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Introduction

The goal of this thesis is to summarise the work we have done during the
course of the PhD on the Follow the Leader (FTL) problem. The problem firstly
arose in [35] in the context of search of a space probe by radar: since only a single
antenna was available, the searcher could only look at one region of the sky at
a time. The celestial sphere was idealized as being discrete, and the antenna
looked at exactly one of n regions at a time. It is assumed that only the position
is uncertain, and the time to move the antenna from one region to the next is
ignored.

An a priori distribution on the n regions is given by orbit predictions. The
data processes are the integrals of white Gaussian receiver noise, of known spec-
tral density σ2

2
, of mean 0 for incorrect regions, and of known mean µ > 0 corre-

sponding to the radar signal for the correct region. The problem was solved by
applying a certain two-stage searching strategy, which was deemed as suboptimal
by the author. The author then introduced the FTL problem in [36]: consider N ,
N ∈ N, independent standard Brownian motions W1, . . . ,WN over a probability
space (Ω,F , P ) and define N independent stochastic processes X1, . . . , XN such
that there exist i∗ ∈ {1, . . . , N} for which

dXi∗(t) = dWi∗(t) + µdt,

µ ∈ R, µ ̸= 0, t ≥ 0, that is, there exist a unique i∗ ∈ {1, . . . , N} such that
(Xi∗(t))t≥0 is a Brownian motion with drift µ, whereas the other N − 1 processes
are standard Brownian motions. The goal of the authors is to identify which
Brownian motion has drift µ ̸= 0 in the minimum average searching time and by
controlling the probability of a wrong terminal decision. This class of problems
has been studied extensively in decision theory (see for example [28]), but in
[36] the authors introduce a major constraint which makes the problem more
interesting: at any time t ≥ 0 only one process Xi, i ∈ {1, . . . , N}, can be
observed. This assumption comes naturally from the setting in [35]. The authors
consider a prior distribution π = (π1, . . . , πN) and a posterior distribution Π(t) =
(Π1(t), . . . ,ΠN(t)), such that Πi(t) = P (i = i∗|Ft) for all i ∈ {1, . . . , N}, t ≥ 0,
(Ft)t≥0 the observation filtration, that is, the filtration containing the information
collected by observing the processes until time t. In particular we have Π(0) = π,
the prior distribution. Define a tolerance error ε ∈ (0, 1

2
) and set an arbitrary
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threshold 1− ε and a F - stopping time

τ = inf{t ≥ 0|∃i ∈ {1, . . . , N} s.t Πi(t) = 1− ε}.

The authors reformulate the FTL problem as finding the policy that minimizes
the average searching time Eπ(τ), given that the probability of wrong terminal
error does not exceed 1− ε. In [36] the authors claim that the optimal strategy
is the so-called Follow the Leader strategy, which also gives the name to the
problem: at each time t ≥ 0 always observe the process Xi(t) associated with
the largest posterior probability Πi(t), which we will call the leader from now on.
To do so, the authors restrict their focus to a specific class of strategies called δ-
perturbed strategies. A δ-perturbed strategy keeps observing one process Xi until
its associated posterior probability Πi drops below the starting probability πi by
δ
N
. In that case it starts to observe the leader. The authors show the optimality

of the FTL strategy within this class of strategies and claim that such a result
can be extended to the class of all strategies that observe only one process at
each time t ≥ 0.

The author of [42] approached a very similar problem in the same year: con-
sider N independent Brownian motions defined on a common probability space
(Ω,F , P ). One process Xi∗ has a non-zero drift µ, whereas the others N − 1
are standard Brownian motions. Considering just the strategies that observe one
process at each time t ≥ 0, compute the optimal searching strategy, that is, the
strategy that minimises the average searching time to find the process with the
drift. The only two major differences between [42] and [36] are that in [42] the au-
thor assumes that the stochastic processes all start from the same position, that
is, if we denote the processes as X = (X1, . . . , XN), we have X(0) = (x, . . . , x).
Using the notation introduced in [36], this corresponds to setting the prior dis-
tribution π as uniform. Therefore, we can regard the results in [42] as a special
case of [36]. It is unclear if the author was aware of the results contained in [36]
and since [42] was initially published in Russian, it is possible that the western
scientific community was not aware of the results obtained in [42]. The author
computes the likelihood process T of X. If we are observing the i-th process Xi

in the time interval (t, t+ s), t, s ≥ 0, we have

Ti(t+ s) = Ti(t) exp
{
Xi(t+ s)−Xi(t)−

s

2

}
,

Tj(t+ s) = Tj(t),

for j ∈ {1, . . . , N}, j ̸= i. The fact that the prior distribution is uniform implies
that Tk(0) =

1
N

for all k ∈ {1, . . . , N}. The author defines the risk function to
be minimized as

r(T1, . . . , TN |d) =
N∑
k=1

Πk (αk(T1, . . . , TN |d) + cNk(T1, . . . , TN |d)) ,
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where Πk is the posterior probability process of the k-th process, d is a chosen
strategy, Nk is the mean scanning time under the strategy d and αk is the proba-
bility of acceptance of the hypothesis “the k-th process has a non-zero drift”, as
in this version of the problem the probability of acceptance is not fixed a priori.
The author then consider the Hamilton-Jacobi-Bellman (HJB) equation ([33] is
a good introduction to the topic) of the problem as

inf
i

{
1

2

∂2r

∂T 2
i

T 2
i +

T 2
i∑
k Tk

∂r

∂Ti

}
= −c.

As far as we know, this is the first time in which the FTL problem has been
studied as dynamic programming problem ([33] and [39] are great introductions
to the topic). The problem with the results in [42] comes when the author tries
to prove that the FTL strategy, that is, the strategy that consists in observing
the process Xi(t) with likelihood Ti(t) = maxk Tk(t) for all t ≥ 0, is the optimal
policy. As pointed out in [17], the proof lacks clarity in several passages and
neither we nor the authors of [17] were able to understand it.

The FTL problem was considered again in 1971 in [25], where the authors
pointed out several flaws in the reasoning of [36]: in particular, the authors show
that the class of δ- perturbed strategy is not tight. Therefore, the notion of weak
limit used in [36] to prove the optimality of the FTL strategy is not appropriate.
The same authors considered the problem once more in [24]: the approach of
the authors is to consider a new set of strategies, denoted by Dδγ. A strategy
Iδγ ∈ Dδγ is such that

αm ≥ δ, βm ≥ γ,

Tm+1 = T (Π1(Tm), . . . ,ΠN(Tm), αm, βm) + Tm,

Iδγ(t) = im, Tm ≤ t ≤ Tm+1,

Πi(Tm) + αm+1 ≤ 1− ε,

Πi(Tm)− βm+1 > 0,

where m ∈ N, T0 = 0, ε, αm, βm are arbitrarily chosen, im ∈ N. Here the function
T (Π1, . . . ,ΠN , α, β, im) is the first time at which Πi crosses either πi+α or πi−β.
Note that the controls in Dδγ correspond to the strategies which search the same
target i as long as the posterior probability Πi(t) does not change by more than
a predetermined quantity. The authors prove that the FTL policy is optimal
in Dδγ. This proof, although limited to δγ strategies only, seemed to satisfy the
mathematical community for many years and the interest focused on variations of
the FTL problem: in Section 4 of [13] the author shows that a cyclic application
of the sequential probability ratio test (SPRT) (see [34] for an introduction) has
the same expected searching time of the FTL strategy. In Section 5 the author
shows that such a policy can be also applied for change point detection problems,
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that is, for problems where the drift µ appears at a random time τ , rather than
being present in one of the processes X1, . . . , XN from the beginning.

Another variation of the FTL problem was considered in [27], where the au-
thors studied the case where the number of processes is infinite and it is not
known, a priori, how many of them have a non-zero drift µ ̸= 0. Moreover, the
authors consider processes in discrete time, that is, time-series data. All these
assumptions make it possible for the authors to obtain an elegant and relatively
simple solution: they prove that the cumulative sum (CUSUM) test (see [7] for
an introduction) is optimal in this context. In [8] the authors address the same
problem in continuous time: it is important to point out that, although similar
to the FTL problem, the version with infinitely many processes allows the author
to make use of methods not available in the finite case. Indeed, the results in [27]
and [8] rely on the fact that, once we switch from process Xi to process Xi+1,
i ∈ N, we will never observe Xi again, as there are still infinitely many processes
to be observed. Clearly, such a reasoning cannot be applied in the formulation
proposed in [36]. However, as pointed out in [27] and [8], this solution is still good
enough, for practical purposes, when the number of processes is very large, as it is
the case in many applications. Another interesting variation of the FTL problem
is considered in [31], where the authors propose the following problem: suppose
the adversary picks at random a real number yt ∈ [0, 1], for t = 1, . . . , T , and
keeps it secret. We guess that number by picking another number xt ∈ [0, 1]. We
then pay the squared difference (xt− yt)

2. The author then generalizes the prob-
lem to different loss functions and shows, using machine learning techniques, that
the so called Follow the Regularized Leader (FTRL) algorithm minimizes the loss
function of the problem. The FTRL algorithm consists in choosing at each time
t the minimizer of the sum of the past losses plus a time-varying regularization.

A similar problem is considered in [23], where the authors proposed the Fol-
low the Perturbed Leader approach, which consists in slightly perturbing the loss
function at each time t and then choose the strategy that minimizes the expected
loss. The authors show that this strategy is nearly as good as the optimal strat-
egy and more efficient from a computational point of view.
As far as the classical FTL problem is concerned the breakthrough came in 2018
with the publication of [17]. The authors propose a counterexample to the opti-
mality of the FTL policy. The setting is the same as in [36], [25] and [24]. The
authors introduce an alternative strategy, simply named Strategy B : let us assume
that, at t = 0, the processes are sorted decreasingly, so that x1 ≥ x2 ≥ · · · ≥ xN .
In [17] the authors show that the posterior probability associated to Xi, i ∈ N,
can be written as

Πi(t) =
eµXi(t)∑N
j=1 e

µXj(t)
.
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Strategy B observes X2 until it reaches either x1 or a specific level a such that

Π1(t) =
eµX1(t)∑

j ̸=2 e
µXj(t) + eµa

= 1− ε,

where a is the unique value of X2 for which Π1(t) = 1− ε. If X2 reaches a first,
the search is over, if X2 reaches x1 first, we continue with the FTL strategy. The
authors show that in several cases Strategy B outperforms the FTL strategy,
achieving a smaller expected searching time than the FTL policy. The complete
table of counterexamples can be found in Section 5 of [17]. The authors also point
out issues in the proof of the optimality of the FTL strategy given in [24]: to prove
Lemma 3.4 and Theorem 3.5 the authors assume that the posterior distribution
of the stopping time τ , that is, the first time at which Π1(t) reaches either π1+α
or π1 − β, is independent of the search rule, which is clearly incorrect. Refer to
Section 6.1 of [17] for a complete explanation.

Such a result leaves several open questions: if the FTL policy is not optimal,
which is the optimal strategy? What about the case where the prior distribution
is uniform, that is, the case considered in [42]? The counterexamples given in
[17] are insufficient to disprove the claim that the FTL strategy is optimal for
a uniform prior distribution, so the question remains open. A slight variation
of the problem has been studied recently in [16], where the authors considered
the associated optimal stopping problem (see [32] for a comprehensive overview
of optimal stopping): they consider a 3-dimensional stochastic process for which
2 coordinates are standard Brownian motions and the remaining coordinate is a
Brownian motion with drift µ ̸= 0, but we do not know which coordinate has the
drift. The goal is to find such a coordinate as soon as possible and with minimal
probabilities of the wrong terminal decisions. The central difference between
the FTL problem and the work in [16] is that in the latter the observer has no
control over which coordinate to observe next. In fact, this approach can also
be interpreted as the case where we can observe all processes at the same time.
Eventually, we note that deep learning techniques have been applied to stochastic
optimal control problems recently: in particular in [21] the authors used a simple
neural network to approximate the value function of a market making problem,
obtaining good results. It is possible that such methods can be applied to the
FTL problem successfully.
The goal of this thesis is to study the FTL problem and to understand which is
the optimal policy. The work will be structured as follows:

1. in Chapter 1, we will study the setting of the FTL problem and derive a
rigorous formulation of the problem as a dynamic programming problem.
We will show that the value function of the problem can be characterized as
the viscosity solution (see [33] and [39] for a solid introduction) of a certain
HJB equation and proceed to study it;
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2. in Chapter 2, we will focus on the case studied by [42], that is, the case
with uniform prior distribution. We will discuss the results of the paper, the
issues with such results and show the results we achieved in that particular
setting;

3. in Chapter 3 we will discuss the case with general prior distribution and
show numerical results that support the results obtained in [17].
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Chapter 1

The Follow The Leader problem

In this chapter we will first recall the classical setting of the FTL problem
as introduced in [36]. We will provide a modern formulation to the problem:
to do so, we will take advantage of the notation introduced in [17]. Consider
a complete filtered probability space Ω = (E,F ,F = (Ft)t≥0,P), where E =
{1, . . . , N} × C([0,∞)N) and P is a probability measure on Ω such that

P

(
i = j∗, (X1, . . . , XN) ∈

N∏
k=1

Ak

)
=

N∏
k=1,k ̸=i

W0(Ak)Wµ(Ai)πi,

where πi ∈ [0, 1], Ai ∈ B(C([0,∞))), for i ∈ {1, . . . , N} and

Wµ(A) = P̃
(
(W̃t + µt)t≥0 ∈ A

)
,

µ ∈ R, W̃ is P̃- Brownian motion and A ∈ B(C([0,∞)N)). Hence, under P we
choose an index j∗ with probability πj∗ and X1, . . . , XN are iid Brownian motions
conditional on j∗, with Xj∗ a Brownian motion with drift µ and the other Xi,
i ̸= j∗, are Brownian motions with drift 0. Then, we choose Ft to be the natural
filtration generated by j∗,W1, . . . ,WN augmented in the usual way. Consider now
an Ft-progressively measurable process Jt taking values in {1, . . . , N}. Define the
process Yt by

dYt = dXJt(t) (1.1)

Y0 = 0, (1.2)

and the natural filtration FY generated by Y , augmented in the usual manner.
Hence J is an admissible control if J is FY

t -progressively measurable. Note that
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such a control is well-defined: consider controls that are constant up to FY -
stopping times τi, and at τi choose a new Fτi-measurable value for Jt, t ∈ [τi, τi+1).
If τi → ∞ as i → ∞ P-a.s., the control is admissible. We will always consider
the version of (W1(t), . . . ,WN(t))t≥0 with continuous paths. Let us construct N
processes (X1(t), . . . , XN(t))t≥0 such that:

dXi(t) = dWi(t) + µ1{i = j∗}dt,

for t ≥ 0, µ > 0 and where 1{A} is the indicator function of the set A ∈ B(Ω),
where B(Ω) are the Borel sets of Ω.
The starting points X(0) = (X1(0), . . . , XN(0)) = (x1, . . . , xN) are known real
numbers, X(0) ∈ RN . Our goal is to identify j∗ in the shortest possible time
and by minimizing the probability of wrong terminal decisions. To do so we have
one key restriction: at each time t we can observe only one particle, that is, only
one Xi(t), i ∈ I. The key feature of the problem is that if we observe Xi in the
time period (t, t + s), t, s ≥ 0, only the value of Xi changes during (t, t + s),
whereas all the other processes Xj, j ∈ I \ {i}, remain at the initial level, that
is, Xj(t + s) = Xj(t). Consider the function J : R+ → I and denote by J(t) the
particle under observation at time t. The observation process Y = (Y (t))t≥0 is
the unique strong solution to the stochastic differential equation (SDE) (refer to
[30] for a comprehensive treatment of the topic)

dY (t) = dXJ(t)(t), (1.3)

for t ≥ 0. Note that the process J(t) is such that:

1. J(t) ∈ I for all t ≥ 0;

2. (J(t))t≥0 is progressively measurable, that is, for all t ≥ 0 the map [0, t]×
Ω → R defined by (s, ω) 7→ Js(ω) is B([0, t]) ⊗ Yt-measurable. In par-
ticular, this implies that (J(t))t≥0 is (Yt)t≥0-adapted (see [1] for a proof
of this), where (Yt)t≥0 is the natural filtration of the observation process
Y = (Y (t))t≥0, that is

Yt = σ (σ(Ys, 0 ≤ s ≤ t) ∪N ) ,

where N is the the collection of all null sets of the probability space
(Ω,F ,P). Therefore, (Yt)t≥0 is the augmented natural filtration of the
process Y .

Remark 1.0.1. We consider (Yt)t≥0 to be the augmented natural filtration as this
assumption is needed to show that the posterior probability process Π (which
we are going to define shortly) is progressively measurable (see [1] for a detailed
explanation).
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Note that 1 and 2 together imply that (WJ(t))t≥0 is a well-defined Brownian
motion.

Remark 1.0.2. The process (J(t))t≥0 represents the control the observer has over
the system. The fact that (J(t))t≥0 is Yt-measurable implies that every decision
we make is based only on the data we have observed up to time t. This makes the
FTL problem a continuous- time sequential stochastic optimal control problem.

Remark 1.0.3. In the discussion above, we formulate the control problem in terms
of an adapted control over a probability space. However because the process Y
which generates the observed filtration is itself controlled, it is non-trivial to setup
the control problem in a fully rigorous manner, for example, to determine the
Dynamic Programming Principle (DPP) for the control problem. One approach
would be to take a formal delayed approach, for example, to consider controls
which are constant on deterministic time intervals, and which only switch value
according to the information available at these time points. However even in
this setup, it would seem difficult to formulate and prove a satisfactory DPP.
We note also that while there is a significant literature on controlled filtering
problems, of which this is closely related, many results in this setting are not
immediately applicable, since this literature (e.g. [18], [20], [3], [2], [10], [15],
[14]) tends to focus on problems where there is a controlled process X, which
is not fully observed, and the control of X must be adapted to a filtration Y ,
where Y is typically given in terms of dynamics such as dYt = h(Xt) dt + dWt,
where W is a Brownian noise term which may be independent of, or correlated to
the noise generating the dynamics of the unseen process X. A notable exception
is [2], where the function h may also depend on the control (although not in a
framework that would include the problem we study).

Another approach to rigorously formulating a DPP for this problem would be
via a weak control approach. In this case, rather than working on a fixed filtered
probability space, and optimising over adapted controls (which is complicated by
the fact that the control will determine the filtration that the process can then be
adapted to), we would choose to optimise over the space of probability measures
on the appropriate path space, where the construction of the control and the
adapted process are produced simultaneously, that is, one optimises over classes
of probability measures which support a controlled process Y , a control process
α, which is adapted to the filtration generated by Y , and such that the dynamics
of Y satisfy the required constraints. In this context, the difficulty is proving a
sort of concatenation property, as required for the DPP. However powerful tools
are available, and the paper [43] provides a good framework for establishing these
types of properties.

In this thesis, we do not pursue these approaches. Instead, our approach will
be similar to the ‘separation’ problem described in e.g. [2]: that is, we consider
the process enhanced by the current posterior belief about the likelihoods of
different outcomes. In this setting, it is common, e.g. as in [2], to consider the

11



unnormalized likelihoods, although through normalisation, we expect to get a
similar characterisation, but with one fewer degree of freedom.

Remark 1.0.4. The process Y defined in (1.3) is a well-defined controlled diffusion
process.

Define now the prior distribution (π1, . . . , πN) as the probability that each
particle is the correct one (that is the one with drift µ) a priori, so that

πi = P (i = j∗) , (1.4)

for i ∈ I.
We now want to compute the likelihood process (L(t))t≥0 = (L1(t), . . . , LN(t))t≥0.
The likelihood process L can be seen as the unnormalized version of the posterior
probability process Π. Fix J(t) = i, for i ∈ I: a straightforward application of
Girsanov’s formula (see [30]) shows that the posterior likelihood that the i-th
particle has drift µ, given Y(t), with respect to the Wiener measure, is

Li(t) = πi exp

(
µ

∫ t

0

1{J(s) = i}dY (s)− 1

2
µ2

∫ t

0

1{J(s) = i}ds
)
. (1.5)

Note that the first integral on the right hand side of (1.5) is well-defined, as J
is progressively measurable and Y is continuous (see Chapter 3 of [1]). We can
now compute the posterior probability of the i-th particle having drift µ, given
everything we observed till time t, that is, given Y(t), as

Πi(t) =
Li(t)∑N
k=1 Lk(t)

. (1.6)

The existence of the process Πi such that Πi(t) = P
(
Ĵ = i

∣∣Y(t)
)
, for t ≥ 0

and i ∈ I is non-trivial. Let us recall Theorem 2.1 of [1], as this is particularly
important in the construction of the posterior probability process Π.

Theorem 1.0.5 ([1]). Let S be a complete separable metric space and S be the
associated Borel σ-algebra. Then there exists a P(S)-valued Y(t)-adapted process
Π = {Π(t), t ≥ 0} such that for any f ∈ B(S)

Πi(t)(f) = E[f(Xi(t))|Y(t)] P− a.s.

Moreover, if Y satisfies the evolution equation

Yt = Y0 +

∫ t

0

h(Xs)ds+Wt, (1.7)

where W is a standard Brownian motion and h : S → R is such that

E

[∫ t

0

||h(Xs)||2ds
]
< ∞,

for all t ≥ 0, then Π has a Y(t)-adapted progressively measurable modification.
Furthermore, if X is càdlàg then Π can be chosen to have càdlàg paths.
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Remark 1.0.6. The vast majority of Theorem 1.0.5 can be readily applied to our
case. The only part that requires a more careful study is whether the observation
process Y satisfies (1.7). In [1], and more in general in the stochastic filtering
literature, the observation process is always assumed to satisfy (1.7). In practice,
this boils down to assume that there exist a function h, satisfying the conditions
of Theorem 1.0.5, for which Y satisfies (1.7). The modern formulation to the
FTL problem was developed in [17], where the authors assume that the process
Y satisfies (1.7). We will therefore assume that Y satisfies (1.7) from now on.

