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Summary

In this thesis, we address two practical problems associated with groundwater flow. Firstly, when
given basic geological information is it possible to predict with reasonable accuracy the rate of flow
into a well or borehole? Addressing this question can frequently be time consuming and expensive
as typically tests are conducted after initial drilling operations at likely sites. Mathematical modelling
can contribute towards a more informed decision of where to site the well and by doing so help to
reduce time and cost.

The second problem considers the inverse situation, namely if we have prior data on the flow char-
acteristics is it possible to infer the hydraulic properties of the component soil layers? Hydraulic
conductivity is very difficult to measure accurately, particularly given the inherent heterogeneity and
irregularity of soil layers. Measurements can involve lengthy electrical surveys that use soil conduc-
tivity to estimate hydraulic characteristics. Using the data from working wells to infer likely values for
hydraulic conductivity provides a useful additional source of information for local engineering teams.

To address these problems we develop a mixed finite element (FE) model for the outflow from a
multilayered unconfined aquifer, which is referred to as the ’forward model’. The performance is
optimised using a carefully selected h-adaptivity mesh refinement algorithm, enabling us to compute
flow regimes for large-scale physical problems efficiently. This model is validated against data from
three working wells used to supply water to cities in the São Paulo region of Brazil.

In a multilayered scenario, the inverse problem yields an under-determined system. The ’forward
model’ is used as a component of an inversion algorithm that uses a Monte Carlo (MC) method, a
fixed point iteration or a Tikhonov regularisation. In such circumstances, we are able to predict optimal
values for hydraulic parameters in proximity to the well. This approach is validated using the data from
the three working well examples.

Finally, we consider a stochastic approach to the two problems. This helps address the uncertainty
in outflow characteristics resulting from the heterogeneous nature of the soil layers. We achieve this
through the application of a Monte Carlo (MC) method, made possible by the computational efficiency
of the ’forward model’. It is shown, by using the 3 working well examples, that the outflow character-
istics can be approximated to a good degree of accuracy, knowing only very basic information about
the local geology and configuration of the well. We also show how these estimates can be improved
by using additional data or perhaps used in the inverse sense to infer the hydraulic characteristics
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of the component soil layers within the aquifer. To this end, a Markov Chain Monte Carlo (MCMC)
method is used to condition a prior distribution and quantify uncertainty in the hydraulic conductivity
when data on the stabilisation flow is known.
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Chapter 1

Introduction

Water that exists beneath the ground surface in soil pore spaces and in fractures of rock formations is
termed subsurface water. Aquifers are geological rock formations that are capable of transmitting and
yielding subsurface water. There are two types of aquifers. A confined aquifer is an aquifer below
the land surface that is saturated with water. Layers of impermeable material are both above and
below the aquifer, causing it to be under pressure so that when the aquifer is penetrated by a well,
the water will rise above the top of the aquifer. An unconfined aquifer is one where the upper water
surface (water table) is at atmospheric pressure and thus is able to rise and fall. Unconfined aquifers
are usually closer to the Earth’s surface than confined aquifers. They may be impacted by drought
conditions sooner than confined aquifers. In this work we will use the general term aquifer to mean
an unconfined aquifer.

The term groundwater is typically applied to water in the saturated portions of the aquifer. It is well
known that a large proportion of the world’s population experiences some problems with the supply
of water due to the regional variability of the resource. In many locations there is insufficient surface
water to meet the demand and in such cases groundwater may be the only viable source for drinking
purposes and household use. As an example, 80% of the populations of Europe and Russia and
over 50% of the population of the United States use groundwater for such purposes, reference [Ojha,
Ramadas, and Govindaraju 2015]. In the absence of a ready supply of surface water it is essential
to manage groundwater resources to meet drinking water needs, irrigation demands and industrial
requirements. In addition an understanding of groundwater movement is a vital component in con-
trolling the transport of contaminants. For example, the infiltration of nitrates originally applied as a
fertiliser for crop production from a landfill or from the closure of a mine or well. There are many
studies that show that natural and human-induced changes in climate impacting temperature, precip-
itation, humidity and solar radiation can alter the availability and movement of groundwater resources,
described in reference [Rosenberg et al. 1999].

Despite a recent emphasis on sustainability groundwater reservoirs all over the world, especially
in warmer climates, are being depleted because withdrawal rates far exceed the recharge rates of
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these aquifers, as highlighted in [Ojha, Ramadas, and Govindaraju 2015]. Advances in the field of
groundwater hydrology and high-speed computation have contributed to improvements in modelling
groundwater movement but accuracy remains a challenge for hydrologists and civil engineers. The
complexity of rock formations is a major constraint posed by real-world systems. There are many
experimental studies that show that even for soil samples taken from nearby locations the properties
porosity, conductivity and dispersivity exhibit a significant degree of spatial variation. This is high-
lighted in reference [Biggar and Nielsen 1976]. Faults which are structural or tectonic features can
introduce a high degree of heterogeneity in the hydrogeological characterisation of an aquifer. They
facilitate groundwater flow in certain places but act as a barrier to groundwater flow in other instances.
Most groundwater systems are therefore non-uniform, multi-layered and possess irregular boundaries
which make them difficult to model.

Having briefly reviewed practical complexities the remainder of this chapter will provide a review of
the physical description of groundwater flow and give an overview of essential mathematical results.
This links them to the approaches used in developing and applying the flow model developed and
applied within chapters 4 - 6.

Geologists generally classify rocks into three major groups: Igneous, Sedimentary and Metamorphic.
Within these groups there is an unspecified number of particular types. Under the action of heat, cold,
rain, wind and other atmospheric factors the rock breaks down into small fragments that become
the parent material of the soil. The ease with which a fluid, usually water, can move through pore
spaces or fractures in both rocks and soil is called hydraulic conductivity (defined below) symbolically
represented as K. Some important definitions that are required for the study of groundwater flow are
stated below, refer to [Freeze and Cherry 1979].

Definition 1.1 Hydraulic head

A hydraulic head is an indicator of the total energy available to move groundwater through an aquifer.
The hydraulic head ℎ is measured by the height to which a column of water will stand above a reference
elevation.

Definition 1.2 Hydraulic gradient

The hydraulic gradient is the difference in the hydraulic head over a distance 𝐿 along the flow path
and is defined as Δℎ/Δ𝐿.

Definition 1.3 Hydraulic conductivity

Hydraulic conductivity is the ratio of volume flux to hydraulic gradient. This gives a quantitative mea-
sure of a saturated soil’s ability to transmit water when subjected to a hydraulic gradient.

Hydraulic conductivity indicates the permeability of porous media, the degree of saturation and the
density and viscosity of the fluid. It is typically measured in units of metres per day 𝑚𝑑−1 or metres
per second 𝑚𝑠−1. The hydraulic conductivity depends on the intrinsic permeability of the material,
the degree of saturation and the density and viscosity of the fluid. The largest values of hydraulic
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conductivity are when the soil is saturated. The values of saturated hydraulic conductivity, symbol
𝑘 , for various soil types, used by the British Geological Survey (BGS) are given in reference [Lewis,
Cheney, and O’Dochartaigh 2006]. They are shown in table 1.1.

Soil Type min 𝑘 (m/s) max 𝑘 (m/s)
Sand 1.16 × 10−6 5.79 × 10−3

Silt 1.16 × 10−8 1.16 × 10−6

Sandstone 5.79 × 10−10 2.31 × 10−4

Fractured Basalt 1.16 × 10−9 1.16 × 10−5

Dense Basalt 2.78 × 10−10 2.78 × 10−7

Shale 5.79 × 10−13 1.16 × 10−9

Diabase 1.16 × 10−9 1.16 × 10−5

Clay 5.79 × 10−12 1.16 × 10−8

Table 1.1. A sample of saturated hydraulic conductivity data for various soil types taken from
[Lewis, Cheney, and O’Dochartaigh 2006]. Note the large variation between the min and max val-
ues for the soil types.

An hydraulic gradient causes water to move within the saturated zone, see figure 1-1. Figure 1-
2 illustrates how hydraulic conductivity is impacted by the size of the pores that exist naturally in
different soils. A specification for the porosity of soil types is given in reference [García-Gaines and
Frankenstein 2015]. Figure 1-3 illustrates how the soil types are classified.

Fig. 1-1. The diagram illustrates the groundwater flow within the saturated zone is driven by the
hydraulic gradient.

Henry Darcy, a 19𝑡ℎ century hydraulic engineer was the first person to formally investigate the physics
of water flow through sand filters whilst working on improvements to the Dijon waterworks. Darcy de-
signed a vertical experimental tank to investigate the water flow through the sand filters and published
the results in 1856. Darcy’s Law states that the amount of water 𝑞 flowing through porous media in
a given time depends on the hydraulic gradient Δℎ

Δ𝐿
and the hydraulic conductivity K of the porous

media. This is stated more formally below:

𝑞 = −K Δℎ

Δ𝐿
, (1.1)
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Fig. 1-2. The diagram illustrates how the groundwater flow is impacted by the porosity of the rock.

Fig. 1-3. The classification is used by the US Departments of Defense and Agriculture (DOD and
DOA) and is reproduced from reference [García-Gaines and Frankenstein 2015] which describes
soil classifications and gives particle sizes for various types of soil. These will impact porosity and
therefore the hydraulic properties.
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where ℎ is the hydraulic head, which is a measure of the potential of the water fluid at the measurement
point. The potential of a fluid at a specific point is defined as the work required to transform a unit of
mass of fluid from an arbitrarily chosen state to the state under consideration. Refer to [H. Wang and
Andersen 1984]. The negative sign is a consequence of the groundwater flowing in the direction of
the head loss. The 3D generalisation of Darcy’s law requires that equation (1.1) be true for each of
the 𝑥, 𝑦, 𝑧 components,

q = −K∇ℎ. (1.2)

The velocity vector q = (𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧). If each component is the same scalar multiple K of the corre-
sponding component of −∇ℎ, the vectors q and −∇ℎ point in the same direction. In this instance, we
have an isotropic medium. If the medium were to be anisotropic, K would be a second-rank tensor
with 9 components and the velocity vector q would not in general point in the same direction as −∇ℎ,
refer to [H. Wang and Andersen 1984]. Following this reference for groundwater flow the hydraulic
head ℎ is given by,

ℎ =
𝑝

𝜌𝑤𝑔
+ 𝑧 + |q |2

2𝑔
, (1.3)

which is a sum of pressure, elevation and kinetic potential terms, with 𝑢 := 𝑝/(𝜌𝑤𝑔) defined as the
pressure head, 𝑧 denoting the elevation head, 𝑔 the gravitational constant and 𝜌𝑤 the density of water.
The kinetic potential term is generally considered to be negligible for groundwater flow applications.

The principal assumptions for the application of Darcy’s law are given below.

• There is laminar flow in the saturated granular media.

• There is a steady-state groundwater flow.

• The fluid is homogenous, isothermic and incompressible.

• The kinetic energy is negligible.

In circumstances where the medium is unsaturated, K is not constant and is a function of the water
pressure. Hydrologists use a PDE first published by Lorenzo Richards in 1931, to describe flow in
an unsaturated medium. This can be derived in outline as follows. Consider the mass conservation
equation given by [H. Wang and Andersen 1984] in the unsaturated zone for an incompressible fluid:

(Θ(𝑢))𝑡 + ∇ · q = 0, (1.4)

where Θ(𝑢) is the volumetric water content. Equation (1.4) describes the rate of change of saturation
in a closed volume, which is equal to the rate of change of the total sum of fluxes into and out of that
volume.

It can be seen that substituting first equation (1.2) and then (1.3) into the mass conservation equation
(1.4) we arrive at Richards’ equation for variably saturated flow which is stated below in the form given
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by [Bause and Knabner 2004]:

(Θ(𝑢))𝑡 − ∇ ·
(
K(𝑢)∇(𝑢 + 𝑧)

)
= 𝑓 . (1.5)

In the steady state case (Θ(𝑢))𝑡 = 0. The function 𝑓 describes sources and sinks. For example, the
root uptake of water and nutrients would be described by a sink term in the flow equation. The other
terms K(𝑢), 𝑢 and 𝑧 are as previously defined. The hydraulic conductivity K(𝑢) = 𝑘𝐾 (𝑢), where
𝑘 > 0 is the saturated hydraulic conductivity and 0 < 𝐾 (𝑢) ≤ 1 is a function of the pressure head
𝑢. This results in equation (1.5) being elliptic and linear in the saturated zone equation and parabolic
and nonlinear in the unsaturated zone. Both zones exist in the same domain, the phreatic interface
marking the boundary between them. Various empirical formulations for Θ(𝑢) and the coefficient
K(𝑢) have been developed over the past 50 years, notably by van Genuchten [Genuchten 1980]
and also by Haverkamp [Haverkamp et al. 1977]. Given the non-linearity of equation (1.5) analytical
solutions exist only for simplified cases. Most practical situations require a numerical solution on a
large scale domain which given the non-linearity can be complex and computationally expensive. The
primary focus of this work is to identify ways of solving such practical problems through the efficient
application of FEMs.

