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Abstract—Covariance matrix design and beamforming in
multiple-input multiple-output (MIMO) radar systems have al-
ways been a time-consuming task with a substantial number of
unknown variables in the optimization problem to be solved.
Based on the radar and target conditions, beamforming can be a
dynamic process and in real-time scenarios, it is critical to have
a fast beamforming. In this paper, we propose a beampattern
matching design technique that is much faster compared to the
well-known traditional SQP (semidefinite quadratic program-
ming) counterpart. We show how to calculate the covariance
matrix of the probing transmitted signal to obtain the MIMO
radar desired beampattern, using a facilitator library. While
the proposed technique inherently satisfies the required practical
constraints in covariance matrix design, it significantly reduces
the number of unknown variables used in the MSE (minimum
square error) optimization problem, and therefore reduces the
computational complexity considerably. Simulation results shows
the superiority of the proposed technique in terms of complexity
and speed, compared with existing methods. This superiority
increases by increasing the number of antennas.

Index Terms—Covariance matrix design, real-time beam-
forming, multiple-input multiple-output (MIMO) radar, SQP
(semidefinite quadratic programming), MSE (minimum square
error).

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) radar systems
have been attracting considerable attention recently

due to their performance advantages such as higher spatial
resolution, improved target identifiability, waveform diversity
and flexibility to design a variety of transmit beampatterns
[1]–[3]. They have the potential to significantly improve radar
remote sensing performance in a number of important applica-
tions including airborne surface surveillance, over-the-horizon
radars [4]–[6] and tracking multiple targets [7]. The concept
of MIMO systems is not new. MIMO techniques have experi-
enced great success in other radio frequency (RF) systems,
mostly in wireless communications. The important enabler
features for both radar and communication systems to benefit
from MIMO techniques are generally the same, however,
the performance metrics and implementation approaches are
quite different. In communications systems MIMO antennas
enable improved channel capacity in complex propagation
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and scattering environments dominated by multipath propa-
gation. Similar to MIMO communications that can develop
wireless network and improve capability of communication,
MIMO radar systems can achieve high performance in signal
processing [8], [9]. MIMO radars have numerous advantages
over uniform phased array (UPA) radar counterpart; namely
decreasing sidelobe levels (SLLs) in designing beampatterns,
reducing the signal-to-interference-plus-noise ratio (SINR)
and controlling cross-correlations. Radars with UPA antennas
transmit fully correlated waveforms with possibly different
phases and amplitudes, therefore they are considered to be
single-input single output (SISO) systems. In MIMO radars
the waveforms that are transmitted by different antennas are
orthogonal or have a percentage of orthogonality, and this
degree of freedom provides MIMO radars some features that
do not exist in SISO systems, the most important of which
are vast field of view and virtual arrays [10], [11]. MIMO
radars can be classified into two types: widely distributed
and collocated MIMO radars. In widely distributed antennas,
array elements are physically separated with a large space,
enough for each antenna to see different targets’ radar cross-
sections (RCSs). These radars can enhance spatial diversity as
well as detection. In collocated MIMO radars the transmitting
antennas are located at small distances from each other, and
their transmitted waveforms can be completely independent
(or orthogonal), partially correlated or completely correlated.
There are other categories of MMO radar systems such as
monostatic, bistatic and multi-static. Monostatic MIMO radars
use unique antennas as transmitters and receivers. In bi-static
radars, the transmitters are in one place and the receivers
are in another place, and multi-static radars are those that
have several transmitters in one place and several receivers
in another place. In this paper, the focus is on collocated and
monostatic MIMO radars.