Let us denote by ε ∈ (0, 1) the terminal tolerance error, that is, the maximum
probability of terminal error that we are ready to accept. We define the Y-
stopping time

τ = inf{t ≥ 0|max
j

Πj(t) = 1− ε}, (1.8)

and we declare that the i-th particle, for some i ∈ I, is the particle with drift
µ if at time τ , maxj Πj(τ) = Πi(τ). By Theorem 1.0.5 we can choose a version
of Π with càdlàg paths almost surely and, since Lj, j ∈ I, has continuous paths
almost surely, also Π has continuous paths almost surely.

Remark 1.0.7. By definition the posterior probability process Π(t) = (Π1(t), . . . ,ΠN(t))
is a probability measure on Ω for each t ≥ 0. Hence for i ∈ I we have

Πi(t) = 1−
∑
k ̸=i

Πk(t) (1.9)

for all t ≥ 0. We will see that this property is very useful as it implies a “dimen-
sionality reduction”: rather than keeping track of N processes, as we would do
by considering the original processes (X1, . . . , XN), we can consider only N − 1
processes, as the posterior probability of the N -th process is given by (1.9). How-
ever (1.9) also implies that the processes (Π1, . . . ,ΠN) are dependent whereas
the original processes (X1, . . . , XN) and the likelihood processes (L1, . . . , LN) are
independent given the control J . As a consequence of the dependence of the
processes (Π1, . . . ,ΠN) we can rule out the case N = 2 from the set of non-trivial
cases. The value of the FTL problem for N = 2 can be easily computed as, by
equation (1.9), we have Π1(t) = 1− Π2(t) for all t ≥ 0. This implies that at any
time t ≥ 0 it does not matter which process we are observing, as the value of the
other one can be immediately deduced by (1.9). Hence for N = 2, all strategies
that observe only one process at any time t ≥ 0 are equivalent and there is not a
unique optimal searching strategy. From now on we will consider N ≥ 3.

Let us now write the FTL problem as a dynamic programming problem.
Dynamic programming was introduced in the 1950s by Richard Bellman and
has since become one of the main and most important approaches in stochastic
optimal control. We will use this approach to give a formal set up to the FTL
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problem and we will mostly use the notation introduced in [33] and [39]. We can
write the value function of the FTL problem as

V (l1, . . . , lN) = inf
J∈J

E[τ |L1(0) = l1, . . . , LN(0) = lN , strategy = J ]

:= inf
J∈J

EJ,l[τ ], (1.10)

where J is the set of admissible searching strategies, V is the value function of
the problem, l1, . . . , lN are the starting points of the processes L1, . . . , LN and
τ is the stopping time in (1.8), rewritten in terms of likelihood processes using
(1.6). We can characterize the set of admissible searching strategies J as the set
of strategies (J(t))t≥0.

Remark 1.0.8. Note that the value function of the FTL problem V (l1, . . . , lN)
does not depend on the starting time t0 but only on the starting points l1, . . . , lN .
Indeed, we can assume t0 = 0 without losing generality. We can therefore formu-
late the Follow The Leader problem as an infinite horizon dynamic programming
problem (see [33] for a detailed explanation of the topic).

1.1 The Generalised FTL problem

A key feature of the FTL problem is that we can only observe one process at
each time t ≥ 0. However, we can obtain very useful insights about the problem
by introducing a slight variation of the original problem where we can observe
multiple processes at once. To do so we consider the generalized observation
process Y (t),

Y (t) =

∫ t

0

N∑
k=1

Jk(s)dXk(s) (1.11)

where Jk(s) ∈ [0, 1] for k ∈ I, s ≤ t and, for example,

N∑
k=1

J2
k (t) = 1, (1.12)

for t ≥ 0.

Remark 1.1.1. Model (1.11) allows us to observe “fractions” of particles at each
time t, that is, we can dedicate a “portion” of our observation to several particles
at once. Note that the original model, used in [17], [36], [25], [24] and [42], con-
siders one-dimensional controls such that J(t) ∈ I, for all t ≥ 0. It is immediate
to see that such a control is equivalent to the following N -dimensional control:

1. Jk(s) ∈ {0, 1}, k ∈ I;

2.
∑N

k=1 Jk(s) = 1.
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Therefore the model we have just introduced can be seen as a generalization of
the original model. Furthermore, constraint (1.12) is a further relaxation of the
original model and we impose it merely for computational convenience, as it will
become clear in the following.

As in the original formulation we assume that the N Brownian motions
W1, . . . ,WN driving the processes X1, . . . , XN are independent. Given the fil-
tered probability space (Ω,F ,F = (Ft)t≥0,P), let us define the σ-finite probabil-
ity measures:

• P0: probability measure under which all particles are standard Brownian
motions. Under this measure no process has a non-zero drift µ and our
search would never stop. In such a case the random variable Ĵ takes value
0;

• Pi: probability measure under which particle i, for i ∈ I, is the Brownian
motion with positive drift µ. Under this measure Xi is our target.

Under the measure P0 the observation process (1.11) can be written as

dY (t) =
N∑
k=1

Jk(t)dW
0
k (t) (1.13)

where W 0
k are P0- Brownian motions for all k ∈ I. Under the measure Pi, i ∈ I,

the observation process (1.11) can be written as

dY (t) =
N∑
k=1

Jk(s)dW
i
k(s) + µJi(t)dt,

where W i
k are Pi- Brownian motions.

Remark 1.1.2. Note that the measures P0, Pi, i ∈ I, are absolutely continuous
w.r.t the probability measure P for T > 0 finite. Moreover, Pi, i ∈ I, is absolutely
continuous with respect to P0 for T > 0 finite.

Consider now the probability measure on E, P0,i under which all Xi, i ∈ I,
are standard Brownian motion and we are observing the i-th particle, that is
i = j∗. Note that

P0 =
N∑
i=0

πiP
0,i. (1.14)

Therefore we define the likelihood of the i-th particle Xi having drift µ ̸= 0
as

L̂i(t) =
dPi

dP0,i
(t). (1.15)
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Remark 1.1.3. Note that the likelihood L̂i, i ∈ I, is the unnormalized posterior
probability that the i-th particle has drift µ > 0. Indeed, note that

Πi(t) = P(i = j∗|Yt) = E[1{i = j∗}|Yt]

= E0

[
1{i = j∗} dP

dP0

∣∣∣∣∣Yt

]

=
E0[L̂i(t)|Yt]

E0[
dP
dP0 |Yt]

, (1.16)

where the last equality is obtained by Bayes’ rule. Note that the numerator
E0[L̂i(t)|Yt] is the projection of the likelihood L̂i onto the observation filtration
Y . Let us denote such a process by Li, that is,

Li(t) =
dPi

dP0,i
(t)
∣∣∣
Yt

. (1.17)

We can then write (1.16) as

Πi(t) = P(i = j∗|Yt) =
Li(t)∑
j πjLj(t)

Remark 1.1.4. The likelihood L̂i, i ∈ I, is a well-defined function. However, there
is no guarantee that L̂i(t) is Yt-adapted, which is an essential property that the
likelihoods of the model have to satisfy. We overcome this issue by considering
the restriction of the likelihood process to the observation filtration Li.

By definition of Radon-Nikodym derivative (we refer to [1]) the restricted
likelihood Li can be equivalently written as

Li(t) =E0[L̂i(t)|Yt] =

=E0

[
exp

{
µWi(t)−

1

2
µ2t

} ∣∣∣Yt

]
=

=exp

{
−1

2
µ2t

}
E0

[
exp {µWi(t)}

∣∣∣Yt

]
, (1.18)

where E0 denotes the expectation under P0. To compute the conditional expec-

tation E0

[
exp {µWj(t)}

∣∣∣Yt

]
we consider a generic process

dZ(t) =
∑
k

αk(t)dWk(t),

where (α(t))t≥0 is a Yt-adapted process. Our goal is to decompose Z(t) in two
orthogonal components, one that is Yt-measurable and a second one that is Yt-
orthogonal, that is

dZ(t) = γ(t)dY (t) + γ⊥(t)dY ⊥(t).
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Denoting by Y ⊥,n the n-th component of Y ⊥ ∈ RN−1, we have d⟨Y (t), Y ⊥,n(t)⟩ =
0 for n ∈ {1, . . . , N − 1}, γ(t) ∈ R and γ⊥(t) ∈ RN−1, for t ≥ 0. Consider an
orthonormal basis (J⊥(t))t≥0 for RN−1. Then we have

dZ(t) = γ(t)
∑
k

Jk(t)dWk(t) +
∑
k

γ⊥
k (t)J

⊥,n
k (t)dWk(t)

so that
d⟨Y (t), Y ⊥,n(t)⟩ = ⟨J(t), J⊥,n(t)⟩dt = 0,

for all n ∈ {1, . . . , N − 1}. Our goal is to find (J⊥(t))t≥0 such that

α(t) = γ(t)J(t) + γ⊥(t)J⊥(t)

and ⟨J(t), J⊥,n(t)⟩ = 0, n ∈ {1, . . . , N−1}. If we take γ⊥(t) = 1N−1, where 1N−1

is the identity matrix of dimension N − 1 , we see that

⟨α(t)− γ(t)J(t), J(t)⟩ = 0,

hence we obtain

γ(t) =
⟨α(t), J(t)⟩
⟨J(t), J(t)⟩

.

By choosing αk = ek, k ∈ I, where ek is the k-th vector of the canonical basis of
RN , we get

γ(t) =
Jk(t)∑
i J

2
i (t)

= Jk(t),

where we used (1.12) to obtain the second equality. We can now write

dWk(t) = Jk(t)
∑
k′

Jk′(t)dWk′(t) +
∑
k

J⊥,n
k′ (t)dWk′(t),

where J⊥,n
k′ (t) = ek − Jk(t)Jk′(t), k

′ ∈ I and n ∈ {1, . . . , N − 1}. Hence we have

dWk(t) = Jk(t)
∑
k′

Jk′(t)dWk′(t) +
∑
k′

(δk′=k − Jk(t)Jk′(t))dWk′(t). (1.19)
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By (1.19) we can write (1.18) as

Lj(t) = exp

{
−1

2
µ2t

}
×

× E0

[
exp

{
µ

(∫ t

0

Jj(s)dY (s) +

∫ t

0

∑
k

(δk=j − Jk(t)Jj(t))dWk(t)

)}∣∣∣Yt

]

= exp

{
−1

2
µ2t

}
exp

{
µ

∫ t

0

Jj(s)dY (s)

}
×

× E0

[∫ t

0

∑
k

(δk=j − Jk(t)Jj(t))dWk(t)
∣∣∣Yt

]

= exp

{
−1

2
µ2t

}
exp

{
µ

∫ t

0

Jj(s)dY (s)

}
×

× E0

[
exp

{
µ

∫ t

0

∑
k

βk(s)dWk(s)

}∣∣∣Yt

]
,

where

βk(t) =

{
−Jj(t)Jk(t) k ̸= j

−Jj(t)
2 + 1 k = j

.

Conditioning E0

[
exp

{
µ
∫ t

0

∑
k βk(s)dWk(s)

} ∣∣∣Yt

]
on J(t), we see that

E0

[
exp

{
µ

∫ t

0

∑
k

βk(s)dWk(s)

}∣∣∣Yt

]
= exp

{
1

2
µ2

∫ t

0

(1− J2
j (s))ds

}
.

Therefore we can write (1.18) as

Lj(t) = exp

{
−1

2
µ2

∫ t

0

J2
j (s)ds+ µ

∫ t

0

Jj(s)dY (s)

}
. (1.20)

By Ito’s formula and using (1.12) we conclude that

dLj(t) = µJj(t)Lj(t)dY (t). (1.21)

Remark 1.1.5. Note that the likelihood Lj, j ∈ I, is a martingale under P0. The
standard way to show this is to check Novikov’s condition (see [30]), but this can
be quite difficult to verify. Alternatively, we can exploit Lemma 3.9 of [1], which
shows that Lj is a P0-martingale under slightly weaker conditions.

Equation (1.21) describes the likelihood of the j-th particle Lj, j ∈ I, under
the measure P0. However under P0 all particles are standard Brownian motions,
which removes any information gain from the problem. To properly model the
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FTL problem we need to define a new measure that we call posterior probability
measure Pπ, defined as

Pπ =
N∑
k=1

πkP
k, (1.22)

where π = (π1, . . . , πN) is the prior distribution defined in (1.4). Let us now
define the process Zπ as

Zπ(t) =
dPπ

dP0
(t)
∣∣∣
Y(t)

, (1.23)

the Radon-Nikodym derivative of Pπ with respect to P0 restricted to the obser-
vation filtration Y(t). Since Pi is absolutely continuous with respect to P0, i ∈ I,
also Pπ is absolutely continuous with respect to P0 and (1.23) is well-defined.
By definition of Pπ we see that

Zπ(t) =
N∑
k=1

πk
dPk

dP0
(t) =

N∑
k=1

πkLk(t). (1.24)

To derive an equation describing the behavior of the likelihood processes Li, i ∈ I,
under the posterior measure Pπ, we first need to study the processes (Wi(t))t≥0,
i ∈ I, driving the particles: we know thatW is a N -dimensional Brownian motion
under P0, but we do not know anything about its behavior under Pπ. To do so,
let us define the posterior probability process of the i-th particle Πi, i ∈ I, as

Πi(t) =
πiLi(t)∑N

k=1 πkLk(t)
, (1.25)

and note that if the prior distribution is uniform, that is, if π = π1 = π2 = · · · =
πN , equation (1.25) simplifies to (1.6).

Remark 1.1.6. This approach is well understood in the filtering literature. In this
literature there is often a distinction between the normalized filtered distribution
of the unknown state variable, that is Π(t) = (Πi(t), . . . ,ΠN(t)), whose dynam-
ics are described by the Kushner-Stratonovich equation, and the unnormalized
filtered distribution L(t) = (L1(t), . . . , LN(t)), whose dynamics are given by the
Zakai equation (see for example [1]).

Lemma 1.1.7. Denote byW i
π, i ∈ I, the stochastic process defined on the filtered

probability space (Ω,F ,F = (Ft)t≥0,P), specified by the following SDE:

dW i
π(t) = dWi(t)− Πi(t)dt, t ≥ 0.

Then W i
π, i ∈ I, is a Pπ-Brownian motion.

Proof. We prove this by Lévy’s characterization of Brownian motion (see for
example [38]). To do so we need to verify 3 conditions:
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1. W i
π(0) = 0 Pπ-a.s., i ∈ I ;

2. W i
π(t) is a Pπ-local martingale (see [38]), i ∈ I.

3. the quadratic variation of W i
π is such that [W i

π]t = t, for all t > 0.

In this particular case we can show that W i
π, i ∈ I, is a Pπ-martingale, which

in turn implies property 2. It is readily verifiable that W i
π(0) = 0 Pπ-a.s., for

all i ∈ I. To show that property 2 holds true we need to prove that, for s ≤ t,
s, t ≥ 0,

Eπ

[
(Wi(t)−Wi(s))− µ

∫ t

s

Πi(r)dr
∣∣∣Y(s)

]
= 0.

Since Li, for i ∈ I, is a P0-martingale, it can be readily proved that Πi(t) is a
Pπ-martingale, as Πi is defined as in (1.25). Hence

Eπ

[
(Wi(t)−Wi(s))− µ

∫ t

s

Πi(r)dr
∣∣∣Y(s)

]
=

=
N∑
k=1

πkEk

[
(Wi(t)−Wi(s))− µ

∫ t

s

Πi(r)dr
∣∣∣Y(s)

]
=

= µπi(t− s)− µ
N∑
k=1

πkEk

[∫ t

s

Πi(r)dr
∣∣∣Y(s)

]
=

= µπi(t− s)− µ
N∑
k=1

πkE0

[
Lk(t)

∫ t

s

Πi(r)dr
∣∣∣Y(s)

]
=

= µπi(t− s)− µ
N∑
k=1

πkE0

[
Lk(t)

∫ t

s

Πi(r)dr
∣∣∣Y(s)

]
=

= µπi(t− s)− µEπ

[∫ t

s

Πi(r)dr
∣∣∣Y(s)

]
=

= µπi(t− s)− µπi(t− s) = 0.

Therefore W i
π is a Pπ-martingale, i ∈ I. To show property 3 recall that the

quadratic variation of an Ito’s process X(t) = X(0) +
∫ t

0
σ(s)dW (s) +

∫ t

0
µ(s)ds

can be computed as [X]t =
∫ t

0
σ2(s)ds. Hence, we can immediately see that

[W i
π]t = t, for all t ≥ 0.

This proves that W i
π is a Pπ-standard Brownian motion.

By Lemma 1.1.7 we can rewrite the observation process (1.13) as

dY (t) =
N∑
k=1

Jk(t)dWk(t) =
N∑
k=1

Jk(t){dW k
π (t) + µΠk(t)dt}, (1.26)
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which, given (1.21), leads to

dLπ
i (t) = µJi(t)L

π
i (t)dY (t) =

= µJi(t)L
π
i (t)

N∑
k=1

Jk(t){dW k
π (t) + µΠk(t)dt}. (1.27)

Remark 1.1.8. Clearly Lπ
i is not a Pπ-martingale for any i ∈ I. However, Πi is a

Pπ-martingale for all i ∈ I, as we have shown in Lemma 1.1.7 (in particular, Πi

is a Pπ- standard Brownian motion, i ∈ I).

Remark 1.1.9. Let i∗ ∈ I denote the observed particle at time t ≥ 0. Then we
have Ji∗(t) = 1 and Ji(t) = 0 for all i ̸= i∗, i ∈ I. Therefore the likelihood process
at time t ≥ 0 looks like

dLπ
i∗(t) = µLπ

i∗(t)dY (t) =

= µLπ
i∗(t)

N∑
k=1

{dW k
π (t) + µΠk(t)dt},

dLπ
i (t) = 0, i ̸= i∗.

We can rewrite the value of the FTL problem (1.10) as

V (π1, . . . , πN) = min
J∈J

Eπ[τJ |Π1(0) = π1, . . . ,ΠN(0) = πN ], (1.28)

where τJ is defined as in (1.8) and Eπ denotes the expectation under the posterior
measure P π.

Remark 1.1.10. The value functions (1.10) and (1.28) are equivalent. By switch-
ing our attention from (1.10) to (1.28) we are passing from a problem on the
original process X, with values in RN , to a different problem on the posterior
probability process Π. As Π(t) is a probability measure on Ω for all t ≥ 0, Π
takes values on P(Ω), the set of probability measures on Ω. This makes the
FTL problem a measure-valued stochastic optimal control problem. This kind
of optimization problems are often used in mathematical finance and have many
interesting applications (see for example [11]).

The posterior probability of the i-th particle at time t ≥ 0, Πi(t), as defined in
(1.25) differs from the likelihood of the i-th particle at time t ≥ 0, Lπ

i (t) only by
a multiplicative factor. Therefore we expect the optimal strategy and the value
function in the space of likelihoods to be the same as in the space of posterior
probabilities. This implies that we can either focus on (1.28) or on

V (l1, . . . , lN) = min
J∈J

Eπ[τJL|Lπ
1 (0) = l1, . . . , L

π
N(0) = lN ], (1.29)
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where

τJL = inf

{
t ≥ 0

∣∣∣max
j

Lπ
j (t) =

1− ε

ε

∑
k ̸=j

πk

πj

Lπ
k(t)

}
. (1.30)

This is equivalent to say that

V (l1, . . . , lN) = V (π1, . . . , πN). (1.31)

Remark 1.1.11. More generally we expect V (αl1, . . . , αlN) = V (l1, . . . , lN) ∀α >
0. This assumption is pretty natural as it states that multiplying all likelihoods
by a constant does not affect the average searching time of a given strategy J ∈ J.
Indeed, by multiplying all particles by a common constant α > 0 we also change
the stopping time τJL in equation (1.30) by the same quantity, to get

τJL = inf

{
t ≥ 0

∣∣∣max
j

(
αLπ

j (t)
)
=

1− ε

ε

∑
k ̸=j

πk

πj

(αLπ
k(t))

}
.

Remark 1.1.12. The version of the FTL problem with value (1.28) has nice the-
oretical properties and we will make use of it when needed, but we will consider,
for the most part, the FTL problem in the space of likelihoods, that is, the value
function (1.29), as the independence of the likelihood processes Lπ

1 , . . . , L
π
N makes

computations and numerical simulations much easier.

As pointed out in Remark 1.1.11, we expect the value function of the FTL
problem to be invariant to multiplication of constants α > 0. In the following
theorem we are going to show that the value of the FTL problem is also invariant
to permutation of the prior distribution π.

Theorem 1.1.13. Consider a prior distribution Π(0) = π = (π1, . . . , πN) and let
us sort it in a decreasing way π̂ = (π̂1, . . . , π̂N), so that π̂1 ≥ · · · ≥ π̂N . Denote
by V the value function of the FTL problem as defined in (1.28). Then we have

V (π̂1, . . . , π̂N) = V (π1, . . . , πN).