Despite the complexities described above mathematical modelling is an important and relatively in-
expensive decision support tool when compared to practical geophysical methods which rely upon
ground measurements. The latter include electrical surveys from which measurements of the resis-
tivity of the soil are used to infer hydraulic characteristics. These surveys can be time consuming,
expensive and prone to different forms of measurement errors. The inherent soil heterogeneity means
high-density sampling is often required for an accurate assessment. The process of selecting a suit-
able site and testing the yield of a borehole can be complicated and involve many stages from plan-
ning approval to drilling a borehole and testing. This is explained in reference [Macdonald and Calow
2005]. Simulations are frequently used to complement the work of hydrologists and engineers helping
to identify and avoid issues before drilling operations start. Typically in groundwater flow modelling
the mathematical model is impossible to solve exactly. Instead, an approximate solution is achieved
by numerical methods. In order to obtain a unique solution for the PDE, boundary conditions are
required. Boundary conditions may be related to the hydraulic head and/or the flow at the boundary.

Our objective is to develop a FEM based mathematical model and to provide algorithms that infer
the likely outflow and hydraulic characteristics of the aquifer surrounding a well or a borehole. The
output from the model would provide forecasting data to help understand the potential yield from
any well upfront. This would help to eliminate unsuitable sites and to determine the economic and
environmental viability. The input parameters to the model are the dimensions of the well or borehole
and information from a geological survey. The latter includes data such as the approximate positions
of the layers and the likely types of soil from which the hydraulic properties may be inferred.

In chapter 2 we provide a summary of the theoretical background. This is drawn from available
literature and considers the discrete FEM formulation of a model Poisson problem. In subsequent
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chapters this underlying theory will facilitate the solution of a linearised version of the steady state
Richards’ equation. The boundary conditions are determined by the physical configuration of the well
and the component soil layers within the aquifer. We introduce the primal and mixed FEM approaches
to solving the model problem using the formulations of [Brenner and Scott 2008] and [Arnold 1990].
The primal FEM method is used to find an approximation to the pressure variable from which the flux
variable is determined through a secondary calculation. The mixed method introduces an auxiliary
variable which enables direct calculation of the pressure and flux during computation. The stability
criteria for each of the methods are reviewed. It is shown that there are particular stability requirements
(inf-sup condition) [Arnold et al. 2002] and [Brezzi and Bathe 1990] for the mixed method. These
relate to the possible choices of FE solution spaces for the pressure and flux variables. The relative
stability, accuracy and computational efficiency of the two methods are illustrated through the use of
manufactured benchmark examples.

In practical scenarios the size of the domain and the dimension of the solution space may present
problems particularly when there are constraints on computational resources. It is therefore very
important to consider how to compute accurate solutions in an efficient manner. In chapter 3 we
consider the development of an h-adaptivity algorithm which may be used to refine the mesh locally
and so improve solution accuracy especially in areas where the variables of interest change rapidly.
In the case of the multi-layered well the pressure variable changes rapidly near the well boundary and
soil layer interfaces. These mesh refinement algorithms follow a "solve-estimate-mark-refine" process
described in references [Nochetto, G. Siebert, and Veeser 2009] and [Schmidt and K. Siebert 2005].
The latter gives a practical guide to implementing the "estimate-mark-refine process" and we follow
the underlying principles set out within. The ability to estimate where local errors are greatest enables
the identification of those elements to be marked for refinement. This is achieved through the use
of a posteriori error estimators. We consider three such estimators. That of [Ainsworth and Oden
1997] which is appropriate for use with the primal method and of [Carstensen 1997] and [Braess and
Verfurth 1996] both of which may be used in conjunction with the mixed method. Reference [Nochetto,
G. Siebert, and Veeser 2009] describes various strategies used to refine the mesh and ensure that it
is regular and there are no hanging mesh nodes after refinement. In the examples we use a particular
form of the bisection algorithm [Nochetto, G. Siebert, and Veeser 2009] which is described in [Plaza
and Carey 2000] and implemented as standard in the FENICS 1 open source computing platform.

In supporting this work we have been fortunate in being able to obtain advice and use data from the
CPRM (Brazilian Geological Survey) in particular as part of the model validation. The data from three
working wells under CPRM management are used extensively in the examples within each of the
chapters 4- 6. These wells supply water to cities in São Paulo State, Brazil.

In chapter 4 we specify a weak mixed FEM formulation of Richards’ equation. A discretised and
linearised form of which will be used to compute pressure and flux distributions. The three example
wells have been drilled into multi-layered aquifers of increasing complexity. A steady state is assumed

1https://fenicsproject.org/ FEniCSx is a popular open-source computing platform for solving partial differential equa-
tions (PDEs). FEniCSx enables users to quickly translate scientific models into efficient finite element code.
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where the measured flow out of the well matches the flow into the well through the boundary with the
soil layers and so the level of the water in the well remains constant. This situation gives rise to
the steady state version of equation (1.5), which reduces to an elliptic PDE that is non-linear in the
unsaturated part of the domain and linear in the saturated area. We approximate the structure of the
underlying aquifer in the neighbourhood of the well by assuming each soil layer to be homogeneous,
[Freeze and Cherry 1979], and radially symmetric about the axis of the well. The flow problem is
solved using appropriate physical boundary conditions determined by the height of the water table
and the configuration of the well.

Figure 1-4 shows a diagram of an aquifer with a single well. When water is pumped from the well a
depression in the groundwater table develops. This has the approximate shape of an inverted cone.
The slopes of the cone become increasingly steep the closer they are to the well. Its trace (perimeter)
on the land surface defines the zone of influence of a well. The boundary between the saturated
and unsaturated layers is known as the phreatic interface. Groundwater flows into the well driven by
the hydraulic gradient between the well boundary (lower pressure) and the interior of the saturated
zone (higher pressure). Within chapters 4-6 our primary interest is in the calculation of flux which is

Fig. 1-4. The diagram illustrates the groundwater flow into a well, showing the cone of depression.
Note the position of the phreatic interface marking the boundary between saturated and unsatu-
rated layers.

used to determine the steady state flow into the well. By using the mixed finite element technique the
auxiliary flux variable may under certain regularity constraints give a higher fidelity approximation than
from classical finite element techniques. This is illustrated in [Bause and Knabner 2004], where the
authors study time-dependent examples of single layer 1D and 2D flow. These model the evolution of
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Saturated zone

Unsaturated zone

Seepage face

𝑢 = 0

Ground level

Impervious boundary

𝐻𝑠

Fig. 1-5. A typical seepage problem showing a cross section of a well. The upper part of the left
lateral boundary is in contact with the atmosphere, while the lower part is underwater. The height,
𝐻𝑠, at which the level set 𝑢 = 0, the phreatic interface, meets the left hand boundary is a key un-
known in seepage problems.

pressure subject to appropriate physical boundary conditions using a low order Raviart-Thomas finite
element method. The original reference describing this type of finite element is [Raviart and Thomas
1977] and additional background is contained in [Durán 2008]. To ensure continuity of pressure over
the interfaces between the soil layers in the discretisation we define a mesh with element boundaries
that coincide with the soil layers.

One of the complications that can arise in modelling the flow along the well interface is the height of
the seepage interface which sits above the dynamic water level and extends to the point where the
phreatic interface 𝐻𝑠 meets the well boundary, see Figure 4-1. This is generally not known in advance
and so depending upon the set-up of the well it may give rise to a free boundary problem where 𝐻𝑠
depends upon the solution to the problem 𝑢. It may not always be necessary to compute the height of
the seepage interface to determine the outflow. For example, the well may have built-in filters which
control levels at which the outflow occurs. There are a number of analytical and empirical methods
used for estimating the height of the seepage interface. Some of these are summarised in reference
[Chenaf and Chapuis 2007] which also enables comparison with experimental measurements given in
[Hall 1955]. A computational approach to finding the height of the seepage interface was described
in [Cooley 1983] and used a finite element approximation to determine the height of the seepage
interface. See also [Clement, Wise, and Molz 1994], where the authors used a similar algorithm
within a finite difference discretisation. The results in chapter 4 use a generalisation of the algorithm
proposed by [Cooley 1983], in our case making adjustments for multiple layers of soil built into the
flow model.

In chapter 5 we consider the inverse of the forward flow problem. If the outflow is known, is it possible
to infer the hydraulic characteristics of the soil layers within the aquifer? In general such problems are
ill-posed, refer to [Willoughby 1979]. For example there may not be a unique solution or the solution
may not continuously depend upon the data [Korolev and Latz 2020]. Inverse methods to obtain soil
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hydraulic parameters are popular due to the reduced costs and timescales when compared to direct
methods which usually involve field measurements.

Within chapter 5 we consider various methods used by geophysicists to characterise hydraulic param-
eters, some of which are described in reference [Fienen, Clemo, and Kitanidis 2008]. These include
the use of hydraulic tomography, seismic measurements, electrical conductivity and radar wave prop-
agation. A traditional method involves the use of vertical electrical sounding (VES) surveys which are
used to measure the electrical impedance of subsurface soil layers. The data from such surveys can
be used to infer hydraulic characteristics. Reference [Jin, Khan, and Maass 2011] describes a recon-
struction algorithm based on sparsity regularisation which uses a Tikhonov regularization method,
[Willoughby 1979].

Reference [Hinnell et al. 2010] describes the concept of coupled inversion which relies on the direct
coupling of hydraulic and geophysical models during data inversion. The author compares the abilities
of coupled and uncoupled inversion using a synthetic example where surface-based electrical con-
ductivity surveys are used to monitor 1D infiltration and redistribution. An alternative approach used
to infer hydraulic parameters based on first arrival travel time measurements made with zero-offset
borehole ground penetrating radar (BGPR) is described in Reference [Rucker and Ferré 2004].

We will focus our attention on hydraulic tomography. Using this method there are many techniques
used to gather a wide range of information to solve what is essentially an under-determined problem.
For example in reference [Fienen, Clemo, and Kitanidis 2008], the authors increase the sources of
initial data by using measurements from clusters of wells in a zonal model helping to address hetero-
geneity. Alternatively, the same well can be used to obtain a range of data, an approach suggested by
references [J. Yeh and Shuyun 2000] and [J. Yeh and Cheng-Haw 2007]. Rather than installing more
wells to reduce the ratio of parameters to observations multiple pumping tests or stimulation events
can be performed using various configurations of existing wells. The pumping/draw-down response
from the series of tests can form a single inverse problem that can be solved to find the set of hydraulic
parameters that best represents the observations from all the tests simultaneously. This technique
has been called hydro-pulse tomography.

We consider the inversion problem for a single aquifer using the assumptions of homogeneity and
radial symmetry as specified in the development of the forward model from chapter 4. Additionally
we require data on the well dimensions and the stabilisation flow. We use the concept of coupled
inversion albeit in a different context from reference [Hinnell et al. 2010]. In our case the algorithm
links the forward flow model to the geophysical calculation using the former as a constraint within an
iterative process. Each iterative step uses a Tikhonov regularisation to solve an under-determined
system and optimise k. The algorithm enables the computed flow using the optimised k to be tested
against the measured stabilisation flow at each iterative step. The algorithm is validated against the
three working well examples described in chapter 4.

