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Abstract 

 

Over the last 20 years there has been a growing increase in the amount of research 

investigating how and why two or more individual’s brain activity can synchronise during 

social interaction. What we know so far from this research is that inter-brain synchrony 

(defined through temporally coordinated patterns of brain activity between two interacting 

individuals, Holroyd 2022) tends to associate with moments of behavioural coordination (i.e., 

when two individuals are doing or attending to the same thing at the same time) and task 

cooperation (i.e., the action or process of two individuals working together to the same end). 

These observations have led many researchers to theorise over whether and how behavioural 

coordination mechanistically drives inter-brain synchrony (Wass et al., 2020; Hamilton, 

2021). There is also some very recent evidence to suggest that increased inter-brain 

synchrony actually facilitates/ supports aspects of social interaction. For example, inter-brain 

synchrony has been shown to predict team performance (Reinero et al., 2021), although this 

research is primarily based on correlational study designs. 

 

Taken together however the field of inter-brain synchrony shares one fundamental limitation; 

that is that it does not account (although see recent animal research e.g., Kingsbury et al., 

2019; Zhang et al., 2019), empirically for the mechanisms that give rise to inter-brain 

synchrony, which would help to falsify claims that inter-brain synchrony is a core mechanism 

facilitating social interaction. This is because of two main reasons; Firstly, the study of inter-

brain synchrony has primarily been investigated as a time-invariant property, almost no 

studies have explored how inter-brain synchrony varies over time relative to individual 

moments of behavioural coordination. Secondly, little attention has been paid to the changes 
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in the underlying signal properties (i.e., increases in power, changes in frequency) that must 

take place for two unsynchronised signals to become synchronised (e.g., Haresign et al., 

2022).  

 

Using two-person naturalistic biobehavioural recording techniques, coupled with state of the 

art, EEG pre-processing and analyses procedures (see chapters 5 and 6), the present thesis 

examines the mechanisms that give rise to inter-brain synchrony during parent-infant social 

interactions. 

 

Evidence is presented showing how inter-brain synchrony does not arise around individual 

moments of gaze coordination. This is despite previous investigations suggesting that 

increased inter-brain synchrony (averaged over all moments of eye contact) associates with 

gaze synchrony. Evidence also shows the contribution of behavioural coordination across 

multiple modalities to inter-brain synchrony during parent-infant social interaction  

 

Discussion is focused on the contribution of these findings to our understanding of the 

mechanisms that give rise to inter-brain synchrony. 

 

 

Keywords: EEG, hyperscanning, inter-brain synchrony, social interaction, early development 
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Distinct contribution 

 

(1) Naturalistic methodologies in parent-infant interaction. Whereas previous studies 

investigating the neural correlates of infant’s social attention have focused on static 

screen-based stimuli, the work presented in the empirical chapters measures brain activity 

during free-flowing naturalistic interactions.  

 

(2) The use of dual EEG or ‘hyper scanning’. Work included in the empirical chapters will 

also all revolve around the use of dual EEG. Very few studies have used such techniques 

to study parent infants’ interactions.  

 

(3) The advancement of methods associated with measurement of inter brain synchrony 

between parents and infants. Chapter six aims to address issues surrounding the 

quantification of inter-brain synchrony between infants and adults. To date there exists no 

comprehensive guidelines for estimating inter brain phase synchrony in such populations. 
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Definition of key terms 

 

Synchrony. ‘Coordination of biological and social processes during social contact’ 

(Feldman, 2015, p. 369); in dyadic contexts, synchrony may be operationalised as 

‘concurrent’ (‘when A is high, B is high’) or ‘sequential’ (‘changes in A forward-predict 

changes in B’; Helm et al., 2018; Wass et al., 2020).  

 

Entrainment. Entrainment is defined by a temporal locking process in which one system's 

motion or signal periodicity becomes temporally aligned with the periodicity of another 

system. This process is a universal phenomenon that can be observed in physical (e.g., 

pendulum clocks) and biological systems (e.g., fireflies) (Thuat et al., 2015). 

 

Phase resetting. An abrupt shift in oscillatory phase. Often associated with the onset of some 

stimulus/ event. 

 

Phase locking. Defined as temporal alignment of phase between two signals, wherein two 

signals show consistent variation in phase with respect to one another.  

 

Hyperscanning. The recording of brain activity from multiple individuals  
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Used in the synopsis or in the original publications. 

 

AOI  area of interest 

ANOVA analysis of variance  

EEG  electroencephalogram  

EMG  electromyogram 

ECG  electrocardiogram 
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ERP  event-related potential  

ET  eye-tracker, eye-tracking 

MSE  mean squared error 

PLV                phase locking value or “ phase locking” 

PDC                partially directed coherence  

PFC  pre-frontal cortex 
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Chapter 1 – Introduction  

 

The ability to coordinate my behaviour with those of a social partner is seen throughout the 

natural world across multiple species. Yet, it is remarkably complex. To coordinate my 

actions with someone else I must track my own internal states and behaviours and, 

simultaneously, my partner’s internal states and behaviours, and I must do so in a time-

sensitive and context-dependent manner. 

 

Previous research has for decades documented how early parent-infant social interactions 

give rise to synchronous (temporally coordinated) patterns of behaviour and the importance 

of this for later development (Feldman, 2007). For example, synchrony of behaviour (e.g., 

eye gaze) during early infant-caregiver interactions is thought to be crucial for developmental 

outcomes including self-regulation (Feldman & Greenbaum, 1997), IQ (Feldman & 

Greenbaum, 1997) and language development (Rogoff, 1990). Further research has suggested 

behavioural synchrony during early social interactions is important as it presents 

opportunities for increased information exchange across the dyad (Feldman, 2007; Leong et 

al., 2017) as well as possibly providing temporal structure to the interaction, which could 

ensure that relevant information is received/ processed during times when infants are 

maximally sensitive (Wass et al., 2020). Yet although, much is known about the importance 

of behavioural synchrony during early social interactions, remarkably little is known about 

how the developing brain substantiates this.  

 

Currently almost everything we understand about how the infant brain supports social 

interaction comes from studies that have used screen-based experiments, in which brain 
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activity is averaged relative to the repeated presentation of a social stimulus. This approach 

has taught us a lot. For example, from this research we know that even from very early on in 

development our brains are highly sensitive to ostensive cues; Even from just a few months 

of life infant’s brains show differential neural responses to images faces showing direct vs 

averted eye contact (Farroni et al., 2002). Further during live social interaction, activity in the 

frontal cortex of infants increases during direct gaze compared with averted gaze (Grossmann 

et al., 2008; Urakawa, et al, 2015). Additionally, the infant brain is more sensitive to infant-

directed speech compared to adult-directed speech (Zhang et al., 2011), and during live 

interactions, the infant prefrontal cortex tracks and responds to increases in the infant-

directedness of speech (Piazza, et al, 2019). Moreover, although most studies have only used 

static images of faces, presented on a screen, some other studies have explored infants’ 

sensitivity to ostensive cues within triadic attention situations (i.e., the sharing of attention 

between child, social partner, and object). These studies have suggested that, when a live 

adult gazes first to an infants' face and then to an object, evoked neural responses were 

increased (Striano et al., 2006; Hoehl et al., 2014).  

 

However, we know that the neural mechanisms involved in these screen-based simulations 

are not the same as those involved in real social interactions. For example, in adults, larger 

amplitude ERP responses are observed across occipital electrodes in response to live eye 

contact with another person compared to the screen-based presentation of face showing eye 

contact (Ponkanen et al., 2011). A further example of this is reflected in the audience effect 

(Hamilton & Lind, 2016; see also Cañigueral et al., 2022 for a discussion), which is the effect 

of the physical presence of another person(s) who is watching the participant causing changes 

in the participant’s behaviour (e.g., Cañigueral & Hamilton, 2019b) and brain activity (e.g., 

Izuma et al., 2010a). Therefore, as many authors have recently emphasised (Schilbach et al., 
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2013; Redcay & Shilbach, 2019; Wass et al., 2020; Wass & Goupil, 2022; Cañigueral et al., 

2022) a full understanding of the social brain requires investigations that consider the 

complexity and dynamic nature of social interactions as well as the interpersonal influences 

on brain function that arise as a product of this. 

 

The two-person neuroscience of naturalistic social interactions  

Only very recently due to technological advances, allowing for the simultaneous 

measurement of brain activity from two interacting individuals (hyperscanning) has it 

become possible to examine how social interactions are substantiated across two interacting 

brains. One way to investigate this is to examine how patterns of individual brain activity are 

influenced by the live social context. For example, Menoret and colleagues investigated 

neural markers of goal representation during a joint action task using dual EEG. Here the 

observers watched actions performed by either a human actor and or by a robot. The 

interactional context of these actions was also manipulated depending on whether the 

observer was required to act contingently or do nothing. The analyses revealed a concomitant 

suppression of beta oscillations in both the actor's and the observer's EEG, time locked to the 

onset of the actor's movement. This suppression was found to be greater during interactive vs 

non interactive conditions and irrespective of whether the actor was a human or a robot, 

suggesting that the social interaction context differentially activation motor brain regions. 

Additionally, previous research with adults has shown that joint action planning resulted in 

amplitude modulations of the frontal ERPs compared with individual action planning 

(Kourtis et a., 2013). Similar ERP components have also been previously associated with 

decision making and updating of representations. 
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Inter-brain synchrony during social interactions 

An additional approach is to examine how shared patterns of brain activity across individuals 

support social interactions; At the neural level, inter-brain synchrony can be defined as a 

dyadic mechanism, wherein temporally coordinated patterns of brain activity between two 

interacting individuals supports aspects of their ongoing social interaction (Holroyd 2022). A 

growing body of research is now examining how inter-brain synchrony supports social 

interaction. Many empirical studies have examined under what circumstances of relative to 

which behaviours is inter-brain synchrony enhanced. For example, a number of studies have 

observed increased inter-brain synchrony during mutual gaze. The majority of this research 

claims to measure inter-brain synchrony, although we recognise that not all of these studies 

will meet the framework of inter-brain synchrony set out in more recent theoretical accounts 

(Holroyd, 2022). Kinreich and colleagues (2017) observed significantly correlated gamma 

(30-60Hz) activity between interacting adults during social interaction. Higher interpersonal 

gamma correlations were also associated more strongly with mutual vs non-mutual gaze. 

Similarly, Luft and colleagues (2021) found that mutual gaze was associated with higher 

inter-brain gamma band (30-45Hz) coherence (a spectral measure based on correlation) 

between interacting adults than non-mutual gaze. In the developmental literature, our group 

investigated inter-brain synchrony in 7.5-month infant-adult dyads during moments of mutual 

and non-mutual gaze (Leong et al., 2017). During a live social, but not interactional condition 

infants observed an adult singing nursery rhymes, who was instructed to look either directly 

at the infant, directly at the infant with their head turned at a slight angle, or away from the 

infant. Consistent with research on adults, we found greater infant-adult neural synchrony 

during moments of mutual vs non-mutual gaze, measured using partially directed coherence 

(PDC-a spectral Granger causal measure of synchrony) in Theta (3-6Hz) and Alpha (6-9Hz) 
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band activity. This study thus suggests that the impact of mutual gaze on inter-brain 

synchrony found in adult-adult dyads (Kinreich et al., 2017; Luft et al., 2021) is already 

present early on in development, though possibly in lower frequency brain rhythms. 

Additionally, associations between mutual gaze and adult-infant inter-brain synchrony have 

been found using fNIRS (Piazza et al., 2020). However, because the temporal resolution is so 

different between EEG and fNIRS it is difficult to conclude that these represent the same 

neural mechanisms. 

 

Despite this currently we understand virtually nothing about how inter-brain synchrony arises 

during social interactions. This is primarily because of an over emphasis on non-event locked 

approaches. Here, using a sliding window approach, inter-brain synchrony is calculated 

within a short segment of the data (typically 1-2 seconds in EEG data (Leong et al., 2017; 

Santamaria et al., 2020) and around ~30 seconds in fNIRS data (Nyguyen et al., 2021)). This 

window is then shifted forwards in time by a given increment (typically half the number of 

time points within the window) and inter-brain synchrony is calculated again. This yields a 

single value per segment which is then averaged across all segments to a single value 

representing the amount of inter-brain synchrony throughout the entire continuous stream of 

data. The amount of inter-brain synchrony is then typically compared between experimental 

conditions (e.g., Leong et al., 2017; Nguyen et al., 2021; Piazza et al., 2020; Santamaria et 

al., 2020), and/or is correlated with an outcome measure (Davidesco et al., 2023; Nguyen et 

al., 2020).  

 

This approach has two fundamental limitations; First, it will never allow researchers to be 

sure that observed effects are not attributable to underlying artifact. For example, during 

social interaction eye movements are not random but are influenced a partner’s behaviour 
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(Valtakari et al., 2021). For example, Figure 1a shows adults’ gaze behaviour time-locked to 

the moment where the infant looks up to the adult during a face-to-face interaction. An 

increase in the likelihood of the adult looking to the infant is observed in the 1000msec 

window following the infant gaze shift. Based on the argument given above, we know that 

this will lead (not in every case, but often), to eye movement artifact in the infant’s data, 

followed by eye movement artifact in the adult’s data shortly afterwards. Figures 1b-1i, 

which are based on simulated data, illustrate how this pattern can give rise to the impression 

of inter-brain synchrony. Artifact manifests both in the time and frequency domains. Because 

of the non-event locked analyses do no examine temporal dynamics of  inter-brain synchrony 

relative to behavioural events they will never be able to fully understand the behavioural 

dynamics. Further because these approaches often involved heavy down sampling of the data 

prior to/ during the calculation of inter-brain synchrony (need examples here), which can 

create the impression that two events that occur slightly after one another in time are actually 

occurring at the same time, resulting in concurrent inter-brain synchrony. Additionally, this 

approach will never allow researchers to understand the mechanisms that give rise to 

associations in brain activity between two interacting individuals. 
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Figure 1.1. Illustration that synchrony during social interaction often results from lagged 

contingent responding and neural activity both precedes and follows these behaviours. A) 

Probability of changes in adults gaze peaks around ~1 second after changes in infant gaze. B) 

ERP plot of signal ‘x’. C) ERP plot of signal ‘y’. D) Time-frequency power of signal x. E) 

Time-frequency power of signal y. F) Down sampled, time-frequency power of signal x. G) 

Down sampled, time-frequency power of signal y. H) Spearman’s correlation of single trial 

power (PC) between x and y) computed at each time-frequency point (i.e., original temporal 

scale of data). I) Spearman’s correlation of single trial power between x and y computed on 

the down sampled data. The AOIs on panel f indicate regions of significant correlations.  

 

Mechanisms for interpersonal neural synchrony during social interactions  

One candidate mechanism for how inter-brain synchrony is established/ maintained is 

through phase resetting (i.e., an abrupt change or shift in phase of an oscillation) of neuronal 

oscillations. The inter-brain phase reset theory asserts that certain behavioural events may 

drive simultaneous changes in phase in both interacting brains (Wass et al, 2020; Leong et al., 

2017). It is known that the phase of neuronal oscillations reflects the excitability of 

underlying neuronal populations to incoming sensory stimulation (Klimesch et al., 2007; 

Jensen et al., 2014) and that sensory information arriving during high-receptivity periods is 

more likely to be perceived than information arriving during low-receptivity periods (Busch 

et al., 2009; Mathewson et al., 2009; 2010; 2011; 2012). This suggests that there is an optimal 

(range of) phase for perceiving information. Therefore, it has been argued that there must be 

mechanisms (phase resetting) for modulating the phase of neuronal oscillations, in order to 

match the temporal structure of the environmental input (van Diepen et al., 2015; Ruzzoli et 

al., 2019), enabling enhanced processing. Empirical evidence supports the role of phase 
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resetting as an intra-brain mechanism, facilitating neural entrainment to temporal structures 

within the environment, for example speech (Giraud & Poepell 2012; Biau et al., 2015). It is 

therefore logical to question whether similar mechanisms also operate at the interpersonal 

level. For example, inter-brain synchronisation may increase within a dyad following the 

onset of communicative signals (such as gaze, gestures, or vocalisations) that reset the phase 

of both interacting partners. Here, neural oscillations in both the sender (of the social signal) 

and the receiver’s brain that were previously random with respect to each other (low inter-

brain synchrony) would be simultaneously reset in response to a communicative signal. 

Following this reset the neural activity of both the sender and the receiver would oscillate 

with more consistent variation over time (high inter-brain synchrony).  

 

A second possible mechanism is that the interplay between action and prediction involved in 

turn-taking during social interactions could drive changes in inter-brain synchrony. The key 

idea here is that if the neural systems responsible for planning (Dikker et al., 2014; Shamay-

Tsoory et al., 2019; Hamilton, 2021) and generating (e.g., Hirsch et al., 2017; Kirkland, 

2020) one’s own behaviours are co-localized with those responsible for predicting a partner’s 

behaviours then at times when both individuals are required to mutually predict each other’s 

behaviours, inter-brain entrainment could increase (Hamilton, 2021). For example, using non-

event locked methods of analysis, Kingsbury and colleagues recently provided some support 

for this hypothesis in interacting mice. They used micro endoscopic calcium imaging (which 

has a relatively low temporal resolution of ~1sec) to record from the dorsomedial prefrontal 

cortex (dmPFC) of interacting mice during social interactions (Kingsbury et al., 2019). 

General linear modelling of each individual’s brain activity relative to their own and their 

partners behaviour, showed that neuronal activity associated with encoding the mouse’s own 

actions was also associated with encoding the actions of the partner mouse. Further  
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coherence in the activity across the dmPFC of both mice disappeared when these self/other 

coding neurons were removed (Kingsbury et al., 2019). Here, changes in inter-brain 

synchrony could be measured concurrently at times when both partners are required to 

mutually predict an event or behaviour. Prediction would drive changes in either power or 

phase in both partners (e.g., Mandel et al., 2016; Bögels, 2020), the relationships between the 

two could be examined using concurrent measures of inter-brain entrainment. Additionally, 

action-prediction during turn taking could also be examined using measures of sequential 

entrainment. Here sequential inter-brain entrainment could be measured between changes in 

power/ phase in the predictor’s brain activity supporting prediction of a partner’s upcoming 

behaviour and changes in the actor’s brain activity facilitating the action/ behaviour at some 

time lag later. Here inter-brain entrainment might peak around these ‘handover’ moments and 

decrease before and after. This mechanism might also be influenced by factors such as the 

amount (e.g., Nguyen, et al, 2020) and (perceived) quality (e.g., Bloom, 1988) of turn-taking.  

 

The investigation detailed with the present thesis aimed directly to replicate and extend 

previous research by supervisors Dr Sam Wass and Dr Victoria Leong, published in PNAS in 

2017 (Leong et al., 2017). In this study Leong and colleagues measured associations between 

EEG based, inter-brain synchrony, using granger-causal methods and adult-infant (7.5-

month-old) mutual gaze. They used a semi-naturalistic paradigm in which infants observed 

adults singing nursery rhymes (live). The adult was a-priori instructed to maintain either 

direct eye contact with the infant, averted (head and gaze) eye contact with the infant, or 

directed obliques (head, but not gaze averted). Inter-brain synchrony in the theta (3-6Hz) and 

alpha (6-9Hz) bandwidths was compared between gaze conditions, averaged across the entire 

interaction. Inter-brain synchrony during the direct and direct oblique gaze conditions were 

both significantly higher than in the indirect gaze condition. Further, infants vocalized more 
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frequently during live direct gaze, and individual infants who vocalised longer also elicited 

stronger synchronisation from the adult. 

 

These results suggest that inter-brain synchrony plays a role in facilitating adult-infant 

communication during moments of mutual gaze and provide direct support for several highly 

influential theories within the developmental literature, which suggest that from birth humans 

are preferentially sensitive to mutual gaze and that this plays a special role within 

development. In their highly influential paper in 2009, Csibra and Gergely outlined their 

theory of ‘Natural Pedagogy’ which proposed that human communication is engineered to 

facilitate information transfer across the dyad. From birth infants are primed to be on the 

receptive side of this, by being highly sensitive to ostensive cues (most evidence is eye 

contact) and that these cues prime the infant brain to be maximally sensitive to receiving new 

information.   

 

A key question raised by Leong and colleagues’ results, however, was how exactly inter-

brain synchrony is being established during adult-infant interactions. We know from many 

studies that have explored face perception using screen-based stimuli that passively receiving 

information, e.g., when presents a child (Farroni et al., 2002; Taylor et al., 2004; Conte et al., 

2020) or an adult (Wantanbe et al., 2002; Conty et al., 2007) with an image of a face, whilst 

they are continually fixated on the screen, elicits a neural response. Typically, this is 

measured as a series of ERP components, e.g., P1, N170/N290, P300/P400 for adults/ 

children respectively. Therefore, one possibility is that the inter-brain synchrony observed in 

Leong and colleagues’ study was simple an alternative way of measuring basic visual 

processing related neural responses in adults and infant whilst they interact. An alternative 

possibility is that the observed inter-brain synchrony is measuring some other neural 
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processes/ cognitive function that is unique to live social interaction and therefore could not 

have been measured in these previous screen-based studies. This was not addressed within 

Leong and colleagues’ study and was the primary aim of the present thesis.  

 

Overview 

The aim of this thesis was to investigate the mechanisms that give rise the inter-brain 

synchrony. We focused our investigation on early social interactions in which temporally 

coordinated behaviour is of increased importance. More specifically we were primarily 

interested in extending Leong and colleagues’ results (discussed above), examining how 

inter-brain synchrony arises around moments of parent-infant mutual gaze. The results of the 

analyses presented in this thesis provide foundational knowledge about how inter-brain 

entrainment arises during early social interactions.  

 

Bridging the gap between passive screen-based and active naturalistic social neuroscience 

however presents several substantial challenges that will need to be considered in any study. 

Firstly, as postural and eye movements introduce artifacts into EEG recordings, which are 

often orders of magnitude larger than signals generated from within the brain (Delorme, 

2022), the development of social perception and cognition is routinely studied under 

laboratory conditions that restrict motion. However, this is in contrast to the way that infants 

typically dynamically and actively explore their environment (Gottlieb et al., 2013; Goupil & 

Proust, 2023; Kidd et al., 2012; Oudeyer & Smith, 2016; Poli et al., 2020) and ‘forage’ for 

information (Robertson et al., 2004). Here information is presented on a screen and only 

when subjects are still and attentive operationalised through sustained visual fixation. By 

constricting infants’ ability to actively engage with their environment, the cognitive and 

perceptual processes under investigation may fundamentally differ from those involved in 
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real-world social interactions, thus results obtained through studies that prioritise real-world 

validity may come to challenge previous findings from screen-based simulacra (for an 

example see, Schiller et al., 2004). Secondly, only more recently has research begun to think 

about how current EEG analysis methodology can be adapted to investigate interpersonal 

neural influences and coordination and the challenges associated with this.  

 

Alternatively, which is the approach presented within this thesis, researchers could analyse 

infants’ perception and cognition during free-flowing social interactions in the presence of a 

social partner (which we know impacts brain function, e.g., Izuma et al., 2010a; 2010b; 

Ponkanen et al., 2011a; 2011b; Wass et al., 2018). Here brain activity is recorded from both 

interacting individuals and patterns of intra, and inter-brain activity are analysed around 

moments of naturally occurring behavioural coordination. Over the past decade there has 

been an increasing number of studies that have taken this approach. These studies have 

revealed striking patterns of inter-brain synchrony that arise between adult-adult and adult-

infant dyads during social interaction. However, a review of this research suggests they 

largely share one common and fundamental limitation; they do not present empirical 

evidence for how mechanistically these patterns of inter-brain synchrony emerge. In 

particular, from a methodological viewpoint what are the necessary changes that must occur 

within two signal to facilitate this and from a more theoretical stance what aspects of 

behaviour drive changes in inter-brain synchrony and how is this influenced by other 

cognitive processes e.g., attention., motivation. 

 

The overarching goal of the present thesis was to explore the mechanisms that might give rise 

to patterns of temporally coordinated brain activity (termed inter-brain synchrony) during 

parent-infant social interactions. To facilitate this, we recorded EEG activity from parents and 
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infants simultaneously (EEG hyperscanning) whilst they engaged in naturalistic, free play 

interactions. From this we were able to analyse intra and inter brain dynamics from both 

parents and infants to try to further understand how temporally coordinated patterns of brain 

activity between parents and infants arise during social interactions.  

 

The first part of this thesis focuses on the substantial number of methodological challenges 

associated with the preparation and analysis of parent-infant dual EEG data recorded during 

un-restricted, naturalistic, social interactions. For example, compared to screen-based tasks, 

in naturalistic paradigms, the 'simulation' can be child-controlled (e.g., the child turning to the 

parent in a naturalistic interaction), and so artifacts, particular related to eye-movements are 

more likely to be time-locked to neural signals of interest; the removal of artifact is thus 

likely to also affect the analysis of neural signals. Thus, we needed to develop approaches  

(that were tuned specifically to infant EEG data) that remove artifactual signals from the EEG 

recording without removing entire sections of the data, as is routinely done in screen-based 

research. Secondly only more recently has research begun to think about how EEG analysis 

techniques can be adapted to investigate inter-brain synchrony and the challenges associated 

with this. Therefore, we needed to adapt tools from the literature on analysing intra-brain 

synchrony to work for inter-brain synchrony analyses and explore how well these were able 

to capture a given relationship between two individual’s patterns of brain activity. 

 

Having established our methodology, the second part of this thesis explores the mechanisms 

that support the establishment of inter-brain synchrony during social interaction, in which we 

focus on moments of behavioural coordination extracted from parent infant social 

interactions, examining how patterns of inter-brain synchrony around these moments 

propagate through topographical and time-frequency space. Through event-related analyses 
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of the scalp-recorded EEG we highlight the utility of this approach, by showing how results 

obtained from naturalistic paradigms closely resemble those previously reported from screen-

based research. 

 

Our results challenge the conclusions drawn from both traditional screen-based investigation 

of eye processing in infancy (e.g., Farroni et al, 2002) . First, when we repeat the Farroni et al 

analysis, we find no evidence to support the hypothesis that, during real-world naturalistic 

social exchanges, infant’s brains respond differently when someone looks directly at them. This 

is despite the fact our data are clean, as shown by the clear face/object ERPs that we include in 

the SM, and the other data quality metrics that we also report in the SM. Our sample size was 

also larger than in the original study (N=55 vs N=16 in the original study).   

 

Second, when we examine inter-brain entrainment during direct vs averted gaze, we also find 

no evidence to replicate the previous finding, of Leong and colleagues (2017) that Granger-

predictive associations in brain activity are stronger during direct gaze. This is, again, despite 

that our sample size was larger than in the original study (N=55 vs N=17 per group). Instead, 

our findings suggest a new conclusion: that the effects of mutual gaze are strongest at the intra-

brain level, in the ‘sender’ but not the ‘receiver’ of the mutual gaze. 

 

The findings presented in this thesis will be crucial in adding empirical evidence to recent 

theoretical papers that ‘push back’ against the rapid growth of interest in dyadic neuroimaging 

recording techniques that is currently taking place around the world. Given that they go to the 

very heart of our current prevailing theories of how our brains learn to process social 

information. 
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Chapter 2 - Measuring the temporal dynamics of inter-personal neural 

entrainment in continuous child-adult EEG hyperscanning data 

 

The following chapter is a publication of an original article investigating methods for 

measuring the temporal dynamics of parent-infant inter-brain synchrony (Marriott Haresign et 

al., 2022). Subheadings, figure placement, figure and table numbers, and citation style have 

been adapted to conform to the general thesis format. The supplementary materials (SM) for 

this publication are also presented within this chapter. 

 

 

Abstract 

 

Current approaches to analysing EEG hyperscanning data in the developmental literature 

typically consider interpersonal entrainment between interacting physiological systems as a 
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time-invariant property. This approach obscures crucial information about how entrainment 

between interacting systems is established and maintained over time. Here, we describe 

methods, and present computational algorithms, that will allow researchers to address this 

gap in the literature. We focus on how two different approaches to measuring entrainment, 

namely concurrent (e.g., power correlations, phase locking) and sequential (e.g., Granger 

causality) measures, can be applied to three aspects of the brain signal: amplitude, power, and 

phase. We guide the reader through worked examples using simulated data on how to 

leverage these methods to measure changes in interbrain entrainment. For each, we aim to 

provide a detailed explanation of the interpretation and application of these analyses when 

studying neural entrainment during early social interactions. 

 

2.1.  Introduction 

 

Behavioural evidence suggests that social factors influence how infants pay attention (Yu & 

Smith, 2016) and learn (Kuhl et al., 2003) during early life. But we currently understand little 

about how these interpersonal influences are instantiated in the brain (Wass et al., 2020; 

Redcay & Schilbach, 2019; Redcay & Warnell, 2018; Hoehl et al., 2021). Hyperscanning is a 

method of simultaneously acquiring neural activity from two or more individuals that allows 

insights into these questions (Dumas et al., 2010; Schilbach et al., 2013). Hyperscanning 

approaches are often paralleled with an emphasis on using more free-flowing 'naturalistic' 

study designs that record brain activity during real-life interactions – rather than studying 

neural responses to repetitive and unecological, trial-based tasks administered via a computer.  
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Recently, research with non-human animals (e.g., Kingsbury et al., 2019; Zhang & Yartsev, 

2019) and human adults (Liu et al., 2018; Redcay & Schilbach, 2019), as well as research 

with children/infants using fNIRS (Nguyen et al., 2021; Piazza et al., 2021; Reindl et al., 

2018) and electroencephalography (EEG; Leong et al., 2017; Wass et al., 2018) has started to 

use hyperscanning to uncover complex patterns of interbrain entrainment (IBE) during social 

interaction. Research relying on EEG with child/infant populations has shown that 

bidirectional Granger-causal influences between infants’ and adults’ neural activity are 

greater in theta (3-6Hz) and alpha frequency bands (6-9Hz) during moments of mutual than 

non-mutual/ averted gaze (Leong et al., 2017). We also know that patterns of IBE in the theta 

and alpha bands are higher when adults model positive emotions during social interaction 

than when adults model negative emotions (Santamaria et al., 2020). These findings suggest 

that - consistent with fNIRS studies that have shown IBE patterns over longer temporal scales 

(e.g., Piazza et al., 2021; Nguyen, et al., 2020; 2021) - IBE may also be discernible at the 

more fine-grained, sub-second scale studied using EEG.  

 

All these approaches used thus far, however, share one fundamental limitation. Hyper-

scanning researchers typically calculate the amount of IBE observed between two interacting 

partners averaged across whole experimental conditions (Perez et al., 2017; Leong et al., 

2017) and even whole interactions (e.g., Kinreich et al., 2017). They then compare IBE 

values between different conditions, or correlate IBE estimates with an outcome variable 

(e.g., learning) (Leong et al., 2019). For example, Leong and colleagues (2017) compared the 

amount of observed entrainment across all moments of direct vs averted gaze during 5-

minute social interactions: they collapsed all of their data down to a single IBE value per 

signal frequency band. A similar approach was taken by Perez and colleagues (2017), who 

compared IBE values estimated separately for different frequency bands and topographical 
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locations, but again without consideration of how IBE varied over time, and how it may have 

developed over the course of the interaction. 

 

Effectively, therefore, these approaches produce an index of IBE that includes information on 

how entrainment varies by frequency (e.g. Leong et al., 2017) and by scalp topography (e.g. 

Santamaria et al., 2020) – but which excludes information on how IBE fluctuates over time. 

This omission, we argue, fundamentally hinders our understanding of how real-life infant-

adult social interactions are substantiated in the brain. The same observation largely holds for 

most of the hyperscanning research in adult populations, where similar points have been 

raised concerning the limitations of current approaches (e.g., Novembre & Ianetti, 2021; 

Moreau & Dumas, 2021). 

 

2.1.1. The importance of the (missing) temporal dimension 

 

Studies using event-related potentials (ERPs) have shown that even young infants’ brains 

show millisecond-level sensitivity to ostensive signals (e.g., Farroni et al., 2002; Hoehl & 

Striano, 2008; 2010, Quadrelli et al., 2019). But this research is all unidirectional: it examines 

how the recipient of an ostensive signal is influenced by the ‘sender’ of the signal. Very little 

research has examined the fine-grained temporal dynamics of early social interaction from a 

bidirectional perspective: by examining how ostensive cues affect the inter-relationship 

between both partners’ brain activity (Wass et al., 2020). 

 

For example, one early study found that, in the 3-9Hz range, neural activity in one partner 

consistently predicted the other partner’s neural activity more strongly during direct 

compared with indirect gaze (Leong et al., 2017). But how is it mechanistically possible for 
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two brains to influence each other over such fine-grained temporal scales? To answer this 

question, it would be useful to know how IBE varies over time within periods of direct gaze. 

This would improve our understanding of how, mechanistically, IBE is established and 

maintained: 

 

I. First, it is possible that, during social interactions, certain shared behavioural events 

such as the onsets of periods of direct gaze could drive changes in IBE (see e.g., 

sections 2.2.2.1 and 2.2.2.2). Here, changes in IBE would result from transient intra 

brain changes in spectral power (e.g., Grossman et al., 2007) and/or phase (e.g., 

Rousselet et al., 2007) in both the ‘sender’ and the ‘receiver’ of the social cue. For 

example, this mechanism could be similar to what has been documented for neural 

entrainment to speech (e.g., Doelling et al., 2014), whereby the onset of the stimulus/ 

behavioural event drives phasic changes in the brain and leading to increases in 

entrainment. Beyond speech or vocalisations, mutual gaze onsets, or touch could also 

act as salient “edges” that create responses in multiple brains at the same time, leading 

to event-related increases in IBE. According to this model, IBE would be strongly 

event-locked, peaking immediately after the onset of the behavioural event and 

decreasing thereafter. The extent of event-locked changes in IBE around behavioural 

events  might also be mediated by other factors including attention (e.g., Golumbic et 

al., 2013), comprehension (e.g., Pérez et al., 2019), and environmental factors such 

partner familiarity (e.g., Reindl et al., 2022).  

 

 

II.  Second, it is possible that turn-taking during social interactions could drive changes 

in IBE. Here, response preparation or anticipation (e.g., Hamilton, 2021; Hirsch et al., 
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2017; Kirkland, 2020) and/or mutual sensorimotor predictions (Dikker et al., 2014; 

Shamay- Tsoory et al., 2019; Hamilton 2021) could lead to concurrent transient 

changes in either power or phase in both partners (e.g., Mandel et al., 2016; Bögels, 

2019), causing changes in IBE that might peak around these ‘handover’ moments and 

decrease before and after (e.g., Fig. 2.2d). This mechanism might also be influenced 

by factors such as the amount (e.g., Nguyen, et al, 2021) and (perceived) quality (e.g., 

Bloom, 1988) of turn-taking.  

 

III. Third, it is possible that continuous, deterministic intra brain changes, that are not 

locked to discrete behavioural events but depend on dynamic, gradual changes in the 

shared environment, lead to gradual, continuous changes in IBE. This mechanism 

might be driven by intra brain responses to shared cognition and/or mental 

representations. For example, Simony and colleagues (2016) showed that IBE was 

increased when participants had a shared understanding of a story (Simony et al., 

2016). This mechanism it might also take the form of direct ‘neural mimicry’. For 

example, Kingsbury and colleagues (2019) used in vivo electrophysiological 

recordings to show populations of cells in the dorsomedial PFC that show similar 

activity when performing an action as when watching it be performed by someone 

else (Kingsbury et al., 2019). Again, these changes might take the form of changes in 

power: increases in spectral power throughout an event (e.g., a look/ episode of 

attention) can increase signal-to-noise ratios and cause changes in sequential IBE (as 

we show in section 2.3.2.1). This is conceivable as, for example, infant theta power 

increases through an attentional episode (e.g., Jones et al., 2020). Alternatively, 

gradual changes in frequency, such as the adjustment of the peak frequency of neural 

oscillations, could lead to increases in concurrent IBE (section 2.3.2.2). This is 
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conceivable as, for example, peak alpha frequency can be modulated by task demands 

(e.g., Samaha & Postle, 2015; Wutz et al., 2018), and recent accounts have theorised 

that cross-spectrum frequency adjustment at stimulus onset might be a mechanism 

behind how ERPs are generated (e.g., Burgess 2012). According to this model, 

entrainment would increase gradually during a social episode. The key differences in 

model 3 is that this from of IBE might be representative of higher order cognitive 

functions beyond basic sensorimotor processing  

  

Differentiating between these and other hypotheses is essential to understanding how IBE is 

achieved and maintained. The aim of this paper is to present algorithms that will allow 

researchers to address this. In section 2.1.2 we present an overview of key differences 

between child and adult EEG that are relevant when conducting hyperscanning 

developmental research. In section 2, we present several measures for estimating concurrent 

(2.2.2.1, 2.2.2.2) and sequential (2.2.2.3, 2.2.2.4) IBE. Then, in section 3, we illustrate the 

ability of each metric to capture IBE using simulated data. 

 

 

2.1.2 Key differences between child and adult EEG 

Researchers analysing EEG recorded from infants and children, and EEG recorded using 

naturalistic paradigms, face several additional challenges as compared to adult EEG 

researchers that use screen-based paradigms (Noreika et al., 2020).  

 

Firstly, due to increased movements during the recording. This is challenging because signals 

generated from movements, such as smiling, vocalisations, eye movements, as well as from 

the neural processing of each of these behaviours, will contribute to the scalp EEG in a 
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complex way (Georgieva et al., 2020). Although issues of source separation are not new to 

EEG research, it is known that ICA alone fails to separate different sources in data containing 

high amounts of movement-related activity (e.g., Plöchl et al., 2012; Dimigen, 2020a). This 

effect is heightened with infant ICA decompositions, for which it is typically harder to 

identify which components contain predominately artifactual signals and which contain 

predominately neural signals, compared to ICA decompositions from adult EEG data 

(Marriott Haresign et al., 2021 in press). For example, even simple artifacts such as blink 

artifacts can be more clearly differentiated from the ongoing EEG in adult data, allegedly 

because these movements are more stereotypical and/or produce artefacts of relatively higher 

amplitude in adults than in infants (Marriott Haresign et al., 2021). This is even more 

problematic for naturalistic data, during which eye movements would necessarily be less 

stereotypical than those produced by participants during screen-based tasks. 

 

Secondly, in a traditional, experimenter-designed paradigm, neural responses are examined 

relative to experimental events. Although evidence suggests that artifacts in traditional 

experimenter-designed paradigms are still present, and systematically related to experimental 

events (Yuval-Greenberg et al., 2008), the fact that the experiment (and so the artifacts) 

follows a consistent structure means that artifacts are relatively easier to deal with. But in a 

naturalistic paradigm, the events (e.g., eye gaze onsets) are often less systematically related to 

the artifacts in the data, as there is no clear and consistent temporal structure between 

spontaneous events and specific artifacts. The future study of IBE using naturalistic 

paradigms will need to control for the contributions of non-neural signals in the EEG. It may 

also treat these non-neural signals as data sources, by looking at entrainment between these 

movement-related signals, e.g., entrainment between EMG associated with facial affect and 

vocalisations. 
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An additional challenge is posed by the intrinsic differences in EEG activity that are observed 

in recordings from children/ infants compared to adults. For example, we know that the speed 

at which the brain will process information depends on its maturation (e.g., Taylor et al., 

2004) and that the canonical frequency bands in child/infant EEG are typically slower than 

that of adult EEG. For example, peaks in the power density spectrum associated with alpha 

activity typically observed in the 8-12Hz range in adults can be seen clearly in one-year-old 

infant EEG between 6 and 9Hz and are lower still in younger infants (Marshall et al., 2002). 

This presents a unique problem for developmental researchers interested in phase entrainment 

between infant and adult EEG. One solution to this problem might be to use cross-frequency 

entrainment methods (Noreika et al., 2020) for example cross-frequency phase coupling (see 

section 2.2.2.2.2 for further discussion). It is also known that the amplitude of slower 

oscillations is larger in infant EEG than in adults’, which could arguably affect amplitude-

amplitude or amplitude-phase coupling. 

 

 

2.2.  Methods for identifying different types of entrainment between infant and adult 

EEG data 

In this section we present an overview of the different ways of measuring IBE (section 2.2.1) 

and describe how they can be applied to different aspects of the brain signal (amplitude/ 

power and phase) (section 2.2.2). In section 2.3 (applied methods) we will guide the reader 

through application of these methods, using simulated EEG hyperscanning data. 



 

 

2.2.1 Overview of different ways of measuring inter-brain entrainment (IBE) 

Although the term ‘entrainment’ is sometimes used only to describe only sequential 

relationships between two signals, here we use it in a broader sense, to describe any 

temporally coordinated relationship between two signals. Inter-brain entrainment (IBE) can, 

then, be measured in two ways. First, concurrent IBE (see Figure 1) indexes a zero-lag, 

simultaneous relationship: ‘at times when A is high, B is also high’ or (for a negative 

relationship): ‘at times when A is high, B is low’. Concurrent IBE is often referred to using 

the term ‘synchrony’, and is undirected: A->B is indistinguishable from B->A.  Second, 

sequential IBE indexes a lagged, or temporally oriented relationship: ‘changes in A forward-

predict changes in B’. Sequential IBE is directed, and as such, unlike concurrent coupling, it 

can be asymmetrical: it can be true that A forward predicts B without it being true that B 

forwards-predicts A, and vice versa. 

 

IBE can also be measured across both the temporal and the frequency domain, and thus 

across multiple aspects of the brain signal: amplitude, power, and phase (see Figure 2.1). 

Power is proportional equal to the amplitude squared and so the two measures are closely 

related. However, some of the measures we describe (e.g., power correlations, see section 

2.2.2.1) can be applied equally to amplitude and/or power, whereas others (e.g., time domain 

granger causality, see section 2.2.2.3) are applied on amplitude and not power and therefore 

we feel that it is important to distinguish between the two. 

 

Currently, most fNIRS and fMRI hyperscanning studies measure co-fluctuations in the 

amplitude of the signal – which depending on the method, measures blood 

oxygenation/deoxygenation (fNIRS), the BOLD signal (fMRI) or voltage (for EEG). 
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Currently, most EEG hyperscanning studies examine IBE based on the phase of the signal. 

There appears, however, to be no reason why these trends should not change in the future. 

 

 

 

Figure 2.1. Schematic illustration of the two-entrainment metrics, concurrent and sequential, 

that we consider in the paper, along with the three aspects of the brain signal: amplitude, 

power and phase. 
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2.2.2.1 Measuring concurrent IBE of amplitude and power: correlations. 