Proof. Consider Jπ as the set of admissible strategies given a prior distribution
π. Consider a permutation P : I → I and define Jπp as the set of admissible
strategies given the prior distribution πp = (πP (1), . . . , πP (N)). Consider a con-
trol J ′ ∈ Jπ. Let us fix ω ∈ Ω and apply J ′ so to get likelihoods Lπ(t, ω) =
(Lπ

1 (t, ω), . . . , L
π
N(t, ω)). By Remark 1.1.11, we can equivalently consider the

problem in the space of likelihoods. Recall that Lπ
i (t) is the unique strong solution

(given Lπ
i (0) = li) of (1.27), t ≥ 0 and i ∈ I, and that the likelihoods are driven

by a collection of independent Pπ-Brownian motions W π
1 (t), . . . ,W

π
N(t). Consider

a new filtered probability space (Ω,G,G = (Gt)t≥0,P) on which are defined N
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independent Brownian motions W π
P (1)(t), . . . ,W

π
P (N)(t). On this probability space

we can define a new collection of likelihood processes Lπ
P (1), . . . , L

π
P (N) as

dLπ
P (i)(t) = µJP (i)(t)L

π
P (i)(t)dY (t) =

µJP (i)(t)L
π
P (i)(t)

N∑
k=1

JP (k)(t){dW π
P (k)(t) + µΠP (k)(t)dt}. (1.32)

Note that (Lπ
P (1), . . . , L

π
P (N)) has prior distribution lp and that Lπ

P (i) is the unique

strong solution of (1.32) on (Ω,G,G = (Gt)t≥0,P). Define a strategy J ′′ ∈ Jπp

such that J ′′(t) = (J ′
P (1)(t), . . . , J

′
P (N)(t)) for all t ≥ 0. By the bijectivity of P , J ′′

is unique. Let us apply J ′′ on (Lπ
P (1), . . . , L

π
P (N)) and consider the same path ω ∈

Ω. Then (Lπ
P (1)(t, ω), . . . , L

π
P (N)(t, ω)) = (Lπ

1 (t, ω), . . . , L
π
N(t, ω)). Moreover J ′′

inherits the progressive measurability and therefore the Yt-adaptivity of J ′.

One of the most important feature of the dynamic programming approach is
to associate to each strategy J ∈ J′ a value function VJ of the form

VJ(l1, . . . , lN) = Eπ[τJL|Lπ
1 (0) = l1, . . . , L

π
N(0) = lN , strategy = J ], (1.33)

and a corresponding Hamilton-Jacobi-Bellman (HJB) equation (see [33] and [39]
for an extensive introduction) which can be regarded as the “infinitesimal” version
of the dynamic programming principle (DPP). The associated HJB equation is a
second-order linear ordinary differential equation (ODE) of the form

Hi(f) =
∂f

∂li
µ2 l2i∑

k li
+

1

2

∂2f

∂l2i
µ2l2i + 1, (1.34)

where f ∈ C2(RN) , f : RN → R. In particular, we expect the value function
VJ of the policy J ∈ J to solve equation (1.34), that is,

∂VJ

∂li

µ2l2i∑
k li

+
1

2

∂2VJ

∂l2i
µ2l2i + 1 = 0, (1.35)

with associated boundary conditions. By equations (1.33) and (1.34), we can
rewrite equation (1.29) as

V (l1, . . . , lN) = min
J∈J

VJ(l1, . . . , lN),

and we can define the optimal strategy J∗ ∈ J as the policy such that

VJ∗(l1, . . . , lN) = V (l1, . . . , lN) = min
J∈J

VJ(l1, . . . , lN). (1.36)

We would expect the value function of the FTL problem V to solve the following
ODE:

min
k

Hk(V )(l) = 0, (1.37)

23



with associated boundary conditions. Unfortunately, there are no guarantees that
V ∈ C2(RN). In fact, this is in general not true even with value functions of
relatively simple stochastic control problems. To overcome this issue we need to
resort to the notion of viscosity solution: viscosity solutions were introduced in
the 1990s in [12] and provide a method to find solutions to second-order partial
differential equations (PDE) when a classical strong solution is not well-defined.
In particular, the viscosity solutions approach provides powerful means to study
in great generality stochastic optimal control problems and gives a rigorous for-
mulation of the HJB equation for functions that are only assumed to be locally
bounded. By combining these results with comparison principles for viscosity
solutions, we can characterize the value function as the unique viscosity solution
of the associated HJB equation. [33] and [39] have great chapters about this
topic. Given the central role of viscosity solutions in the following, we recall the
definition of viscosity solution for a second-order PDE.

1.2 The value as viscosity solution of the HJB

equation

Definition 1.2.1 (Definition 4.2.1, [33]). Consider an open subset O of RN ,
N ∈ N, and w a locally bounded function w : O → R. Consider a second-order
PDE of the form

F (x,w(x), Dw(x), D2w(x)) = 0, x ∈ O, (1.38)

where F is a continuous function on O×R×Rn ×Sn taking values in R, where
Sn is the space of symmetric n × n matrices. We assume that F satisfies the
ellipticity condition, that is, for all x ∈ O, r ∈ R, p ∈ Rn, M ,M̂ ∈ Sn,

M ≤ M̂ =⇒ F (x, r, p,M) ≥ F (x, r, p, M̂),

where M ≤ M̂ ⇐⇒ M−M̂ ∈ S+
n , and S+

n is the set of non-negative definite ma-
trices in Sn. Denote by w∗, w∗ the smallest (resp. largest) upper-semicontinuous
function above (resp. lower-semicontinuous function below) w on O. Then:

1. w is a viscosity subsolution of (1.38) on O if

F (x̄, w∗(x̄), Dϕ(x̄), D2ϕ(x̄)) ≤ 0 x ∈ O, (1.39)

for x̄ ∈ O and for all ϕ ∈ C2(O), such that x̄ is a maximum point of w∗−ϕ;

2. w is a viscosity supersolution of (1.38) on O if

F (x̄, w∗(x̄), Dϕ(x̄), D2ϕ(x̄)) ≥ 0 x ∈ O, (1.40)

for x̄ ∈ O and for all ϕ ∈ C2(O), such that x̄ is a minimum point of w∗−ϕ;
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3. We say that w is a viscosity solution of (1.38) onO, if it is both a subsolution
and a supersolution of (1.38).

Remark 1.2.2. We can interpret the notion of viscosity solution as follows: we
evaluate the PDE (1.38) on the “closest” semicontinuous function to w (either w∗

or w∗) but at the same time we evaluate the gradient and the second derivatives
on a smooth function ϕ ∈ C2(O). The idea underneath it is to ignore the kinks
of w and substitute the gradient and second derivatives of w on those points with
gradient and second derivatives of a smooth function ϕ ∈ C2(O).

Remark 1.2.3. A deep treatment of the theory of viscosity solutions is beyond
the scope of this thesis. What interest us the most is to characterize the value
function of an infinite horizon stochastic optimal control problem as the unique
viscosity solution of the corresponding variational HJB equation. To do so, let
us recall one more theoretical result.

Consider a general controlled diffusion process X on the filtered probability
space (Ω,F ,F = (Ft)t≥0,P), with values on Rn described by the following SDE:

dX(s) = b(X(s), α(s))ds+ σ(X(s), α(s))dW (s), (1.41)

where W is a d-dimensional Brownian motion on (Ω,F ,F = (Ft)t≥0,P) and the
control process α = (α(s)) is F-progressively measurable and valued in A ⊂ Rm.
The coefficients b and σ satisfy the usual regularity conditions that guarantee
that (1.41) has a unique strong solution (see Chapter 1 of [33]).The Hamiltonian
associated to a stochastic optimal control problem for the controlled diffusion
(1.41) has the general form

H(x, p,M) = sup
α∈A

{
b(x, α)p+

1

2
tr(σ(x, α)σ′(x, α)M) + f(x, α)

}
. (1.42)

Assumption 1.2.4. Let us assume that H is continuous on int(dom(H)), that the
function f in (1.42) has quadratic growth and that f(., α) is continuous in x for
all α ∈ A. Assume that there exist a continuous function G : Rn × Rn × Sn → R
such that

(x, p,M) ∈ dom(H) ⇐⇒ G(x, p,M) ≥ 0.

Then the following theorem holds true:

Theorem 1.2.5 (Theorem 4.3.1, [33]). Suppose the value function v is locally
bounded and that assumptions 1.2.4 hold true. Then for all β > 0, where β is a
discount factor, v is a viscosity solution of the HJB variational inequality:

min{βv(x)−H(x,Dv(x), D2v(x)), G(x,Dv(x), D2v(x))} = 0 (1.43)

for x ∈ Rn.
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We cannot apply Theorem 1.2.5 directly to our case, as the result requires a
discount factor β > 0. To apply Theorem 1.2.5 to our case we will approach the
problem as a discounted problem with bounded horizon and discount rate β ↘ 0.

Theorem 1.2.6. Given a prior distribution l = (l1, . . . , lN) for the likelihood
process Lπ = (Lπ

1 , . . . , L
π
N) defined by (1.25), the value function of the Follow The

Leader problem V , that is the unique solution of the minimization problem (1.28),
is the unique viscosity solution of the equation

min
k

Hk(V )(l) = 0, (1.44)

with boundary condition
V (∂εD) = 0, (1.45)

where
D =

{
l ∈ RN

∣∣∣lk ≥ 0 ∀k
}

(1.46)

and ∂εD = {l ∈ D|lk∗ = maxk lk =
1−ε
ε

∑
k ̸=k∗ lk}.

Proof. Let us introduce the notation LLLu = (L1,u, . . . , LN,u), where Li,u is the
likelihood of the i-th box, i ∈ {1, . . . , N}, under the admissible control u. For
readability we will write Li,u in place of Lπ

i,u for the remainder of the proof.
In the FTL case the dynamics of the likelihood Li are given (in law) by (see

equation (1.27) with k = 1):

dLi,u
t = 1{ut=i}

(Li,u
t )2∑
k L

k,u
t

µ2, dt+ 1{ut=i}µL
i,u
t dWt.

Note that, as pointed out in Remark 1.1.11, the dynamics of the likelihood
process are invariant to scaling. That is, scaling the likelihood process L by a
constant α will scale through the future likelihood in a common manner. If our
objectives in the control problem are invariant to scaling, then the value will be
invariant to scaling too.

In the case of the posterior distribution, we can compute the posterior prob-
ability of the j-th box in terms of the likelihoods, by Πj = Lj/

∑
k L

k. When we
observe the i-th box, we then see:

dΠj,u
t = µΠj,u

t

(
1{j=ut} −

∑
k

1{k=ut}Π
k,u
t

)
dWt. (1.47)

Observe also that, since
∑

k Π
k,u
t = 1, we have that d

∑
k Π

k,u
t = 0.

Note that by Theorem 1.1.13 and Remark 1.1.11, the original value function
v(ℓ1, . . . , ℓN) satisfies a reordering condition v(ℓ1, . . . , ℓN) = v(ℓσ(1), . . . , ℓσ(N))
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where σ is an arbitrary permutation of {1, . . . , N}, and also a rescaling condition,
that is

v(ℓ1, . . . , ℓN) = v(αℓ1, . . . , αℓN)

where α > 0. Consequently, we can define the value for the problem given in
terms of π in a rescaled fashion, namely:

v̂(π1, . . . , πN) := v(π1, . . . , πN)

where we only interpret v̂ on the set of probability vectors, πi ∈ [0, 1] and∑
k π

k = 1.
We first aim to prove:

1. The function v̂ is bounded on P({1, . . . , N}).

2. The function v̂ is continuous on P({1, . . . , N}).

To see the first, we argue as follows. Fix a stopping probability ε, we want to
run until τε := inf{t ≥ 0 : πj > 1 − ε}, some j ∈ {1, . . . , N}}, and we want to
show that there exists K > 0 such that

τε ≤ K

for some observation strategy. Fix η ∈ (0, 1/N).
Fix a prior distribution π. Since

∑
k π

i = 1, there exists an index j such that
πj ≥ 1

N
. We observe this index j until either Πj = 1− ε, or Πj = η. We observe

that the expected time to exit for the process given we start at πj = π0 can be
computed as w(·), where w(·) is the solution to the second order ODE:

w(η) = 0 = w(1− ε), µ2π2(1− π)2w′′(π) = −2. (1.48)

To see this is a straightforward application of Itô’s Lemma.
Note that the resulting function w is bounded, from which we conclude that

there is a maximal average time w∗ that the process will take to reach either 1−ε
or η from any given starting point in [η, ε]. Moreover, if we write Hy for the first
hitting time of y, since Π is a martingale, it also follows that P(H1−ε < Hη|π0 =
π) = π−η

1−ε−η
. In particular, if π ≥ 1

N
, then P(H1−ε < Hη|π0 = π) > δ for some

δ > 0.
Finally, observe that the following strategy guarantees on average a searching
time of at most w∗/δ: initially choose any index which has πi ≥ 1

N
. It is clear

that at least one such index must exists. Observe this index until either the
probability of this index exceeds 1 − ε, or it drops below η. On average, this
will take time at most w∗. With probability at least δ, the index will stop with
probability at least 1−ε and we have identified the valid index. Otherwise we can
choose another index, again choosing an index with initial probability at least
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1/N , and repeat. The number of repeated trials is bounded above in law by a
geometric distribution with parameter δ, and therefore we need an average of
at most δ−1 such trials. Conditional on the initial starting point, each trial has
average length at most w∗, giving the upper bound.

We now turn to the proof of continuity. First observe that using the equiva-
lence of formulation as v or v̂, it is sufficient to prove continuity of v, rather than
continuity of v̂ in the interior of P . It is straightforward to see, using similar
ideas to above, that for any (ℓ1, . . . , ℓN) ∈ RN , there exists δ > 0 such that an
appropriate choice of strategy can reach any point in the ball of radius δ in small
time, with high probability: following a similar calculation to that in (1.48), it
is straghtforward to see that one can move from (ℓ1, . . . , ℓN) to (ℓ′1, ℓ2, . . . , ℓN)
in small (average) time, with high probability of success. Repeating, continuity
follows.

To show continuity in general, that is, continuity including the boundary
where πi = 0 for some i ∈ {1, . . . , N} is harder, and is not standard, see for
example [9]. First observe that if π is sufficiently close to the stopping region,
then we can find a strategy that stops within small time on average. That is,
given ξ > 0, there exists δ > 0 such that for any π such that πj > 1 − ε − δ for
some j ∈ {1, . . . , N}, then there exists a strategy which will stop in average time
less than ξ. This follows immediately from running the argument above.

Now consider v̂(π). We show that for any ξ > 0, we can find a ball around π
such that v̂(π′) ≤ v̂(π) + ξ, for all π′ in the ball.

Since the diffusion coefficient in (1.47) is Lipschitz in π, standard results on
diffusions imply that for a given control u that has expected exit time smaller than
v̂(π)+ξ/4, and T > 0, we can find a ball around π such that P(sups≤T ||πs−π′

s|| >
δ′) < ξ/(4w∗), where (π′

s)s≤T is the controlled process following the same strategy
as (πs)s≤T , but starting at π′. Fix T large enough that (πs)s≤T reaches the
stopping set

P := {π : πi ≥ 1− ε for some i}

with probability at least 1 − ξ/(4w∗) before time T (such a time T exists since
v̂(π) is finite). Then we run the (π′

s)s≤T process until we stop π, or T . If we stop
π, then by the argument above, π′ is sufficiently close to the stopping region,
and we can choose our original ball such that the expected time to reach the exit
region from this position is less than ξ/4. If we reach time T , then we can still
construct a strategy to reach P with average time at most w∗. The conclusion
follows.

Once we have continuity of the value function on the whole domain, it is easy
to verify that it is the unique value function: we can, for example, approximate
from below by a well-behaved approximation (see for example [19]), and take lim-
its, using Dini’s Theorem to deduce uniform convergence. Specifically, consider
an increasing sequence of connected, compact, subsets KN of RN with smooth
boundaries, increasing in RN . Consider the problem of minimising the expected
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time to exit from int(KN) ∩ PC using the control strategies as above. Standard
results (e.g. [9, Theorem 4.1]) show that under these additional assumptions,
the corresponding value functions are continuous viscosity solutions to the cor-
responding HJB equation, and taking the limit as N → ∞, we recover the value
of the original problem.

The limit is then also a viscosity solution by stability results (see Lemma 6.2
from [19]), and we then get the desired conclusion.

We conclude this chapter by formally defining the FTL strategy: such a policy
is deceptively simple, but in fact is not trivial to define it rigorously. To see why,
consider the following situation: we start with a generic prior distribution l. By
Theorem 1.1.13 we can sort the prior distribution decreasingly without affecting
the value of the problem, so that we have l = (l1, l2, . . . , lN) with l1 ≥ l2 ≥ · · · ≥
lN . We choose to apply the FTL policy and to observe the first particle L1 at
time t = 0. There are 2 possible outcomes:

1. the process X1 is easily identified as having the drift µ and the likelihood
L1 reaches the threshold l∗ := mε

∑
k>1 lk before going down to the level l2.

In this case the search is over;

2. we still do not have enough data to confidently say that X1 has drift µ, so
the likelihood L1 goes down to the level l2 before touching l∗.

In principle, outcome 2 could happen an infinite number of times and infinitely
often. Recalling that Lπ

1 is characterised as the unique strong solution of equation
(1.27) (with J1(t) = 1 for t ≥ 0), we see that the behaviour in outcome 2 implies
that equation (1.27) has no strong solution and, therefore, that the likelihood
L1 is not well-defined. To solve this issue, we observe that we can understand
the phenomenon by introducing a local time effect at point l. Indeed, note that
equation (1.27) under the FTL strategy can be rewritten as

dLπ
i (t) = 1{t≥0|Lπ

i (t)=maxk Lπ
k (t)}µL

π
i (t){dW π

i (t) + µΠi(t)dt}, (1.49)

for i ∈ I, t ≥ 0. It is evident that the coefficients of (1.49) are not Lipschitz, or
even continuous, so the sense in which the SDE (1.49) has a solution needs to
be clarified. Equation (1.49) has strong similarities with the celebrated Tanaka
SDE: in particular, if we take N = 2, we ignore the drift term and we define
y(t) = Lπ

1 (t)− Lπ
2 (t), we see that (1.49) can be written as

dy(t) = sign(y(t))µdW π(t),

for t ≥ 0, which is exactly Tanaka SDE. There is no strong solution to such
SDE, but there exists a weak solution, represented by taking Y to be a Brownian
motion started at y(0) = Lπ

1 (0)−Lπ
2 (0), which we may as well suppose is positive,
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and then defining dW (t) = sign(y(t))dy(t) = d|y(t)|−dE(t), where E is the local
time of y at zero. Then we have

Lπ
1 (t) = Lπ

1 (0) + y+(t)− 1

2
E(t)

Lπ
2 (t) = Lπ

2 (0) + y−(t)− 1

2
E(t).

It is beyond the scope of this thesis to study the theory of excursions and local
times, but we will see how to use local times to construct the FTL policy in the
next section. Theorem 1 of [17], which we will partially recall in the next section,
will be extremely useful in this regard. We refer to [38] and [40] for a in-depth
treatment of the topic.

1.3 Local time effect

Following the approach proposed by [17], we define the log-likelihood of the
i-th particle Zπ

i , i ∈ I, as

Zπ
i (t) := µ−1 log(Lπ

i (t)), t ≥ 0, µ ̸= 0. (1.50)

Given Zπ
i (0) = zi, a straightforward application of Ito’s formula shows that Zπ

i

is the unique strong solution of

dZπ
i (t) = Ji(t)

(
dY (t)− µ

2
Ji(t)dt

)
. (1.51)

Note that by applying the FTL policy we obtain

dZπ
1 (t) =

(
dY (t)− µ

2
dt
)
= dW π

1 (t) + µ

(
Π1(t)−

1

2

)
dt, t ≥ 0,

and dZπ
i (t) = 0 for i ∈ {2, . . . , N}, t ≥ 0.

Remark 1.3.1. Note that Zπ
i (t) is a monotone function of Lπ

i (t), i ∈ I. Therefore
the value of the FTL strategy in the space of log-likelihoods is equivalent to the
value in the space of likelihoods.

Clearly, the space of likelihoods L and the space of log-likelihoods Z are
isomorphic, that is, any point l = (l1, l2, . . . , lN) in the space of likelihoods cor-
responds to only one point z = (z1, z2, . . . , zN) in the space of log-likelihoods
and the converse holds true as well. Hence, we consider the prior distribution
z = (z1, . . . , zN), where z1 ≥ z2 ≥ · · · ≥ zN . If we apply the FTL strategy to
this configuration, one of the two outcomes listed above can happen: either Zπ

1

reaches z∗, where z∗ = µ−1 log(l∗), or it first goes down to the level of Zπ
2 . In the

latter case, we obtain the configuration Zπ
1 (t) ≃ Zπ

2 (t) ≥ Zπ
3 (t) ≥ · · · ≥ Zπ

N(t).
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In this situation, is not at all clear which, between Zπ
1 and Zπ

2 , is the leader
and applying the FTL policy becomes non trivial. To overcome this issue we
consider the local reparametrisation Zπ

M(t) := maxi Z
π
i (t) = max{Zπ

1 (t), Z
π
2 (t)},

Zπ
m(t) := mini Z

π
i (t) = min{Zπ

1 (t), Z
π
2 (t)}. Such a parametrisation is very useful

as in [17] the authors show the following results:

Theorem 1.3.2 (Theorem 1, [17]). For all starting value z = (z1, . . . , zN), for
all t ≥ 0, we have

1. dZπ
m(t) =

1
N
dW π

m(t);

2. Zπ
M(t)− Zπ

m(t) = W π(t)−W π
m(t)

d
= |W π(t)|,

where W π is a Pπ-Brownian motion, W π
m denotes the running minimum process

of the Brownian motion W π and the last equality in point 2, due to Lèvy (see
[37]), is an equality in distribution.

