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ABSTRACT
Temperature gradients induce mass separation in mixtures in a process called thermal diffusion and are quantified by the Soret coefficient ST .
Thermal diffusion in fluid mixtures has been interpreted recently in terms of the so-called (pseudo-)isotopic Soret effect but only considering
the mass and moment of inertia differences of the molecules. We demonstrate that the first moment of the molecular mass distribution, the
mass dipole, contributes significantly to the isotopic Soret effect. To probe this physical effect, we investigate fluid mixtures consisting of rigid
linear molecules that differ only by the first moment of their mass distributions. We demonstrate that such mixtures have non-zero Soret
coefficients in contrast with ST = 0 predicted by current formulations. For the isotopic mixtures investigated in this work, the dependence
of ST on the mass dipole arises mainly through the thermal diffusion coefficient DT . In turn, DT is correlated with the dependence of the
molecular librational modes on the mass dipole. We examine the interplay of the mass dipole and the moment of inertia in defining the
isotopic Soret effect and propose empirical equations that include the mass dipole contribution.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0164253

I. INTRODUCTION

Thermal diffusion is the process by which a temperature gra-
dient induces a concentration gradient in a mixture. It was first
observed1 in the 19th century by Ludwig and later systematically
studied2 by Soret. It was not until the 1910s, however, that thermal
diffusion was “theoretically discovered,” and one can speculate that
it was overlooked by the original pioneers of kinetic theory because
the Soret coefficient vanishes for Maxwellian molecules (point par-
ticles that repel each other with a force F ∝ r−5, where r is the
inter-particle distance).3 These equations of Enskog and Chapman
already implied that components of a mixture could be separated
based solely on their mass,3 and in 1919, Chapman was the first to
suggest4 the use of thermal diffusion for separating isotopes. Isotope
fractionation by thermal diffusion was first experimentally achieved
in 1938 by Clusius and Dickel5 and subsequently received consid-
erable theoretical treatment by Furry, Jones, and Onsager, among
others.3,6

The pseudo-isotopic Soret effect refers to the contribution to
the Soret coefficient ST from the mass and mass distribution of the
particles. Using binary mixtures of isotopologues of benzene and

cyclohexane, Debuschewitz and Köhler7 demonstrated that the Soret
coefficient could be split into two additive contributions,

ST = Schem
T + Siso

T . (1)

The chemical contribution Schem
T depends on the intermolecular and

intramolecular interactions (i.e., the potential energy surface), while
the isotopic contribution Siso

T depends only on the mass and mass
distribution of the molecules. Simulations have verified that Eq. (1)
holds reasonably well for binary Lennard-Jones mixtures in both the
liquid and dense supercritical states even if slight couplings have
been observed.8–12 The application of Eq. (1) to the interpretation
of ST data for molecular mixtures is now standard procedure.13–16

To date, all models (empirical and theoretically derived) repre-
sent Siso

T as a function of total masses of the particles Mi and their
moments of inertia Ii. For binary mixtures,

Siso
T = Siso

T (M1, M2, I1, I2), (2)

and for mixtures consisting of species with the same mass,

M1 =M2 =M ⇒ Siso
T = Siso

T (I1, I2; M), (3)
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where three assumptions are implicit in Eqs. (2) and (3): (1) the
effect of the internal mass distribution can be modeled using only the
moment of inertia; (2) rigid body moments of inertia are applicable
to flexible molecules; and (3) rigid body moments of inertia Ii (3 × 3
matrices) can be reduced to scalars Ii. Assumptions (2) and (3) are
justified for rigid linear molecules, such as diatomic molecules. Small
polyatomic molecules have typically been characterized by a sin-
gle principal moment of inertia Ii,k or Ii = 3/∑k I−1

i,k .7,17–23 A recent
study on halobenzene/n-alkane mixtures used Siso

T (M1, M2) because
the moment of inertia is not well defined for flexible alkanes.18 To
the best of our knowledge, assumption (1) has not been tested or
discussed in the literature.

How best to characterize the internal mass distribution of a
molecule? The moments μn of the mass distribution are a natural
extension to using the total mass and moment of inertia. For a rigid
body with mass density ρ(r),

μn = ∫V
ρ(r)r⊗nd3r, (4)

where r⊗n = r ⊗ r ⊗ ⋅ ⋅ ⋅ ⊗ r (n times) and ⊗ denotes the Kronecker
product of two matrices. The zeroth moment μ0 =M is the total
mass of the body (scalar). The first moment μ1 = D is the mass dipole
(3 × 1 vector), which gives the center of mass when normalized by
the total mass, D/M = rcom. The second moment μ2 corresponds to
the moment of inertia I (3 × 3 matrix). Higher order moments, μn>2,
do not affect rigid body dynamics, and thus, the mass distribution of
a rigid body can be completely represented by μn=0,1,2, i.e., by M,
rcom, and I. While M and I appear frequently in models of ther-
mal diffusion, the impact of the mass dipole on the Soret coefficient
of molecular mixtures has not been considered. Indeed, the mass
dipole was introduced only very recently in the context of thermal
diffusion when studying the thermal orientation (TO) and ther-
mophoresis of anisotropic colloids.24–26 We show here that the mass
dipole is part of a more general description of the mass distribution,
which adds additional contributions to the formulation summarized
by Eq. (2).

In this work, we investigate the effect of the mass dipole on
the Soret coefficient of isotopic mixtures of rod-like molecules. The
model we employ allows for the systematic change in the moments
of the mass distribution, making it possible to isolate the M, D, and I
contributions to the Soret coefficient. We provide a proof of princi-
ple for the mass dipole contribution in isotopic mixtures. However,
the main conclusions of this work are applicable to non-isotopic
mixtures as well, conveniently through Eq. (1).

II. METHODS
A. Particle model

We investigate the thermal diffusion of mixtures of rod-like
molecules in which the components differ only by their internal
mass distribution. Following our previous studies,24,25 the molecules
were modeled using the shish-kebab model, a rigid chain of tan-
gent spherical monomers of effective diameter σ, of length N = 7.

FIG. 1. The shish-kebab model of length N = 7.