Chapter 6 uses the forward flow model developed in chapter 4 within a stochastic framework to ad-
dress the fundamental question of where best to site a borehole or well. The approach helps to
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address the inherent heterogeneity of 𝑘 and to quantify the uncertainty in the model through the ap-
plication of a Monte Carlo (MC) method, [Barbu and S. Zhu 2020, Chapter 1]. The characteristics
of various probability distribution functions used to model hydraulic conductivity are considered in
[Loáiciga, W. Yeh, and Ortega-Guerrero 2006]. These distributions are also considered by [Mesquita
2002], particularly in the context of the São Paulo State of Brazil, from which we draw our sample
data. The latter reference concludes that the optimal choice for the region is the log-normal distri-
bution which is widely used in modelling hydraulic conductivity. Based on this choice it is assumed
that the 𝑘 ∼ lognormal(`, 𝜎) is a random variable with ` and 𝜎 representing the shape parame-
ters of the distribution. These will vary by soil type. In the most basic formulation by using standard
BGS data, [Lewis, Cheney, and O’Dochartaigh 2006], we are able to approximate the shape param-
eters following the estimation process of [S. Hozo, Djulbegovic, and I. Hozo 2005] and generate the
probability density function (PDF) for the prior distribution. This can be made more accurate if some
other local hydraulic characteristics are known. Generating the outflow distribution using a direct MC
method involves a significant amount of computing resources as typically the model would be run for
𝑁 ∼ 15, 000 samples, from which can estimate the mean outflow. Despite the computational over-
head the MC algorithm proposed in chapter 6 is shown to be very effective. It is particularly suitable
for dealing with the increased dimensionality in multi-layered problems and where there is uncertainty
in the source data. The results in chapter 6 for aquifers with 2, 3 and 5 soil layers estimate the sta-
bilisation flows consistently and accurately. A Markov Chain Monte Carlo (MCMC) method is also
described in chapter 6. This is used to condition a lognormal prior distribution for hydraulic conductiv-
ity using available data, in this instance the measured stabilisation flow. The algorithm used to define
the Markov Chain is based upon the Metropolis-Hastings algorithm described in [Barbu and S. Zhu
2020, Chapter 4]. The method is shown to produce good estimates for the effective (equivalent to a
single homogeneous soil layer and defined in chapter 6 hydraulic conductivity in the neighbourhood
of the well.

Chapter 7 reviews the results generated in the preceding chapters 4-6, gives conclusions and identi-
fies possible areas for further research.

To the author’s knowledge, the algorithms defined in chapter 4 used to develop a deterministic model
to compute a FE approximation to the stabilisation flow for a well or borehole dug into a multi-layered
aquifer do not appear elsewhere in the literature. In chapter 5 the inverse flow algorithms which
rely only upon a basic knowledge of the local geology, the stabilisation flow and the configuration of
the well differ significantly from other approaches. These often tend to use multiple well locations,
multiple measurements on the same well, laboratory experiments, VES or BGPR data to infer the
hydraulic characteristics of the component soil layers. The method set out in chapter 5 is shown to be
straightforward to implement, can be applied directly to working wells or boreholes and relies upon
minimal input data. It is shown to give consistent results for the three example wells. Similarly, the
stochastic approach described in chapter 6 using the MC and MH algorithms produces results that are
in agreement with the measured stabilisation flows and effective hydraulic conductivity respectively,
in both cases using minimal input data sets. This approach is not referenced within the available
literature.
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Two research papers have been prepared for submission to the Mathematical Geosciences journal.

• Approximation of geophysical parameters within an unconfined multi-layered aquifer, combining
chapters 4 and 5.

• Approximation of hydraulic characteristics within an unconfined multi-layered aquifer, combining
chapters 4 and 6. The results from chapter 6 were presented at the American Geophysical
Union (AGU) Fall meeting held in Dec 2021.
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Chapter 2

Background material

Abstract

In this chapter we introduce basic definitions of finite element spaces and associated norms. We develop a weak
formulation of a model Poisson problem and consider conditions under which the problem is well posed. Both
primal and mixed formulations are considered and we examine the stability conditions for both methods. The
relative performance of the two methods is considered using manufactured benchmark examples of increasing
complexity.

2.1 Introduction

To address the two problems relating to flow and hydraulic parameter characteristics posed in the
summary section we require an accurate and efficient model of the pressure and flux distributions.
The aim of this chapter is to provide the reader with a summary of the essential theoretical background
with supporting references so that finite elements can be used to develop such a model. In this
context we provide definitions of function spaces, inner products and associated norms and introduce
a model Poisson problem. The latter will form the basis for solving a linearised steady state Richards’
equation used to model groundwater movement for practical problems described in chapter 4. We
develop primal and mixed weak formulations of the model problem and then introduce a finite element
discretisation. It is observed that for the mixed method there is a particular stability requirement.
This is known as the inf-sup condition, the implications of which are described in reference [Arnold
1990]. This requirement restricts the possible choices of FE solution spaces for the pressure and
flux variables when applying the mixed method. We compare the relative stability, accuracy and
computational efficiency of both methods through the use of manufactured benchmark examples of
increasing complexity which are given at the end of the chapter.

18



2.2 Definitions and notation

2.2.1 Sobolev spaces

In this and subsequent chapters, we will use the following definitions and associated notation. Unless
otherwise stated Ω denotes an open bounded set in R𝑑 , 𝑑 = 1, 2 or 3, and has a smooth boundary
𝜕Ω. The outward unit normal to 𝜕Ω is denoted by n.

Definition 2.1 The space of square Lebesgue integrable functions

We define the space of square Lebesgue integrable functions as follows,

𝐿2(Ω) = {𝑢(x) :
∫
Ω

|𝑢(x) |2𝑑x < ∞}, (2.1)

where the integral is understood in the Lebesgue sense.

This space is equipped with the scalar product

(𝑢, 𝑣)𝐿2 (Ω) =

∫
Ω

𝑢(x)𝑣(x)𝑑x (2.2)

and the associated norm

∥𝑢∥𝐿2 (Ω) =

(∫
Ω

|𝑢(x) |2𝑑x

)1/2
. (2.3)

The space
(
𝐿2(Ω), ∥ · ∥𝐿2

)
is a Hilbert space which is defined below.

Definition 2.2 Hilbert space [Kreyszig 1989, page 129]

If an inner product space X is complete with respect to the metric derived from the inner product, X is
said to be a Hilbert space.

Definition 2.3 The space of 𝐿2(Ω) functions with zero mean value

We define 𝐿2
0(Ω) as the space of 𝐿2(Ω) functions with zero mean value,

𝐿2
0(Ω) = {𝑢 ∈ 𝐿2(Ω) |

∫
Ω

𝑢𝑑x = 0}. (2.4)

When 𝑢 is a sufficiently smooth function, it satisfies,∫
Ω

𝑢(x) 𝜕𝜙
𝜕𝑥𝑖

(x)𝑑x = −
∫
Ω

𝜙(x) 𝜕𝑢
𝜕𝑥𝑖

𝑑x (2.5)

for 𝑖 = 1, . . . , 𝑑 ∀ 𝜙 ∈ 𝐶∞
0 (Ω) where 𝐶∞

0 (Ω) is the space of infinitely differentiable functions with
compact support in Ω and 𝜙 |𝜕Ω = 0. The function 𝜙 is known as a test function.

Not all functions of interest are necessarily smooth and we introduce the concept of a weak derivative.
A function 𝑢 ∈ 𝐿2(Ω) is said to be weakly differentiable if there exists functions 𝑤𝑖 ∈ 𝐿2(Ω), 𝑖 =
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1, . . . , 𝑑 s.t. ∫
Ω

𝑢(x) 𝜕𝜙
𝜕𝑥𝑖

(x)𝑑x = −
∫
Ω

𝑤𝑖 (x)𝜙(x)𝑑x ∀𝜙 ∈ 𝐶∞
0 (Ω). (2.6)

The functions 𝑤𝑖 are called the weak partial derivatives of 𝑢 and are denoted by 𝐷1𝑢.

Definition 2.4 The Sobolev space 𝐻1(Ω) reference [Johnson 2012]

The Sobolev space 𝐻1(Ω) is defined by

𝐻1(Ω) = {𝑣 ∈ 𝐿2(Ω) : 𝐷1𝑣 ∈ 𝐿2(Ω)} (2.7)

where the derivatives are understood in a weak sense.

It is equipped with the scalar product,

(𝑢, 𝑣)𝐻1 (Ω) =

∫
Ω

𝑢(x)𝑣(x)𝑑x +
∫
Ω

∇𝑢(x) · ∇𝑣(x)𝑑x (2.8)

and the associated norm

∥𝑢∥𝐻1 (Ω) =

(∫
Ω

|𝑢 |2𝑑x +
∫
Ω

|∇𝑢(x) |2
)1/2

(2.9)

leading to the definition of the Hilbert space
(
𝐻1(Ω), ∥ · ∥𝐻1 (Ω)

)
.

Definition 2.5 The trace of a function 𝑢 ∈ 𝐿2(Ω)

The trace of a function 𝑢 ∈ 𝐿2(Ω) is defined as the value of 𝑢 on 𝜕Ω. In general this cannot be
defined. For example consider

𝑢(𝑥) = sin(1/𝑥).

In this example 𝑢 ∈ 𝐿2(Ω) however 𝑢(0) is undefined.

Remark 2.6 The trace of a function 𝑢 ∈ 𝐻1(Ω)

The trace of a function 𝑢 ∈ 𝐻1(Ω) will always exist redsince the derivative is bounded and is denoted
by 𝑢 |𝜕Ω.

The space of 𝐻1(Ω) functions with a vanishing trace on 𝜕Ω is denoted by 𝐻1
0 (Ω).

If 𝑣 ∈ 𝐻1
0 (Ω) the quantity

|𝑣 |𝐻1 (Ω) =

(∫
Ω

|∇𝑣(𝑥) |2𝑑x

)1/2
= ∥∇𝑣∥𝐿2 (Ω)

is a norm in 𝐻1
0 (Ω). However this is not the case for the space 𝐻1(Ω). Consider 𝑣 ≠ 0 as a constant

function in 𝐻1
0 (Ω), then |𝑣 |𝐻1 (Ω) = 0, this breaks the definition of a norm ∥𝑥∥ = 0 iff 𝑥 = 0.

Lemma 2.7 Poincaré-Friedrichs inequality refer to [Gatica 2014, chapter 1]

20



There exists a 𝐶 > 0 depending only upon Ω s.t. ∀ 𝑣 ∈ 𝐻1(Ω)

∥𝑣∥𝐿2 (Ω) ≤ 𝐶∥∇𝑣∥𝐿2 (Ω) .

Lemma 2.8 Equivalent norms [Kreyszig 1989, page 75]

If 𝑣 ∈ 𝐻1
0 (Ω) then | · |𝐻1 (Ω) is equivalent to ∥ · ∥𝐻1 (Ω) .

Consider 𝑣 ∈ 𝐻1
0 (Ω) then

∥𝑣∥2
𝐻1 = ∥𝑣∥2

𝐿2 + ∥∇𝑣∥2
𝐿2 , (2.10)

using lemma 2.7
≤ 𝐶2∥∇𝑣∥2

𝐿2 + ∥∇𝑣∥2
𝐿2

≤ (1 + 𝐶2) |𝑣 |𝐻1 .
(2.11)

We can generalise the definition 2.4 as follows.

Definition 2.9 𝐻𝑚(Ω)

The Hilbert space 𝐻𝑚(Ω) is defined as follows:

𝐻𝑚(Ω) = {𝑣 ∈ 𝐿2(Ω) | 𝐷𝛼𝑣 ∈ 𝐿2(Ω),∀ 𝛼 ∈ N s.t. |𝛼 | ≤ 𝑚}

where 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ 𝑁𝑑 is a multi-index. Let |𝛼 | denote its length defined as
∑𝑑
𝑖=1(𝑎𝑖), and

derivatives 𝐷𝛼 are understood in a weak sense. We denote the 𝐻𝑚 norm and semi-norm given by:

∥𝑢∥𝐻𝑚 (Ω) =
©«

∑︁
|𝛼 | ≤𝑚

∥𝐷𝛼𝑣∥2
𝐿2 (Ω)

ª®¬
1/2

,

and

|𝑢 |𝐻𝑚 (Ω) =
©«

∑︁
|𝛼 |=𝑚

∥𝐷𝛼𝑣∥2
𝐿2 (Ω)

ª®¬
1/2

,

respectively.

Definition 2.10 Linear functional reference [Kreyszig 1989, page 104]

If 𝐹 : 𝐻1(Ω) → R then 𝐹 is a linear functional if

𝐹 (𝑣 + 𝑤) = 𝐹 (𝑣) + 𝐹 (𝑤), ∀𝑣, 𝑤 ∈ 𝐻1(Ω) and

𝐹 (𝛼𝑣) = 𝛼𝐹 (𝑣), ∀𝛼 ∈ R, 𝑣 ∈ 𝐻1(Ω).

Definition 2.11 Bounded Linear functional reference [Kreyszig 1989, page 104]

For 𝑣 ∈ 𝐻1(Ω) the linear functional 𝐹 is bounded. Since by definition 𝐹 is bounded if and only if
∃ 𝑐 > 0 ∈ R s.t. |𝐹 (𝑣) | ≤ 𝑐∥𝑣∥𝐿2 (Ω) ∀𝑣 ∈ 𝐻1(Ω).
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A useful example of a linear functional is

𝐹 (𝑣) =
∫
Ω

𝑓 𝑣 𝑑x with 𝑣 ∈ 𝐻1(Ω)

which is bounded if 𝑓 ∈ 𝐿2(Ω).