Remark 1.3.3. Point 2 of Theorem 1.3.2 is especially interesting as it shows that
at the boundary Zπ

1 (t) ≃ Zπ
2 (t) ≥ Zπ

3 (t) ≥ · · · ≥ Zπ
N(t) we have a local time

behavior: we are uncertain about which particle is the leader and we therefore
run each particle for a very short time to establish which will be the next leader.

Hence, we have

dZπ
M(t) = dZπ

m(t) + dW π(t)− dW π
m(t) = dW π(t)− 1

2
dW π

m(t),

and since the set {t ≥ 0|Zπ
1 (t) = Zπ

2 (t) ≥ · · · ≥ Zπ
N(t)} is negligible with respect

to the Lebesgue measure we have

dZπ
M(t) = −1

2
dW π

m(t) = −dZπ
m(t). (1.52)

By applying Ito’s formula once more we obtain

dV (Zπ
M(t), Zπ

m(t), Z
π
3 (t), . . . , Z

π
N(t)) =

∂V

∂Zπ
M

dZπ
M(t) +

∂V

∂Zπ
m

dZπ
m(t) =

=
1

2

∂V

∂Zπ
m

dW π
m(t)−

1

2

∂V

∂Zπ
M

dW π
m(t).

By standard arguments (see for example [33] or [39]), V has to be a martingale
on {t ≥ 0|Zπ

M(t) = Zπ
m(t)}. Therefore we must have

∂V

∂Zπ
M

=
∂V

∂Zπ
m

. (1.53)

Remark 1.3.4. This result will be particularly important in Chapter 3, when we
will study the optimal strategy of the FTL problem for a generic prior distribu-
tion. In chapter 2 we will study the optimal strategy of the FTL problem when
the prior distribution is uniform. In that particular case we will make use of what
we obtained so far to argue a very similar result.
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1.4 Summary

In this chapter we formally defined the FTL problem. We converted a stochas-
tic optimal control problem on the sample paths space, RN , N ∈ N, to a measure-
valued stochastic control problem on the space of probability measures on Ω,
P(Ω). We then showed that such a problem is equivalent to a stochastic control
problem in the space of likelihoods. We characterized the value of the FTL prob-
lem (1.28) as the unique viscosity solution of the HJB equation (1.44), and we
used the theory of excursions and local times to formally define the FTL strategy
even at the boundary {t ≥ 0|Lπ

1 (t) ≃ Lπ
2 (t) ≥ Lπ

3 (t) ≥ · · · ≥ Lπ
N(t)}. In the next

chapter, we are going to study the FTL problem in the particular case where the
prior distribution π is uniform, that is, π = π1 = · · · = πN , for π ∈ [0, 1].
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Chapter 2

The optimal strategy with
uniform prior distribution

In this chapter we will study the optimal strategy for the FTL problem (1.28)
when the prior distribution π is uniform, that is, Π(0) = (π, . . . , π), for π ∈ [0, 1].
In particular, we will show that the policy that was conjectured to be optimal,
that is, the FTL policy, is in fact suboptimal. To do so, we will firstly rewrite the
HJB equation (1.34) for the FTL policy when the prior distribution is uniform.
We will compute the value of the FTL strategy and provide visualisations and
numerical simulations to understand its behavior. Eventually, we will propose a
novel approach to evaluate if the FTL strategy is the optimal strategy and we
will show that the results we obtain are in contrast with the claims in [42]. We
will always consider the case N = 3 throughout the entire chapter. We will see
that our arguments are not easily generalizable to higher dimensions and we will
point out where this hypothesis play an important role in our arguments. At the
end of the chapter we will discuss how such results could be generalized to N > 3
and which difficulties we need to overcome to do so.

2.1 The FTL strategy

In this chapter we will consider the case where the prior distribution π is
uniform, that is, π = π1 = π2 = π3, for π ∈ [0, 1]. For the most part, we will
study the problem in the space of likelihoods, in order to use the independence
hypothesis to simplify computations and numerical simulations. Let us denote
by l the starting level of all particles and by S the following region:

S :=
{
(l1, l, l) ∈ R3+|l1 ∈ [l, l∗]

}
, (2.1)

where l∗ = 2lmε, mε =
1−ε
ε

and ε ∈ (0, 2
3
).
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Remark 2.1.1. The upper limit of ε is 2
3
for a simple reason: if the N pos-

terior probabilities Πi, i ∈ I, start with uniform prior distribution, we have
(π1, π2, π3) = (1

3
, 1
3
, 1
3
). This means that if ε > 2

3
we have 1 − ε < 1

3
. This level

of confidence is trivially satisfied at the start of the detection procedure, making
the problem trivial. From now on, we will always consider non-trivial searching
processes, that is, ε ∈ (0, 2

3
).

Here the upper boundary l∗ can be written as l∗ = 2mεl3 and it is the threshold
at which we declare that the particle with largest likelihood is the correct one,
that is, the threshold at which we stop our search and we are at least 1 − ε
confident that the chosen particle has drift µ ̸= 0. In particular, the threshold is
reached at the stopping time (1.30).

Remark 2.1.2. From now on, we will refer to the set S as the south boundary,
for reasons that will become apparent in the next chapter. Note that, if we start
with a uniform prior distribution l, and we apply the FTL strategy, we will always
work in the set S. In other words, by applying the FTL strategy we will never
leave the set S.

In the case of uniform prior distribution it is difficult to define the FTL strat-
egy at the boundary {t ≥ 0|Lπ

1 (t) ≃ Lπ
2 (t) = Lπ

3 (t)}: as we have seen in section
1.3, it might be difficult to identify which particle is the leader and we might have
to observe one particle for a very short time before switching to another one and
try again. Luckily, the scenario is very similar to the one discussed in section 1.3
and we refer to those results to formally define the FTL strategy in this particular
case as well. As we have seen in Chapter 1, the value function associated to the
FTL strategy is the unique solution of the ODE (1.34) with i = 1 and appropriate
boundary conditions. Let us now establish such boundary conditions: as defined
in (1.28), the value function of the FTL problem, as much as the value associated
to any strategy J ∈ J′, can be interpreted as the expectation of the Yt- stopping
time (1.30) (in the space of likelihoods). Hence, we have

VJ(l) ≥ 0

for all l ∈ R3 and any strategy J ∈ J′. In particular, we can see that VJ(l) = 0
if and only if l = l∗, as at l∗ the target confidence is attained and we stop our
search. From this we can say that

VFTL(l
∗, l, l) = 0, (2.2)

where VFTL denotes the value function associated to the FTL policy. Deriving
the left boundary condition is less trivial and to do so we propose the following
approach: consider the space of ordered likelihoods (Lπ

1 (t), L
π
2 (t), L

π
3 (t)), where

Lπ
1 (t) ≥ Lπ

2 (t) ≥ Lπ
3 (t). Assume that the prior distribution l is such that l =

(l3, l3, l3), so that all 3 particles start from the same level l3 > 0. Consider the
set

Dl3 := {t ≥ 0|Lπ
1 (t) ≥ Lπ

2 (t) ≥ Lπ
3 (t) = l3} . (2.3)
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Fig. 2-1: The domain Dl3 for different values of the parameters ε and l3. On
the top-left we have ε = 0.01 and l3 = 1. On the top-right we have ε = 0.1 and
l3 = 1. At the bottom we have ε = 0.01 and l3 = 10. The dots represent the grid
we used to discretise the domain Dl3 .

Remark 2.1.3. In equation (2.3) we are taking Lπ
3 (t) = l3. This does not neces-

sarily imply that we will never observe Lπ
3 (t), as we can exploit Remark 1.1.11 to

renormalize Lπ
3 (t) if L

π
3 (t) < l3.

Figure 2-1 shows the shape of Dl3 for fixed values of l3 and ε: on the x-axis
we have the Lπ

1 -coordinate and on the y-axis we have the Lπ
2 -coordinate. The line

at the bottom of the plots, corresponding to Lπ
2 (t) = l3, is the set S, hence we

named it south boundary. On the bottom-left corner, we have the starting position
l = (l3, l3, l3). On the left side we have the boundary {t ≥ 0|Lπ

1 (t) = Lπ
2 (t) ≥ l3},

which is a natural boundary for the FTL strategy. On the right we have the
stopping boundary Lπ

1 (t) = mε(L
π
2 (t)+l3) = l∗(t), at which our search terminates.

The horizontal line at the top of the plot, that we will often call north boundary,
is arbitrary. Note that the parameters l3 and ε influence both the length of the
south boundary S and the steepness of the right boundary l∗(t).

Remark 2.1.4. Note that the bigger ε, the shorter the south boundary: this is
coherent with the fact that ε represents the “difficulty” of the detection problem.
The larger ε, the smaller the necessary confidence 1 − ε to finish our search.
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Therefore, it makes sense that the south boundary “shrinks” as ε gets larger.

Note that having a uniform prior distribution means that we are always start-
ing the search at the bottom-left of the domain. Starting from there, at (l3, l3, l3),
if we apply the FTL policy, we will always move along the south boundary S.
Therefore, the natural left boundary for the value of the FTL strategy would be
the point (l3, l3, l3). However, as we will show shortly, a slightly different approach
is more fruitful. Let us denote by FTS the Follow the Second strategy, that is,
the strategy that always observes the process with associated second-largest like-
lihood Lπ

2 . In the same way, we denote by FTT the strategy that always observes
Lπ
3 . Recall now the result claimed by [42]: if we start with a uniform prior distri-

bution, that is, if we start our search on the bottom-left corner (l3, l3, l3) of Dl3 ,
the optimal strategy is to always follow the particle with maximum likelihood
Lπ
i∗(t) = maxi L

π
i (t). If the claim is correct, it implies that we will always move

along the south boundary S and never leave it. As pointed out in the Introduc-
tion, in [17] the authors have shown that the FTL policy is not always optimal
if the prior distribution is unspecified, but they did not obtain any result in the
case where the prior distribution is uniform. The main goal of this chapter is to
show that, even with uniform prior distribution, the FTL policy is not always
optimal. To obtain such a result we ask ourselves the following question: can
we find any point l ∈ S at which it is “better” to leave S? That is, is there
any point l ∈ S at which the value associated to an alternative strategy (either
FTS or FTT) is smaller than the value of the FTL policy? Intuitively speaking,
having a uniform prior distribution such that Lπ

1 (0) = Lπ
2 (0) = Lπ

3 (0) = l3, makes
it impossible to distinguish between the FTL strategy and the other competing
strategies FTS and FTT. In practice, to apply the FTL policy we would need
to observe a particle for a short amount of time and see whether the particle is
actually the leader or if it comes back to the initial value l3. In the latter case,
we select another particle and we run the procedure once more. It is easy to see
that this behavior is connected naturally to the local time behavior introduced
in section 1.3. Define the line

Sδ := {(l, l3 + δ, l3)| l ∈ [l3 + δ,mε(2l3 + δ)]}, (2.4)

where δ > 0, δ << 1. Note that Sδ → S as δ → 0+. By the scaling property
of the value function (see Remark 1.1.11) we can rewrite the value of the FTL
strategy V0 at the left boundary of the set Sδ, that is at (l3 + δ, l3 + δ, l3) as
V0(l3 + δ, l3 + δ, l3) = V0(l3, l3, l3 − δ′), where δ′ = δ + O(δ). By Theorem 1.1.13
we can permute the arguments and obtain

V0(l3, l3, l3 − δ′) = V0(l3 − δ′, l3, l3). (2.5)

Remark 2.1.5. Note how (2.5) requires the hypothesis N = 3. We will discuss
how this reasoning can be generalized to higher dimensions at the end of the
chapter.
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Let us therefore compute the value of the FTL strategy on the new domain

S ′ := {(l, l3, l3)| l ∈ [l3 − δ′, 2mεl3]}.

We compute the value of the FTL strategy on S ′ as the unique solution of

∂V0

∂l1

µ2l21
l1 + 2l3

+
1

2

∂2V0

∂l21
µ2l21 + 1 = 0, (2.6)

V0(2mεl3) = 0,

V0(l3 − δ) = βδ,

where βδ > 0 is a constant to be determined.

Remark 2.1.6. From now on we will simply write V0(l) rather than V0(l, l3, l3) to
simplify the notation. Note that such a simplification is appropriate, as the value
function of any strategy that observes only particle i, i ∈ I, depends only on the
likelihood Lπ

i , as likelihoods are independent. In fact, the value will also depend
on the level of other likelihoods, but these will be treated as fixed parameters,
rather than variables. For example, the most appropriate notation for the value
of the FTL strategy at a generic point (l1, l3, l3) is V0(l1; l3, l3), but we will simply
write V0(l1).

Remark 2.1.7. In principle βδ could be any positive real number, as βδ is a bound-
ary condition we set arbitrarily. In the following we will show that the boundary
value problem (2.6) has a unique solution on S ′ for all values of βδ. However, in
Algorithm 2.3.1, we will show how to choose a unique value for βδ.

Remark 2.1.8. We will postpone the proof of the existence and uniqueness of the
solution to the boundary value problem (2.6), given βδ > 0, to the next section,
where we will prove a more general statement that implies the aforementioned
result.

Let us now compute the unique solution of the boundary value problem (2.6).
The general solution of (2.6) on S ′ is of the form

V0(l) =
2 log(l)(2l3 − l)

µ2(2l3 + l)
− k0

1

2l3 + l
+ k0

2, (2.7)

where k1
0 and k2

0 are constants to be determined. Using the first boundary con-
dition we get

k0
2 = −2(1−mε) log(2mεl3)

µ2(mε + 1)
+

k0
1

2l3(mε + 1)
, (2.8)

and by the second boundary condition we obtain

k0
1 =

2l3(3l3 − δ)(mε + 1)

l3(1− 2mε)− δ

{
βδ −

2(l3 + δ) log(l3 − δ)

µ2(3l3 − δ)
+

2(1−mε) log(2mεl3)

µ2(mε + 1)

}
.

(2.9)
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2.2 The δ-FTL strategy

To compute the correct value of βδ we introduce a new strategy, that we call
the δ-FTL strategy. Such a strategy is defined on

S ′
δ := Sδ ∪

{
(l3 + δ, l, l3) ∈ R3|l ∈ [l3, l3 + δ]

}
∪ S ′

and can be interpreted as follows: start at any point on S ′
δ and run the leader

Lπ
1 until it hits either l = l3 + δ or l = mε(2l3 + δ). If it hits the latter first we

stop, the target has been reached and we declare that particle X1 has drift µ with
confidence 1− ε. If it hits l = l3 + δ first, we keep observing Lπ

1 and we see if it
comes back to Sδ or goes down to (l3 + δ, l3, l3) ∈ S ′. If it hits (l3 + δ, l3, l3) we
switch to the FTL strategy.

Remark 2.2.1. One of the main reason why we introduced the δ-FTL strategy is
to understand the local time behavior at (l3, l3, l3) that we already discussed in
Section 1.3: note how the δ-FTL policy corresponds to observing a particle at
(l3, l3, l3) and wait until it becomes clear whether it is the leader.

Remark 2.2.2. The FTL and the δ-FTL strategy are inherently “coupled”: the
value of the problem at the left boundary of Sδ, (l3 + δ, l3 + δ, l3), is equal to the
value of the problem at (l3 − δ′, l3, l3), that is,

V (l3 + δ, l3 + δ, l3) = V (l3 − δ′, l3, l3),

as we already pointed out when we defined the set S ′. Such a point lies in both
Sδ and S ′.

To define the value of the δ-FTL strategy Vδ properly we need to characterise
it as the unique solution of a boundary value problem. The right boundary
condition is similar to the one for V0: at the stopping time τl, described in
equation (1.30), the likelihood of the leader Lπ

1 is l∗δ := mε(2l3 + δ). Hence we
must have Vδ(l

∗
δ) = 0. As far as the left boundary condition is concerned, we

assign to it an arbitrary value, that is, Vδ(l3 + δ, l3, l3) = αδ(βδ) > 0.

Remark 2.2.3. The left boundary condition for Vδ, αδ(βδ), does depend on the
left boundary condition for V0, βδ. Indeed, as the 2 strategies are effectively just
the same strategy applied on different domains, we must have

Vδ(l3) = V0(l3 + δ) = αδ(βδ).

We are now going to characterize the value function of the δ-FTL strategy,
Vδ, as the unique solution of the following boundary value problem:

f ′′(l, f ′(l)) = F (l, f ′(l)) = − 2

µ2l2
− 2

l + 2l3 + δ
f ′(l). (2.10)

f(mε(2l3 + δ)) = 0,

f(l3 + δ) = αδ(βδ),
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Fig. 2-2: In orange the domain of Vδ, S ′
δ, in blue the domain of V0, S ′. The left

boundaries of (2.6) and (2.10) are denoted by blue points. The right boundaries,
at which the values V0 and Vδ are 0, are denoted by black points.

where αδ(βδ) > 0 is a constant to be determined and f ∈ C2(Sδ). Firstly, we
need to show that the boundary value problem (2.10) has a unique solution,
given αδ(βδ). Note that αδ(βδ) is determined by βδ. As we mentioned in Remark
2.1.7, this result will also prove the existence and uniqueness of the solution to
the boundary value problem (2.6), given βδ.

Proposition 2.2.4. The boundary value problem (2.10) has a unique solution
on S ′

δ, given βδ > 0 (hence αδ(βδ)).

To prove Proposition 2.2.4 we need to prove a few intermediate results. Let
us start by proving the following lemma:

Lemma 2.2.5. Let f be a solution to the boundary value problem (2.10). The
second derivative of f with respect to l1, f

′′, is Lipschitz in f ′ and continuous in
l.

Proof. Consider equation (2.10) and take l′, l′′ ∈ S ′ and compute

|f ′′(l′)− f ′′(l′′)| =
∣∣∣∣− 2

µ2(l′)2
+

2

µ2(l′′)2
− 2

l′ + 2l3 + δ
f ′(l′) +

2

l′′ + 2l3 + δ
f ′(l′′)

∣∣∣∣ ≤∣∣∣∣− 2

µ2(l′)2
+

2

µ2(l′′)2

∣∣∣∣+ ∣∣∣∣ 2

l′′ + 2l3 + δ
f ′(l′′)− 2

l′ + 2l3 + δ
f ′(l′)

∣∣∣∣ .
Let us focus on the second term, as the first one does not depend on f ′. Since
l′, l′′ ∈ S ′, we have l′, l′′ ≥ l3 − δ. Hence∣∣∣∣ 2

l′′ + 2l3 + δ
f ′(l′′)− 2

l′ + 2l3 + δ
f ′(l′)

∣∣∣∣ ≤ 2

3l3 − δ
|f ′(l′′)− f ′(l′)| =

2

3l3 − δ
|f ′(l′)− f ′(l′′)| .

Hence f ′′(l) is Lipschitz in f ′(l). Moreover f ′′(l) is clearly continuous in l.
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Proof. (of Proposition 2.2.4)
Our goal is to apply the Picard-Lindelof theorem to show that there exists a
solution of equation (2.6) in a local closed neighborhood of the initial point l3−δ′

(see for example [22]). However, Picard-Lindelof theorem applies to initial value
problems and not to boundary value problems. Therefore, before applying the
theorem, we need to convert the boundary value problem (2.10) into an initial
value problem. Let us rewrite the boundary value problem (2.10) as

1

2
µ2l2f ′′(l) +

µ2l2

l + 2l3 + δ
f ′(l) + 1 = 0

f(l3 − δ) = βδ

f ′(l3 − δ) = c, (2.11)

where c ∈ R is a constant we choose to make the initial value problem (2.11)
equivalent to the boundary value problem (2.10). Let us consider the vector
V : R2 → R2 such that

V (l) = (V1(l), V2(l)) = (V (l), V ′(l)),

with initial condition
V (0) = (V0, V

′
0).

We write V ′(l) = F (V , l), where F : R2 × R → R2 is such that

F (V , l) = (V2, G(V2, l)),

where G : R × [l3 − δ′, 2mεl3] → R. Therefore the second order initial value
problem (2.11) can be rewritten as the following first order initial value problem:

x′(l) = G(x(l), l) (2.12)

x(0) = x0,

where x is such that

V2(l) = x(l) (2.13)

V1(l) = y0 +

∫ l

l3−δ

x(s)ds.

By Lemma 2.2.5 we know that G(l, x(l)) is Lipschitz in x(l) and continuous in
l. To apply Picard-Lindelof we need to show that G is locally Lipschitz in l. By
equation Lemma 2.2.5 the function G is continuously differentiable in l, which
implies that G is locally Lipschitz in l. By Picard-Lindelof theorem we obtain
the existence and uniqueness of the solution to (2.11) on a neighborhood of the
initial point l3 − δ ∈ S ′. However, we would like to obtain the existence and
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uniqueness of the solution to (2.11) on the entire domain S ′. The existence of the
global solution is relatively easy to obtain, as the domain S ′ is a compact subset
of R: let us denote the local solution in a neighborhood of l ∈ S ′ by yl. We can
then “glue” the local solutions yl together to obtain a global solution y such that
y(l) = yl(l), for all l ∈ S ′. To prove the uniqueness of the global solution we need
to show the boundedness of the gradient. By (2.12) we have

x(l) ≤
∫ l

l3−δ

|G(s, x(s))|ds+ x0 ≤

x0 + l(K̂l +G(l3 − δ, x(l3 − δ)))eKl,

for all l ∈ S ′, where the second inequality uses the two Lipschitz conditions and
Gronwall’s lemma (see [22]). Here K is the x-Lipschitz constant and K̂ is the
l-Lipschitz constant. Consider now 2 solutions x(l) and x̂(l) to the ODE (2.12)
such that |x(0)− x̂(0)| < δ. Then

|x(l)− x̂(l)| ≤ |x(0)− x̂(0)|+
∫ l

l3−δ

|G(s, x(s))−G(s, x̂(s))|ds ≤

δ +K

∫ l

l3−δ

|x(s)− x̂(s)|ds.