In MIMO radars, waveform design plays a significant role in
achieving desired advantages in numerous applications such as
beamforming with integrated sidelobe levels (ISLs) constraints
[12], antenna selection [13], spectrally compatible applications
[14], [15] and etc. The collocated MIMO radar waveform
design can be divided into two categories; one on the receiver
side for achieving maximum output SINR [11], [16], [17]
which can enhance the target detection performance and
suppress signal-dependent interferences. The other is to design
MIMO radar waveforms with desirable transmit beampattern
to control the radiation power distribution on the transmitter
side. The second category itself can be classified into two
subclasses of direct and indirect waveform design. In direct
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from antenna to obtain desired characteristics. Therefore, the 
main aim in optimization problem is to design the probing 
waveform directly, however, indirect waveform design refers 
to design of the covariance matrix in the first s tep, then 
deriving the waveforms from the achieved covariance matrix 
in the second step. Therefore, the waveform covariance matrix 
design problem is considered as the main aim by proposing 
the transmit beampattern design metrics to match a desired 
transmit beampattern or to solve the minimum square error 
(MSE) problem and minimize a penalty term via optimization 
methods. The penalty term is the cross correlation of compos-
ing different direction signals for defined angles in the region 
of interest. In direct waveform design problems, constant 
modulus (CM) and positive semidefinite (PSD) constraints are 
the practical constraints that mostly considered in waveform 
design optimization problem. CM is a practical constraint 
for increasing the efficiency o f p ower a mplifiers (PAs) used 
behind the antennas in MIMO radars [18]. It applies equivalent 
waveform transmission from antennas elements in each time 
(or sample). In indirect waveform design problems, PSD 
constraint is essential for the realization of waveforms and 
the constraint of equality of the diagonal elements of the 
covariance matrix which is necessary for avoiding the de-
structive effects of the PAs operation in the saturation region. 
For instance in the direct waveform design problem, [19] 
considered waveform design in space domain by selecting 
appropriate phases of the waveforms from all MIMO radar 
antenna elements to obtain the desired beampattern. In their 
proposed algorithm, the waveform transmitted from an antenna 
element must be coded in time domain to be orthogonal or 
nearly orthogonal. In [20] the binary transmit waveforms are 
designed via minimizing the beampattern integrated sidelobe 
to mainlobe ratio and likelihood ascent search (LAS) method 
is used as a solution for optimization problem. Additionally,
[21] applies two algorithms based on the alternating direction 
method of multipliers (ADMM) method to obtain the desired 
beampattern in directly probing waveform design. The ADMM 
algorithm is a distributed optimization approach with the 
numerical robustness of the augmented Lagrangian method. 
Based on the ADMM framework, nonconvex polynomial 
functions and nonconvex multi-constraint problems could be 
solved [22].

Indirect waveform design is considered in the literature such 
as [23] where the covariance matrix design is stated as a 
semidefinite q uadratic p rogramming ( SQP) p roblem f or ob-
taining the elements of a square-root matrix of the covariance 
matrix based on parametrizing coordinate of a hypersphere 
with considering the practical constraints. In [24] Toeplitz 
matrices are proposed for MSE problem with low compu-
tational complexity while fulfilling t he n ecessary constraint. 
Also in [25] the iterative methods are utilised for designing 
the covariance matrix and used the barrier method as a simple 
technique for solving convex optimization and synthesise 
BPSK waveforms which satisfy CM constraint. [26] is used to 
convert a constraint problem to an unconstraint one and extract 
the covariance matrix. In [27], [28] a closed-form method 
is presented to design the covariance matrix for a uniform 
linear array that uses the discrete Fourier transform (DFT)

by reducing the complexity of the iterative methods. Also
in [29], [30] several covariance matrixes are proposed that
satisfy PSD and the equality of the diagonal elements of the
covariance matrix constraints and then the BPSK waveforms
which realise these covariance matrices are generated. To this
end, synthesising transmit waveform under practical constraint
(CM or peak to average power ratio (PAPR)) after obtaining
covariance matrix is reviewed in [25] and [30], [31]. [32]
applies cyclic algorithm (CA) to generate CM waveform with
specific covariance matrix. In [33] an effective algorithm
is proposed based on multi variable optimization problem
of designing the CM transmitter waveform for a collocated
MIMO radar to meet a desired output beampattern with
both indirect and direct waveform design methods. Waveform
covariance matrix design problem in different scenarios is
solved in [34] by well-known SQP method, where different
covariance matrixes are generated in different applications.
Two important form of objects that are solved by CVX [35]
and considered in [34] are beampattern matching design and
minimum sidelobe level problem. However, in [23], [34]–[36]
the focus is on minimising the mean squared error between
the achieved beampattern and the desired beampattern, and
little attention is paid to SLL suppression, mainlobe ripple
constraints and wide beampattern design.

In this paper, we focus on the indirect waveform design
in collocated and monostatic MIMO radar. We propose a
new simple and fast approach for solving MSE problem to
design the covariance matrix under practical constraints. The
main contribution of this paper is to provide a fast and real-
time covariance matrix design method to achieve the desired
beampattern with appropriate specification in the mainlobe
and sidelobe levels, using our proposed facilitator libraries.
We introduce the facilitator libraries that include a set of
the covariance matrixes which are designed based on simple
UPA structure as UPA library and minimum sidelobe level
beampattern design problem solution [34] as SLL library. In
the proposed technique, the desired covariance matrix in MSE
problem can be written as a linear combination of stored
covariance matrixes in the library with corresponding coef-
ficients. Then we propose an algorithm to find the coefficients
as unknown variables by solving an optimisation problem to
achieve the best covariance matrix in beampattern matching
design problem. In this approach, we will show that we can
achieve a significant reduction in the number of unknown vari-
ables, a considerable decrease in the computational complexity
and a great reduction in the time consumption compared
with well-known counterpart SQP, and when the number of
antennas is high, this difference is more considerable. The
novel aspects of the proposed technique can be highlight as
follows:

