Section 4 concludes the paper and
contains the proof of Theorem 4.2.

Notation. Throughout this paper we use

Vi =PV = (ik,d,)
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for the projected gradient onto the +k-th z-Fourier modes and
Ap=PyA=—-k>+0,

for the projected Laplacian. Moreover, we use C > 0 to indicate a constant indepen-
dent of v,k, and ¢ that may vary line by line. We also denote by || - || = || - ||z2 the
usual L? norm.

2. Hypocoercivity estimates. For an z-periodic function f we write its Fourier
expansion as

ijx 1 —ijx
(6) ftmy) = a;(t,y)e?, aj(t,y)=§/f(t,w,y)e M.
jez T
For k € Ny we set

(7) fultay) = 3 a;(t,y)e,

lil=k

so that

®) ftoy) =Y filt,z,y)
keNy

can be expressed as a sum of real valued functions localized in the z-frequency on a
single band £k, k € Ng. We also introduce the following operators: given a function
f we define

Q Po() = 3= [ oo, BAH=F=Bolr),

and for any k € Ny, we denote Py, the projection to the sum of the +kth Fourier
modes in z. We start by considering the linearized system associated to (3) with
initial datum g € L?, i.e.,

0w + y20,w — 20,0 — vAw =0,
(10) A =w,

Wlt=0 = g-
The solution is given by w(t) = e“+tg for all t > 0, where L, is the linear operator (4).
To establish decay estimates for the semigroup we proceed by defining the following
energy functional, where «, 8,7 have to be determined:

(11)
1 1 1
0(t) = 5 ] + Gt | Vel + 2601 (00, y0uw) + 5 ywt° B + 2| 90,0

Note that by collecting factors of the form v!/2t, the last three terms of the functional
read as

1 1
(12)  Sart 22 Vel + 28(0 302 Dy, yds) + 570201208
lyduwl® +2 IV,

and resemble the ones used in [9], differing from them by the time dependent weights.
This modification has already been used by Wei and Zhang studying the 2D Kol-
mogorov flow [21] and by Li and Zhao in the context of the 2D quasi-geostrophic
equation on the torus [14]. Inserting time dependent weights is the key to achieve
enhanced dissipation in the L? norm and to remove the 1+ |logv| correction obtained
in [9].
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THEOREM 2.1. Fiz 0 <e < 55 and define a =€, f=¢3,v=16¢*. Then

1 1
(13) <3, 1662 <ay, 4a’<p< TR 9y < 48,
and it follows that ®(t) satisfies
1 1 1
19 B> L [l + part [Vl + s [lvosel + 20190017
and
(15) o' (t) < — Pt | Opw]|®

for every t > 0.
Once this statement is proved, linear enhanced dissipation follows directly.

THEOREM 2.2. Let v <1 and g € L?>. There exist constants Cy,cq > 0 indepen-
dent of v such that

(16) [e“ Pr(g)|| < Coe™ " M2t |[Pr(g)|

for all t > 0. Combining all nonzero modes together we get

(17) |4 P2 (g)|| < Coe™ " [IP£(g)]] -

In addition, for the nonzero modes of the velocity uy, we have the following decay:
2 2
18 Pr(u)(t)]> < ——— ||P
(18) [Be)®I” < — s IBe(a)]
for all t > 0.

We briefly give the proof. To simplify the notation we will write fi instead of
Pr(f).