The mass mi of monomer i is given by a point mass at its inter-
action site. All intermolecular interactions were modeled using the
Weeks-Chandler-Andersen (WCA)53 potential,

𝒱WCA(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4ε[(σ
r
)

12
− (σ

r
)

6
] + ε if r ≤ 21/6σ,

0 if r > 21/6σ,
(5)

where r is the distance between two monomers and ε represents the
strength of the purely repulsive pairwise interaction. These para-
meters, ε and σ, together with the unit of mass m are used to
define the usual Lennard-Jones units, which are adopted in this
work.

The total mass of each molecule was set to M = 56m. Noting
that the total mass has been held constant, we report the reduced
mass dipole d = D/M, which has a more intuitive physical meaning
than D: it is the displacement of the center of mass from the geomet-
ric center, d = d ⋅ ûd = rcom − rg . The geometric center rg was chosen
as the center of symmetry of the molecule (i.e., the inversion center
given the D∞h point group). Since we consider freely rotating rigid
bodies, their rotation is characterized by the moments of inertia I
about the axes through the center of mass. The moments of mass for
this model (Fig. 1) are given by (for the molecule oriented along the
x axis),

M =
7

∑
i=1

mi = 56m,

d = 1
M

7

∑
i=1

mi(xi − xg), (6)

I =
7

∑
i=1

mi(xi − xcom)2,

where xi is the distance of monomer i along the molecular axis.
There are no analytical solutions to Eq. (6) for a given set {N, M, d, I}
without applying additional constraints. We use numerical opti-
mization methods to generate the mass distributions that give the
desired {N, M, d, I}. Each mixture is characterized by the mass
dipoles di and moments of inertia Ii of species i = 1, 2. By con-
vention, we assign species 1 according to I1 > I2, and d1 > d2 if
I1 = I2.

B. Simulation details
We performed both equilibrium and non-equilibrium molec-

ular dynamics (NEMD) simulations of equimolar (mole fractions
x1 = x2 = 0.5) binary mixtures targeting temperature T = 3.0 εk−1

B
and pressure P = 1.121 εσ−3, which correspond to a monomer
number density of ρN,mon = 0.398 σ−3 (molecule number den-
sity ρN,m = ρN,mon/7 = 0.0568 σ−3) and volume fraction ϕ = 0.208.
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The molecules were modeled as rigid bodies; their translational
and rotational degrees of freedom were integrated using the
method of quaternions.27 A timestep of δt = 0.002τ was used for
all simulations. All simulations were performed using Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)28 (v. 3
March 2020).

1. Non-equilibrium molecular dynamics simulations
Boundary-driven NEMD simulations of the mixtures were

performed at an average density of ρN,mon = 0.4σ−3. An elon-
gated (tetragonal) simulation cell of dimensions (Lx, Ly, Lz)
= (50, 50, 100)σ was used under 3D periodic boundary conditions.
Two thermostatting regions, hot and cold, were located in the center
and edges of the simulation, respectively (see Fig. 2). The ther-
mostatting regions had a width Δz = 7σ and extended over the
entire (x, y) plane such that the temperature gradients were gen-
erated along the z-direction. For the thermostatting procedure, a
Langevin thermostat with a time constant (damping parameter) of
1τ was applied to the hot and cold regions at temperatures Th and
Tc, respectively. The thermostat temperatures were set to Tc = 2.5
εk−1

B and Th = 3.5 εk−1
B , unless specified otherwise. The Langevin

thermostats do not conserve linear momentum, so the system’s
center-of-mass velocity was subtracted from each particle at every
timestep in order to ensure linear momentum conservation. In the
stationary state, this setup results in two equal but opposite temper-
ature gradients and therefore in equal and opposite heat fluxes such
that the system is completely periodic. In order to avoid potential
artifacts associated with the dynamics of the Langevin-thermostated
particles,29,30 only data pertaining to molecules with a center of
geometry at a minimum distance of (N/2)σ = 3.5σ from either ther-
mostatting region were used for analysis. For each system, ten sta-
tistically independent replicas were generated, each consisting of an
initial te ≥ 5 × 104 τ to establish the stationary state followed by pro-
duction runs of equal length between 10–30 × 104 τ. Owing to the
small signal/noise ratio, it is not possible to obtain well-converged
mole fraction profiles in the transient regime preceding the station-
ary state. The time required to reach the stationary state is of the
order of the characteristic time ts = l2/D, where l is the distance
between the two thermostats and D is the self-diffusion coefficient.
For our NEMD simulations, te/ts ∼2–5, using the smaller of the two
self-diffusion coefficients (corresponding to species i = 1, 2) for each
mixture.

2. Equilibrium simulations
Equilibrium molecular dynamics (EMD) simulations of the

mixtures were performed in the NVT ensemble. A cubic simulation
cell of length L ≈ 56.05σ containing 104 molecules was used. The
temperature was controlled by the Nosé–Hoover chain thermostat
with three chains and a time constant of 10τ. Sampling consisted
of 10–30 replicas for each system; each replica was equilibrated for
103 τ followed by 2 × 104 τ of production.

Simulations of the pure fluid (same particle model but with the
mass distribution given by mi = m for all monomers) in the NPT
ensemble were performed to determine the phase coexistence dia-
gram. These simulations used cubic cells with 3 × 104 molecules.
Temperature (pressure) was controlled using a Nosé-Hoover chain
thermostat (barostat) with three chains and a time constant of 1τ

FIG. 2. Representative (a) temperature T and monomer number density ρN,mon
profiles and (b) mole fraction, x1 and x2, profiles for the NEMD simulations. The
blue (cold) and red (hot) indicate the location of the thermostatting regions in the
simulation cell. The profiles correspond to the (I1 = I2, d1, d2) = (80mσ2, 2.7σ, 0)
mixture.

(10τ). To ensure that hysteresis effects31 were not significant, two
replicas were performed for each (P, T) state point; only systems
where the S2 order parameter (see Sec. III A) of the two replicas
agreed to within their statistical uncertainties were included. Along
each isobar, the two replicas were generated using upward (down-
ward) branches starting from a low-density isotropic (high-density
nematic) system with gradually decreasing (increasing) temperature.
Each replica consisted of 0.4–12 ×104 τ of equilibration starting
from a nearby state point, followed by a 2 × 104 τ production
run.