• Beampattern design in radar systems should be fast and
therefore, providing a method for fast and real-time
waveform design is one of the real-time system require-
ments. The proposed technique in this paper reduces the
number of variables in the optimization problem, and
hence reduces the complexity and increases the speed of
algorithm compared with other methods in the literature.
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• PSD constraint and the uniform elemental transmit power
constraint for proposed covariance matrix are already
satisfied for all matrixes stored in the proposed facilitator
library, and these conditions also exist for the linear
combinations of the called covariance matrixes of the
libraries. Therefore, by establishing these two practical
conditions in the library we can omit them in the optimi-
sation problem, and this makes much easier to solve the
corresponding optimization problem.

The rest of the paper is arranged as follows. The problem
formulation is presented in Section II. The proposed technique
in optimal design is explained in Sections III. Simulation
results are illustrated in Section IV and finally conclusions
are drawn in Section V.

Notation: Bold upper case letters X and lower case letters
x, respectively denote matrices and vectors. Conjugate trans-
position, conjugate and transposition of a matrix denoted by
(.)H , (.)* and (.)T , respectively, and statistical expectation is
denoted by E{.}. The (m,n)th element of a matrix is denoted
by Xmn. X ≥0 shows the matrix X is PSD.

II. PROBLEM FORMULATION
Consider a collocated and monostatic MIMO radar system

with M number of transmit antennas that are placed in
distance d (it could be assumed half wavelength). Let be the
discrete time radar waveform radiated of mth antenna for m
= 1, . . . , M . Also, n = 1, . . . , N denotes the number of
samples of each radar waveform transmitted by each antenna.
It is assumed that the transmitted signals are narrow-band and
the propagation is non-dispersive. The steering vector of the
array is defined as follows:

a(θ) = [1 ej2π
d
λ sin(θ) ... ej2π

(M−1)d
λ sin(θ)]

T
(1)

where λ is the carrier signal wavelength and the baseband
transmitted signal vector at each time for the nth sample can
be written as:

x(n) = [x1(n) x2(n) ... xM (n) ]
T

(2)

Under the assumption that the transmit antenna of the
MIMO radar systems is calibrated, that is, a(θ) is a known
function of θ, the received signal by a target located at angle
θ can be given by:

r(n; θ) = aT (θ)x(n) (3)

Therefore, the transmit beampattern of the transmitted signal
at the location θ is given by:

P (θ) = E{aT (θ)x(n)xH(n)a∗(θ)} = aH(θ)Ra(θ) (4)

where R = E{x(n)xH(n)} is the covariance matrix of
the transmitted waveforms. In the indirect method, where
the beampattern design problem is to synthesize covariance
matrix, the equality of the diagonal elements of covariance
matrix and PSD constraints as practical constraints can express
respectively as:

Rmm =
c

M
, m = 1, . . . ,M (5)

R ≥ 0

where Rmm denotes the (m,m)th element of R and c is
the total transmit power of the array. This practical constraint
is essential for efficiency of PAs in MIMO radars. Next the
problem of finding R in indirect method for achieving desired
beampattern can be expressed as two states: beampattern
matching design and minimum sidelobe level beampattern
design [34] which are described as follows.

A. Beampattern Matching design
In the beampattern matching design problem, the goal is

maximising the total spatial power at a number of given target
locations, or match achieved beampattern with a desired one
as Pd(θ) which is known by MSE problem. We assume that
a grid of target locations is over {θk} where k = 1, . . . ,K,
with the total number of given target locations K. The aim is
to choose the best covariance matrix R such that the achieved
beampattern by (4) matches to the desired beampattern Pd(θ)
over the range of interests. Therefore, the main problem is
considered as:

min
R

1

K

K∑
k=1

ωk[Pd(θk)− aH(θk)Ra(θk)]
2 (6)

s.t
Rmm = c

M , m = 1, . . . ,M

R ≥ 0

where ωk ≥ 0 is the weight for the kth space grid point.
If we assume that the covariance matrix for M antennas is
symmetric, there would be M2−M

2 complex unknown variables
to solve (6) by CVX toolbox [35].