Examining concurrent IBE through correlations is one of the simplest and most flexible 

techniques. Zero-lag concurrent IBE can simply be measured by calculating correlation 

coefficients between two time series. Spearman’s correlation is generally favoured due to its 

invariance to non-normally distributed and outlier prone data (Cohen, 2014). The same 

analysis can be applied either to the amplitude of the brain signal or to the power in particular 

frequency bands. The accompanying code for this section allows the reader to compute 

single-trial correlations (Spearman’s rho) at each time-frequency point, between pairs of 

electrodes (e.g., using data from Cz from person one and Cz from person two).  

 

2.2.2.2 Measuring concurrent IBE of phase: ITC and Phase Locking Value (PLV) 

Phase locking can be estimated in three ways to detect transient phase changes/shifts (often 

event-locked), or stable phase-coupling across time. First, point-wise phase consistency (e.g., 

inter trial coherence, ITC) across repeated events can be estimated over time and electrodes 

within a single brain (see SM section 8). This produces one estimate of phase consistency per 

time-point which represents the phase distribution across trials for that time-point and is 

suitable for detecting transient or discrete event-locked phase changes.  

Second point-wise phase locking (e.g., Lachaux et al., 1999) can be estimated according to: 

  

𝑃𝐿𝑉𝑛 =
1

𝑁
| ∑ ⅇ𝑖(𝜙(𝑡,𝑘)−𝜓(𝑡,𝑘))𝑁

𝑘=1
|                                                                (1), 

  

Where N is the number of trials, 𝜙(𝑡, 𝑘) is the phase on trial k, at time t, in channel 𝜙 and 

𝜓(𝑡, 𝑘) at channel 𝜓. This produces one estimate of phase consistency per time-point which 

represents the phase locking across trials for that time-point and is suitable for detecting 
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transient or highly event-locked changes phase locking. 𝑃𝐿𝑉𝑛 varies between 0 and 1 where 1 

indicates perfect phase locking over trials and 0 indicates no phase locking over trials. 

Third, phase locking can be also measured within a single trial over a defined temporal 

window (e.g., Tass et al., 1998). This is useful for estimating whether two oscillations are 

stably phase-coupling to each other during that window. Phase locking withing a temporal 

window can be measured according to: 

 

   𝑃𝐿𝑉𝑡 =
1

𝑇
| ∑ ⅇ𝑖(𝜙(𝑡,𝑛)−𝜓(𝑡,𝑛))𝑇

𝑛=1
|                                                                (2), 

 

Where T is the number of observations or time samples within the window, 𝜙(𝑡, 𝑛) is the 

phase on observation n, at time t, in channel 𝜙 and 𝜓(𝑡, 𝑛) at channel 𝜓. 𝑃𝐿𝑉𝑡 varies between 

0 and 1, where 1 indicates perfect phase locking over time and 0 indicates no phase locking 

over time. Both measures can either be computed between a single brain and an external 

stimulus with a pseudo-periodic structure (e.g., speech), or estimated at the interpersonal 

level, between two or more brains. Here the focus is on the latter, though mathematically they 

are identical. The accompanying code allows for analysis of phase locking within (sliding 

window) and across trials (for each sample). This will allow researchers to look at how 

changes in IBE fluctuate over time. 

 

It is worth noting any two signals with a common dominant frequency (e.g., two brains with 

high power in the alpha band) will show relatively consistent variation in phase over time – 

and hence high phase locking between the signals. This has been used to argue that PLV is 

particularly prone to detecting spurious hyper connections (Burgess, 2013). However, this is 

only a problem in a few scenarios. Real EEG data - even after narrow-band filtering - will 
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still have random variations in the phase of the signal over time such that PLV between 

narrowband filtered signals will also change over time. So, two alpha oscillators will show 

consistently high PLV only where there is little to no random variations in the phase of both 

signals over time, which is not a very reasonable assumption for real EEG data. In addition, 

this problem can be at least partially circumvented by relying on permutation techniques. For 

instance, PLV between two brains can be measured over time-scrambled and real data: if the 

phase locking is purely attributable to the fact that both brains oscillate at the same rhythm in 

a rather constant way, the time-scrambled data and the real data will show similar levels of 

phase-locking. On the contrary, if a substantial part of the phase-locking depends on the real-

time interaction between the two partners, real data will show higher phase locking than 

scrambled data.  

 

2.2.2.2.1 Side note on power and PLV: induced versus evoked responses. 

When analysing any event locked changes in EEG power and/or phase-based entrainment it 

is important to consider whether these are evoked or induced responses. Evoked responses 

are additive signals superimposed upon the background/ongoing EEG; induced responses are 

changes in power and/or phase that happen within the background/ongoing EEG. In other 

words, evoked responses are transient changes that do not relate to background oscillatory 

activity, while induced responses entirely depend on the adjustment of background oscillators 

to incoming stimuli. Whilst changes in power/phase resulting from stimulus-

locked evoked signals could give the appearance of increased entrainment between two 

brains, this is interpretationally quite different to potential changes due to induced neural 

activity driving increases in entrainment. For example, if increases in spectral power from 

two signals are driven purely by evoked and not induced responses then it is incorrect to 

examine phase resetting as a potential mechanism behind IBE (or phase-locking more 
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generally) and incorrect to use the term neural IBE to refer to these mechanisms (e.g., Keitel 

et al., 2021).  

 

This problem is further complicated because, as Muthukumaraswamy and colleagues (2011) 

show, transient increases in power can lower error in phase estimation and give the 

appearance of heightened phase locking (see also, Burgess, 2013). Separating increases in 

power from genuine increases in phase locking is difficult and continually debated (e.g., 

Sauseng et al., 2007). As a consequence, the best practice for researchers using event-related 

phase-locking is to always show accompanying power plots and examine power and phase 

simultaneously. 

 

2.2.2.2.2 Side note on cross-frequency PLV: dealing with different canonical frequencies. 

As described above (section 1.2) the canonical frequency bands in infant EEG are typically 

slower compared to adult EEG. It may, therefore, be more appropriate for researchers 

measuring the quantity of phase-locking between infant and adult EEG to use cross-

frequency phase locking. Cross frequency phase entrainment or PLV m:n is calculated 

similarly to PLV as follows:  

 

                  𝑃𝐿𝑉𝑚𝑛 =
1

𝑁
| ∑ ⅇ𝑖(∆𝜙𝑘(𝑓𝑛,𝑓𝑚,𝑡,𝑘))𝑁

𝑘=1
|                                                             (3), 

 

Where, N is the number of trials and ∆𝜙𝑘(𝑓𝑛, 𝑓𝑚, 𝑡, 𝑘) is calculated as follows: 

∆𝜙𝑘(𝑓𝑛, 𝑓𝑚, 𝑡) =  (
𝑛+𝑚

2⋅𝑚
⋅ 𝜙(𝑓𝑚, 𝑡, 𝑘) −

𝑚+𝑛

2⋅𝑛
⋅ 𝜓(𝑓𝑛, 𝑡, 𝑘))                                               (4), 
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Where n and m are the centre frequencies of the two signals and should be integer values 

satisfying the equation 𝑚 ∙ 𝑓𝑛 = 𝑛 ∙ 𝑓𝑚, and  𝜙(𝑓𝑚, 𝑡), is the phase angle at channel 𝜙, at time 

t, on trial k, and channel 𝜓. Note that as we have described in section 2.2.2.2 PLV can be 

applied over trials (1) or in a time window within a given trial (2). The same applies for cross 

frequency PLV, although here we only describe the equation for estimating cross frequency 

PLV over trials (3). Cross frequency phase locking shares the same underlying interpretation 

as standard phase locking. In accompanying articles in the special edition (Kayhan et al., 

2022), we have provided readers with a full pipeline for computing cross-frequency phase-

locking within (sliding window) and across trials (for each sample). 

 

2.2.2.3 Measuring sequential IBE of amplitude and power – Granger Causality (GC) 

The simplest way to measure sequential IBE is simply to repeat the Spearman’s correlation 

described in section 2.2.2.1 while shifting one time series forwards or backwards in time 

relative to the other. For example, if we find that the correlation between two time series x 

and y is stronger when time series x is backward shifted with respect to time series y, 

compared with when the simultaneous (‘zero-lag’) correlation between the two-time series is 

examined, then this indicates that changes in x tend to predict changes in y.  

 

Granger Causality is closely related to this approach, but as well as looking at the time-lagged 

relationship between two time series, it also increases the sensitivity of the prediction by 

considering how one time-series forwards predict itself over time (known as the 

autocorrelation). Given two-time series x and y, Granger Causality is a measure of the extent 

to which time series x can be predicted by previous samples of y above and beyond how well 

time series x can be predicted by previous samples of x alone.  

 



51 

 

GC is defined through the log of ratios of error terms between the bivariate and univariate 

regressive models, following: 

 

                 𝐺𝐶 = ln (
var(𝑒𝑥)

var(𝑒𝑥𝑦)
)                                                                   (5), 

 

Where ⅇ𝑥 is the error term obtained from the univariate autoregressive model fit and ⅇ𝑥𝑦 is 

the error term obtained from the bivariate regressive model fit. Again, the same approach can 

be adopted to look either at the amplitude of the brain signal, or at the power within 

frequency bands. Time frequency (spectral) GC involves computing the dot product between 

the regressive coefficients and complex sine waves, (analogous to the Fourier transform) and 

then applying those results to the error variance via the transfer function (Cohen, 2014). 

 

Finally, Partially Directed Coherence (PDC) is a frequency domain formulation of GC 

(Sameshima and Baccala, 2014), measured from the coefficients derived from the 

autoregressive modelling process described above. PDC has also been used to investigate 

IBE across adult - infant dyads (e.g., Leong et al., 2017; Santamaria et al., 2020). PDC along 

with other methods of frequency domain entrainment based on autoregressive modelling can 

be implemented using the extended multivariate autoregressive modelling toolbox (Faes, et 

al., 2013). 

 

2.2.2.3.1 Side note on EEG data stationarity and GC 

Stationarity refers to whether the statistical properties of data change over time. For example, 

EEG data that contain low-frequency drifts over time can cause data to become nonstationary 

as the mean of the data is changing over time. Non-stationarity may take various forms. One 
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form of non-stationarity manifest itself through unit root processes - where the data may 

exhibit a stochastic trend or “random drift”. This form of non-stationarity is common in 

financial time series (e.g., stock prices), but less common in neuroimaging data (because 

neurophysiological processes are generally physically constrained). Many stationarity tests 

(including the KPSS test which is implemented within the MVGC toolbox (Barnett and Seth, 

2014)) only test for unit-root stationarity. However, unit-root is not the only kind of non-

stationarity; there is also "structurally varying" non-stationarity, which may be more common 

in ERP or more generally task-related data. Here, the statistical properties of the time series, 

e.g., mean/standard deviation over time, the amount of periodicity in the data, change over 

time, either in a structured/deterministic or stochastic way (unit root tests may or may not fail 

on this form of non-stationarity). This implies that the Granger causality itself may change 

over time. Overall stationarity in neuroscience for GC is an ongoing problem (e.g., see 

Barnett et al., 2018a; 2018b). Current common approaches to address non-stationarity in EEG 

data include polynomial detrending (Seth et al., 2015), and/or subtraction of the averaged 

ERP from single-trial data (e.g., Wang et al., 2008), but these are limited. Another viable 

solution to address nonstationary EEG data is to segment the data into shorter time windows 

in which the data would be stationary enough to perform GC analysis, although this approach 

needs more empirical testing. 

 

2.2.2.3.2 Side note on model order and GC 

A crucial parameter to consider when using GC analysis is model order. Model order 

determines the number of previous samples of a time series that will be used in the (bivariate) 

autoregressive model fit. For instance, if your data is sampled at 1000Hz, a model order of 5 

means that the model will use a weighted sum of the previous 5ms of data. The model order 

used will in part determine the frequency precision of the spectral GC estimates. In our 
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example using only 5ms of data, we would only base our GC estimate on 1/50th of a cycle of 

4Hz activity. To better capture low-frequency dynamics, it can therefore often be useful to 

downsample the data prior to analysis. For example, if we resampled our data from 512Hz to 

128Hz, still using a model order of 5 would mean we now consider the previous 39ms of data 

in the model fit. Alternatively, one could increase the model order, but models with higher 

orders typically require longer time segments and more trials as there are more parameters 

that need to be estimated (Cohen, 2014). Further considering lower frequency dynamics is a 

good reason to lean towards the highest model order that is appropriate for the data. In our 

example increasing the model order to 15 would result in us considering the previous 120ms 

(at 128Hz), almost half a cycle of 4Hz activity. This example illustrates the fact that the 

model order used can have important consequences on the estimation of GC. Some routines 

exist to help guide the estimation of model order, the most common being Bayes information 

criterion (BIC) and Akiake information criterion (AIC). Both are implemented within the 

MVGC toolbox (Barnett and Seth, 2014).  

 

 

2.2.2.3.3 Side note on spectral power and GC 

The relationship between spectral power and spectral GC is still uncertain, for example at 

present it is unclear how changes in spectral power affect GC estimates and anecdotal 

evidence suggest that it is not uncommon to find correlations between spectral power and 

(spectral) Granger Causality. Empirical research has shown that increases in event-locked 

spectral power corresponding to ERPs co-occur with increases in spectral GC (e.g., Wang et 

al., 2008), but whether these changes in power caused the changes in GC or vice versa is 

uncertain. It will be important for future research to fully explore this relationship (e.g., 

Winkler et al., 2015). For example, does the strength of the GC scales linearly with the 
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amount of spectral power? And how is this relationship affected by the sampling rate, signal 

to noise ratios and so on? 

 

2.2.2.4 Measuring sequential IBE of phase – Phase Transfer Entropy (PTE) 

Phase transfer entropy (PTE) allows researchers to measure sequential IBE of phase. It is 

calculated using the following equation: 

Phase T𝐸𝑥→𝑦 = H(𝜃𝑦(𝑡), 𝜃𝑦(𝑡′)) 

                       + H(𝜃𝑦(𝑡′), 𝜃𝑥(𝑡′)) − H(𝜃𝑦(𝑡′)) − H(𝜃𝑦(𝑡), 𝜃𝑦(𝑡′), 𝜃𝑥(𝑡′))                  (6), 

 

Where 𝜃(𝑡) is the phase of signal X(t), t’ = t – 𝛿, and 𝜃𝑥(𝑡′) and 𝜃𝑦(𝑡′) are the previous 

states of the phase angle time series of x and y, with a given lag of 𝛿. Given two-time series x 

and y, like GC, transfer entropy (TE) estimates whether including the past of x influences our 

ability to predict y and vice versa. However, unlike GC, TE does this by comparing 

conditional probabilities (Lobier et al., 2014). E.g., if a signal X ‘causes’/ ‘disambiguates’ a 

signal Y, then the probability density of the future of Y conditioned on its past should be 

different from the probability density of the future of Y conditioned on the pasts of both X 

and Y. As transfer entropy is based on the same underlying principles as GC, it has been 

shown that results obtained using GC and PTE are identical for Gaussian variables (e.g., 

Barnett et al., 2009; Barnett and Bossomaier, 2013). Therefore, results from phase transfer 

entropy analyses may be interpreted as reflecting directed information flow between two 

phase angle time series. 

 

Whilst Phase Transfer Entropy has not been widely used within cognitive neuroscience as a 

framework for analysing entrainment patterns between two systems, it has many advantages 
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and useful properties. For example, as entropy is not based on the temporal structure of the 

data, it can be computed over time and trials, whereas other measures such as PLV can only 

be computed over time or trials, not both. This is a major advantage as including data from 

time and trials simultaneously means that entropy can be computed in shorter time windows 

than other window-based entrainment measures (e.g., GC), thus retaining a greater degree of 

the original temporal precision of the data whilst still having sufficiently high signal to noise 

ratios (Cohen, 2014). 

 

2.2.3. Cautionary note on the importance of the temporal scale. 

Many of the metrics described above are highly sensitive to the temporal scale of the 

analysis. For example, if we observed a transient increase in spectral power in two signals (x 

and y), where the peak of y occurred a few hundred milliseconds after the peak of x. When 

using a fine temporal scale (e.g., estimating entrainment in a 200ms sliding window), we 

would not detect changes in concurrent IBE, but if we were to use a larger time window (e.g., 

estimating entrainment in a 1s sliding window) it is possible to observe changes in concurrent 

IBE (e.g., see figure 6). This we illustrate using simulated data in section 2.3.3. This is 

because, although downsampling can be a useful step in some analysis (e.g., for GC, see 

section 2.2.2.3.2), downsampling can create artifacts by spreading the signal in time that can 

lead to the detection of spurious entrainment. 

 

 

2.3. Simulations and applied methods for measuring IBE and differentiating event-

locked from non-event-locked changes. 
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In this section we present simulations in which we artificially introduced a given relationship 

between two time series. We then compute the metrics described above to assess how well 

each metric reflects this relationship. The purpose of this is to guide the reader through 

application of the various metrics. Throughout the section, we also discuss how different 

signal changes can manifest either as transient, event-locked changes (section 2.3.1) or as 

more continuous, non-event-locked changes (section 2.3.2). In sections 2.3.4 and 2.3.5 we 

describe methods to quantify whether observed event-locked changes in IBE differ 

significantly from chance.  

 

2.3.1 Simulations - event-locked changes in child-adult neural entrainment 

 

2.3.1.1 Amplitude and power 

At its most simple level, computing the correlation coefficients for time-frequency 

amplitude/power does not involve any algorithms more complex than a Spearman’s 

correlation. In the accompanying code, we provide routines for computing concurrent 

amplitude/power entrainment. However, for the remainder of this section we will focus on 

GC, which is a more appropriate complex measure for assessing entrainment in EEG data: as 

detailed above, it not only assesses the potential contribution of one signal to another over 

time (e.g., the extent to which time series x can be predicted by previous samples of y), but 

also considers autocorrelations between each signal (e.g., the extent to which x can be 

predicted by previous samples of x alone). 

 

To illustrate how event-locked neural responses might give rise to changes in sequential 

amplitude/power IBE, we simulated two ERP-like signals (x and y) (see Figure 2.2). Signal y 
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was generated from previous samples of x plus noise (see SM sections 2.6.2 and 2.6.7 for full 

details). From this simulation, it can be seen that the sequential IBE between x and y 

observable in the raw data (Fig 2.2a) manifests as strong x->y GC influences but not y->x GC 

influences, as expected (Fig 2.2d). When the same analysis is applied to the power of the 

signal (Fig 2.2b, 2.2c), the predicted results are again observed. Spectral x->y GC influences 

are observed across a range of lower frequencies (Fig 2.2e), but no spectral y->x effects are 

observed (Fig 2.2f). In the accompanying code for this section, we provide the user with 

routines for implementation of time domain and spectral GC (i.e., sequential IBE based on 

amplitude/power) for measuring event locked changes in EEG hyperscanning data. The user 

is also able to easily specify more advanced parameters such as the time window size and 

model order used for the time-varying GC estimates. 
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Figure 2.2. Simulated data showing one mechanism that could give rise to increases in 

interbrain granger causality between parents and infants. (a) shows the two correlated 

(single-trial amplitude) transient signals x and y. Y was generated from previous samples of x 

with a lag of 100ms, such that (d) there is a substantial event locked increase in GC from x to 

y but no GC influence from y to x. (b) shows time-frequency power from signal x from panel 

a. (c) shows time-frequency power from signal y from panel a. (e) shows spectral GC from y 

to x and (g) from x to y.  

 

2.3.1.2 Phase 

To illustrate how event-locked neural responses might give rise to changes in concurrent 

phase-based IBE, we simulated 100 trials of two partially phase-locked signals (x and y) with 

a concurrent phase reset/modulation +200ms after an event (time 0) (see Fig 2.3a) (see SM 

section 4 for more details). From this simulation, it can be seen that, during the time window 

following the manipulation at +200ms, the phase angles of the two time series converge (Fig 

2.3a) as expected. The phase locking values of the two time series also converge (Fig 2.3c) as 

expected.  

 

To illustrate the sequential phase IBE, we simulated 100 trials of x and y again in the same 

way, but here the phase modulation in y occurred 200ms later than in signal x (see Fig 2.3b) 

(see SM section 2.6.5 for more details). From this simulation it can be seen that when phase 

modulations in one signal occur later/ earlier than phase modulations in another signal (e.g., x 

in Fig 2.3b becomes phase-locked at +200ms, and y in Fig 2.3b becomes phase-locked at 

+400ms) and that these modulations are correlated, then this relationship (or form of 

sequential IBE) can be captured using directed phase IBE methods such as phase transfer 
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entropy – illustrated by the increase in PTE in the time window between phase modulations 

of x and y (~+200-400ms) (Fig 2.3d). Also note from the simulation that as y becomes phase 

locked (or entrains to x) at +400ms this causes an increase in PTE from y to x. This is 

because both signals were generated from pure sine waves plus noise and so when y also 

becomes phase locked at +400ms, the activity in y is also now predictive of the activity in x. 

 

In the accompanying code for this section, we provide the user with routines for full 

implementations of inter-individual, time-frequency PLV and PTE (i.e., sequential IBE based 

on phase). The user can easily specify parameters such as time window size for PLV/PTE as 

well as the model order for PTE. 
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Figure 2.3. Simulated data showing how event locked phase modulations could give rise to 

phase-based IBE between two brains. (a) Time series data x and y were subjected to a phase 

reset at +200ms so that they become purely phase locked. Note grey lines show single trial 

data while blue and green lines indicate data averaged over trials. The increased consistency 

in phase angle circa +200ms between x and y yields (c) a notable increase in the phase-

locking between x and y ~200ms. (b) Simulated data showing a situation in which the phase 

modulations in one signal (x) predict the phase modulations in another signal (y) and how 

this lagged/ directed relationship in phase can be captured (d) using phase transfer entropy. 

 

2.3.2 Simulations – non-event-locked changes  

 

2.3.2.1 Amplitude and power 

To illustrate how gradual changes in amplitude/power IBE that are not time-locked to the 

onset of an event might arise, we simulated two oscillatory signals (x and y) where y was 

generated from previous samples of x plus white noise (see Fig 2.4a). To simulate a gradual 

change in GC we reduced this noise parameter over time (see SM section 3 and 7 for more 

details). From this simulation, it can be seen that, as expected, the x->y GC influence 

increases during the time window, but no changes in y->x GC influences are observed (Fig 

2.4b). 

In the accompanying code for this section, we show how the same code from the previous 

section (2.3.1.1) can be leveraged to look at questions regarding non-event locked changes in 

inter brain IBE. No new algorithms are implemented here.  
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Figure 2.4. Simulated data showing one mechanism that that could give rise to increases in 

interbrain granger causality between parents and infants. (a) shows two oscillatory signals. 

Y was generated as a product of previous samples of x with a lag of 25ms. We decreased the 

amount of noise in x over time to simulate (b) a gradual increase in GC from x to y 

throughout the segment. Details given in supporting materials for chapter 2, appendix A, 

section 2.6.3. 

 

2.3.2.2 Phase 

To illustrate how gradual changes in phase IBE might arise that are not time-locked to the 

onset of an event, we simulated two oscillatory signals (x and y) with slow drifts in peak 

frequency over time (signal x linearly increased in peak frequency from 6 to 9Hz and signal y 
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decreased from 12-9Hz) (see Figure 2.5). Full details of how we simulated this data, and the 

time-frequency decomposition can be found in the supplementary materials (SM 2.6.6 and 

2.6.7). From this simulation, it can be seen that the closer the signals become in peak 

frequency the more consistent the relationship between phase angles over time is, and thus 

the higher the phase-locking value between x and y is. 

 

In the accompanying code for this section, we show how the same code from the previous 

section (2.3.1.2) can be leveraged to look at questions regarding non-event locked changes in 

inter brain entrainment. No new algorithms are implemented here.  
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Figure 2.5. Simulated data showing one mechanism that could give rise to increases 

interbrain phase locking between parents and infants. (a) Time series data x and y both 

exhibit slow trends in frequency over time toward a common peak frequency. (c) signal x 

increases from 6 to 9Hz over the time course whereas time series y decreases from 12 to 9Hz. 

The closer the signals become in peak frequency (b) the more consistent the relationship 

between phase angles over time is, (d) yielding a gradual increase in PLV between x and y 

over time. 

 

2.3.3. Simulation- cautionary note on the importance of the temporal scale. 

In this section we highlight how the temporal scale of the analysis influences concurrent IBE 

estimates. To illustrate this, we simulated two signals that show an event-locked transient 

increase in spectral power which peaks 300ms later in signal y compared with signal x 

(Figure 2.6a, 2.6b). Details of the time-frequency decomposition can be found in SM 7. To 

compute concurrent IBE, we performed two calculations: first, we calculated Spearman’s 

correlations between the power of time series x and y at each time-frequency point 

independently (see Fig 2.6e). Second, we down sampled the data using a 0.5s sliding window 

with 200ms of overlap between successive windows (Figs 2.6c, 2.6d) before repeating the 

same analysis (Fig 2.6f). When using a fine temporal scale, we detect no changes in 

concurrent IBE, but when using a larger time window (reduced temporal precision) we do 

(Fig 2.6f). This illustrates how the pre-processing of data prior to IBE analyses can alter the 

results.  
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Figure 2.6. Simulation illustrating the importance of using an appropriate time window for 

calculating concurrent entrainment. Panel a shows the time-frequency power of signal x. 

Panel b shows the time-frequency power of signal y. Panel c shows the down sampled (using 

moving window average) time-frequency power of signal x. Panel d shows the down sampled, 

time-frequency power of signal x. Panel e shows concurrent IBE (spearman’s correlation of 

single trial power (PC) between x and y) computed at each time-frequency point (i.e., 

original temporal scale of data). Panel f shows the same concurrent IBE but computed on the 

down sampled data. The AOIs on panel f indicate regions of significant correlations. This 

figure shows that down sampling the data using sliding window averages can change the 

observed temporal dynamics of inter-brain entrainment.  
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2.3.4 Quantifying event-locked changes in child adult neural entrainment  

 

In this final section we consider the question of statistical significance. If we know that 

specific events occurred in the data, how can we test whether statistically significant changes 

in IBE occurred relative to these events?  

 

2.3.4.1 Amplitude and power 

Significant changes in GC can be evaluated with F-statistics, which is implemented through 

the MVGC toolbox (Barnett & Seth, 2014). Statistical significance can also be obtained via 

nonparametric permutation testing, which can be applied to power correlations, time domain 

and spectral GC (Maris & Oostenveld, 2007). The benefit of the latter measure is that it also 

deals with the problem of multiple comparisons. For measuring changes in GC that are 

strongly time/event locked, permuting the order of the time segments within trials is generally 

recommended over permuting the trial order whilst leaving the time segments intact (Cohen, 

2014).  

 

2.3.4.2 Phase 

Assuming a von Mises distribution (normal distribution for circular data) statistical 

significance of ITC and PLV can be evaluated against a p-value, approximated against the 

null hypothesis using the Rayleigh’s test which can be implemented using the Circstat 

toolbox (Berens, 2009). Statistical significance can also be assessed against a threshold 

ITC/PLV value (Cohen, 2014). Any values which exceed this resulting threshold can be 

considered significant. Alternatively, the significance of time-frequency varying ITC and 



66 

 

PLV as well as PTE (when computed in a sliding window within trials) can also be assessed 

using nonparametric permutation testing (e.g., Maris & Oostenveld, 2007). 

 

2.3.5. Correcting for multiple comparisons when measuring changes in parent-child neural 

entrainment. 

When analysing EEG data, we are typically interested in how a given effect varies as a 

product of time, frequency, and topography. This makes exploratory EEG analysis 

susceptible to the problem of multiple comparisons: increasing the number of statistical 

inferences drawn from the data will also increase the likelihood of obtaining a significant 

result. There are several approaches to correct for this problem. For example, if you are only 

testing a limited number of regions/frequencies of interest it is appropriate to use the 

Bonferroni correction method. For more complex comparisons involving a large number of 

channels and time-frequency points, Bonferroni correction is not appropriate. In these 

situations, correction for multiple comparisons should be made using pixel or cluster-based 

permutation statistics (Maris & Oostenveld, 2007). For a more detailed discussion of which 

correction methods to use when we refer the author to Cohen (2014, chapter 33).  

 

2.4.  Discussion   

 

Procambarus clarkia, a breed of freshwater crayfish, exhibit only a small range of social 

behaviours, primarily focussed on dominance/ subordination, yet their physiological systems 

are capable of supporting these interactions as well as intra-individual interactions with their 

environment with a remarkable level of temporal fidelity (e.g., Schapker et al., 2002). The 

way that humans interact with their environment and each other is infinitely more complex 
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and multi-layered (Hasson & Frith, 2016; Hoehl et al., 2021; Murray et al., 2016). However, 

most researchers who study interacting humans during social engagement typically do so 

using methods that measure how entrainment varies by frequency/topography and between 

different experimental conditions (or participants), but which obscure how entrainment varies 

over time. In this article, we have argued that this omission prevents us from developing a 

mechanistic understanding of how neural entrainment is established and maintained.  

 

In this article, we presented algorithms that allow researchers to measure how entrainment 

between two brains (or more generally physiological systems) varies as a function of time. 

We have differentiated between two types of entrainment (section 2.2.2): concurrent (‘when 

A is high, B is high’) and sequential entrainment (‘changes in A forward-predict changes in 

B’). And we have described how these measures can be applied to three aspects of the neural 

signal: amplitude, power and phase (section 2.2.2, see Figure 2.2.1).  

 

We hope that this guided simulation study and tutorial will help facilitate further research into 

the possible mechanisms underpinning child-adult neural entrainment. For example, 

measuring changes in concurrent entrainment of amplitude and power using correlations 

(section 2.2.2.1), or of phase using PLV (section 2.2.2.2) might be used to explore the 

possibility that certain behavioural events during social interactions could lead to local 

increases in IBE, for example around moments of mutual gaze onsets or vocalisations (see 

section 2.1.1). 

 

Further measuring changes in sequential entrainment of amplitude and power using GC 

(section 2.2.2.3), or of phase using PLV (section 2.2.2.2) or PTE (section 2.2.2.4), might be 

used to explore the possibility that response preparation or anticipation and mutual prediction 
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might lead to changes in sequential IBE (see section 2.1.1). This could in theory involve 

concurrent, transient changes in either power or phase in both partners (e.g., Mandel et al., 

2016; Bögels, 2019), that would drive changes in sequential IBE. 

 

Lastly, the same methods described above might be used to explore the possibility that 

continuous intra brain changes, that are not locked to behavioural events, could also lead to 

gradual changes in IBE. This might be substantiated for example, through shared cognition 

and/or mental representations or through direct ‘neural mimicry’, even in the absence of 

explicit turn-taking (Hamilton, 2021; Kingsbury et al., 2019). These concepts are discussed 

further in section 2.1.1. Alternatively, gradual changes in phase, such as the adjustment of the 

peak frequency of neural oscillations, could lead to increases in concurrent IBE of phase 

(section 2.3.2.2), through, for example, concomitant modulations of peak alpha frequency in 

response to task demands (e.g., Samaha & Postle, 2015; Wutz et al., 2018).  

 

Overall, the study of child-adult neural entrainment is still in its infancy and many very basic 

questions regarding how changes in inter brain entrainment are substantiated at the neural 

level, and are mediated through behaviour, remain unanswered. It is our hope that the 

material presented in this paper will aid researchers in addressing these fundamental 

questions. 

 

 

2.4.1. Outstanding issues  

There are, of course, many outstanding issues with the analysis of EEG hyperscanning data. 

Substantial questions remain about how successfully artifacts can be removed from brain data 

(section 2.1); in understanding the relationship between power changes and IBE (sections 
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2.2.2.2.1 and 2.2.2.3.3) and the problems associated with non-stationarity in EEG data and 

Granger Causal analyses (section 2.2.2.3.1); and so on.   

 

Two further outstanding issues should be noted. First, we are often considering events that 

have different periodic structures, and that unfold over different time scales. For example, 

researchers might want to examine the relationship between eye gaze shifts (which take place 

every ~300ms – i.e., at ~3Hz), changes in autonomic arousal (between ~0.01and ~0.5Hz) and 

changes in EEG (between ~2Hz-~30Hz). Although we have presented some methods for 

looking at this – such as temporal correlations in power at different frequencies (section 

2.2.2.1) and cross-frequency PLV (section 2.2.2.2.2) – we have not discussed other 

approaches, such as phase-amplitude coupling (Canolty & Knight, 2010; Tort et al., 2010) 

that would also be useful.   

 

Second, we have concentrated exclusivity on IBE in relation to bivariate behaviours (e.g., 

mutual gaze). Unlike the ways in which social information processing is typically studied 

(i.e., using repeated, discrete and unecological screen-based stimulus), real social interactions 

involve highly layered and complex sequences of multimodal events that can unfold over 

multiple time scales in a continuous and interdependent way. For example, consider the 

multimodal pathways to joint attention as illustrated by Yu and Smith (2016), in which 

sequences of social interactions between parents and infants often involve initiating and 

responding to various postural and gestural movements, as well as visual (gaze) information 

and vocalisations, presented in combination. Future work will require more advanced data 

analysis and the collection of larger datasets, to explore IBE in relation to more complex 

multivariate behavioural datasets (for example those modelling gaze, touch, affect and vocal 

data simultaneously). 
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2.5. Conclusion 

 

The focus on fine-grained neural responses that we advocated in this paper has the potential 

to provide valuable new insights into the neural processes that support dynamic social 

interaction, beyond what is possible using the current/ standard approaches adopted in EEG 

hyperscanning studies. It is our hope that the considerations that we highlighted, and the 

methods that we described, will pave the way for future studies which will analyse in more 

depth the rich temporal dynamics of neural activity, bringing us closer to the true complexity 

of brain functioning.  
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2.6.  Supporting materials for chapter 2 

 

 

Appendix A 

 

 

2.6.1. Simulation for event locked changes in concurrent amplitude/ power entrainment  

 

To illustrate how event locked neural responses might give rise to changes in concurrent 

amplitude/power inter brain entrainment (IBE) (see section 2.3.1.1 of main text), we 

simulated two time series ‘x’ and ‘y’ each embedded with one purely phase-locked transient 

oscillation as a product of a sine wave (640 samples, at a sampling rate of 256 Hz) at 7Hz 

convolved with a gaussian kernel (640 samples, sd of 0.1). The peak of the transient 

oscillation of time series y was offset from the peak of time series x by +100ms. This was 

done to be practically most similar to the examples on measuring changes in sequential 

amplitude/ power-based entrainment (e.g., see figure 2 of main text), but to still highlight 

how changes in event locked concurrent power entrainment can be measured at a fine 

temporal scale (e.g., looking at sub-second changes). We simulated 100 trials of data in this 

way. Details on how we derived single trial EEG power can be found in section 7. 

Spearman's correlation was calculated between signals x and y at each time-frequency point. 
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2.6.2. Simulation for event locked changes in sequential amplitude/ power entrainment  

 

To illustrate how event-locked neural responses might give rise to changes in sequential 

amplitude/power IBE (see section 2.3.1.1. of main text), we simulated two time series x and y 

each embedded with one transient oscillation as a product of a sine wave (640 time points, at 

a sampling rate of 256 Hz) at 7Hz convolved with a gaussian kernel (640 samples, sd of 0.1). 

Time-series y was generated as a product of weighted previous samples of x, according to: 

 

                                𝑦𝑡 = 𝜓𝑥𝑡−n                                                                               (1), 

 

where 𝑦𝑡 is the current value of y, 𝜓 is an autoregressive coefficient (set at 1 in this example) 

and 𝑥𝑡−n is the previous sample of x, at a given lag n. To keep the model simplistic, a model 

order of 1 was used, meaning that time series y was generated using one previous sample of 

time series x. Both signals were then mixed with white noise with a standard deviation of 0.5. 

We simulated 100 trials in this way. In each trial, the amplitude of the sine wave used to 

generate the transient oscillation in x and y was set at 3 times a random number drawn from a 

normal distribution. This was to simulate the data being more physiologically ‘realistic’ as 

well as yielding an increase in time domain and spectral GC, due to the single trial 

amplitudes being highly correlated. Single trail time-frequency power was computed in the 

same way as in the simulation of concurrent power entrainment (see above). To compute GC, 

we used functionality from the MVGC toolbox (Barnett and Seth, 2014). In the 

accompanying code, we provide routines on implementing code from the toolbox with EEG 

hyperscanning data, to compute GC estimates for amplitude and power. As we generated the 

peak of signal y to be forward lagged by +100ms relative to the peak of x we can expect to 
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see a relative increase in the time domain and spectral GC in a 100ms time window between 

peaks (in time) of signals x and y. We also expect that, as both x and y are transient signals 

and both signals return to baseline after 100ms, we will see no other significant changes in 

GC. Further, as x was not defined by y, we expect a unidirectional influence only from x to y. 

The temporal precision of the GC results is determined by the number of samples of the 

window used to compute GC. Previous literature has used window lengths between 50ms 

(Ding Bressler et al., 2000) and 2s (Barret et al., 2012), although the most appropriate 

window length will depend on individual task-related design. In this example, GC was 

computed in a 200ms sliding window, moved in increments of 50ms. The model order used 

in the autoregressive model fit for the GC estimates was 1.  

 

 

2.6.3. Simulation for non-event locked changes in sequential amplitude/ power entrainment  

 

To illustrate how non-event-locked neural responses might give rise to changes in sequential 

amplitude/power IBE (see section 2.3.2.1 of main text) we simulated one time series as a 

mixture of one ‘slow’ sine wave at 2Hz and one ‘fast’ sine wave at 10Hz (640 time points, at 

a sampling rate of 256 Hz for both) and white noise (sd 0.5)- labelled as time series x. Time 

series y was generated as a product of weighted previous samples of x plus white noise with a 

standard deviation of 0.5, following the same procedure as in the previous simulation. In this 

example, a model order of 1 was used. We simulated 100 trials in this way. As y was 

generated from previous samples of x plus noise (random variation), to simulate a gradual 

increase in GC over time we linearly reduced the magnitude of noise parameter/ random 

variation in the system, such that the values of y became closer to the ‘true'/ real signal 

elements of x, without the confounding noise. GC was computed in the same way and using 
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the same code as provided for the above simulation. The model order used in the 

autoregressive model fit for the GC estimates was 1. 

 

 

2.6.4. Simulation for event locked changes in concurrent phase entrainment  

 

To illustrate how event-locked neural responses might give rise to changes in concurrent 

phase-based IBE (see section 2.3.1.2 of main text), we simulated two-time series (640 

samples at 256 Hz) as partially phase-locked signals (e.g., non-phase locked before time 

+200ms and purely phase locked after time = 200ms). At time =+200ms we simulated a 

phase-modulated such that at subsequent time points the signals were purely phase-locked. 

We simulated 100 trials of data in this way. To calculate the frequency-specific phase-

locking value used in our examples (see section 2.3.1.2 of main text) both signals were 

filtered between 6 and 9 Hz using Matlab's window-based FIR filter with 625 points 

(equivalent to 3 times sampling rate/ the lower edge of the bandpass range). The phase angles 

for both time series were obtained from the result of the Hilbert transform. In the 

accompanying code, we provide routines on calculating inter-trial coherence (a measure of 

potential phase resetting) and phase locking between signals that can be applied to EEG 

hyperscanning data. In this example, PLV estimates were computed at each time point over 

trials (which gives the highest degree of temporal precision) though we also provide routines 

for calculating these same measures in a sliding window over time within trials. 
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2.6.5. Simulation for event locked changes in sequential phase entrainment  

 

To illustrate how event-locked neural responses might give rise to changes in sequential 

phase-based IBE (see section 2.3.1.2 of main text) two-time series were generated as sine 

waves at 7Hz plus white noise (sd=0.5). For time series x, we simulated 100 trials of non-

phase locked activity (e.g., by adding a random phase offset, sampled from the entire 0-2pi 

distribution). At time 0 we simulated a phase reset, whereby the phase was abruptly shifted. 

Following the phase reset (e.g., t=0 for signal x) the signals became phase-locked (e.g. with 

an added phase offset sampled from only half of the full 0-2pi distribution). Signal y was 

generated in the same way as signal x, but the 'event'/ phase reset was simulated 200ms after 

the phase reset in signal x. Phase angles again were obtained from the result of the Hilbert 

transform. Phase transfer entropy was computed in a 200ms sliding window. 

 

 

 

2.6.6. Simulation for non-event locked changes in concurrent phase entrainment  

 

To illustrate how non-event-locked neural responses might give rise to changes in concurrent 

phase-based IBE (see section 2.3.2.2 of main text) we simulated two times series (640 

samples at 256 Hz) x and y as basic sine waves which varied in peak frequency over time. 

Time series x was designed to simulate an infant alpha generator with a peak frequency range 

of 6-9Hz and y an adult alpha generator with a peak frequency range of 9-12Hz. For the 

simulated infant data, the phase offset added at each time point to a 6Hz sine wave was 

designed as the cumulative sum of a series of spline interpolated, linearly spaced 

numbers, increasing from 6 to 9 over the length of the time segment, minus the mean of the 
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upper and lower bounds of the frequency range. For the simulated adult data, the phase offset 

of the sine wave was set similarly, but a series of spline interpolated linearly spaced 

numbers decreasing from 12 to 9. We simulated 100 trials of data in this way. Phase angles 

again were obtained from the result of the Hilbert transform and PLV was calculated at each 

time point over trials as in the previous example.  