C. Transport properties from simulations
The Soret coefficient ST was evaluated from the NEMD

simulations at the zero-mass-flux (J1 = 0) stationary state as

ST = −(
1

w1w2

∇w1

∇T
)

J1=0
= −( 1

x1x2

∇x1

∇T
)

J1=0
, (7)

where xi and wi are the mole and mass fractions of component i.
The local gradients∇T and∇x1 were determined by fitting a straight
line to their profiles within a range of ±10σ around the selected state
point at T = 3.0εk−1

B . Verification of linear response is given in the
supplementary material.

The mutual diffusion coefficient D12 was calculated from

D12 =
L11

ρ(1 − w1)T
(∂μs,1

∂w1
)

P,T
, (8)

where μs,1 is the specific chemical potential of component 1. For ideal
mixtures,32 such as the isotopic mixtures considered here with the
same intermolecular interactions between different components,

(∂μs,1

∂w1
)

P,T
= kBT

w1[M1 − w1(M1 −M2)]
. (9)
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The phenomenological coefficients L11 were calculated using the
Green–Kubo integral formula

L11 =
V

3kB
lim

t′→∞
∫

t′

0
⟨J1(t) ⋅ J1(0)⟩dt, (10)

where V is the volume of the simulation cell and the factor of 3
in the denominator averages the contributions from each spatial
dimension. The mass flux is given by

J1 =
1
V

N1

∑
i=1

7

∑
j=1

m j,iv j,i, (11)

where v is the velocity and the sums run over all seven monomers of
each of the N1 molecules of species 1. Equation (10) was evaluated
from the equilibrium-NVT simulations using a correlation time of
t′ = 500τ for the upper limit of the integral, which is sufficient for
well-converged integrals (see the supplementary material).

Unlike in previous studies,33–35 the thermal diffusion coefficient
DT could not be evaluated from equilibrium simulations using the
Green–Kubo approach. Owing to the rigid body constraint forces,
reliable per-particle virial stress tensor-based instantaneous heat
fluxes could not be obtained even when using the recently derived
centroid formulation36,37 (and using only the x component38,39).
The formulation of instantaneous heat flux in rigid body dynamics
has long been established.40 Further work is required to imple-
ment this capability in LAMMPS. Instead, DT was calculated from
DT = STD12. This approach relies on the fact that finite-size effects
associated with ST from NEMD and D12 from equilibrium-NVT
simulations are small and additionally cancel. It has recently been
shown that the hydrodynamic correction of Yeh and Hummer41

for self-diffusion coefficients can also be applied to D12.42 This
correction amounts to an increase in D12, D1, and D2 of <4%
(see the supplementary material), which is smaller than the uncer-
tainties associated with D12, ST , and therefore DT . Regarding ST
from NEMD, extrapolating the simulation cell lengths Lx = Ly →∞
decreases ST by ∼4% (see the supplementary material). Thus, finite-
size effects in ST and D12 are expected to at least partially cancel when
calculating DT . This is because finite-size effects in ST ≡ DT/D12
include those from D12; based on our finite-size analysis of D12 and
ST , we expect finite-size effects of ∼1% in DT , which is smaller than
its associated uncertainties. Thus, we use and report the uncorrected
D12, D1, and D2 values, which give more internally consistent val-
ues for ST , D12, and DT . We note that using the infinite-size D12, D1,
and D2 does not change any of the qualitative trends reported in this
work (see the supplementary material).

Self-diffusion coefficients were calculated using the Einstein
relation. Rotational diffusion coefficients and shear viscosities were
calculated from their Green–Kubo equations using an upper inte-
gration limit of 200τ and 500τ, respectively. (See the supplementary
material). As with D12, these transport properties were calculated
from equilibrium-NVT simulations that use a global Nosé–Hoover
chain thermostat. Global thermostats have been shown to give trans-
port properties that are statistically indistinguishable from those of
the NVE ensemble.30 Especially given the weak coupling strength
(large time constant), the thermostat is not expected to significantly
affect the correlation functions and transport properties calculated
in this work.

All statistical uncertainties reported in this work refer to the
95% confidence interval of the mean, unless stated otherwise.

III. RESULTS AND DISCUSSION
A. Equation of state and phase diagram

The simulated fluid exhibits an isotropic–nematic phase tran-
sition, and we are interested in the behavior of the mixtures in the
isotropic phase. Choosing the aspect ratio of the molecules is a com-
promise: the maximum mass dipole achievable is determined by
the length N of the shish-kebab molecule, but the nematic phase
is shifted to lower volume fractions for greater aspect ratios. It
is therefore necessary to map out the phase coexistence diagram
to determine which thermodynamic conditions correspond to the
isotropic phase.

The uniaxial orientational order parameter S2 is zero for an
isotropic fluid and unity for a perfectly aligned system. S2 is the
ensemble average of the largest positive eigenvalue P2 of the Q
tensor,

Qαβ =
1

Nm

Nm

∑
i=1
(3

2
ûi,αûi,β −

1
2

δαβ), α, β = x, y, z, (12)

S2 = ⟨P2(n ⋅ û)⟩ = ⟨P2(cos θn)⟩ =
3
2
⟨cos θn⟩ −

1
2

, (13)

where the director n is the eigenvector associated with P2 and û = ûd
is the unit vector along the long molecular axis. Numerical data
for the estimated isotropic–nematic coexistence temperatures and
upper/lower bounds on the coexistence densities are given in the
supplementary material.

The phase diagram of the pure fluid is shown in Fig. 3. In classi-
cal systems, ensemble averages over thermodynamic observables are
independent of the mass and mass distribution of the particles, and

FIG. 3. Phase diagram and equation of state (EOS). T , ρN,mon, and ϕ are the tem-
perature, monomer number density, and volume fraction, respectively. The data
are color coded according to the uniaxial (orientational) order parameter S2. The
dashed isotropic–nematic coexistence line is to guide the eye. The inset shows
the EOS at pressure P = 1.121εσ−3, as predicted by equilibrium-NPT and NEMD
simulations. Symbols: I = isotropic and N = nematic.
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the phase diagram is therefore applicable to the isotopic mixtures
under equilibrium conditions. All the NEMD simulations corre-
spond to thermodynamic conditions, T ≥ 2.0 εk−1

B and ϕ < 0.24, that
are safely within the isotropic region of the phase diagram. Each set
of NEMD profiles corresponds to the equation of state (EOS) at the
simulated pressure, as defined by the component (Pzz) parallel to
the heat flux vector. The inset of Fig. 3 shows that NEMD simula-
tions reproduce the equilibrium EOS at P = 1.121εσ−3 and therefore
that local equilibrium is fulfilled.