B. Minimum sidelobe level beampattern design
In some applications in MIMO radar systems, the beam-

pattern design problem is considered as minimising the SLL
in a certain angle range, when pointing the MIMO radars
toward single angular (only like θ0). Minimum SLL beam-
pattern design problem, with PSD constraint and the uniform
elemental transmit power constraint for covariance matrix, can
be expressed as:

min
t,R

−t (7)

subject to

aH(θ0)Ra(θ0)− aH(µl)Ra(µl) ≥ t ∀µl ∈ Ω

aH(θ1)Ra(θ1) = 0.5aH(θ0)Ra(θ0)

aH(θ2)Ra(θ2) = 0.5aH(θ0)Ra(θ0)

R ≥ 0

Rmm =
c

M
m = 1, ...,M

where θ2 − θ1(θ1 < θ0 < θ2) determines the 3 dB
main bandwidth and is a discrete angle range that covers the
sidelobe region of interest. While this problem is a semi-
definite program (SDP) and can, therefore, be efficiently
solved numerically, it does not seem that have a closed-form
solution. Therefore, the goal here is to choose an R that makes
minimum sidelobe beampattern in (4). This problem can be
solved by CVX toolbox [35].
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(a) (b)
Fig. 1. (a) An example of UPA antennas and beampattern configuration and mechanical rotated systems, (b) electrical rotated UPA as a substitution.

III. PROPOSED METHOD IN OPTIMAL DESIGN

In this section, we describe our method for covariance ma-
trix design using the proposed library. In a given beampattern
matching problem with a desired beampattern Pd(θ), our focus
would be to solve the MSE problem to obtain the covariance
matrix in a simpler and faster method and get Pd(θ) using
two facilitator libraries. Our proposed libraries include a set of
certain covariance matrixes. These stored covariance matrixes
satisfied practical constraints and can be created based on
specific parameters like focusing on mainlobe or reduction of
sidelobe. In the following the libraries instruction is explained
conceptually and then the way of using them to solve MSE
problem will be presented in two scenarios using first proposed
library as a UPA Library (say UPA-LIB) and the second
proposed library as a SLL library (say SLL-LIB), respectively.

A. First Scenario: Beampattern Matching Design with UPA-
LIB

Starting from the UPA with M number of antennas that
are spaced half wavelength. Beampattern in different direc-
tions could be simply achieved with mechanical rotation of
elements. Let consider Fig. 1a as an example of mechanical
rotation of UPA elements with rotation angle γ and the arc
length that we consider equivalent with ŷ . According to
the geometry of Fig. 1a, ŷ is estimated by λ

2 sin (γ). If we
consider electrical rotation or phase changes in each UPA
element as instead of mechanical rotation, therefore, the phase
difference for the mth element is equivalent ∆ϕ = m 2π

λ ŷ,
where m = 1, . . . ,M . The electrical rotation of UPA elements
is depicted in Fig. 1b. For small value of γ, phase difference
equivalents with ∆ϕ = mπ sin (γ). Let us consider the
amplitude and phase of transmitted signal from each element
in mechanical rotation as 1∠0 while in electrical rotation it
changes to 1∠mπ sin (γ) for the mth antenna element. Next,
we could write the covariance matrix based UPA elements
structure in Fig. 1b as:

R =

 ejπ sin(γ)

...
ejπM sin(γ)

 [
e−jπ sin(γ) ... e−jπM sin(γ)

]
(8)

It is important to mention that R in (8) is satisfied in
practical constraints (equality of diagonal and PSD of R. The
procedure of finding R in (8), for any number of antennas and

for any angle range is very fast (shorter than 10 millisecond
in worst case). The instruction of our first proposed library
is based on this procedure. It means that for M number of
antennas, the proposed facilitator library includes covariance
matrixes that are achieved by (8) in a definite range of angle
γ . Based on MIMO radar application and its type, the field
of view and the desired beampattern can be defined as the
range of angle γ in problem input. Let us consider {θ̃i}Ii=1

as the radar’s field of view where I indicates the number
of angles. We consider any angle in range {θ̃i}Ii=1 as γ
therefore, find all the corresponding covariance matrixes by (8)
as {R̃i}Ii=1 and store as library members. Next, for M number
of antennas, this collection of saved covariance matrixes (as
members of UPA-LIB) is used to solve the MSE problem to
achieve any desired beampattern. In the proposed technique
to solve real-time beampattern matching design problem, we
call stored covariance matrixes from UPA-LIB and consider
unknown {βi}Ii=1 coefficients as {R̃i}Ii=1 for called covari-
ance matrixes. These coefficients are considered as variables
in the proposed optimisation problem. Next, we propose our
new covariance matrix as the weighted linear summation of
called covariance matrixes as