 

 

 

2.6.7. Time-frequency decomposition  

 

Single trail time-frequency power from the signals was derived by narrowband filtering the 

data between 2 and 25Hz in section 2.2.3 of main text and 2 and 40Hz in section 2.3.1.1 in 

main text. 23- 38 (respectively) filters were constructed, using MATLAB's FIR filter 

function, linearly spanning the frequency range. Each filter was constructed with an order of 

3 times the sampling rate/ the lower limit of the frequency range (the same setting as used by 

EEGLab), and with a frequency spread of +/- 1.5 Hz, giving a 2/3 overlap in frequency 

between successive filters. Time-frequency power and phase was then derived from the 

resulting Hilbert transformed data. Power was obtained as the square of the absolute values 

derived from the Hilbert transform of the filtered data. For analysis involving time-frequency 

power, this was baseline normalised (decibel normalised) using activity in the -700 to -500ms 

time window and averaged over trials. 
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2.6.8. Side note on inter trial phase coherence 

 

ITC measures the consistency of frequency band-specific phase angles over trials (time-

locked to the response). The phase coherence value is computed according to: 

 

                                                

                                                  

                                                𝐼𝑇𝐶 =
1

𝑁
| ∑ ⅇ𝑖𝜙(𝑡,𝑘)𝑁

𝑘=1
                                                  (2), 

 

where N is the number of trials and is the phase angles of a signal on trial n, at time t, Phase 

coherence values vary from 0 to 1, where 0 indicates no phase consistency across trials to 1 

indicates oscillations take on identical phase values across trials (Lachaux et al., 1999; 

Delorme and Makeig, 2004). 
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Chapter 3 - Automatic classification of ICA components from infant 

EEG using MARA 

 

The following chapter is a publication of an original article investigating methods for 

automated classification (keep or reject) of ICA components from infant EEG data (Marriott 

Haresign et al., 2021). Subheadings, figure placement, figure and table numbers, and citation 

style have been adapted to conform to the general thesis format. The supplementary materials 

(SM) for this publication are also presented within this chapter. 

 

Abstract 

Automated systems for identifying and removing non-neural ICA components are growing in 

popularity among EEG researchers of adult populations. Infant EEG data differs in many 

ways from adult EEG data, but there exists almost no specific system for automated 

classification of source components from paediatric populations. Here, we adapt one of the 

most popular systems for adult ICA component classification for use with infant EEG data. 

Our adapted classifier significantly outperformed the original adult classifier on samples of 

naturalistic free play EEG data recorded from 10 to 12-month-old infants, achieving 

agreement rates with the manual classification of over 75% across two validation studies 

(n=44, n=25). Additionally, we examined both classifiers’ ability to remove stereotyped 

ocular artifact from a basic visual processing ERP dataset compared to manual ICA data 

cleaning. Here, the new classifier performed on level with expert manual cleaning and was 

again significantly better than the adult classifier at removing artifact whilst retaining a 

greater amount of genuine neural signal operationalised through comparing ERP activations 



79 

 

in time and space. Our new system (iMARA) offers developmental EEG researchers a 

flexible tool for automatic identification and removal of artifactual ICA components. 

 

 

3.1.  Introduction 

The use of EEG in developmental cognitive neuroscience has led to a rich understanding of 

how the brain develops throughout early life. EEG has provided insights from birth into the 

development of skills such as face processing (e.g., Farroni, Csibra, Simion, and Johnson 

2002), attention (e.g., Xie, Mallin and Richards, 2018), memory (e.g., Jones et al., 2020) and 

social interaction (e.g., Wass et al., 2018). It has also been pivotal in identifying risk factors 

associated with developmental disorders (e.g., Orekhova et al., 2014) and later emerging 

psychopathology (e.g., Jones and Johnson, 2017). However, the field is challenged by a lack 

of scalable, standardised tools for artifact correction. In this paper, we present one ‘lossless’ 

approach for artifact correction tuned for infant EEG data. 

 

3.1.1. Traditional approaches to artifact removal 

Despite its value, EEG recorded from paediatric populations is particularly susceptible to 

artifact contamination. Furthermore, it typically contains fewer sections of clean 

uninterrupted data due to lower recording tolerances (Gabard-Durham et al., 2018; Debnath 

et al., 2020). One common approach to combat this is to manually remove sections of the 

continuous data  contaminated with artifact. However, this method of data cleaning can be 

problematic. For example, artifact correction in large EEG datasets can be very time 

consuming, and as developmental neuroscience is growing and EEG datasets are becoming 

larger, automated pre-processing tools are needed to efficiently process large-scale data, 
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taking less time than manual cleaning (Webb et al., 2015). Further manual cleaning is 

inherently subjective and there exist few comprehensive reviews to guide researchers (e.g., 

Chaumon et al., 2015). Recent studies have introduced methods for automatically identifying 

and removing segments of data contaminated by artifact in paediatric populations (e.g., 

Gabard-Durnham et al., 2018). These types of studies address the need for standardisation 

and speed but often rely on complete removal of artifact-affected segments. Further, many of 

the currently available methods for paediatric EEG have procedures designed specifically for 

higher electrode density recordings, therefore it is also necessary to develop artifact 

correction approaches that are also flexible to low-density recordings, which are often used in 

infant EEG studies. 

 

Recently, there has been a drive towards the use of more naturalistic paradigms in EEG 

research (Risko et al., 2016; Wass et al., 2020; Holleman et al., 2020). However, naturalistic 

EEG recordings provide additional analytical challenges over traditional screen-based tasks. 

For example, in traditional screen-based/ event-related tasks in which the child is passively 

exposed to a set of stimuli, artifacts are more randomly distributed with respect to simulation. 

Removal of sections containing significant artifact can in this context be potentially 

beneficial, as visual experience during these sections might also be different (e.g., at its 

simplest the child might be fussing and not be attending to the image on the screen). 

However, in naturalistic paradigms, removal of whole sections of data is particularly 

problematic because data segments contaminated by artifact often covary with cognitive/ 

attentional processes of interest. Specifically, in naturalistic paradigms, the 'simulation' is 

often child-controlled (e.g., the child turning to the parent in a naturalistic interaction), and so 

artifacts are more likely to be time-locked to neural signals of interest; the removal of artifact 
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is thus likely to also affect the analysis of neural signals. Thus, we need approaches to the 

correction of artifact that remove artifactual signals from the EEG recording throughout the 

session, rather than removing whole segments of both signal and noise – so-called lossless 

pipelines. 

 

3.1.2. Lossless approaches 

Independent components analysis (ICA) is an alternative method that can be used to remove 

artifact from EEG data. When applied to EEG data, ICA separates the contributing sources to 

the scalp EEG into additive subcomponents, with varying contributions to the overall signal 

(Rutledge and Bouveresse, 2013; Makeig et al., 1996). Each ICA component typically 

contains a varying mix of neural and artifactual signals. Consideration of each component’s 

time-frequency and topographical properties forms the basis of manual ICA classification 

(e.g., Chaumon et al., 2015; see also appendix B and SM Fig.1), which is typically used to 

separate the ICA components into two groups; components containing mostly artifactual 

signals and components containing mostly neural signals. As ICA itself is not a perfect 

method, in practice each component typically contains a varying amount of neural and 

artifactual signals. Some components can be clearly and easily identified manually as 

containing predominantly artifactual signals, whereas in other cases the mix of neural and 

artifactual signals is less clear and manual classification of these components becomes more 

subjective and based on the user’s experience level.  

 

ICA used in this way as a data preparation tool is often favoured by researchers because it 

allows them to subtract/ remove unwanted components (e.g., those associated with artifact) 
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from the EEG data without reducing the overall amount of data (hence is lossless). This is a 

major advantage when compared to, for example, using amplitude thresholds to remove 

entire sections/trials of data that are contaminated by artifact. This is particularly true for 

naturalistic paradigms, for the reasons given above.  

 

We note only one other attempt to provide a system for automatic ICA classification 

appropriate for paediatric EEG data. The adjusted-ADJUST system (Leach et al., 2020) 

provides developmental researchers with an excellent framework for automatic ICA 

classification from typical repeated stimulus EEG data. Leach and colleagues’ system 

achieved classification agreement with human coders of >85% with EEG recorded from 6-

month-old infants. Whilst this is an impressive system, it is limited in some ways in which 

iMARA is not. Firstly, the adjusted-ADJUST program is set up to primarily deal with 

stereotypical eye movement artifact. Three of the five categories it sorts ICA components 

into are related to ocular motor activity. iMARA was trained on over 600 ICA components, 

including a wide variety of stereotyped and non-stereotyped artifacts, and so is potentially 

more generalisable to a wider range of artifacts. Second, adjusted-ADJUST is designed for 

event-locked paradigms with a repeated stimulus and is not able to incorporate EEG data 

from continuous/ non-event locked paradigms, which are frequently used within 

developmental research (e.g., to study neural entrainment in parent-infant interactions (Wass 

et al., 2020),), whereas iMARA is flexible to data in either format. Overall, both systems 

perform well and depending on the data/situation one might be more optimal than the other. 
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3.1.3. The MARA classification system 

Many researchers manually identify which ICA-components are associated with genuine 

neural activity, and which are artifact. Recently, however, there have been attempts to 

automate this process. In this paper, we focus on one automated method, the Multiple 

Artifact Rejection Algorithm (MARA) (Winkler et al., 2011). The MARA classification 

system is grounded in the use of a binary linear classifier, following: 

 

H = sign (w·x+b) {-1,1}                                                  (1), 

                              

Where w is a weight vector obtained from samples of labelled training data, x is a feature 

vector containing the values of all the different component features (as illustrated in Figure 1) 

and b is a bias term. In short, this identifies which group the input data belong to. In the 

context of the MARA system, it classifies ICA components as either belonging to the ‘neural’ 

or ‘artifact’ group.  

 

Classification also depends on the training data that is used. The MARA classifier was 

originally trained using 690 ICA-components (from an adult EEG reaction time study (n = 23 

datasets)), which were manually classified as either ‘neural’ or ‘artifact. The accuracy of the 

classifier was then tested on 1080 additional components from the same study. Accuracy was 

tested by comparing the results of the automated ICA classification to manual ICA 

classification. The system achieved agreement rates of approximately 91%, (i.e., 9% of 

components were classified differently when comparing the automated and manual 

classification). Accuracy was then further tested on new data from two other studies; an 

auditory event-related potential (ERP) paradigm (n=18 datasets); and a motor imagery BCI 
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paradigm (n = 80 datasets), both with different channel setups and participants. Testing the 

performance of the classifier on the additional data revealed agreement/error rates between 

the automatic and manual classification of 85/15% (Winkler et al., 2011). 

 

Despite its popularity within adult EEG research, MARA has not received much attention 

within paediatric EEG research. This is perhaps because ICA itself is not widely used within 

traditional paediatric ERP research as a pre-processing tool. One previous study quantified 

the performance of MARA with paediatric EEG data. Gabard-Durnham and colleagues 

incorporated the classifier as part of their pre-processing tool kit (HAPPE) (Gabard-Durnham 

et al., 2018), applying it to samples of high density (128 channels) resting-state EEG from 

infants and children aged 3-36 months. The authors found that when MARA was used in 

conjunction with ‘non-standard’ approaches (e.g., wavelet thresholding of the ICA), it 

rejected 42% of components, but when used as part of a ‘standard’ pre-processing pipeline 

e.g., including referencing, filtering, channel rejection/interpolation, trial/ continuous data 

rejection and omitting the wavelet thresholding step, MARA rejected over 85% of the 

components. These high rejection rates highlight the importance of retraining MARA with 

infant data – as, typically, researchers minimise the number of components rejected to 

preserve as much of the original data as possible. In the present study, we aim to address the 

need for systems for automatic ICA cleaning of infant EEG data that can be incorporated 

among other standard pre-processing procedures. 

 

3.1.4. The need to tune artifact-removal approaches to infant EEG data 

Infant EEG has unique properties, requiring the design of specific tools for processing. EEG 

recorded from infants differs from that of children (Lepage et al., 2006) and adults 
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(Strogenova et al., 1999). For example, the canonical frequency bands e.g., delta (1-4Hz), 

theta (4-8Hz), alpha (9-13Hz), etc observed in adult EEG are observed at lower frequencies 

in infant EEG (Orekhova et al., 2006). Peaks in the power density spectrum that are 

associated with alpha activity typically observed in the 9-13Hz range in adults can be seen 

clearly between 6 and 9Hz in one-year-old infants (Strogenova et al., 1999) and are lower 

still in younger infants (Marshall et al., 2002). We also know that infant EEG tends to show 

greater power at lower (<6Hz) frequencies and that during development there is an 

observable increase in power at higher frequencies (Marshall et al., 2002). Whilst these 

differences have been observed in scalp level EEG data and not at a source level, this 

evidence highlights differences in the distribution of power at lower frequencies and the 

overall composition of the 1/f power density curve for infant vs adult EEG. 

 

There is also evidence to suggest that the topographical properties of infant EEG differ from 

those typical of adult EEG. For example, we know that infant alpha activity projected onto 

central scalp electrodes is present only in later stages of infant development, presumably 

accompanying advances in motor skills (Cuevas et al., 2014), although the sources of these 

scalp activations are yet to be identified. Further, at the source level, infant EEG is often 

more bilaterally symmetrical than adults (Piazza et al., 2020), although strong topographical 

asymmetry or localisation to a specific topographical point can be a good indication of 

artifactual source components (Chaumon et al., 2015). This evidence highlights that infant 

EEG source components do contain topographically distinct properties to those of typical 

adult EEG. Overall, the evidence highlights the differences in the spectral and topographical 

properties between adult and infant EEG both at the scalp and source level. Given how 

important the spectral and topographical properties are for the classification of ICA 
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components (e.g., Chaumon et al., 2015) it should be clear from reviewing these studies that 

attempting to classify infant ICA components using training data from adult EEG would lead 

to sub-optimal results.  

 

3.1.5 Current study: motivation and goals 

In this study, we examine the performance of MARA when applied to samples of 32-channel 

infant EEG data acquired during naturalistic social interactions. We then adapt the MARA 

system to better fit the characteristics of infant EEG data. We do this in two ways; (1) by 

adapting the relevant time-frequency properties derived from the ICA used in classification; 

(2) by retraining the base classifier using data from infant EEG recordings. From here on we 

refer to the retrained classifier as iMARA. 

 

To validate the performance of iMARA, we first looked at the inter-rater agreement of ICA 

components between three expert hand coders. We then compared MARA and iMARA to the 

validated, manually labelled infant ICA components across two validation studies (classifier 

validation 1and 2), both using different datasets. Finally (classifier validation 3), we looked at 

ERP data generated using the different methods to examine in greater detail their ability to 

remove specific types of artifact. 

 

3.2.  Methods 

 

3.2.1. Ethics statement 

This study was approved by the Psychology Research Ethics Committee at the University of 

East London. Participants were given a £50 shopping voucher for taking part in the project. 
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3.2.2. Participants 

The same experimental paradigm was used for all validation datasets, but recordings were 

taken from different sessions (weekly sessions 1 and 8 as part of a broader, 8-week programme 

of research).  

 

Dataset 1 (Validation 1), 44 healthy (23 F, 21 M) infants participated in the study along with 

their mothers. Infants were aged 10-12 months (mean 10.72 months, std=1.31). Dataset 1 was 

taken from the infant’s visit 1 data. 

 

Dataset 2 (Validation 2), 25 healthy (12 F, 13 M) infants contributed data. Infants were aged 

10-12 months (mean 12.60 months, std=1.27). Dataset 2 included the same infants with data 

taken from visit 8. 

 

Dataset 3 (Validation 3), 36 healthy (17 F, 18 M) infants contributed data. Infants were aged 

10-12 months (mean 10.70 months, std = 1.08). Dataset 3 is a subset of dataset 1.  

 

3.2.3. Experimental set-up and procedure 

Infants were positioned immediately in front of a table in a highchair. Adults were positioned 

on the opposite side of the 65cm-wide table, facing the infant. Adults were given toys to play 

with across a tabletop and asked to “play with their infant as they would normally do at home”. 

Adults were also asked to lower the volume of their vocalisations to reduce the level of speech-

related contamination in the EEG. Dual EEG was continuously acquired from the parents and 
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infants for the approx. 25 min duration of the play session. For this study, we used only the 

infant’s EEG. 

 

3.2.4. EEG data acquisition 

EEG signals were obtained using a dual 32-channel Biosemi system (10-20 standard layout). 

EEG was recorded at 512 Hz with no online filtering using the Actiview software.  

 

 

3.2.5. EEG artifact rejection and pre-processing 

A fully automatic artifact rejection procedure was adopted, following procedures from 

commonly used toolboxes for EEG pre-processing in adults (Mullen, 2012; Bigdely-Shamlo, 

et al., 2015) and infants (Gabard-Durham et al., 2018; Debnath et al., 2020). This was 

composed of the following steps: first, EEG data were high-pass filtered at 1Hz (FIR filter 

with a Hamming window applied: order 3381 and 0.25/ 25% transition slope, passband edge 

of 1Hz and a cut-off frequency at -6db of 0.75Hz). Although there is debate over the 

appropriateness of high pass filters when measuring ERP’s (see Widmann and Schröger, 

2012), we aimed to obtain the best possible ICA decomposition. The parameters we used 

were set up following recent work (e.g., Dimigen, 2020) that examined the removal of eye 

movement artifacts from EEG data (from a free viewing paradigm) using ICA. Second, line 

noise was eliminated using the EEGLAB (Delorme and Makeig, 2004) function clean_line.m 

(Mullen, 2012). Third, the data were referenced to a robust average reference (as described in 

Bigdely-Shamlo et al., 2015). The robust reference was obtained by rejecting channels using 

the EEGLAB clean_channels.m function (using the default settings) and averaging the 

remaining channels. Fourth, noisy channels were rejected, using the EEGLAB function 
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clean_channels.m. The function input parameters ‘correlation threshold’ and ‘noise 

threshold’ (inputs one and two) were set at 0.7 and 3 respectively, all other input parameters 

were set at their default values. Fifth, the channels identified in the previous stage were then 

interpolated back, using the EEGLAB function eeg_interp.m (mean 3.3, std, 2.1, min 0, max 

9, for dataset 1. Mean 2.2, std, 1.7, min 0, max 6 for dataset 2). In some datasets, channel 

interpolation reduced the overall rank of the data leading to a fewer number of components 

than channels as is the norm with ICA. Interpolation is commonly carried out either before or 

after ICA cleaning, but in general, has been shown to make little difference to the overall 

decomposition (Delorme and Makeig 2004). Sixth, the data were low-pass filtered at 20Hz, 

again using an FIR filter with a Hamming window applied identically to the high-pass filter. 

(In the SM we also report a comparative analysis in which data were low pass filtered at 

40Hz instead of 20Hz (see SM section 3.6.1.5)). Seventh, continuous data were automatically 

rejected in a sliding 1 second epoch based on the percentage of channels (set here at 70% of 

channels) that exceed 5 standard deviations of the mean channel EEG power. For example, if 

more than 70% of channels in each 1-sec epoch exceed 5 times the standard deviation of the 

mean power for all channels then this epoch is marked for rejection. This step was applied 

very coarsely to remove only the very worst sections of data (where almost all channels were 

affected), which can arise during times when infants fuss or pull the caps. This step was 

applied at this point in the pipeline so that these sections of data were not inputted into the 

ICA. The average amount of data rejected in this way was 10% (std, 8.7%, min 0%, max 

35.6%) for dataset 1 and 6% (std, 5.4%, min 0%, max 20.2%) for dataset 2.  Data were then 

concatenated and ICAs were computed on the continuous data using the EEGLAB function 

runica.m. The mean amount of data entered the ICA was 20.5 minutes (std 4.7, min 12.9, 

max 29.7 (mins)) for dataset 1 and 22.3 minutes (std 4.8, min 13.5, max 32.4 (mins)) for 
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dataset 2. In the raw data condition, we followed the same procedure but without any ICA 

correction. 

 

3.2.6. Video coding 

Video recordings were made using Canon LEGRIA HF R806 camcorders recording at 50fps 

positioned next to the child and parent respectively. Video recordings of the play sessions were 

coded offline, frame by frame, at 50 fps. This equates one frame to a maximum temporal 

accuracy of ~20ms. Coding of the infant’s gaze was performed by two independent coders. 

Cohen’s kappa between coders was >85%, which is high (McHugh, 2012). For our ERP 

analysis, EEG was time-locked to the onset of gaze/ saccade offline based on the video coding 

using synchronized LED and TTL pulses.  

 

3.2.7. Hand identification of components for the training set 

A full description of how components were identified as containing predominantly neural or 

artifactual signals by human coders is given in appendix B. Briefly, components were judged 

first on their topography, second on their power spectrum, and third on their time course, 

using similar principles to those suggested for adult EEG data (e.g., Chaumon et al, 2015). 

Components were marked as artifact/ rejected only under the null hypothesis – which in this 

case is that the component is not considered to contain notable amounts of neural signal. 

Where a researcher was in doubt over whether a component contained predominantly neural 

signal we opted to retain that component.  
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3.2.8. Inter expert reliability 

As within any classification system, performance is measured concerning a criterion 

representing the 'true value' or 'perfect classification'. There exists no gold standard upon 

which to test any classifier’s performance. As manual classification is the typical approach 

for ICA data correction (Chaumon et al., 2015) and has been used as a platform to test 

automatic classification in previous studies (Winkler et al., 2011), we tested the MARA and 

iMARA systems performance against manual ICA classification. To validate our manual 

coding, we asked 3 experts to independently rate ICA-components from infant and adult EEG 

data (SM 1.2, Table S2). We examined whether similar levels of agreement between coders 

could be achieved for infant ICA components as compared to those in adult data. Results are 

reported in section 3.1. Previous research using automated classification methods with adult 

data from screen-based tasks have reported error rates for inter expert agreement levels of 

~10-13% MSE (Winkler et al., 2011). 

 

The measure of performance we use in this study is mean square error (MSE), as has been 

used in previous automatic classification studies (Halder et al., 2007; Winkler et al., 2011). In 

its simplest interpretation, MSE is a measure of the error in agreement between systems. For 

example, an MSE of 0.25 would indicate that the automatic and manual classifiers differed 

on 25% of the components examined.  

 

3.2.9. Set-up and paradigm for validation dataset 3  

In validation 3 we contrasted the different classifiers’ ability to remove stereotypical artifacts 

from an ERP analysis. This analysis examines event-locked changes relative to infants’ 

spontaneous gaze shifts during a free-flowing naturalistic interaction. Specifically, we 
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examined moments where infants shifted from looking at a puppet, held at the same height as 

their mother’s face, c.10° from the midline (counterbalanced between left and right) to 

looking at their mothers face, who was always positioned directly in front of the infant. For 

this analysis, we extracted epochs (mean 39.4, std 12.9) from the continuous data that are 

time-locked (time 0) to the infants’ fixation onset (saccade onset at -100ms) (mean 40.8, std 

11, min 18, max 64 gaze shifts were included per participant). Evidence from co-registered 

EEG and eye-tracking studies using free viewing experimental paradigms has shown that 

when visual responses (e.g., a stimulus appearing on-screen) co-vary with eye movements 

(e.g., horizontal/ vertical saccades) separation of these signals is possible based on their time 

and topographical properties (Plöchl et al., 2012). For example, some types of eye movement 

artifacts e.g., vertical, and horizontal eye movement transients (i.e., only lasting ~200ms) 

peak at ~100ms post saccade onset and have anteriorly dominated topographies, whereas 

visual processing components tend to peak 100-200ms after the peak of the artifact and have 

occipitally dominated topographies (Plöchl et al., 2012). Based on these findings and 

inspection of our data time-locked to saccade onsets, we set up our comparison in validation 

3 between the four cleaning methods described above as follows. For comparison of removal 

of eye movement artifact time-locked to saccade onset, we compared peak amplitudes of 

potentials over frontal pole electrodes in the time window -100 (saccade onset) to 100ms (see 

also figure 3 for visual representation). For comparison of retention of visual response (i.e., 

the neural signal of interest) we compared peak amplitudes of potentials in the 200-300ms 

time window over occipital electrodes. We also compared amplitudes in the 200-300ms time 

window over central electrodes to examine how these signals propagated across the scalp. 

Details of which electrodes were used in each cluster can be found in the supplementary 

materials section (SM section 3.6.1.3). 
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3.2.10. ERP Analysis 

Differences in peak amplitude were quantified using the adaptive mean approach. This 

process involves identifying the peak latency of the ERP potential on a subject-by-subject 

basis using a broad (100ms) time window, centered around the time window of interest. For 

example, in our analysis, we were interested in activity in the -100 to 100ms time window. In 

this case, the adaptive mean approach looks for the latency of the data point with the 

maximum amplitude +/- 50ms around the center of the time window (0ms). Once the peak 

latency has been identified we took an average of the activity in a 20ms window around the 

peak (e.g., as described by Hoorman et al., 1998). This approach is preferred over the more 

basic comparison of absolute peak amplitudes which would be more susceptible to spurious 

noise spikes and/or unrepresentative data (Cohen, 2014). All ERP data were baseline 

corrected using data from the time window -1000 to -700ms pre gaze onset, based on 

recommendations from Cohen (2014). 

 

3.2.11. The MARA system for automatic classification of neural/ artifactual components 

The MARA classification system identifies artifactual source components from samples of 

EEG data. For a detailed explanation and the original source code, please refer to 

(https://irenne.github.io/artifacts/). In brief, Winkler, and colleagues (2011) trained a binary 

linear classifier to separate neural and artifactual ICA components based on a training dataset 

of manually labelled ICA components. The comparison between neural and artifactual 

components was conducted by examining six features derived from the ICA time-frequency 

properties (see Figure 3.1). Here we retrained the MARA system using 617 ICA components 

from infant EEG data taken from dataset 1 (n=25 datasets, each contributing on average 25 

ICA components). We used a similar feature extraction routine as used by the original 

https://irenne.github.io/artifacts/
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classifier, but with a few changes to make it more specific to infant EEG data. For full details 

see supporting materials for chapter 3, appendix A. 
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Figure 3.1. Examples (taken from the present study) of neural and artifactual ICA 

components identified by iMARA. A) Examples of components identified as ‘artifact’ by 

iMARA. B) Examples of components identified as ‘neural’ by iMARA. For both, the first 

column shows five-second segments of the components time course; the second shows the 

component power spectral density; the third shows the topographical activations; and the 

fourth their scores for the six features used in classification. Detailed descriptions of the six 

features are given in Appendix A (section 3.6). 

 

3.3.  Results 

First (section 3.3.1) we validated our manual classification by comparing it with manual 

classification from two other independent experts. Then, we perform three validation studies 

to test the performance of iMARA on infant data: first (classifier validation 1, section 3.3.2), 

we tested iMARA and MARA’s agreement with manually classified ICA-components by 

rater 1. Second (classifier validation 2, section 3.3.3), we test iMARA and MARA’s 

performance on ICA components from an unseen dataset. Third (classifier validation 3, 

section 3.3.4), we examined ERP data generated using the different systems to examine in 

greater detail their ability to remove specific types of artifact.  

 

3.3.1. Inter-rater validation 

To first validate our coding, we asked three experts independently to classify random 

subsamples of infant (n=15 datasets, average 25.6 ICs, taken from dataset 1) and adult (n=15 

datasets, average 28.4 ICs, taken from dataset 1) EEG data. Full comparison details are given 

in SM section 1.2, Table S2. Between the 3 experts, the average disagreement rate for infant 

data was 18% (range across three all three experts 14-22%), whereas for adult data it was 



97 

 

15% (range across three experts 12-18%), which is in line with previous reports of human-

human error rates for adult EEG data of 10-13% (e.g., Winkler et al., 2011). An independent 

sample t-test revealed no significant differences in the average agreement between adult and 

infant ICA-components t (14) = 0.98, p = 0.42. 

 

3.3.2. Classifier validation 1 

We tested the retrained classifier’s performance against manually classified ICA components 

from validation dataset 1. This resulted in an averaged MSE between iMARA and the manual 

classification of 26.59% (sd = 9.93%, range = 54.11%). In comparison, when using the 

original MARA training data and the original feature extraction routine on dataset 1, the 

MARA classifier performed with an MSE of 38.35% (sd=15.01%, range = 60.19%). A paired 

samples t-test comparing the percentage of correctly identified components from validation 

dataset 1 for iMARA vs MARA indicated that MARA had a significantly lower level of 

agreement with the manual classification than iMARA t (43) = -5.94, p = <0.01. The effect 

size for this analysis was d=0.92. 
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3.3.3. Classifier validation 2 

We then tested iMARA on an unseen dataset (dataset 2). Classification of the (645) unseen 

components led to an averaged MSE between iMARA and manual classification of 24.80% 

(std=8.22%, range=55.43%). In comparison, MARA performed with an MSE of 38.13% 

(std=8.12%, range=26.63%). A paired samples t-test comparing the percentage of correctly 

identified components from validation dataset 2 for iMARA vs MARA indicated that the 

original MARA had a significantly lower level of agreement with manually classified ICA 

components than iMARA t(24) = -4.50, p = <0.01. The effect size for this analysis was 

d=1.63. 

 

Figure 3.2. Classification performance for original (MARA) and retrained (iMARA) systems 

on ‘seen’ and ‘unseen’ data. A) Mean Squared Error (MSE) between original (MARA - 

yellow) and retrained (iMARA - blue) classifiers and manually classified ICA components for 

validation one (seen data) for each participant (n=44) of dataset one. B) MSE between 
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iMARA/MARA and the manual classification for validation two (blind data) for each 

participant (n=25) of dataset two. 

 

 

 

 

Figure 3.3. Application of different ICA classification systems to ocular artifact correction in 

a visual processing ERP study. A) Two-sample frames from which the time-locked gaze shift 

(-100ms) were identified, and a schematic showing the experimental set up in which mothers 

were asked to perform a puppet show with their infants. B) Grand average ERPs over frontal 

pole, central and occipital scalp regions. Different lines show data cleaned by the different 

systems, e.g., iMARA- retrained infant classifier, MARA- original classifier, Manual 
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classification, and uncleaned 'raw' data. C) Topoplots of ERP amplitudes, comparing the 

different cleaning methods to the raw data. 

 

3.3.4. Classifier validation 3. Application to ERP study  

For validation 3 (ERP analysis) we contrasted peak amplitudes (calculated on participant-

level data) for each of the four methods of cleaning data (e.g., iMARA, manual cleaning, 

MARA and ‘raw’) (see Figure 3.3). In the SM section 3.6.1.7 we present a similar analysis, 

using time-frequency analyses rather than ERPs. We used the Tukey procedure to correct for 

multiple comparisons in our ERP analysis. Summary tables for all ANOVAs can be found in 

SM 3.6.1.1. Results from the one-way ANOVAs revealed that peak amplitudes for frontal 

pole ERPs in the -100 to 100ms time window were significantly lower for all ICA cleaning 

methods as compared to the raw un-ICA cleaned data. Peak amplitudes for iMARA were 

lower than for MARA, indicating that more of the ocular artifact had been removed, but this 

difference was not significant after correcting for multiple comparisons. For central and 

occipital ERPs, peak amplitudes for MARA were lower than those observed following 

manual cleaning and cleaning with iMARA, indicating that MARA had removed more 

genuine neural data. This effect was significant when examining the relationship between 

MARA and the raw data, but the difference between MARA and iMARA was not significant 

after correcting for multiple comparisons (p=.10/.11 for central/occipital).  

 

 

3.4.  Discussion 

We retrained the popular MARA system for binary (i.e., neural or artifact) classification of 

ICA-components, to be more sensitive to the types of stereotypical artifacts produced during 
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naturalistic EEG recordings acquired from infants. Our retrained iMARA classifier classified 

ICA-components from samples of infant EEG with significantly greater levels of agreement 

with expert manual classification than the original MARA classifier. We examined how well 

iMARA’s performance generalised to an additional blind dataset as well as its ability to 

remove ocular-related artifacts in a simple ERP study. Through this, we aimed to provide a 

tool for developmental EEG researchers wanting to implement automatic ICA cleaning.  

 

3.4.1. Summary of retrained classifier’s performance 

In our first validation study, we tested MARA’s and iMARA’s performance against ICA-

components manually classified by an expert rater on the full n=44 dataset. Here iMARA 

achieved a mean classification error rate of 26% (24% with outliers removed), performing 

significantly better than MARA (mean error rate for MARA was 38%). In the second 

validation, we tested iMARA on an unseen dataset, collected using the same experimental 

setup. In this second validation study, iMARA achieved a mean classification error rate of 

25%, again significantly outperforming MARA at 38%. Overall, the differences between 

iMARA and MARA’s agreement with the manual classification and the inter-rater agreement 

between humans were marginal (7-8% lower average agreement for automatic classification) 

relative to the overall error rates of either system (25% MSE for automatic and 18% for 

manual). This is consistent with the error rates between classifier-human and human-human 

in previous studies (e.g., 5-6% in Winkler et al., 2011). Our retrained iMARA classifier 

provides, therefore, a more suitable alternative for classifying paediatric ICA-components 

than the original MARA system. Additionally, as manual cleaning relies on a large degree of 

familiarity with ICA and EEG data generally, less experienced researchers using this tool can 
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gain insight into the types of ICA components that are commonly identified as artifacts in 

paediatric EEG data. 

 

3.4.2. Application of classifiers’ performance in ERP study 

We also compared the performance of the iMARA and MARA to manual classification in a 

simple ERP study. We examined how well each classifier was able to clean the ERP data, 

focusing on the removal of activity over frontal pole electrodes at the onset of a saccade 

(gaze shift) and activity over occipital electrodes after a gaze fixation. Our analysis indicated 

that all methods of ICA cleaning removed statistically similar amounts of frontal pole activity 

from the raw (un-ICA-cleaned) data, but that neither the data cleaned manually nor iMARA 

removed all of the frontal pole activity associated with the eye movement artifact. This is 

consistent with previous research on adults, which found that standard ICA cleaning methods 

do not entirely remove all frontal EEG activity associated with eye movement artifacts 

(Plöchl et al., 2012). This is an important point which should be borne in mind in interpreting 

the results of EEG studies.  

 

Results of validation 3 also show that the post-fixation (gaze onset) visual responses (ERPs) 

were lower in data cleaned using MARA than for the other types of cleaning, indicating that, 

while the original MARA classifier did successfully remove comparable amounts of the 

ocular artifact, it also removed significant amounts of the visually evoked potential (neural 

signal of interest). This is supported by further analyses (see SM section 3.6.1.4) which 

showed that on average MARA removed 64% of components compared to iMARA which 

removed 39% suggesting that MARA removed more of the total EEG variance. This effect 

was observed less strongly in the iMARA group, indicating that iMARA had retained more 
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of the original signal than MARA, but this effect was not significant after correcting for 

multiple comparisons.  

 

3.4.3. Limitations of the current study 

There are two explanations for the higher error rates obtained in this study, compared with 

the performance of the MARA classifier in the original paper, which was based on adult data 

(Winkler et al, 2011). First, the classification of ICA components is notably poorer when 

applied to lower density electrode montages. In a follow-up study, Winkler and colleagues 

(2014) found using the original MARA classifier that classification error rates increased from 

9% to 32% when comparing 104 to 16 channel electrode setups (although for 32 channel 

setups it was still comparably lower ~13%) (see also SM section 3.6.1.6). This is likely due 

to the worsening performance of the current density norm feature (a feature estimated from 

the topographical properties of the data which indicates the source of the activity of the 

component, see appendix A for further details) with lower density setups as this feature relies 

on estimations of source activity and use of algorithms that are generally only recommended 

and applied on higher (>64) density electrode setups.  

The second reason for the poorer performance compared to previous applications could be 

due to the increased ambiguity when classifying ICA-components from infant compared to 

adult EEG. This may be one of the reasons why ICA is not as widely applied within 

paediatric EEG research as it is within adult EEG research. In our data, we found that 

averaged across multiple independent coders, infant source components could only be 

classified with an inter-coder error rate of 18%, compared with 15% for adult data. Similar 

rates were also achieved when we asked the same coder (coder 1) to classify the same 

samples of ICA-components at a later time point. Here the agreement between coder 1 (first 
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and second time rating the same 384 infant ICA components) was 17%. Therefore, we 

suggest that ICA-components from infant EEG (particularly recorded using naturalistic 

paradigms) are fundamentally more ambiguous because they are more likely to contain a 

mixture of neural and artifactual signals, and thus are more difficult to classify binarily.  

Components that contain a mix of neural and artifactual signals are also likely one of the 

main contributing factors for why iMARA ‘mislabelled’ some components. We examined 

whether there were commonalities in the types of components mislabelled by iMARA (see 

SM 3.6.1.8). From visual inspection it didn’t appear that iMARA was systematically 

mislabelling certain ICA components (i.e., with particular time-frequency and topographical 

characteristics) as either ‘neural’ or ‘artifact’, compared to the manual labelling. We did 

observe that as expected the types of components that were commonly being mislabelled (in 

both directions) tended to contain a mix of neural and artifactual signals and so were 

ambiguous even the expert human coders. 

One limitation of the iMARA system is that the training data used was low pass filtered at 

20Hz and so does not include examples of artfiact contaminated data beyond 20Hz. As the 

original MARA system was trained on adult data low pass filtered at 40Hz we performed 

additional analysis to examine the performance of MARA on a 40Hz filter infant EEG 

dataset (see SM 3.6.1.5). For this dataset, we found that both MARA and the human labelling 

classified over 90% of the components as artifiact, and whilst the agreement between MARA 

and the human labelling was fairly high (23%) it should be clear that any method that is 

removing over 90% of the total variance it is also removing large amounts of genuine neural 

activity. The high rejection rates for manual and automatic classification here are likely due 

to poor ICA decompositions. This is likely the result of increased muscle artifact 

contamination, which we know entirely overlaps with the EEG activity in the (~20-300 Hz) 
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spectral range (Muthukumaraswamy, 2013). Here to compensate for this and improve the 

ICA decomposition we have low filtered the data between 1 and 20Hz and subsequently 

limited iMARA’s performance on EEG data beyond this frequency range. Future research 

may want to add additional components to the existing iMARA training dataset that include 

examples of components with activity at higher (20+) frequencies, assuming that these ICA 

decompositions can be better optimised with infant EEG.  

 

3.4.4. Recommendations for future research  

Future research might explore the iMARA’s ability to separate neural and artifactual signals 

at different frequencies. For example, In SM 3.6.1.7 we explore the time-frequency properties 

of the ERP-responses shown in classifier validation 3. From these plots, it is clear that both 

classifiers are removing (with varying success) signal that is broadband (i.e., not frequency 

specific). This may be interesting for future research to explore as eye movements are 

commonly characterised in time or topographically but are less often characterised in time-

frequency space. Having a clear picture of how ocular artifact in naturalistic data manifests in 

time-frequency space, as well as, having appropriate tools to identify/ remove it will be of 

high value to the field going forward. Additionally, it might be useful for future research to 

integrate iMARA as part of a fully automated EEG pre-processing pipeline either especially 

for paediatric EEG data or one that is flexible to adult and/or paediatric EEG data. 
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3.5.  Conclusion 

This paper presents an automatic ICA classification tool that was specifically tailored to work 

with infant EEG datasets and EEG data collected during naturalistic parent-infant 

interactions. We show that the retrained iMARA classifier achieved low classification errors 

and was better at cleaning stereotypical artifact from a simple visual attention ERP study than 

the original MARA, adult-trained classifier.   

 

 

3.6.  Supporting materials for chapter 3 

 

Appendix A 

 

Feature selection used in classification 

In the original paper, the following six features were selected for use in the MARA system. 

These were originally chosen through an embedded feature selection process (e.g., integrated 

as part of the learning algorithm) whereby the authors obtained rankings of importance/ 

effectiveness of 38 different time/frequency/spatial features of the data (for more details see 

Winkler et al., 2011). This revealed that inclusion of additional features (beyond the six 

included) did not increase classification performance. 

 

The following two features relate to the component spatial distribution: 

 

Current Density Norm (CDN) - estimation of source position of a component concerning 

x,y,z spatial coordinates. This process involves dipole fitting the source components (using 
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functionality contained with EEGLAB) and applying an appropriate forward head model (we 

considered 2142 locations arranged in a 1 cm spaced 3D-grid) and seeking the source 

distribution with minimal l2-norm (i.e., the ‘simplest’ solution, Winkler et al., 2014). 

Components with a high CDN indicate likely artifact. For example, on Figure 1.1 a) component 

two, three and four all have a relatively high CDN score. These can be compared with 

components one, two and three of Figure 1.1b, which all have a relatively low CDN score and 

were classified as neural. This feature was unchanged from the original study. 

 

Range Within Pattern - the absolute difference between the minimum and maximum of a 

component’s pattern (spatial distribution) - i.e., how localized the activation is to one position/ 

electrode. Comparing components two and four in Figure 1.1a and 1.1b, we see that artifactual 

components have a relatively higher range within pattern indicating that these sources are more 

localized to a singular point, which is taken as an indication of an artifactual component to the 

classifier. This feature can arise, for example, from poor contact between the surface of the 

electrode and the scalp. This feature was unchanged from the original study. 

 

The following two features relate to the component-time series: 

 

Mean Local Skewness (MLS) - the mean absolute local skewness of an ICA-component time 

series, taken in a 1 and 15s (two separate features) sliding time window and then averaged. The 

idea being that blink components for example would contain epochs with very high amplitude 

data. This data would be more skewed than a typical alpha generator in which you would expect 

amplitude to be comparatively unchanged across epochs.  
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For example, comparing components one, two and three in Figure 1.1a and 1.1b, we see that a 

relatively high MLS indicates artifact, as this component’s time series might contain more high 

amplitude noise spikes than components with a low MLS. High MLS might arise from faulty 

electrodes but is also an indication of an ocular motor artifact. For example, in Figure 1.1a 

component one, a stereotypical blink component has a relatively high MLS and contains 

frequent high amplitude spikes in the time series.  This feature was unchanged from the original 

study. 

 

The following two features relate to the component spectral distribution: 

 

Lambda and Fit Error- the deviation of a components power spectrum from a pseudo 

1/frequency curve, created by three points of the log spectrum: (1) value at 2 Hz, (2) local 

minimum in the band 5- 13 Hz, (3) local minimum in the band 33-39 Hz. The spectrum of 

muscle artifacts, characterized by unusually high values in the 20-50 Hz range, is thus 

approximated by a comparatively steep curve with high lambda and low fit error. Lambda and 

fit error are independent features; whereas lambda is a measure of the deviation from the 

pseudo curve just in the alpha and beta ranges (i.e., steepness of transition between the two), 

fit error is a measure of the deviation of the components 1/f curve from the entire pseudo 1/f 

curve between delta to beta.  

 

For example from component two in Figure 1.1a and 1b, we can see that low lambda (i.e., a 

less steep curve between alpha and beta) indicates a neural component, whereas high lambda 

(i.e., a steeper upward curve between alpha and beta) indicates artifact. We can also see that fit 

error does not always distinguish well between neural and artifactual components in these 
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examples. This is because a neural component with a high alpha peak and an artifact component 

with a steep upward curve between alpha and beta would both give a high fit error, which can 

make classification using fit error alone difficult. We adjusted the frequency features to better 

fit the characteristics of infant EEG data. For fit error instead of taking values at 2Hz, 5-13Hz 

and 33-39Hz as used in MARA, we take values at 2Hz, 5-9Hz and 12-19Hz. Further for lamda 

instead of comparing activity in the 8-15Hz range to the pseudo 1/f curve as used in MARA, 

we compared activity in the 6-13Hz to the pseudo 1/f curve. 