Proof of Theorem 2.2. Since the equations decouple in k, we can apply separately

Theorem 2.1 to the +kth z-frequency and get

1 2 2
(19) D (t) > 3 Heﬁ”tgk” and @) (t) < —y k%3 Heﬁ"tng .
Then,

1
2 lectanl” < 2t

t
<I>k(0)+/ ) (s)ds
0
t
A R S
0

Yy 2
<5 gl — ZV2k2t4 e gel|”-

<

— N

Rearranging this inequality we obtain

2 1
(20) e aull” < Ty ol
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To prove the enhanced dissipation we proceed by iteration. Fix a time ¢y for which
1 1

T+ J0%k288 2
Now, for every time t > tg, write it as t = Ltgltj to+t* with t* € [0,t9). Using the fact
that (10) is autonomous, we deduce from (20) that for every s € [0, to]
I

]| < o el < 5 e

21
1) 1+ Jv2k2t]

Then, using the fact that ¢ — ||e“*tgy|| is decreasing, by iteration we have

e A

[to 't
1\ o 9
< —
> (2> ll g ||

< Cpecor? 3t g, 12

Finally, from the monotonicity of ®(¢) we can deduce (18). Indeed,
1
(22) St 1.4 (1* < llg]|*,
and recalling that
2 2 2
ul|* = | Vave| = IVivel®,

we have the last inequality. 0

In order to prove Theorem 2.1 we state some preliminary identities that will be
used to compute the derivative of the functional ®.

PROPOSITION 2.3. Let w be a solution to (10). Then the following holds:

1d
(23) 2dt HWH2 = —VHVW||2§
1d
(24) 5 32 1Vl = v Aw]® - 2(y0,0,8,0);
d
(25) £<6ywayaxw> =-2 ||3/aww||2 —4 ”aLywHQ — 2v(Aw, YyOryw);
1d
(26) 57 |10l + 2090017 | = —v 0:]]® — v |1y, Vol .

The proof of these identities can be found in [9, Lemma 2.4]. We proceed with
the proof of Theorem 2.1.

Proof of Theorem 2.1. For the sake of clarity we recall here that ®(t) is defined
as

(27)
1 2 1 2 2 I 5 2 2
O(t) = 5 lw]l” + gaz/t [IVwl||” + 28vt° (Oyw, yOLw) + ?Wt lyo.w||” + 2|V |"| -
Using the Cauchy—Schwarz inequality and the Young inequality we get
452t3
@

2

at
(28) 262 (9yw, ydyw)| < 2682 (|9, ]| lydaw]| < T 10ywl[|* + |0zl
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Plugging this into ®(t) we get

1 1 1 832
29 202 5ol + et |Vl + 5 (v - ) e [Ivoucel? + 21v0,01].

and hence the lower bound. We now proceed by computing the derivative of the
functional. By Proposition 2.3 we have

%@(t) = v [Vul*+ [Vl +avt (v [ Aw]? 205w, 8,w) ) +48t(9w, yoyw)
+ 28vt? (—21/<Aw,y8m8yw> —2|lyd,wl|* — 4 Haxﬁysz)
+ 2912 (el + 290,017 +3w8* (— |y T — v |0,u]).
After rearranging all the terms we obtain
(30) %@(t):[1+12+]3+]4+[5,
where

I = —Z Vol +av [Vol* = 28 9,0,

I, = —av?t ||A(,u||2 — 4[31/2t2<Aw,y8ww> — 23 ||yachw||2 ,

I3 = _g ||VW||2 — 2avt(yd,w, Oyw) — But? ”y@a:WHQ — 26ut? ||3wz/)||2 )

L= = | Vwl]® + 480t (ydpw, dyw) — But? |lyduw — 2808 [y

Ty = 2012 [0l + 200 1] + S0t lydusol* + 2 [V0 6]
Recalling now the conditions (13) on the constants «, 3,7, namely,

1 1
a<§, 1652 < oy, 4a2<ﬁ<ﬁa, 9y < 48,

we use again the Cauchy—Schwarz inequality and the Young inequality to get

(31) I < =t 0,
1 832

(32) I, < —ionQt | Awl|® — (7 - g) V213 |y Va,wl|® < 0;

v
(33) I<s— IVel* = (8 — 40 vt [yduw]|* — 2808 | Duy||* < 0;

v B
(34) L < —5 (a0 = 168) | Vul|* = Svt [ydzwl|” — 2608 |9ay0|* <.
Moreover, from

1 1
(35) (Ouyth, yOpw) = D) ||8»Ly¢||2 + ) HalleQ
we can deduce that
(36) IV0:0” < lydowl|” +3 100,
and hence
9 2 2 2

(37) I <= (28 = 57 ) vt [lyduwl® + 211028 | <o0.
Combining all together we get the upper bound on &'(t). d
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3. Additional linear estimates. In this section we give some estimates on the
semigroup generated by the linearized operator L£,. These estimates play a crucial
role in the estimates for the nonlinear term in the full perturbed system.