∑I
i=1 βiR̃i. The goal is to find

variables {βi}Ii=1 to find new covariance matrix and reach
desired beampattern in presented optimization problem using
UPA-LIB as:

min
βi

1

K

K∑
k=1

ωk[Pd(θk)− aH(θk)(
I∑

i=1

βiR̃i)a(θk)]
2 (9)

s.t βi ≥ 0 i = 1, . . . , I

where ωk ≥ 0 shows the weight for the kth space grid in
k = 1, . . . ,K, R̃i is the ith called covariance matrix from
UPA-LIB and βi is the ith corresponding variable. The only
constraint for (9) is that the coefficients βi must be PSD. The
equality diagonal elements and PSD constraints for covariance
matrix, in comparison with (6), is omitted here because
these two practical constraints are already satisfied in UPA-
LIB. It means that if {R̃i}Ii=1 meets these two constraints,
then the linear summation of multiplication coefficients and
called covariance matrixes

∑I
i=1 βiR̃i would be satisfied. The

variables are optimized using the CVX toolbox [35] and this
leads to the desired beampattern. The instruction of UPA-LIB
and the proposed optimization algorithm for finding R are
illustrated in Fig. 2a and Fig. 2b respectively. The pseudo code
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for the proposed algorithm of finding t he c ovariance matrix 
in beampattern matching problem with UPA-LIB is given in 
Algorithm 1.

Algorithm 1 Proposed algorithm to find covariance matrix in
beampattern matching problem by UPA-LIB.

1. Input: M , Pd(θ), {R̃i}Ii=1 (from UPA-LIB)
2. Output: R =

∑I
i=1 βiR̃i, P (θ)

3. Consider variables: {βi}Ii=1

4. for: i = 1 to i = I do
5. Import R̃i from UPA-LIB
6. Calculate

∑I
i=1 βiR̃i

7. end
8. Calculate {βi}Ii=1 via (9)
9. Calculate R =

∑I
i=1 βiR̃i and P (θ) via (4)

We will show in simulation results in section IV that
the number of unknown variables {βi}Ii=1 in our technique
is considerably lower than other counterpart techniques and
it makes our optimization problem to be simple and fast.
To prove our claim, we will compare our proposed method
in Algorithm 1, with the well-known beampattern matching
design problem (SQP method) in [34] where, for M number
of antennas, M2−M

2 complex variables must be determined
in MSE problem while in our proposed technique, variables
{βi}Ii=1 are real and their number is considerably lower
than mentioned counterpart. The reducing of the number of
variables and consequently the reduction of computational
time are more evident when the number of antennas increases.

We will run the algorithm 100 times in simulations in
section IV. The time consumed in our first proposed technique
is composed of two terms. The first term t0 is related to the
UPA-LIB creation time that is very short, so it can be done
simply and fast. The second term ti is adjusted for applying
algorithm in Algorithm 1 in each turn. Therefore, the average
computational time is

∑I
i=1

t0+ti
100 ≃ ti .We will show that our

proposed technique computational time is significantly lower
than its counterpart.

B. Second Scenario: Beampattern Matching Design with SLL
Library (SLL-LIB)

In this section according to UPA-LIB, we propose another
advanced library as SLL-LIB that is composed of a set of
saved covariance matrixes as members. The SLL-LIB mem-
bers are covariance matrixes that achieved from solving the
minimum SLL problem in (7). Let us consider the radar field
of view as {θ̂j}Jj=1 where J is the number of angles. We
state θ0 in (7) as centre phase in angle range of {θ̂j}Jj=1

for M antennas and consider θ2 − θ1 = sin−1( 1
M ) and

Ω = [−90◦ ∼ (θ0 − sin−1( 3
M ))] ∪ [(θ0 + sin−1( 3

M )) ∼
90◦]. Therefore, we calculate all the corresponding covariance
matrixes by (7) and store as {R̂j}Jj=1. The collection of
these saved covariance matrixes for any number of antennas,
create SLL-LIB that is applied to solve the MSE problem.
The solution of (7) for different θ0 is not as fast as UPA-
LIB. Therefore, we present SLL-LIB as an offline library to

Output: 1{ }I

i i=R

Input: 1
ˆ{ }I
i i = , M 

Calculate R of (8) 

Set i =  

while 1
ˆ{ }I

i i i  =

 Save R as �̃�𝒊 as the library member 

(a)

as optimization variables Consider  

) 𝐑෩ 𝒊*(calculate sum 

Solve optimization problem with (9) 

Find 

)𝐑෩ 𝒊*(Achieve new design covariance matrix with sum  

LIB members as -, UPAM), θ(dPInput:  

Output: and Beampattern with 

Error! Reference source not found.