 

Alpha Power – The average log band power of the alpha band (8–13 Hz).  

 

From components one and four in Figure 1.1a and 1.1b, we can see that high alpha band power 

indicates a neural component, whereas low alpha power indicates artifact. Instead of taking a 

value for alpha power in the 8-13Hz range as used in MARA, we take a value for alpha power 

in the 6-9Hz range. 

 

 

 

Appendix B 

 

ICA rejection criteria 

The criteria used for manual ICA classification for infant EEG data were highly like the 

principles suggested for adult EEG data (e.g., Chaumon et al., 2015). Components were 

marked as artifact/ rejected only under the null hypothesis – when the component is not 
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considered to contain notable amounts of the neural signal. Where a researcher was in doubt 

over whether a component contains real EEG (neural) we opted to retain that component. 

 

All selection of components was performed using the interface provided by EEGLAB’s 

pop_selectcomps function. Often, EEG researchers only reviewed the first ~10 components, 

as later components account for little overall variance. The machine-based classifier, 

however, reviews all components on an individual basis, and so for appropriate comparison 

coders were asked to rate all components on an individual basis. 

 

Components were judged first on their topography, second on their power spectrum, and third 

on their time course, according to the flow chart below: 

 

 

 

Figure 3.4. Flow diagram of human ICA classification: 
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Stage 1. Evaluation of topographical activation  

Neural components were largely identified by the presence of smooth, dipolar spatial activity. 

These components were often immediately identifiable in the pop_selectcomps component 

overview and did not need further investigation. A variety of different criteria based on 

topographical activation were applied: 

 

Localisation to one electrode. Components with very localised topographical (i.e., localised 

to one electrode) activations were always a cause for further investigation (in these cases, 

coders would move to stage 2). For example: 

 

 

Frontal peripheral activation. Certain stereotypical artifactual components were readily 

identifiable from their topographical maps. For example, components with strong peripheral 

activations and in particular components with strong/ very localised frontal pole activation 

(blinks). For example: 
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Bilateral frontal topography. Components with opposite bilateral frontal topography often 

indicated horizontal eye movements. For example: 

 

 

Temporal peripheral activation. Components with strong/ very localised temporal activation 

often indicated jaw/ speech related artefact. For example: 

 

Activation around P7/P8. Components with bilateral/strong activation around P7/ P8 (on 10-

20 32 channels layout) often indicated neck movement. For example:  
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Stage 2. Evaluation of the power spectrum  

Neural components were identified by 'peaks' in the power spectrum in theta (3-6Hz) and/ or 

alpha (6-9Hz) range. For example: 

 

  

Components with more mixed neural and artefact sources with more subtle peaks in 

theta/alpha were also identified at this stage as neural. For example: 
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Artifactual components were predominantly identified at this stage through lack of alpha/ 

theta peak. Further, if a component had no clear 'peak' in alpha but accounted for a lot of total 

variance coders would move to stage 3 (see below). 

 

Components with power at high frequencies (muscle/ speech artifact) were also marked as 

artifact at this stage (for examples see the earlier examples for speech and movement-related 

artifacts). 

 

Components with activity beyond 20Hz were also excluded as the current dataset is low pass 

filtered at 20Hz – see example below under infrequent high amplitude noise spikes. 

Stage 3. Evaluation of time course  

Artifactual time courses were identified predominantly from their ERP image top right of 

below figure. If time course activation was mainly driven by infrequent high amplitude 

spikes (spots of extreme dark colour in ERP image) then it was marked as artefact. For 

example: 

 

A segment of the component time course: 
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This is different from the example component below as this components time course is 

predominantly flat throughout.  

 

Other components showed ‘high’ theta/alpha power but no peak. For example: 

  

A segment of the component time course: 

 

 

 

 

Supplementary Materials 

 

3.6.1.1 Validation 3: Results of ANOVAs 

Table 3.1. Summary results of One-Way ANOVA for each scalp region. For frontal pole 

electrodes, peak amplitudes were compared in the -100 to 100ms time window. For central 

and occipital components, amplitudes were compared in the 200 to 300ms time window. 

Electrode groupings used are shown in Table 3.1.  
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3.6.1.2. Inter expert reliability 

 

Table 3.2. Error rates between expert coders on an n=15 subsample of the total data. Each 

cell shows agreement for infant data (left) and adult data (right) 

 Rater 1 Rater 2 Rater 3 

Rater 1  0.22/0.12 0.14/0.15 

Rater 2 0.22/0.12  0.19/0.18 

Group ID 

 

‘F’ ‘p’ 

Frontal Central Occipital Frontal Central Occipital 

iMARA 

 

MARA 2.17 2.06 6.4343 0.89 0.10 0.11 

iMARA 

 

Manual 3.92 1.54 4.39 0.85 0.70 0.88 

iMARA 

 

Raw -2.39 0.70 1.88 <0.01 0.79 0.65 

MARA 

 

Manual 4.74 0.57 1.39 0.42 0.60 0.41 

MARA Raw 

 

-1.57 -0.26 -1.12 <0.01 <0.01 <0.01 

Manual 

 

Raw -3.32 0.26 0.91 <0.01 0.20 0.22 
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Rater 3 0.14/0.15 0.19/0.18  

 

3.6.1.3. Electrode positions 

 

Table 3.3. Channel clusters and corresponding 10–20, 32-channel Biosemi positions 

Clusters 10-20 Positions Biosemi 32 channel 

electrodes 

Frontal pole Fp1, AF3, AF4, FP2 1, 2, 29, 30 

Frontal F7, F3, F4, F8, Fz 3, 4, 27, 28, 31 

Central C3, CP1, CP5, CP6, CP2, 

C4, Cz 

5, 6, 8, 9, 10, 21, 22, 23, 

25, 26, 32 

Temporal T7, T8 7, 24 

Parietal  P7, P3, Pz, P4, P8 11, 12, 13, 19, 20 

Occipital PO3, O1, Oz, O2, PO4 14, 15, 16, 17, 18 

 

 

3.6.1.4. ICA components removed by each method 

 

Table 3.4. Average number and percentage of ICA components removed by each method 

System 

 

Mean number of components removed 

(% of total) 

Original MARA 18 (64%) 

Retrained MARA 11 (39%) 
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Hand cleaned  13 (46%) 

 

3.6.1.5. 40Hz subsample replication 

 

All the data used in this study were narrow band filtered between 1 and 20Hz. This was done 

before ICA correction to improve the signal to noise ratios and the quality of the ICA 

decomposition. However, in their tutorial (https://irenne.github.io/artifacts/) Winkler and 

colleagues (2011) note that application of MARA to narrow band filtered data might result in 

suboptimal performance, as the spectral features are calculated on the power spectrum 

between 2 and 39Hz. We, therefore, wanted to test the original classifier’s performance on 

naturalistic infant data that had not been narrow band filtered. We processed a subsample of 

15 datasets in the same way as described in the main text except for the data was low pass 

filtered at 40Hz this time instead of 20Hz. We then ran ICA, and all source components were 

again hand labelled by an expert. Results indicated an MSE between the classifier and human 

labelling of 23% indicating a good degree of similarity. However, the classifier was removing 

on average 97% of the approx. 32 components, i.e., retaining on average only one source 

component. The human labelling also removed 90% of the source components, more than 

double the amount as the data used in the main text. Whilst the MSE is slightly lower than the 

retrained classifier in the main text, it is clear that this method is far from optimal as clearly if 

any method is removing over 95% of the total variance it is also removing large amounts of 

genuine neural activity. The high rejection rates for manual and automatic classification here 

are likely due to poor ICA decompositions. This is likely the result of increased muscle 

artifact contamination, which we know entirely overlaps with the EEG activity in the (~20-

300 Hz) spectral range (Muthukumaraswamy, 2013). As naturalistic infant EEG data 

inherently contains more muscle movement (and therefore more artifact contamination) than 

https://irenne.github.io/artifacts/%1f
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screen-based paradigms, in the main text we apply a 20 Hz low pass filter to the data to 

attenuate some of this activity. Comparing the results of the main text with the result obtained 

when applying the original MARA with data filtered at 40 Hz, it is clear that the 20 Hz low 

pass filter is greatly improving the ICA decompositions, resulting in a much-reduced 

percentage of components labelled as artifact. 

 

3.6.1.6. MARA adapted strategy 

In their follow up study in which Winkler and colleagues (2014) tested the robustness of their 

classifier on a variety of novel experimental paradigms and electrode setups, they found that 

when applied to data with lower density electrode setups e.g. 16 or 32 channels, the 

classifier’s error rate increased linearly from an MSE between automatic and manual 

classification from 9 to 32%. This suggests that the classifier performs significantly worse 

with lower density electrode setups. The reason for this decrease in performance was due to 

the spatial features performing notably worse (Winkler et al., 2014). The MSE of the CDN 

feature on 32 and 16 channel setups rose to over 50% compared to 12% with higher density 

setups. To improve the performance of the original MARA classifier with lower density EEG 

recordings, the authors proposed an adaptive strategy in which the classifier is subtly adapted 

to fit the study-specific electrode montage i.e., re-training the classifier on the patterns cut to 

the specific electrode setup. In their study application of the adaptive strategy with 16 and 32 

channel setups lead to an MSE of approx. 16%. We also tested this adaptive strategy on our 

32 channel infant EEG data to see whether this led to a similar error rate. We did this by 

adapting the electrode montage used for spatial feature identification to the Biosemi 32-

channel layout but using the same training data as used by the original MARA classifier. This 

led to an MSE between the adapted strategy classifier and the human labelling of 43%.  
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Neither the original classifier nor the adapted strategy performed well when applied to our 

infant EEG data. On one hand, we have a system that achieved decent rates of agreement 

with hand labelling i.e., MSE of 23% but removes over 95% of the data (e.g., original 

MARA); on the other hand, the adaptive strategy removes fewer components but has a much 

higher error rate. Therefore, the final option is to treat the infant data as distinct, retraining 

the classifier using infant source components and the most salient features for infant EEG. 

 

3.6.1.7. Time-Frequency analysis of ERP data presented in validation study 3 

To further investigate the removal of ocular artifact reported in validation 3. We examined 

time-frequency responses for the different methods to assess the time-frequency 

representations of the signal and how this was affected by the ICA cleaning methods. For this 

analysis single-trial data were first decomposed into their time-frequency representation by 

multiplying the power spectrum of the EEG (obtained from the fast-Fourier-transform) by the 

power spectrum of complex Morlet wavelets [ei2πtfe−t2/(2σ2), where t is time, f is the 

frequency (which increased from 2 to 16 Hz in 15 linearly spaced steps), and σ defines the 

width of each frequency band, set according to σ/(2πf), σ was set to scale with increases in 

the centre frequency of the wavelet. We set this parameter to increase logarithmically from 3-

10 cycles in 15 increments], and then taking the inverse fast-Fourier-transform. From the 

resulting complex signal, an estimate of frequency band-specific power at each time point 

was defined as the squared magnitude of the result of the convolution Z (real[z(t)]2 + 

imag[z(t)]2). Power was then decibel normalised to data in the -1000 to -700ms time window. 
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Figure 3.5. Time-frequency power relative to the onset of infant looks to partner in data 

cleaned using original 'MARA', retrained 'iMARA’ and manual ICA classification and 

compared to raw data. A) shows time-frequency plots for data cleaned using 4 methods over 

frontal pole electrodes. B) shows time-frequency plots for data cleaned using 4 methods over 

occipital electrodes 

From Figure 3.5 we can see that all methods of cleaning resulted in broadband removal of the 

signal both frontally and occipitally. We can also see that the different methods are to a 

varying degree removing most but not all the ocular artifact time-locked to the shift in 

attention. This may be an interesting possibility for future research to explore as commonly 

eye movements are characterised in time or space but are less often characterised in time-

frequency space. 
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3.6.1.8. Components mislabelled by iMARA  

We performed an additional visual inspection of components that were mislabelled by 

iMARA to see if they shared any common characteristics. We did this by first looking at 

components that were labelled as artifact by iMARA, but neural by manual labelling and 

second looking at components that were labelled as artifact by the manual labelling, but that 

were classified as neural by iMARA. From visual inspection, we did not observe any strong 

patterns that distinguished between these two subcategories, i.e., it didn’t appear that iMARA 

was systematically failing to reject ICA components with certain time-frequency or spatial 

properties. One thing that we did, however, observe from components mislabelled as artifact 

by iMARA (as compared to the human labelling) was that they tended to have a ‘high’ range 

within pattern (RWP). As we have described in appendix A, a high RWP generally indicates 

artifact to iMARA. From the examples below (Fig. 3.6) of components mislabelled as artifact 

by iMARA we can see that all these components have a ‘high’ RWP, but that they also 

contain some evidence of a real neural signal in the EEG spectra (visual peaks in 1/f curve at 

theta/ alpha). As the amount of theta/ alpha power is low and the RWP is ‘high’, iMARA 

classified these components as artifact, but as there is some (albeit subtle) evidence for neural 

signal the human labelling classified them as neural. We also observed that in some cases in 

which the component’s time-frequency and spatial properties were completely distorted (see 

Fig. 3.7 for examples) likely due to poor connection between the electrode and the scalp, the 

‘high’ amount of relative alpha power resulted in iMARA mislabelling these components as 

neural. This is because ‘high’ alpha power (see appendix A) generally indicated a neural 

component to iMARA.  In future work, we plan to add more components to the training set 

(currently using just over 600 ICA components) so that the classification system can benefit 

from a larger and more diverse pool of data.  
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Figure 3.6. Example components ‘mislabelled’ as artifact by iMARA. Column one shows the 

component power spectral density; column two shows the topographical activations; and 

column three their scores for the six features used in classification. Detailed descriptions of 

the six features are given in Appendix A.     
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Figure 3.7. Example components ‘mislabelled’ as neural by iMARA. Column one shows the 

component power spectral density; column two shows the topographical activations; and 

column three their scores for the six features used in classification. Detailed descriptions of 

the six features are given in Appendix A.     
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Chapter 4 - Gaze onsets during naturalistic infant-caregiver 

interaction associate with ‘sender’ but not ‘receiver’ neural responses, 

and do not lead to changes in inter-brain synchrony. 

 

 

The following chapter is a publication of an original article investigating the mechanisms that 

give rise to parent-infant inter-brain synchrony around moments of mutual gaze (Marriott 

Haresign et al., 2023). Subheadings, figure placement, figure and table numbers, and citation 

style have been adapted to conform to the general thesis format. The supplementary materials 

(SM) for this publication are also presented within this chapter. 

 

 

 Abstract 

 

Temporal coordination during infant-caregiver social interaction is thought to be crucial for 

supporting early language acquisition and cognitive development. Despite a growing 

prevalence of theories suggesting that increased inter-brain synchrony associates with many 

key aspects of social interactions such as mutual gaze, little is known about how this arises 

during development. Here, we investigated the role of mutual gaze onsets as a potential 

driver of inter-brain synchrony. We extracted dual EEG activity around naturally occurring 

gaze onsets during infant-caregiver social interactions in N=55 dyads (mean age 12 months). 

We differentiated between two types of gaze onset, depending on each partners’ role. 

‘Sender’ gaze onsets were defined at a time when either the adult or the infant made a gaze 
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shift towards their partner at a time when their partner was either already looking at them 

(mutual) or not looking at them (non-mutual). ‘Receiver’ gaze onsets were defined at a time 

when their partner made a gaze shift towards them at a time when either the adult or the 

infant was already looking at their partner (mutual) or not (non-mutual). Contrary to our 

hypothesis we found that, during a naturalistic interaction, both mutual and non-mutual gaze 

onsets were associated with changes in the sender, but not the receiver’s brain activity and 

were not associated with increases in inter-brain synchrony above baseline. Further, we found 

that mutual, compared to non-mutual gaze onsets were not associated with increased inter 

brain synchrony. Overall, our results suggest that the effects of mutual gaze are strongest at 

the intra-brain level, in the ‘sender’ but not the ‘receiver’ of the mutual gaze.  

 

4.1. Introduction  

 

Most of our early life is spent in the presence of an adult social partner. Most early attention – 

and, in particular, most early cognitive learning – takes place in social settings (Csibra and 

Gergely, 2009). But almost all of our understanding of how the brain subserves attention and 

learning has come from studies that measure individual brains in isolation.  

In recent years our understanding of early social and communicative development has relied 

heavily on studying ostensive signals, defined as signals from a communicator to generate an 

interpretation of communicative intention in an addressee. It has been argued that, from 

shortly after birth, infants’ brains are sensitive to ostensive signals (such as direct gaze, 

smiles and infant-directed vocalisations), and that ‘sender’ communicative signals play a key 

role in supporting early learning exchanges (Werker and Yeung, 2005; Csibra and Gergely, 

2009; Csibra, 2010; Southgate et al., 2010; Begus et al., 2014; 2016; Ferguson & Lew-
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Williams, 2016). In this paper we focus on mutual gaze, which is a widely studied ostensive 

signal.  

Farroni et al., 2002 found that images of faces showing direct vs averted eye contact elicited 

greater amplitude event related potentials (ERPs) in infants even 2- to 5-days after birth. 

Grossman et al., 2007 observed greater gamma power activation in 4-month-old infants in 

response to facial stimuli with direct gaze vs averted gaze, and where an experimenter 

engages in mutual gaze before looking towards an object, infants show enhanced neural 

processing of those objects (Parise et al., 2008; Hoehl et al., 2014). Of note, findings of gaze 

orientation on ERP amplitudes have not replicated well in developmental research; for 

example, Elsabbagh and colleagues (2009) found no significant effect of gaze type, 

comparing ERP amplitudes (see control group comparison); and findings are also largely 

mixed in adults (e.g., Watanabe et al., 2001; Taylor et al., 2001b; Watanabe et al., 2002; Itier 

et al., 2007; Conty et al., 2007; Ponkanen et al., 2011). Despite the inconsistencies, these 

findings have contributed to the popular idea that infants are highly sensitive to their 

partner’s social signals during early learning exchanges (Hains & Muir, 1996b; Symons et 

al., 1998; Farroni et al., 2004; Werker & Yueng, 2005; Werker et al., 2007; Hoehl et al., 

2008; see Cetincelik et al., 2021 for a review). This raises basic questions of in what contexts, 

and under what circumstances are infants sensitive to their partner’s social signals. 

One important limitation of research measuring infants’ neural responses to social stimuli 

presented on a screen, however, is its limited ecological validity. Historically, the majority of 

studies into early social development have measured infants’ passive responses to viewing a 

series of static images that flash on and off on a screen in a predetermined sequence. The real 

world, in contrast, is interactive, contingent and continuous. In recent years an increasing 

number of researchers have begun to recognise that, to study how the infant brain subserves 

social interaction, it is necessary to actually study it in interactive contexts (Schilbach et al., 
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2013; Redcay & Shilbach, 2019; Wass et al., 2020; Wass & Goupil, 2022). Recent 

behavioural findings have suggested important differences between screen-based simulacra 

of social interaction and actual social interaction. For example, recent studies (Franchak et 

al., 2011; Yu & Smith, 2013) have shown that infants rarely look to their caregiver’s face and 

eyes during free-flowing interactions, this is in contrast to what has previously been shown 

using screen-based tasks (e.g., Vecera & Johnson, 1995; Farroni et al., 2004). So far, the 

neural processing of mutual gaze has largely been investigated in un-ecological contexts, and 

in the absence of real social interaction. Consequently, two important questions remain 

unanswered; 1) is mutual gaze really a salient communicative signal during free-flowing 

social interactions occurring in rich, continuous, natural scenes? 2) how does intra and inter-

brain activity support the processing of sender and receiver ostensive signals such as mutual 

gaze when both partners are engaged in a free-flowing, bidirectional exchange of 

information? 

 

 

Mutual gaze and inter-brain synchrony  

Another topic that has shown rapidly burgeoning popularity in recent years is inter-brain 

synchrony. At the neural level, inter-brain synchrony can be defined as a dyadic mechanism, 

wherein temporally coordinated patterns of brain activity between two interacting individuals 

supports aspects of their ongoing social interaction (Holroyd 2022). A number of studies 

have observed increased inter-brain synchrony during mutual gaze. The majority of this 

research claims to measure inter-brain synchrony, although we recognise that not all of these 

studies will meet the framework of inter-brain synchrony set out in more recent theoretical 

accounts (Holroyd, 2022). Kinreich and colleagues (2017) observed significantly correlated 

gamma (30-60Hz) activity between interacting adults during social interaction. Higher 
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interpersonal gamma correlations were also associated more strongly with mutual vs non-

mutual gaze. Similarly, Luft and colleagues (2021) found that mutual gaze was associated 

with higher inter-brain gamma band (30-45Hz) coherence (a spectral measure based on 

correlation) between interacting adults than non-mutual gaze. In the developmental literature, 

our group investigated inter-brain synchrony in 7.5-month infant-adult dyads during moments 

of mutual and non-mutual gaze (Leong et al., 2017). During a live social, but not interactional 

condition infants observed an adult singing nursery rhymes, who was instructed to look either 

directly at the infant, directly at the infant with their head turned at a slight angle, or away 

from the infant. Consistent with research on adults, we found greater infant-adult neural 

synchrony during moments of mutual vs non-mutual gaze, measured using partially directed 

coherence (PDC-a spectral Granger causal measure of synchrony) in Theta (3-6Hz) and 

Alpha (6-9Hz) band activity. This study thus suggests that the impact of mutual gaze on 

inter-brain synchrony found in adult-adult dyads (Kinreich et al., 2017; Luft et al., 2021) is 

already present early on in development, though possibly in lower frequency brain rhythms. 

 

Sender/ Receiver mechanisms of inter-brain synchrony  

As recent theoretical accounts have highlighted (Burgess 2013, Hamilton, 2021; Holroyd, 

2022) inter-brain synchrony can reflect underlying mechanisms of varying complexity. To 

date, research investigating inter-brain synchrony during social interaction has exclusively 

measured this using non-event locked analyses, i.e., inter-brain synchrony values are 

averaged across whole conditions and/ or whole interactions and not time locked to any 

specific events within the interaction. Previously we have argued that in order to distinguish 

between different mechanisms that might give rise to inter-brain synchrony it is important to 

use event locked analyses (Haresign et al., 2022), i.e., analyses that focus on measuring fine-

grained temporal changes in inter-brain synchrony, time-locked to specific behaviours/ events 



130 

 

within social interactions. Additionally, when trying to differentiate inter-brain synchrony 

from other forms of inter-personal neural synchrony, it is also important to measure dyadic 

dynamics, e.g., how both partners’ behavior and neural activity contribute to establishing 

inter-brain synchrony.  

 

We have suggested that one leading candidate mechanism for establishing inter-brain 

synchrony during mutual gaze may be mutual phase resetting (Wass et al, 2020; Leong et al., 

2017). It is known that the phase of neuronal oscillations reflects the excitability of 

underlying neuronal populations to incoming sensory stimulation (Klimesch et al., 2007; 

Jensen et al., 2014). Consequently, there has been much effort expended in recent years, 

across a range of research fields, on exploring whether neuronal oscillations could be a key 

mechanism for temporal sampling of the environment (Schroeder & Lakatos, 2009; Giraud & 

Poepell 2012; Thut et al., 2012; VanRullen, 2016b; Ruzzoli et al., 2019). For example, some 

evidence suggests that sensory information arriving during high-receptivity periods is more 

likely to be perceived than information arriving during low-receptivity periods (Busch et al., 

2009; Mathewson et al., 2009; 2010; 2011; 2012). This suggests that there is an optimal 

(range of) phase for perceiving information. It has been argued that if this is correct then it is 

logical to assume that there exist mechanisms, either endogenous or exogenous, for 

modulating the phase of neuronal oscillations, in order to match the temporal structure of the 

environmental input (van Diepen et al., 2015; Ruzzoli et al., 2019). This mechanism (phase 

resetting) would enable more efficient processing as information would be received during 

periods (phases) of high receptivity.  

 

Empirical evidence supports the role of phase resetting as an intra-brain mechanism, 

facilitating neural entrainment to temporal structures within the environment, for example 



131 

 

speech (Giraud & Poepell 2012; Biau et al., 2015). It is therefore logical to question whether 

similar mechanisms also operate at the interpersonal level. For example, inter-brain 

synchronisation may increase within a dyad following the onset of communicative signals 

(such as gaze, gestures, or vocalisations) that reset the phase of both interacting partners. 

Here, neural oscillations in both the sender (of the social signal) and the receiver’s brain that 

were previously random with respect to each other (low inter-brain synchrony) would be 

simultaneously reset in response to a communicative signal. Following this reset the neural 

activity of both the sender and the receiver would oscillate with more consistent variation 

over time (high inter-brain synchrony). We recognise that according to recent theoretical 

accounts that this might be classed as motor-induced neural synchrony, which occurs when 

the behaviour of one member of the dyad drives the neural activity of both members of the 

dyad (Holroyd, 2022). However, it could also be that mutual gaze onsets reset the brain 

activity of the sender, which precedes/ causes the behaviour of the receiver, which then 

causes a reset in the receiver’s brain activity. Here, increases in inter-brain synchrony would 

be a result of both partners resetting to their own behaviours. Distinguishing between these 

different mechanisms is only possible using event locked analysis. 

 

Eye movement (saccade) related potentials and ERPs 

One challenge in studying the impact of mutual gaze during naturalistic social interaction on 

dyadic EEG is that mutual gaze onsets are time-locked to eye movements which create 

multiple types of artifact in the EEG (Dimigen, 2020). For example, PlÖchl and colleagues 

(2012) showed that saccadic spike potentials (EEG potentials time-locked to small, < 1, 

involuntary eye movements during fixation) typically introduce a broadband artifact in the 

time-frequency spectrum of the EEG, which is strongest (amplitude) in the low beta (~14-30 
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Hz) and gamma bands (>30 Hz) of adult EEG and typically peaks between -50ms and 150ms 

around the offset of a saccade. Artifact generated from eye movements can overlap in time 

and frequency with EEG activity presumed to be related to genuine neural activity, associated 

with stimulation of the retina (Gaarder et al., 1964; Billings, 1989; Dimigen, 2021). This is 

often referred to as the lambda response (LR) (Kazai & Yagi, 2003), which is an occipital 

EEG potential that can be observed when saccades are made against an illuminated contrast 

background (Thickbroom et al., 1991). LRs typically produce broadband time-frequency 

activity that is strongest (amplitude) in Alpha (8-13 Hz) and low beta (~14-30 Hz), over 

occipital electrodes and peaks ~100ms after the offset of the saccade (Dimigen et al., 2009; 

2011). The overlapping activations introduced by eye movements can make interpretation of 

the data challenging, a problem which is not solved using ‘standard’ artifact correction 

procedures which fail to completely remove artifact associated with eye moments from the 

EEG; both in adults (PlÖchl et al., 2012; Dimigen, 2020) and infants (Haresign et al., 2021).  

Our analyses are presented using a pipeline specially designed for the removal of eye 

movement artifact from naturalistic EEG data using ICA (Georgieva et al., 2020; Haresign et 

al., 2021; Kayhan et al., 2022). However, it is important to note that in our 2021 paper we 

reported that we (as arguably most of the current research in developmental neuroscience 

using EEG is) were unable to completely remove the activity that we assumed to be 

artifactually related to eye movements. Therefore, in this current work, it is likely that the 

sender neural responses that we are investigating are a combination of some residual 

artifactual activity; although as discussed above these artifacts are transient (~100ms) and 

therefore would only impact the initial part of the ERP waveform, and genuine neural 

activity; after the initial ~+150-200ms. For this reason, our primary analyses will compare 

sections of our data that both contain saccades, and therefore have (we assume) an identical 

amount of eye movement artifact in them but have different consequences (either the saccade 



133 

 

leads to mutual gaze, or not). Furthermore, we only compared activity in the later parts of the 

ERP waveform after the first 100ms. 

 

Current study: The role of mutual gaze onsets in creating inter-brain synchrony 

Our study aimed to test the hypothesis that infants are sensitive to ostensive signals during 

free-flowing social interactions, and that mutual gaze onsets lead to mutual phase resetting, 

which causes increases in inter-brain synchrony. We measured dual EEG recordings from 

parents and infants whilst they engaged in free-flowing social interactions and investigated 

intra- and inter- individual neural responses to naturally occurring moments of mutual gaze. 

To explore the role of turn-taking in creating inter-brain synchrony, we differentiated 

between two types of look onset, depending on each partners’ role. ‘Sender’ gaze onsets were 

defined at a time when either the adult or the infant made a gaze shift towards their partner at 

a time when their partner was either already looking at them (sender mutual) or not looking at 

them (sender non-mutual). ‘Receiver’ gaze onsets were defined at a time when their partner 

made a gaze shift towards them at a time when either the adult or the infant was already 

looking at their partner (receiver mutual) or not (receiver non-mutual) (see Figure 4.1). 

In order to assess how these interpersonal dynamics contributed to inter-brain synchrony we 

used two different measures of synchrony; First, we used a measure of concurrent synchrony, 

Phase locking value (PLV), that measures zero-lag, undirected synchrony. This measure 

would best capture changes in inter-brain synchrony that resulted from changes in both 

partners’ brains concurrently. We also used a measure of sequential synchrony, Partially 

directed coherence (PDC), that measures time lagged, directed synchrony. This would best 

capture changes in inter-brain synchrony that resulted from changes in one partner’s brain 

that forward predicted or lead to changes in the other partner’s brain. Through this we were 

able to consider three main sets of research questions.  
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Inter-brain non-event locked analysis 

For our first set of research questions, we take an analytical approach similar to Leong and 

colleagues’ 2017 paper, in which we explore whether inter-brain synchrony is stronger 

overall during moments of mutual gaze. Although this was not a replication study, we 

attempted to translate previous structured experimental designs into a more naturalistic 

context. For these analyses, we preselected frequency bands and electrodes of interest, based 

on the findings of Leong and colleagues (2017). Consistent with these findings we expected 

to observe greater inter-brain synchrony, in Theta and Alpha during all moments of mutual vs 

non-mutual gaze. Inter-brain synchrony was measured using PLV and PDC computed over 

EEG data, averaged over central electrodes (C3 and C4).  

 

Inter-brain event-locked analysis 

Investigating inter-brain synchrony during social interactions as a time invariant phenomenon 

makes it difficult to understand the underlying mechanisms (Haresign et al., 2022). 

Therefore, for our second set of research questions, we wanted to explore how inter-brain 

synchrony changes around gaze onsets. We compared inter-brain synchrony values around 

sender and receiver mutual vs non-mutual gaze onsets. We expected to observe greater inter-

brain synchrony (measured using PLV and PDC, in frequencies 2-18 Hz, over occipital 

electrodes) around mutual vs non-mutual gaze onsets. For all inter-brain analyses, we used 

one measure of concurrent (PLV) and one measure of sequential (PDC) synchrony in order to 

try to better understand how sender and receiver dynamics influence inter-brain synchrony. 
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Intra-brain event locked analysis 

It has been suggested that one mechanism that might mediate changes in inter-brain 

synchrony is mutual phase resetting in response to the onset of mutual gaze (Leong et al., 

2017, Wass et al., 2020). For our third set of research questions, we wanted to further 

investigate, mechanistically how changes in inter-brain synchrony might develop around 

mutual gaze onsets. To examine this, we first looked at ERPs and inter-trial coherence (ITC) 

around gaze onsets: comparing sender and receiver mutual and non-mutual gaze onsets. Inter-

trial coherence measures consistency in phase angles over trials/ time at a single given 

electrode and has been used to phase resetting (Makeig et al., 2004). In comparison PLV 

measures the consistency in phase angle differences between two electrodes. Based on 

previous findings (e.g., Farroni et al., 2002) we expected to observe significant ERPs and 

increases in ITC relative to both sender and receiver mutual and non-mutual gaze onsets. 

Although during receiver non-mutual gaze onsets only, the receiver was looking at an object 

and not at their partner’s face, research has shown that humans are highly sensitive to eye 

gaze in their peripheral vision (Loomis et al., 2008). ERPs and ITC were first assessed 

against a baseline to test whether there was a significant event-locked neural response relative 

to both sender and receiver mutual and non-mutual gaze onsets. We then examined whether 

ERPs and event locked ITC was greater around sender and receiver mutual vs non-mutual 

gaze onsets. We expected to observe larger ERP amplitudes, and greater ITC (in frequencies 

2-18 Hz, over occipital electrodes) around mutual vs non-mutual gaze onsets. 

Overall, through these analyses we wanted to explore three questions; a) do we observe 

above chance inter-brain synchrony during mutual gaze/ around mutual gaze onsets during 

free-flowing natural social interactions. B) do we observe phase resetting to mutual gaze 

onsets in natural contexts. C) if we observe above chance inter-brain synchrony and phase 

resetting around mutual gaze onsets, are they linked.  
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4.2. Methods 

 

4.2.1. Ethics statement 

This study was approved by the Psychology Research Ethics Committee at the University of 

East London. Participants were given a £50 shopping voucher for taking part in the project. 

 

4.2.2. Participants 

Of the 90 infants we tested for this study, 21 contributed no data at all, 6 contributed EEG 

data that was too noisy even after data cleaning and 4 were lost due to human error, e.g., 

failed synchronisation triggers. We also excluded all participants with fewer than 5 gaze 

onsets, leading to an additional 4 datasets being excluded. The final sample contained 55 

healthy (23 F), M = 12.2-month-old (SD =1.47) infants, that participated in the study along 

with their mothers.   

 

4.2.3. Power calculations.  

For the non-event locked analysis, as this analysis were based on previous findings, we 

estimated the required sample size to observe a difference between the two groups (as a product 

of gaze type), using the G*power tool (Faul et al., 2007). For this, we used data from Leong et 

al., (2017) as an estimator of the expected effect size for the analysis of non-event locked 

synchrony (𝑟2 = 0.332). Based on an Alpha level of .05, in our sample size (N = 55) we had a 

>99% chance of observing an effect of gaze type on inter-brain synchrony of the magnitude 

observed in previous work. 
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Figure 4.1. Illustration of experimental set-up and design for event locked analysis. A) shows 

screenshots of experimental recordings from three camera angles used. B) shows event 

locking process for sender and receiver EEG activity relative to mutual gaze onsets. Here 

receiver’s gaze was maintained on the sender and the sender’s gaze shifted from looking at 

the puppet/ inattention toward looking at the receiver, facilitating mutual gaze. +/- 1 second 

of EEG activity was extracted around gaze shift. C) shows topographical illustration of 

sender’s and receiver’s gaze relative to mutual and non-mutual gaze onsets. D) shows event 

locking process for sender and receiver EEG activity relative to mutual gaze onsets. Here 

receiver’s gaze was maintained on either the puppet (or inattention) and the sender’s gaze 

shifted from looking at the puppet/ inattention toward looking at the receiver, facilitating 

non-mutual gaze. +/- 1 second of EEG activity was extracted around gaze shift. 
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Infants were positioned immediately in front of a table in a highchair. Adults were positioned 

on the opposite side of the 65cm-wide table, facing the infant. Adults were asked to stage a 

‘three-way conversation’ between the infant and a small hand puppet and to try to spend an 

equal amount of time looking at the puppet and the infant. Dual EEG was continuously 

acquired from the parents and infants for the approx. 5 min duration of the play session (M = 

386.1, SD = 123.9 seconds) 

 

4.2.5. Behavioural data 

Video recordings were made using Canon LEGRIA HF R806 camcorders recording at 50fps 

positioned next to the infant and parent respectively. Video recordings of the play sessions 

were coded offline, frame by frame, at 50 fps. This equates to a maximum temporal accuracy 

of ~20ms. Coding of the infant’s and adult’s gaze was performed by two independent coders. 

Cohen’s kappa between coders was >85%, which is high (McHugh, 2012). EEG was time-

locked to the behavioural data offline based on the video coding using synchronized LED and 

TTL pulses. To verify the synchronisation, we manually identified blinks in the behavioral data 

and looked to see if this matched the timing of the blinks in the EEG data. 

 

4.2.6. EEG data acquisition 

EEG signals were obtained using a dual 32-channel Biosemi system (10-20 standard layout), 

recorded at 512 Hz with no online filtering using the Actiview software.  
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4.2.7. EEG artifact rejection and pre-processing 

A fully automatic artifact rejection procedure was adopted, following procedures from 

commonly used toolboxes for EEG pre-processing in adults (Mullen, 2012; Bigdely-Shamlo, 

et al., 2015) and infants (Gabard-Durham et al., 2018; Debnath et al., 2020). Full details of 

the pre-processing procedures can be found in (Haresign et al., 2021). In brief the data was 

filtered between 1 and 20Hz and re-referenced to a robust average reference. Then we 

interpolated noisy channels based on correlation; if a channel had a lower than 0.7 correlation 

to its robust estimate (average of other channels) then it was removed. The mean number of 

channels interpolated was 3.9 (SD =2.1) for infants and 3.9 (SD =4.4) for adults. Then for the 

infant data only we removed sections from the continuous data in which the majority of 

channels contained extremely high-power values. Data was rejected in a sliding 1 second 

epoch and based on the percentage of channels (set here at 70% of channels) that exceeded 5 

standard deviations of the mean EEG power over all channels. For example, if more than 

70% of channels in each 1-sec epoch exceeded 5 times the standard deviation of the mean 

power for all channels then this epoch is marked for rejection. We found that for adults this 

step was primarily removing activity that could be removed with ICA (e.g., eye movement 

artifact) without removing entire sections of the data. The average amount of continuous data 

removed was 11.9% (SD =14.6%) for infants. Finally, we used ICA to remove additional 

artifacts. 

 

Careful attention was paid to artifact and the amount of noise in the data throughout. In the 

supplementary materials (see 4.7.8) we report the results of standard measures of EEG data 

quality (Luck et al., 2021). Including universal measures like these enables fast and easy 

comparison between studies and allows the overall quality of the data to be readily assessed. 
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We paid particular attention to eye movement artifact. In previous work we designed a 

system for automatically identifying and removing artifactual ICA components in infant EEG 

(Haresign et al., 2021). The automated system was shown to remove most but not all eye 

movement related artifact time-locked to saccades. Therefore, we cannot entirely rule out that 

some of the activity in the sender brains relative to sender mutual and non-mutual gaze onsets 

is an artifact of the gaze shift.  

 

4.2.8. Time frequency analysis- extracting power and phase 

Time-frequency power and phase was extracted via complex Morlet wavelet convolution. 

The wavelets increased from 2 to 18 Hz in 17 linearly spaced steps and the number of cycles 

increased from 3-10 cycles logarithmically (this approach is generally recommended; see 

Cohen, 2014, chapter 13). 

 

For all non-event locked analyses presented here, frequency bands were selected based on the 

bands commonly used in infant research: Theta (3-6Hz) and Alpha (6-9Hz) (Marshall et al., 

2011; Leong et al., 2017; Xie & Richards, 2018; van der Velde et al., 2019; Jones et al., 

2020).  

 

4.3. Analysis 

 

4.3.1. Inter-brain non-event locked analysis - overview 

First, we wanted to explore whether inter-brain synchrony was greater during all moments of 

mutual vs non-mutual gaze (not relative to sender/ receiver gaze onsets). Mutual gaze was 

defined as times when both the adult and the infant were looking at each other. Non-mutual 
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gaze was defined as times when the infant was looking at the adult and the adult was not 

looking at the infant (or vice versa). For all non-event locked analyses, EEG was time-locked 

to the onset of gaze, and the length of the epoch extracted equated to the duration of the look. 

The average look durations were 2.7 seconds (SD = 0.9s) for mutual and 1.6 seconds (SD = 

0.5s) for non-mutual gaze. All epochs were then concatenated. The mean amount of 

continuous data available for analysis was 66.1s (SD = 41.5s) for mutual and 28.3s (SD = 

17.9s) for non-mutual gaze. Because ITC (see Cohen 2014, chapter 19) and PDC are 

sensitive to the amount of available data, we normalised the amount of data present per 

condition for each participant by identifying which gaze type had the lower number of 

continuous data samples (n), and re-sampling data from the other gaze type condition, taking 

1:n data samples.  

 

4.3.1.1. Inter-brain non-event locked analysis - PDC  

Partial directed coherence (PDC) is based on the principles of Granger causality (Baccalá and 

Sameshima, 2001). It provides information of the extent to which one times series influences 

another. PDC is calculated from coefficients of autoregressive modelling according to:  

                 𝑃𝐷𝐶 = (
𝐴𝑥𝑦(𝑓)

√𝑎𝑦
∗ (𝑓).𝑎𝑥(𝑓)

)                                                                      (1), 

where 𝐴𝑥𝑦(𝑓) is the spectral representation of bivariate model coefficients and 𝑎𝑦 and 𝑎𝑥 are 

the spectral model coefficient from the univariate autoregressive model fit. Based on previous 

literature (e.g., Leong et al., 2017) we chose to compute PDC in 1-second non-overlapping 

sliding window. We estimated the model order for each segment using Bayesian information 

criteria (BIC). Model order values were then averaged for all segments. The result was a 
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model order of 5, the same as used by Leong and colleagues (2017), which was then used for 

all segments.  

 

 

4.3.1.2. Inter-brain non-event locked analysis – PLV 

For the non-event locked analyses, the phase locking value (PLV) was calculated within a 

single trial in a 1 second sliding window (e.g., Tass et al., 1998) according to: 

 

   𝑃𝐿𝑉𝑡 =
1

𝑇
| ∑ ⅇ𝑖(𝜙(𝑡,𝑛)−𝜓(𝑡,𝑛))𝑇

𝑛=1
|                                                        (2), 

 

Where T is the number of observations or time samples within the window, 𝜙(𝑡, 𝑛) is the 

phase on observation n, at time t, in channel 𝜙 and 𝜓(𝑡, 𝑛) at channel 𝜓.  