LEMMA 3.1. Let g € L? such that Po(g) = 0. The following estimates hold for
every T'>0:

T
(39) / IIV<eﬁ"tg><|2é%v*ngn%
(39) / 8“9 < O3 g1l

T
— 2 _
(40) / VAT (5 g)|| o < Clllog| + 1)r~ 13 g
0

Proof. Throughout the proof, T' will be any positive time. The first estimate
follows directly from the energy inequality for the linearized problem

t
2 2 2
(41) le=tg]* +2v [ 9 9) | <1l
0
and it holds for any g € L?. For the second estimate we note that, for any k # 0,

{ I s "

42 11
) k2 || (vt g)i||® < ke M A Ee gy 12

Using the fact that the function 2™e™* is bounded for = > 0 for every n € N, we have

k2% tg)e]” < S il
43 vt
*3) {wn(eﬂvtg)kn?s@ loell
and hence
1
@) oneEa) = D et < Canin{ e ol
k=0

We have that

. 1) [ w)™F fort<vi,
(45) mm{\ﬁ 2}{(yt2)_1 fort>v7s,

and so

W= Wl

T ., VT3 T

<c (v +u—1u%) lg|
_2
<Cv7s gl

For the third estimate, we apply the Minkowski inequality and we reduce to

T T %
(46) / VA=t (efig)f; . < Z(/ |rm,:1<eﬁvtg>k||imdt)

k0

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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Consider ||V, A (e“'g)x |2~ for k# 0. Using the 1D Gagliardo-Nirenberg-Sobolev
inequality we have

(47) Vet (e <C|ViAL € )| (€% g)k]| -

' kHLoo

Moreover, interpolating the L? norm we get
(48) [V e g <CTiag e )l Vil o]

Combining (47) with (22) we deduce

(19) { VALt ] < CORE) L ],

[VeA (€2 )| < 1K1 [lgxl,

where the second inequality follows from [k|||ViA; (e“tg)k|l < |I(e“*g)ill < |lgxll-
Hence, we deduce that

(50) Ve, (5 < Clk|" min{1, (%) "%} [|ge||*-

Iz

As before, using (50) we have

T
_ 2
/ VA (€ gk o < ClE[ min{1, (vt*)~ }dt> lgx|I*
0

‘s
(

<CRT {vit [ vt3>%dt> lgx[1*
-3

<Clkl~ 1(f% - vt ) llgwl?

< ClR|~ v gl

Using (48) and the Hoélder inequality we obtain
g 1 Loty |2 g 1) Lot 5 Lot 3
IR G PRt Y PSR N AT

<c</0 ||vak1(eﬁvtg)kH2> (/O Hvk(eﬁvtg)k!f)

3
4

T
1
<c ( / k=2 min{1, (%)~} ||gk||2dt> ¥ llgxll?
0

<Clk|"207% i

So, from (46) and using the Cauchy—Schwarz inequality we deduce
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T T %
[ st <o (5 ([ maes .

k0

co| X (etiad?) s X (bt

1 1
0<|kl<v™3 |[k|>v™ 3
<clvs Y ok tarr S RN gl
0<lk|<v™3 [k|>v—3 k#0
_1 1 1 2
< (v Htogr] +v v ) g
<Cv=3(1+]logyl) [lg]? O

Remark 3.2. Regarding the third estimate, note that using only (47) leads to
the series D, %, which is clearly not convergent. The logarithmic correction term
arises when we use (48) to overcome this problem.