B. Mass dipole contribution and its microscopic origin
In this section, we consider mixtures with I = I1 = I2 but

d1 ≠ d2 for which all current models of thermal diffusion predict
ST = 0 (see, e.g., the reviews Refs. 13–16 and 43 and the references
contained therein). Figures 4(a-i) and 4(b-i) contains the main result
of this work: mixtures with components that differ only by their
mass dipole have non-zero Soret coefficients. Indeed, the mole frac-
tion profiles for one such mixture are shown in Fig. 2, providing
clear evidence for species separation in the thermal field. In all

FIG. 4. Transport coefficients for the isotopic mixtures with (a) I = I1 = I2 and d2 = 0 and (b) I = I1 = I2 = 80mσ2 and d1 ≠ d2. The (i) Soret coefficient ST , (ii) thermal
diffusion coefficient DT , and (iii) mutual diffusion coefficient D12 as a function of d1 − d2. di and Ii are the mass dipole and moment of inertia of species i = 1, 2. The solid
lines show equations that model the data: see the main text for details.
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cases, ST > 0, which indicates that the species with the greater mass
dipole is thermophobic and preferentially collects in the cold region.
Assigning an interaction strength typical of simple molecular fluids,
ε/kB = 102 K, gives ST = 1–15 × 10−3 K−1 at T = 300 K (T = 3.0 εk−1

B )
for the mass dipole contribution [Figs. 4(a-i) and 4(b-i)]. This is of
comparable magnitude to the entire (pseudo-)isotopic Soret effect in
many molecular mixtures.7,17,18

We probe the phenomenology of ST ≡ DT/D12 by considering
the thermal diffusion coefficient DT and mutual diffusion coefficient
D12. As shown in Fig. 4(a-iii), D12 decreases with increasing I for
mixtures with I = I1 = I2 and d2 = 0 but is essentially constant with
d1. Furthermore, the constant value of D12 determined by fitting to
the D12(d1; I = 80mσ2, d2 = 0) data accurately predicts the D12 val-
ues for mixtures with d2 ≠ 0 as well [Fig. 4(b-iii)], indicating that
D12 does not significantly depend on either mass dipole, d1 or d2,
at least relative to the statistical uncertainties associated with the
data.

With regard to DT , all the data for the I = I1 = I2 and d2 = 0
mixtures can be accurately described by a power law dependence
DT = a(d1 − d2)k [Fig. 4(a-ii)], indicating that DT is only weakly
dependent on the moment of inertia. The exponent k = kd2=0 = 1.6

± 0.1 was determined by fitting the equation ln DT = k ln(d1 − d2)
+ ln a to the d2 = 0 data (see the supplementary material). Consid-
ering mixtures with d2 ≠ 0, fits to the equation DT = a(d1 − d2)kd2=0

accurately reproduces the simulation data [Fig. 4(b-ii)]. Thus, the
effect of changing d2 while keeping d1 − d2 constant can be cap-
tured by the prefactor a, which increases with increasing d2, as
shown explicitly in the inset of Fig. 8(b) in the supplementary
material.

Finally, we return to ST , which we predict with the equation

ST[d1, d2, I = I1 = I2] =
DT[d1, d2]

D12[I]
= a(d1 − d2)k

cI[I]
, (14)

where k = kd2=0 describes the whole dataset and a and cI were deter-
mined by the fits to DT and D12, respectively. We show in Figs. 4(a-i)
and 4(b-i) that Eq. (14) accurately predicts ST and captures its weak
dependence on I, which can be discerned for large values of d1 − d2,
as shown in the inset of Fig. 4(a-i).

We additionally calculate D12 using the Darken approxima-
tion DMS ≈ DDarken

MS = x2D1 + x1D2, where DMS is the Maxwell–Stefan

FIG. 5. (a) The mutual diffusion coefficient D12 vs the Darken approximation DDarken
12 . (b) DDarken

12 , (c) ΔD1, and (d) ΔD2 as a function of the mass dipole, d1, of species 1.
ΔDi = Di − Di(d1 = 0.5σ) is the change in self-diffusion coefficient Di of species i = 1, 2 relative to the corresponding mixture with d1 = 0.5σ.

J. Chem. Phys. 159, 114503 (2023); doi: 10.1063/5.0164253 159, 114503-6

© Author(s) 2023

 25 Septem
ber 2023 09:30:58

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

diffusion coefficient related to the Fickian D12 via D12 = ΓDMS,
where Γ is the thermodynamic factor (Γ = 1 for the ideal mixtures
considered here). The Darken approximation DDarken

12 predicts val-
ues in excellent agreement with the (non-approximate) D12 values
[Fig. 5(a)], indicating that displacement cross correlations between
particles do not play an important role in determining D12. Thus,
the behavior of D12 can be rationalized in terms of the self-diffusion
coefficients D1 and D2. As shown in Fig. 5(b), DDarken

12 features a weak
but discernible dependence on d1 (and therefore d1 − d2), which
was masked by the greater uncertainties associated with D12 calcu-
lated from the Green–Kubo integral formula. D1 and D2 also depend
weakly on the mass dipole d1 [Figs. 5(c) and 5(d)]. Unsurprisingly,
the impact of d1 on D1 is greater than on D2 with ΔD1/ΔD2 ∼ 1–4,
where ΔDi = Di(d1) −Di(d1 = 0.5σ). Thus, the weak dependence of
D12 on the mass dipoles d1 and d2 can be primarily attributed to the
effect of di on Di. (See the supplementary material for additional data
on the diffusion coefficients and related quantities).