Definition 2.12 Dual space reference [Kreyszig 1989, page 120]

The dual space 𝐻−1(Ω) of 𝐻1(Ω) is defined to be the space of all linear functionals on 𝐻1(Ω). This
will also be bounded.

In general the dual space of a Hilbert space V is the space of all bounded linear functionals on V
and is written as V∗. The space 𝐻−1(Ω) equipped with the norm

∥𝐹∥∗ = sup
0≠𝑣∈𝐻1 (Ω)

𝐹 (𝑣)/∥𝑣∥𝐻1 (Ω)

is also a Hilbert space.

2.3 Model elliptic problem

Consider the linear second order partial differential equation (PDE) supplemented with Dirichlet bound-
ary conditions

−∇ · (A∇𝑢) = 𝑓 in Ω

𝑢 = 0 on 𝜕Ω
(2.12)

where 𝑓 : Ω̄ → R s,t. 𝑓 ∈ 𝐿2(Ω) and A : Ω̄ → R𝑑×𝑑 , s.t. A ∈ 𝐿∞(Ω)𝑑×𝑑. We assume that A is
bounded, symmetric and uniformly positive definite, that is for each ω ∈ R𝑑 and x ∈ Ω, ∃ _ > 0 s.t.

ω𝑇Aω ≥ _ |ω |2,

which satisfies the required ellipticity condition. Equation (2.12) requires that 𝑢 is twice differentiable,
this is known as the strong form of the PDE. In practice there are many physical problems of interest
that do not meet this criteria and have no strong solutions. Using integration by parts we can relax
this requirement and transition to a weak formulation.

2.4 Primal weak formulation and solvability

To transition to a weak formulation we test equation (2.12) with a smooth function 𝜙 ∈ 𝐻1
0 (Ω). The

Dirichlet BC in (2.12) is built into the definition of the solution space 𝑢 ∈ 𝐻1
0 (Ω). Applying the diver-

gence theorem gives the problem:
find 𝑢 ∈ 𝐻1

0 (Ω) s.t. ∫
Ω

∇𝜙 · (A∇𝑢)𝑑x =

∫
Ω

𝑓 𝜙𝑑x ∀ 𝜙 ∈ 𝐻1
0 (Ω). (2.13)
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This is known as the primal problem as it follows the variational principle set out in [Arnold 1990].
The term weak formulation implies that we have ’weakened’ the differentiability requirements on 𝑢 to
solve the problem. We introduce the following notation:

𝑎(𝑢, 𝜙) =
∫
Ω

∇𝜙 · (A∇𝑢)𝑑x

𝑙 (𝜙) =
∫
Ω

𝑓 𝜙𝑑x.

(2.14)

Using this new notation (2.13) becomes, find 𝑢 ∈ 𝐻1
0 (Ω) s.t.

𝑎(𝑢, 𝜙) = 𝑙 (𝜙), ∀ 𝜙 ∈ 𝐻1
0 (Ω), (2.15)

where 𝑎(𝑢, 𝜙) is a bilinear form and 𝑙 (𝜙) a linear form.

It can be shown that equation (2.15) is well posed using the following theorem [Gatica 2014, chapter
1].

Theorem 2.13 (Lax Milgram) (𝐻1(Ω), ∥ · ∥𝐻1) is a Hilbert space and assume that 𝑎 is a bilinear form
and 𝑙 is a linear functional that satisfy,

• the bi-linear form 𝑎 is symmetric i.e. 𝑎(`, 𝜙) = 𝑎(𝜙, `) ∀`, 𝜙 ∈ 𝐻1
0 (Ω)

• the bi-linear form 𝑎 is coercive, ∃ 𝛼 > 0, ∀𝜙 ∈ 𝐻1
0 (Ω), 𝑎(𝜙, 𝜙) ≥ 𝛼∥𝜙∥

2
𝐻1 (Ω)

• 𝑎 is continuous, ∃𝑀 ∈ R s.t. |𝑎(`, 𝜙) | ≤ 𝑀 ∥`∥𝐻1 (Ω) ∥𝜙∥𝐻1 (Ω) ∀ `, 𝜙 ∈ 𝐻1
0 (Ω), and

• 𝑙 is continuous, ∃𝐷 ∈ R s.t. |𝑙 (𝜙) | ≤ 𝐷∥𝜙∥𝐻1 (Ω) ∀ 𝜙 ∈ 𝐻1
0 (Ω).

Then there is a unique function 𝑢 ∈ 𝐻1
0 (Ω) s.t. 𝑎(𝑢, 𝜙) = 𝑙 (𝜙) ∀𝜙 ∈ 𝐻1

0 (Ω).

For continuity of 𝑙 in general it is sufficient that 𝑓 ∈ 𝐿2(Ω).

The linear variational problem (2.15) can be generalised as follows. Let 𝐵(𝜙, `) be a bilinear form on
a Hilbert space H , and 𝑙 be a linear form on H . This defines a linear variational problem, find 𝜙 ∈ H
s.t.

𝐵(𝜙, `) = 𝑙 (𝜙), ∀ ` ∈ H . (2.16)

This generalisation is used in the FE section 2.4.1 and subsequently used within this chapter. The-
orem 2.13 can accordingly be generalised, if (H , ∥ · ∥H) is a Hilbert space, 𝐵 is continuous and
coercive, and 𝐹 is continuous, then ∃ a unique solution 𝜙 ∈ H to equation (2.16). We show that
our model problem described in equation (2.15) meets the conditions of theorem 2.13 to ensure the
existence of a unique solution 𝑢.

Firstly for equation (2.15) it can be seen that the bilinear form 𝑎 is symmetric since within the model
problem we have assumed that A is bounded and uniformly positive definite. To show that the bilinear
form 𝑎 is coercive we make use of the ellipticity condition and the Poincare-Friedrichs Inequality, see
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lemma 2.7. Let 𝜙 ∈ 𝐻1
0 (Ω) and consider,

∥∇𝜙∥2
𝐿2 (Ω) =

∫
Ω

|∇𝜙 |2 𝑑x,

≤ (1/_)
∫
Ω

∇𝜙𝑇A∇𝜙 𝑑x,

(2.17)

using the assumption of ellipticity ω𝑇Aω ≥ _ |ω |2, with ω = ∇𝜙. Then

∥∇𝜙∥2
𝐿2 (Ω) ≤ (1/_)

∫
Ω

∇𝜙 · A∇𝜙 𝑑x,

≤ (1/_)𝑎(𝜙, 𝜙).
(2.18)

Hence if we set 𝛼 = _, the smallest eigenvalue of A the coercivity condition within theorem 2.13 is
satisfied.
Next consider any `, 𝜙 ∈ 𝐻1

0 (Ω) then

𝑎(`, 𝜙) =
∫
Ω

A∇` · ∇𝜙 𝑑x, (2.19)

applying the Cauchy Schwarz inequality [Kreyszig 1989, p. 14],

𝑎(`, 𝜙) ≤ ∥A∇`∥𝐿2 (Ω) ∥∇𝜙∥𝐿2 (Ω) ,

≤ ∥A∥𝐿∞ (Ω) ∥∇`∥𝐿2 (Ω) ∥∇𝜙∥𝐿2 (Ω) .
(2.20)

Hence if we choose 𝑀 = ∥A∥𝐿∞ (Ω) , 𝑎 is continuous.
Finally consider any 𝜙 ∈ 𝐻1

0 (Ω),

|𝑙 (𝜙) | = |
∫
Ω

𝜙 𝑓 𝑑x|, (2.21)

applying the Cauchy Schwarz inequality,

|𝑙 (𝜙) ≤ ∥ 𝑓 ∥𝐿2 (Ω) ∥𝜙∥𝐿2 (Ω) . (2.22)

Hence if we choose 𝐷 = ∥ 𝑓 ∥𝐿2 (Ω) , 𝑙 is continuous. Note that this is generalisable to 𝑓 ∈ 𝐻−1(Ω).

2.4.1 Finite element approximation

Let Tℎ be a subdivision of Ω into disjoint triangular elements. Thus if 𝑑 = 1, 2, 3, 𝐾 is a segment,
triangle or tetrahedron respectively, refer to figure 2-1. Correspondingly the measure of𝐾, meas(𝐾) ≠
0, is a length, area, or volume, where 𝐾 ∈ Tℎ.
We define ℎ𝐾 = diam(𝐾) and ℎ = max𝐾∈Tℎ (ℎ𝐾 ). Consider a family of meshes, {Tℎ}ℎ>0. The mesh

is said to be shape regular if ∃ 𝜎 > 0 s.t. ∀ ℎ > 0, ∀ 𝐾 ∈ {𝑇ℎ}, 𝜎𝐾 = ℎ𝐾/𝜌𝐾 ≤ 𝜎, where 𝜌𝐾 is the
diameter of the largest ball in 𝐾. This is illustrated in figure 2-2 and it follows that for a mesh to be
shape regular any triangular element cannot become too flat as ℎ → 0. In this work we will assume
that the subdivision Tℎ is shape-regular.
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Fig. 2-1. The linear Lagrange element in one, two and three dimensions.The black circles denote
pointwise evaluation. These pictures describe the values required to be stored to define a function
on the cell.

Fig. 2-2. An illustration of shape regularity in 2D. The figure on the right is an anisotropic triangle
with a relatively low shape regularity.

In order to construct a finite element approximation of the problem (2.15) we replace 𝐻1
0 (Ω) with a

finite dimensional subspace Vℎ ⊂ 𝐻1
0 (Ω) consisting of continuous piecewise polynomials of fixed

degree 𝑝 on a partition of Ω.

Definition 2.14 Conforming Galerkin approximation

Consider the linear variational problem from equation (2.15). Find 𝑢 ∈ 𝐻1
0 (Ω) s.t.

𝑎(𝑢, 𝜙) = 𝑙 (𝜙),∀ 𝜙 ∈ 𝐻1
0 (Ω).

For a finite element space Vℎ ⊂ 𝐻1
0 (Ω) the Galerkin approximation of this variational problem seeks

to find 𝑢ℎ ∈ Vℎ s.t.
𝑎(𝑢ℎ, 𝜙) = 𝑙 (𝜙) ∀𝜙 ∈ Vℎ .

Remark 2.15 Existence and uniqueness of the Galerkin approximation

If 𝑎(𝑢, 𝜙) is continuous and coercive on 𝐻1
0 (Ω) then it is continuous and coercive on Vℎ and hence

the Galerkin approximation exists, is unique and is stable.

Remark 2.16 Non-conforming procedures

It is also possible to use classical non-conforming methods such as Crouzeix–Raviart, where Vℎ is not
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a subset of the solution space. This is described in reference [Arnold 1990]. In this and subsequent
chapters we will only consider the use of conforming methods.

Assuming the conditions set out in remark 2.15 hold then a natural question is what is the size of the
error 𝑢 − 𝑢ℎ? This question is addressed by Céa’s lemma.

Theorem 2.17 Céa’s lemma reference [Ern and Guermond 2004, page 96]

Let Vℎ ⊂ V and let 𝑢 solve a linear variational problem on V whilst 𝑢ℎ solves the equivalent Galerkin
approximation on Vℎ. Then

∥𝑢 − 𝑢ℎ∥V ≤ 𝑀/𝛼 min
𝜙∈Vℎ

∥𝑢 − 𝜙∥V ,

where 𝑀 and 𝛼 are the continuity and coercivity constants of 𝑎(𝑢, 𝜙) respectively.

This may be proved as follows, we have

𝑎(𝑢, 𝜙) = 𝑙 (𝜙) ∀𝜙 ∈ V

and
𝑎(𝑢ℎ, 𝜙) = 𝑙 (𝜙) ∀𝜙 ∈ Vℎ .

Choosing 𝜙 ∈ Vℎ ⊂ V means that we can use it in both the above equations. Subtracting gives the
Galerkin orthogonality condition

𝑎(𝑢 − 𝑢ℎ, 𝜙) = 0, ∀𝜙 ∈ Vℎ .

Then using the coercivity condition ∀ 𝜙 ∈ Vℎ

𝛼∥𝑢 − 𝑢ℎ∥2
V ≤ 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝑢ℎ)

= 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝜙) − 𝑎(𝑢 − 𝑢ℎ, 𝑢ℎ) + 𝑎(𝑢 − 𝑢ℎ, 𝜙)

= 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝜙) + 𝑎(𝑢 − 𝑢ℎ, 𝜙 − 𝑢ℎ)

(2.23)

Using Galerkin orthogonality 𝑎(𝑢 − 𝑢ℎ, 𝜙) = 0, ∀𝜙 ∈ Vℎ =⇒ 𝑎(𝑢 − 𝑢ℎ, 𝜙 − 𝑢ℎ) = 0 giving

𝛼∥𝑢 − 𝑢ℎ∥2
V ≤ 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝜙), (2.24)

using the continuity condition 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝜙) ≤ 𝑀 ∥𝑢 − 𝑢ℎ∥V ∥𝑢 − 𝜙∥V , then

𝛼∥𝑢 − 𝑢ℎ∥2
V ≤ 𝑀 ∥𝑢 − 𝑢ℎ∥V ∥𝑢 − 𝜙∥V . (2.25)

Dividing by ∥𝑢 − 𝑢ℎ∥V and minimising over all 𝜙 completes the proof.