4. Nonlinear transition threshold. We start by considering the nonlinear
problem (3). We decompose w =w; + @, as well as ¢ =1 + ¢ and u = us + @, where

1
ws:IP’Ow:—/wdx
2 T

and
w= P¢w = (1 - ]P)())w.

Note that the second component of u; is zero since Pou? = Py(0,1) = 0. For this
reason we will identify u, with its first component and therefore it will be treated as
a scalar. It follows that ws and @ satisfy

(51) { Opwg — V@iws =—Py(a- V),

0 + y20p@ — 20,0 — VAD = —P(us0,0 + @ - VW),
while u, satisfies
(52) Oyus +Po(i- Vi) = v us.

We prove the following lemma, which gives some a priori estimates on the equations
for @ and us. These inequalities will be used in the bootstrap argument for the main
theorem.

LEMMA 4.1. There exist constants C, K >0 such that for any T >0, if t € [0,T],
the following inequalities hold true:

t

2 2 ~ 1/2 1/2 ~ 2

(53) [us (DI < Nlus,inll” +2C i s ()12 [foinl |/ / l@(r)[|” dr.
T N o

Define

e=Cv = sup |us()|"? winll"? + 7231 + [log )2 |winll

T€[0,T)
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and then
(54)

t t t t
/||us(’9md;||ds+/ ||a.vw||dngg<||wm|+/ ||u58$@||ds+/ a.wuds).
0 0 0 0

Proof. Consider first the equation for us, namely,
Orug = V@ius —Po(a- Vﬂl).

Taking the time derivative of the L? norm we have

1d
§&||us|\2§<us,]}”0(ﬂ~v&l)>
< gl oo N1 N3]
= 1/2 1/2 1 ~112
< C lug]M? s 3],

where in the last inequality we used the 1D Gagliardo—Niremberg inequality. Recalling
that

¢

2 2 2

(55) llw (@)l +2V/O IV (T)II” d7 = [[winl
we have |Jws(t)|| < ||winl|, and hence by integrating in time the above inequality we

get (53).
For (54) we proceed as follows. Denoting by £, the linearized operator, we have

(56) 0w — L, =—Px(us0;0 + 1 Vw),

and thus, applying the Duhamel formula, we obtain

t
(57) Q(t) = e gy, — / e IE P, (1 0,00 + 11 - Vw)ds.
0

Consider the following equation:
t
(58) Q(t) = e @(0) + / e(=9)Lv f(5)ds.
0
Using Lemma 3.1 we obtain the following additional estimates. We consider first
t t t
(59) / [0, dt < / |0z @(0)]| dr +/ am/ eT=Ly f(5)ds
0 0 0

t
dr.
0
The first term on the right hand side can be bounded using (39) as

t
(60) / |0ze75¥@(0)|| dr < Cv=2/3|@(0)|,
0

while for the second term we use the Minkowski integral inequality and estimate (39)

again as follows:
t ot
dr < / /
0 Js

At t
<ov [y as

/ D, eT9Er f(5)ds
0

‘ag;e(T_s)ﬁ"f(s)H drds
(61)
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Combining the two estimates we have

t t
(62) 2 [oal <c (1601 + [ 1reas).
Analogously, using estimate (40) we have
(63)

t ) 1/2 t ) 1/2
( /0 y|m—1a(7>|\md7> g( /0 HVA_leTL”cD(O)Hme')

" 2 1/2
+ / dr
0 S

< C(|logy| + 1)Y2p 110 (nw(mn - ||f(8)||d8>

t
VA_l/ eT=9E £(5)ds
0

and we deduce

t t 1/2
y2/3/ 8.0 dt + (|logv| +1)~1/21/6 (/ HVA‘la;)Himdt)
(64) 0 . 0
<Cla()] +C / 1£(s)ll ds.