The mass dipole also affects the rotational diffusion of the
rod-like molecules. We show in Fig. 6(a) that the rotational dif-
fusion coefficient Dr,1 decreases with increasing mass dipole d1.

Dr,i is the rotational diffusion coefficient of species i = 1, 2. The
rotational diffusion coefficient decreases with increasing moment
of inertia, as expected. The translational and rotational diffusion
coefficients are coupled with 15 > (Di/Dr,i)/(σ2 rad−2) > 13 for all
the mixtures considered in this section. As shown in Fig. 6(b),
the ratio D1/Dr,1 increases with the mass dipole d1 but is statis-
tically independent of I within the statistical uncertainties of our
data. We note that comparing to previous simulations44 of sys-
tems of the same WCA shish-kebab model but at the different
temperature T = 1 εk−1

B , the (N = 7, ρN,m = 0.0568 σ−3) state point
studied in this work is expected to be in the semidilute regime,
where the translational and rotational diffusion are known to be
coupled.45

We conclude from Fig. 4 that the Soret coefficient depends
on the mass dipoles mainly through DT . We show in Figs. 6(c)
and 6(d) that DT is positively correlated with the differences in
rotational diffusion coefficients, −(Dr,1 −Dr,2), and translational
diffusion coefficients, −(D1 −D2). We expect the rotational corre-
lation reflects librational modes that influence the thermal transport
and therefore DT .

FIG. 6. Rotational and translational diffusion coefficients and their correlation with the thermal diffusion coefficient DT . (a) Dr ,1 as a function of the mass dipole d1 of species
1. (b) The ratio D1/Dr ,1 as a function of d1. (c) DT vs −(Dr ,1 − Dr ,2). (d) DT vs −(D1 − D2). Dr ,i and Di are the rotational and translational diffusion coefficients, respectively,
of species i = 1, 2.
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Hence, to probe the microscopic mechanism associated with
librational modes and its dependence on the molecular inter-
nal degrees of freedom, we calculate the power spectra of vari-
ous velocity autocorrelation functions (VACFs). We consider the
“all-atom” VACF, Catom, as well as the rotational and transla-
tional center-of-mass VACFs of the rigid molecules, Crot and Ctrans,
respectively,

Catom(t) =
⟨vi(t) ⋅ vi(0)⟩
⟨v2

i (0)⟩
, (15)

Crot(t) =
⟨ω j(t) ⋅ ω j(0)⟩
⟨ω2

j(0)⟩
, (16)

Ctrans(t) =
⟨vCOM, j(t) ⋅ vCOM, j(0)⟩

⟨v2
COM, j(0)⟩

, (17)

where vi is the velocity of monomer i, ωj is the angular velocity
of rigid molecule j, vCOM,j is the center-of-mass velocity of rigid
molecule j, and t is the elapsed time from an arbitrary starting time.
The power spectrum is then given by the Fourier transform of the
corresponding VACF,

IX(ν) = lim
t′→∞
∫

t′

−t′
CX(t)e−i2πνtdt, (18)

where IX is the intensity and ν is the frequency.

FIG. 7. Power spectra of species 1 of the (I1 = I2, d1, d2) = (80mσ2, d1, 0) mixtures. The intensity IX vs frequency ν for the (a) “all-atom” (Iatom) (b) rotational (Irot) and (c)
translational center-of-mass (Itrans) power spectra. In (a) and (b), the vertical solid lines show the librational mode frequencies νlib. In (b), the dashed-dotted (-.) lines denote
the fitted spectra Ifit and the inset shows the individual fitted functions for the (I1 = I2, d1, d2) = (80mσ2, 2.7σ, 0) mixture.
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The power spectra of species 1 in the I = I1 = I2 = 80mσ2 and
d2 = 0 mixtures are shown in Fig. 7. For large mass dipoles, Iatom
features a peak at ∼0.5τ−1 indicative of a librational mode. Increas-
ing the mass dipole increases the frequency of the librational mode.
This librational mode is also reflected in Irot. For low mass dipoles, a
single peak is observed at ∼0.2–0.3τ−1, which contains contributions
from both the libration and a lower frequency mode. Upon increas-
ing d, the librational mode is blue-shifted and two distinct peaks are
observed.

In order to disentangle contributions from the different modes,
we fit the rotational power spectra Irot using the following equations:

Ifit = IL + IDHO, (19)

IL =
aL

1 + ( ν−νL
cL
)

2 , (20)

IDHO =
Dγ

(ν2
0 − ν2)2 + γ2ν2 , (21)

where the Lorentzian-like function IL captures the low frequency
peak at ν ∼ 10−2τ−1. In spectroscopy, librations are typically mod-
eled as damped harmonic oscillators (DHO). In Eq. (21) for the
DHO, D is the oscillator intensity constant, γ is the damping con-
stant, and ν0 is its frequency (band position). Using the I = I1 = I2
= 80mσ2 and d2 = 0 mixtures as an example, we show in Fig. 7(b)
that fitting Eq. (19) accurately reproduces Irot. Extracting the libra-
tional frequencies νlib = ν0 from the fits, it is evident that νlib
increases with d1 (Fig. 7).

In Fig. 8, we show that DT is highly correlated with the dif-
ference in librational frequencies of species 1 (νlib,1) and species
2 (νlib,2). The effect of the mass dipole on νlib can be large; we
observe νlib,1 − νlib,2 values of up to ∼100% of νlib,2. We fit the data to
the equation DT = b(νlib,1 − νlib,2), demonstrating a direct propor-
tionality relationship with DT . Given their statistical uncertainties,
all data points agree with the fitting except for the (I1 = I2, d1, d2)
= (40mσ2, 2.8σ, 0) mixture, which corresponds to the greatest
νlib,1 − νlib,2 value of all the mixtures considered in this section. This
suggests that DT may saturate at sufficiently large νlib,1 − νlib,2 values,
beginning from ∼0.5τ−1. We conclude that the librational frequency
is sensitive to the mass dipole and that the mass dipole contribu-
tion to DT is highly correlated with the modification of the libra-
tional mode and therefore the short-time dynamics of the rod-like
molecules.