 

4.3.1.3. Inter-brain non-event locked analysis – group level stats for PLV and PDC 

Firstly, we assessed whether PLV and PDC values were significant compared to a baseline 

level. This was done by calculating the PLV/ PDC between randomly paired infant and adult 

dyads. We generated 1000 random infant-adult pairings in this way. We then compared the 

group averages of the observed PLV/ PDC values for the real infant-adult pairings against the 

randomly permuted distributions. Under the null hypothesis that the interbrain PLV/ PDC 

between infants and adults is a result of their real-time social interaction, we should observe 

no above chance inter-brain PLV/ PDC between randomly paired infant-adult dyads. P values 

were generated by first z-scoring the observed PLV values and then by evaluating the z-

scored value’s position on a Gaussian probability density using the Matlab function 

normcdf.m. For this test, we used a Bonferroni correction for multiple comparisons. This was 
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appropriate here as we were only testing over a limited number of predefined frequencies/ 

channels. Following the statistical procedure adopted by Leong and colleagues’ (2017), 

differences in PLV and PDC between mutual and non-mutual gaze were assessed using a 

two-way repeated-measures ANOVA, taking gaze type and frequency as the within levels, 

using average, over electrodes C3 and C4, infant-to-adult PDC (I→A) and adult-to-infant 

(A→I) PDC values, and for Theta and Alpha bands separately. A Tukey-Kramer correction 

for multiple comparisons was applied.  

 

4.3.2. Inter-brain event locked analysis  

 

4.3.2.1. Inter-brain event locked analysis – group level stats for PLV and PDC 

Firstly, we assessed whether PLV and PDC values were significant compared to a baseline 

level. We compared all observed time-frequency PLV/ PDC values relative to sender and 

receiver mutual and non-mutual gaze onsets against time-frequency PLV/PDC values time-

locked to randomly inserted events within the continuous data. Differences between the real 

and surrogate data were assessed using cluster-based permutations statistics, using an alpha 

value of .05 (see SM section 4.7.5 for full details). Secondly, we examined whether PLV/ 

PDC values were greater for sender/ receiver mutual vs non-mutual gaze onsets. This was 

similarly assessed over all time-frequency points using a cluster-based permutation 

procedure, comparing results between different types of gaze onset. Importantly, the amount 

of eye movement artifact was identical between the sets of results being compared.  
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4.3.3. Intra-brain event locked analysis  

Here we wanted to investigate whether mutual gaze onsets play a role in establishing inter-

brain synchrony. We did this by investigating ERPs and ITC around sender and receiver 

mutual and non-mutual gaze onsets. Previous research suggests that event-locked face-

sensitive neural responses are strongest over parietal/ occipital electrodes (Gao et al., 2019; 

Haresign et a., 2021). Therefore, for our event locked analysis we chose to focus on averaged 

data from a cluster of 5 parietal/ occipital electrodes (PO3, PO4, O1, Oz, O2). Additional 

topoplots are presented in SM 4.7.7, which support the choice of electrodes. The EEG signal 

was divided into events from -2500 to 2500ms (t=0 denotes the onset of gaze). The mean 

number of events extracted was 21.1 (SD =10.8) for infant sender/ adult receiver and 15.6 

(SD =12.6) for adult sender/ infant receiver mutual gaze onsets and 9.9 (SD =6.2) for infant 

sender/adult receiver and 28 (SD =18.3) for adult sender/infant receiver non-mutual gaze 

onsets. We matched the number of events between gaze types for each participant using the 

procedure described in section 3.1, above.  

 

4.3.3.1. Intra-brain event locked analysis - Inter trial coherence  

Inter trial coherence (ITC) measures the consistency of frequency band-specific phase angles 

over trials, time-locked to a specific event. The phase coherence value is computed according 

to: 

                                                  

𝐼𝑇𝐶 =
1

𝑁
| ∑ ⅇ𝑖𝜙(𝑡,𝑘)𝑁

𝑘=1
                                           (3), 

 

where N is the number of trials and 𝜙(𝑡, 𝑘) is the phase on trial k, at time t. 
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4.3.3.2. Intra-brain event locked analysis - ERPs  

Following previous research (Conte et al., 2020) amplitudes of the P1, N290, and P400 ERPs 

were measured by calculating the change in amplitude between the peak of the component of 

interest and the peak of the preceding component. Also following previous recent research 

(Conte et a., 2020; Guy et al., 2016; 2018; Xie and Richards, 2016; 2017) we used 

semiautomated and individualised time window selection (Guy et al., 2021). Differences in 

peak amplitude were quantified using the adaptive mean approach. This process involves first 

identifying the peak latency of the ERP potential on a participant-by-participant basis using a 

broad time window. Once the peak latency has been identified an average of the activity in a 

20ms window around the peak is then taken (e.g., as described in Luck, 2014). We focused 

on three major components relevant for face/gaze processing: the P1 component, the N170 

(commonly N290 in infant EEG; Conte et al., 2020) and the P300 (commonly P400 in infant 

EEG; Conte et al., 2020). For the P1 component we used a time window of 0 to 200ms for 

adults and 100 to 300ms for infants. For the N170/ N290 component we used a time window 

of 100 to 300ms for adults and 200 to 400ms for infants. For the P300/P400 component we 

used a time window of 200 to 500ms for adults and 300 to 600ms for infants. These were 

selected based on visual inspection of the averaged waveforms. All ERP data were baseline 

corrected using data from the time window -1000 to -700ms pre-gaze onset.  

 

4.3.3.3 Intra-brain event locked analysis – group level stats for ERPs 

To test whether the onset of gaze led to significant changes in amplitude relative to both 

sender and receiver mutual and non-mutual gaze onsets we again used nonparametric 

permutation testing. Here the null hypothesis was that the timing of the gaze onset (e.g., time 

0) is unrelated to the observed neural response within the time window examined. To test 
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this, we randomly permuted the time points of the ERPs and took the average (separately 

around the maximum and minimum points) of the permuted ERP in the time window 0 to 

+500ms. This procedure was then repeated 1000 times, randomising and reshuffling the ERP 

on each permutation. Finally, an estimate of the permutation p-value was calculated using the 

z-scoring procedure outlined in section 4.2.12. Here we used cluster-based permutation 

statistics, using an Alpha value of .5 to correct for multiple comparisons (time points). The 

results are reported in section 4.4.3. 

 

4.3.3.4 Intra-brain event locked analysis – group level stats for ITC 

Firstly, we assessed whether ITC values were significant compared to a baseline level. We 

compared the observed time-frequency ITC values relative to sender and receiver mutual and 

non-mutual gaze onsets against time-frequency ITC values time-locked to randomly inserted 

events within the continuous data. The number of random events was matched based on the 

number of real gaze onsets available for each participant. Differences between the real and 

surrogate data were assessed using cluster-based permutation statistics, using an Alpha value 

of .05. We then compared differences between sender and receiver mutual vs non-mutual 

gaze in ITC using the same cluster-based permutation procedure see section 4.4.4. 

 

4.4. Results 

 

Before turning to our main research questions, we first calculated descriptive statistics to 

show how gaze onsets were distributed in our sample (Figure 4.2). These results indicate that 

infants spent, in total, 34%/31%/35% of the total interaction looking to 

partner/puppet/inattentive (Fig 2A). Parents spent 62%/31%/7% of the total interaction 
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looking to partner/puppet/inattentive (Fig 4.2D). Overall, mutual gaze periods were longer 

than non-mutual gaze periods (Fig 4.2C). Differences in the frequency of gaze onsets to 

different types of gaze were normalised using the procedures described above.  

 

Figure 4.2. Distribution of gaze onsets in our sample. A) Distribution of time infants spent 

looking at different areas. B) Distribution of time dyads spend in mutual and non-mutual 

gaze during interaction. C) Distribution of look durations for mutual and non-mutual gaze 

defined from infants’ look behaviour. D) Distribution of time adults spent looking at different 

areas. E) Distribution of infant sender/ adult receiver mutual and non-mutual gaze onsets. F) 

Distribution of adult sender/ infant receiver mutual and non-mutual gaze onsets.  

 



148 

 

4.4.1. Inter-brain non-event locked analysis – PLV and PDC 

To investigate the relationship between inter-brain synchrony and mutual gaze, we first 

computed the mean PLV and PDC values across all mutual and non-mutual gaze periods in 

Theta and Alpha bands separately. We looked at whether PLV and PDC values were 

significantly greater than baseline, and then compared these values for mutual vs non-mutual 

gaze. Based on our previous research (Leong et al., 2017) we focused on activity over vertex 

electrodes (C3 and C4).  

Figure 4.3. Results of permutation tests for non-event locked inter-brain synchrony analysis. 

A) Distribution of random pair infant-adult PLV values compared to real pair infant-adult 

PLV values in Theta for mutual gaze. B) Distribution of random pair infant→adult PDC 

values compared to real pair infant→adult PDC values in Theta for mutual gaze. C) 

Distribution of random pair adult→infant PDC values compared to real pair adult→infant 

PDC values in Theta for mutual gaze. D) Distribution of random pair infant-adult PLV 
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values compared to real pair infant-adult PLV values in Theta for non-mutual gaze. E) 

Distribution of random pair infant→adult PDC values compared to real pair infant→adult 

PDC values in Theta for non-mutual gaze. F) Distribution of random pair infant→adult PDC 

values compared to real pair adult→infant PDC values in Theta for non-mutual gaze. Red 

dashed lines indicate averaged observed values in Theta, black dotted lines indicate the 

threshold for p < 0.05. 

 

 

Figure 4.4. Results of non-event locked inter-brain synchrony analysis. A) Infant-adult PLV 

during mutual / non-mutual gaze in Theta. B) Infant→adult PDC during mutual / non-mutual 

gaze in Theta. C) Adult→infant PDC during mutual / non-mutual gaze in Theta. D) Infant-

adult PLV during mutual / non-mutual gaze in Alpha. E) Infant-adult PLV during mutual / 

non-mutual gaze in Alpha. F) Adult→infant PDC during mutual / non-mutual gaze in Alpha. 
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Violin plots show the distribution of the data with an inset boxplot. Each point corresponds to 

the average PLV/PDC value of a dyad. 

 

Figures 4.3 and 4.4 show the results of the inter-brain non-event locked analysis. We first 

tested whether PLV and PDC values significantly exceeded baseline values. The results of 

the permutation analysis indicated that PLV values did not significantly exceed baseline 

values: in theta (3-6 Hz) for mutual (p = 0.53) or non-mutual gaze (p = 0.56). Further, infant-

to-adult PDC (Infant→Adult) and adult-to-infant (Adult→Infant) did not significantly exceed 

baseline values for mutual (p = 0.63/ p = 0.55) or non-mutual gaze (p = 0.64/ p = 0.54); or in 

alpha (6-9 Hz) for mutual (p = 0.57) or non-mutual gaze (p = 0.59). Further, infant-to-adult 

PDC (Infant→Adult) and adult-to-infant (Adult→Infant) did not significantly exceed baseline 

values for mutual (p = 0.59/ p = 0.53) or non-mutual gaze (p = 0.61/ p = 0.52). 

We then wanted to test whether PLV and PDC values were greater for mutual than non-

mutual gaze. As described in section 4.3.1.3, we then conducted repeated measures (RM) 

ANOVAs using average indices (over C3 and C4), taking frequency (2 levels) and gaze type 

(mutual vs non-mutual; 2 levels) as within-subjects factors. The results of the ANOVA 

indicated no statistically significant differences in PLV, F(1, 55) = .04, p = .84, or PDC; for 

infant to adult (Infant→Adult) influences, F(1, 55) = .18, p = .68 or adult to infant 

(Adult→Infant) influences, F(1, 55) = .50, p = .48, between mutual and non-mutual gaze. The 

results did indicate a significant effect of frequency (i.e., more synchrony in Theta than 

Alpha) for PLV, F(1, 55) = 47.33, p < .01 and PDC; Infant→Adult, F(1, 55) = 41.2, p <.01 

and Adult→Infant, F(1, 55) = 138.84, p < .01). These results are summarised in Figure 4.4. 

Note these are uncorrected p values. 
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To further test the significance of gaze type on non-event locked synchrony (PLV and PDC) 

we calculated the Bayes Factor (BF) at the group level for both Theta and Alpha and (for 

PDC) including both directions of influence. We calculated  𝐵𝐹10 =  𝑝(𝐷|𝐻1) / 𝑝(𝐷|𝐻0), 

where 𝐷 represents the data and 𝐻1 and 𝐻0 of the alternative and the null hypothesis 

respectively, using functionality from the bayesFactor toolbox (Krekelberg, 2022), based on 

the equations provided in Rouder et al., 2012. The BF10 tests for the presence of an effect. 

For all tests, the BF10 was between 1/3 and 1/10 and non-significant indicating moderate 

evidence (Lee & Wagenmakers, 2014) for the null hypothesis (that there is no difference 

between mutual and non-mutual gaze). We also converted these scores to the Bayes Factor 

for the absence of an effect (BF01), confirming that there was moderate to strong evidence 

that there was no difference between the groups. Results of our Bayes Factor analyses are 

given in full in SM section 4.7.6. 

 

To summarise the results of the non-event locked analyses, suggest that mutual gaze does not 

induce inter-brain synchrony in this dataset and using this paradigm since a) the inter-brain 

synchrony for either gaze type isn’t above shuffled baseline data and b) isn’t different from a 

specifically selected other condition (non-mutual gaze). 

 

4.4.2.  Inter-brain event locked analysis – PLV and PDC 

We next investigated whether onsets of mutual gaze led to changes in inter-brain synchrony 

and examined the sender-receiver dynamics that might contribute to this. To do this we 

conducted event-locked analyses with respect to gaze onsets. We first examined whether 

PLV and PDC values were significantly greater than baseline around gaze onsets, and then 

compared these values between mutual vs non-mutual gaze onsets.  
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Figure 4.5. Infant-caregiver inter-brain synchrony time-locked to naturally occurring mutual 

and non-mutual gaze onsets. A)  PLV relative to infant sender/adult receiver mutual gaze 

onsets. B)  PLV relative to onsets of infant sender/adult receiver looks to non-mutual gaze. C)  

PLV relative to adult sender/infant receiver mutual gaze onsets. D)  PLV relative to adult 

sender/infant receiver non-mutual gaze onsets. E)  Infant→Adult PDC relative to infant 

sender/adult receiver mutual gaze onsets. F)  Infant→Adult PDC relative to infant 

sender/adult receiver non-mutual gaze onsets. G)  Infant→Adult PDC relative to adult 

sender/infant receiver mutual gaze onsets. H)  Infant→Adult PDC relative to adult 

sender/infant receiver non-mutual gaze onsets. I)  Adult→Infant PDC relative to infant 

sender/adult receiver mutual gaze onsets. J)  Adult→Infant PDC relative to infant 
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sender/adult receiver non-mutual gaze onsets. K)  Adult→Infant PDC relative to adult 

sender/infant receiver mutual gaze onsets. L)  Adult→Infant PDC relative to adult 

sender/infant receiver non-mutual gaze onsets. No significant differences were identified. 

 

We first tested whether PLV and PDC values over occipital electrodes and in the 2-18 Hz 

range significantly exceeded baseline values generated from a permutation procedure for 

infant sender/ adult receiver and adult sender/ infant receiver looks to mutual and non-mutual 

gaze. The result of the permutation analysis indicated that event locked PLV and PDC values 

around mutual and non-mutual gaze onsets were not significantly different from baseline 

values (see SM section 5 for full details). Therefore, we failed to reject the null hypothesis 

that there are no changes in PLV and PDC that are time-locked to gaze onsets. 

We also observed no statistically significant differences for the effect of gaze type (e.g., 

mutual vs non-mutual). Therefore, we failed to reject the null hypothesis that there was no 

difference in PLV and PDC between looks to mutual or looks to non-mutual gaze (see Figure 

4.4, and SM section 4.5).  

 

To further test the significance of gaze type on event locked inter-brain synchrony (PLV and 

PDC) we calculated the Bayes Factor at the group level for both Theta and Alpha and (for 

PDC) including both directions of influence. For all tests, the BF10 was between 1/3 and 1/10 

and non-significant indicating moderate evidence (Lee and Wagenmakers 2014) for the null 

hypothesis (that there is no difference between mutual and non-mutual gaze). We also 

converted these scores to the Bayes Factor for the absence of an effect (BF01), confirming 

that there was moderate to strong evidence that there was no difference between the groups. 

Results of our Bayes Factor analyses are given in full in SM section 4.7. 
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4.4.3. Intra-brain analysis - ERPs  

Earlier we discussed some of the potential mechanisms that could lead to changes in inter-

brain synchrony. Here, we wanted to examine intra-brain sender/ receiver dynamics around 

mutual gaze. To do this we compared ERPs between sender and receiver mutual vs non-

mutual gaze onsets.  

 

Figure 4.6. Event-related potentials time-locked to naturally occurring mutual and non-

mutual gaze onsets. A) Infant ERP relative to onsets of infant sender mutual gaze and non-

mutual gaze onsets. B) Adult ERP relative to adult receiver mutual and non-mutual gaze 
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onsets. C) Infant ERP relative to onsets of infant receiver mutual and non-mutual gaze 

onsets. D) Adult ERP relative to adult sender mutual and non-mutual gaze onsets. For each 

the shaded area indicates 95% confidence intervals; thicker lines indicate grand average 

waveforms. Additional topoplots can be found in SM 4.7.7. 

 

Figure 4.6 shows the results of the intra-brain ERP analysis, comparing sender and receiver 

mutual and non-mutual gaze onsets. We first tested whether ERP values for sender and 

receiver mutual and non-mutual gaze onsets significantly exceeded baseline values generated 

from a permutation procedure (see section 4.3.3.3). The permutation analysis indicated that 

ERP amplitudes (this is just looking at whether there is a positive peak in the 0-500ms time 

window) in the post gaze onset window were significantly higher than baseline for sender 

mutual (p < 0.01 for both infants and adults) and non-mutual (p < 0.01 for both infants and 

adults) gaze onsets, in both infants and parents, but not for receiver mutual (p = 𝑃𝑧, for 

infants and p = 0.2, for adults) or non-mutual (p = 𝑃𝑧, for infants and p = 0.6, for adults) gaze 

onsets in either parents or infants. 

 

We then compared ERP amplitudes between mutual and non-mutual gaze onsets. As the ERP 

amplitudes were non-significant over baseline, relative to receiver mutual and non-mutual 

gaze onsets we focused our comparison on sender mutual vs non-mutual gaze onsets. The 

results of the paired samples t-test indicated no statistically significant differences after 

correcting for multiple comparisons. This was consistent for all three components; P1 

(p=0.66 for the infant data and p=0.04 for the adult data; uncorrected p-values), N170/N290 

(p=0.61 for infants and p=0.45 for adults) and P300/P400 (p=0.21 for infants, p=0.59 in 

adults).  
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Throughout the event locked analyses careful attention was paid to what activity reflected 

genuine neural responses and what was related to artifact. To investigate this in more detail 

we performed additional analyses (see SM section 4.7.2) in which we compared the senders’ 

neural responses pre and post artifact cleaning and compared activity over frontal vs occipital 

electrodes. The results of this analysis suggested that it is unlikely that these findings are 

driven by the eye movement artifact itself, but rather the resulting neural response. In order to 

further test the sensitivity of our paradigm, we also compared sender neural responses 

between looks to object vs looks to partner gaze (see SM section 4.7.1). The results of this 

analysis suggested that our paradigm differentiates neural responses to face vs object looks, 

consistent with the results from previous ERP studies.  
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4.4.4. Intra-brain event locked analysis – ITC 

Lastly, we examined the possibility that the onset of mutual gaze could act as synchronisation 

triggers to concomitantly reset the phase of the sender and receiver’s ongoing neural 

oscillations. 

 

Figure 4.7. Inter-trial phase coherence time-locked to naturally occurring mutual and non-

mutual gaze onsets. A) Infant ITC relative to infant sender mutual gaze onsets. B) Adult ITC 

relative to adult receiver mutual gaze onsets. C) Infant ITC relative to infant receiver mutual 

gaze onsets. D) Adult ITC relative to adult sender mutual gaze onsets. E) Infant ITC relative 

to infant sender non-mutual gaze onsets. F) Adult ITC relative to adult receiver non-mutual 

gaze onsets. G) Infant ITC relative to infant receiver non-mutual gaze onsets. H) Adult ITC 

relative to adult sender non-mutual gaze onsets. For all, black borders highlight activity that 

was significantly greater than baseline after cluster correction for multiple comparisons 
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using p = .05. I) Difference plot between infant sender mutual vs non-mutual gaze onsets. J) 

Difference plot between adult sender mutual vs non-mutual gaze onsets. Hotter colours 

indicate more ITC for mutual vs non-mutual.  

 

Figures 7 shows the results of the event-locked ITC analysis, comparing sender and receiver 

mutual and non-mutual gaze onsets for infant and adults separately. We first tested whether 

ITC values, over occipital electrodes, and frequencies 2-18 Hz, significantly exceeded 

baseline values generated from a permutation. The permutation analysis indicated that ITC in 

the post-gaze onset window was significantly higher than baseline for sender mutual (Figure 

4.4 A and D) and non-mutual (Figure 4.4 E and H) gaze onsets, in both parents and infants, 

but not for receiver mutual (Figure 4.4 B and C) and non-mutual (Figure 4.4 F and G) gaze 

onsets in either parents or infants.  

 

 We then wanted to test whether ITC values were greater for mutual vs non-mutual gaze 

onsets. The results of the cluster-based permutation analysis indicated no statistically 

significant differences between looks to mutual vs non-mutual gaze in the sender’s brain 

activity in either parents or infants. The permutation analysis did reveal that ITC in the post 

gaze onset window was significantly greater relative to infant, but not adult receiver mutual 

vs non-mutual gaze onsets (peaking in Theta between 0-500ms post gaze onset, full details 

can be found in SM section 4.7.4).  
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4.5.  Discussion 

 

We took dual EEG recordings from parents and infants whilst they engaged in naturalistic 

free-flowing social interactions. Our data were analysed using cleaning and analysis 

procedures specially designed for naturalistic dual EEG data (Haresign et al., 2021; 2022). 

Since our analyses suggested that eye movement artifact cannot be completely removed from 

the EEG, we primarily compared sections of the data that were both identically time-locked 

to saccades, and therefore contain (presumably) an identical amount of eye movement 

artifact. The saccades were differentiated by the consequences of the saccade (either the 

saccade leads to mutual gaze, or not). Furthermore, we also compared activity only in the 

later parts of the ERP waveform after the first 100ms, when we were confident that no 

residual artifact remained.  

 

Overall, through our analyses we wanted to explore three questions; a) do we get above 

chance inter-brain synchrony during mutual gaze/ around mutual gaze onsets during free-

flowing natural social interactions. B) do we get phase resetting to mutual gaze onsets in 

natural contexts. C) if we get above chance inter-brain synchrony and phase resetting around 

mutual gaze onsets, are they linked. As the result of our analysis indicated that inter-brain 

synchrony was not greater than chance during mutual gaze/ around mutual gaze onsets during 

natural parent-infant social interactions we were not able to answer question c. The 

discussion focuses on the analysis conducted to try to address these questions. 
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Mutual gaze and inter-brain synchrony  

Our first set of research questions explored whether inter-brain synchrony was greater during 

mutual vs non-mutual gaze. Our results indicated that inter-brain synchrony did not 

significantly exceed baseline values for either mutual or non-mutual gaze. Further, comparing 

mutual vs non-mutual gaze, our results indicated that inter-brain synchrony was not greater 

during mutual vs non-mutual gaze, contrary to what we had hypothesised. These null findings 

were consistent across both frequencies and both measures of synchrony that we looked at 

(PLV and PDC), and across both our non-event and event locked analyses.  

These results are inconsistent with previous studies that observed greater inter-brain 

synchrony during continuous (i.e., not relative to specific behaviours/ events within the 

interaction, but rather looking across all moments of a given behaviour during social 

interaction) moments of mutual vs non-mutual gaze. For example, in our previous paper we 

found increased inter-brain synchrony using PDC, in Theta and Alpha, over C3 and C4 

electrodes in N = 29 8-month-olds (Leong et al., 2017). In the present study, we measured 

PDC and PLV across the same frequencies and electrodes in N = 55 12-month-olds.  

 

Although we followed the same analytical techniques as Leong et al., 2017, we used different 

pre-processing techniques and a different (less structured, more naturalistic) paradigm, which 

could explain why our results differ. Firstly, the previous study featured an unfamiliar live 

adult singing nursery rhymes to an infant. Our present study, in contrast, featured primary 

caregivers interacting freely with the infant, using a puppet that they held in their hand. 

Infants’ sensitivity to novel interaction partners is well documented (Bushnell et al., 1989; de 

Haan & Nelson, 1997; 1999; Barry-Anwar et al., 2016; Hoehl et al., 2012). Therefore, one 

explanation for the positive effects of gaze type on inter-brain synchrony in our previous 

study could be due to the saliency of mutual gaze in the presence of an unfamiliar adult. To 
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investigate this further we performed the same analysis with data collected from infant-adult 

dyads. Here the infants interacted with an unfamiliar adult (one of two research assistants). 

The results of these analyses are reported in full in SM 9, but summarised here, we found 

consistent with our main analyses of infant-caregiver dyads inter-brain synchrony was not 

above chance around mutual gaze onsets and did not differ between mutual and non-mutual 

gaze onsets. Further we found that phase resetting around mutual gaze onsets was strongest 

for infant and adult sender compared with receiver gaze onsets.  

 

Second, in our previous study, adults continuously sung nursery rhymes to the infants during 

the interactions, whereas in our present study they talked normally. As sung nursery rhymes 

are highly periodic (Suppanen et al., 2019) and evidence suggests that infant’s neural activity 

entrains to the temporal structure of these songs (Leong et al., 2017a; Attaheri et al., 2022), it 

could be that the regularity of the nursery rhymes introduced an external periodic stimulus 

into the environment that was driving the inter-brain entrainment (e.g., Perez et al., 2017). 

Here, mutual gaze might only enhance or maintain synchrony that is already established, by 

facilitating shared attention and therefore upregulating attention-enhanced neural synchrony. 

It will be important for future research to examine inter-brain synchrony in a variety of 

settings, ranging from very unstructured settings such as those used in the present study to 

more structured settings in which there are environmental stimuli with more regular and 

predictable inputs.  

 

Additionally, to address the possibility that differences in pre-processing procedures could 

explain why we failed to replicate previous findings we cleaned our data following to the best 

of our ability the pre-processing procedures outlined in Leong and colleagues’ (2017) study. 

The full results of this are reported in SM 4.7.10, but to summarise we found that cleaning 
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the data following the procedures of Leong and colleagues had no impact on the significance 

of any of the results of the main paper, ruling out the possibility that differences pre-

processing procedures might be the cause of the discrepancy. Overall, these inconsistencies 

highlight the likely context-specific and localised nature of inter-brain synchrony, and further 

emphasise the importance of replication and standard data quality measures (Luck, 2021) 

when studying inter-brain dynamics (Holroyd, 2022). 

 

Phase resetting around gaze onsets 

For our second set of research questions, we explored event-locked intra and inter-brain 

neural responses associated with mutual gaze onsets. Through this, we aimed to test our 

previously published hypothesis that concomitant phase resetting in the sender and the 

receiver’s brain at the onset of gaze may drive inter-brain synchrony (Leong et al., 2017; 

Wass et al., 2020). Overall, the results of our event-locked analyses are inconsistent with this 

idea. Contrary to our hypothesis, inter-brain synchrony did not significantly exceed baseline 

values for sender/ receiver mutual or non-mutual gaze onsets and was not significantly 

different between sender or receiver mutual vs non-mutual gaze onsets. Further, whilst we 

found that sender but not receiver mutual and non-mutual gaze onsets led to significant 

increases in ITC and amplitude (ERPs) over baseline, we did not find significant differences 

between sender or receiver mutual vs non-mutual gaze onsets. We did, however, find 

evidence for increases in ITC relative to sender mutual and non-mutual gaze onsets (section 

4.3.4); but it is difficult to conclude that this represents phase resetting of brain oscillations. It 

could also be that changes in event locked amplitude/ power create the artifactual appearance 

of phase synchrony (Muthukumaraswamy et al., 2011) – a fact that the close correspondences 

we observed between ITC and event-locked changes in amplitude/power (see SM 4.7.2) 

would appear to support. 
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One possible driver of the sender neural responses could be residual eye movement artifact in 

our data. In the supplementary analysis (SM section 4.7.3) we compare time-frequency power 

over frontal and occipital electrodes before and after ICA cleaning and report that ICA 

cleaning removed most, but not all, of the assumed artifactual activity associated with the eye 

movement- a conclusion consistent with our previous research (Haresign et al., 2021). This 

analysis also allowed us to identify that these artifacts are transient (~100ms) and therefore 

only impacted the initial part of the ERP waveform. After the initial ~+150-200ms we 

observed ERP components that look very similar to ERPs observed in traditional screen-

based tasks, with clear P1, N290 and P400 components. For added safety, however, our main 

analyses were based on comparing sections of the data that are both identically time-locked 

to saccades, and therefore contain an identical amount of eye movement artifact.  

 

Overall, then, our results challenge the theory that phase resetting around key communicative 

signals such as mutual gaze is a mechanism through which inter-brain synchrony is achieved. 

Assuming that inter-brain synchrony according to more recent frameworks (Holroyd, 2022) 

is associated with mutual gaze. This points to the potential importance of other potential 

drivers of inter-brain synchrony, that future work should investigate in more detail – such as 

correlated changes in amplitude/ power or changes in oscillatory frequency independent of 

phase resetting (see Haresign et al., 2022 for a detailed discussion), and other more periodic 

behaviours (e.g., speech; Leong et al., 2017a; Attaheri et al., 2022).  

 

Re-examining the importance of ‘receiver’ mutual gaze in infant-caregiver social interaction  

Our third aim was to test the hypothesis that infants are highly sensitive to ostensive signals 

during free-flowing social interactions with their caregivers. A number of influential papers 
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(Farroni et al., 2002; 2004 Grossman et al., 2007; Senju & Johnson 2009; Csibra & Gergely, 

2009) argue that, from shortly after birth, infants’ brains are sensitive to receiving ostensive 

signals, and that ‘sender’ communicative signals play a key role during naturalistic learning 

exchanges. However, as we noted these findings have not replicated well in developmental 

research; for example, Elsabbagh and colleagues (2009) or in research with adults (e.g., 

Watanabe et al., 2001; Taylor et al., 2001b; Watanabe et al., 2002; Itier et al., 2007; Conty et 

al., 2007; Ponkanen et al., 2011). 

 

Contrary to expectations we found robust neural responses only in the senders’ (i.e., the agent 

initiating the gaze episode) and not in the receivers’ neural responses. This was true both for 

receiver non-mutual gaze onsets (where receivers were not looking at their partners and thus 

may have failed to detect their partners’ gaze shift), but also for the receiver-mutual condition 

(where receivers were directly gazing towards their partner at the time of the gaze shift). 

Evidence from adult ERP studies in which dynamic changes in gaze are simulated, through 

the presentation of a series of static images on a screen suggest that human adults are 

sensitive to ‘dynamic’ changes in gaze (Latinus et al., 2015; Stephani et al., 2020). However, 

these simulated changes in gaze are still far from the continuous way that gaze is processed 

during real social interactions, and it is likely that the effects observed in these studies are 

largely driven by more low-level properties of the simulation (e.g., retinal stimulation evoked 

by the presentation of a series of static images) rather than reflecting the actual processing of 

the gaze shift. When scrambled control images are presented in this same way this produces 

similar neural responses to those associated with processing simulated changes in gaze (Rossi 

et al., 2014). This suggests that whilst these studies do capture some neural mechanisms that 

are sensitive to moment-to-moment changes in the visual input from our environment, these 

studies do a poor job of simulating the continuous flow of gaze information that happens 
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during real life social interaction. However, these studies do show some subtle neural 

sensitivity to changes in gaze orientation that perhaps we were unable to capture with the 

level of sensitivity afforded in our current approach. This raises basic questions over where, 

when and under what circumstances changes in a partner’s gaze during free-flowing social 

interactions impacts the neural activity of the receiver (the person viewing the gaze shift). 

Again, one possible explanation for the inconsistencies between previous screen-based tasks 

and the present study is simply it is just a result of increased artifact through the use of a 

naturalistic paradigm.  

 

However, we note that: i) our ERPs show a close visual correspondence with ERPs observed 

in traditional ERP paradigms (see Figure 4.6); ii) the overall measures of EEG data quality 

we reported show good quality data (see SM section 4.7.8); iii) we did replicate the findings 

from screen-based ERP research that infants show enhanced ERPs to images of faces vs 

objects (Guy et al., 2016; 2018; Peykarjou & Hoehl, 2013; Xie & Richards, 2016) (SM 

section 4.7.1); We observed statistically greater occipital ERP amplitudes for faces vs objects 

for the N290 component, but not for P1 or P400 components. Overall, then, we found 

changes in brain activity only in the person that initiated the episode of mutual gaze (the 

sender), and no changes in the recipient of the mutual gaze. This conclusion suggests a 

different account of the dyadic mechanisms involved in the processing of mutual gaze. In 

contrast to evidence suggesting that mutual gaze involves both infants and adults reciprocally 

influencing each other’s neural activity towards shared rhythms (Leong et al., 2017), we 

found changes in brain activity only in the person that initiated the episode of mutual gaze 

(the sender). This suggests that in this context, mutual gaze processing is more supported 

through more basic changes at the intra-brain level, which do not specifically affect inter-

brain associations. For example, evidence suggests that eye movements lead to low frequency 
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phase reorganisation in brain structures such as the hippocampus that are deeper than those 

that can be measured using scalp EEG (e.g., Hoffman et al., 2013). Eye movements may 

create transient increases in neural sensitivity within certain structures within an individual’s 

brain that support them in processing the new visual information (e.g., mutual gaze) 

(Klimesch et al., 2007). 

 

4.6.  Conclusion  

 

We investigated the possibility that concomitant phase resetting in response to mutual gaze 

onsets during naturalistic infant-caregiver interactions might be a mechanism through which 

inter-brain synchrony is established. We found no evidence for changes in inter-brain 

synchrony around gaze onsets and no evidence to support our previously published 

suggestion that phase resetting in the sender and the receiver’s brain around mutual gaze 

onsets may be a mechanism through which inter-brain synchrony arises (Leong et al., 2017; 

Wass et al., 2020). Further, contrary to our prediction, we found that mutual gaze onsets 

associated with neural responses in ‘senders’, but not in ‘receivers’ brains. Overall, our study 

challenges current views on the importance of mutual gaze. It highlights the fact that we need 

pluralistic approaches to better understand early social cognition. And it highlights the 

importance of studying how infants perceive communicative signals during naturalistic 

interactions, and across different real-world contexts.  
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4.7.1. Intra brain analysis – ERPs to faces vs objects 

 

 

Figure 4.8. Event-related potentials time-locked to naturally occurring partner (face) gaze 

and object gaze onsets. A) Infant occipital ERPs relative to onsets of infant looks to their 

partners face vs infant looks to object. Shaded areas indicate 95% confidence intervals, 
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thicker lines indicate grand average waveforms and black line indicates time points at which 

ERP amplitudes for faces vs objects were significantly greater at p = .05.B) Grand average 

amplitudes for P100 component for faces vs objects. C) Grand average amplitudes for N290 

component for faces vs objects. D) Grand average amplitudes for P300 component for faces 

vs objects. Bar charts are for visual purposes only to show the direction of the difference of 

the three ERP components assessed from panel A. Error bars indicate 95% confidence 

intervals. 

 

Figure 4.8. shows the results of the ERP analysis, comparing infant-initiated partner and 

object looks. As an additional analysis to our comparison between mutual and non-mutual 

gaze we wanted to replicate previous findings (e.g., Conte et al., 2020) that show greater 

infant ERP amplitudes to faces vs objects. We observed statistically greater occipital ERP 

amplitudes for faces vs objects for the N290 component (p = 0.03), but not for P1 or P400 

components, p = 0.14/ p = 0.50 respectively. Note these represent uncorrected p values. Our 

results suggested that our paradigm differentiates neural responses to face vs object looks, 

consistent with the results from previous ERP studies. 

 

4.7.2. Intra brain event locked analysis - Power 

It is known that changes in spectral power resulting from evoked neural responses can give 

the appearance of increased phase-locking/ resetting, due to changes in signal to noise ratios 

and error associated with estimating phase (Muthukumaraswamy et al., 2011). Power was 

obtained as the square of the absolute values derived from the wavelet convolution procedure 

described in section 4.3.4 of the main text. Time-frequency power was baseline normalised 
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(decibel normalised) using activity in the -1000 to -700ms time window and averaged over 

trials. 

 

Differences between mutual and non-mutual gaze onsets in spectral power were assessed 

following the same statistical procedure as detailed in the main text, using a cluster-based 

correction for multiple comparisons with an alpha value of .05. We found no significant 

differences in spectral power between gaze types after correction for multiple comparisons 

(see Figure 4.10). However, it is important to note the visual similarities in the time-

frequency characteristics between the observed event locked ITC (see Figure 4.9) and power 

changes around gaze onsets. The significance of this is discussed within section 4.5.2 of the 

main text. 

 

 

Figure 4.9. Occipital power time-locked to naturally occurring mutual and non-mutual gaze 

onsets. A) Infant and adult occipital power relative to infant sender/ adult receiver looks to 

mutual (bltm) and non-mutual gaze (bltnm) onsets. B) Infant and adult occipital power 

relative to adult sender/ infant looks to mutual (mltm) and non-mutual gaze (mltnm) onsets. 
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Figure 4.10. Result of cluster-based permutation procedure for event locked power for gaze 

type A) Result of permutation for infant occipital power comparing infant sender/adult 

receiver looks to mutual vs non-mutual. B) Result of permutation for adult occipital power 

comparing infant sender/ adult receiver mutual vs non-mutual gaze onsets. C) Result of 

permutation for infant occipital power comparing adult sender/ infant receiver mutual vs 

non-mutual gaze onsets. D) Result of permutation for adult occipital power comparing adult 

sender/ infant receiver mutual vs non-mutual gaze onsets. For each, the top left plot is the 

raw differences where hotter (more yellow) colours indicate more power for mutual vs non-

mutual. The top right plot shows z scored differences. The bottom left plot shows thresholded 

differences (at p = .05) before cluster correction for multiple comparisons. The bottom right 
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shows the final results of cluster-based permutation statistics after correction for multiple 

comparisons.  

 

4.7.3. ITC effects and eye movements 

Here we conducted additional analysis to explore the possibility that the observed ITC effects 

could be a result of the eye movement artifacts and not the neural response associated with 

the processing of the new gaze information. To do this we first examined how the ITC effects 

varied topographically. Specifically, we looked at whether ITC was stronger over frontal 

(averaged over electrodes Fp1, Fp2, Af3, Af4) vs occipital (averaged over electrodes O1, O2, 

Oz, Po3, Po4) channels. From Figure S3 it can be seen that the ITC is weaker over frontal 

than occipital channels, suggesting that the occipital ITC is more strongly associated with the 

neural response rather than the eye movement artifact as we observed similar topographical 

patterns for amplitude and power (e.g., see SM section 4.7.2).  

 

However, it is possible that our pre-processing procedure was bias toward removing frontal 

activity and therefore could have created the topographical differences we observed for ITC. 

In our data, we attempted to remove eye-movement artifacts using ICA decomposition, and 

an automated procedure was adopted for judging which components should be removed  

(Marriott Haresign et al., 2021). Though ICA algorithms are not biased towards removing 

specific types of artifacts, eye movement artifacts are often more stereotyped and easier to 

identify in an ICA decomposition (Chaumon et al., 2015), which could have led to biases in 

the systems judgement of which ICA components should be removed. Therefore, we also 

checked the topographical distribution of the observed ITC effects in data that had not been 

cleaned using ICA. Here we found consistent with our main findings, ITC was strongest over 
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occipital electrodes. Overall, these data suggest that it is unlikely that these observed ITC is 

driven by the eye movement artifact itself, but rather the resulting neural response. 

  

 

Figure 4.11. Event-locked ITC time-locked to naturally occurring mutual and non-mutual 

gaze onsets before and after ICA cleaning. A) Infant and adult frontal ITC relative to infant 

sender/ adult receiver mutual and non-mutual gaze onsets post-ICA. B) Infant and adult 

occipital ITC relative to infant sender/ adult receiver mutual and non-mutual gaze onsets 

post-ICA. C) Infant and adult frontal ITC relative to adult sender/ infant receiver mutual and 

non-mutual gaze onsets pre-ICA. D) Infant and adult occipital ITC relative to adult sender/ 

infant receiver mutual and non-mutual gaze onsets pre-ICA. 
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4.7.4. Intra-brain event locked analysis ITC – Results of permutation procedure  

 

 

Figure 4.12. Result of cluster-based permutation procedure for event locked ITC relative to 

baseline.  A) Result of cluster-based permutation procedure for infant occipital ITC relative 

to infant sender/adult receiver mutual gaze onsets. B) Result of cluster-based permutation 

procedure for infant occipital ITC relative to infant sender/adult receiver non-mutual gaze 

onsets. C) Result of cluster-based permutation procedure for infant occipital ITC relative to 

adult sender/ infant receiver mutual gaze onsets. D) Result of cluster-based permutation 

procedure for infant occipital ITC relative to adult sender/infant receiver non-mutual gaze 

onsets. For each, the top left plot is the raw differences where hotter (more yellow) colours 

indicate more ITC for looks to mutual vs non-mutual. The top right plot shows z scored 
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differences. The bottom left plot shows thresholded differences (at p=0.05) before cluster 

correction for multiple comparisons. The bottom right shows the final results of cluster-based 

permutation statistics after correction for multiple comparisons.                                        

 

Figure 4.13. Result of cluster-based permutation procedure for event locked ITC relative to 

baseline. A) Result of cluster-based permutation procedure for adult occipital ITC relative to 

infant sender/ adult receiver mutual gaze onsets. B) Result of cluster-based permutation 

procedure for adult occipital ITC relative to infant sender/ adult receiver non-mutual gaze 

onsets. C) Result of cluster-based permutation procedure for adult occipital ITC relative to 

adult sender/ infant receiver mutual gaze onsets. D) Result of cluster-based permutation 
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procedure for adult occipital ITC relative to adult sender/ infant receiver non-mutual gaze 

onsets. For each, the top left plot is the raw differences where hotter (more yellow) colours 

indicate more ITC for looks to mutual vs non-mutual. The top right plot shows z scored 

differences. The bottom left plot shows thresholded differences (at p=0.05) before cluster 

correction for multiple comparisons. The bottom right shows the final results of cluster-based 

permutation statistics after correction for multiple comparisons.                                        

 

 

Figure 4.14. Result of cluster-based permutation procedure for event locked ITC for effect of 

gaze type A) Result of cluster-based permutation procedure for infant occipital ITC 

comparing infant sender mutual vs non-mutual gaze onsets. B) Result of cluster-based 

permutation procedure for adult occipital ITC comparing infant sender mutual vs non-mutual 

gaze onset. C) Result of cluster-based permutation procedure for infant occipital ITC 



177 

 

comparing adult sender mutual vs non-mutual gaze onsets. D) Result of cluster-based 

permutation procedure for adult occipital ITC comparing adult sender mutual vs non-mutual 

gaze onsets. For each, the top left plot is the raw differences where hotter (more yellow) 

colours indicate more ITC for looks to mutual vs non-mutual. The top right plot shows z 

scored differences. The bottom left plot shows thresholded differences (at p=0.05) before 

cluster correction for multiple comparisons. The bottom right shows the final results of 

cluster-based permutation statistics after correction for multiple comparisons. 