By Gronwall’s inequality we obtain

|x(l)− x̂(l)| ≤ δ exp (K(l − l3 + δ)). (2.14)

Denote the solution x(l) as x(l;x0) to stress the dependence on the initial
condition. Then, by (2.14) we get that the function x0 7→ x(s;x0) is con-
tinuous. Since the integral operator is also continuous we have that the map
x0 7→

∫ 2mεl3
l3−δ

x(s;x0)ds is continuous as well. Note that such an integral can be
written as ∫ 2mεl3

l3−δ

x(l)dl = y(2mεl3)− y(l3 − δ). (2.15)

Hence we can rewrite the initial value problem (2.11) as a boundary value problem
of type (2.13) with boundary conditions given by (2.15). Therefore, the bound-
ary value problem (2.6), equivalent to the initial value problem (2.11), can be
rewritten as the boundary value problem (2.13) with boundary value condition
(2.15), which has a unique solution. Hence, the boundary value problem (2.10)
has a unique solution as well.

The general solution of (2.10) has the form

Vδ(l) =
2 log(l)(2l3 − l + δ)

µ2(l + 2l3 + δ)
+

kδ
1

l + 2l3 + δ
+ kδ

2, (2.16)
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where kδ
1 and kδ

2 are constant to be determined. Considering the first boundary
condition we get

kδ
2 =

2(mε − 1) log(mε(2l3 + δ))

µ2(mε + 1)
− kδ

1

(mε + 1)(2l3 + δ)
, (2.17)

and by the second boundary condition we have

kδ
1 =

(mε + 1)(2l3 + δ)(3l3 + δ)

l3(2mε − 1) + δmε

{
αδ(βδ)−

2(l3 + δ) log(l3)

µ2(3l3 + δ)
+ (2.18)

2(1−mε) log(mε(2l3 + δ))

µ2(mε + 1)

}
. (2.19)

Equations (2.7), (2.9), (2.8) and (2.16), (2.18), (2.17), describe the value function
of the FTL and δ-FTL policy, respectively. Let us summarise the results of this
section in the following theorem.

Theorem 2.2.6. The functions V0 : S → R, Vδ : S → R are the value functions
of the FTL and δ − FTL strategy, respectively. They can be characterized as
the unique solutions of boundary value problems (2.6) and (2.10), respectively. In
particular, we have that V0 ∈ C2(S) and C2(Sδ).

2.3 Numerical simulation of V0 and Vδ

In the previous section we obtained closed- form solutions for the value func-
tions V0 and Vδ. However, they still depend on the arbitrary value βδ > 0 for the
left boundary condition of V0 in (2.6). To solve this issue we have to solve the
following fixed point equation:

αδ(βδ) = V0(l3 + δ; βδ). (2.20)

To solve (2.20) we propose the following algorithm:

Algorithm 2.3.1. set i = 0 and fix a tolerance level t(δ). Choose an arbitrary
βi
δ > 0. Then

1. compute V0(l; β
i
δ);

2. set αi
δ = V0(l3 + δ; βi

δ);

3. compute Vδ(l;α
i
δ);

4. evaluate the difference dβi
δ
:= |βi

δ − Vδ(l3 + δ;αi
δ)|. If dβi

δ
≤ t(δ) stop the

procedure, otherwise set βi+1
δ = Vδ(l3+δ;αi

δ), i = i+1 and repeat the cycle.

42



Let us study the behavior of the value functions V0 and Vδ and analyse their
dependence on the parameters µ and ε. Note that we are able to simulate V0 and
Vδ using the fixed point algorithm 2.3.1, setting the appropriate left boundary
conditions for V0 and Vδ, that is, the correct values for βδ and αδ(βδ). In the
followings, the tolerance function t(δ) will always be of the form t(δ) = δ2

100
. In

Figure 2-3 we can see the behaviour of the difference dβi
δ
= |βi

δ − Vδ(l3 + δ;αi
δ)|

for different values of β0
δ and δ, as a function of the number of iterations of the

algorithm. We note that such a difference goes to 0 quickly independently on the
values of β0

δ and δ.

Fig. 2-3: The difference dβi
δ
of Algorithm 2.3.1 as a function of the number of

iterations, for several values of β0
δ and δ. Note how dβi

δ
goes to 0 independently

of β0
δ and δ.

From Figure 2-4 and Figure 2-5 we se that:

1. the detection problem becomes easier as ε gets larger: this makes sense, as
a larger ε leads to a smaller tolerance level 1 − ε. For example, in Figure
2-4 we see that for ε = 0.3, that is 1 − ε = 0.7, the average searching is
much smaller than the value when ε = 0.1, that is 1− ε = 0.9;

2. a similar behaviour can be observed with respect to µ, in Figure 2-5: a
larger drift makes more evident more quickly which particle is the correct
one, and this leads to significantly smaller values for larger values of µ. As
an example, see the sharp difference between the value V0 with µ = 1 and
V0 with µ = 10.

Figure 2-6 and Figure 2-7 show similar results for the value of the δ-FTL
strategy Vδ. Similar interpretations to the ones provided for V0 can be done for
Vδ. In Figure 2-8 we compare the close form solution of the boundary value
problem (2.6) to a Monte Carlo approximation of the value functions V0. The
Monte Carlo algorithm is structured as follows:
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Fig. 2-4: The FTL value V0 for different values of the tolerance parameter ε.
Here µ = 1, l3 = 1 and δ = 10−4. The domain S ′ is discretised with a grid of 103

points. Note that the amplitude of S ′ depends on ε and δ. We can see that the
smaller ε (hence the larger the tolerance 1− ε) the quicker the value goes to 0.
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Fig. 2-5: The FTL value V0 for different values of the drift µ. Here ε = 0.01,
l3 = 1 and δ = 10−4. The domain S ′ is discretised with a grid of 103 points. The
larger the drift µ, the smaller the average searching time: indeed a very large
drift becomes evident more quickly than a small one, which makes the problem
easier for the detection algorithm.
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Algorithm 2.3.2. 1. discretise S ′ with a grid of N points. Denote such a
grid by S ′

d.

2. choose a point l̄ = (l, l3, l3) ∈ S ′
d and denote by l̄1 the first coordinate of l̄.

Simulate the SDE of the likelihood process Lπ
1 (1.27) starting from l̄, on a

time interval dt up to the first exit time τl̄ of L
π
1 from the interval S ′. Define

a variable c that counts how long each simulation takes to terminate. Set
c = 0;

3. after dt, check the value of Lπ
1 (t):

• if l3 − δ < Lπ
1 (t) < l∗, set l̄1 = Lπ

1 (t) and come back to point 2. Set
c = c+ 1;

• if Lπ
1 (t) ≤ l3 set l̄1 = l3 and come back to point 2. Set c = c+ 1;

• if Lπ
1 (t) ≥ l∗ stop the simulation;

4. repeat the procedure n times;

5. for each starting point l̄ ∈ S ′
δ, average c over n simulations and multiply it

for the time taken by each simulation dt.

Remark 2.3.3. The Monte Carlo simulation described in Algorithm 2.3.1 simulate
the average time taken by a searching algorithm that applies the FTL strategy
along the south boundary S ′: as we can see in Figure 2-8, this agrees with the
solution of the boundary value problem (2.6).

2.4 Convergence of Vδ to V0

As we pointed out in section 2.2, the δ-FTL strategy boils down to apply the
FTL strategy on S ′

δ. Since S ′
δ → S ′ → S as δ → 0+, it stands to reason that Vδ

should get “closer” to V0 as δ → 0+. In this section we will prove that this is the
case. Let us start with a simple visualisation: in Figure 2-9 we see that as δ gets
smaller the difference between Vδ and V0 becomes smaller. To prove the result
suggested by Figure 2-9, we note that the second-order differential operator in
(2.10), Lδ, that is

Lδ(f(l)) =
1

2
µ2l2f ′′(l) +

µ2l2

l + 2l3 + δ
f ′(l) + 1, (2.21)

tends to the second-order differential operator in (2.6), L0, that is

L0(f(l)) =
1

2
µ2l2f ′′(l) +

µ2l2

l + 2l3
f ′(l) + 1, (2.22)
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Fig. 2-6: The δ-FTL value Vδ for different values of the tolerance parameter ε.
Here µ = 1, l3 = 1 and δ = 10−1. The domain S ′

δ is discretised with a grid of 103

points. Note that the amplitude of S ′
δ depends on ε and δ.

Fig. 2-7: The δ-FTL value Vδ for different values of the drift µ. Here ε = 0.01,
l3 = 1 and δ = 10−1. The domain S ′

δ is discretised with a grid of 103 points.
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Fig. 2-8: The FTL value V0 compared with a Monte Carlo simulation of the FTL
strategy on S ′. Here ε = 0.01, l3 = 1 , δ = 10−2 and µ = 1. The Monte Carlo
simulation consists of 100 simulations for each of the 700 points of the grid over
S ′. The time step is dt = 10−4.
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for all smooth functions f ∈ C2(S ′) as δ → 0+. At the same time the right
boundary conditions of (2.6) and (2.10) are both 0. Hence, to prove that Vδ → V0

as δ → 0+, we just need to show that the left boundary condition of (2.10)
converges to the left boundary condition of (2.6), that is, we need to show that
αδ(βδ) → βδ as δ → 0+.

Lemma 2.4.1. The left boundary condition of (2.10) converges to the left bound-
ary condition of (2.6), that is,

αδ(βδ) → βδ,

as δ → 0+.

Proof. Recall that

αδ = V0(l3 + δ) = −2(l3 − δ) log(l3 + δ)

µ2(3l3 + δ)
− k0

1

3l3 + δ
+ k0

2.

Let us make explicit the dependence of αδ(βδ) on βδ: by (2.8) we have

αδ(βδ) =
2(l3 − δ) log(l3 + δ)

µ2(3l3 + δ)
− 2(1−mε) log(l

∗)

µ2(1 +mε)

+
δ + l3(1− 2mε)

2l3(2l3 + δ)(1 +mε)
k0
1. (2.23)

By equation (2.9) we can write the last term in (2.23)as

δ + l3(1− 2mε)

2l3(2l3 + δ)(1 +mε)
k0
1 =

l3(1− 2mε) + δ

l3(1− 2mε)− δ

{
βδ −

2(l3 + δ) log(l3 − δ)

µ2(3l3 − δ)
+

2(1−mε) log(l
∗)

µ2(1 +mε)

}
. (2.24)

Clearly, as δ → 0+ (2.24) tends to

βδ −
2 log(l3)

3µ2
+

2(1−mε) log(l
∗)

µ2(1 +mε)
,

so that equation (2.23) tends to βδ. In particular, from (2.24) we can see that
the order of convergence is O(δ). In particular, note that

αδ(βδ)− βδ

δ
=

1

δ

{
2l3(1− 2mε)

l3(1− 2mε)− δ

(
βδ +

2(1−mε) log l
∗

µ2(1 +mε)

)
+

2(l3 − δ) log(l3 + δ)

µ2(3l3 + δ)
−

2(l3 + δ) log(l3 − δ)

µ2(3l3 − δ)

l3(1− 2mε) + δ

l3(1− 2mε)− δ

}
→ 0,

as δ → 0+.
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Fig. 2-9: The FTL value V0 and the δ-FTL value Vδ on S ′ compared for fixed δ.
Here ε = 0.01, l3 = 1 and µ = 1. The trend is clear: the smaller δ, the smaller
the difference between V0 and Vδ.

Fig. 2-10: An illustration of Lemma 2.4.1. On the x-axis the values of δ. We can
see that the difference αδ(βδ)− βδ tends to 0 as δ → 0+.
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In Figure 2− 10 we can see an illustration of the result of Lemma 2.4.1.
Therefore Vδ → V0 as δ → 0+.

Remark 2.4.2. We have proven that Vδ → V0 as δ → 0+, but we still do not have
a way to compare Vδ and V0. In particular, we would like to have a way to choose
between the δ-FTL strategy and the FTL strategy when δ is small. To do so, let
us introduce the function h.

2.5 The function h

In this section we are going to introduce the function h. As we mentioned
above, our goal is to find a way to compare the FTL and δ-FTL policy, when δ is
small. To do so we need to define a common domain over which to compare the
value functions Vδ and V0 for all δ > 0. To do so consider the south boundary S
introduced in (2.1) and note that S ⊂ S ′ for all δ′ > 0. At the same time we have
S ⊂ Sδ, for all δ > 0. Define the first-order differential operator L̂ : C1(S) → R
as

L̂f := lim
δ→0+

1

δ
(Lδ − L0) (f), (2.25)

for f ∈ C1(S), and the linearised versions of the second-order differential opera-
tors Lδ and L0 in (2.21) and (2.22) as

Llin
δ f := Lδf − 1 (2.26)

Llin
0 f := L0f − 1, (2.27)

for f ∈ C2(S).

Theorem 2.5.1. Consider the function h : S → R such that

Llin
0 h = −L̂V0 (2.28)

h(l3) = −V ′
0(l3)

h(l∗) = −mεV
′
0(l

∗).

Then h is such that ∣∣∣∣∣∣∣∣Vδ(l)− V0(l)− δh(l)

δ

∣∣∣∣∣∣∣∣
∞

→ 0, (2.29)

as δ → 0+, for all (l, l3, l3) ∈ S.

To prove such a result we structure the proof in three main steps:

• compute the operator L̂ explicitly;

• show that the limiting function (2.29) satisfies the boundary conditions of
the boundary value problem (2.28);
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• apply the strong maximum principle to show that h satisfies the limit (2.29).

Let us start by computing the operator L̂: by equations (2.25) we can see that
for small δ > 0 we have

Lδf =
(
L0 + δL̂

)
f, (2.30)

for f ∈ C1(S). Therefore we have

L̂f(l) = − µ2l2

(l + 2l3 + δ)(l + 2l3)
f ′(l), (2.31)

for f ∈ C1(S) and δ > 0. This form is not satisfactory, as we need the operator
L̂, as well as the function h, not to depend on δ. To remove such a dependence
note that ∀δ > 0 it exists a positive constant k such that∣∣∣∣− µ2l2

(l + 2l3 + δ)(l + 2l3)
+

µ2l2

(l + 2l3)2

∣∣∣∣ ≤ µ2l2

(l + 2l3)3
δ + kδ2.

Hence we can write L̂ as

L̂f(l) = − µ2l2

(l + 2l3)2
f ′(l) +O(δ2), (2.32)

for f ∈ C2(S), so that

Lδf(l) =
(
L0 + δL̂

)
f(l) =

(
L0 − δ

µ2l2

(l + 2l3)2

)
f(l),

for all f ∈ C2(S).
Let us now show that the limiting function in (2.29) satisfies the right bound-

ary condition of (2.28):

Lemma 2.5.2. Denote by ĥ : S → R the function such that

ĥ(l) = lim
δ→0+

Vδ(l)− V0(l)

δ
,

for all l ∈ S. Then ĥ is such that

ĥ(l∗) = −mεV
′
0(l

∗). (2.33)

Proof. By definition we have;

ĥ(l∗) = lim
δ→0+

Vδ(l
∗)− V0(l

∗)

δ
= lim

δ→0+

Vδ(l
∗)

δ
,

52



as V0(l
∗) = 0 by (2.6). Note that the distance between the right boundary of S ′

δ

and the right boundary of S is |l∗δ − l∗| = δmε. By Theorem 2.2.6 we have that
Vδ is a C2(Sδ) function, we can use the first-order approximation

Vδ(l
∗) = Vδ(l

∗
δ)− δmεV

′
δ (l

∗) +O(δ2).

By (2.10) we have

ĥ(l∗) = lim
δ→0+

1

δ
(Vδ(l

∗
δ)− δmεV

′
δ (l

∗)) = lim
δ→0+

−mεV
′
δ (l

∗). (2.34)

To get the right boundary condition in (2.28) we need to show that limδ→0+ V ′
δ (l

∗) =
V ′
0(l

∗). To do so recall that the value function associated to any strategy J ∈ J ′,
is the expected searching time under strategy J , given the initial position of the
particles l. Consider a point l̄ such that l3 < l̄ < l∗. Consider two positive con-
stants η, ηδ > 0 such that ηδ

l∗δ−l̄δ
= η

l∗−l̄
, for all δ > 0. Denote by Hl(l̂), for l, l̂ ∈ S,

the first hitting time of the likelihood Lπ
1 starting from l̂, that is Lπ

1 (0) = l̂, of
level l. For l ∈ (l̄, l∗), lδ ∈ (l̄δ, l

∗
δ), we can write the value functions at l∗ − η and

l∗δ − ηδ, for all δ > 0, as

Vδ(l
∗
δ − ηδ) = Eπ

[
Vδ(l̄δ)1

{
Hl̄δ(lδ) < Hl∗δ

(lδ)
}
+ Vδ(l

∗
δ)1
{
Hl∗δ

(lδ) < Hl̄δ(lδ)
}]

− Eπ

[
Hl∗δ

(lδ) ∧Hl̄δ(lδ)
]
,

and

V0(l
∗ − η) = Eπ

[
V0(l̄)1 {Hl̄(l) < Hl∗(l)}+ V0(l

∗)1 {Hl∗(l) < Hl̄(l)}
]

− Eπ [Hl∗(l) ∧Hl̄(l)] .

Since V0(l
∗) = Vδ(l

∗
δ) = 0 we have

Vδ(l
∗
δ − ηδ) = Eπ

[
Vδ(l̄δ)1

{
Hl̄δ(lδ) < Hl∗δ

(lδ)
}]

− Eπ

[
Hl∗δ

(lδ) ∧Hl̄δ(lδ)
]
, (2.35)

and

V0(l
∗ − η) = Eπ

[
V0(l̄)1 {Hl̄(l) < Hl∗(l)}

]
− Eπ [Hl∗(l) ∧Hl̄(l)] , (2.36)

where 1{A} is the indicator function of the set A. We can rewrite (2.35) and
(2.36) as

Vδ(l
∗
δ − η) = Vδ(l̄δ)Pπ

(
Hl̄δ(lδ) < Hl∗δ

(lδ)
)
− Eπ

[
Hl∗δ

(lδ) ∧Hl̄δ(lδ)
]
, (2.37)

and

V0(l̄ − η) = V0(l̄)Pπ (Hl̄(l) < Hl∗(l))− Eπ [Hl∗(l) ∧Hl̄(l)] . (2.38)
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To solve equations (2.38) and (2.37) we have to compute probabilities of the type
Pπ (Hx < Hy) and expectations of the form Eπ [Hx ∧Hy], for x, y ∈ R. These are
easy to compute when the underlying process is a standard Brownian motion,
whereas closed form expressions are either not known or difficult to compute in
all other cases. The best approach is to construct an equivalent measure Qπ

under which Lπ
1 is a Qπ-standard Brownian motion.

Lemma 2.5.3. Denote by dPπ

dQπ
(l), l ∈ S, the Radon-Nikodym derivative of Pπ

with respect toQπ (see for example [30]). Denote byQπ the measure under which
the likelihood process Lπ

1 is a standard Brownian motion. Then Qπ is absolutely
continuous with respect to Pπ, the Radon-Nikodym derivative dPπ

dQπ
(l) is well-

defined on S, and there exists a previsible process (γs)s, satisfying Novikov’s
condition, such that

dPπ

dQπ

(l) = exp

{
−
∫ Hl̄(l)∧Hl∗ (l)

0

γsdW
π
s (l)−

1

2

∫ Hl̄(l)∧Hl∗ (l)

0

γ2
sds

}
,

holds true for all l ∈ S. Moreover dPπ

dQπ
(l) → 1 as l̄ → l∗.

Proof. The measure Qπ is absolutely continuous with respect to Pπ by standard
results (see for example [38]). By the same token, the Radon-Nikodym derivative
dPπ

dQπ
is well-defined over S. To show that dPπ

dQπ
(l) → 1 as l̄ → l∗ note that Hl̄(l) ∧

Hl∗(l) → 0 as l̄ → l∗, for all l ∈ (l̄, l∗). In turn , this implies that dPπ

dQπ
(l) → 1 as

l̄ → l∗, for all l ∈ S.