The interpretation of Céa’s lemma theorem 2.17 is that the error is proportional to the minimal error
in approximating 𝑢 ∈ Vℎ. If we choose 𝜙 = Iℎ𝑢 where Iℎ𝑢 is an interpolant to 𝑢 ∈ Vℎ, then

∥𝑢 − 𝑢ℎ∥2
V ≤ (𝑀/𝛼) min

𝜙∈Vℎ

∥𝑢 − 𝜙∥V ≤ (𝑀/𝛼)∥𝑢 − Iℎ𝑢∥V .
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Hence Céa’s lemma reduces the problem of estimating the error in the numerical solution to estimating
the error in the interpolation of the exact solution. We define approximation spaces for Vℎ as follows.

Definition 2.18 Discontinuous polynomial spaces

For an element 𝐾 ∈ Tℎ we define P𝑝 (𝐾) as the space of polynomials of degree ≤ 𝑝. Then P𝑝 (Ω) =⋃
𝐾∈Tℎ {P𝑝 (𝐾)}.

Definition 2.19 Continuous polynomial spaces

The space P𝑝 (Ω) ∩ 𝐶0(Ω) is defined as the space of continuous piecewise polynomials of degree
≤ 𝑝.

With a triangulation Tℎ as described above, and an integer 𝑝 ≥ 1 fixed, we may now consider the
finite element space

Vℎ = {𝜙 ∈ 𝐻1
0 (Ω) | 𝜙 |𝐾 ∈ P𝑝 (Ω) ∩ 𝐶0(Ω) ∀𝐾 ∈ Tℎ}.

The finite element approximation to (2.15) is the function 𝑣ℎ ∈ Vℎ s.t.

𝑎(𝑣ℎ, 𝜙) = 𝑙 (𝜙), ∀𝜙 ∈ Vℎ, (2.26)

where
𝑎(𝑣ℎ, 𝜙) =

∫
Ω

∇𝜙 · (A∇𝑣ℎ)𝑑x

and
𝑙 (𝜙) =

∫
Ω

𝑓 𝜙𝑑x.

At this stage, it is useful to introduce shape functions for the space Vℎ, and these are defined below,

Definition 2.20 (Linear shape functions in 2D) Suppose the corners of a triangular element𝐾 ∈ T
are given by (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3). The shape functions 𝜓𝑖

𝐾
𝑖 = 1, 2, 3 are given below.

𝜓1
𝐾 (𝑥, 𝑦) = (1/(2𝐴𝐾 )) ((𝑥2𝑦3 − 𝑥3𝑦2) + (𝑦2 − 𝑦3)𝑥 + (𝑥3 − 𝑥2)𝑦) ,

𝜓2
𝐾 (𝑥, 𝑦) = (1/(2𝐴𝐾 )) ((𝑥3𝑦1 − 𝑥1𝑦3) + (𝑦3 − 𝑦1)𝑥 + (𝑥1 − 𝑥3)𝑦) ,

and
𝜓3
𝐾 (𝑥, 𝑦) = (1/(2𝐴𝐾 )) ((𝑥1𝑦2 − 𝑥2𝑦1) + (𝑦1 − 𝑦2)𝑥 + (𝑥2 − 𝑥1)𝑦) ,

where
𝐴𝐾 = (𝑥2𝑦3 + 𝑥1𝑦2 + 𝑥3𝑦1 − 𝑥2𝑦1 − 𝑥3𝑦2 − 𝑥1𝑦3)/2,

is the area of the triangular element 𝐴𝐾 .

Remark 2.21 Properties of the linear shape functions

The shape functions are defined on each element and are zero elsewhere. Each shape function is
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1 at one node and 0 at the other two. They are continuous across element boundaries, are square-
integrable and have square-integrable first derivatives.

The discrete formulation given in equation (2.26) results in the following system which is written in
matrix form below

Kvℎ = f ,

where in this case, K known as the stiffness matrix. It is a square and generally sparse matrix with
the size determined by the number of degrees of freedom on the mesh. The details of the assembly
process for K can be found in reference [Suli 2020, Section 2.1].

Whilst we are restricting most of the work in this chapter to homogeneous Dirichlet boundary con-
ditions the results can be readily extended to non-homogeneous boundary values. If we are pro-
vided with additional problem data 𝑢(x) |𝜕Ω = 𝑔(x) we ’shift’ the space and seek the solution to
𝐻1
𝑔 (Ω) := 𝐻1

0 (Ω) + 𝑔.

To quantify the accuracy of the FEM approximation, we take a short interlude into approximation
theory. To that end, consider the problem of finding an approximation Π

𝑝

ℎ
𝑣 ∈ Vℎ to a function 𝑣 in

a suitably regular function space, using polynomials of maximum total degree 𝑝. The results for the
accuracy of Π𝑝

ℎ
𝑣 and ∇(Π𝑝

ℎ
𝑣) are stated below.

Theorem 2.22 Best approximation results reference [Gerbeau 2009, Section 1.2.2]

If Π𝑝

ℎ
𝑣 is the Clément interpolant of degree 𝑝 to a function 𝑣 ∈ 𝐻𝑙 (Ω), then ∀ ℎ > 0 ∃ 𝐶 > 0 s.t.

∥𝑣 − Π
𝑝

ℎ
𝑣∥𝐿2 (Ω) ≤ 𝐶ℎ𝑚𝑖𝑛(𝑙, 𝑝+1) |𝑣 |𝐻𝑚𝑖𝑛(𝑙,𝑝+1) (Ω) , (2.27)

and
∥∇𝑣 − ∇(Π𝑝

ℎ
𝑣)∥𝐿2 (Ω) ≤ 𝐶ℎ𝑚𝑖𝑛(𝑙, 𝑝) |𝑣 |𝐻𝑚𝑖𝑛(𝑙,𝑝+1) (Ω) . (2.28)

The best rate of convergence for a degree 𝑝 approximation to a sufficiently smooth function 𝑣 ∈ V is
𝑝 + 1.

Remark 2.23 Interpolation of Non-Smooth Functions reference [Gerbeau 2009, Section 1.2.2]

By using the Clément interpolant we address the case when the interpolation operator is not smooth
on the Sobolev space to which the function belongs, for example the interpolation of functions that
are only 𝐻1.

The inequalities in theorem 2.22 illustrate that increasing the degree of the finite element is meaningful
only if the solution can be expected to be sufficiently regular. For example, if a second order finite
element approximation, 𝑝 = 2, of the solution is chosen an optimal convergence rate can only be
achieved if the solution 𝑢 ∈ 𝐻3(Ω). Unless this were true there would be no computational advantage
in using higher order elements, at least globally, for example refer to [Schwab 1999].
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2.5 Mixed formulation

Calculation of flow characteristics requires an accurate approximation of the flux. To determine the
flux using the primal formulation we are interested in the secondary variable −A∇𝑢. This leads us to
consider an alternative ’mixed’ formulation of the model problem (2.12). In this case we introduce an
auxiliary flux variable p = −A∇𝑢. To achieve this the model problem is restated below as a system

A−1p + ∇𝑢 = 0 on Ω,

∇ · p = 𝑓 on Ω and

𝑢 = 0 on 𝜕Ω.

(2.29)

Assuming that 𝑓 ∈ 𝐿2(Ω) we search for ∇·p ∈ 𝐿2(Ω) and hence p ∈ 𝐻 (𝑑𝑖𝑣,Ω) = {ξ ∈ [𝐿2(Ω)]𝑑 | ∇·
ξ ∈ 𝐿2(Ω)}. The space 𝐻 (𝑑𝑖𝑣,Ω) is equipped with the norm

∥ξ∥𝐻 (𝑑𝑖𝑣,Ω) := (∥ξ∥2
𝐿2 (Ω) + ∥∇ · ξ∥2

𝐿2 (Ω) )
1/2,

giving the Hilbert space (𝐻 (𝑑𝑖𝑣,Ω), ∥ · ∥𝐻 (𝑑𝑖𝑣,Ω) ).
Let

W = 𝐿2(Ω) × 𝐻 (𝑑𝑖𝑣,Ω),

which is equipped with the norm

∥(𝜙, ξ)∥W =

(
∥𝜙∥2

𝐿2 (Ω) + ∥ξ∥2
𝐻 (𝑑𝑖𝑣,Ω)

)1/2
.

The variational formulation for problem (2.29) is to find (𝑢,p) ∈ W s.t.∫
Ω

A−1p · ξ 𝑑x −
∫
Ω

𝑢∇ · ξ 𝑑x = 0, and∫
Ω

𝜙∇ · 𝑝 𝑑x =

∫
Ω

𝑓 𝜙 𝑑x ∀ (𝜙, ξ) ∈ W.

(2.30)

This can be recast as find (𝑢,p) ∈ W s.t.

𝑐 ((𝑢,p), (𝜙, ξ)) = 𝑙 (𝜙) ∀ (𝜙, ξ) ∈ W, (2.31)

where
𝑐 ((𝑢,p), (𝜙, ξ)) =

∫
Ω

A−1p · ξ 𝑑x −
∫
Ω

𝑢∇ · ξ 𝑑x +
∫
Ω

𝜙∇ · 𝑝 𝑑x,

and
𝑙 (𝜙) =

∫
Ω

𝑓 𝜙 𝑑x.

In the mixed formulation we observe that we have the bilinear form

𝑐((𝑢,p), (𝜙, ξ)) = 𝑎(p, ξ) − 𝑏(𝑢, ξ) + 𝑏(𝜙,p). (2.32)
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Note 𝑐 is not coercive.

If it were to be we could immediately get existence, uniqueness and stability for the finite element
discretisation from the Lax-Milgram theorem. However, this is not the case, 𝑎 may be coercive on a
zero divergence kernel of 𝐻 (𝑑𝑖𝑣,Ω) implying the existence and uniqueness of a solution 𝑢 we may
have issues with the uniqueness of p. This is addressed through the inf-sup condition for a bilinear
form on W, see reference [Brenner and Scott 2008, Section 12].

Definition 2.24 ( Inf-sup condition) For the variational problem defined in equation (2.31) the inf-
sup condition is satisfied if ∃ 𝛽 ≥ 0 s.t.

inf
0≠𝜙∈𝐿2 (Ω)

sup
0≠ξ∈𝐻 (𝑑𝑖𝑣,Ω)

𝑏(𝜙, ξ)
∥ξ∥𝐻 (𝑑𝑖𝑣,Ω) ∥𝜙∥𝐿2 (Ω)

≥ 𝛽. (2.33)

For symmetric, mixed problems in two variables, sufficient conditions for the existence and unique-
ness of the solution are given by the following theorem, a proof of which may be found in [Brenner
and Scott 2008].

Theorem 2.25 ( Brezzi’s condition) Let 𝑎(p, ξ) be a continuous bilinear form defined on𝐻 (𝑑𝑖𝑣,Ω)×
𝐻 (𝑑𝑖𝑣,Ω), and 𝑏(𝜙, ξ) be a continuous bilinear form defined on 𝐿2(Ω) × 𝐻 (𝑑𝑖𝑣,Ω). Consider the
variational problem described in equation (2.31) with 𝑙 (𝜙) a continuous linear form. Define the kernel
𝑍 by,

𝑍 = {p ∈ 𝐻 (𝑑𝑖𝑣,Ω) |𝑏(𝜙,p) = 0, ∀𝜙 ∈ 𝐿2(Ω)}.

Assume the following conditions:

1. 𝑎(p, ξ) is coercive on the kernel 𝑍 with coercivity constant 𝛼.

2. There exists 𝛽 > 0 s.t. the inf-sup condition for 𝑏(𝜙, ξ)ℎ𝑜𝑙𝑑𝑠.

Then ∃ a unique solution (𝑢,p) to the variational problem and we have the stability bounds,

∥p∥𝐻 (𝑑𝑖𝑣,Ω) ≤
2𝑀
𝛼𝛽

∥𝑙∥∗, and

∥𝑢∥𝐿2 (Ω) ≤
2𝑀2

𝛼𝛽2 ∥𝑙∥∗,
(2.34)

where 𝑀 is the continuity constant of 𝑎.