C. Coupling with the moment of inertia contribution
In this section, we examine how the mass dipoles affect the

Soret coefficient of mixtures with non-zero moment of inertia con-
tributions. We consider mixtures with components that differ only
in their moments of inertia (I1 ≠ I2, d1 = d2) with I1, I2 = 10–270mσ2

and ratios I1/I2 = 1–27 and then mixtures with I1 ≠ I2 and
d1 ≠ d2.

First we consider the simplest case of mass-symmetric
molecules: I1 ≠ I2 and d1 = d2 = 0. The Soret coefficients for these
mixtures are shown in Figs. 9(a) and 9(b). In all cases ST > 0, indicat-
ing that the component with the greater moment of inertia (species
1) is thermophobic. For molecular mixtures, the pseudo-isotopic
Soret effect is usually modeled by the empirical equation

FIG. 8. Thermal diffusion coefficient DT as a function of νlib,1 − νlib,2, where νlib,i is
the librational frequency of species i. The solid line shows the fit to DT = b(νlib,1
− νlib,2). Error bars correspond to maximum/minimum values based on the
sensitivity of the fitting procedure for Eqs. (19)–(21).

ST = Schem
T + Siso

T = Schem
T + aM

M1 −M2

M1 +M2
+ bI

I1 − I2

I1 + I2
, (22)

where Siso
T was originally taken by analogy to the description

of gaseous mixtures3,19,46 and adjusted for liquids by the prefac-
tors aM and bI .13,20 For the mixtures considered here, Eq. (22)
reduces to

ST = bI
I1 − I2

I1 + I2
, (23)

which is also retrieved from the theoretical model47 of Villain-
Guillot and Würger (derived by considering velocity fluctuations in
a hard-bead model with elastic collisions) when setting M1 =M2.
As shown in Fig. 9(a), Eq. (23) is in relatively good agreement
with our simulation results. However, it is unable to predict all
data points within their associated uncertainties. Previous simula-
tions of binary isotopic mixtures of Lennard-Jones dumbbells with
I1/I2 = 1–40 have shown very good agreement with the moment of
inertia contribution given by Eq. (23).8,12 These simulations did not
account for the mass dipole, but this contribution is likely to be small
with d1 − d2 ≤ 1σ for the dumbbells. More generally, Eq. (22) has
been able to accurately model the experimental Soret coefficients
of relatively low molecular mass non-polar mixtures7 and isotope
mixtures.7,19–23 However, M1 +M2 and I1 + I2 in these mixtures
were almost constant; the terms in Eq. (22) could also be written
in terms of absolute differences M1 −M2 and I1 − I2. Indeed, Wit-
tko and Köhler found that the isotopic substitution C6H12 to C6D12
results in a constant shift in ST , irrespective of the nature of the other
component.17 This trend is not reproduced by Eq. (22). Thus, we also
fit our simulation data to

ST = bI(I1 − I2), (24)

which similarly reproduces the ST values relatively well, as shown in
Fig. 9(b).
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FIG. 9. The Soret coefficient ST as a function of (a) the relative (I1 − I2)/(I1 + I2) and (b) absolute (I1 − I2) differences in moment of inertia Ii of species i = 1, 2 for mixtures
with mass dipoles d1 = d2 = 0; (c) (I1 − I2) for mixtures with d1 = d2; and (d) (d1 − d2) for mixtures with (I1, d1, I2, d2). In (d), the solid lines show fits to Eq. (25), and the
label units for Ii and di are mσ2 and σ, respectively.

We emphasize that Eqs. (23) and (24) are empirical equations,
and how accurately they model the moment of inertia contribu-
tion must be considered on a case-by-case basis for each mixture.
Additionally, bI is typically fit simultaneously with multiple other
coefficients,7,17 making it difficult to isolate the moment of iner-
tia term. Isotopic substitution changes both the mass and inertia
of a molecule. Thus, even for isotopic mixtures, the moment of
inertia must be considered together with the total mass (and the
mass dipole). Only recently, in simulations of isotopic mixtures of
Lennard-Jones dumbbells with M1 =M2, has the moment of inertia
contribution been studied independently from total mass contribu-
tion.12 The shish-kebab model used in this work allows us to isolate
the moment of inertia contribution from both the total mass and
mass dipole contributions.

Next, we consider mixtures with I1 ≠ I2 and d1 = d2 ≠ 0.
As shown in Fig. 9(c), increasing d1 = d2 while holding I1 and
I2 = 10mσ2 constant decreases ST , and this decrease is more pro-
nounced when I1 (i.e., I1 − I2) and ST are larger. In terms of
its relative magnitude, ST decreases by ∼15% when increasing
d1 = d2 from 0 to 2σ for the entire 100 ≤ (I1 − I2)/(mσ2) ≤ 260
range (15% is comparable to the uncertainties for I1 − I2 = 100mσ2).
This demonstrates that the moment of inertia contribution is
coupled with the mass dipole even when d1 = d2.

Finally, we consider mixtures with I1 ≠ I2 and d1 ≠ d2. As
shown in Fig. 9(d), ST can be tuned by the mass dipoles d1 and
d2 when holding I1 and I2 constant. In all cases, ST increases with
d1 − d2, and the mass dipole contribution can both enhance or com-
pete with the moment of inertia contribution. All current models
of thermal diffusion predict that when the components differ by
only their internal mass distribution, the component with the greater
moment of inertia is thermophobic (ST > 0). Crucially, we demon-
strate that by increasing −(d1 − d2), the competing mass dipole
contribution causes a reversal in sign of ST and species 1 (I1 > I2)
becomes thermophilic (ST < 0), or can lead to the inhibition of
thermal diffusion (ST = 0).

Following from the power law dependence of the mass dipole
contribution [Eq. (14)] described in Sec. III B, we model the I1 ≠ I2
and d1 ≠ d2 mixtures using the equation

ST = a(d1 − d2)∣d1 − d2∣k−1 + cI , (25)

where k = kd2=0 = 1.6 ± 0.1 as determined in Sec. III B. The pref-
actor a accounts for the strength of the mass dipole contribution
including the coupling with the moments of inertia, while the con-
stant cI(I1, I2) represents only the inertia contribution. As shown
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in Fig. 9(d), Eq. (25) is in excellent agreement with our simulation
data; all data points agree to within their statistical uncertain-
ties. a depends on both I1 and I2, indicating that the mass dipole
contribution is coupled with the moments of inertia.