Noting that Hl̄∧Hl∗ is an almost surely finite Y-stopping time and that Lπ
1 is

an almost surely bounded process, as l3 ≤ Lπ
1 (l) ≤ l∗ for all l ∈ S, we can apply

Doob’s optional stopping theorem (see for example [38]) to write

Pπ (Hl̄(l) < Hl∗(l)) = EP
π [1 {Hl̄(l) < Hl∗(l)}] = EQ

π

[
dPπ

dQπ

(l)1 {Hl̄(l) < Hl∗(l)}
]

l̄→l∗−−→ EQ
π [1 {Hl̄(l) < Hl∗(l)}] =

η

l∗ − l̄
, (2.39)

and

Pπ

(
Hl̄δ(lδ) < Hl∗δ

(lδ)
) l̄δ→l∗δ−−−→ ηδ

l∗δ − l̄δ
. (2.40)

We can also compute the expectation of Hl∗ ∧ Hl̄ (and similarly for Hl∗δ
∧ Hl̄δ)

by applying Doob’s optional stopping theorem on the martingale L2
1(l)− l. Then

we get

EQ
π [Hl∗(l) ∧Hl̄(l)] =

η

l∗ − l̄
(l̄2 − (l∗)2) + (l∗)2 (2.41)

Similarly we have,

EQ
π

[
Hl∗δ

(lδ) ∧Hl̄δ(lδ)
]
=

ηδ
l∗δ − l̄δ

(l̄2δ − (l∗δ)
2) + (l∗δ)

2. (2.42)
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Putting (2.41) and (2.39) together we obtain

V0(l
∗ − η) =

η

l∗ − l̄

(
V0(l̄)− (l̄2 − (l∗)2)

)
− (l∗)2, (2.43)

and, by (2.42) and (2.40), we have

Vδ(l
∗
δ − ηδ) =

ηδ
l∗δ − l̄δ

(
Vδ(l̄δ)− (l̄2δ − (l∗δ)

2)
)
− (l∗δ)

2. (2.44)

By (2.43) and (2.44) we see that

lim
η→0+

lim
δ→0+

Vδ(l
∗
δ − ηδ)

ηδ
= lim

η→0+

V0(l
∗ − η)

η
= V ′

0(l
∗), (2.45)

as Vδ → V0 as δ → 0+ by Lemma (2.4.1) and l∗δ → l∗ as δ → 0+. Therefore h
satisfies (2.33).

We now study the left-hand side boundary.

Lemma 2.5.4. The limiting function ĥ : S → R is such that

ĥ(l3) = −V ′
0(l3). (2.46)

Proof. By definition ĥ satisfies (2.29). Therefore we have

ĥ(l3) = lim
δ→0+

Vδ(l3)− V0(l3)

δ

= lim
δ→0+

Vδ(l3)− (V0(l3 − δ) + δV ′
0(l3 − δ))

δ

= lim
δ→0+

(αδ(βδ)− βδ)− δV ′
0(l3 − δ)

δ
, (2.47)

where we used a first order Taylor’s approximation in the second equality. By
applying Lemma 2.4.1 to equation (2.47) we obtain

ĥ(l3) = −V ′
0(l3), (2.48)

which concludes the proof.

We are now going to show that h satisfies the limit (2.29) in the domain
int(S).

Lemma 2.5.5. Consider the function V̂ : S → R defined as V̂ (l) := V0(l)+δh(l),
for δ > 0. Then there exists a positive constant k > 0 such that

||Vδ(l)− V̂ (l)||∞ ≤ kδ2,
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for l ∈ S. In particular, we have that for all δ > 0, there exists k > 0 such that

||Llin
δ (Vδ(l)− V̂ (l))||∞ ≤ kδ2,

Vδ(l3) = V̂ (l3) + kδ2

Vδ(l
∗
δ) = V̂ (l∗δ) + kδ2.

where Llin
δ is the linearised version of the differential operator Lδ.

Proof. Note that Llin
δ is uniformly elliptic, as there exist a constant λ > 0 such

that
1

2
(µl)2 > λ,

for all l ∈ S. In particular, we may take λ = 1
2
(µl3)

2. We note that Llin
δ has

constant term c = 0. Define the function u := V̂ − Vδ. Our goal is to apply the
strong maximum principle for uniformly elliptic operators (see for example [22]):
to do so we need to verify that Llin

δ u ≥ 0, which in turns requires to check that
Llin

δ V̂ ≥ −1. To check such a condition note that

Llin
δ V̂ = Llin

δ (V0 + δh) = (Llin
0 + δL̂)(V0 + δh) = −1 + δ2L̂h, (2.49)

as V0 ∈ C2(S) and h ∈ C1(S), where we used (2.28) and (2.30). Hence, there
exist ξ > 0 such that

Llin
δ u = Llin

δ (V̂ − Vδ) ≥ δ2L̂h ≥ −ξ,

by (2.10) and (2.49). Our goal is to find a function g : S → R such that Llin
δ g ≥ 1,

in such a way that the function û := V̂ − Vδ + ξg is such that

Llin
δ û ≥ 0.

Let us choose g(l) = Bl, where B ∈ R. To choose B we need to solve Llin
δ g ≥ 1:

from doing so we get

B ≥ l + 2l3 + δ

µ2l2
.

Let us take

B :=
l∗ + 2l3 + δ

µ2l23

Thus, for g(l) = Bl we have
Llin

δ û(l) ≥ 0.

As û is clearly not a constant function, by the strong maximum principle we have
that supl∈S û(l) is attained at the boundary of the domain ∂S. In particular, we
see that

argmax
l∈S

û(l) = l3.
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Fig. 2-11: The function h simulated using equation (2.29). Here ε = 0.01, l3 = 1,
µ = 1. We consider δ = 10−5 to simulate the limit (2.29).

Moreover , since g(l) ≥ 0 for all l ∈ S, we have

||V̂ − Vδ||∞ ≤ ||V̂ − Vδ + ξg||∞ = V̂ (l3)− Vδ(l3) + ξg(l3)

= −δV ′
0(l3) + ξg(l3),

where the last equality uses the left boundary condition of h in equation (2.48).
Note that the dependence of V ′

0 on δ is described by the constant k0
1 in equation

(2.9): thus, it has the same order of convergence of αδ to βδ, which we proved
to be O(δ) in Lemma 2.4.1. As g is clearly linear in δ, we may conclude that it
exists k > 0 such that

||V̂ − Vδ||∞ ≤ kδ2.

Putting Lemma 2.5.5, 2.5.4 and 2.5.2 together we see that the solution of the
boundary value problem (2.28) satisfies the limit (2.29). Figure 2-11 shows a
simulation of h as the limit (2.29). Figure 2-12 shows a comparison between h
computed as the limit (2.29) and h obtained as solution of the boundary value
problem (2.28).

2.6 A counterexample to the optimality of the

FTL strategy along the south boundary

The goal of this section is to show that we can find an alternative strategy
which gives a smaller expected searching time than the FTL policy for some

57



Fig. 2-12: A comparison between h simulated as the limit (2.29) (on the top-left)
and h as solution of the boundary value problem (2.28) (on the top-right). Here
we used a finite difference method with ε = 0.1, l3 = 1, µ = 1. We considered
δ = 10−5 and discretised the south boundary with N = 105 points. The difference
between the 2 solutions is shown in plot at the bottom of the figure.
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l ∈ S and a certain set of parameters µ, l3 > 0 and ε ∈ (0, 2
3
) . This is clearly in

contradiction with the main claim of [42]: as we mentioned in the Introduction,
the results of [42] were deemed as unclear by the authors in [17], but they did not
provide a counterexample to the main claim. Let us start from a generic point
(l, l3, l3) ∈ S and consider 2 possible strategies:

FTO: the Follow The Other (FTO) strategy prescribes to apply either the FTS or
the FTT (Follow the Third) strategy, that is, to move to either (l, l3−δ∗, l3)
or (l, l3 + δ, l3). The parameter δ∗ has to be chosen in such a way that

l23
l3−δ∗

= l3 + δ, δ > 0;

FTL: move to either (l− η, l3, l3) or (l+ η, l3, l3) where η > 0 is chosen such that

EFTL[Hl−η(l) ∧Hl+η(l)] = EFTO[Hl+δ(l) ∧Hl−δ∗(l)], (2.50)

where Hl+η(l) (respectively Hl−η(l)) is the first hitting time of (l+ η, l3, l3)
(respectively (l − η, l3, l3)) starting from (l, l3, l3) and Hl+δ(l) (respectively
Hl−δ∗(l)) is the first hitting time of (l, l3 + δ, l3) (respectively (l, l3 − δ∗, l3))
starting from (l, l3, l3).

Remark 2.6.1. Intuitively speaking, at (l, l3, l3) ∈ S the second and third particles,
L2
π and L3

π, are at the same level. Hence we cannot distinguish between the FTS
and FTT strategy and the FTO policy consists in just observing either L2

π or L3
π.

If the particle goes “up” by δ, we are actually applying the FTS policy and we
reach the point (l, l3 + δ, l3) ∈ Sδ. If it goes “down” by δ∗, we we are actually
applying the FTT policy and we can use the scalability property of the value
function (see Remark 1.1.11) to ensure that the value at (l, l3 − δ∗, l3) is equal to
the value of a corresponding point (l + δ̂, l3 + δ, l3) ∈ Sδ. In this section we will
study how to properly choose η, δ∗ and δ̂.

Theorem 2.6.2. Let g : S → R be the function defined by

g(l) := h(l) +
l

2l3
V ′
0(l). (2.51)

Then the FTL strategy is suboptimal at (l, l3, l3) ∈ S if g(l) < 0.

Proof. To set appropriate η and δ∗ recall that the likelihood process L1
π under the

FTL policy is a Pπ- Brownian motion with drift µ > 0 and L1
π(0) = l ∈ [l3, 2mεl3].

At (l, l3, l3) ∈ S the residual expected searching time under the FTL strategy is

Eη,−η
FTL := Pπ(Hl+η(l) < Hl−η(l))V0(l+η)+Pπ(Hl−η(l) < Hl+η(l))V0(l−η), (2.52)

whereas the residual expected searching time under the FTO strategy is

Eδ,−δ∗

FTO := Pπ(Hl3+δ(l3) < Hl3−δ∗(l3))Vδ(l3+δ)+Pπ(Hl3−δ∗(l3) < Hl3+δ(l3))Vδ(l3−δ∗).
(2.53)
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Once more we need to compute probabilities of the type Pπ(Hx < Hy) for some
x, y ∈ R. To do so, we can apply the same methods we used in section 2.5:
find an equivalent measure Qπ under which the likelihood process is a standard
Brownian motion. We refer to section 2.5 for a complete explanation of such
methods. We have

Pπ(Hl+η < Hl−η) = EP
π (1{Hl+η < Hl−η}) = EQ

π

(
dPπ

dQπ

1{Hl+η < Hl−η}
)
.

Once more, note that as η → 0+, Hl−η∧Hl+η → 0+, so that dPπ

dQπ
→ 1. Therefore,

for η ≈ 0+, we have

Pπ(Hl+η(l) < Hl−η(l)) = EQ
π (1{Hl+η(l) < Hl−η(l)}) = Qπ(Hl+η(l) < Hl−η(l)).

Since L1
π is a Qπ- Brownian motion we have

Pπ(Hl+η(l)(< Hl−η(l)) = Qπ(Hl+η(l) < Hl−η(l)) =
l + η − l

l + η − (l − η)
=

η

2η
=

1

2
,

(2.54)
which is consistent with L1

π being a Qπ- standard Brownian motion. By the same
reasoning we compute Pπ(Hl3+δ(l) < Hl3−δ∗(l)) as

Pπ(Hl3+δ(l3) < Hl3−δ∗(l3)) = Qπ(Hl3+δ(l3) < Hl3−δ∗(l3)) =
δ∗

δ + δ∗
, (2.55)

where
l23

l3−δ∗
= l3+δ. Here the idea is that we want to find a point (l+δ̂, l3+δ, l3) ∈

Sδ such that V (l + δ̂, l3 + δ, l3) = V (l, l3 − δ∗, l3), for some δ̂ > 0. This can be
done by exploiting the scalability property (see Remark 1.1.11): we have that δ̂
is such that l + δ̂ = l l3

l3−δ∗
, for all (l, l3 + δ, l3) ∈ Sδ. Hence we can rewrite (2.55)

as

Qπ(Hl3+δ(l3) < Hl3−δ∗(l3)) = Qπ(Hl < Hl+δ̂) =
l3

2l3 + δ
. (2.56)

By (2.54) and (2.56) we obtain

EFTL[Hl−η(l) ∧Hl+η(l)] = l2 + η2, (2.57)

EFTO[Hl ∧Hl+δ̂] = l2 l3
2l3+δ

+ l2
(

l3+δ
l3

)2
l3+δ
2l3+δ

. (2.58)

Hence we select η, δ, δ∗ in such a way that

l2 + η2 = l2
l3

2l3 + δ
+ l2

(
l3 + δ

l3

)2
l3 + δ

2l3 + δ
,

that is,

η =

√
δ
l2(l3 + δ)

l23
.
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We can now rewrite (2.52) and (2.53) as

Eη,−η
FTL = 1

2
V0

(
l +
√
δ l2(l3+δ)

l23

)
+ 1

2
V0

(
l −
√
δ l2(l3+δ)

l23

)
(2.59)

Eδ,−δ∗

FTO = l3
2l3+δ

Vδ(l) +
l3+δ
2l3+δ

Vδ(l + δ̂). (2.60)

Note that, as δ → 0+, (2.59) tends to

Eη,−η
FTL =

1

2
V0(l) +

1

2
V0(l) = V0(l).

As Vδ = V0 + δh+O(δ2), and taking δ → 0+, we can rewrite (2.60) as

Eδ,−δ∗

FTO = V0(l) + δ

(
h(l) +

l

2l3
V ′
0(l)

)
. (2.61)

Therefore the FTL strategy is suboptimal at (l, l3, l3) ∈ S if

h(l) +
l

2l3
V ′
0(l) < 0, (2.62)

which proves our claim.

We now have a criterion to understand at which point and for which values of the
parameters l3, µ and ε ∈ (0, 2

3
) the FTL policy returns a lower expected searching

time with respect to the alternative FTO policy. Let us note that the FTL value
V0 in equation (2.7), with constants (2.9), (2.8), is clearly decreasing as

V ′
0(l) =

l(µ2k0
1 − 2l) + 8l3(l3 − l log(l))

µ2l(l + 2l3)2
≤ 0,

for all (l, l3, l3) ∈ S, l3 > 0 and µ > 0. As we do not have an analytical solution
to the boundary value problem (2.29), we have to rely on numerical methods to
study the sign of g. Let us start by noting that

g(l3) = h(l3) +
1

2
V ′
0(l3) = −V ′

0(l3) +
1

2
V ′
0(l3) = −1

2
V ′
0(l3), (2.63)

g(l∗) = h(l∗) +
2mεl3
2l3

V ′
0(l

∗) = −mεV
′
0(l

∗) +mεV
′
0(l

∗) = 0. (2.64)
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Fig. 2-13: A comparison between g simulated through the limiting process (on the
top-left) and g constructed using h obtained by finite difference method (on the
top-right). Here we used a finite difference method with ε = 0.1, l3 = 1, µ = 1.
We considered δ = 10−5 and discretised the south boundary with N = 105 points.
The difference between the 2 solutions is shown in plot at the bottom of the figure.

To simulate the function g numerically, we are going to use the finite difference
approximation of the function h, whereas we have the closed form solution of the
gradient of V0, V

′
0 . We will also compare it to the “limiting” version of g, that

is, the function g computed using as h the function that numerically satisfies
limit (2.29). As we can see in Figure 2-13, the function g is negative for all
(l, l3, l3) ∈ S, for l3 = 1, µ = 1 and ε = 0.1. This is in direct contradiction with
the claim of [42]: in such a paper the author proposes the FTL policy as the
optimal strategy on the south boundary S. This would imply that the function
g, as defined in (2.51), should be positive, g(l) > 0, for any (l, l3.l3) ∈ S. This
is in contradiction with our numerical findings in Figure 2 − 13. As we already
mentioned, the proof of the optimality of the FTL policy on the south boundary
S offered in [42] is considered unclear by both us and the authors of [17]: in
the latter paper the authors showed that the FTL strategy is not always optimal
when the prior distribution is not uniform, but did not obtain any conclusive
findings in the case where the prior distribution is uniform. We can now confirm
that the FTL strategy is not optimal even on the south boundary S, at least not
for all ε ∈ (0, 2

3
). Note that, as shown in Figure 2-14, there are values of ε for
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Fig. 2-14: A comparison between g simulated through the limiting process (on the
top-left) and g constructed using h obtained by finite difference method (on the
top-right). Here we used a finite difference method with ε = 0.4, l3 = 1, µ = 1.
We considered δ = 10−5 and discretised the south boundary with N = 105 points.
The difference between the 2 solutions is shown in plot at the bottom of the figure.

which g(l) > 0 for all l ∈ S.
Remark 2.6.3. A comparison between Figure 2-13 and 2-14 shows that the opti-
mality of the FTL strategy depends on the tolerance parameter ε. This finding is
quite interesting and, to some extent, counter intuitive: recall that ε sets the level
of confidence 1− ε that we require to declare which particle has the drift µ ̸= 0.
This makes clear that the smaller ε, the larger the confidence 1 − ε required,
the longer the average time needed to reach such a level of confidence. However,
considering the result we have just shown, we can say that the value of ε affects
not only the average searching time, but the optimal strategy as well.

We still do not have a clear result to show for which values of ε the FTL
strategy is optimal, but we can see in Figure 2−15 that g(l) > 0 for (l, l3, l3) ∈ S,
with l ∈ [0.35, 0.7]. Note that:

1. even for (l, l3, l3) ∈ S and ε ∈ [0.35, 0.7], we cannot conclude that the FTL
strategy is optimal, only that it yields a lower expected searching time than
the alternative FTO policy;
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Fig. 2-15: The function g for different values of ε. Here g is approximated using
the finite difference method and l3 = 1, µ = 1. We considered δ = 10−5 and
discretised the south boundary with N = 10−5 points.

2. the FTL policy seems to perform better than the FTO strategy when ε is
large, that is, when the required confidence level 1− ε is small.

2.7 Extension to the case N > 3

As we pointed out at the beginning of the chapter, the results we have dis-
cussed hold true for the case N = 3. In particular, as we have shown in Remark
2.1.5, the study of the boundary behavior of the value function at (l3, l3, l3) is
specific to the case N = 3. We believe that such an approach can be extended to
the case N > 3. Suppose for instance N = 4: define the south boundary as

S4 := {(l, l3, l3, l3)|l ∈ [l3, l
∗
4)} ,

where l∗4 = 3mεl3. Suppose we start at (l3, l3, l3, l3) ∈ S4 and we apply the FTL
strategy. There are two possible outcomes:

1. if Lπ
1 (t) increases by δ > 0 we reach the level (l3 + δ, l3, l3, l3);

2. if Lπ
1 (t) decreases by δ′ > 0 we reach the level (l3 − δ′, l3, l3, l3), where

δ′ = δ +O(δ) is such that V (l3 − δ′, l3, l3, l3) = V (l3 + δ, l3 + δ, l3 + δ, l3).
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Therefore, we should be able to study the boundary behavior of the value function
using similar arguments to the ones we exploited for N = 3.

2.8 Summary

In this chapter we studied the optimality of the FTL policy when the prior
distribution is uniform, that is, when the processes all start from the same initial
level l. We characterized the FTL strategy as the unique solution of the boundary
value problem (2.6). We have also properly constructed the FTL strategy by
exploiting the notion of local time. We then introduced the Sδ domain and studied
the δ-FTL strategy on Sδ. We used such a strategy to study the limit behaviour
of the value function on the south boundary S. To do so we defined the function
h in equation (2.29). We then used such a function to compare the FTL strategy
to an alternative strategy, defined on the south boundary S, that we denoted as
FTO, the Follow The Other strategy. Using numerical methods, which included
both direct simulations of the value functions and finite difference methods to
approximate the solutions to boundary value problems, we have shown that there
exist values of the tolerance parameter ε for which the FTL policy is not optimal
for any (l, l3, l3) ∈ S. We can therefore reiterate the conclusion of [17]: we do
not know which is the optimal strategy, but we know that, even when the prior
distribution is uniform, is not always best (optimal) to follow the leader!
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Chapter 3

The optimal strategy with
generic prior distribution

In the previous chapter we studied the case where the prior distribution is
uniform. This is equivalent to saying that all likelihoods Lπ

i , i ∈ I (respectively
all the probability processes Πi, i ∈ I) start from a same common level l (respec-
tively π). In this chapter we remove such an assumption and study the behaviour
of the value function of the FTL problem (1.10) when we do not have any in-
formation about the prior distribution. We will denote the prior distribution as
π = (π1, . . . , πN), N ∈ N, π ∈ Dπ, where

Dπ =

{
π = (π1, . . . , πN)

∣∣∣∣∣πi ∈ [0, 1] and
∑
i

πi = 1

}
. (3.1)

As we have done in the previous chapter, we will mostly work in the space of
likelihoods Lπ, so to exploit the independence between the processes Lπ

i , i ∈ I,
but we will also exploit relevant properties of the posterior probability processes
Πi, i ∈ I, when necessary. Let us start by constructing the FTL strategy for
generic prior distributions.

3.1 The FTL strategy

Consider the prior distribution l = (l1, . . . , lN), N ∈ N. To define the FTL
policy we sort the prior distribution l = (l1, . . . , lN), N ∈ N, in decreasing order,
in such a way that l1 ≥ l2 ≥ · · · ≥ lN . By Remark (1.1.13), this does not
affect the value of the problem. As we have seen in section 1.3 of Chapter 1,
it is not immediate to define the FTL policy when two or more particles have
the same value. To see this take for example N = 3 and consider a generic prior
distribution l = (l1, l2, l3), l1 > l2 ≥ l3. At time t = 0 the FTL strategy prescribes
to observe the likelihood process Lπ

1 (t) = maxi∈I L
π
i (t) until:
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1. at some time t > 0, Lπ
1 (t) reaches the threshold Lπ

1 (t) = mε(L
π
2 (t) + Lπ

3 (t))
before reaching the level Lπ

1 (t) = l2. In this case we declare that the first
process X1 has drift µ ̸= 0 with probability 1− ε and the search is over;

2. at some time t > 0, Lπ
1 (t) reaches the level Lπ

1 (t) = l2 before reaching the
target value Lπ

1 (t) = mε(L
π
2 (t) +Lπ

3 (t)). In this case Lπ
1 (t) = Lπ

2 (t) ≥ Lπ
3 (t)

and it is not clear which particle is now the leader.