(b)
Fig. 2. (a) The instruction of UPA-LIB and (b) the proposed optimization
algorithm with UPA-LIB.

save time in any simulation scenario. It means that for every
number of antennas, an offline SLL-LIB could be created and
then be used in different simulations for solving any real-
time beampattern matching design problem. The procedure for
solving MSE problem is similar to the beampattern matching
design with UPA-LIB. Therefore, we consider a number of
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J

J

J
j=1 ηj

unknown variables {ηj }j=1 corresponding to the called co-

variance matrices { ̂Rj }j=1 of SLL-LIB and state the proposed
co∑variance

ˆ 
matrix as linear combination of them in form of

Rj . These coefficients are considered as unknown
variables in the proposed problem. Similar to UPA-LIB, the
practical constraints for covariance matrix in (5) are omitted.
The formation of new beampattern matching problem can be
stated as (10) and solved by CVX.

min
ηj

1

K

K∑
k=1

ωk[Pd(θk)− aH(θk)(
J∑

j=1

ηjR̂j)a(θk)]
2 (10)

s.t ηj ≥ 0 j = 1, . . . , J

where R̂j is the jth called covariance matrix from SLL-
LIB and ηj is the jth coefficient.

∑J
j=1 ηjR̂j defined as

linear combination of weighted called covariance matrix as
our desired final covariance matrix. The only constraint in
(10) is that ηj must be PSD. The instruction of SLL-LIB and
the proposed optimization algorithm based on SLL-LIB are
illustrated in flowchart in Fig. 3a and Fig. 3b respectively.
The pseudo code for the second proposed algorithm to find
covariance matrix in beampattern matching problem by SLL-
Lib is given in Algorithm 2:

Algorithm 2 Proposed algorithm to find covariance matrix in
beampattern matching problem by SLL-Lib.

1. Input: M , Pd(θ), {R̂j}Jj=1 (from SLL-LIB)
2. Output: R =

∑J
j=1 ηjR̂j , P (θ)

3. Consider variables: {ηj}Jj=1

4. for: j = 1 to j = J do
5. Import R̂j from SLL-LIB
6. Calculate

∑J
j=1 ηR̂j

7. end
8. Calculate {η}Jj=1 via (10)
9. Calculate R =

∑J
j=1 ηjR̂j and P (θ) via (4)

IV. SIMULATION RESULTS

In this section, several numerical simulations are conducted
to assess the performance of the proposed algorithm in real-
time beampattern matching design problem with the proposed
libraries. In all simulations, we assume an array with half-
wavelength element spacing and the range of angle to be
[−90◦ ∼ 90◦] with the resolution of 1◦ which gives K = 181
grid points and assume c = 1. For all simulations, the desired
beampattern is Pd(θ). Besides, our personal computer that
these simulations are conducted on has the configurations of
64-bit Intel i7-8550U CPU and 16GB RAM.

A. Test on Matching Design with UPA-LIB

In this subsection, experiments are conducted to testify the
performance of the proposed method using UPA-LIB. For
comparison purposes, we consider the well-known counter-
part, i.e., the SQP method based on beampattern matching
design method in [34] to design the covariance matrix. In the

 

Determine 𝜃1, 𝜃2 and Ω 

j
=  0θSet 

Calculate R of (7) 

the library memberˆ
jRas  RSave  

 M, 1
{ }J

j j


= Input:

1{ }J

j j j  =while 

1
ˆ{ }J

j j=ROutput:

(a)

as optimization variables Consider 

) calculate sum (

Solve optimization problem with (10) 

Find 𝜂𝑗

, M(θ), dPInput: 

 as LIB-SLL

Output:  and 

Beam pattern with (4) 

(b)
Fig. 3. (a) The instruction of SLL-LIB and (b) the proposed optimization
algorithm with SLL-LIB.

first simulation, we consider a desired beampattern matching
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problem as follows:

P 1
d (θ) =

{
1 θ ∈ { [−20,−10] ∪ [10, 20]}
0 otherwise,

(11)

which can be considered as two mainlobes with centres at
θ = −15◦ and θ = 15◦ and each beamwidth is 10◦. Also, we
considered M = 16 and M = 30. Fig. 4 shows the results
of the first simulation for the proposed method with UPA-LIB
as a comparison with the stated counterpart. As can be seen,
our proposed method has lower sidelobe levels and the same
mainlobes ripples.

Fig. 4. Normalized comparison beampattern design results in Simulation 1.

Furthermore, comparison of the runtimes and number of
unknown variables of two algorithms in two different number
of antennas are provided in Table I. Comparatively, these
parameters in the UPA-LIB-design algorithm change are con-
siderably lower than SQP. All those imply that the proposed
algorithm is more applicable especially to large number of
antennas. It is important to mention that the unknown variables
in SQP method are complex (in asymmetric beampattern
design), while in the presented method, the coefficients are
real, and this is another advantage of our proposed method.