4.7.5. Inter-brain event locked analysis PLV and PDC – Results of permutation procedure  

 

Figure 4.15. Result of cluster-based permutation procedure for event locked PLV relative to 

baseline. A) Result of cluster-based permutation procedure for occipital PLV relative to 
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infant sender mutual gaze onsets. B) Result of cluster-based permutation procedure for 

occipital PLV relative to infant sender non-mutual gaze onsets. C) Result of cluster-based 

permutation procedure for occipital PLV relative to adult sender mutual gaze onsets. D) 

Result of cluster-based permutation procedure for occipital PLV relative to adult sender non-

mutual gaze onsets. For each, the top left plot is the raw differences where hotter (more 

yellow) colours indicate more PLV for looks to mutual vs non-mutual. The top right plot 

shows z scored differences. The bottom left plot shows thresholded differences (at p=0.05) 

before cluster correction for multiple comparisons. The bottom right shows the final results 

of cluster-based permutation statistics after correction for multiple comparisons.  

 

Figure 4.16. Result of cluster-based permutation procedure for PLV over occipital 

electrodes. A) shows difference between infant sender/ adult receiver looks to mutual vs non-

mutual gaze onsets. B) shows difference between adult sender/ infant receiver mutual vs non-

mutual gaze onsets (hotter, more yellow colours indicate more PLV for mutual vs non-mutual 

gaze).                                
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Figure 4.17. Result of cluster-based permutation procedure for event locked PDC relative to 

baseline. A) Result of cluster-based permutation procedure for occipital I→A PDC relative 

to infant sender/ adult receiver mutual gaze onsets. B) Result of cluster-based permutation 

procedure for I→A occipital PLV relative to infant sender/ adult receiver non-mutual gaze 

onsets. C) Result of cluster-based permutation procedure for occipital A→I PDC relative to 

infant sender/ adult receiver mutual gaze onsets. D) Result of cluster-based permutation 

procedure for A→I occipital PLV relative to infant sender/ adult receiver non-mutual gaze 

onsets. For each, the top left plot is the raw differences where hotter (more yellow) colours 

indicate more PDC for mutual vs non-mutual. The top right plot shows z scored differences. 

The bottom left plot shows thresholded differences (at p=0.05) before cluster correction for 
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multiple comparisons. The bottom right shows the final results of cluster-based permutation 

statistics after correction for multiple comparisons. I→A  means infant to adult influence. 

A→I means adult to infant influence.                     

 

 

Figure 4.18. Result of cluster-based permutation procedure for event locked PDC relative to 

baseline. A) Result of cluster-based permutation procedure for occipital I→A PDC relative 

to adult sender/ infant receiver mutual gaze onsets. B) Result of cluster-based permutation 

procedure for I→A occipital PLV relative to adult sender/ infant receiver non-mutual gaze 

onsets. C) Result of cluster-based permutation procedure for occipital A→I PDC relative to 

adult sender/ infant receiver mutual gaze onsets. D) Result of cluster-based permutation 

procedure for A→I occipital PLV relative to adult sender/ infant receiver non-mutual gaze 
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onsets. For each, the top left plot is the raw differences where hotter (more yellow) colours 

indicate more PDC for mutual vs non-mutual. The top right plot shows z scored differences. 

The bottom left plot shows thresholded differences (at p=0.05) before cluster correction for 

multiple comparisons. The bottom right shows the final results of cluster-based permutation 

statistics after correction for multiple comparisons. I→A  means infant to adult influence. 

A→I means adult to infant influence.                     

 

Figure 4.19. Result of cluster-based permutation procedure for PDC over occipital 

electrodes. A) shows difference between infant sender/ adult receiver mutual vs non-mutual 

gaze onsets for I→A influences. B) shows difference between infant sender/ adult receiver 

mutual vs non-mutual for A→I influence. C) shows difference between adult sender/ infant 

receiver mutual vs non-mutual gaze onsets for I→A influences. D) shows difference between 
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adult sender/ infant receiver mutual vs non-mutual gaze onsets for A→I influence (hotter, 

more yellow colours indicate more PLV for mutual vs non-mutual gaze). I→A  means infant 

to adult influence. A→I means adult to infant influence.                     

 

4.7.6. Results of Bayes Factor analysis  

 

4.7.6.1 Inter-brain non-event locked analysis – PLV and PDC 

 

Table 4.1. Results of Bayes Factor analysis of inter-brain non-event locked PLV and PDC in 

theta and alpha. For each cell of the table the first number is the bf10 score, the second is the 

p value associated with the bf10 test and the third number is the bf01 score. These tests were 

conducted on average data over C3 and C4 electrodes in theta (3-6Hz) and alpha (6-9Hz). 

 

4.7.6.2. Inter-brain event locked analysis – PLV and PDC 

 

 Theta Alpha 

 

PLV 0.19/ 0.49/ 5.31 0.16/ 0.74/ 6.35 

I→A  PDC 0.16/ 0.70/ 6.22 0.16/ 0.66/ 6.08 

A→I PDC 0.18/ 0.50/ 5.37 0.19/ 0.48/ 5.25 

 Theta Alpha 

 

PLV 0.24/ 0.34/ 4.24 0.37/ 0.17/ 2.69 



183 

 

 

Table 4.2. Results of Bayes Factor analysis of inter-brain event locked PLV and PDC in theta 

and alpha. For each cell of the table the first number is the bf10 score, the second is the p 

value associated with the bf10 test and the third number is the bf01 score. These tests were 

conducted on average data over occipital electrodes in theta (3-6Hz) and alpha (6-9Hz). 

 

 

4.7.7. Intra-brain analysis – ERP topoplots 

 

 

Figure 4.20. Topographical distribution of ERPs relative to infant sender mutual (A) and 

non-mutual (B) gaze onsets. Time 0 is onset of gaze. 

I→A  PDC 0.18/ 0.55/ 5.58 0.18/ 0.52/ 5.42 

A→I PDC 0.18/ 0.58/ 5.71 0.18/ 0.57/ 5.67 

A 

B 
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Figure 4.21. Topographical distribution of ERPs relative to adult sender mutual (A) and non-

mutual (B) gaze onsets. Time 0 is onset of gaze. 

 

 

4.7.8. Intra-brain analysis – ERP SEM 

 

In this section we report the standard error to the mean of single trail and group average (GA) 

ERP data for infant and adult, sender and receiver, mutual and non-mutual gaze onsets.  

 

 

B 

A 
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 Sender Receiver 

 Mutual Non-mutual Mutual Non-mutual 

Su

b 

no. 

P1 N29

0 

P40

0 

P1 N29

0 

P40

0 

P1 N29

0 

P40

0 

P1 N29

0 

P40

0 

1 1.98 2.04 1.79 2.59 6.15 3 2.15 1.84 2.11 1.31 1.23 1.19 

2 1.81 3.39 1.54 2.26 2.17 1.78 2.15 2.21 2.07 1.94 2.48 1.72 

3 5.05 

10.8

2 

11.5

4 5.64 5.82 4.56 4.93 8.43 4.99 4.05 5.04 8.1 

4 2.2 2.81 1.44 2.21 3.44 2.68 1.18 1.25 1.04 1.66 2.03 1.75 

5 4.4 1.82 6.82 7.85 7.43 3.72 2.5 3.59 3.16 3.77 3.24 2.81 

6 1.46 2.99 2.44 1.09 1.62 0.96 1.65 1.07 1.46 1.1 1.22 0.99 

7 4.95 4.79 3.14 2.26 6.98 6.33 5.09 3.09 3.53 9.05 3.73 5.92 

8 1.55 1.66 1.58 2.03 2.44 0.65 4.6 2.24 2.6 1.31 1.33 1.05 

9 2.57 2.38 2.54 3.76 3.12 2.82 4.58 4.9 6.2 2.45 2.75 2.63 

10 1.82 1.74 1.65 2.62 3.93 3.73 3.74 2.13 2.99 2.6 1.59 1.96 

11 7.63 5.73 3.72 6.62 7.9 7.56 8.42 3.19 2.5 3.68 3.31 1.95 

12 2.35 2.94 2.76 4 3.97 3.82 5.26 4.46 2.65 2.37 1.62 2.17 

13 1.01 1.14 0.95 0.56 1.53 4.88 1.56 1.42 1.75 0.83 0.93 0.74 

14 1.11 1.07 1.28 3.78 4.89 7.63 5.32 4.83 2.35 1.19 1.5 1.47 

15 2.87 3.24 1.8 3.22 3.36 2.75 2.9 2.82 1.78 2.14 3.62 1.82 

16 8.83 6.79 8.61 3.04 5.1 4.27 2.24 5.12 2.92 3.33 5.45 4.37 

17 2.5 2.31 2.1 1.45 3.15 1.92 3.3 3.26 2.51 1.48 1.35 1.21 

18 2.29 2.59 2.16 3.01 2.47 3.67 2.2 1.97 2.2 2.16 2.06 1.73 
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19 2.3 2.77 2.36 2.34 3.51 1.7 2.39 5.35 3.53 3.58 4 2.91 

20 3.11 3.83 3.4 2.14 3.45 2.28 1.59 1.9 1.67 2.04 2.11 1.66 

21 2.71 2.09 1.89 3.87 4.14 3.58 3.05 2.84 2.55 2.19 1.7 1.83 

22 1.83 1.6 1.45 2.41 4.4 3.45 1.4 1.37 1.37 1.11 0.82 1.04 

23 

14.3

5 

16.3

9 

19.6

9 6.31 

10.1

5 6.45 9.49 

16.9

6 7.15 

15.0

5 

11.4

2 

15.5

1 

24 3.6 2.94 2.44 7.09 3.22 1.98 5.55 4.46 4.06 2.93 2.58 3.25 

25 2.5 2.25 2.56 3.8 3.2 3.13 3.27 3.78 3.62 1.65 1.61 1.52 

26 2.44 2.32 1.98 3.21 4.3 4.52 2.72 3.66 3.18 2.4 2.74 2.54 

27 3.67 3.79 2.83 6.46 4.33 4.24 1.91 2.98 3.25 2.35 2.68 1.94 

28 3.28 3.24 3.16 4.13 4.17 2.86 4.14 4.96 2.65 4.57 3.01 2.76 

29 6.52 

18.0

5 

13.7

9 

37.6

3 

39.2

9 

19.0

9 

21.8

8 

53.3

1 3.76 8.6 8.95 

12.0

9 

30 2.37 3.05 2.44 4.28 4.37 2.89 5.78 

10.9

4 7.02 2.45 3.07 2.02 

31 2.23 7.21 4.89 6.51 6.19 3.3 3.5 4 4.62 1.81 1.97 2.02 

32 

11.9

7 

12.9

7 5.53 5.85 8.49 4.76 4.28 5.87 4.46 7.04 7.38 3.38 

33 1.84 2.05 1.97 5.54 5.53 3.14 3.35 2.93 3.3 1.94 2.43 2.4 

34 1.92 2.36 1.97 2.81 3.38 1.88 2.74 1.47 1.86 1.15 1.04 0.97 

35 4.86 6.43 4.08 3.31 3.73 4.56 4.33 4.98 4.38 5.29 5.87 4.24 

36 3.1 3.05 2 3 3.77 2.88 3.54 4.41 3.28 3.8 3.03 2.62 

37 2.35 3.2 4.43 4.71 1.75 2.18 3.87 8.69 3.87 3.42 2.19 2.03 

38 9.08 2.2 2.43 5.92 3 3.95 6.16 3.76 3.77 1.85 2.5 2.19 
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39 1.99 2.42 1.82 2.17 4.42 6.13 2.62 2.23 4.29 2.19 2.22 2.05 

40 2.62 4.82 2.25 2.69 

10.1

9 4.85 2.45 3.75 2.98 5 4.61 3.73 

41 8.1 9.09 5.57 14.4 9.59 

13.4

6 

11.2

4 

15.9

8 

13.2

2 2.28 2.4 2.67 

42 3.06 4.02 3.87 3.81 3.68 4.82 2.99 2.96 3.34 1.8 1.4 1.32 

43 2.3 2.17 2.51 2.31 1.87 2.66 2.18 1.51 1.8 1.18 1.25 1.06 

44 3 2.42 2.98 5.13 3.67 1.95 2.63 3.79 2.61 1.41 1.39 1.61 

45 

10.7

6 10.8 

13.1

2 4.05 5.37 5.21 7.18 5.6 7.59 4.71 4.46 4.41 

46 

10.2

3 

20.4

2 

24.9

4 

120.

06 

99.4

7 

21.6

2 

42.2

5 

47.5

9 

44.9

3 

24.0

3 

19.1

9 

16.4

4 

47 2.26 4.19 2.47 3.46 7.14 4.18 2.96 2.02 2.34 1.28 1.95 1.13 

48 3.86 3.43 2.58 3.81 3.85 1.52 3.09 4.3 1.64 4.42 8.59 4.53 

49 

13.8

4 

15.6

5 7.94 4.33 6.03 5.47 5.26 4.96 5.87 

13.6

1 

21.6

4 

12.7

2 

50 1.39 2.28 1.67 2.58 1.82 1.98 2.48 2.52 2 2.64 4.15 2.35 

51 2.22 3.39 1.99 4.15 3.1 3.2 2.56 1.61 1.85 2.45 1.85 1.8 

52 

36.8

7 34.8 

37.6

7 8.41 6.63 7.99 

15.5

9 

17.3

4 

19.9

6 10.8 

21.1

3 8.14 

53 

12.2

8 8.99 

13.6

7 

10.7

6 2.85 13.6 

14.0

3 

17.6

4 

30.2

4 8 5.63 5.71 

G

A 1.26 2.23 3.32 5.22 2.12 2.41 1.26 0.9 3.32 0.99 2.12 1 
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Table 4.3. Results of standard error of the mean tests of infant ERP data. Note that removing 

outliers did not impact the significance of any of the tests, i.e., no tests that were not 

significant before became significant after removing outlier data a re-testing. 
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 Sender Receiver 

 Mutual Non-mutual Mutual Non-mutual 

Su

b 

no. 

P1 N17

0 

P30

0 

P1 N17

0 

P30

0 

P1 N17

0 

P30

0 

P1 N17

0 

P30

0 

1 

284.

78 

291.

87 

196.

88 

359.

57 

227.

26 

338.

18 

307.

82 

198.

98 

269.

4 

273.

98 

108.

67 

175.

12 

2 

111.

08 

121.

85 

109.

46 

133.

38 

105.

24 

196.

23 

106.

21 

162.

83 

115.

62 

206.

06 

177.

56 

164.

46 

3 1.25 1.29 1.24 2.14 1.78 2.28 1.86 1.62 1.37 1.22 1.53 1.12 

4 0.62 0.7 0.69 0.57 0.9 1.22 0.41 0.45 0.49 0.49 0.64 0.61 

5 1.83 2.81 1.89 3.22 4.14 2.71 3.42 2.96 2.53 1.93 2.93 2.51 

6 0.48 0.64 0.42 0.49 0.49 0.42 0.7 0.76 0.41 0.56 0.74 0.46 

7 1.22 0.87 1.05 1.71 2.48 1.39 1.94 2.46 1.59 1.83 2.19 2.16 

8 4.27 3.05 3.83 6.89 

10.0

3 9.64 13.5 6.2 4.52 1.74 1.86 2.29 

9 1.1 1.23 1.1 1.35 1.21 1.15 0.91 1.08 0.99 1.68 1.59 1.25 

10 2.34 1.92 2.97 4.45 4.05 4.82 3.85 4.67 3.27 2.27 2.28 2.74 

11 4.52 1.72 3.52 3.29 3.82 3.28 6.72 6.03 5.02 5.02 1.23 2.88 

12 1.01 0.96 0.94 2.12 3.59 1.74 1.21 1.67 2.55 1.15 1.06 0.96 

13 1.94 1.09 1.6 4.08 3.94 5.91 1.69 1.28 1.91 0.77 0.76 0.8 

14 0.93 1.23 0.82 4.05 3.9 1.15 2.67 3.42 2.54 0.89 1.04 0.93 

15 1.1 1.24 0.94 2.95 2.62 1.19 1.17 1.19 1.44 0.96 1.41 0.95 

16 1.23 1.07 0.9 1.86 1.34 1.22 2.6 2.25 1.71 1.12 1.46 1.33 
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17 1.16 1.25 1.24 1.06 1.09 1.28 1.61 1.81 1.38 1.48 1.38 0.97 

18 5.92 3.34 5.41 1.36 1.65 2.11 8.54 4.28 4.35 0.77 1.1 0.77 

19 0.66 0.5 0.62 6.28 7.91 23.3 2.59 1.84 1.43 7.73 5.22 4.38 

20 1.45 2.04 1.44 0.79 0.67 1.44 1.24 1.27 0.92 0.72 1.21 0.8 

21 2.35 3.29 2.29 1.53 1.72 2.43 1.69 1.52 1.82 1.14 1.13 0.92 

22 2.5 2.86 2.09 1.32 1.31 1.54 1.75 3.24 1.68 1.11 0.71 0.81 

23 1.32 2.34 1.56 4.52 4.46 3.75 3.95 6.49 1.78 2.58 2.05 2.03 

24 3.66 2.87 2.58 2.45 5.31 5.23 5.72 3.79 3.72 2.24 4.37 2.93 

25 1.27 1.26 1.3 0.62 0.94 0.23 1.84 2.05 1.81 6.37 3.23 2.34 

26 4.38 2.95 2.5 2.62 1.54 2.14 2.37 2.57 2.02 0.73 0.82 0.73 

27 1.28 1.35 1.52 2.92 3.95 5.87 1.78 1.63 1.97 3.29 2.31 2.85 

28 1.21 1.13 1.04 2.43 2.54 2.95 2.18 2.14 3.01 0.89 1.03 0.77 

29 2.88 2.67 1.94 1.1 1.86 1.26 5.16 0.35 4.02 1.54 1.2 1.68 

30 1.56 3.74 4.32 9.02 

12.0

8 6.15 4.03 2.08 2.79 4.53 2.02 2.72 

31 4.57 1.82 4.4 1.13 1.15 0.96 2.75 1.58 3.69 0.97 1.06 0.94 

32 3.16 3.27 2.6 2.28 0.96 2.14 5.56 3.65 3.98 1.65 1.99 1.87 

33 0.9 1.21 0.86 2.82 2.77 2.72 1.67 1.31 1.58 2.05 1.35 1.37 

34 1.1 1.14 0.91 3.42 4.03 1.94 1.15 1.05 1.04 1.23 1.45 0.91 

35 1.49 1.31 1.57 1.44 1.4 1.53 1.48 1.91 2.04 0.62 0.61 0.71 

36 0.46 0.62 0.68 2.16 1.94 2.3 0.78 1.55 0.49 1.16 1.07 0.75 

37 1.3 1.52 1.01 0.6 0.38 0.46 1.46 1.15 1.19 0.4 0.37 0.39 

38 0.9 0.94 1.02 0.85 0.93 0.93 1.64 1.8 1.05 1.04 1.42 1.59 

39 1.69 1.15 1.5 2.84 1.56 1.41 1.58 2.28 1.56 1.36 1.24 1.09 
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Table 4.4. Results of standard error of the mean tests of adult ERP data. Note that removing 

outliers did not impact the significance of any of the tests, i.e., no tests that were not 

significant before became significant after removing outlier data and retesting  

 

4.7.9. Analysis of infant-adult dyads  

To address the possibility that the discrepancy between the findings of the current study and 

those in the study by Leong and colleagues (2017) could be due to differences in partner 

familiarity, we performed an additional analysis with data collected from dyadic interactions 

in which the same infants interacted with a previously unfamiliar adult (a research assistant). 

This dataset included 17 infant-adult dyads (average 12m infants). This data was taken from 

visit 2 of a broader research program in which infants interacted with a research assistant 

(one of two). In visit 1 data for the main findings was collected, whilst infants interacted with 

their caregivers. The exact same experimental set up and paradigm was used for both visits, 

details of which can be found in section 4.2.4 of the main text. The results of this additional 

analysis are focused on our core research questions a) do we observe above-chance inter-

brain synchrony during mutual gaze/ around mutual gaze onsets during free-flowing natural 

social interactions. b) do we observe phase resetting to mutual gaze onsets in natural 

contexts. c) if we observe above chance inter-brain synchrony and phase resetting around 

mutual gaze onsets, are they inter-related? Here, we wanted to investigate whether any of 

these were influenced by partner familiarity.  
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4.7.10.  Intra-brain event locked analysis – ITC 

Consistent with our main findings with infant-caregiver dyads (see section 4.4.4. of main 

text) we found that for infant-adult ITC values, over occipital electrodes, and frequencies 2-

18 Hz, did not significantly exceeded baseline values generated from a permutation test. The 

permutation analysis indicated that ITC in the post-gaze onset window was significantly 

higher than baseline for sender mutual (Figure 4.22 A and D) and non-mutual (Figure 4.22 E 

and H) gaze onsets, in both parents and infants, but not for receiver mutual (Figure 4.22 B 

and C) and non-mutual (Figure 4.22 F and G) gaze onsets in either parents or infants. We 

then tested whether ITC values for the infant-adult dyads were greater for mutual vs non-

mutual gaze onsets. The results of the cluster-based permutation analysis indicated no 

statistically significant differences between looks to mutual vs non-mutual gaze in the 

sender’s brain activity in either adults or infants. 

 

 

Figure 4.22. Inter-trial phase coherence time-locked to naturally occurring mutual and non-

mutual gaze onsets. A) Infant ITC relative to infant sender mutual gaze onsets. B) Adult ITC 
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relative to adult receiver mutual gaze onsets. C) Infant ITC relative to infant receiver mutual 

gaze onsets. D) Adult ITC relative to adult sender mutual gaze onsets. E) Infant ITC relative 

to infant sender non-mutual gaze onsets. F) Adult ITC relative to adult receiver non-mutual 

gaze onsets. G) Infant ITC relative to infant receiver non-mutual gaze onsets. H) Adult ITC 

relative to adult sender non-mutual gaze onsets. No significant differences were identified. 

 

 

7.7.11.  Inter-brain event locked analysis – PLV 

Again, consistent with our main findings with infant-caregiver dyads we found that PLV and 

PDC values over occipital electrodes and in the 2-18 Hz range did not significantly exceed 

baseline values generated from a permutation procedure for infant sender/ adult receiver and 
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adult sender/ infant receiver looks to mutual and non-mutual gaze. The result of the 

permutation analysis indicated that event-locked PLV and PDC values around mutual and 

non-mutual gaze onsets were not significantly different from baseline values. We also 

observed no statistically significant differences for the effect of gaze type (e.g., mutual vs 

non-mutual). 

 

Figure 4.23. Infant-caregiver inter-brain synchrony time-locked to naturally occurring 

mutual and non-mutual gaze onsets. A)  PLV relative to infant sender/adult receiver mutual 

gaze onsets. B)  PLV relative to onsets of infant sender/adult receiver looks to non-mutual 

gaze. C)  PLV relative to adult sender/infant receiver mutual gaze onsets. D)  PLV relative to 

adult sender/infant receiver non-mutual gaze onsets. E)  Infant→Adult PDC relative to infant 

sender/adult receiver mutual gaze onsets. F)  Infant→Adult PDC relative to infant 

sender/adult receiver non-mutual gaze onsets. G)  Infant→Adult PDC relative to adult 

sender/infant receiver mutual gaze onsets. H)  Infant→Adult PDC relative to adult 

sender/infant receiver non-mutual gaze onsets. I)  Adult→Infant PDC relative to infant 

sender/adult receiver mutual gaze onsets. J)  Adult→Infant PDC relative to infant 

sender/adult receiver non-mutual gaze onsets. K)  Adult→Infant PDC relative to adult 

sender/infant receiver mutual gaze onsets. L)  Adult→Infant PDC relative to adult 

sender/infant receiver non-mutual gaze onsets. No significant differences were identified. 

 

4.7.12. Analysis of non-event locked inter-brain synchrony using different pre-

processing procedures   
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To address the possibility that the discrepancy between the findings of the current study and 

those in the study by Leong and colleagues (2017) could be due to differences in pre-

processing procedures, we cleaned our data following to the best of our ability the pre-

processing procedures outlines in the study by Leong and colleagues (2017). These steps 

were as follows. First the data were filtered between 0.1 and 100Hz and references to the 

vertex (Cz) electrode. Second sections where the baby was inattentive were removed, marked 

by visual inattention to either their partner or object. Third datapoints with an amplitude 

above 100mv were removed. Fourth the data was down sampled from 512Hz to 256Hz. 

Finally, the data was low passed filtered at 45Hz. Following this we then ran the exact same 

analysis procedures detailed in section 4.3.1 of the main text. We then conducted a repeated 

measures (RM) ANOVAs using average indices (over C3 and C4), taking frequency (2 

levels) and gaze type (mutual vs non-mutual; 2 levels) as within-subjects factors. The results 

of the ANOVA indicated no statistically significant differences in PDC; for infant to adult 

(Infant→Adult) influences, F(1, 55) = 1.08, p = .3 or adult to infant (Adult→Infant) 

influences, F(1, 55) = 0.003 p = .96, between mutual and non-mutual gaze. The results did 

indicate a significant effect of frequency (i.e., more synchrony in Theta than Alpha) for PLV, 

F(1, 55) = 25, p < .01 and PDC; Infant→Adult, F(1, 55) = 41.2, p <.01 and Adult→Infant, 

F(1, 55) = 191.17, p < .01). 

 

 Overall, the results of these analyses rule out the possibilities that the discrepancies between 

the findings of the current study and those in the study by Leong and colleagues (2017) are 

due to differences in partner familiarity or differences in pre-processing procedures. 
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Chapter 5 - Does multimodal behavioural synchrony associate with 

parent-infant inter-brain synchrony? 

 

The following chapter summarises a study investigation the relationship between inter-brain 

and behavioural synchrony. Subheadings, figure placement, figure and table numbers, and 

citation style have been adapted to conform to the general thesis format.  

 

 

Abstract 

Social interactions involve complex sequences of prediction and response between 

interacting individuals that unfold simultaneously across a multitude of behavioural 

modalities and physiological levels. Despite a growing prevalence of theories suggesting 

increased behavioral synchrony during social interactions associates with elevated levels of 

inter-brain synchrony between interacting individuals, little is known about how this arises 

during development. Here we analysed patterns of inter-brain synchrony in parent-infant 

dyads during naturalistic social interactions (re-analysis of a N=55 parent-infant, approx. 12m 

old, dual EEG dataset). We took an exploratory data driven approach, investigating patterns 

of above chance inter-brain synchrony in topographical, frequency and temporal space using 

nonparametric statistics and cluster correction across the three dimensions. Once above 

chance patterns of inter-brain synchrony had been identified we were then able to investigate 

how different features (e.g., synchronised vs un-synchronised behaviour) and which modes 

(e.g., hands vs gaze) of behavioural coordination contributed to these patterns. We found 

consistent with previous research significant pattens of behavioural and inter-brain synchrony 

during naturalistic parent-infant social interactions. However contrary to our hypothesis we 
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found no associations between behavioural and inter-brain synchrony, but rather we observed 

the strongest associations were between EEG power and inter-brain synchrony, suggesting 

this was a greater driver of variation in inter-brain synchrony. Overall, our results further 

previous recent work suggesting that moments of shared visual attention do lead to increases 

in parent-infant inter-brain synchrony. 

 

5.1. Introduction 

 

Social interactions involve complex series of predictions and response between interacting 

individuals that unfold simultaneously across a multitude of behavioural modalities and 

physiological levels. Even from very early on in development infants and adults have an 

extensive repertoire of coordination sequences that are substantiated across a range of 

behavioural modalities (Yu and Smith, 2013). For example, recent studies (Franchak et al., 

2011; Yu & Smith, 2013) have shown that infants rarely look to their caregiver’s face and 

eyes during free-flowing interactions but achieve coordination with their caregiver through 

temporal and spatial tracking of hand movements.  

 

In recent years there has been increasing focus on exploring how the brain activity of two 

individuals synchronises during social interactions. This research suggests that across a range 

of different social settings (e.g., ranging from inter-brain synchrony between multiple school 

aged children; Dikker et al., 2017 to infant-caregiver dyads interacting contingently through a 

screen; Reindl et al., 2022)  and cognitive/ task demands the neural activity of two or more 

individuals becomes coupled. However, it remains an open question exactly how this is 

substantiated in the brain.  



199 

 

Whilst there may be additional higher order mechanisms, for example some research suggests 

that shared understanding is associated with shared neural responses between individuals 

(Simony et al., 2016), that contribute to inter-brain synchrony, most researchers agree that 

inter-brain synchrony during social interactions is embedded within interpersonal behavioural 

coordination (Dumas et al., 2011, Burgess 2013, Wass et al., 2020, Hamilton, 2021, 

Novembre & Iannetti, 2021). This is supported by a mounting body of research that has 

linked inter-brain synchrony with behavioural coordination across various modalities; a 

number of studies have observed increased inter-brain synchrony during moments of 

coordinated action (Dumas, 2010, Lindenberger et al., 2009, Yun et al., 2012, Sänger et al., 

2013, Gamliel et al., 2021). For example, in their study of inter-brain synchrony during a task 

which required adult-adult dyads to synchronise their hand movements Gamliel and 

colleagues (2021) found, using fNIRS hyperscanning, both increased behavioural 

coordination and increased inter-brain synchrony for ingroup vs inter-group participants. 

 

A number of studies have also found associations between inter-brain synchrony and mutual 

gaze. For example, in interacting adult-adult dyads Luft and colleagues (2022) found that 

mutual gaze was associated with higher inter-brain gamma band (30-45Hz) coherence (a 

spectral measure based on correlation) between interacting adults than non-mutual gaze. In 

the developmental literature, our group investigated inter-brain synchrony in 7.5-month 

infant-adult dyads during moments of mutual and non-mutual gaze (Leong et al., 2017). 

Taken together these studies imply that there is a positive relationship between behavioural 

coordination (although see Haresign et al., 2022b) during social interaction and inter-brain 

synchrony.  
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Although this evidence suggests that increased inter-brain synchrony is associated with 

moments of behavioural coordination very little is still known about the mechanisms that 

give rise to this (Liu et al., 2018; Haresign et al., 2022). One of the most commonly proposed 

mechanisms for establishing inter-brain synchrony is concomitant phase resetting of neural 

oscillations around moments of behavioural coordination (Wass et al, 2020; Leong et al., 

2017; Luft et al., 2022). It is known that the phase of neuronal oscillations reflects the 

excitability of underlying neuronal populations to incoming sensory stimulation (Klimesch et 

al., 2007; Jensen et al., 2014) and that sensory information arriving during high-receptivity 

periods is more likely to be perceived than information arriving during low-receptivity 

periods (Busch et al., 2009; Mathewson et al., 2009; 2010; 2011; 2012), suggesting that there 

exist mechanisms (phase resetting) for modulating the phase of neuronal oscillations, in order 

to match the temporal structure of the input (van Diepen et al., 2015; Ruzzoli et al., 2019). 

Although this is one of the most popular ideas for how inter-brain synchrony arises during 

social interactions only one study has empirically tested this theory; In our recent work (see 

Haresign et al, 2022) we investigated whether onsets of mutual gaze led to concomitant phase 

resetting and increased inter-brain synchrony in (12m) infant-adult dyads engaged in 

naturalistic free play interactions. In that work we were unable to provide evidence linking 

phase resetting to moments of behavioural coordination and therefore we were unable to 

establish phase resetting as key mechanism for how inter-brain synchrony arises during social 

interaction. While for now the mechanisms supporting fine grained inter-brain synchrony 

remain unclear, even over larger timescales increased understanding of the basic 

characteristics of inter-brain synchrony would help to build more/better hypotheses for how it 

arises during social interaction. For example, how do patterns of interbrain synchrony 

propagate through topographical, frequency and time space? And which behavioural 

modalities are most salient? 
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Analysis of interbrain synchronisation using 3-dimension non-parametric statistics 

To date most studies of inter-brain synchrony have chosen to analyse two-dimensional (2D) 

activity, using mass-univariate approaches, whereby inter-brain synchrony is computed for 

every possible paired data sample. Meaning that in these studies, often researcher driven 

decisions have been made as to which dimensions are restricted. For example, many studies 

analyse the whole topographical space, whilst restricting frequency to the canonical bands 

(e.g., Perez et al., 2017, Santamaria et al., 2020) or they analyse all time-frequency activity 

whilst restricting topographical information (Lindenberger et al., 2009, Haresign et al., 2022). 

This makes sense as the datasets analysed in these studies are typically quite large (n=55 

infant-adult dyads analysed in Haresign et al., 2022) and inter-brain synchrony is computed 

over a sizeable number of data points. Therefore, even with 2D activity these analyses are 

computationally very intensive. However, making decisions about where to limit one’s search 

can be problematic, particular within the field of inter-brain synchrony, given the overall lack 

of empirical research on which to base predictions about where and when an effect might be 

observed. Therefore, the field would benefit from increased focus on approaches that analyse 

the entire data space (i.e., in topographical, time and frequency space). These approaches 

have the merit of not having to choose locations, frequencies or time points a priori and 

therefore allows for potentially observing non-expected effects.  

 

One way in which researchers could do this, would be through conducting nonparametric 

permutation tests, which estimate the distributions of a test static or data value that would 

likely be expected to occur within the data by chance. Overall nonparametric tests make no a 

priori assumptions about the data and therefore are well suited to exploratory analyses 

involving multiple dimensions and large numbers of data points. Here the distributions are 
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created from the data through procedures that iteratively shuffle some aspect of the data. For 

example, this could be the labels associated with two experimental conditions assigned to 

individual trails. Here the trials could be pooled together, and each trial randomly assigned 

one of two labels. The trials could then be split into the two conditions and compared by 

means of t-test. This is then repeated a number of times (often 1000) and a distribution of test 

statistics under the null hypothesis (in this example that there is no difference between 

conditions) is obtained. Next the same between condition comparison is performed with the 

real data with the original trial labels. Statistical evaluation works by comparing the observed 

test statistic for the real data with the distribution of test statistic created under the null 

hypothesis. Significance is declared if the observed t-value is an outlier, usually defined by 

the upper 5% of the distribution. This statistical procedure could then be repeated, and a test 

statistic/ p-value could be obtained for each channel time and frequency combination. The 

flexibility of nonparametric tests makes them ideal for exploratory analyses of inter-brain 

synchrony, which is why it is surprising that only very few studies within this field have 

utilised these methods (Dumas, 2010, Haresign et al., 2022, Gugnowska et al., 2022), a fact 

that has been the topic of recent criticism (Holroyd, 2022). 

 

 

Overview of paper 

Here, we analysed patterns of inter-brain synchrony in parent-infant dyads during naturalistic 

social interactions. We took an exploratory data driven approach, investigating patterns of 

above chance inter-brain synchrony in topographical, frequency and temporal space using 

nonparametric statistics and cluster correction across the three dimensions. This allowed us to 

first investigate how patterns of parent-infant inter-brain synchrony propagate through these 

various dimensions without constraining this analysis to specific behaviours. Once above 



203 

 

chance patterns of inter-brain synchrony were identified we were then able to investigate how 

different features (e.g., synchronised vs un-synchronised behaviour) and which modes of 

behavioural coordination contributed to these patterns. Our research questions were four-fold; 

Firstly, building on large body of research (e.g., Richardson et al., 2007) we looked at 

whether infant’s and caregiver’s gaze is coupled above chance during natural interactions. 

We predicted that parents and infants gaze and touch behaviours would be significantly cross 

correlated above chance. Second, building on previous work (Wass et al., 2018), we looked at 

whether infant’s own looking behaviours are associated with intra-brain EEG power above 

chance during joint play with caregivers. Third, we looked at whether infant’s intra-brain 

EEG power is correlated with joint attentional processes, through this we aimed to ask the 

question of what are the neural mechanisms in infancy that support joint attention and joint 

touch with a caregiver? Fourth we looked at whether joint patterns of gaze and touch 

associated with inter-brain synchrony.  

 

 

5.2. Methods 

 

5.2.1. Ethics statement 

This study was approved by the Psychology Research Ethics Committee at the University of 

East London. Participants were given a £50 shopping voucher for taking part in the project. 

 

5.2.2. Participants 

Of the 90 infants we tested for this study, 21 contributed no data at all, 6 contributed EEG 

data that was too noisy even after data cleaning and 4 were lost due to human error, e.g., 
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failed synchronisation triggers. We also excluded all participants with fewer than 5 gaze 

onsets, leading to an additional 4 datasets being excluded. The final sample contained 55 

healthy (23 F), M = 12.2-month-old (SD =1.47) infants, that participated in the study along 

with their mothers.   

 

5.2.3. Experimental set-up and procedure 

Caregivers and infants were seated facing each other on opposite sides of a 65cm wide table. 

Infants were seated in a highchair, within easy reach of the toys. The shared toy play 

comprised two sections, with a different set of toys in each section, each lasting ~5 minutes 

each. Two different sets of three small, age-appropriate toys were used in each section; this 

number was chosen to encourage caregiver and infant attention to move between the objects, 

whilst leaving the table uncluttered enough for caregiver and infant gaze behaviour to be 

accurately recorded. At the beginning of the play session, a researcher placed the toys on the 

table, in the same order for each participant, and asked the caregiver to play with their infant 

just as they would at home. Both researchers stayed behind a screen out of view of caregiver 

and infant, except for the short break between play sessions. The mean length of joint toy 

play recorded, combining the first and second play sections was 9.92 minutes (SD=2.31). 

 

 

5.2.4. Behavioural data 

Video recordings were made using Canon LEGRIA HF R806 camcorders recording at 50fps 

positioned next to the infant and parent respectively. Video recordings of the play sessions 

were coded offline, frame by frame, at 50 fps. This equates to a maximum temporal accuracy 

of ~20ms.  
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5.2.5. Video coding 

The visual attention of caregiver and infant was manually coded using custom-built 

MATLAB scripts that provided a zoomed-in image of caregiver and infant faces. Coders 

indicated the start frame (i.e., to the closest 20ms, at 50fps) that caregiver or infant looked to 

one of the three objects, to their partner, or looked away from the objects or their partner (i.e., 

became inattentive). Partner looks included all looks to the partner’s face; looks to any other 

parts of the body or the cap were coded as inattentive. Periods where the researcher was 

within camera frame were marked as uncodable, as well as instances where the caregiver or 

infant gaze was blocked or obscured by an object, or their eyes were outside the camera 

frame. Video coding was completed by two coders, who were trained by the first author. 

Inter-rater reliability analysis on 10% of coded interactions (conducted on either play section 

1 or play section 2), dividing data into 20ms bins, indicated strong reliability (McHugh, 

2012) between coders (kappa=0.9 for caregiver coding and kappa=0.8 for infant coding). 

 

The target of parent and infant visual attention and manual touch was coded separately by 

trained coders who manually coded frame-by-frame using custom built MATLAB scripts 

which synchronized the three video streams. A continuous, mutually exclusive, coding 

scheme was used, with the target of gaze coded as either toward object 1, object 2, object 3, 

partner (face only), inattentive or uncodeable; and the target of touch either object 1, object 

2, object 3, partner, nothing or uncodeable. The target of touch was coded separately for each 

hand for both parent and infant. Frames were coded as uncodeable when parent/infant hands 

or eyes were obscured from view and when a researcher entered the experimental set-up. 



206 

 

Moments of joint touch were identified by synchronising parent infant touch data, which was 

then synchronised with the EEG data, 

 

 

5.2.6. EEG data acquisition 

EEG signals were obtained using a dual 32-channel Biosemi system (10-20 standard layout), 

recorded at 512 Hz with no online filtering using the Actiview software. EEG was time-locked 

to the behavioural data offline based on the video coding using synchronized LED and TTL 

pulses. To verify the synchronisation, we manually identified blinks in the behavioral data and 

looked to see if this matched the timing of the blinks in the EEG data. 

 

 

5.2.7. EEG artifact rejection and pre-processing 

A fully automatic artifact rejection procedure was adopted, following procedures from 

commonly used toolboxes for EEG pre-processing in adults (Mullen, 2012; Bigdely-Shamlo, 

et al., 2015) and infants (Gabard-Durham et al., 2018; Debnath et al., 2020). Full details of 

the pre-processing procedures can be found in (Haresign et al., 2021). In brief the data was 

filtered between 1 and 20Hz and re-referenced to a robust average reference. Then we 

interpolated noisy channels based on correlation; if a channel had a lower than 0.7 correlation 

to its robust estimate (average of other channels) then it was removed. The mean number of 

channels interpolated was 3.9 (SD =2.1) for infants and 3.9 (SD =4.4) for adults. Then for the 

infant data only we removed sections from the continuous data in which the majority of 

channels contained extremely high-power values. Data was rejected in a sliding 1 second 

epoch and based on the percentage of channels (set here at 70% of channels) that exceeded 5 
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standard deviations of the mean EEG power over all channels. For example, if more than 

70% of channels in each 1-sec epoch exceeded 5 times the standard deviation of the mean 

power for all channels then this epoch is marked for rejection. We found that for adults this 

step was primarily removing activity that could be removed with ICA (e.g., eye movement 

artifact) without removing entire sections of the data. The average amount of continuous data 

removed was 11.9% (SD =14.6%) for infants. Finally, we used ICA to remove additional 

artifacts. Careful attention was paid to artifact and the amount of noise in the data throughout. 

In the supplementary materials we report the results of standard measures of EEG data 

quality (Luck et al., 2021). Including universal measures like these enables fast and easy 

comparison between studies and allows the overall quality of the data to be readily assessed.  