To resolve case 2 we can exploit the results developed in section 1.3: we map
the likelihood processes Lπ

1 , L
π
2 into the running maximum process Lπ

M and the
running minimum process Lπ

m. See section 1.3 for a detailed analysis of the
problem. In Chapter 1 we have shown that the value function of the FTL policy
VFTL is the unique viscosity solution to the second-order ODE (2.6). We now
need to compute the boundary of the problem: the right boundary associated
to the ODE (2.6) is naturally (mε(l2 + l3), l2, l3): at this point the search is over
as we can declare that the particle X1 has drift µ ̸= 0 with probability 1 − ε,
ε ∈ (0, N−1

N
). This means that the residual average time to complete the searching

process under the FTL strategy at (mε(l2 + l3), l2, l3) is 0, that is,

VFTL(mε(l2 + l3), l2, l3) = 0. (3.2)

As far as the left boundary is concerned, a natural choice is at (l2, l2, l3): as
we already mentioned, here the particles Lπ

1 and Lπ
2 are at the same level and

we cannot easily distinguish which one is the leader. By exploiting the results
obtained in section 1.3 and making use of the martingale condition, as detailed
in Remark 1.3.3, we impose the following boundary condition:

∂VFTL

∂l1

∣∣∣
l1=l+2

=
∂VFTL

∂l2

∣∣∣
l2=l+1

. (3.3)

Remark 3.1.1. Starting at any point l ∈ D, where D is defined as in equation
(1.46), we can interpret the FTL strategy as a horizontal move in D. To see
this, recall Figure 2-1 and note that the FTL policy, starting at l ∈ D, prescribes
to move horizontally between the west boundary l1 = l2 and the east boundary
l1 = mε(l2 + l3), which corresponds to observing the likelihood process Lπ

1 until
it reaches either l2 or mε(l2 + l3).

Considering the boundary conditions (3.3) and (3.2), and the second-order
ODE (2.6), we claim that the value of the FTL policy VFTL is a viscosity solution
to the following boundary value problem

∂f

∂l1

(µl1)
2

l1 + l2 + l3
+

1

2

∂2f

∂l21
(µl1)

2 + 1 = 0, (3.4)

f

(
1− ε

ε
(l2 + l3), l2, l3

)
= 0,

∂f

∂l1

∣∣∣
l1=l+2

=
∂f

∂l2

∣∣∣
l2=l+1

,
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where f ∈ C(D).

Remark 3.1.2. The boundary value problem (3.4) needs to be interpreted in the
sense of viscosity theory. In particular the boundary conditions (3.3) and (3.2)
have the form described in section 7.A of [12]. We can see that the Dirichlet
condition (3.2) can be obtained by taking the function B(x, r, p), which in [12]
represents the boundary value of the problem, as B(x, r, p) = r − f(x), with
f(x) = 0 for all x ∈ ∂Ω, and the Neumman condition (3.3) can be obtained by
taking B(x, r, p) = ⟨n(x), p⟩ − f(x) with f(x) = 0 for all x ∈ ∂Ω, where n(x)
denotes the outward unit normal to x ∈ ∂Ω.

Theorem 3.1.3. The value function of the FTL policy VFTL is the unique vis-
cosity solution to the boundary value problem (3.4).

Proof. Denote the left boundary by Dl = {(l, l, l3)|l ≥ l3} and consider a function
g : Dl → R+ such that VFTL(l2, l2, l3) = g(l2, l2). In the following we will simply
write g(l2) in place of g(l2, l2). For each l2 ≥ l3 it exists a function h : R+×Dl → R
such that by solving the ODE (3.4) on [l2,mε(l3 + l2)] with boundary conditions

f

(
1− ε

ε
(l2 + l3), l2, l3

)
= 0, (3.5)

f(l2, l2, l3) = g(l2),

we have
V ′
+,FTL(l2) = h(l2, g).

Consider now δ > 0. Then we have

VFTL(l2 − δ, l2, l3) = VFTL(l2 − δ, l2 − δ, l3) + h(l2 − δ, g(l2)− g(l2)
′δ)

= g(l2)− h(l2, g(l2)).

A straightforward application of Taylor’s expansion gives

g′ =

(
h+

∂h

∂l2

)(
∂h

∂l2
+ δ

)−1

. (3.6)

Equation (3.6) is a first-order ODE. To obtain a unique solution we augment
(3.6) with the boundary condition

g(l3) = V0(l3, l3, l3), (3.7)

where V0 denotes the value function of the FTL policy in the case of uniform prior
distribution, as computed in (2.7). Denote the value function of the FTL policy
with such a boundary condition by V (l1, l2) := VFTL(l1; g(l3), l2). Consider now a
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bounded stopping time τ and let us apply Ito-Tanaka’s equation to V (L1
t∧τ , L

2
t∧τ )

to get

dV (l1, l2) = −dt+

(
∂V+

∂l1
+

∂V−

∂l2

)
dT,

where T is the local time process as defined in Remark 1.3.3. By construction
we have ∂V+

∂l1
= −∂V−

∂l2
, so that the local time effect goes to zero. Therefore we

have a unique solution to the first order ODE (3.6) augmented with the boundary
condition (3.7), which implies a unique solution to the boundary value problem
(3.4).

Remark 3.1.4. The boundary condition (3.3) is much weaker than a classical
boundary condition. In view of that, we cannot hope to uniquely identify the
two constants k1 and k2 that we will obtain from the general solution of equation
(3.4).

The general solution of the second-order differential equation (3.4) can be
written as

VFTL(l1, l2, l3) =
2 log(l1)(l2 + l3 − l1)

µ2(l2 + l3 + l1)
+

k1(l2)

l2 + l3 + l1
+ k2(l2). (3.8)

Remark 3.1.5. Note that the functions k1 and k2 are constants with respect to l1
but depend on l2. Condition (3.3) is not enough to write k1 and k2 as constants, as
we have done in the case where the prior distribution is uniform. In the following
we are going to characterise k1 as the solution of a first-order ODE. Condition
(3.2) will then allow us to write k2 as a function of k1.

By condition (3.2) we have

k2 =
2(mε − 1) log(mε(l2 + l3))

µ2(1 +mε)
− k1

(l2 + l3)(1 +mε)
. (3.9)

To use condition (3.3) we first need to compute the gradient of VFTL at (l2, l2, l3).
We have

∂VFTL

∂l1

∣∣∣
l1=l+2

=
2(l23−2l22 log(l2)+2l2l3(1−log(l2)))

µ2l2(2l2+l3)2
− k1(l2)

(2l2+l3)2
(3.10)

∂VFTL

∂l2

∣∣∣
l1=l+2

= ∂k2(l2)
∂l2

+ 1
2l2+l3

∂k1(l2)
∂l2

− k1(l2)
(2l2+l3)2

+ 4l2 log(l2)
µ2(2l2+l3)2

. (3.11)

By equation (3.9) we have

∂k2(l2)

∂l2
=

2(mε − 1)

µ2(1 +mε)(l2 + l3)

− 1

(1 +mε)(l2 + l3)

∂k1(l2)

∂l2
+

k1(l2)

(1 +mε)(l2 + l3)2
,
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so that (3.11) can be rewritten as

∂VFTL

∂l2

∣∣∣
l1=l+2

=
2(mε − 1)

µ2(1 +mε)(l2 + l3)
+

4l2 log(l2)

µ2(2l2 + l3)2

+
l2(mε − 1) +mεl3

(1 +mε)(l2 + l3)(2l2 + l3)

∂k1(l2)

∂l2
+

l22(3−mε) + 2l2l3(1−mε)−mεl
2
3

(1 +mε)(l2 + l3)2(2l2 + l3)2
k1(l2). (3.12)

By equating equations (3.10) and (3.12) we obtain

l2(mε − 1) +mεl3
(1 +mε)(l2 + l3)(2l2 + l3)

∂k1(l2)

∂l2
+

4l2(l2 + l3) + l23
(1 +mε)(l2 + l3)2(2l2 + l3)2

k1(l2)

=
2l3(2l2 + l3)− (4l2 + l3)4l2 log(l2)

µ2l2(2l2 + l3)2
+

2(1−mε)

µ2(1 +mε)(l2 + l3)
. (3.13)

We rewrite equation (3.13) by introducing the integrating factor

M(l2) := exp

{∫ l2

l3

4l(l + l3) + l23
(l + l3)(2l + l3)(l2(mε − 1) +mεl3)

dl

}
.

Using M(l2) we can write equation (3.13) as

k1(l2) =
1

M(l2)

∫ l2

l3

(1 +mε)(l + l3)(2l + l3)

l(mε − 1) +mεl3{
2l3(2l + l3)− (4l + l3)4l log(l)

µ2l(2l + l3)2
+

2(1−mε)

µ2(1 +mε)(l + l3)

}
M(l)dl

+
1

M(l2)
. (3.14)

To solve equation (3.14) we need to add one boundary condition: here we can
use the value of k1 when the likelihood of the second particle Lπ

2 is equal to
the likelihood of the third particle Lπ

3 , that is, the value of k1 at (l3, l3). In
particular, note that this is the value of the constant k1

0 in the case where the
prior distribution is uniform. We have

k1(l3, l3) = 2µ−2l3(3− 4 log(l3)). (3.15)

Hence, we can compute k1(l2) as solution of the initial value problem constituted
by equation (3.14) with initial condition (3.15). Solving the integral equation
(3.14) is not straightforward, which makes finding the solution to the boundary
value problem (3.4) particularly hard. Hence, we will use numerical methods to
solve the initial value problem (3.14) and (3.15). We will then use such approxi-
mation to compute the numerical solution to the boundary value problem (3.4).
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Fig. 3-1: The value of the FTL strategy VFTL as a function of Lπ
1 and Lπ

2 . Here
µ = 1, l3 = 10 and ε = 0.01. The domain D is discretised with 40000 points.

Figures 3-1, 3-2 and 3-3 show the value of the FTL function as a function of the
likelihoods Lπ

1 and Lπ
2 . The likelihood of the third particle Lπ

3 is kept fixed. By
comparing Figures 3-1, 3-2 and 3-3 we can understand some interesting pattern:

1. a larger drift µ makes the detection problem easier, as the signal to be found
is larger. Indeed, we can see that the values attained by VFTL in Figure 3-3
are much smaller than the values of VFTL in figures 3-1 and 3-2;

2. the smaller the error tolerance ε, the harder the detection problem. To see
this, note that the values attained by VFTL in Figure 3-2 are much smaller
than the values of VFTL in Figure 3-1;

3. the average searching time reaches its maximum at the left boundary Dl,
where the uncertainty about which particle is the leader is maximal;

4. the value function reaches 0 at the right boundary, in accordance with the
boundary condition (3.2).

In Figure 3-4 we can see that the value of the FTL strategy restricted on the
south boundary S coincides with the value we have computed in Figure 2-5 in
Chapter 2 in the case of uniform prior distribution.
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Fig. 3-2: The value of the FTL strategy VFTL as a function of Lπ
1 and Lπ

2 . Here
µ = 1, l3 = 10 and ε = 0.1. The domain D is discretised with 40000 points.

Fig. 3-3: The value of the FTL strategy VFTL as a function of Lπ
1 and Lπ

2 . Here
µ = 10, l3 = 10 and ε = 0.01. The domain D is discretised with 40000 points.
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Fig. 3-4: The value of the FTL strategy VFTL on the south boundary S. Here
l3 = 1, µ = 1 and ε = 0.01. The south boundary S has been discretised with 200
points.
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3.2 A study on the optimality of the FTL strat-

egy

In the previous section we studied the value function of the FTL strategy
VFTL. However, as the authors have shown in [17], the FTL strategy is not
the optimal policy. In particular, the authors have shown that an alternative
strategy, which they simply named Strategy B, outperforms the FTL policy for
certain values of the parameters µ and ε. The complete table of counterexamples
can be found in section 5 of [17]. Recall that Strategy B consists of:

• at time t = 0 start with a prior distribution π such that π1 > π2 > π3.
Observe the second largest posterior probability Π2(t) until it reaches either
π1 or a specific level a;

• if it reaches π1 first, switch to the FTL strategy;

• recalling that

Π1(t) =
eµX1(t)∑3
j=1 e

µXj(t)
,

and by taking a as the unique value of Π2(t) such that Π1(t) = 1 − ε, if
Π2(t) reaches a first then the search is over.

Although the insights in [17] are of great interest, the numerical examples pro-
vided are limited. Therefore our first goal is to construct a coherent and well-
defined numerical scheme to evaluate the optimal strategy at any point l ∈ D. In
Chapter 1, Theorem 1.2.6, we have shown that the value function of the optimal
strategy is the unique viscosity solution of equation (1.44). In our particle case,
where N = 3, Theorem 1.2.6 tells us that the value function V of the optimal
strategy at l ∈ D is the unique viscosity solution of

HJ∗(V )(l) = min{H1(V )(l), H2(V )(l), H3(V )(l)}, (3.16)

with associated boundary conditions (1.45), where the operator Hi, i ∈ I, is
the second-order differential operator described in equation (1.34). Here HJ∗

denotes the Hamiltonian operator associated to the optimal strategy J∗ ∈ J . The
minimization problem is relatively straightforward in the interior of the domain,
but it requires more care at the boundaries:

• at the east boundary l1 = l2, the boundary condition (3.3) implies that we
cannot distinguish between FTL and FTS strategy. One possibility is to
run the third particle by δ > 0, which amounts to move by δ along the east
boundary, as by normalization moving up by δ along the third coordinate
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amounts to move up by δ along both the first and second coordinate. We
have

(l2, l2, l3) → (l2, l2, l3 + δ) = (l2 + δ, l2 + δ, l3),

for 0 < l3 < l2, where once more we exploited Remark 1.1.11. Another
possible strategy is to move either the first or the second particle, which
amounts to evaluate the boundary condition (3.3), so that the optimal
strategy on the east boundary is such that

HJ∗(V ) = min

{
H3(V ),

∂V

∂l1

∣∣∣
l1=l+2

− ∂V

∂l2

∣∣∣
l2=l+1

}
; (3.17)

• a similar argument can be used on the south boundary: we can either run
the leader, which will diffuse along the south boundary, or run either the
second or the third particle. We can see that the optimal strategy is such
that

HJ∗(V ) = min

{
H1(V ),

∂V

∂l2

∣∣∣
l1=l+3

− ∂V

∂l3

∣∣∣
l3=l+2

}
. (3.18)

To see why this is the case recall that the south boundary is in fact the
domain S considered in Chapter 2 when studying the FTL problem with
uniform prior distribution. On such a boundary the second and third like-
lihood, Lπ

2 and Lπ
3 , are equal, l2 = l3. At l2 = l3 we cannot distinguish

between Lπ
2 and Lπ

3 , and if we choose not to move Lπ
1 we can only observe

either Lπ
2 or Lπ

3 , which amounts to the FTO strategy that we introduced in
Chapter 2. Such a situation leads to the following boundary condition:

∂V

∂l2

∣∣∣
l2=l+3

=
∂V

∂l3

∣∣∣
l3=l+2

. (3.19)

Taking this into account, our goal is to construct a numerical scheme to solve
equations (3.16), (3.17) and (3.18) iteratively. As we are going to see, the con-
struction of such an algorithm is non trivial, as standard methods, as well as
standard ways to discretise the domain D, are not suitable for this problem. Let
us start by describing the iterative procedure:

Algorithm 3.2.1. 1. Denote by n the current iteration. At n = 0, for all
l ∈ D compute V0 as V0(l) = min{VL(l), VS(l), VT (l)} where VL, VS, VT :
D → R+ are such that

H1(VL)(l) = 0,

H2(VS)(l) = 0,

H3(VT )(l) = 0.
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2. for n > 0, for all l ∈ int(D), compute Vn as

Vn(l) = min{H1Vn−1(l), H2Vn−1(l), H3Vn−1(l)}.

For l ∈ ∂D we instead evaluate the appropriate boundary condition;

3. stop the procedure at step m > 0 such that

|Vm(l)− Vm−1(l)| < δ,

for all l ∈ D and δ > 0 a fixed tolerance level.

In light of Algorithm 3.2.1, we see that a critical condition is the monotonicity
of the numerical scheme, that is, we need to guarantee that Vn(l) ≥ Vn−1(l) for
all l ∈ D and all iterations n. This condition is essential, as we cannot allow the
searching time at iteration n to be smaller than the searching time at a previous
iteration. Unfortunately, the monotonicity of the scheme is not guaranteed by
most standard algorithms to solve second-order ODEs. The natural approach
to discretise an irregular domain such as D would be a triangular mesh, but to
numerically solve a second-order ODE on a triangular mesh we would need to
implement a finite element method (FEM) (see [41] for a detailed explanation
of such an algorithm). However, the FEM does not satisfy the monotonicity
property and, to the best of our knowledge, there are no modifications of the
FEM that guarantee such a property. Therefore, we decide to use an irregular
rectangular grid to discretise the domain D: for each value of l2, we consider a
one dimensional grid with M points, where M is the same for all l2 ≥ l3.

Remark 3.2.2. Such a choice of mesh will result in a slanted grid over D: consider
for example the Hamiltonian of the FTL strategy in equation (1.34) (i=1). For
each l2 ≥ l3, the first and last value of the corresponding grid are l1 = l2 and
l1 = mε(l2 + l3) (as shown in section 2.1 of Chapter 2). This means that the
boundaries of the boundary value problem vary with the parameter l2, resulting
in the aforementioned slanted grid.

Remark 3.2.3. Choosing a slanted rectangular grid does not automatically solve
the issue of the monotonicity of Algorithm 3.2.1: for each l2 ≥ l3 (each l1, re-
spectively) the value of the FTL strategy (FTS strategy, respectively) can be
computed by solving equation (1.34) by finite difference method (FDM). How-
ever, the standard version of the FDM does not guarantee the monotonicity of
Algorithm 3.2.1 yet. That said, we can introduce an appropriate modification of
the FDM that satisfies such a property.

We now have to find a suitable numerical scheme that guarantees the mono-
tonicity of the approximation (Vn)n of the value function V . Such a problem has
been studied extensively in the last 20 years: in [26] the author used a mixture
of PDE theory and probabilistic methods to compute the convergence rate of an
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appropriately modified FDM. These results were then extended by [5], [4] and
[6]. Following their presentation, let us consider a sufficiently smooth function
ϕ : D → R and the second-order differential operator

Lαϕ(l) = tr(aα(l)D2ϕ(l)) + bα(l)Dϕ(l), (3.20)

where tr(a) denotes the trace of the matrix of coefficients a ∈ RN×N and α ∈ A
is an admissible control. Let us write the finite difference approximation

Lα
hϕ(l) =

∑
β∈S

Cα
h (l, β){ϕ(l + βh)− ϕ(l)}, (3.21)

where h > 0 is the spatial step and S denotes a stencil over which we approximate
the operator, which is a subset of ZN \ {0}. It can be proven (see [5]) that a
sufficient assumption for the monotonicity of the scheme (3.21) is

Cα
h (l, β) ≥ 0, (3.22)

for all l ∈ D and β ∈ S.
Remark 3.2.4. It is straightforward to see that the standard FDM approximation
of a second-order differential operator of type (3.20), written in the form (3.21),
does not necessarily satisfy condition (3.22). Indeed, the FDM has no constraints
on the positivity of coefficients Cα

h (l, β).

One of the main contribution of [5] and [4] is to provide Kushner’s approxi-
mation of the second order differential operator (3.20): we can write the approx-
imation (3.21) as

Lα
hϕ =

N∑
i=1

{
aαii
2
∆ii +

∑
j ̸=i

(
aα+ij
2

∆+
ij −

aα−ij
2

∆−
ij

)
+ bα+i δ+i − bα−i δ−i

}
ϕ, (3.23)

where b+ = max{b, 0}, b− = (−b)+ and

δ±i ϕ(l) = ±1

h
{ϕ(l ± eih)− ϕ(l)}

∆ii =
1

h2
{ϕ(l + eih)− 2ϕ(l) + ϕ(l − eih)}

∆+
ijϕ(l) =

1

2h2
{2ϕ(l) + ϕ(l + eih+ ejh) + ϕ(l − eih− ejh)}−

1

h2
{ϕ(l + eih) + ϕ(l − eih) + ϕ(l + ejh) + ϕ(l − ejh)}

∆−
ijϕ(l) =

1

2h2
{2ϕ(l) + ϕ(l + eih− ejh) + ϕ(l − eih+ ejh)}−

1

h2
{ϕ(l + eih) + ϕ(l − eih) + ϕ(l − ejh) + ϕ(l + ejh)} .
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Using such an approximation the coefficients Cα
h (l, β) in (3.21) can be written as

Ch(l,±ei) =
aii(l)

2h2
−
∑
j ̸=i

|aij(l)|
4h2

+
b±ij(l)

h
(3.24)

Ch(l, eih± ejh) =
a±ij(l)

2h2
i ̸= j

Ch(l,−eih± ejh) =
a∓ij(l)

2h2
i ̸= j,

where (ek)k is the canonical base of RN . In [5] and [4] the authors show that
the approximation (3.21) of (3.20) is of positive type, that is, satisfies (3.22), if
and only if the matrix a is diagonally dominant. Having such a simple criteria
to verify the positivity of the scheme is extremely useful, especially since the
operators we are interested in, that is the Hamiltonians (1.34) (for i = 1, 2, 3),
are uni-dimensional operators, which makes checking the positivity condition
straightforward. Indeed, it is enough to note that the second-order coefficient of
the operator (1.34) is positive for all l ∈ D, 1

2
µ2l2 > 0.