2.5.1 Discretisation of the mixed formulation

Let us consider the 2D case of a triangulation T of the domain Ω. To discretise equation (2.31) we
choose finite dimensional spaces Uℎ ⊂ 𝐿2(Ω) and Hℎ ⊂ 𝐻 (𝑑𝑖𝑣,Ω) where Wℎ = Uℎ × Hℎ. The
discrete form of the problem set out in equation (2.31) becomes, find (𝑢ℎ,pℎ) ∈ Wℎ s.t.

𝑐 ((𝑢ℎ,pℎ), (𝜙, ξ)) = 𝑙 (𝜙) ∀ (𝜙, ξ) ∈ Wℎ . (2.35)
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To solve equation (2.35) we require suitable approximation spaces Uℎ and Hℎ. Suppose we approx-
imate the pressure variable using the space of piecewise constant functions, Uℎ = {𝑢 ∈ P0(𝐾) |𝐾 ∈
T }. In order to define Hℎ, we firstly introduce the lowest order Raviart Thomas space, defined in 2D
below.

Definition 2.26 Raviart Thomas space 𝑅𝑇0(𝐾)

For an element 𝐾 ∈ T we define

𝑅𝑇0(𝐾) = {v ∈ 𝐻 (𝑑𝑖𝑣, 𝐾) |v(x) = bx + η, b ∈ R and η ∈ R2}.

Remark 2.27 Note from the above definition that the subscript 0 in 𝑅𝑇0 actually implies the use of
linear vector functions. The definition of RT spaces can be extended to higher-order polynomials and
dimensions, e.g. for degree 𝑝 = 2 and dimension 𝑑 = 3,

𝑅𝑇2(𝐾) = {v ∈ 𝐻 (𝑑𝑖𝑣, 𝐾) | v(x) = [P2(𝐾)]3 + xP2(𝐾)},

which would imply the use of cubic approximation functions.

Definition 2.28 Polynomial spaces on edges of 𝐾

Define P𝑝 (𝜕𝐾) = {v |v ∈ 𝐿2(𝜕𝐾), v |𝑒𝑖 ∈ P𝑝 (𝑒𝑖) ∀𝑒𝑖 𝑖 = 1, 2, 3}.

Definition 2.29 Jump operator for discontinuous spaces

For a function v : Ω → [R]2 that may be discontinuous, if 𝑒 is an edge we define the jump in v by

⟦v⟧𝑒 := v |𝐾+ · n𝐾+ + v |𝐾− · n𝐾− .

See figure 2-3.

nK

+nK

−

eK+

K−

P−

P+

1

Fig. 2-3. Definition of the jump operator and the ± notation. Note the elements are illustrated as
regular triangles although in practice this is not a requirement.

We are now able to use the 𝑅𝑇0 space to define Hℎ as follows.

Definition 2.30 Velocity space Hℎ
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We define function space using the lowest order RT element in 2D as,

Hℎ = {v ∈ 𝐻 (𝑑𝑖𝑣,Ω) | v ∈ 𝑅𝑇0(𝐾), for some 𝐾 ∈ T and ⟦v⟧𝑒 = 0}.

By including the condition ⟦v⟧𝑒 = 0 in the definition we ensure conformity and that Hℎ ⊂ 𝐻 (𝑑𝑖𝑣,Ω).

Definition 2.31 𝑅𝑇0 Basis functions

If x𝑖 , 𝑖 = 1, 2, 3 are the vertices of any triangular element 𝐾 ∈ T the local basis functions described
in [Dubois, Greff, and Pierre 2017] for the space 𝑅𝑇0(𝐾) are defined as follows:

ζ𝑖 =
1

2|𝐾 | (x − x𝑖), for x ∈ 𝐾, 𝐾 ∈ T and 𝑖 = 1, 2, 3. where |𝐾 | is the area of the element 𝐾.
(2.36)

Refer to figure 2-3. We can now consider a solution to a discretisation of the mixed formulation given
in equation (2.30). This requires the selection of appropriate finite elements. Suppose for example
each element 𝐾 ∈ T , the variables (p, 𝑢) are approximated within the subspace 𝑅𝑇0×P0. The reason
for this choice is explained below in Lemma 2.35 and is a consequence of the stability requirements
for the mixed method. Then on each element 𝐾 ∈ T , p is approximated by a linear combination of
the 𝑅𝑇0 basis functions, and 𝑢 by a piecewise constant function.

p𝐾 ≈
3∑︁
𝑖=1

𝑝𝐾𝑖 ζ𝑖 , and

𝑢𝐾 ≈ 𝑢𝐾ℎ .

(2.37)

In the case of a higher order approximation 𝑅𝑇1×P1 p would be approximated by a linear combination
of quadratic basis functions 𝛾𝑖 , 𝑖 = 1, 2, 3 and 𝑢 by a linear combination of some linear basis functions
𝜓𝑖 𝑖 = 1, 2, 3. These approximations are used within the mixed formulation (2.30) and it can be shown,
refer to [Weinberg 2019] that in general the resulting equations may be assembled globally in matrix
form as [

A B𝑇

B 0

] [
pℎ

uℎ

]
=

[
0
f

]
,

where in this case pℎ and 𝑢ℎ are vectors containing the coefficients of the basis function, known as
the degree of freedom vectors. In the example given if the discretisation contained 𝑁 elements pℎ is
a 3𝑁 × 1 vector and 𝑢ℎ an 𝑁 × 1 vector.

As a result of the stability requirements matrices A and B will vary in size depending upon the number
of degrees of freedom for each variable defined in the mesh.

Remark 2.32 (Matrix Inversion) For the mixed method from (2.31) and (2.32) it can be seen that
the solution will depend upon the inversion of a matrix of the form[

A B𝑇

B 0

]
.
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In order to get existence, uniqueness and stability Uℎ and Hℎ must be chosen such that the following
discrete inf-sup condition is satisfied.

Remark 2.33 (Discrete inf-sup condition) The discrete form of the definition 2.24 may be written
as, (2.31) ∃ 𝛽ℎ ≥ 0 independent of the mesh size s.t.

inf
0≠𝜙∈Uℎ

sup
0≠ξ∈Hℎ

𝑏(𝜙, ξ)
∥ξ∥Hℎ

∥𝜙∥Uℎ

≥ 𝛽ℎ . (2.38)

If the discrete inf-sup condition is satisfied then following theorem 2.25 we need to check that 𝑎(·, ·)
is coercive on the discrete kernel 𝑍ℎ defined by

𝑍ℎ = {p ∈ Hℎ : 𝑏(p, 𝜙) = 0, ∀𝜙 ∈ Uℎ}.

Consider any (𝜙, ξ) ∈ Wℎ, and observing that because A is uniformly positive definite ∃ real eigen-
values 0 < _1 ≤ _2 ≤ · · · ≤ _𝑑 =⇒ A−1 exists with eigenvalues 0 < 1/_𝑑 ≤ 1/_2 ≤ · · · ≤ 1/_1.
Hence for any ξ ∈ 𝐻 (𝑑𝑖𝑣,Ω)

ξ𝑇A−1ξ ≥ (1/_𝑑)ξ𝑇ξ. (2.39)

Consider
∥ξ∥2

𝐿2 (Ω) =

∫
Ω

ξ · ξ 𝑑x

≤ _𝑑
∫
Ω

ξ𝑇A−1ξ 𝑑x using (2.39),

= _𝑑𝑎(ξ, ξ).

(2.40)

which implies 𝑎(ξ, ξ) ≥ 1/_𝑑 ∥ξ∥2
𝐿2 (Ω) . Hence if 𝑎(·, ·) is coercive on all Hℎ then it must be coercive

on 𝑍ℎ ⊂ Hℎ.

It is not in general a straightforward exercise to find pairs of finite element spaces Uℎ×Hℎ that satisfy
the discrete inf-sup condition. A helpful device for verifying the discrete inf-sup condition in instances
when the (continuous) inf-sup condition is already known to hold is the following result, due to Fortin,
see reference [Suli 2012, Section 5]. This is given in the following lemma known Fortin’s trick.

Lemma 2.34 Checking the discrete inf-sup condition - Fortin’s trick

Let Hℎ ⊂ 𝐻 (𝑑𝑖𝑣,Ω) and Uℎ ⊂ 𝐿2(Ω). Suppose 𝑏 : 𝐻 (𝑑𝑖𝑣,Ω) × 𝐿2(Ω) → R is a bounded linear
functional s.t. the continuous inf-sup condition holds. Let Π𝐹

ℎ
: 𝐻 (𝑑𝑖𝑣,Ω) → Hℎ be a linear operator.

If ∃𝐶Π𝐹 > 0 s.t. ∀ξ ∈ 𝐻 (𝑑𝑖𝑣,Ω) there is an element Π𝐹
ℎ
(ξ) ∈ Hℎ s.t.

𝑏(ξ, 𝜙ℎ) = 𝑏(Π𝐹ℎ (ξ), 𝜙ℎ) ∀ 𝜙ℎ ∈ Uℎ

and
∥Π𝐹ℎ (ξ)∥𝐻 (𝑑𝑖𝑣,Ω) ≤ 𝐶Π𝐹 ∥ξ∥𝐻 (𝑑𝑖𝑣,Ω) ,

then the discrete inf-sup condition holds.
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As an example of the application of lemma 2.34 consider the stability of a combination of the RT and
Lagrangian finite elements.

Lemma 2.35 Stability of 𝑅𝑇𝑝 (𝐾) and P𝑝 (𝐾) element pairing reference [Suli 2012, Section 5]

Let ξ ∈ 𝐻 (𝑑𝑖𝑣, 𝐾) and consider the FE element spaces Uℎ ≡ P𝑝 (Ω) and Hℎ ≡ 𝑅𝑇𝑝 (Ω) for 𝑝 ≥ 0
and 𝐾 ∈ T . If the Clément operator Π𝐹𝑝

ℎ
: 𝐻 (𝑑𝑖𝑣, 𝐾) → 𝑅𝑇𝑝 (𝐾) is defined as,∫

𝜕𝐾

𝑣𝑝 (ξ − Π
𝐹𝑝

ℎ
ξ) · n 𝑑𝑠 = 0, ∀ 𝑣𝑝 ∈ P𝑝 (𝜕𝐾), and∫

𝐾

(ξ − Π
𝐹𝑝

ℎ
ξ) · p𝑝−1 𝑑x = 0, ∀p𝑝−1 ∈ [P𝑝−1(𝐾)]2, 𝑝 ≥ 1,

(2.41)

the conditions of Fortin’s trick 2.34 are satisfied and the pairing of elements is stable. For details of
other stable FE pairings refer to [Brezzi and Fortin 2011, Chapter 3].

Let Uℎ = P
𝑝 (𝐾) and Hℎ = 𝑅𝑇𝑝 (𝐾),

𝑏(ξ − Π
𝐹𝑝

ℎ
ξ, 𝑣𝑝) =

∫
𝐾

𝑣𝑝∇ · (ξ − Π
𝐹𝑝

ℎ
ξ) 𝑑x

=

∫
𝜕𝐾

𝑣𝑝 (ξ − Π
𝐹𝑝

ℎ
ξ) · n 𝑑𝑠 −

∫
𝐾

∇𝑣𝑝 · (ξ − Π
𝐹𝑝

ℎ
ξ) 𝑑x

=

∫
𝜕𝐾

𝑣𝑝 (ξ − Π
𝐹𝑝

ℎ
ξ) · n 𝑑𝑠 −

∫
𝐾

q𝑝−1 · (ξ − Π
𝐹𝑝

ℎ
ξ) 𝑑x

= 0,

(2.42)

by definition of Π𝐹𝑝
ℎ

and since in this case, ∇𝑣𝑝 = q𝑝−1 for some q𝑝−1 ∈ [P𝑝−1(𝐾)]2. Hence it is
possible to find stable combinations of elements 𝑅𝑇𝑝 (Ω), P𝑝 (Ω) to meet the conditions of Fortin’s
trick and satisfy the inf-sup condition. This shows that for example if 𝑝 = 1 using definition 2.26 we
can see that there is a quadratic approximation to the flux variable p ∈ 𝑅𝑇1. The pressure variable is
approximated in the space of discontinuous piecewise linear functions P1. Therefore the combination
of a 𝑅𝑇1 finite element with a discontinuous linear Lagrangian element is stable.

The best approximation using the space W 𝑝

ℎ
is given in the following result from reference [Durán

2005, Section 3] and is stated here without proof.