 

5.2.8. Time frequency analysis- extracting power and phase 

Time-frequency power and phase was extracted via complex Morlet wavelet convolution. 

The wavelets increased from 2 to 18 Hz in 17 linearly spaced steps and the number of cycles 

increased from 3-10 cycles logarithmically (this approach is generally recommended; see 

Cohen, 2014, chapter 13). 

 

 

5.2.9. Inter-brain–PLV 

For the non-event locked analyses, the phase locking value (PLV) was calculated within a 

single trial over a defined temporal window (e.g., Tass et al., 1998) according to: 

 

   𝑃𝐿𝑉𝑡 =
1

𝑇
| ∑ ⅇ𝑖(𝜙(𝑡,𝑛)−𝜓(𝑡,𝑛))𝑇

𝑛=1
|                                                        (2), 
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Where T is the number of observations or time samples within the window, 𝜙(𝑡, 𝑛) is the 

phase on observation n, at time t, in channel 𝜙 and 𝜓(𝑡, 𝑛) at channel 𝜓.  PLV across the 

entire interaction was computed in a 1-sec sliding window with 50% overlap between 

consecutive windows. 

 

 

5.2.10. Inter-brain synchrony- PDC  

Partial directed coherence (PDC) is based on the principles of Granger causality (Baccalá and 

Sameshima, 2001). It provides information of the extent to which one times series influences 

another. PDC is calculated from coefficients of autoregressive modelling according to:  

 

                 𝑃𝐷𝐶 = (
𝐴𝑥𝑦(𝑓)

√𝑎𝑦
∗ (𝑓).𝑎𝑥(𝑓)

)                                                                      (2), 

 

where 𝐴𝑥𝑦(𝑓) is the spectral representation of bivariate model coefficients and 𝑎𝑦 and 𝑎𝑥 are 

the spectral model coefficient from the univariate autoregressive model fit. Based on previous 

literature (e.g., Leong et al., 2017) we chose to compute PDC in 1-second non-overlapping 

sliding window. We estimated the model order for each segment using Bayesian information 

criteria (BIC). Model order values were then averaged for all segments. The result was a 

model order of 5, the same as used by Leong and colleagues (2017), which was then used for 

all segments.  

 

 

5.2.11. Surrogate PLV 
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We assessed whether PLV and PDC values were significant compared to a baseline level. We 

created 1000 randomly paired infant adult dyads. Although we did not track the number of 

unique pairs from our n=50 datasets the total possible number of unique pairings was 1225. 

We then calculated PLV and PDC between these randomly paired dyads in exactly the same 

way, over the same frequency and channel combinations as in the real pair dyads.  

 

 

5.2.12. Cluster correction for multiple comparisons 

A cluster-based correction was applied to correct for multiple comparisons (we computed 

inter-brain PLV and PDC values for 32 x 17 x 480 combinations infant-adult data points) for 

the real pair infant adult inter-brain synchrony values. This was done by identifying clusters 

and removing those that contained lower than 75 contiguous channel x time x frequency 

points. The threshold of 75 was obtained using a non-parametric permutation procedure. 

Using the surrogate data generated above. We then cycled through this dataset 1000 times. 

On each iteration and for each channel, frequency and time point we randomly selected 1 

random infant-adult pairing from the 1000 total pairings. We compared the PLV values for 

the selected pair against the PLV values of the full 1000 sample random pair dataset for each 

channel x time x frequency points. This was done by evaluating the selected pair PLV value’s 

position relative to the 1000 sample random pair distribution using MATLAB’s normcdf 

function. This generated a p value for each channel x frequency x time point for the selected 

pair PLV values. We then performed a second iteration of the data. For each iteration (and for 

2D cluster correction for each channel separately) we thresholded the p values generated 

from the previous step at p = .5, significant PLV values were set to one and non-significant 

PLV values set to zero. Next, we used MATLAB’s bwconncomp function to identify clusters 

of contiguously significant (p < .05) values in topographical time-frequency space. For each 
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iteration we stored the number of data points contained within the largest cluster identified. 

For some iterations there were obvious outliers in the sizes of the clusters identified. In these 

cases, outliers were removed using MATLAB’s rmoutliers function. This gave us a 

distribution of 1000 cluster-sizes observed within the random pair PLV datasets. We then 

calculated the value for 95th percentile of this distribution. This gave us the threshold (75 data 

points). For clustering in 3-dimension space; clustering in topographical space was done by 

obtaining the interpolated (2D matrix) data image (with off-head points as NaN) of the 

topographical activity (scalp level) using EEGLAB’s topoplot.m function. A topographical 

image was obtained for permutation (1000) and for each time-frequency point. This resulted 

in a 4D matrix (topographical images where the first 2 dimensions) for each permutation for 

which clusters where then identified. This approach is different to the approaches detailed in 

the previous chapters as we started with the brain activity instead of the behaviour. 

 

 

5.3. Results 

 

5.3.1. Behavioural synchrony  

Firstly, we looked at whether infant’s and caregiver’s gaze and touch behaviours are coupled 

above chance during natural interactions. The results suggest that overall, infant’s and adult’s 

behaviours are significantly coupled during social interactions. Results of the cross-

correlation analysis with various behaviours is reported in figure 1 
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Figure 5.1. Shows the results of the cross-correlation analysis between parent infant gaze 

and touch behaviours compared to surrogate paired infant-adult data. A) shows the result of 

cross correlation analysis between object and partner looks for real and surrogate pair 

dyads. B) shows the result of cross correlation analysis between object touch for real and 

surrogate pair dyads. C) shows the results of the cluster-based permutation analysis 

comparing real vs surrogate paired object gaze data. D) shows the results of the cluster-

based permutation analysis comparing real vs surrogate paired partner gaze data.  E) shows 

the results of the cluster-based permutation analysis comparing real vs surrogate paired 

touch data. Red patches indicate areas where the real pair data was significantly more 

correlated than the surrogate pair data. Cross correlations were only significantly greater 

Real object touch 

Surrogate object touch 
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than baseline for the object gaze. For all plots x axis shows cross correlation lags in frames, 

1 lag = 1 frame (20ms). 

 

Figure 5.1 shows the results of the cross-correlation analysis between parent infant gaze and 

touch behaviours compared to surrogate paired infant-adult dyads. We found that for all 

object, but not partner looks cross correlations between parent and infant dyads were 

significantly greater than baseline (cross correlation in surrogate pair data). The effects for 

touch were overall weaker and did not exceed baseline. Overall, the results of analysis 1 are 

consistent with previous research (Richardson et al., 2007) that show that during social 

interaction gaze behaviours are highly cross correlated. These results also extend these 

findings to other behavioural modalities e.g., touch. 

 

5.3.2. Individual behaviours and infant EEG power cross correlations 

Before turning to our main research question of whether parent infant inter-brain synchrony 

associates with behavioural coordination during social interaction we wanted to first 

investigate whether there were patterns of intra individual neural activity that associated with 

these behaviours. This could potentially be both an interesting theoretical point but also could 

confound the inter-brain synchrony analysis due to the impact of power on phase locking 

(e.g., see Marriott Haresign 2022a). We looked at associations between infant intra-brain 

power and individual looking and touch behaviours as well as associations between infant 

brain power and joint gaze and touch. 
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Figure 5.2. Shows the result of the cross-correlation analysis between infant EEG power 

(occipital electrodes) and individual gaze and touch behaviour. A) shows the result of cross 

correlation analysis between infant EEG power and object looks, averaged over all three 

objects.  B) shows the result of cross correlation analysis between infant EEG power and 

partner looks. C) shows the result of cross correlation analysis between infant EEG power 

and object touch, averaged over all three objects.  
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5.3.3. Dyadic behaviours and infant EEG power cross correlations  

We also wanted to examine associations between infant intra-brain power and joint gaze and 

touch. Figure 3 summarises the results of the cross-correlation analysis between infant EEG 

power and joint gaze and touch behaviours. 

 

 

 

 

Figure 5.3. Shows the result of the cross-correlation analysis between infant EEG power 

(occipital electrodes) and joint gaze and joint touch behaviour with caregiver. A) shows the 

result of cross correlation analysis between infant EEG power and joint object attention, 

averaged over all three objects.  B) shows the result of cross correlation analysis between 
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infant EEG power and mutual gaze. C) shows the result of cross correlation analysis between 

infant EEG power and joint object touch, averaged over all three objects.  

 

Figures 5.2 and 5.3 show the results of the cross-correlation analysis between infant EEG 

power (averaged over occipital electrodes) and individual as well as joint gaze and touch 

behaviours. We compared this to surrogate paired data (random EEG times series paired with 

random behavioural times series). We used a non-parametric cluster-based permutation 

analysis to identify which frequencies and time points were significantly greater in the real 

paired data. The results of the permutation analysis revealed that no associations between 

infant EEG power and individual or joint gaze and touch behaviours were significantly 

greater than the surrogate data.  

 

Overall, the results of the analysis presented in sections 5.3.2 and 5.3.3 are consistent with 

previous research (Wass et al., 2018) that show that associations between infant EEG power 

and gaze behaviour during joint play are weak. However, these results also extend previous 

work in three main ways. A) by looking at whether these association are significantly greater 

than surrogate which was not previously done. B) by looking at associations between infant 

EEG power and joint attentional processing with the caregiver. C) by looking at touch as an 

additional behavioural modality. 

 

5.3.4. Inter-brain synchrony  

To investigate the relationship between inter-brain synchrony and behavioural coordination, 

we first computed mean PLV values across the entire interaction. We looked at whether PLV 

values were significantly greater than baseline, and then whether significant clusters of inter-
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brain synchrony associated with behavioural coordination. Based on a number of previous 

findings which have suggested that inter-brain synchrony is increased during moments of 

behavioural coordination we expected to observe significant associations between these 

variables. 

 

 

 

 

Figure 5.4. Illustration of 3D clustering procedure. A) shows distributions of percentage of 

above surrogate PLV across the entire interaction. B) shows summed topographical 

distribution of above surrogate PLV values over all participants. B) shows marginal time-

frequency distribution of above surrogate PLV values, summed over all participants  

 

Figure 5.4 shows the results of analysis of inter-brain synchrony. We first tested whether 

PLV values significantly exceeded surrogate data. Looking across the entire interaction the 

results of the permutation analysis did indicate some significant clusters of PLV; on average 

this accounted 1.6% (SD = 1.9) of the total possible PLV values (36630240) that we searched 

over.  
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5.3.4. Inter-brain synchrony cross correlations with dyadic behaviour   

We next wanted to examine whether the above chance PLV values were significantly 

associated with behaviour compared to chance levels generated from cross correlations with 

surrogate datasets. Again, here we looked at cross correlations between above chance PLV 

and gaze and touch behaviours. The results of this analysis are summarised in figure 5.  

 

 

Figure 5.5. Shows the result of the cross-correlation analysis between parent-infant PLV and 

power (averaged over all electrodes) and joint gaze and joint touch behaviour with 

caregiver. A) shows the result of cross correlation analysis between parent-infant PLV and 
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joint object attention, averaged over all three objects.  B) shows the result of cross 

correlation analysis between parent-infant PLV and mutual gaze. C) shows the result of cross 

correlation analysis between parent-infant PLV and joint object touch, averaged over all 

three objects.  

 

Figure 5.5 shows the results of the cross-correlation analysis between PLV, and parent-infant 

joint gaze and touch behaviours compared to surrogate paired infant-adult PLV values. We 

used a non-parametric cluster-based permutation analysis to identify which frequencies and 

time points were significantly greater in the real paired data. The results of the permutation 

analysis revealed that no associations between PLV and joint gaze and touch behaviours were 

significantly greater than the surrogate data. Overall, the results of analysis presented in 

section 3.4 suggest that there are patterns of above chance inter-brain synchrony that arise 

during social interactions and that these do associate with parent-infant behavioural 

coordination. However, these association were not greater than associations that arose by 

chance.  

 

5.3.4. Inter-brain synchrony cross correlations with intra-brain power 

If behavioral coordination is not driving above chance inter-brain synchrony what other 

factors are? One factor that might impact inter-brain synchrony values in surrogate (and real 

data) is intra-brain power. It is known that there is a relationship between EEG power and 

phase. For example, Muthukumaraswamy and colleagues (2011) showed that increases in 

power can lower error in phase estimation and give the appearance of heightened phase 

locking (see also, Burgess, 2013). Separating increases in power from genuine increases in 

phase locking is difficult and continually debated (e.g., Sauseng et al., 2007). Therefore, one 
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factor that might impact inter-brain synchrony values in surrogate (and real data) is intra-

brain power. To explore this possibility, we examined the relationships between infant and 

adult EEG power and inter-brain synchrony (PLV).  

 

 

 

 

 

Figure 5.6. Shows the result of the cross-correlation analysis between intra-brain power and 

inter-brain PLV. A) shows the result of cross correlation analysis between infant EEG power 

and PLV (averaged over all electrodes). B) shows the result of cross correlation analysis 

between adult EEG power and PLV (averaged over all electrodes). For both infant and adult 

data all time-frequency points were significantly greater than surrogate data. 

 

 

5.4. Discussion 

We took dual EEG recordings from parents and infants whilst they engaged in naturalistic 

free-flowing social interactions. We computed inter-brain synchrony following cleaning and 
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analysis procedures specially designed for naturalistic dual EEG data (Haresign et al., 2021; 

2022). While many studies of inter-brain synchrony have explored how these patterns are 

distributed across two dimensions (e.g., channels x frequency) no studies have analysed the 

entire data space (i.e., in topographical, time and frequency space). Given that this field is 

still relatively new and there is a deficit of empirical research to generate new and testable 

hypothesis such an approach would have the obvious advantage of not having to relying on 

predefined/ researcher chosen locations, frequencies and time points. Through this we wanted 

to consider two mains sets of research questions: 

 

Behavioural synchrony  

For our first set of research questions, we examined whether infant’s and caregiver’s 

behaviours are coupled above chance during natural interactions. The results of the cross-

correlation analysis suggested that overall, infant’s and caregiver’s object gaze and touch 

behaviours towards objects were significantly coupled. These results are in line with previous 

research (e.g., Richardson et al., 2007) that shows that gaze patterns between interacting 

individuals are highly coupled during social interactions.  

 

Intra-brain analysis  

Before turning to our main research questions of whether parent infant inter-brain synchrony 

associates with behavioural coordination during social interaction we wanted to first 

investigate whether there were patterns of intra individual neural activity that associated with 

these behaviours. This could potentially be both an interesting theoretical point but also could 

confound the inter-brain synchrony analysis due to the impact of power on phase locking 

(e.g., see Marriott Haresign 2022a). To investigate this, we looked at associations between 
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infant intra-brain power and individual looking and touch behaviours as well as associations 

between infant brain power and joint gaze and touch. For each data for the real pair dyads 

was compared against surrogate data generated through random permutation of dyad 

membership (e.g., random EEG times series paired with random behavioural time series) 

using cluster-based permutation analyses. The results of these tests indicated no significantly 

above chance relationships between infant intra-brain power and any of the behavioural 

measures we investigated; solo and joint looking at objects, partners as well as solo and joint 

touching of objects. These results are unsurprising given that previous research found only 

very weak correlations between infant EEG power and object gaze during joint tabletop 

interactions (e.g., Wass et al., 2018). Although Wass and colleagues did not compare cross 

correlations against baseline data, the results of our study suggest that for joint play with 

caregivers’ infant’s EEG power does not associate significantly with onsets of object gaze or 

touch behaviours. 

 

Evaluating 3-dimensional inter-brain synchrony across the entire interaction  

Our main set of research questions explored whether, across the entire interaction significant 

patters of adult-infant inter-brain synchrony arose and whether significant patterns of inter-

brain synchrony associated with moments of parent-infant behavioural coordination. Firstly, 

significant inter-brain synchrony was assessed by comparison to surrogate data generated 

through random permutation of dyad membership. This process was done individually for 

each participants. The results of the cluster-based permutation analysis indicated that for 

every participant the were significant (3D) patterns of inter-brain synchrony (PLV) that arose 

during the interaction. However, these above chance PLV values within the data were very 

subtle accounting for on average only 1-2% of the total number of PLV values. These 

findings are consistent with the growing body of positive evidence of the presence of inter-
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brain synchrony during social interactions. However, where previous studies have focused 

their investigations on one or two dimensions of the data (e.g., frequency, frequency x 

topography), we took an entirely data driven approach, searching statistically significant 

patterns of inter-brain synchrony across all dimensions (time, space and frequency) 

simultaneously. Through application of this approach, we found that whilst statistically 

significant patterns of parent-infant inter-brain synchrony were increasable subtle accounting 

for only a very small number of the total possible PLV values.  

 

Whilst our study shows the efficacy of using data driven methods to identify patterns of inter-

brain synchrony and attempt to understand the mechanisms that contribute to it, it is not 

without limitation. Firstly, the computational time and intensity of the analytical approach 

that we have followed with this paper is vast. Typically studies that use 3+ dimensional 

cluster-based permutation analyses do so with event locked data, and don’t often search the 

entire data space. Researchers should weigh the amount of computational time required to 

obtain 2D spatial topographical maps, build distributions of 4D data and identify clusters 

within this, against what implications from the data can be drawn through application of this 

approach. Additionally, whilst our approach is well suited for exploratory data analysis as the 

field of inter-brain synchrony becomes more developed and research questions becomes more 

theoretically driven approaches like these that search over the entire data space may become  

less important. 

 

Inter-brain synchrony and behavioural coordination  

The main aim of this study was to explore the relationship between inter-brain synchrony and 

behavioural coordination. Although very little is known about the mechanisms that give rise 

to inter-brain synchrony most of the current theoretical accounts confer that inter-brain 
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synchrony during social interactions must be embedded within interpersonal behavioural 

coordination (Dumas et al., 2011, Burgess 2013, Wass et al., 2020, Hamilton, 2021, 

Novembre et al., 2021). Without tangible links to real world events/ processes it is very 

difficult to understand (and largely speculative) how two brains might become synchronised, 

and further this can muddy the water between different sources of inter-personal neural 

associations (Holroyd, 2022). We looked at associations between inter-brain synchrony and 

moments of spontaneous parent-infant behavioural coordination during free-flowing 

naturalistic social interaction. We reasoned that if inter-brain synchrony is indeed grounded 

in moments of behavioural coordination, we should observe a temporally sensitive 

relationship that is greater that what might be observed by chance – using surrogate data 

generated through permutation of dyad membership. To explore this, we extracted moments 

of object gaze and touch coordination during parent-infant joint play interactions. We then 

looked at associations between moments of behavioural coordination and above chance 

patterns of inter-brain synchrony, again comparing this to surrogate data generated through 

random permutation of dyad membership (random PLV time series with random behavioural 

time series). The results of this analysis revealed that whilst there were strong associations 

between above chance PLV and behavioural coordination for both gaze and touch modalities, 

these associations were not greater than the correlations values that would have been found in 

the data by chance (based on comparison to surrogate cross correlation values). Overall 

suggesting that inter-brain synchrony was not grounded within the real time coordination of 

behaviours between interaction infants and parents.  

 

The associations we observed between inter-brain PLV, and intra-brain power are highly 

similar to those previously observed between intra-brain PLV and intra-brain power (e.g., 
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Muthukumaraswamy et al., 2011), further emphasising the importance of interpreting 

concomitant changes intra-brain EEG power and inter-brain synchrony cautiously.  

 

 

5.5. Conclusion 

In this study we analysed patterns of inter-brain synchrony in parent-infant dyads during 

naturalistic social interactions (re-analysis of a N=55 parent-infant, approx. 12m old, dual 

EEG dataset). We took an exploratory data driven approach, investigating patterns of above 

chance inter-brain synchrony in topographical, frequency and temporal space using 

nonparametric statistics and cluster correction across the three dimensions. Our aims were to 

first identify where above chance patterns of inter-brain synchrony were arising during social 

interaction and second to explore whether these were grounded in moments of behavioural 

coordination. The result of our analysis suggests that consistent with a growing body of 

positive evidence parent-infant inter-brain synchrony did arise during free-flowing social 

interactions, although these patterns were significant only a very small percentage of the time 

(1-2%). And whilst we did find evidence to suggest that significant patterns of inter-brain 

synchrony associated with behavioural coordination in a time sensitive way (e.g., peak in 

cross correlation at time 0), comparison to surrogate data revealed that these associations 

were not greater than what arose by chance based on the inherent variation within the data. 

Overall, the result of our analysis emphasises the importance of appropriate statistical 

approaches that control for the amount of inter-brain synchrony that might arise in the data by 

chance, something that, as noted recently (Holroyd, 2022), not all investigations of inter-

brain synchrony do. Crucially our results failed to provide support for theories of inter-brain 

synchrony that are grounded in moments of behavioural coordination  (Dumas et al., 2011, 

Burgess 2013, Wass et al., 2020, Hamilton, 2021, Novembre et al., 2021). This further 
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emphasises the need to focus on what mechanisms that might give rise the inter-brain 

synchrony, e.g., a) what changes and to which aspects of the EEG signal are necessary to 

facilitate inter-brain synchrony (see Haresign et al., 2022) and (b) what are the known 

behavioural, cognitive processes that might trigger such changes. Through this we can 

develop a more in depth understanding of inter-brain synchrony rather than the disparate 

links between we currently understand about social behaviour and inter-brain synchrony.  

 

Chapter 6 – Discussion 

Despite a growing prevalence in empirical evidence linking behavioural coordination during 

social interaction with inter-brain synchrony, these correlates have been routinely studied 

using highly structured tasks and analysed as a time invariant phenomenon. The present 

thesis explored the methodological challenges and benefits of recording dual EEG activity 

from parents and 1 year old infants whilst they engaged in naturalistic/ unstructured social 

interactions. To investigate inter-brain correlates of parent-infant social interactions, across 

multiple analyses, parent-infant dual EEG data was aligned with moments of naturally 

occurring behavioural coordination extracted from high resolution (50 fps) video recordings 

and patterns of intra and inter-brain activity were examined. The first part of this work 

focuses on the unique challenges associated with measuring/ analysing intra and inter-brain 

activity within this dataset. Having validated our methodology, the second part of this thesis 

focuses on the mechanisms that give rise to inter-brain synchrony during early social 

interactions. Here we first examine fine-grained changes in parent-infant inter-brain 

synchrony time locked to naturally occurring mutual gaze onsets. Second, we examine 
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associations between inter-brain synchrony and behavioural coordination across multiple 

modalities.  

 

Eye movement artifacts in naturalistic EEG data – review  

To date social neuroscientists investigating infants’ social brain functioning have routinely 

used experimenter-controlled paradigms, in which information is presented to infants via a 

screen, contingent upon their sustained fixation. In the real world however, we know that 

information is not presented to us in this way, but rather that humans constantly, visually 

‘forage’ for information from their environment, as indexed by the fact that humans tend to 

make a saccadic eye movement approximately every 300-400ms. Research designs that 

restrict natural vision to fixation, likely due to reasons associated with eye movement artifact 

(discussed in more detail below), crucially assume two main things that hinder a more in 

depth understanding of social brain function. Firstly, that the muscle and neural activity 

associated with the ocular movement itself is not relevant for cognition and second that 

neural responses to stimuli are the same when information is presented contingent on fixation 

vs contingent upon a saccade.  

Recently, there has been a drive towards the use of more naturalistic paradigms in 

developmental EEG research (Risko et al., 2016; Wass et al., 2020; Holleman et al., 2020). 

However, naturalistic EEG recordings provide additional analytical challenges over 

traditional screen-based tasks. For example, in traditional screen-based, event-related tasks in 

which the child is passively exposed to a set of stimuli, artifacts are more randomly 

distributed with respect to the simulation. Removal of sections containing significant artifact 
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can in this context be potentially beneficial, as visual experience during these sections might 

also be different (e.g., at its simplest the child might be fussing and not be attending to the 

image on the screen). However, in naturalistic paradigms, removal of whole sections of data 

is particularly problematic because data segments contaminated by artifact often covary with 

cognitive/ attentional processes of interest. Specifically, in naturalistic paradigms, the 

'simulation' can be child-controlled (e.g., the child turning to the parent in a naturalistic 

interaction), and so artifacts are more likely to be time-locked to neural signals of interest. 

The removal of artifact is thus likely to also affect the analysis of neural signals. 

As no methods existed that were tailored for correcting time locked artifacts in infant EEG, it 

was necessary to first develop one – which was the basis of the work that contributed to 

original chapter 5. To do this we adapted one of the most popular systems for adult ICA 

component classification (artifact of not) for use with infant EEG data. We then tested the 

classifiers’ ability to clean ERP data time locked to moments when the infant looked towards 

their caregiver. We found that for our infant EEG data the adapted classifier removed more 

activity presumed to be artifact and retained more activity presumed to be neural than the 

original classifier. Whilst we could not conclude from the results (as few studies can) that our 

system removed all artifact, our adapted classifier provides a tool for automatic artifact 

removal for infant EEG data, application of which at the very least will be necessary for 

visualisation of neural signals which are often orders or magnitude smaller than artifactual 

signals.  

 

The contributions of this work were three-fold. Firstly, there was a clear need within the 

community for tools that were specifically designed for infant EEG data (almost all 

comparable systems are built around and designed for adult EEG data), as indexed by the 
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considerable attention this system has already received (15 citations in the first six months of 

publication). Secondly, consistent with previous research which suggests that averaged EEG 

activity time locked to the offset of saccades (lambda activity) and ERPs elicited during 

sustained fixation (visually evoked potentials) share common neural generators (Kazai and 

Yagi, 2003). The ERPs that we demonstrated in this work showed remarkable similarity to 

infant ERPs previously obtained using screen-based paradigms (e.g., Guy et al., 2016; 2018; 

Peykarjou & Hoehl, 2013; Xie & Richards, 2016). That our ERPs showed a close visual 

correspondence with ERPs observed in traditional screen-based ERP paradigms suggests that 

the use of a novel, naturalistic paradigm to explore time locked changes in infant’s neural 

sensitivity was valid, and we had developed a well performing tool that was capable of 

addressing the unique artifactual challenges associated with this study design.  

 

 

 

 

Figure 6.1. Event-related potentials time-locked to naturally occurring partner (face) gaze 

and object gaze onsets. A and B both show infant occipital ERPs relative to onsets of infant 
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looks to their partners face vs infant looks to objects. Shaded areas indicate 95% confidence 

intervals, thicker lines indicate grand average waveforms. Data for A was taken from visit 1 

of the 8-week research programme and data for B was taken from visit 2. In both sets of data, 

we replicated previously obtained results using screen-based paradigms (e.g., Guy et al., 

2016; 2018; Peykarjou & Hoehl, 2013; Xie & Richards, 2016), i.e., a greater amplitude 

N290 ERP component for faces vs objects. 

 

Future directions  

 

Developing more robust metrics of pre-processing performance. Beyond making this tool 

more useful the field as a whole would benefit from more quantifiable techniques to assess 

whether or not an EEG pre-processing procedure is objectively improving the quality of the 

data (e.g., Delorme, 2022). The difficulty in this is determining the ‘ground truth’ upon which 

to make comparisons. Research like that which forms the basis of chapter 5 of the present 

thesis routinely assess performance against data that is manually scored for artifact by one or 

two experienced researchers. However, this is far from perfect, increasing the number of 

researchers that independently score the data and taking averages from this would improve 

the reliability of ‘ground truth’ data. Tools like the one presented in chapter 5 are useful for 

this purpose as they publish a dataset that has been manually scored. However, ultimately as 

pre-processing procedures are largely study specific the field will need to develop measures 

that are capable of assessing the performance of multiple pre-processing steps on any given 

dataset.  
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Understand cleaning procedures are limited and improving how we report artifact. Studies 

like the one presented in chapter 5 highlight the fact that data cleaning procedures are limited 

and are not capable of completely removing activity associated with artifact from EEG data. 

As social neuroscience continues to move towards more naturalistic study designs it will 

become increasingly important for researchers to examine the contribution of artifact to their 

data. For example, even very small eye movements can produce artifacts in the EEG capable 

of creating between condition differences (e.g., Dimigen et al., 2009). Therefore, at a basic 

level it will be important for research using naturalistic study designs to examine if there are 

behavioural (e.g., amount or size of eye movements) differences between groups/ conditions 

that could contribute to differences in the EEG.  

 

 

Understanding the neural correlates of active vs passive visual processing. Although as we 

noted (see Figure 4.3) the ERPs that we observed share a close correspondence with ERPs 

observed in traditional screen-based ERP paradigms one fundamental question we were not 

able to address in this work is what was driving the differences between our ERPs and 

previous screen-based ERPs. Most notably we observed a large negative potential, peaking 

occipitally around 100ms following the end of an eye movement. This can be clearly seen in 

figure 3. This feature of the occipital ERP waveform is not present in comparable screen-

based studies that have explored infant’s neural responses to images of faces (e.g., Farroni et 

al., 2002). One possibility is that the early negativity we observed could be the result of 

residual artifiact – generated from dipole activity of the eye movement itself. This is indeed 

possible as one limitation of this work was that we were not able to completely remove the 

activity we assumed to be related to the eye movement artifact – something that is consistent 

even with studies that use much cleaner adult EEG data (e.g., Plöchl et al., 2012).  
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Another possibility is that it reflects genuine neural activity driven by a process involved in 

active vision (e.g., visual processing accompanied by a voluntary eye-movement), that was 

not present in previous passive, screen-based tasks. Which might only be captured by 

studying neural responses using naturalistic study designs. Unfortunately, with this current 

dataset we were unable to fully disentangle these two possibilities. In current experiments 

and follow up work we aim to explore this in more detail using co-registered EEG and eye-

tracking, in which we contrast conditions in which information (visual target) is presented 

contingent upon a saccade vs when no information is presented but a saccade is still elicited 

and when information is presented contingent on fixation. Thus, we can further investigate 

infant’s neural correlates of eye movements and compare neural responses to information 

presented contingent upon eye movements vs fixations.  

 

Inter-brain synchrony during naturalistic social interactions 

The second part of this thesis explored the challenges and benefits associated with measuring 

parent-infant inter-brain synchrony during naturalistic social interactions. As highlighted in 

the introduction one thing that has limited our understanding of inter-brain synchrony so far 

is that the field has primarily adopted approaches that measure inter-brain synchrony as a 

time invariant property – meaning that these studies typically measure how inter-brain 

synchrony varies topographically or across frequencies but not through time. This approach 

crucially obscures important information about how inter-brain synchrony develops during 

and supports social interaction. Early parent-infant social interactions provide the ideal 

setting to study these mechanisms as temporal coordination during these social interactions 
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has been shown to be integral in supporting infants’ later language outcomes and cognitive 

development. 

 

The present thesis aimed to take the first steps in addressing this deficit. The primary goal 

was to test the hypothesis laid out by previous work by Drs (and supervisors of the current 

thesis) Wass and Leong (Speaker gaze increases information coupling between infant and 

adult brains, Leong et al., 2017) which suggested that inter-brain synchrony was stronger 

bidirectionally during mutual relative to non-mutual gaze. The present thesis aimed to 

reproduce the mutual gaze - inter-brain synchrony effect in naturalistic parent-infant 

recordings, and further, to investigate whether the effects of mutual gaze on inter-brain 

synchrony were present around onsets of mutual gaze. Subsequently, we wanted to assess 

how inter-brain synchrony arises around mutual gaze onsets by exploring patterns of intra 

and inter-brain activity.  

 

To do this we extracted concurrent dual EEG activity around naturally occurring gaze onsets 

during infant-caregiver social interactions. These experiments generated several main 

insights. First the methodological problems associated with co-occurring eye movement 

artifacts that were discussed in the previous section are manageable to an extent that permits 

the replication of established ERP effects (see figure 4.3). Second the effects of mutual gaze 

onsets are strongest at the intra-brain level, in the ‘sender’ but not the ‘receiver’ of mutual 

gaze. Third, despite a growing prevalence of theories within the wider research field 

suggesting that increased inter-brain synchrony associates with mutual gaze, here in the 

current sample of parent-infant (approx. 12M) dual EEG recordings we did not find that 

mutual gaze (onsets) was associated with increases in inter-brain synchrony over surrogate 

data or relative to moments of non-mutual gaze. 
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ERP effects. A first basic question when exploring neural sensitivity to mutual gaze onsets in 

natural settings is can previous findings using screen-based simulacra be replicated. In 2002 

Farroni and colleagues’, reported evidence from their study which suggested that 4-month-

old infants show different neural responses contingent on whether someone is looking 

directly at them or not. Evidence for enhanced ERP amplitudes for faces with direct vs 

indirect gaze has already been extended to live contexts (Pönkanen et al., 2011a, but not to 

unstructured, free-flowing, social settings. However, as we noted ERP findings on the effects 

of mutual gaze have not replicated well in developmental research (e.g., Elsabbagh et al., 

2009), or in research with adults (e.g., Watanabe et al., 2001; Taylor et al., 2001b; Watanabe 

et al., 2002; Itier et al., 2007; Conty et al., 2007; Pönkanen et al., 2011a). In chapter 4 we 

extracted dual EEG activity around naturally occurring gaze onsets during infant-caregiver 

social interactions in N=55 dyads (mean age 12 months). We differentiated between two 

types of gaze onset, depending on each partners’ role. ‘Sender’ gaze onsets were defined at a 

time when either the adult or the infant made a gaze shift towards their partner at a time when 

their partner was either already looking at them (mutual) or not looking at them (non-mutual). 

‘Receiver’ gaze onsets were defined at a time when their partner made a gaze shift towards 

them at a time when either the adult or the infant was already looking at their partner 

(mutual) or not (non-mutual). Contrary to our hypothesis based on previous findings (e.g., 

Farroni et al., 2002) we did not find evidence for increased ERP amplitudes around mutual vs 

non-mutual gaze onsets. 

 

One possible explanation for the inconsistencies between previous screen-based research and 

the present study is simply it is just a result of increased artifact through the use of a 

naturalistic paradigm. However, we note that in first-author publications 1 and 3 our ERPs 



234 

 

show a close visual correspondence with ERPs observed in traditional ERP paradigms; the 

overall measures of EEG data quality we reported show good quality data (see section 8 of 

supporting materials for publication 3); we did replicate the findings from screen-based ERP 

research that infants show enhanced ERPs to images of faces vs objects (Guy et al., 2016; 

2018; Peykarjou & Hoehl, 2013; Xie & Richards, 2016) (see section 1 of supporting 

materials for publication 3); We observed statistically greater occipital ERP amplitudes for 

faces vs objects for the N290 component, but not for P1 or P400 components (ERP 

components typically routinely examined under this type of experimental paradigm/ stimuli. 

Mutual gaze and inter-brain synchrony. Secondly, in the present thesis we wanted to 

examine neural sensitivity to mutual gaze onsets at the dyadic level – e.g., do patterns of 

inter-brain synchrony between parents and infants associate with these processes. We wanted 

to reproduce the mutual gaze inter-brain synchrony effect, found in previous studies (Leong 

et al., 2017), using naturalistic parent-infant recordings. We also wanted to investigate 

whether the effects of mutual gaze on inter-brain synchrony were present around onsets of 

mutual gaze. The results of chapter 7 (publication 3) were inconsistent with previous studies 

that observed greater inter-brain synchrony during continuous (i.e., not relative to specific 

behaviours/ events within the interaction, but rather looking across all moments of a given 

behaviour during social interaction) moments of mutual vs non-mutual gaze. For example, 

Leong and colleagues (2017) found increased inter-brain synchrony using PDC, in Theta and 

Alpha, over C3 and C4 electrodes in N = 29 8-month-olds (Leong et al., 2017). In the present 

study, we measured PDC and PLV across the same frequencies and electrodes in N = 55 12-

month-olds.  

Although we followed the same analytical techniques as Leong et al., 2017, we used different 

pre-processing techniques and a different (less structured, more naturalistic) paradigm, which 
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could explain why our results differ. Firstly, the previous study featured an unfamiliar live 

adult singing nursery rhymes to an infant. Our present study, in contrast, featured primary 

caregivers interacting freely with their infant, using a puppet that they placed on their hand. 

Infant’s sensitivity to novel interaction partners is well documented (Bushnell et al., 1989; de 

Haan & Nelson, 1997; 1999; Barry-Anwar et al., 2016; Hoehl et al., 2012). Therefore, one 

explanation for the positive effects of gaze type on inter-brain synchrony in the previous 

study could be due to the saliency of mutual gaze in the presence of an unfamiliar adult. To 

investigate this further we performed the same analyses with data collected from infant-adult 

dyads. Here the infants interacted with an unfamiliar adult (one of two research assistants). 

The results of these analyses are reported in full in the supplementary materials for chapter 7, 

but summarised here, we found consistent with our main analysis of infant-caregiver dyads 

that inter-brain synchrony was not above chance around mutual gaze onsets and did not differ 

between mutual and non-mutual gaze onsets. Further we found that phase resetting around 

mutual gaze onsets was strongest for infant and adult sender compared with receiver gaze 

onsets.  

 

Second, in the previous study (Leong et al., 2017), adults continuously sung nursery rhymes 

to the infants during the interactions, whereas in the present study (chapter 7, first author 

publication 3) they talked normally. As sung nursery rhymes are highly periodic (Suppanen 

et al., 2019) and evidence suggests that infant’s neural activity entrains to the temporal 

structure of these songs (Leong et al., 2017a; Attaheri et al., 2022), it could be that the 

regularity of the nursery rhymes introduced an external periodic stimulus into the 

environment that was driving the inter-brain entrainment (e.g., Perez et al., 2017). Here, 

mutual gaze might only enhance or maintain synchrony that is already established, by 

facilitating shared attention and therefore upregulating attention-enhanced neural synchrony. 
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It will be important for future research to examine inter-brain synchrony in a variety of 

settings, ranging from very unstructured settings such as those used in the present study to 

more structured settings in which there are environmental stimuli with more regular and 

predictable inputs.  

 

Additionally, to address the possibility that differences in pre-processing procedures could 

explain why we failed to replicate previous findings we re-cleaned our data following the 

pre-processing procedures outlined in Leong and colleagues’ (2017) study. We found that re-

cleaning the data following the procedures of Leong and colleagues had no impact on the 

significance of any of the results of the main paper (publication 3), ruling out the possibility 

that different pre-processing procedures might be the cause of the discrepancy. Overall, these 

inconsistencies highlight the likely context-specific and localised nature of inter-brain 

synchrony, and further emphasise the importance of replication and standard data quality 

measures (Luck, 2021) when studying inter-brain dynamics (Holroyd, 2022). 

 

Phase resetting around gaze onsets. In chapter 4, we also explored event-locked intra and 

inter-brain neural responses associated with mutual gaze onsets. Through this, we aimed to 

test our previously published hypothesis that concomitant phase resetting in the sender and 

the receiver’s brain at the onset of gaze may drive inter-brain synchrony (Leong et al., 2017; 

Wass et al., 2020). Overall, the results of our event-locked analyses are inconsistent with this 

idea. Contrary to our hypothesis, inter-brain synchrony did not significantly exceed baseline 

values for sender/ receiver mutual or non-mutual gaze onsets and was not significantly 

different between sender or receiver mutual vs non-mutual gaze onsets.  
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Further, whilst we found that sender but not receiver mutual and non-mutual gaze onsets led 

to significant increases in ITC and amplitude (ERPs) over baseline, we did not find 

significant differences between sender or receiver mutual vs non-mutual gaze onsets. We did, 

however, find evidence for increases in ITC relative to sender mutual and non-mutual gaze 

onsets, but it is difficult to conclude that this represents phase resetting of neural oscillations. 

It could also be that changes in event locked amplitude/ power created the artifactual 

appearance of phase synchrony (Muthukumaraswamy et al., 2011) – a fact that the close 

correspondences we observed between ITC and event-locked changes in amplitude/power 

(see supporting materials in chapter 7) would appear to support. 

 

One possible driver of the sender neural responses could be residual eye movement artifact in 

our data. In supplementary analyses we compared time-frequency power over frontal and 

occipital electrodes before and after ICA cleaning and report that ICA cleaning removed 

most, but not all, of the assumed artifactual activity associated with the eye movement- a 

conclusion consistent with our previous research (Haresign et al., 2021). This analysis also 

allowed us to identify that these artifacts are transient (~100ms) and therefore only impacted 

the initial part of the ERP waveform. After the initial ~+150-200ms we observed ERP 

components that look very similar to ERPs observed in traditional screen-based tasks with 

clear P1, N290 and P400 components. For added safety, however, our main analyses were 

based on comparing sections of the data that are both identically time-locked to saccades, and 

therefore contain an identical amount of eye movement artifact.  

 

Overall, then, the results of publication 3 challenge the theory that phase resetting around key 

communicative signals such as mutual gaze is a mechanism through which inter-brain 

synchrony is achieved. Assuming that inter-brain synchrony according to more recent 
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frameworks (Holroyd, 2022) is associated with mutual gaze. This points to the importance of 

other potential drivers of inter-brain synchrony, that future work should investigate in more 

detail – such as correlated changes in amplitude/ power or changes in oscillatory frequency 

independent of phase resetting (see Haresign et al., 2022 for a detailed discussion), and other 

more periodic behaviours (e.g., speech; Leong et al., 2017a; Attaheri et al., 2022).  

 

Future directions 

 

Development of statistical procedures for analyses of inter-brain synchrony. A key issue in 

the study of inter-brain synchrony is how to isolate the distinct contribution of the real time 

social interaction from more general environmental features/ differences in cognitive 

engagement associated with live social interactions. This is because as several authors have 

noted common neural entrainment to exogenous/ environmental stimuli can give the 

appearance of inter-brain synchrony (Burgess 2013; Holroyd 2022). For example, this could 

happen if two participants simultaneously experience the same stimuli such as one person 

speaking. Here, the speech signal could drive entrainment (i.e., synchronised oscillatory 

activity) between the speech and neural oscillations in both participants. Although this could 

give the appearance of increased inter-brain synchrony, similar patterns of inter-brain 

synchrony could also be observed if both participants neural responses to the speech signal 

were recorded and analysed in isolation (although see Pérez et al., 2017).  

 

To address this issue of common neural entrainment many study designs include conditions 

in which participants perform similar behaviours to those in the live social condition and in 

the same environment, but without interacting directly (for an example see., Wass et al., 

2018, Reindl et al., 2022). Additionally, many studies control for the issue of common neural 
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entrainment using statistical analyses in which the observed/ real inter-brain synchrony 

values are compared to ‘surrogate’ inter-brain synchrony values. Typically, surrogate datasets 

are generated by randomly permuting some aspect of the data (e.g., the time dimension or 

which members of the dyad are paired) and then recomputing inter-brain synchrony.  