D. An empirical equation for the isotopic Soret effect
In this section, we propose an empirical equation for the

isotopic Soret effect that includes the mass dipole contribution.
Building on the success of equations of the form Siso

T = SM
T (M1, M2)

+ SI
T(I1, I2) for modeling experimental7,17,19–23,48 and simulation8

data, we assume that contributions from the different moments of
the mass distribution are only weakly coupled and seek an equation
of the form

Siso
T (M1, M2, d1, d2, I1, I2) = SM

T (M1, M2) + Sd
T(d1, d2) + SI

T(I1, I2).
(26)

All mixtures considered in this work correspond to M1 =M2 and
thus SM

T = 0. However, we note that SM
T ∝ (M1 −M2)/(M1 +M2),

SM
T ∝ (M1 −M2), and SM

T ∝ −(M−1
1 −M−1

2 ) have been used to
model a range of molecular mixtures.7,17,18,48 For Sd

T , we propose

Sd
T(d1, d2) = (a1ds + a2)(d1 − d2)∣d1 − d2∣k−1, (27)

where ds = min{d1, d2} is the smaller mass dipole, a1 and a2 are
constants, and k = kd2=0 = 1.6 ± 0.1 as determined in Sec. III B. The
(a1ds + a2) term stems from the observation that a in Eq. (14) is
approximately linear with ds (d2 = ds for the I1 = I2 mixtures con-
sidered in Sec. III B), as evident from the inset of Fig. 8(b) in the
supplementary material. For SI

T , we test both Eq. (23) (model A) and
Eq. (24) (model B). Thus, for the isotopic mixtures studied in this
work, the empirical equations are model A,

SA
T = Sd

T(d1, d2) + bI
I1 − I2

I1 + I2
, (28)

and model B,

SB
T = Sd

T(d1, d2) + bI(I1 − I2). (29)

For the mass dipole contribution Sd
T , the parameters a1 and a2 were

fit using only the I1 = I2 mixtures. Analogously, for the moment of
inertia contribution SI

T , the parameters bI were fit using only the

FIG. 10. Empirical models (a) A [Eq. (28)] and (b) B [Eq. (29)] for the isotopic Soret effect. (i) ST vs SX
T for model X = A, B, where SX

T and ST are the predicted and reference
(simulated) Soret coefficients, respectively. (ii) The error SX

T − ST as a function of the mass dipole contribution Sd,X
T and moment of inertia contribution SI,X

T of model X = A, B.
Data are color coded according to the error SX

T − ST .
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d1 = d2 mixtures. The (I1 ≠ I2, d1 ≠ d2) mixtures were not used in the
fitting procedure, and SX=A,B

T values for these mixtures are therefore
true predictions.

We show in Fig. 10 that both models are in relatively good
agreement with our simulation data. For the d1 = d2 mixtures,
SX

T = SI
T have maximum absolute errors (MAEs) of 7.2 × 10−2 kBε−1

and 7.6 × 10−2 kBε−1 for models A and B, respectively. These are ∼4
times greater than the MAE of 1.8 × 10−2 kBε−1 for the I1 = I2 mix-
tures for which SX

T = Sd
T . Thus, Eqs. (28) and (29) more accurately

model the mass dipole contribution compared to the moment of
inertia contribution. For the (I1 ≠ I2, d1 ≠ d2) mixtures, models A
and B have MAEs of 4.0 × 10−2 kBε−1 and 3.0 × 10−2 kBε−1, respec-
tively. We note that while a full range of mass dipoles (di ≤ 3 for this
particle model) has been explored, the simulated (I1 ≠ I2, d1 ≠ d2)
mixtures correspond to a more limited range of moments of iner-
tia [see Fig. 9(d)]. Using the same range of (I1, I2) as the d1 = d2
mixtures would presumably result in higher MAEs for the (I1 ≠ I2,
d1 ≠ d2) mixtures. For the mixtures studied in this work, the accu-
racy of the empirical models is limited by the (in)accuracy of the
SI

T term rather than the assumption that the moments of the mass
distribution are uncoupled.

Next, we consider the validity of the weak coupling approxima-
tion. As shown in Fig. 4(a-iii), D12 increases (ST decreases) by ∼20%
when decreasing I = I1 = I2 from 100mσ2 to 40mσ2, which corre-
sponds to the largest change in the mass dipole contribution due to
the coupling with the moments of inertia. The a1 and a2 coefficients
in Sd

T [Eq. (27)] include an average over the effect of I on D12; we
therefore expect a maximum error of ∼10% in Sd

T due to the coupling

with I1 and I2. With regard to the moment of inertia contribution
(as discussed in Sec. III C), ST decreases by ∼15% when increasing
d1 = d2 from 0 to 2σ for the (I2 = 10mσ2, d1 = d2) mixtures. Extrap-
olating this result to the entire range of mass dipoles di ≤ 3σ and
moments of inertia, Ii ≤ 260mσ2, we expect coupling effects in SI

T of
≲ 30% for the mixtures considered in this work.

E. Thermal orientation
The molecules with di ≠ 0 exhibit thermal orientation49 (TO):

they adopt an average orientation with respect to the heat flux vec-
tor, quantified by ⟨cos θi⟩ = ûd,i ⋅ ûJq for species i = 1, 2, where ûd,i
and ûJq are the unit vectors in the directions of the mass dipole
and heat flux, respectively. Representative ⟨cos θz,i⟩ = ûd,i ⋅ ẑ pro-
files from the NEMD simulations are shown in Fig. 11(a). In all
cases, ⟨cos θi⟩ ≥ 0, indicating that on average the mass dipole points
toward the cold source (i.e., the heavy side points toward the cold
source). This is consistent with simulations of mass-asymmetric
diatomic molecules for which the heavier atom preferentially ori-
ents toward the cold source49 and follows the trend in the iso-
topic Soret effect of binary mixtures where the heavier compo-
nent migrates toward the cold source (assuming the components
are otherwise identical). As shown in Fig. 11(b-i), ⟨cos θ1⟩/∣∇T∣
increases and then begins to saturate with d1. Holding d1 constant,
⟨cos θ1⟩/∣∇T∣ increases with decreasing I = I1 = I2. ⟨cos θ1⟩/∣∇T∣
also depends on d2 as demonstrated for the I = 80mσ2 mixtures;
increasing d2 decreases ⟨cos θ1⟩/∣∇T∣. However, the effects of I
and d2 on ⟨cos θ1⟩ are an order of magnitude smaller than its
dependence on d1.