TABLE I
COMPARISON OF RUNTIMES IN SIMULATION. 1 AND THE NUMBER OF

UNKNOWN VARIABLES

Runtimes (seconds) Number of unknown variables
Method UPA-LIB SQP UPA-LIB (real) SQP (complex)
M = 16 2.3 5.16 41 120
M = 30 2.4 56.7 41 435

For the second simulation, we consider synthesizing an
asymmetric desired beampattern is defined as follows:

P 2
d (θ) =

{
1 θ ∈ { [−47,−44] ∪ [9, 12] ∪ [40, 60]}
0 otherwise,

(12)
which can be considered as three mainlobes with centres at

θ = −45.5◦, θ = 10.5◦ and θ = 50◦ and each beamwidth is
3◦, 3◦ and 20◦. The number of antennas considered M = 20
and M = 30 number. Fig. 5 shows the results of the second
simulation for the proposed method in two different number
of antennas for SQP and desired beampattern. It is shown
that our method synthesizes a beampattern which matches to
the desired beampattern better than SQP with providing lower
sidelobe levels (around 10dB) in region between two narrow
band mainlobes.

Fig. 5. Normalized comparison beampattern design results in Simulation 2.

TABLE II
COMPARISON OF RUNTIMES IN SIMULATION. 2 AND THE NUMBER OF

UNKNOWN VARIABLES

Runtimes (seconds) Number of unknown variables
Method UPA-LIB SQP UPA-LIB (real) SQP (complex)
M = 20 2.78 12.5 108 190
M = 30 3.26 49.17 108 435

Comparison of the runtimes and number of unknown vari-
ables of the proposed method and SQP are shown in Table
II. Significantly decrease of these parameters in our method
rather than SQP is evident. As can be seen, in high number of
antennas, the number of unknown variables in our proposed
method is approximately a quarter of SQP and the run time is
decreased around 93%.

In the simulations 3 and 4, we consider a desired beam-
pattern matching problem for orthogonal MIMO and simple
narrow band phase array at θ = 0◦ as (13) and (14) respec-
tively:

P 3
d (θ) =

{
1 θ ∈ { [−90, 90]}
0 otherwise,

(13)

P 4
d (θ) =

{
1 θ ∈ { [−1, 1]}
0 otherwise,

(14)

In these two simulations, we consider M = 30. Fig. 6a and
Fig. 6b show the results of this simulation for the proposed
method with UPA-LIB as well as stated counterpart for or-
thogonal MIMO and narrow linear phase array, respectively.
As can be seen, our proposed method has lower sidelobe levels
in narrow linear phase array and the same mainlobe ripple
in MIMO orthogonal. According to Table III, by significantly
reducing the calculation time and greatly reducing the number
of unknown variables, especially in Simulation 4, we have
been able to reach the usual answers in the literature [10].

TABLE III
COMPARISON OF RUNTIMES IN SIMULATION. 3 AND 4 THE NUMBER OF

UNKNOWN VARIABLES

Runtimes (seconds) Number of unknown variables
Method UPA-LIB SQP UPA-LIB (real) SQP (complex)

UPA (in θ = 0◦) 1.3 35.4 3 435
Orthogonal MIMO 3.7 30.5 181 435
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(a)

(b)
Fig. 6. (a) Normalized comparison beampattern design results in MIMO
Orthogonal in Simulation 3 and (b) narrow band phase array in Simulation 4.

As it can be seen in orthogonal MIMO with maximum
beamwidth, the number of variables is less than half of SQP.
The number of variables in the proposed method will decrease
by beamwidth reduction.

In order to gain a better insight of the efficiency of our
proposed method in a more complex beampattern scenario
with a large number of antennas, we consider a beampattern
matching problem in the simulation 5 as follows:

P 5
d (θ) =

1 θ ∈ {[−40,−35] ∪ [−25,−15] ∪ [−5, 5]
∪ [15, 20] ∪ [40, 50]}

0 otherwise
(15)

which can be considered as five asymmetric mainlobes with
centres at θ = −37.5◦, θ = −20◦, θ = 0◦, θ = 17.5◦ and
θ = 45◦. The number of antennas considered M = 30 and
M = 50. Fig. 7 shows the results of the fifth simulation for
the proposed method with UPA-LIB as well as the stated
counterpart. As reflected in Fig. 7, the proposed method’s
beampattern has comparable ripple in the mainlobes region
and lower sidelobe levels relative to SQP. Also, the runtimes
and number of unknown variables in the optimization problem
are provided in Table IV .As seen earlier, the runtime and num-
ber of unknown variables of the UPA-LIB-design algorithm
change significantly and is considerably lower than that of
SQP especially to large-number of antennas. It is obvious from
Table IV that the number of unknown variables is reduced
92% in M = 50 case which considerably increases the speed
of solving the corresponding optimization problem.