By renaming K the constant C' appearing after these computations, and defining

t t 1/2
AW =P [ 0.+ + logrl) 2 ( / aniw) ,
0 0
from (56) we have that
t t
(65) A(t)SK(lloDmIJr / a0, ds + / |11~Vw||ds>.
0 0

For the second term on the right hand side in (65), we have by using the definition of
A(t) and the hypothesis

t t
/0 luadu ] ds < / ltall e 102 ds

(66) <0 s (Ju @2 o)) [ o) as

T7€[0,T]
<C sup (llusI"?) il =3 A0),

T€[0,t]

Analogously, for the third term on the right hand side in (69), we have

t t
/ i~ Vo] < / il V]
0 0
¢ , 3 t , 3
(7 <([ =) ([ rver?)
0 0

< (v ¥ (ogrl + 2 A®) (v winll)
v 3 (|logv| 4 1)* [|win | A(H).
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Recalling that

=0 sup [us(n)"? fwinl " + 0721+ [logy ) winll,
T7€[0,T]
from (65), (66), and (67), we can deduce (54). 0

THEOREM 4.2. There exist constants £y € (0,1),Cy > 0,¢1 > 0 such that for all
v <1 and for every win,win € L? with
lwin | + [Pown| < o(1 + [ logw])~/202/2,
the solution of (3) is global in time with the bound
o)l < Cre= ™ @l .

The proof follows a bootstrap argument.

1
Bootstrap step. Let ty such that Cpye= %Vt = %, and let T < ty. Assume that

/24 1~ ~
S e @) < 4C0 [|@im|
€10,

and

sup |lus(t)]| < 4501/2/3(1 + |logy|)*1/2.
t€[0,T]

Then, this implies

/24 1~ ~
S e’ @) < 2Co [|@im||
€10,

and

sup |lus(t)]| < 2501/2/3(1 + |logy|)*1/2.
t€[0,T]

Proof of theorem. Assuming the bootstrap step, the theorem follows. Indeed, for
t =ty we have

N o 1/2 - 1, .
[@(to)|| < 2Cpecr o |Sinll = 3 Il

We remark that estimates in Lemma 4.1 hold whenever the bootstrap assumptions
hold true, and hence we can iterate this process, as is done for the linear case, with
time intervals of length to ~ v~ /2 to obtain a global solution that satisfies the decay
rate

- e /2~
o)) < Cre ™ |@im] - o
Proof of the bootstrap step. From Lemma 4.1 and the smallness assumptions on

the initial data we deduce easily that the bootstrap step holds. Indeed, from (53) we
have

t
[us(8)]|* < £2(1+ |log v|) 1043 +2C 420023 (14 | log v|) ~1/24C) ||@m||2/ e *Tdr
0
+oo
<e2(1+|logv|) w3 +2C4e0v 3 (1 + | logv|)~1/24C, me||2/ ey
0

<e2(1+ |logy|)~t*/? (1 + Cegr®3(1+ |10g1/|)’1/21/’1/2)
<423(1 + [logw]) 1072,
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and hence

sup Jlus(t)]| < 2501/2/3(1 + |log1/|)_1/2.
te[0,T]

For & consider

t
(68) Q(t) = e i — / e IE P, (10,00 + 11 - Vw)ds.
0
Taking the L? norm of (68), using the semigroup bounds and (54), we obtain, for all
te 0,17,

1 t
ecor 2t ||(:)(t)|| < CO ||(:Jm|| + Coecoyl/ZT/ ||u38xd; +u- VwH ds
0

. K
(69) < Co ||@in|l + Co€°°V1/2t°1i7 l|in ||
- ek
< Co [|@inll + GCgm [|@inll -

By the bootstrap assumption and hypothesis, for ey small we have

e=Cv™ sup ||us(7)|"* lwinll? + v~ (1 4 [log ) /2 [lwin]
T€[0,T]
(70) SC’4€0(1+ ‘1OgV|)_1/2+E()
1 1

< —— < —,

~ 12KCy T 2K
Thus

eK
6(,*3@ <1203eK < Cy

and the bootstrap step holds true. 0
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