FIG. 11. Thermal orientation of the rod-like molecules. (a) The average orientation ⟨cos θz,i⟩ of species i = 1, 2 as a function of position z in the NEMD simulations. The
blue (cold) and red (hot) indicate the location of the thermostatting regions in the simulation cell. The profiles correspond to the same system shown in Fig. 2. (b) Average
orientation ⟨cos θ1⟩ of species 1 for different mixtures: (i) ⟨cos θ1⟩/∣∇T ∣ vs the mass dipole d1 and (ii) the Soret coefficient ST vs ⟨cos θ1⟩ for different temperature gradients
∇T .
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Does thermal orientation have an effect on the Soret coeffi-
cient? Based on the general formalism of linear non-equilibrium
thermodynamics32 (LNET), as a coupling effect, it does. For rigid
rod-like colloids in the dilute regime, the TO effect decreases
ST = DT/D primarily by increasing the diffusion coefficient D of
the colloid.25 TO has also been shown to impact the Soret coeffi-
cient of Janus particles.26 However, we show in Fig. 11(b) that for
the molecular mixtures studied here the impact of TO is smaller
than the uncertainties associated with our ST data. As exemplified by
three different mixtures, ST does not show a significant dependence
on ⟨cos θi⟩. (For each mixture, greater/smaller ∣⟨cos θi⟩∣ values were
achieved by increasing/decreasing ∇T in additional NEMD simula-
tions; see the supplementary material for details). The ∣⟨cos θ⟩/∇T∣
values observed in this work and in other49 molecular fluids are ∼2–3
orders of magnitude smaller than those observed in the colloidal
regime.24–26 This suggests that TO effects large enough to signifi-
cantly impact ST may be more difficult to achieve in molecular mix-
tures. However, it is worth pointing out that thermal polarization,
which emerges from the thermal orientation of polar molecules, can
give rise to measurable electrostatic fields in molecular fluids.50 As a
coupling effect, it leads to a reduction in the thermal conductivity
of the polar fluid, as described by LNET.50,51 Thermal polariza-
tion can play an important role in determining the thermoelectric
response of aqueous solutions.52 The impact of thermal polariza-
tion on the thermal diffusion of polar molecular mixtures remains
an open question.

IV. CONCLUSIONS
We have uncovered the mass dipole contribution to the isotopic

Soret effect, showing that mixtures of components that differ only
by the first moment of their mass distributions can have non-zero
Soret coefficients. To the best of our knowledge, all current models
of thermal diffusion describe the isotopic contribution Siso

T in terms
of only the total mass (the zeroth moment) and moments of inertia
(the second moment) of the components. Our results demonstrate
that other moments of the mass distribution must be included for
a complete description of the (pseudo-)isotopic Soret effect in fluid
mixtures.

For the isotopic mixtures of rigid linear molecules examined in
this work, the dependence of ST on the mass dipole arises mainly
through the thermal diffusion coefficient DT . In turn, DT is corre-
lated with both long-time dynamics—differences in rotational and
translational diffusion coefficients, and short-time dynamics—the
modification of a librational mode. Regarding the latter, greater
mass dipoles give rise to higher frequency librations (of frequency
νlib) with changes of up to 100%, and we find that DT ∝ νlib,1
− νlib,2. Through the self-diffusion coefficients Di=1,2, the mutual dif-
fusion coefficient D12 features a very weak dependence of the mass
dipoles, which can be attributed primarily to the effect of di on Di.
However, D12 does depend significantly on the moment of inertia,
which together with DT(d1, d2) affects how ST varies with the mass
dipoles. Indeed, in mixtures with d1 ≠ d2 and I1 ≠ I2, the mass dipole
contribution depends on both moments of inertia.

The mass dipole contribution can both enhance or compete
with the moment of inertia contribution, giving rise to new phe-
nomenology. For example, it is possible to design isotopic mixtures

with M1 =M2 where the component with a greater moment of iner-
tia is thermophilic. Additionally, the moment of inertia contribution
depends on the mass dipoles, even when d1 = d2 and the mass dipole
contribution vanishes. Our results show that changes in the internal
mass distribution can be used to tune the Soret coefficient, including
its sign and the thermophilicity of the components.

Building on the success of previous empirical models, we show
that the mass dipole contribution can be incorporated as an addi-
tional additive contribution to the (pseudo-)isotopic Soret effect.
This approach is valid when the contributions are only weakly
coupled. For the mixtures considered in this work, the weak cou-
pling assumption leads to estimated errors of ≲ 10% and ≲ 30% for
the mass dipole and moment of inertia contributions, respectively.
Indeed, the accuracy of the models is limited by the (in)accuracy
of the moment of inertia term rather than the weak coupling
assumption. Overall, the proposed empirical equations reproduce
our simulation data well.

Our work highlights the importance of internal degrees of free-
dom, such as the mass dipole, in determining the thermodiffusion
response of binary mixtures. Further work is required to assess the
magnitude of the mass dipole contribution in other molecular mix-
tures and determine how it affects the phenomenology of these
mixtures under the influence of thermal fields.

SUPPLEMENTARY MATERIAL

Supplementary material for this article. (1) Verification of lin-
ear response for the Soret coefficients, ST , calculated from the
NEMD simulations. (2) Finite-size analysis of the Soret coefficients.
(3) The phenomenological coefficient L11, shear viscosity η, and
rotational diffusion coefficient Dr from their Green–Kubo relations.
(4) Self-diffusion coefficients from the Einstein relation, related
quantities, and finite-size analysis. (5) Estimated isotropic–nematic
coexistence conditions. (6) Fitting empirical equations for the
thermal diffusion coefficient DT .
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