One of the limitations of the results in [5], [4] and [6] is that they do not take
into account the boundary conditions, but consider only the ODE itself over an
unbounded domain. That is, the Kushner approximation (3.23) is constructed
over an open subset A ⊂ R. Unfortunately, this is not enough in our case and we
have to understand how to deal with the boundary conditions. To do so, we first
have to establish an important difference between the boundaries of D (refer to
Figure 2-1 for a graphical representation):

1. the “west” boundary l1 = l2, with boundary condition (3.3), and the “east”
boundary, l1 = mε(l2 + l3), with boundary condition (3.2), are natural
boundaries of D, that is, they are part of the definition of the FTL problem;

2. the same is true for the “south” boundary l2 = l3;

3. the “north” boundary, that is, the upper boundary in Figure 2-1, is not an
natural boundary. Instead, it is an artificial boundary needed to guarantee
that the modified FDM (3.23) terminates in a finite time.

Because of such reasons, setting an appropriate boundary condition for the north
boundary is not trivial, as in doing so we need to take care not to modify the value
of the FTL problem. To do so we impose the following consistency condition:

lim
N→∞

V

(
N
l1
l2
, N, l3

)
= V2(l1, l2), (3.25)

where V2(l1, l2) is the value function of the FTL problem in the 2-dimensional
case.
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Remark 3.2.5. The idea underneath (3.25) is that if the second particle Lπ
2 is

much bigger than the third particle Lπ
3 , L

π
2 >> Lπ

3 , then the third particle should
have a negligible effect on the value of the problem. Note that, since we are
studying the FTL problem on D, Lπ

1 > Lπ
2 , so that on the north boundary we

have Lπ
1 > Lπ

2 >> Lπ
3 . In the limit, we expect the value function of the FTL

problem on the north boundary to behave as the value function in the case N = 2.

Remark 3.2.6. As far as the numerical scheme is concerned, we are going to
implement the consistency condition (3.25) in the following way: denote by lM2
the maximum value of the coordinate l2 in the finite case, that is, the value of Lπ

2

on the north boundary. Then we choose lM2 as the smallest value of l2 such that

|V (l1, l2, l3)− V2(l1, l2)| < ξ, (3.26)

where ξ > 0 is a numerical tolerance.

Remark 3.2.7. The value function of the 2-dimensional FTL problem V2(l1, l2)
can be easily computed as in the 2-dimensional case, all searching strategies are
equivalent and we can just compute the value of the FTL policy as the value of
the problem. To see why that is the case, note that for N = 2 we must have
Π1(t) = 1− Π2(t) for all t ≥ 0, as Π is a probability measure on D. This means
that we can infer information about both particles no matter which one we decide
to run, making FTL and FTS equivalent. To compute such value, note that in
the 2-dimensional case the value function of the FTL policy is the unique solution
(see [29] for a detailed analysis) of the following boundary value problem:

∂f

∂l1

(µl1)
2

l1 + l2
+

1

2

∂2f

∂l21
(µl1)

2 + 1 = 0, (3.27)

f

(
1− ε

ε
l2, l2

)
= 0,

∂f

∂l1

∣∣∣
l1=l+2

= 0,

for f ∈ C2([l2,mεl2]), where mε =
1−ε
ε
. By standard calculations we see that the

value function of the FTL policy VFTL, that is, the unique solution of (3.27) on
[l2,mεl2], can be written as

VFTL(l1, l2) =
2(l2 − l1) log(l1)

µ2(l1 + l2)
+

k1
l1 + l2

+ k2,

with

k2 = −2(1−mε) log(mεl2)

µ2(1 +mε)
− k1

l2(1 +mε)
,

and

k1 =
1

1− 2ε
µ−2 log(l2).
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Fig. 3-5: The domain D discretised by the slanted grid introduced in Remark
3.2.2. In this example we have ε = 0.1 and l3 = 1.

We have now established how to implement the boundary conditions, therefore
we can implement Algorithm 3.2.1 taking care of using the appropriate finite
differences to ensure the positivity of the coefficients (see equation (3.22)) and
therefore the monotonicity of the schema.

From Figure 3-5 we see that the slanted grid introduced in Remark 3.2.2 is
not uniform in the l2 direction. In particular, we choose to have more points near
the west and south boundary, as the possible local times effects detailed in Re-
mark 1.3.3 require more numerical precision. Another consequence of the slanted
grid is that computing the finite differences needed to approximate the first and
second-order derivatives in the Hamiltonian operators (1.34) is not trivial: to
compute the finite differences we need to identify the grid points immediately
to the left/right and up/down with respect to the current grid point. Indeed,
to approximate the derivatives in the internal of the domain int(D) we need to
compute the value function as a weighted average of two points immediately to
the north-east and north-west with respect to the current grid point. We need to
be more careful at the boundaries. Depending on the position, there are various
possibilities. In some cases, immediately to the north/south will be a boundary
value, and we should either compute this value (on the west boundary, via in-
terpolating the nearest boundary points), or on the east boundary by using the
boundary condition. It is clear that at the boundaries we may need to use one-
sided differences to compute the first derivatives. In Figure 3-6 we evaluate the
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Fig. 3-6: The matrix multiplication between the approximation of the derivatives
and the corresponding coordinates. From the left ∂

∂l1
× l1,

∂
∂l2

× l2, − ∂
∂l3

× l1 and

− ∂
∂l3

× l2. On the x-axis we have the number of grid points.

goodness of the approximation of the first derivatives: the plots show the matrix
multiplication between the approximations of ∂

∂l1
and l1 (on the left), between ∂

∂l2

and l2 and between − ∂
∂l3

and either l1 or l2. Ideally the results should converge
to 1 as the grid gets finer, which is the case for l1 and l2. The approximation is
not as good for the derivative in l3, but that is to be expected: by normalization
we have ∂

∂l3
× l1 = −1 (respectively ∂

∂l3
× l2 = −1), but this relationship is not

linear, so the approximation does not behave as well.
We will now set up differential operators for FTL, FTS and FTT which are

chosen to ensure that the “signs” of the coefficients are always positive away from
the point at which we evaluate, and negative at the centre. This ensures that in
Algorithm 3.2.1 the value function will increase with iterations, and will converge
to the solution of the (discretised) HJB equation, and for sufficiently fine grids,
also to the true solution. Key to being able to do this are two observations:

1. for second order derivatives, the usual approximation satisfies this property,
and this is not disturbed when we have to approximate on the “slanted”
grid, provided we approximate by taking positive averages at nearby points;

2. for first order derivatives, we need to be more careful. Specifically, if the
first order derivative of a function u appears with a positive sign, we can
approximate by the right-sided derivative, ux = (u(x+ η)− u(x))/η, while
if it has a negative sign, we use the left-sided approximation, ux = (u(x)−
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Fig. 3-7: The approximation of the second derivative in l1 of the value of the
FTL strategy on a 40x40 grid.

u(x− η))/η, where η > 0. In practice, because the sign is positive for FTL
and FTS, we can always get away with using the right-sided derivative.
This is more complicated in the FTT case, because the “right” derivative
in l3 becomes in fact a “southwest” derivative in l1 or l2. As a result, and
because the sign difference in the l3 case is the same as the other cases,
we want to use the “right derivative” in the l3 case, which corresponds to
computing in the south west direction.

Figures 3-7 and 3-8 show the approximation of the second-order derivatives in l1
and l2 of the value of the FTL strategy VFTL using the method described above.
By running Algorithm 3.2.1 we obtain an approximation of the value function of
the FTL policy, as shown in Figure 3-9. In Figure 3-10 we compare it to the value
obtained by numerically solving the boundary value problem (3.4). As we can
see the difference between the two solutions is relatively small across the whole
domain but at the south west corner.

In Figures 3-11 and 3-12 we can see the iterative approximations of the FTS
and FTT value functions. One way to check the goodness of such approximations
is to recall that VFTL is the unique viscosity solution of the HJB equation (3.4).
In Figure 3-13 we can see the result of ĤFTLV̂FTL, where ĤFTL is the iterative
approximation of the Hamiltonian operator HFTL and V̂FTL is the iterative ap-
proximation of the FTL value. We expect the result to tend to 0 as the grid gets
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Fig. 3-8: The approximation of the second derivative in l2 of the value of the
FTL strategy on a 40x40 grid.

Fig. 3-9: The iterative approximation of the value function of the FTL policy
obtained by implementing Algorithm 3.2.1. Here µ = 5, ε = 0.2 and l3 = 1. We
used a 70x70 grid and run the algorithm for N = 10000 iterations.
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Fig. 3-10: The difference between the iterative approximation of VFTL and the
numerical solution of the boundary value problem (3.4). Here we used a 70x70
grid and run the algorithm for N = 10000 iterations.

finer. In Figures 3-14 and 3-15 we do the same for the FTS and FTT policies.
Once more, we can see that the approximation is not as good close to the south
west corner. The approximation is also better for FTL then for FTS and FTT.

One last sanity check on Algorithm 3.2.1 can be obtained by looking at the
convergence of the value function through iterations: in Figure 3-16 we can see
the values of the 3 strategies as a function of the number of iterations. Note that:

• the value of the strategies increases with the number of iterations. This
confirms that Algorithm 3.2.1 is indeed monotonic, as shown in [5] and [4];

• the rate of convergence starts to slow down around N = 20000 iterations;

• the rate of convergence at the south west corner behaves similarly to the
rate of convergence inside the domain D. We decided to study the rate of
convergence at the bottom left separately, as in that region the approxima-
tion of the value function via iterative method does not behave as well.

Let us now study the result of Algorithm 3.2.1: we will use the approximation
of the value function to detect which strategy is optimal at each point l ∈ D.
Our main interest is to study the “switching” boundary, that is, the region of D
where the optimal strategy changes. Our goal is to study the geometry of the
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Fig. 3-11: The iterative approximation of the value function of the FTS policy
obtained by implementing Algorithm 3.2.1. Here µ = 5, ε = 0.2 and l3 = 1. We
used a 70x70 grid and run the algorithm for N = 10000 iterations.

switching boundary, so to understand in which subset of D the FTL strategy is
optimal and where is better to run either the second or the third particle rather
than the leader. We will study the switching boundary for different values of
the parameters ε and µ: recall that these parameters represent the tolerance
error and the signal or drift of the target process, respectively. Together they
provide information about the difficulty of the detection problem, as a larger
µ (respectively a larger ε) make the detection problem “easier” with respect to
the same problem with smaller parameters. Considering the rate of convergence
illustrated in Figure 3-16, from now on we will run Algorithm 3.2.1 with at least
N = 20000 iterations. In Figure 3-17 we can see the switching boundary with
ε = 0.1 and µ = 1. In Figure 3-18 we can see the same simulation but where the
size of the grid points is proportional to the difference between the two values,
that is, if a grid point l is blue than is optimal to apply the FTL strategy and the
size of the grid point is proportional to VFTS(l)− VFTL(l). From this simulation
we can see that:

1. the switching boundary has an irregular shape and it is not easy to interpret;

2. the FTT policy is never optimal: there is no point l ∈ D where we are
better off running the third particle rather than one of the others;
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Fig. 3-12: The iterative approximation of the value function of the FTT policy
obtained by implementing Algorithm 3.2.1. Here µ = 5, ε = 0.2 and l3 = 1. We
used a 70x70 grid and run the algorithm for N = 10000 iterations.

3. the FTS strategy is optimal over a large subset of the south boundary S:
this confirms our findings in Chapter 2, that is, it is not necessarily optimal
to run the leader when the prior distribution is uniform.

In Figures 3-19 and 3-20 we can see another simulation with ε = 0.05: note
how the region where FTS is optimal is now more compact and “ squeezed” on
the west boundary.

Recalling that the FTL problem can be studied both in the space of likelihoods
Lπ and the space of posterior probabilities Π, we can see in Figure 3-21 the same
simulation in the space of posterior probabilities. Note how the shape of the
switching boundary is more regular in this space: in particular, we can see that
the unusual behavior close to the north boundary in the space of likelihoods is less
evident here. To properly interpret Figure 3-21 note that the west boundary in the
space of likelihoods corresponds to the line π1 = π2 in the space of probabilities
and that the east boundary in the space of likelihoods is projected onto the
boundary π1 = 1 − ε, on the bottom-right of the domain. In Figures 3-22 and
3-23 we can see another simulation with ε = 0.2 and N = 50000. We also used a
finer grid of 90x90 points. Thanks to the large number of iterations we can see a
clear division between the two regions:

1. the subset of D where the FTS strategy is optimal is now larger and seems
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Fig. 3-13: The iterative approximation of HFTLVFTL obtained by implementing
Algorithm 3.2.1. This should tend to 0 as the grid gets finer. Here µ = 5, ε = 0.2
and l3 = 1. We used a 70x70 grid and run the algorithm for N = 10000 iterations.

to cover a large region of the domain. The only regions where FTL is
optimal are close to the south and north boundary. This can be seen in the
space of posterior probability as well;

2. the switching boundary has now a more pronounced “butterfly” shape in
the space of likelihoods;

3. the region above the south boundary where FTL is optimal has now a
clearly defined shape.

Considering all results obtained from the simulations so far, we can now draw
some conclusions:

1. the shape of the switching boundary seems to be highly sensitive to the
value of the tolerance parameter ε. In particular, the region where the
FTS strategy is optimal seems to get larger as ε increases, that is, as the
detection problem becomes “easier”;

2. such strong sensitivity on the parameter ε could explain why the optimal
strategy is so hard to compute: there does not seem to be an optimal
strategy for all values of ε and µ;
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Fig. 3-14: The iterative approximation of HFTSVFTS obtained by implementing
Algorithm 3.2.1. These should tend to 0 as the grid gets finer. Here µ = 5,
ε = 0.2 and l3 = 1. We used a 70x70 grid and run the algorithm for N = 10000
iterations.
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Fig. 3-15: The iterative approximation of HFTTVFTT obtained by implementing
Algorithm 3.2.1. These should tend to 0 as the grid gets finer. Here µ = 5,
ε = 0.2 and l3 = 1. We used a 70x70 grid and run the algorithm for N = 10000
iterations.

Fig. 3-16: The rate of convergence of the value functions VFTL, VFTS and VFTT

as a function of the number of iterations. Here µ = 1, ε = 0.05 and l3 = 1. We
used a 70x70 grid.
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Fig. 3-17: The switching boundary between the FTL and FTS strategies. In blue
the area where FTL is optimal, in orange the region where FTS is optimal. Here
µ = 1, ε = 0.1 and l3 = 1. We used a 70x70 grid and run the algorithm for
N = 20000 iterations.

Fig. 3-18: The switching boundary between the FTL and FTS strategies. In
blue the area where FTL is optimal, in orange the region where FTS is optimal.
The size of the grid points is proportional to the difference between the optimal
strategy and the second best strategy. Here µ = 1, ε = 0.1 and l3 = 1. We used
a 70x70 grid and run the algorithm for N = 20000 iterations.
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Fig. 3-19: The switching boundary between the FTL and FTS strategies. In blue
the area where FTL is optimal, in orange the region where FTS is optimal. Here
µ = 1, ε = 0.05 and l3 = 1. We used a 70x70 grid and run the algorithm for
N = 20000 iterations.

Fig. 3-20: The switching boundary between the FTL and FTS strategies. In
blue the area where FTL is optimal, in orange the region where FTS is optimal.
The size of the grid points is proportional to the difference between the optimal
strategy and the second best strategy. Here µ = 1, ε = 0.05 and l3 = 1. We used
a 70x70 grid and run the algorithm for N = 20000 iterations.
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Fig. 3-21: The switching boundary between the FTL and FTS strategies in the
space of posterior probabilities. In blue the area where FTL is optimal, in orange
the region where FTS is optimal. The size of the grid points is proportional to
the difference between the optimal strategy and the second best strategy. Here
µ = 1, ε = 0.05 and l3 = 1. We used a 70x70 grid and run the algorithm for
N = 20000 iterations.

3. the simulations confirm the results we obtained in Chapter 2: there exist
l ∈ S and parameters ε, µ, for which the FTS policy is “better” than the
FTL strategy;

4. there is no l ∈ D for which the FTT strategy is optimal. We speculate
that, for any N ∈ N, it is never optimal to observe the N -th particle for
the N -dimensional FTL problem.

3.3 Summary

In this chapter we have studied the FTL problem in the case of non-uniform
prior distribution. We first found a numerical solution to the boundary value
problem (3.4), that is, we numerically computed the value function associated
with the Follow The Leader strategy. We have seen that this agrees with the
results in Chapter 1 about the value of the FTL policy when the prior distribution
is uniform. Starting from the numerical counter examples to the optimality of
the FTL strategy provided in [17], we performed an in-depth numerical analysis
of the FTL problem when the prior distribution is not uniform and N = 3. In
doing so we have:
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Fig. 3-22: The switching boundary between the FTL and FTS strategies. In
blue the area where FTL is optimal, in orange the region where FTS is optimal.
The size of the grid points is proportional to the difference between the optimal
strategy and the second best strategy. Here µ = 1, ε = 0.2 and l3 = 1. We used
a 90x90 grid and run the algorithm for N = 50000 iterations.

1. studied the boundary conditions of the FTL problem in the space of like-
lihoods. We also introduced a new “artificial” boundary, that we named
north boundary, so to make the problem solvable by means of numerical
methods;

2. we introduced the iterative Algorithm 3.2.1 to approximate the value func-
tion of the FTL problem: in essence this algorithm iteratively applies the
Hamiltonian operators describing the FTL, FTS and FTT policies to the
value function of the problem and evaluate which strategy “performs bet-
ter” at each step;

3. we introduced an irregular grid over the space of likelihoods Lπ: this was
necessary to guarantee to properly approximate the first and second-order
derivatives needed to compute the approximation of the Hamiltonian oper-
ators;

4. we exploited the Kushner’s approximation introduced in [5], [4] and [6] to
define a modified version of Algorithm 3.2.1. Such a version guarantees
that the approximation of the value function is increasing as a function of
the number of iterations;
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Fig. 3-23: The switching boundary between the FTL and FTS strategies in the
space of posterior probabilities. In blue the area where FTL is optimal, in orange
the region where FTS is optimal. The size of the grid points is proportional to
the difference between the optimal strategy and the second best strategy. Here
µ = 1, ε = 0.2 and l3 = 1. We used a 90x90 grid and run the algorithm for
N = 50000 iterations.
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5. we implemented the modified, monotonic version of Algorithm 3.2.1, show-
ing that the approximation of the value of the FTL strategy is consistent
with what computed by standard numerical techniques;

6. we studied the switching boundaries of the the FTL problem. Most in-
terestingly, we have seen that the geometry of the switching boundary is
highly sensitive to the tolerance parameter ε and that the FTT strategy,
that is, the policy that prescribes to run the third particle, never seems to
be optimal.

Considering all results we just summarised, we believe we can now augment the
conclusions of the authors in [17]: we still do not know which is the optimal
strategy, but we do know that (for a specific subset of the domain) it is better
not to Follow The Leader!
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Future work

The FTL problem has a long history of publications and interesting research
based on it, and we believe there are still many open questions to study:

1. a first step would be to perform a more in-depth analysis of the sensitivity
of the optimal strategy to the tolerance parameter ε. Such a parameter
seems to have a fundamental role in determining the optimal strategy and
by studying the sensitivity of the value on it, we could learn more about
the value function of the FTL problem;

2. although interesting, the numerical simulations of the value function are
not enough to compute the optimal strategy. A first step to do so would be
to find a good interpretation for the geometry of the switching boundary,
which we do not have at the moment;

3. the numerical simulations suggest that the Follow The Third policy is never
optimal. An intermediate step to compute the optimal strategy would be
to prove that;

4. we still do not know much about the value function of the FTL problem
when we consider more than 3 particles, N > 3. We believe that the behav-
ior of the value function remains the same for all N but further analyses is
needed to confirm that. The main difficulty of the generic N -dimensional
problem is to consider the further boundary conditions that arise as the
dimensionality of the problem increases. These could pose problems both
in the theoretical and numerical analysis of the value function.

5. the iterative algorithm 3.2.1 is an application of the Kushner’s approxima-
tion introduced in [5], [4] and [6]. It could be of interest to improve such
a method, both from the efficiency and the numerical precision point of
view. We believe such an approach could be used to numerically study
other similar stochastic control problems.
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tence of an optimal Markovian filter for the control under partial observa-
tions”. In: SIAM journal on control and optimization 26.5 (1988), pp. 1025–
1061.

[15] RJ Elliott and H Yang. “Control of partially observed diffusions”. In: Jour-
nal of optimization theory and applications 71.3 (1991), pp. 485–501.

[16] PA Ernst, Goran Peskir, and Quan Zhou. “Optimal real-time detection of a
drifting Brownian coordinate”. In: The Annals of Applied Probability 30.3
(2020), pp. 1032–1065.

[17] Philip A Ernst, LCG Rogers, and Quan Zhou. “When is it best to follow
the leader?” In: Stochastic Processes and their Applications 130.6 (2020),
pp. 3394–3407.

[18] Giorgio Fabbri, Fausto Gozzi, and Andrzej Swiech. “Stochastic optimal
control in infinite dimension”. In: Probability and Stochastic Modelling.
Springer (2017).

[19] Wendell H Fleming and Halil Mete Soner. Controlled Markov processes and
viscosity solutions. Vol. 25. Springer Science & Business Media, 2006.
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