Theorem 2.36 Best approximation for mixed method

If the solution (p, 𝑢) ∈ [𝐻 𝑝+1(Ω)]2 × 𝐻 𝑝+1(Ω) and the family of triangulations T is shape regular,
then ∃ a constant 𝐶 > 0 independent of ℎ and (p, 𝑢), s.t. the mixed finite element approximation
(pℎ, 𝑢ℎ) ∈ 𝑅𝑇𝑝 (Ω) × P𝑝 (Ω) satisfies,

∥p − pℎ∥𝐿2 (Ω) ≤ 𝐶ℎ𝑝+1∥p∥𝐻 𝑝+1 (Ω)

and
∥𝑢 − 𝑢ℎ∥𝐿2 (Ω) ≤ 𝐶ℎ𝑝+1(∥p∥𝐻 𝑝+1 (Ω) + ∥𝑢∥𝐻 𝑝+1 (Ω) ).
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Remark 2.37 ( BDM and BDFM finite elements) The stability and best approximation results can
be extended to other finite elements in the 𝑅𝑇𝑝 family e.g. the Brezzi-Douglas-Marini (BDM) and the
Brezzi-Douglas-Fortin-Marini (BDFM) elements, these are described in reference [Brezzi and Fortin
2011, Chapter 3]. Figure 2-4 shows the two-dimensional family of 𝑅𝑇 and 𝐵𝐷𝑀 finite elements of
order 0, 1 and 2. Note the significant increase in degrees of freedom as the order of the element
increases.

Fig. 2-4. Two dimensional 𝑅𝑇 and 𝐵𝐷𝑀 finite elements of order 0, 1 and 2. The number of inter-
nal degrees of freedom in each case are shown by the black dots which may not be precisely posi-
tioned.

2.5.2 Stability test

In this section we illustrate the stability of different pairs of finite elements when used to solve a
benchmark problem. To examine the convergence of the solutions we define experimental order of
convergence (EOC).

Definition 2.38 (Experimental order of convergence (EOC)) Given two sequences 𝑎(𝑖) and ℎ(𝑖) ↘
0, 𝑖 = 𝑙, . . . , we define experimental order of convergence (EOC) to be the local slope of the log 𝑎(𝑖)
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vs. log ℎ(𝑖) curve,

𝐸𝑂𝐶 (𝑎, ℎ; 𝑖) = log(𝑎(𝑖 + 1)/𝑎(𝑖))
log(ℎ(𝑖 + 1)/ℎ(𝑖)) . (2.43)

To illustrate the practical use of lemma 2.35 we consider a 2D benchmark problem, using a manu-
factured solution. We compute (𝑢ℎ,pℎ) using stable and unstable combinations of elements. The
computations were performed using the FENICS1 open source software platform using a PETSc
Krylov linear solver.

2D example

Consider the model problem described in equation (2.29), with the following choices,

A ≡ 1,

Ω ≡ [0, 1]2,

𝑢 = sin(2𝜋𝑥) sin(2𝜋𝑦) and

𝑓 = −∇ · ∇𝑢.

(2.44)

The selection of 𝑢 ensuring that 𝑢 |𝜕Ω = 0. The results for the mixed method are shown in table 2.1.
These illustrate that the choice Wℎ = P

𝑝 (Ω) ×𝑅𝑇𝑝 (Ω), 𝑝 = {0, 1} is stable. This is as expected from
the result of lemma 2.35. The flux and pressure variables converge at the optimal rates specified in
theorem 2.36. The choice Wℎ = P1(Ω) × 𝑅𝑇0(Ω) is unstable. Also the combination Wℎ = P1(Ω) ∩
𝐶0(Ω)×𝑅𝑇𝑝 (Ω) is stable but ∥p−pℎ∥𝐿2 converges sub-optimally i.e linearly rather than quadratically.
Table 2.2 shows equivalent results for the primal method using equation (2.26).

1https://fenicsproject.org/
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Uℎ Hℎ dim Uℎ ×Hℎ ∥𝑢 − 𝑢ℎ ∥𝐿2 EOC(∥𝑢 − 𝑢ℎ ∥𝐿2 ) ∥p − pℎ ∥𝐿2 EOC∥p − pℎ ∥𝐿2 CPU time (s)
P0 𝑅𝑇0 24 0.2961 0.00 2.1649 0.00 0.0182

88 0.2490 0.25 2.0026 0.11 0.0054
336 0.1294 0.94 1.0079 0.99 0.0061
1312 0.0653 0.99 0.5038 1.00 0.0104
5184 0.0327 1.00 0.2518 1.00 0.0318
20608 0.0164 1.00 0.1259 1.00 0.1442
82176 0.0082 1.00 0.0630 1.00 0.8352
328192 0.0041 1.00 0.0315 1.00 5.8795

P1 𝑅𝑇0 Did not converge - - - - -
P1 𝑅𝑇1 72 0.2664 0.00 2.1238 0.00 0.0128

272 0.0737 1.85 0.4509 2.24 0.0058
1056 0.0195 1.92 0.1126 2.00 0.0081
4160 0.0050 1.98 0.0281 2.00 0.0209
16512 0.0012 1.99 0.0070 2.00 0.0905
65792 0.0003 2.00 0.0018 2.00 0.6845
262656 7.78E-05 2.00 0.0004 2.00 5.4331

P1 ∩ 𝐶0 𝑅𝑇1 57 0.3667 0.00 3.2503 0.00 -
201 0.1673 1.13 2.0527 0.66 -
753 0.0458 1.87 1.0835 0.92 -
2913 0.0111 2.04 0.5413 1.00 -
11457 0.0028 2.02 0.2706 1.00 -
45441 0.0007 2.00 0.1353 1.00 -
180993 0.0002 2.00 0.0676 1.00 -
722433 4.29E-05 2.00 0.0338 1.00 -

Table 2.1. Results for the mixed method for different pairs of finite elements. Note that the combi-
nation P1(𝐾) with 𝑅𝑇0(𝐾) is unstable. Also that only sub-optimal convergence rates in ∥p − pℎ∥𝐿2

are achieved for the (P1 ∩ 𝐶0, 𝑅𝑇1) element pairing.
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Vℎ dim Vℎ ∥𝑢 − 𝑣ℎ ∥𝐿2 EOC∥𝑢 − 𝑣ℎ ∥𝐿2 ∥∇𝑢 − ∇𝑣ℎ ∥𝐿2 EOC∥∇𝑢 − ∇𝑣ℎ ∥𝐿2 CPU time (s)
P1 ∩ 𝐶0 9 0.5199 0.00 3.9975 0.00 0.0148

25 0.2595 1.00 2.9710 0.43 0.0045
81 0.0835 1.64 1.6718 0.83 0.0048
289 0.0224 1.90 0.8629 0.95 0.0068
1089 0.0057 1.97 0.4350 0.99 0.0142
4225 0.0014 1.99 0.2179 1.00 0.0446
16641 0.0004 2.00 0.1090 1.00 0.1768
66049 8.96E-05 2.00 0.0545 1.00 0.8309
263169 2.24E-05 2.00 0.0273 1.00 4.4859

P2 ∩ 𝐶0 25 0.2097 0.00 2.8218 0.00 0.0158
81 0.0339 2.63 0.9203 1.62 0.0047
289 0.0043 2.97 0.2581 1.83 0.0057
1089 0.0005 2.99 0.0668 1.95 0.0103
4225 6.87E-05 3.00 0.0168 1.99 0.0313
16641 8.60E-06 3.00 0.0042 2.00 0.1307
66049 1.08E-06 3.00 0.0011 2.00 0.6924
263169 1.34E-07 3.00 0.0003 2.00 3.9527

Table 2.2. Results from the test using the primal method showing optimal convergence rates for
∥𝑢 − 𝑣ℎ∥𝐿2 and ∥∇𝑢 − ∇𝑣ℎ∥𝐿2

2.5.3 Performance comparison of primal and mixed FEMs

The results from tables 2.1 and 2.2 are shown graphically in figure 2-5 This gives a comparison of
the relative performances of mixed and primal methods for the 2d benchmark problem.

(a) Comparison of error norms ∥p − pℎ∥𝐿2 and ∥∇𝑢 −
∇𝑣ℎ∥𝐿2 with the dimensions of the solution spaces
for both mixed and primal methods

(b) Comparison of error norms ∥p− pℎ∥𝐿2 and ∥∇𝑢 −
∇𝑣ℎ∥𝐿2 with the CPU utilisation in seconds for both
mixed and primal methods

Fig. 2-5. Comparative results for the 2D benchmark problem (2.44). We compare the errors in the
flux variables when calculated using 𝑅𝑇0 and 𝑅𝑇1 finite elements e.g. linear and quadratic approx-
imations, with those from the primal method using P1 ∩ 𝐶0 and P2 ∩ 𝐶0 elements. These results
show that for this type of problem, both methods give similar results, with the primal methods offer-
ing a slight computational advantage in calculating the flux variable.
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2.5.4 Peak function

Consider a more challenging benchmark of the model problem, this time with an exponential peak
taken from reference [Mitchell 2013]. This uses the following values in equation (2.29):

A ≡ 1,

Ω ≡ [0, 1]2,

𝑢 = exp(−𝛼((𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2)) and

𝑓 = −∇ · ∇𝑢.

(2.45)

The selection of the function 𝑢 for sufficiently large 𝛼 ensures that 𝑢 |𝜕Ω ≈ 0 and this is assumed in
the following calculations. An alternative method to ensure 𝑢 |𝜕Ω = 0 would be to modify the peak
by multiplying 𝑢 by a factor sin(𝜋𝑥) sin(𝜋𝑦)/sin(𝜋𝑥𝑐) sin(𝜋𝑦𝑐). The function 𝑢 gives an exponential
peak on [0, 1]2, the parameter 𝛼 defines the steepness of the peak and (𝑥𝑐, 𝑦𝑐) the location of the
peak within [0, 1]2, see figures 2-6a and 2-6b. Given the properties of this function, it is important
to consider the accuracy of the quadrature method. The FENICs software attempts to auto-detect
the quadrature degree and a number of experiments showed that resetting the quadrature degree
from default 3 to 6 made little impact. To achieve higher accuracy it was necessary to use a second-
order mesh. We applied the primal and mixed methods to the problem and both experiments using
Lagrangian P1 ∩ 𝐶0 and (𝑅𝑇0, P

0) finite elements respectively and in both cases, the procedures
failed to converge. However the experiments using both P2 ∩ 𝐶0 and (𝑅𝑇1, P

1) finite elements were
successful i.e. by using quadratic approximations and higher. The results showing the comparative
performance between the primal and mixed methods are shown in figure 2-7.

The computation used the FENICS PETSc linear solver which uses an exact LU decomposition as
a direct solver. From the results, it can be seen that for this problem the mixed method compares
favourably with the primal method in terms of CPU utilisation. Some of the differences in performance
between the two approaches are likely to be explained by the choice of linear solver within the FENICS
software. We note that the primal method is more straightforward in that it requires the inversion of a
symmetric and positive definite matrix, whilst the mixed method requires the inversion of a matrix of the
form specified in remark 2.32, hence the structure of the linear systems is quite different. Comparing
the performance of different solvers whilst interesting, added an additional level of complexity which
was considered to be not directly related to the scope of the thesis and so was examined here. For
future calculations, we will continue to use the FENICS PETSc solver. Reference [Elman, Silvester,
and Wathen 2014, chapter 4] describes a number of different solver strategies which may be applied
to the mixed formulation.
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(a) Peak function centred on (0.5,0.5), 𝛼 = 1000 (b) Offset peak function centred on (0.75,0.25), 𝛼 =

100000

Fig. 2-6. The Peak function showing the impact of the variation in the parameter 𝛼 and (𝑥𝑐, 𝑦𝑐)
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(a) Quadratic approximation - the error norms ∥p −
pℎ∥𝐿2 and ∥∇𝑢 − ∇𝑣ℎ∥𝐿2 using (𝑅𝑇1, P

1) and P2 ∩𝐶0

finite elements plotted against the dimension of the
solution space.

(b) Quadratic approximation - the error norms ∥p −
pℎ∥𝐿2 and ∥∇𝑢 − ∇𝑣ℎ∥𝐿2 using (𝑅𝑇2, P

2) and P3 ∩
𝐶0 finite elements plotted against cpu utilisation in
seconds.

(c) Cubic approximation - the error norms ∥p − pℎ∥𝐿2

and ∥∇𝑢 − ∇𝑣ℎ∥𝐿2 using (𝑅𝑇2, P
2) and P3 ∩ 𝐶0 finite

elements plotted against the dimension of the solu-
tion space.

(d) Cubic approximation - the error norms ∥p − pℎ∥𝐿2

and ∥∇𝑢 − ∇𝑣ℎ∥𝐿2 using (𝑅𝑇2, P
2) and P3 ∩ 𝐶0 finite

elements plotted against cpu utilisation in seconds.