Although these analyses offer increased interpretational value over not performing any 

additional statistics, recently criticisms have been raised over the efficacy of current 

statistical approaches for group level analysis of inter-brain synchrony (Holroyd, 2022). 

These criticisms are primarily to do with; a) how the surrogate data are generated and b) how 

the observed inter-brain synchrony values are compared to the surrogate values. Although 

these criticisms are based on more fundamental consequences of permutations statistics, this 

has yet to be empirically tested for inter-brain synchrony analyses. Future research could 

explore these criticisms using a combination of empirical and simulated data. More 

specifically – what is the likelihood of generating false positives using different permutation 

approaches. This work would be useful in guiding future investigations of inter-brain 

synchrony in how best to approach group level analyses. 

 

Building our understanding of the neurocognitive mechanisms that underlie real time 

social behaviours. As has been recently highlighted (e.g., Cañigueral et al., 2022) much can 

be learned from questioning how we behave differently in the presence of a social partner and 

how our brains support this. The present thesis studied free-flowing naturalistic social 

interactions to investigate the mechanisms of parent-infant inter-brain synchrony, but perhaps 

even more basic questions about how infant’s brains function differently in the presence of an 

adult/ social partner (e.g., Wass et al., 2020) can help us to develop hypotheses about how 

two neural systems interact. For example, research with adults has shown that participants 

spend more time looking at the face of a confederate during a pre-recorded video vs live 
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(Cañigueral & Hamilton, 2019b). Whilst playing games, adult participants show increased 

prosocial behaviour under belief of being watched (Cañigueral & Hamilton, 2019b). Another 

study with 14-month-old infants found that interpersonal movement synchrony increased 

infants’ prosocial behaviour (Cirelli et al., 2014). At the neural level adult’s processing of 

faces has been shown to be different with a live partner vs viewing a picture (Pönkanen et al., 

2011a). Further infant’s object processing has been shown to be impacted by the presence of 

a social partner (adult) (Wass et al., 2018). Despite studies like these pointing to clear social 

influences on behaviour and brain activity very little is understood about the mechanisms that 

underlie real-time social behaviours (Cañigueral et al., 2022).  

 

The results of the present study show at a very broad level that infant’s brains do respond 

differently to social vs non-social information (as indexed by increased ERP amplitudes to 

faces vs objects - see figure 1). However, we found no evidence for changes in brain activity 

around moments when a partner reciprocates mutual gaze (see receiver gaze onsets, chapter 

7) which was surprising given the wealth of literature suggesting early development of 

sensitivity to eye contact (e.g., Farroni et al., 2002). Perhaps, though consideration of the 

context of gaze is key to a better understanding of the basic neural mechanisms that support 

social behaviours, like gaze. For example, studies have shown that patterns of gaze directed 

towards a partner differ depending on who is speaking/ listening (Cañigueral et al., 2021) and 

whether a conversation takes place over a live video call or not (Mansour & Kuhn, 2019). 

 

Perhaps in our study we would have been able to gain a more in depth understanding of the 

dyadic mechanisms associated with mutual gaze by focussing on the context. To increase the 

number of trials in our analysis our mutual gaze onsets we included looks that were directed 

from an object or from a state of inattention. However, it is worth considering that these 
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likely represent qualitatively and socially distinct experiences, perhaps evoking distinct 

neural patterns both intra- and interpersonally. This is a possibility that future research should 

explore in more detail. 

 

An additional way in which future research could consider context in order to further our 

understanding of the neural dynamics associated with real time social behaviours would be 

through examining effects of different social partners. To examine whether the (lack of) 

evidence for inter-brain synchrony in our study depended on partner familiarity we 

performed additional analyses with infant-adult (unfamiliar to the infant) dyads vs infant-

caregiver dyads. We found the same set of results for infant-adult dyads as we did for infant-

caregiver dyads, suggesting that the neural mechanisms we were aiming to investigate did not 

depend on partner familiarity. However, we only considered inter-brain dynamics and did not 

examine in detail whether behaviourally patterns of gaze directed towards a partner’s face 

differed during infant-adult vs infant-caregiver social interactions. This is a prospect that 

could create future testable hypotheses on the mechanisms that underpin real time social 

gaze. 

 

 

Expanding the variables, we extract from social interactions. Recognising that interacting 

neural systems are grounded within interacting bodies (Hamilton, 2021) it will be important 

for future research to take more multivariate approaches. This means increasing the repertoire 

of behavioural data that researchers collect from their participants. Using high resolution 

video recordings is a cheap and easy way to do this, as there are now an increasing number of 

technologies that allow for the tracking of postural movements (hands, face, limbs, head) 

from pre-recorded videos (e.g., see MediaPipe; Lugaresi et al., 2019). Examining the 
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temporal dynamics of behavioural coordination across multiple modalities will naturally 

create testable hypothesis that can be explored within interacting brains. For example, one 

recent paper (Hale et al., 2020) examined coordination in the head movements of participants 

during structured conversations, distinguishing between zero-lag concurrent synchrony, fast 

(e.g., <1s lag) reactive sequential synchrony or slow, sequential synchrony (e.g., over a lag of 

several seconds). The results show, consistent with the fast reactive model of sequential 

synchrony that head movements were best modelled by a mechanism with a constant 600ms 

lag. Similarly using cross-recurrence quantification analysis – a method that is capable of 

extracting the time lags of peak associations between two time series (similar to a cross 

correlation) - López Pérez and colleagues (2017), demonstrated patterns of parent-infant 

behavioural coordination, which varied in the peak time lag of the association dependent 

upon the behavioural modality and task demands.  

 

Our results show that for eye contact, neural responses in the ‘senders’ (i.e., the person 

turning to look at the other person, creating eye contact) brain activity occur rapidly and 

reactively (< 100ms after the offset of the eye movement). We found no evidence in this 

work for neural activity in either the sender’s or the receiver’s brain that preceded moments 

of mutual gaze which might indicate some degree of anticipation or prediction. Therefore, in 

our analysis we focused on quantifying inter-brain synchrony around mutual gaze as a 

concurrent relationship that involved changes in both partner’s brain activity at the onset of 

the eye contact. However, there is ample previous research using screen-based tasks that has 

shown neural correlates of saccade planning in infancy (Csibra et al., 2000; Richards, 2001). 

If similar neural correlates can be identified using naturalistic social paradigms it will be 

interesting for future research to investigate potential (bidirectional) relationships between 
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this form of action preparation in one individual and the behavioural/ neural responses in a 

partner following the action. 

 

Bridging the gap between EEG and fNIRS hyperscanning. Largely independently EEG and 

fNIRS hyperscanning as fields have continued to grow in recent years. However, because of 

differences in spatial and temporal recording accuracy it can be difficult to interpret whether 

similar findings across these different neuroimaging methods reflect the same neural 

mechanisms. For example, Piazza and colleagues (2020) used fNIRS hyperscanning to show 

during live social interactions eye contact was associated with increased correlation in adult-

infant pre-frontal cortex activity. This was compared to moments during which there was no 

eye contact. Similarly, using fNIRS hyperscanning Hirsch and colleagues (2017) and Noah 

and colleagues (2020) found live eye contact to be associated with increased inter-brain 

coherence compared to eye contact with a picture (Hirsch et al., 2017) and eye contact with a 

pre-recorded video (Noah et al., 2020). However, for studies that contrast eye contact during 

live interactions with non-live conditions it is quite possible that the mechanisms under 

investigation are quite different to those in studies that contrast live direct vs live averted eye 

contact. It is possible that the effects observed in these studies have little to do with eye 

contact but rather the presence or absence of a live partner (e.g., Hamilton, 2016; Hamilton & 

Lind, 2016; Cañigueral et al., 2022). 

 

Notwithstanding the differences in the study design, together these findings suggest that there 

must be neural processes/ structures that are recruited differentially in facilitating direct eye 

contact. But how can future EEG research investigate the mechanisms by which these 

patterns of activity become synchronised between individuals? And how can this be 

informative to researchers investigating similar concepts using fNIRS hyperscanning? 
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Firstly, is inter-brain synchrony substantiated by two brains mutually adapting to one 

another? Or is it result of one brain adjusting its activity to be more similar to the other. 

Using gaze as an example, to explore this researchers will need to carefully consider activity 

over a range of time lags before and after the onsets of gaze, considering a) if there are 

patterns of neural activity that precede eye movements in the sender mutual gaze onsets, this 

might suggest that changes in brain activity associated with mutual gaze start much earlier, 

during the preparation of the eye movement. b) Under what circumstances and at which 

temporal lags do receivers anticipate that their partner is going to look at them? Does this 

always involve patterns of neural activity that bring two individuals closer to alignment, 

regardless of whether this is desirable or not. These types of questions which require precise 

temporal information are naturally well suited to EEG research but will provide a foundation 

of knowledge that will be beneficial for event locked fNIRS study designs also. 

 

Second how do onsets of shared behavioural events like mutual gaze impact the subsequent 

behaviours of both individuals? And do changes in behaviour after an event result in changes 

in both partner’s neural activity which might affect inter-brain synchrony in the time window 

following the shared behavioural event? For example, recent research has shown in 

interacting adults that when one person is looked at they increase the frequency at which they 

change their gaze (Dobre et al., 2021). We know that eye movements produce substantial 

increases in EEG power, both as a result of residual artifact and genuine neural activity (e.g., 

Haresign et al., 2021). EEG power is heavily linked to many measures of inter-brain 

synchrony (e.g., Muthukumaraswamy et al., 2011). Therefore, it will be important for future 

research to investigate how changes in behaviour following shared events manifest in 

changes in intra-individual EEG activity which might also contribute to differences in inter-
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brain synchrony. This will be an important point for fNIRS based hyperscanning to consider 

also as it suggests that inter-brain synchrony might be sensitive to the amount of contingency 

within and interaction, rather than just its presence or absence.  

 

Lastly, identifying shared loci of inter-brain synchrony between EEG and fNIRS research 

will allow for more robust validations of the neural systems that being measures through 

inter-brain synchrony. An important part of this might also be co-registration of EEG and 

fNRIS signals. If robust correspondences can be obtained between fNIRS and EEG signals 

(e.g., Pinti et al., 2021) then it should be entirely possible to use EEG to explore fine-grained 

mechanisms associated with patterns of inter-brain synchrony observed in fNIRS 

hyperscanning research.  

 

 

Summary 

Overall, the methodological and empirical work presented within this thesis furthers our 

understanding of the neural dynamics of social interactions in several ways.  Firstly, they 

illustrate that close resemblance and replication of findings from visually evoked ERPs 

obtained using traditional screen-based experiments is possible using unstructured naturalistic 

study designs when careful attention (and even using specifically designed solutions) is paid 

to eye movement artifact within the data, which will by naturally covary with key cognitive/ 

attentional processes. This is encouraging for the field of cognitive/ social neuroscience 

broadly given recent drives for more ecologically valid social neuroscience. Second what we 
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hoped to understand about if/ how inter-brain synchrony arises during social interactions 

around moments of mutual gaze we were only partially able to achieve.  

 

Chapter 7 details our investigation of inter-brain synchrony around moments of naturally 

occurring parent-infant mutual gaze. Through analysis of neural responses around moments 

of mutual gaze in both parents and infants, we aimed to show a chain of evidence that would 

implicate mutual gaze onsets as a driver of intra-brain phase resetting and subsequently 

increased inter-brain synchrony. We found no evidence for increased inter-brain synchrony 

around mutual gaze limiting the extent to which we could evaluate the steps in our chain e.g., 

whether phase resetting was a key mechanism for establishing inter-brain synchrony. Despite 

the null findings the results presented in chapter 7 themselves tell us several important things 

about the neural dynamics of social interactions. Firstly, they show that neural responses to 

faces contingent on saccades (see sender neural responses in chapter 7) are much greater (in 

terms of observable changes in amplitude) than neural responses to faces contingent on 

fixations (see receiver neural responses in chapter 7) which are very subtle/ non-detectable 

using the experimental set up and design we used. Secondly, they show that if patterns of 

inter-brain synchrony are a neural index of cognitive processes that support/ facilitate social 

interaction, for visual attention at least, they are not like other visually evoked neural 

responses which produce substantial and clearly observable changes in the EEG at the onset 

and immediately following some event.  

 

The result of our analyses suggest that patterns of inter-brain synchrony cannot be observed 

in the ways that traditional visually evoked potential can be. Therefore, if inter-brain 

synchrony is important for social interaction and we want to understand the mechanisms that 

give rise to it we need think carefully about; a) does inter-brain synchrony involve different 
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neural structures than those that we know are involved in traditional (screen based) visual/ 

auditory processing? If so, what’s causing these structures to respond differently? B) what do 

the measures that we are using imply about the properties of underlying signal. For example, 

if greater phase locking is observed between two people during moments of mutual vs non-

mutual gaze, then at some point there would have to have been a change in phase (or 

frequency) of at least one person’s EEG. We need to come up with rational hypotheses for 

behaviour’s that could actually induce these changes and we need methods that are capable of 

tracking these changes over large periods of continuous data. This can be achieved through 

consideration of what is already known from screen based social neuroscience (e.g., neural 

responses to different behaviours), coupled with the use of simulated and empirical data to 

model potential mechanisms.  

 

Beyond the study of inter-brain synchrony this thesis raises several important areas for future 

investigation of the neural correlates of real-world gaze/ vision. Are neural responses 

contingent on saccades different to those contingent on fixation? If so, why? How much of 

what we process visually about our environment happens immediately following saccades? 

When and where does processing of a partner’s gaze shift take place? Does neural (motor) 

activity preceding saccades carry information about the saccade, e.g., where and when it will 

occur? And how long will the look last for?  

 

To summarise the result of the present thesis, challenge the conclusions drawn from both 

traditional screen-based investigation of eye processing in infancy (e.g., Farroni et al, 2002) . 

First, when we repeat the Farroni et al analysis, we find no evidence to support the hypothesis 

that, during real-world naturalistic social exchanges, infant’s brains respond differently when 

someone looks directly at them. This is despite the fact our data are clean, as shown by the 
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clear face/object ERPs that we include in the SM, and the other data quality metrics that we 

also report in the SM. Our sample size was also larger than in the original study (N=55 vs N=16 

in the original study).   

 

Second, when we examine inter-brain entrainment during direct vs averted gaze, we also find 

no evidence to replicate the previous finding, of Leong and colleagues (2017) that Granger-

predictive associations in brain activity are stronger during direct gaze. This is, again, despite 

that our sample size was larger than in the original study (N=55 vs N=17 per group). Instead, 

our findings suggest a new conclusion: that the effects of mutual gaze are strongest at the intra-

brain level, in the ‘sender’ but not the ‘receiver’ of the mutual gaze. 

 

The findings presented in this thesis will be crucial in adding empirical evidence to recent 

theoretical papers that ‘push back’ against the rapid growth of interest in dyadic neuroimaging 

recording techniques that is currently taking place around the world. Given that they go to the 

very heart of our current prevailing theories of how our brains learn to process social 

information. 
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Appendices 

Appendix A – Ethics application form  

Ethics approval for the project was submitted and obtained by Megan Whitehorn on behalf of 

the three PhD students working on the project; Myself, Megan Whitehorn and Emily Phillips. 

Below is the approved ethics application letter. 

 

Ethics ETH1819-0141: Ms Megan Whitehorn (High risk) 

Date 10 Apr 2019 

Researcher Ms Megan Whitehorn 

Student ID 1920537 

Project The effects of Attention Training on Neural and 

Behavioural  

Responsivity in Infants During Parental Dyadic 

Play  

School Psychology 

 

Ethics application 

Checklist for research projects conducted during a pandemic 

Project details 

1.1 Is your research project taking place during a pandemic? 

1. Project details 

1.1. Title of proposed research or consultancy project 

New insights into how the infant brain subserves dynamic social interactions 
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1.2. UEL Researchers or Consultancy lead’ 

Ms Megan Whitehorn 

Ms Emily Phillips 

Mr Ira Marriott Haresign 

Prof Samuel Wass 

1.3. Start date of project for which ethical approval is being sought 

24 Jun 2019 

1.4. Anticipated end date of project for which ethical approval is being sought 21 Jan 

2022 

1.5. If this project is part of wider research or consultancy work, please provide the 

UREC, EISC, URES, RRDE, SREC, CREB or NHS research ethics approval number 

n/a 

1.6. If this project is part of a wider research study or consultancy work please state the 

start and end dates n/a 

 

1.7. Specify where the research or consultancy project will take place 

UEL, Stratford Campus  

 

2. Aims and methodology 

2.1. Aims and objectives of the project 

Most early cognitive learning takes place in the presence of an adult social partner. 

Behavioural and psychophysiological research has suggested that as infants and parents 

communicate they adapt to each-other on a moment-by-moment basis- through, for example, 

cycles of vocalizing and pausing, of looking towards and away from each other, and of 

matching each-others’ positive, negative and neutral affect (Feldman, 2007). Less well 
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understood is whether similar mechanisms of mutual attunement also operate at the neural 

level, and if/how shared patterns of oscillatory activity between individuals sub-serve 

interpersonal influences on attention.  

 

Using dual-EEG recordings, recent work has found that when interacting with an adult 

partner, increased neural synchronisation is observed during moments of direct gaze (Leong 

et al., 2017). A further study conducted with mothers and infants has also shown that when 

parents engage in joint play with their infant, parents’ neural activity tracks and responds to 

infant attention, with greater responsivity associated with increased infant attentiveness.  

The primary aim of the project is to further our understanding of interpersonal mechanisms 

that give rise to parent-infant neural “phase locking” (a phenomenon whereby two oscillatory 

signals become temporally aligned). Our secondary aim is to investigate the effects of child-

focussed vs. parentfocussed intervention on parent-child behavioural synchrony, and how 

these effects are substantiated at the neural and physiological level. The child-focussed 

intervention group will undergo a computerised attention training intervention, previously 

shown to lead to increased voluntary attentional control and responsiveness to social cues 

(Wass et al.; Wass & Forssman, 2017). The parent-focussed intervention group will receive a 

parent-child book-sharing training programme. This intervention has been shown to increase 

parent responsivity to infant cues, leading to gains in child attentional control, as well as 

receptive and expressive language abilities (Valley et al., 2016). By comparing parent-child 

interactions in the two groups before and after intervention, we aim to identify casual 

mechanisms to behavioural, physiological (ECG) and neural (EEG) synchrony.  

 

2.2. Methodology, data analysis and recruitment for the project 
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To assess neural phase locking, we shall record simultaneous Electrocardiography (ECG) and 

dual Electroencephalography (EEG) from N=210 typically developing 10-12-month-old 

infants and adults before and after intervention.  

 

Participation in the study will involve attending 8 sessions, which will be scheduled weekly. 

The first 2 visits will be pre-intervention sessions; these will be identical for all participating 

infants. Then, the subsequent 5 visits will be intervention visits. The exact schedule for these 

will vary depending on which group the participant is in (see further details below). The last 

visit will be a post-intervention session. These will, again, be identical for all participants.  

Allocation of participants to intervention group will be fully randomised and performed prior 

to the participants’ first testing session.  

 

Infants will be recruited from the participant database at UEL, as well as various local ‘baby-

groups’, following the same procedures as used in multiple previous studies. Participants will 

also be recruiting from our pre-existing participant database. All participants will be aged 

between 270 and 330 days at the date of the first visit. Exclusion criteria will be: complex 

medical conditions, skin allergies, heart conditions, parents below 18 years of age, and 

parents receiving care from a mental health organisation or professional.  

 

Pre-intervention assessment (visits 1 and 2). The infant’s parent will be with them at all 

times. During these pre-intervention visits, both parents and their parents will have their 

electrical brain activity measured using Electroencephalography (EEG) and 

Electrocardiography (ECG). EEG will be measured using a Biosemi 32-channel system 

optimised for dual EEG recording. This is a gel-based system that is already in use in 



253 

 

multiple sites across the world for infant testing. ECG will be measured using stick-on 

electrodes placed in a modified lead II position.  

 

Participants will complete three conditions, spread across two visits: 

In Condition 1 (Video), infants will view a pre-recorded adult experimenter continually 

reciting nursery rhymes. Adult’s pre-recorded EEG will be compared with the infant’s live 

EEG during viewing.  

Behavioural data will be videoed and coded post-hoc. 

In Condition 2 (Live), we shall record dual EEG and ECG from an infant and an unfamiliar 

adult (researcher) simultaneously, while they engage in table-top play. Behavioural data will 

be videoed and coded post hoc.  

In Condition 3, the same procedure will be repeated while the infant interacts with their 

parent, we shall record dual EEG and ECG from an infant and and parent simultaneously, 

while they engage in table-top play. Behavioural data will be videoed and coded post hoc. 

Participants will also be administered a battery of cartoon-based cognitive and language 

outcome measures using eyetracking. The eyetracker used will be a Tobii TX300, that has 

been used in numerous studies around the world. Parent questionnaires will also be 

administered, namely the: MacArthur Communicative Development Inventory; the Infant 

Behaviour Questionnaire (short version); the GAD-7 and PHQ-9 (clinical assessments of 

parental anxiety and depression symptoms); the Penn State Worry Questionnaire, and a 

demographics questionnaire. All questionnaires proposed for inclusion are given in the 

appendix. Sessions will last a total of 2 hours. This is a standard length of time for lab visits 

with infants of this age; although assessments will last around 30-60 minutes, we like to 

allow enough time for the infant to settle in, and have breaks (for naps, snacks etc).  

Intervention 1- Child focused attention training intervention. 
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This intervention will be delivered once a week over a five-week period, with each session 

lasting 30 (+/- 10) minutes. Each session will involve the child being positioned on their 

parent’s lap in front of an eye-tracker, while training stimuli are presented on a computer 

monitor. Training stimuli consist of 6 tasks presented consecutively in the same order for 

each session; different events take place in the stimuli contingent on where the infant is 

looking. The intervention has already been published (Wass et al., 2011, 2018) and been used 

in several studies without any problems or unintended negative outcomes being reported.  

Intervention 2 – Parent focussed book sharing intervention.  

 

This intervention trains parents in ‘dialogic’ book-sharing techniques; active and evocative 

behaviours that engage children in reciprocal communication during book-sharing. The 

intervention will be delivered once a week over five weeks by one of the PhD students on a 

one-to-one basis, with each session lasting 60 +/- 10 minutes. Each week will involve a 

specific theme, e.g. ‘elaborating and linking’, as well as a book-of-the-week for parents to 

take home and practice the book-sharing techniques with their children. The intervention has 

already been published (Vally et al., 2015) and been used in several studies without any 

problems or unintended negative outcomes being reported.  

Intervention 3 – Control 

Infant in the control group will make similar lab visits to the intervention groups; they will 

watch some computerised animations, and the researcher will discuss ways to incorporate 

foods into the child’s diet that may be particularly helpful to supporting their early 

development.  

Post Intervention 
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Following training, all participants will attend two post-assessments. These assessments will 

follow exactly the same format as the pre-assessment sessions. Participants will receive the 

same battery of pre-assessment outcome measures.  

Through analysis we aim to explore interpersonal neural and physiological correlates of 

social interaction. We will compare parent-child behavioural, physiological and neural 

synchrony before and after intervention, in order to investigate the effects of receiving each 

intervention, and in comparison to no intervention at all.  

 

2.3. Is the data accessed, collected or generated of a sensitive nature? 

Yes 

 

2.3.1. If yes, please provide details. Please ensure that all data of a sensitive nature is 

handled carefully and stored appropriately. 

We will be collecting heart rate and EEG data. These will be stored securely on a 

passwordprotected drive kept under lock and key in the university and accessible only by 

project researchers.  

 

3. About your project 

3.1. Is the research/consultancy project funded? 

Yes 

3.2. Does the project involve external collaborators? 

No 

3.3. Does the project involve human participants? 

Yes 

3.4. Does the project involve non-human animals? No 
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3.4.1. If yes, where is the research project taking place? 

3.5. Does your project involve access to, or use of, material (including internet use) 

covered by the Terrorism Act (2006) and / or Counter-Terrorism and Border Security 

Act (2019) or which could be classified as security sensitive? 

No 

3.6. Does the project involve secondary research, secondary data or analysing an 

existing data set? No 

3.7. Does the project raise ethical issues that may impact on the natural environment 

over and above that of normal daily activity? 

No 

3.8 Does the research/consultancy project involve data collected online via social media, 

advertising the project online or via social media or include a questionnaire/survey? 

No 

If yes, please provide details. 

3.9. Will the research/consultancy project take place overseas? 

No 

3.10. Will the researcher or research team be responsible for the security of all data 

collected in connection with the research/consultancy project? Yes 

3.11. Does your research/consultancy project require third-party permission? 

No 

If yes, please provide details. 

3.12. Does your research/consultancy project involve any circumstances where the 

professional judgement of you and/or the team is likely to be influenced by personal, 

institutional, financial or commercial interests? 

If yes, please provide details. 
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3.13. Does the project involve consultancy or contract research? 

If yes, please provide details. 

4. Funding 

4.1. Funder(s) 

Leverhulme Trust 

4.2. Grant type 

Research Council 

If you selected other, please provide further details. 

4.3. Value of grant £ 327093 

4.4. Please upload a letter advising of the award of the grant. 

6. Recruitment 

6.1. Are the research participants able to give informed consent (in written or verbal 

form)? 

No 

6.1.1. If no, is this because they are perceived to lack mental capacity or because they 

are vulnerable? Vulnerable 

6.1.2. If the participants are perceived to lack mental capacity, please provide the 

reason(s). 

6.1.3. Further details 

6.1.4. If the participants are perceived to be vulnerable, please provide details of the 

vulnerability. 

Research will involve children aged 10-12 months at time of training and testing. In line with 

previous studies of this type undertaken by the university, parents will be asked to consent to 

each test proposed in this study. Written information about each test will be emailed to 

parents at least a week before their visit to the lab, and they will be encouraged to ask for any 
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clarification they feel they need. All participants are invited to ask questions and voice 

concerns about our consent and information documents, so that we can respond to or expand 

on any part of the process that is not clear.  

6.1.5. Does the research/consultancy project involve children or young people under the 

age of 16? Yes 

6.1.6 If yes, are the children or young people able to give informed assent? 

No 

6.1.7. If no, is this because they are perceived to lack mental capacity or because they 

are vulnerable? Vulnerable 

6.1.8. If the participants are perceived to lack mental capacity, please provide the 

reason(s). 

6.1.9. Further details 

6.1.10. If the participants are perceived to be vulnerable, please provide details of the 

vulnerability. 

The infant participants will be aged between 10 and 12 months at the time of training and 

testing. At these ages, the babies will be too young to give informed consent before starting, 

therefore parents will consent on behalf of their infants/children, as standard in this age 

cohort. In addition, they will be constantly monitored for signs of distress, and any procedure 

that is deemed upsetting to either parent, researcher or the baby will be halted. All 

participants will be informed that they have the right to halt proceedings at any stage. Babies 

and children will be constantly monitored, and any test will be discontinued should they 

become distressed or show signs of discomfort. This includes both training and testing 

sessions. 

6.2. How will participants be recruited? 
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Infants will be recruited from the participant database at UEL, as well as from various 

recruitment drives at local baby-groups and Children’s Centres. Fully informed consent will 

be obtained before testing commences. 

All of the parents of babies in this study will have received an information sheet and been 

given an explanation of the aims of this study before providing their contact details. Different 

information sheets will be given depending on which group the participants have been pre-

allocated to. When they are initially contacted, they will be given more detailed information 

about what participation in the study involves via an information sheet, which will be emailed 

to them. At each interaction, an opportunity will be given to ask any questions or gain 

clarification. Before any data is collected, the parent/carer will be asked to sign a consent 

form. All participants are invited to ask questions and voice concerns about our consent and 

information documents, so that we can respond to or expand on any part of the process that is 

not clear.  

6.3. Please upload recruitment documents. 

6.4. How many participants are being sought for the project? 

210 

6.5. How long will participants be required for the project? 

The intervention blocks will take place over 9 weeks, with testing sessions once each week. 

The pre- and post- assessments will each last for two hours. Intervention sessions will last 30 

+/- 10 minutes for the attention training and 60 +/- 10 minutes for the book-sharing.  

6.6. Will the participants be remunerated for their contribution? 

Yes 

6.6.1. If yes, please specify monetary value of cash or giftcard / vouchers. 

£50 in shopping vouchers for those who receive the interventions and £30 in vouchers for 

those who do not.  
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7. DBS 

7.1. Do you require Disclosure Barring Service clearance (DBS) to conduct the 

research/consultancy project?? Yes 

7.2. Is your DBS clearance valid for the duration of the research/consultancy project? 

Yes 

7.2.1. If you have current DBS clearance, please provide your DBS certificate number. 

001659510034 

8. Medical 

8.1. Is your project a clinical trial and / or involves the administration of drugs, 

substances or agents, placebos or medical devices? No 

8.1.1. If you answered yes, please explain why you have chosen to use this application 

form instead of the NHS/HRA ethics application form. If you have selected yes, your 

project requires approval by the NHS/HRA, as it is falls under the classification of 

Medicines for Human Use (Clinical Trials) Regulations (2004) or Medical Devices 

Regulations (2002) or any subsequent amendments to the regulations. 

8.2. Does your project involve the collecting, testing or storing of human tissue / DNA 

including organs, plasma, serum, saliva, urine, hair, nails or any other associated 

material? 

No 

8.2.1. If you answered yes, please explain why you have chosen to use this application 

form instead of the NHS/HRA ethics application form. If you have selected yes your 

project requires approval by the NHS/HRA, as it is falls under the classification of the 

Human Tissue Act (2004). 

9. Risk 
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9.1. Does the project have the potential to cause physical or psychological harm or 

offence to participants and / or researchers? 

No 

9.1.1. If yes, please provide details of the risk or harm explaining how this will be 

minimised. 

9.1.2. Please complete and upload a research risk assessment form 

9.2. Does the project involve potential hazards and/or emotional distress? 

Yes 

9.2.1. If yes, provide an outline of support, feedback or debriefing protocol. 

Infants sometime express mild distress on the application of the EEG equipment. However, 

we have received extensive training in how to minimise this. We do not obtain any usable 

EEG recordings if infants are at all distressed, so we take every possible step to minimise this 

when it occurs. The process of recording EEG data from infants is in place in numerous other 

research labs across the world, and the process we follow will be identical to those used in 

other labs.  

9.3. Provide an outline of any measures you have in place in the event of an adverse 

event or reaction or unexpected outcome, the potential impact on the project and, if 

applicable, the participants. 

We do not expect adverse events arising from the study procedures. Under circumstances of 

an unexpected adverse event, the participants’ health and safety will be the highest priority. If 

health and safety is in any way compromised, the participant will be withdrawn from the 

study, with clear reasoning given.  

10. Anonymisation 

10.1. Will the participants be anonymised at source? 

No 
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10.1.1. If yes, please provide details of how the data will be anonymised. 

10.2. Are participants' responses anonymised or are an anonymised sample? 

No 

10.2.1. If yes, please provide details of how the data will be anonymised. 

10.3. Are the samples and data de-identified? Yes 

10.3.1. If yes, please provide details of how the data will be anonymised/pseudonymised. 

Direct and indirect identifiers will be removed from data and participants will be assigned a 

participant code. This will be entered along with the date and time of testing on the files 

containing raw data, and will be used to record all other data collected during pre-post 

assessments. Participant names and ID numbers will be stored in a separate password 

protected database. This is so that participants can withdraw their data up to the point at 

which it is included in the final analysis. Consent forms will be kept securely and separately 

from the raw data in a locked cabinet. Only members of the research team will have access to 

both the raw data and consent forms. Data will be retained in a secure place at the end of the 

project as, should funding allow, we might wish to follow up the sample over a longer time 

period. Video recording of the behavioural paradigms will only be viewed by members of the 

research team. 

10.4. Please provide details of data transcription. 

All data will be analysed using MATLAB software. Behavioural paradigms will be coded 

according to their manuals. External research assistants may be recruited in order to code 

videos; assistants will be fully briefed on ethics related to the study and will not be allowed 

access to consent forms, code keys, or any other data that would allow them to identify the 

participant. Research assistants will only be permitted to code data on university computers 

(that are disconnected from the internet) and will not be allowed to copy or move video files 
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from the university. Research assistants will be asked to complete a confidentiality agreement 

before undertaking any work on the project.  

10.4.1 Will the data be transcribed by person(s) outside of the project team? 

If yes, please upload a blank copy of the confidentiality agreement. 

10.5. If applicable, will all members of the project team know how the code links the 

data to the individual participant? Yes 

10.5.1. If no, in the event of a researcher's absence please specify the process should 

access to the research data be required. 

10.6. Will participants be anonymised/pseudonymised in publications that arise from 

the research/consultancy project? Yes 

10.6.1. If no, please provide details. 

10.7. Will participants have the option of being identified in the study and dissemination 

of research findings and / or publication? 

No 

10.7.1. If yes, please provide details. 

16. Data security 

16.1. Will the researcher or the project team be responsible for the security of all data 

collected in connection with the proposed research/ consultancy project? Yes 

16.1.1. If no, please provide details. 

16.2. Will the research/consultancy data be stored safely on a password protected 

computer? Yes 

16.2.1. If no, please provide details. 

16.3. Will the research/consultancy project data be stored on a UEL data managed 

device? Yes 
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16.3.1. If no, please specify where the electronic data will be stored and how the data 

will be kept secure. 

16.4. Will you keep research/consultancy project data, codes and identifying 

information in a separate location? Yes 

16.4.1. If yes, please explain how you will store the research data. 

Consent forms will be kept in hard copies in a locked cupboard on university premises. Only 

the research team will have access to this cupboard. The cupboard will be locked when not in 

use. Data and audio/video recordings will be stored separately from the consent forms. Hard 

copies of personal data will be stored in locked cupboards in the lab. Electronic versions of 

personal data will be stored on a secure computer network (to which only the research team 

have access) on password protected computers at the University of East London. Participant 

names and IDs will be stored on a separate password-protected database.  

16.5. Will the raw data be shared with individuals outside of the project team? 

No 

16.5.1. If yes, please specify the names, positions and their relationship to the research/ 

consultancy project 

 

Name 

Position 

Relationship to research 

 

16.6. Will participants be audio and/or video recorded? 

Yes 

16.6.1. If yes, please explain how you will transfer, store and, where relevant, dispose of 

audio and/or video recordings. 
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Digital audio-video recordings will be transferred onto the UEL secure computer network 

that only the research team will have access. Video files may need to be stored externally; in 

this case, recordings will be stored and transferred on a password-encrypted hard drive with 

access limited to members of the research team.  

16.7. If audio and/or video recordings will be retained, please provide details and state 

how long the recordings will be kept. 

Recording will be kept for up to a year after the data has been analysed unless further funding 

can be obtained and the data is used again in further analyses, for which ethics approval of 

analyses of secondary data will be sought.  

16.8. Will you retain hard copies of the data? Yes 

16.8.1. If yes, please provide details of how the data will be transported safely and, 

where relevant, undergo secure disposal. 

Data will be collected and stored in the BabyLab at UEL. Hard copies of any data will be 

kept in locked cabinets in the BabyLab offices. Only members of the research team will have 

keys to those cabinets. The data will not leave the premises. These will be shredded by a team 

member when appropriate.  

16.9. Will the research/consultancy project data be encrypted and transferred inside of 

the  

UK? 

Yes 

16.10. How long will the research data that details personal identifiers be stored? 

Any personal identifiers will only be retained until the research has been published and it is 

no longer possible for participants to request to withdraw their data  

16.11. Please upload a copy of your Data Management Plan. 

18. Dissemination 
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18.1. Will the results be disseminated? Yes 

18.1.1. If yes, how will the results of the research/consultancy project be reported and 

disseminated? 

Dissertation / Thesis 

Peer reviewed journal 

Internal report 

Conference presentation 

18.1.2. If you selected other, please provide further details. 

18.1.3. If the results of the research/consultancy /project will not be reported and 

disseminated, please provide a reason 

20. Attachments 

You can generate a Participant Information Sheet and Consent Form using the answers 

provided in your ethics application form. The Word files generated can be edited. You should 

upload the final version(s) before submitting your application form. 

20.1. Upload any additional files to support your application which have not already 

been uploaded within your application. 

Appendix B – Covid-19 Risk Assessment Form 



267 

 

Covid-19 Risk Assessment Form 

Use this form for assessing risk specifically related to our work around the management of the Covid-19 outbreak all 

forms should be stored on Silver Command Teams Site 

Risk Owner  

(who’s responsible for 

managing the risk)  

Dr Sam Wass Date of Assessment   12/01/2021 

Date of Review   

 

Activity title 

Use of research suites in Arthur Edwards 

building for testing 

Location of activity: Arthur 

Edwards 

building, 

Stratford 

Campus 

Signed off by Manager 

(Print Name) 

 Date and time 

(if applicable) 

Various – 

always 

during office 

hours 

Financial Cost to UEL See UEL Resources Required section.  UEL Resources 

Required 

PPE 

(surgical 

masks, 

gloves), 

disinfectant. 

If these are 

not available 

centrally 

from the 

university 

they can be 

purchased 

by us from 

grant 

income.  
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Please describe the activity/event in as much detail as possible. Please include information about the nature of activity, 

the resources required, the estimated number of participants and the start and end date. 

 

 

All of the testing sessions involve individual parents bringing their children to attend sessions in the lab that are run by 

researchers working either individually or in pairs. No testing session will ever involve more than three adults and one child.  

 

All of our testing involves parents and infants, who generally fall within the low-risk categories for COVID-19 – although see 

below for the steps we will take to ensure this.  

 

To allow us to reopen testing in a way that minimises the risk to participants and to researchers, and considering that the new 

variant of COVID 19 is more transmissible, we propose the following steps: 

 

Prior to the session: 
- only researchers who are in low-risk groups  (i.e. not over 70, no underlying conditions, and not living with anyone who 

falls into these categories) will be asked to conduct testing in the BabyDevLab suite. Named researchers are: Louise 
Goupil, Katherine Denman, Zeynep Suata, Emily Phillips, Megan Whitehorn, Ira Marriott Haresign. Testing is run during 
normal office hours and occasional Saturday.  

- on contacting a potential participant we will explicitly ask whether there is any reason why they do not consider 
themselves low-risk (using the same criteria as above), and we will only schedule visits with low-risk participants. 
Anyone who is ‘clinically extremely vulnerable’ will not be allowed come to campus. 

- all potential participants and researchers will be asked to self-report as to whether there is a chance that they have been 
exposed to COVID-19 within the past 14 days (following Public Health England guidelines) and will be asked not to 
attend testing sessions if they have. 

- researchers will take a lateral flow COVID test twice a week where possible and appropriate.  
- participants will be strongly encouraged to take a lateral flow test within 3 days prior to their first visit, and if possible 

send a screen shot of their results. 
- participants will be told they need to have an active NHS ‘track and trace’ or ‘COVID-19’ app if possible, before visiting 

the lab. 
- on arrival, researchers and participants will be asked to scan the displayed ‘track and trace’ posters at the UEL main 

reception. Participants who do not have the app will be asked to write down their details in a dated log. Pens will be 
disinfected after use.   

- researchers and participants will be asked to take their temperature using one of the machines in the main UEL 
reception, when they arrive on campus.  

- researches will log that all mitigation measures have been followed at each visit.  
- we will ensure that only one participant attends a testing session in any research room at one time, and that there is at 

least an hour between visits in order to allow researchers to fully disinfect between visits any surfaces that were touched.  
- researchers and participants will only be allowed to travel to the labs by walking, bike or car. If this is not available we 

will arrange and pay for taxis in and out. (These costs will be covered from grant income.) 
- it will be emphasized to participants that travel to the lab should be direct to fall in line with recent Government guidance 

to ‘stay at home’ 
- researchers will be asked only to travel in and out of the lab for their scheduled testing visits. At all other times, they will 

continue to work from home.  
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- for participants who drive in to the lab, we will arrange with Security so that their parking voucher can be provided 
electronically 

- we will ensure that all of the paperwork that participants normally fill in at the start of their visit (i.e. consent forms and 
questionnaires) is done online, via Qualtrics, in order to keep the visit as short as possible and avoid having to touch pen 
and paper.  

- all briefing of participants, that normally we do when participants first arrive, will instead be done beforehand, by phone.  
- rather than providing food and drink and refreshments for the parents, as we normally do, we shall instead ask the 

parents to bring their own food and drink. We will offer a small financial reimbursement to parents to compensate for this, 
which will be paid electronically.  

- participants who develop symptoms and get tested, or who test positive within two days after visiting the lab, will be 
asked to notify us, so that we may notify those people who were there at the same time. 

- the wider COVID-19 situation will be kept under weekly review and risk mitigations measures revisited as and when 
necessary.  

 
 
During the session: 

- researchers will thoroughly disinfect all surfaces that will be touched prior to the participants’ arrival in the lab. We will 
ensure that adequate training is provided so that researchers do this effectively. 

- participants will be asked to wash their hands thoroughly on arriving at the lab (in the drugs lab), and then provided by us 
with a surgical mask and gloves that they will wear through their visit (with a few exceptions, as described below).  

- researchers will wear surgical mask and gloves throughout the visit (with no exceptions). These will be provided by the 
university.  

- participants will be met by the researcher at reception and will be accompanied by our researchers to the research 
suites, ensuring that there is no possibility of exposure on the way to the lab. 

- most of the equipment we use can be applied by the participants themselves, under the remote direction of the 
researchers. This means that it will be possible to maintain 2 metres distance between researchers and participants 
throughout the visit. The only exception to this is the EEG recording nets, that have to applied by the researchers. 
However, we have discussed this carefully with the testing staff and this can be done always with the researchers behind 
the participants, applying the cap directly to their heads, without any face-to-face contact.  

- Researchers will thoroughly disinfect all surfaces touched during each visit, immediately after the participants leave. At 
least one hour’s gap will be scheduled between visits in order to allow time for this.  

 

All staff 

- All staff will work from home wherever possible. When research or other staff come into the office for testing purposes 
they will follow the University’s ‘Daily 123’ protocol:  
1. TEST - Before coming onto campus each day staff will complete UEL's online health status update to determine 

whether or not you may attend campus that day; 2. DISTANCE – staff will check-in when they arrive and leave campus 

using the free Safezone app. 3. TRACK – staff will download and use the NHS coronavirus contact-tracing.  

- In line with the Daily 123 protocol, staff will download and use the Safezone app.  
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