B. B. Test on Beampattern Matching Design with SLL-Lib

In this subsection, we simulate the performance of the
second proposed algorithm using SLL-Lib. For comparison

Fig. 7. Normalized comparison beampattern design results in Simulation. 5

TABLE IV
COMPARISON OF RUNTIMES IN SIMULATION. 5 AND THE NUMBER OF

UNKNOWN VARIABLES

Runtimes (seconds) Number of unknown variables
Method UPA-LIB SQP UPA-LIB (real) SQP (complex)
M = 30 3.9 57.7 91 435
M = 50 5.39 544 91 1225

purposes, we implement the SQP method and our first pro-
posed method with UPA-LIB. In the following simulations we
created libraries for M = 6, 10 and 25 number of antennas
(based on the second scenario in section III) and used of
them offline. In the simulation 6, the desired beampattern is
considered as follows:

P 6
d (θ) =

{
1 θ ∈ { [5, 20]}
0 otherwise,

(16)

which can be considered as one mainlobe with centres at θ =
12.5◦ and beamwidth is θ = 15◦. The number of antennae
considered M = 6. Fig. 8 shows the results of this simulation
for the proposed method with SLL-LIB, UPA-LIB as well
as stated counterpart. As can be seen, this method has lower
sidelobe levels and the same mainlobe ripple compared to the
SQP and UPA-LIB.

Fig. 8. Normalized comparison beampattern design results in Simulation 6
M = 6.

In the simulation 7, the wide band and symmetric desired
beampattern is considered as follows:

P 7
d (θ) =

{
1 θ ∈ { [−30, 30]}
0 otherwise,

(17)

which can be considered as wide symmetric beampattern with
centres at θ = 0◦ and beamwidth is θ = 60◦. The number
of antennae is considered M = 10. Fig. 9 shows the results
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of the simulation for the proposed method with UPA-LIB and 
SLL-LIB as well as stated counterpart.

As can be observed, the performance improvement of the 
provided enhanced library is considerable. As the last scenario

Fig. 9. Normalized comparison beampattern design results in Simulation 7
M = 10.

in the simulation 8, the desired beampattern is considered as
follows:

P 8
d (θ) =

{
1 θ ∈ { [−30,−15] ∪ [15, 30]}
0 otherwise,

(18)

which can be considered as two mainlobes with centres at
θ = −22.5◦ and θ = 22.5◦ and each beamwidth is θ = 15◦.
The number of antennas is considered M = 25. Fig. 10
shows the comparison results. In the proposed method with
the SLL-LIB, we can reduce the side level while achieving the
appropriate level of the mainlobes. Furthermore, the runtimes

Fig. 10. Normalized comparison beampattern design results in Simulation 8
M = 25.

and the number of unknown variables for the simulation 6, 7
and 8 are provided in Table V. Comparatively, the runtime
of the optimization algorithm for SLL-LIB-design is lower
than SQP. All those imply that the proposed algorithm is
more applicable especially for large number of antennas.
Additionally, the number of unknown variables of the SLL-
LIB design algorithm is equivalent with UPA-LIB beampattern
matching design that reduce considerably 80% than SQP.

V. CONCLUSION

A novel approach for covariance matrix design in collocated
MIMO radar has been presented. The innovation of this
approach is to solve the beampattern matching problem using
facilitator libraries as UPA-LIB and SLL-LIB. We proposed a
new covariance matrix design technique using the facilitator

TABLE V
COMPARISON OF RUNTIMES IN SIMULATION. 2 AND THE NUMBER OF

UNKNOWN VARIABLES

Runtimes (seconds) Number of unknown variables
Method SLL-LIB UPA-LIB SQP SLL-LIB UPA-LIB SQP

(real) (real) (complex)
M = 6 1.9 1.75 1.66 21 21 15
M = 10 1.98 2.15 5.65 61 61 120
M = 25 2.1 2.2 23.7 61 61 300

library members in a reduced number of unknown variables
in MSE problem and therefore in a significantly lower time.
We showed in different scenarios and simulation cases that
this technique outperforms its well-known counterpart (SQP)
in terms of computational complexity and consumed time,
while keeping an acceptable beampattern matching level, thus
making the system more affordable for real-time scenarios.
The proposed technique is a straightforward algorithm with
high speed which makes it an appropriate and practical method
for real-time applications where fast beamforming for a large
number of real-time beampatterns in different angles and large
number of antennas, is essential. This can have various appli-
cations in future researchs such as automated driving systems,
health monitoring structure, displacement measurements and
mimo radar image reconstruction, where MIMO radar based
high-speed beamforming is required.
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