Fig. 2-7. The figures show the relative performance of the mixed and primal methods in computing
the flux variables pℎ and ∇𝑣ℎ using 𝛼 = 1000 in the peak problem.

2.6 Summary

For the peak example, the use of higher-order elements improves the accuracy however the EOC for
the cubic elements is not optimal and is similar to that using quadratic elements. Using best approx-
imation results in theorems 2.36 and 2.22 we observe that in the case of the cubic approximation we
require the existence of a fourth derivative of the function 𝑢 in (2.45). Whilst this derivative certainly
exists as the function 𝑢 ∈ 𝐶∞ it can be seen that each derivative will contain a successively higher
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power of 𝛼, hence for the 𝑛𝑡ℎ derivative,

|𝐷𝑛𝑢 | = 𝑂 (𝛼𝑛)𝑢.

If 𝛼 = 1000, then
|𝐷4𝑢 | ≈ 𝑂 (1012)

which is at the level of machine precision. Hence the sub-optimal convergence and why using in-
creasingly higher-order elements doesn’t improve accuracy.

From the results for the range of benchmark problems, whilst the relative performance is comparable,
particularly in terms of CPU utilisation, the primal method has overall delivered the most efficient
performance. However the mixed method is more widely adopted for geophysical applications. It
is for this and reasons of interest that much of the rest of the thesis will focus on improving the
performance of the mixed method for a range of practical problems.
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Chapter 3

Adaptive mesh refinement

Abstract

In this chapter we introduce h-adaptive algorithms and a posteriori error bounds. We do this for primal and mixed
finite element schemes approximating the model elliptic problem. These yield optimal a posteriori upper bounds
for the fully discrete solution in various norms. We validate the analysis with some numerical experimentation.
The results are examined to determine the optimal approach to resolve anisotropic solutions, a requirement for
simulating physical setups in later chapters.

3.1 Introduction

As previously stated our objective is to solve large scale physical problems relating to fluid flow in multi-
layered aquifers. This can be particularly challenging because of the rapid changes in pressure near
boundaries and soil interfaces. Under discretisation these features have an impact on the accuracy
of the solution and can as discussed in chapter 2 negate the use of higher order approximations. The
scale of these problems is such that successive global mesh refinement is not practicable. Hence
we are motivated to consider computationally efficient methods that make the best use of available
resources. Efficiency can be increased by using a number of different methods. These include local
mesh adaption known as h-adaptivity, using higher order elements known as p-adaptivity and using
fast linear solvers. In the context of the FE framework described in chapter 2 we provide a brief review
of the principal references from which we will develop a suitable mesh adaptivity algorithm.

The general mesh adaptivity philosophy is to change meshes successively by local refinement or
coarsening based on error estimators or error indicators. These are computed a posteriori from the
discrete solution and given data on the current mesh. This approach is covered in some detail in
reference [Schmidt and K. Siebert 2005]. The adaptive strategies are based on the idea of equidis-
tribution of the local error to all mesh elements. For stationary problems a mesh is considered to
be almost optimal when the local errors are approximately equal for all elements. Hence in princi-
ple elements where the error indicator is large will be marked for refinement. Elements with a small
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estimated indicator are left unchanged or are marked for coarsening. The design of mesh adaptivity
algorithms therefore generally follows a ’solve-estimate-mark-refine’ process. Chapter 2 provides
us with the mechanism to ’solve’ the discrete problem. For the ’estimate’ stage it is clear that we will
need an appropriate local error estimator. Assuming for the time being that we have a mechanism
to estimate the local errors with reasonable accuracy, reference [Schmidt and K. Siebert 2005] gives
us a number of marking strategies. These are based upon using the magnitude of the local errors,
to ’mark’ elements for refinement. They include the maximum strategy where all elements for which
the error exceeds a threshold value are marked for refinement. Other widely used methods include
equidistribution and guaranteed error reduction strategies. In general for reasons explained later we
focus on the equidistribution strategy which is used within the numerical examples at the end of this
chapter. In addition it is observed that similar approaches can be used to coarsen the mesh. However
we do not apply this technique as it was not required for the solution of our problems.

There are a number of strategies to ’refine’ the mesh on those marked elements. These include
regular refinement and bisection both described in [Schmidt and K. Siebert 2005]. In the 2D case
bisection involves the selection of a refinement edge and cutting the element into two. This results in
hanging nodes which must be removed through further refinement to create a conforming mesh, see
figure 3-1. Recall from chapter 2 that to use both the Lagrangian and RT finite elements we required a
conforming mesh, with elements sharing nodes and edges. Although not considered here there exist
methods that are able to accommodate hanging nodes, discontinuous Galerkin for example [Grote,
Schneebeli, and Schötzau 2006]. There are also techniques one can use to accommodate them, for
example the approaches used in the open source library deal ii [deal.II version 9.5.0 2023]. One can
additionally refine the mesh until a conforming mesh is obtained [Di Stolfo et al. 2016]. The removal
of hanging nodes is known as the closure process. The important principle is to preserve shape
regularity of the triangulations. A variant of the bisection algorithm described in [Plaza and Carey
2000] "Local refinement of simplicial grids based on the skeleton" has been implemented within the
FENICS open source library and this will be used in all subsequent computations.

We return to the ’estimate’ stage of the adaptivity process. It is clear that we will require a reliable and
efficient a posteriori error estimator. Reference [Wohlmuth and Hoppe 1999] gives a useful compari-
son of a posteriori error estimators for mixed finite element discretisations using the Raviart-Thomas
element. An observation is that in the mixed setting it is generally more challenging to develop an
error estimator. This would seem to be reflected in the literature there being significantly more ref-
erences to a posteriori estimators for the primal than for the mixed method. Reference [Wohlmuth
and Hoppe 1999] describes a general classification of a posteriori error estimators including residual
and hierarchical methods. The latter uses the difference between approximations in solution spaces
of different degrees to estimate the local error which will involve a secondary solve step. Since the
residual approach doesn’t generally require a secondary calculation we focus on this type of esti-
mator. In doing so we consider two different approaches. The first is from reference [Braess and
Verfurth 1996] which going forward for simplicity we shall refer to as Braess. The second is from
reference [Carstensen 1997]. These methods use different norms to control the local error. There
are computable forms of these error estimators that can be used within h-adaptivity algorithms. The
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Braess approach defines mesh dependent norms (described later) and that of Carstensen uses the
natural 𝐻 (𝑑𝑖𝑣,Ω) × 𝐿2(Ω) norm. For completeness and comparison purposes we will also consider
an explicit a posteriori error estimator in the natural 𝐻1(Ω) norm for the primal method, this follows
an approach described in reference [Ainsworth and Oden 2000].

In the remainder of this chapter we will expand on the steps in the mesh adaptivity process and
illustrate how to derive a local error estimator using the primal method as a test case. We will demon-
strate how the various estimators can be integrated into h-adaptivity algorithms and used in a series
of numerical experiments. The experiments show the robustness of the three estimators, Ainsworth,
Braess and Carstensen. With the objective of identifying an appropriate method for use on the prac-
tical problem in subsequent chapters we focus on a comparison between Braess and Carstensen.
In the former case applying additional weighting factors, described in [Braess and Verfurth 1996].
These are used to extend the estimator to controlling error in the 𝐻 (𝑑𝑖𝑣,Ω) × 𝐿2(Ω) norm.

3.2 Mesh adaptivity

The basic iteration of an adaptive finite element code for a stationary problem is described below.

• Step 1 Solve - assemble and solve the discrete system;

• Step 2 Estimate - calculate the error estimate;

• Step 3 Mark - mark the element requiring refinement; and

• Step 4 Refine - refine the mesh over the elements marked.

In the chapter 2 we demonstrated step 1, i.e. how finite elements may be applied to solve a discrete
problem. In applying the iterative h-adaptivity process it can be seen that assembly and solution of
a discrete system is necessary after each mesh change. From a computational perspective this is
usually the most time consuming step. The second step is estimation, how can we estimate the error
in the solution? This is based on information extracted from an a posteriori error estimator, refer to
definition (3.1) below.

Definition 3.1 A posteriori error estimate for ∥𝜖 ∥𝑋
If Tℎ is a triangulation of Ω, and [𝐾 is the estimate of the error in some norm on any element 𝐾 ∈ Tℎ
then

[ =

( ∑︁
𝐾∈Tℎ

[2
𝐾

)1/2

, (3.1)

is the a posteriori error estimator,

where both error and norm are to be specified later.

Definition 3.2 Efficiency and reliability of an estimator
An estimator [ is said to be efficient if there exists a constant 𝐶1 > 0, independent of the refinement
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level such that
𝐶1[ ≤ ∥𝜖 ∥𝑋 .

It is reliable if there exists another constant 𝐶2 ≥ 𝐶1, independent of the refinement level such that

∥𝜖 ∥𝑋 ≤ 𝐶2[.

Remark 3.3 Significance of efficient and reliable of error bounds

Reliability ensures sufficient refinement in the sense that ∥𝜖 ∥𝐻1 (Ω) will be bounded by a quantity of
the same order of magnitude as a user-prescribed accuracy.

Efficiency is important since it underestimates ∥𝜖 ∥𝐻1 (Ω) and thus prevents too much refinement.

There are a number of approaches used to define this error estimator [. For example, refer to
[Wohlmuth and Hoppe 1999], [Carstensen 2005] and [Ainsworth and Oden 2000], and some are
considered in the next section. Depending on the nature of the problem it is possible to derive a
posteriori error estimators for different quantities of interest. As examples consider the pressure in
the primal problem measured by the norm

∥𝑢 − 𝑢ℎ∥𝐻1 (Ω) ,

and for the mixed method the total error measured by the natural norm

∥p − pℎ∥𝐻 (𝑑𝑖𝑣,Ω) + ∥𝑢 − 𝑢ℎ∥𝐿2 (Ω) .

Notice that the estimator satisfies the localisation properties described in [Ainsworth and Oden 1997]
which means we can assign an estimated error to each element. If tol is a specified tolerance for the
error, and [ > tol the problem arises, where to refine the mesh in order to reduce the error. At the
same time ensuring that the number of unknowns should not become too large. That is we wish to
solve or at least approximate the solution to the following optimisation problem.

Find 𝑉ℎ such that
∥𝜖 ∥𝑋 → min with dim(𝑉ℎ) < 𝑁,

or find 𝑉ℎ such that
∥𝜖 ∥𝑋 < tol,

where 𝑉ℎ in this instance is a generic finite element approximation space.

A global refinement of the mesh would lead to the best error reduction. However the increased number
of new unknowns might be much larger than needed to reduce the error below the given tolerance.
This would result in the utilisation of a disproportionate level of computing resources. Using local
refinement, we hope to optimise the accuracy and the number of unknowns to improve this situation.
This enables us to consider step 3, the marking of elements where the error estimates are greatest.
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There are a number of strategies for this part of the process, discussed in reference [Schmidt and
K. Siebert 2005]. Two straightforward examples are the maximum and the equidistribution strategies
both defined below.

Definition 3.4 Maximum strategy

A threshold 𝑟 ∈ (0, 1) is given, and all elements 𝐾 ∈ T with

[𝐾 > 𝑟 max
𝐾 ′∈Tℎ

[𝐾 ′ (3.2)

are marked for refinement.

Remark 3.5 Selection of the parameter 𝑟 for maximum strategy

In general, a small 𝑟 will ensure the algorithm is close to global refinement, therefore leading to less
locally resolved meshes. A large 𝑟 leads to more iterations until the algorithm terminates but usually
produces a more efficient mesh with fewer unknowns.

Definition 3.6 Equidistribution strategy

A threshold 𝑟 ∈ (0, 1) is given and let N be the number of mesh elements in T . If we assume that
[̄𝐾 is an equidistribution of the local error indicators over all 𝐾 ∈ T such that

[ =

( ∑︁
𝐾∈T

[2
𝐾

)1/2

,

= (N [̄2
𝐾 )1/2,

=
√
N [̄𝐾 , giving

[̄𝐾 = [/
√
N .

(3.3)

Then we define the equidistribution refinement strategy, if

[𝐾 > 𝑟[̄𝐾 = 𝑟[/
√
N ,

mark 𝐾 ∈ T for refinement.

Remark 3.7 Selection of the parameter 𝑟 for equidistribution strategy

The choice of 𝑟 determines the proportion of elements to be selected for refinement. The choice of
𝑟 ≲ 1 leads to only a small number of elements being selected whilst 𝑟 = 0 leads to global refinement.

A measure of the effectiveness of an error estimator is known as the effectivity index and is defined
below.

Definition 3.8 (effectivity index). The main tool deciding the quality of an estimator is the effectivity
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index (EI) which is the ratio of the estimator to the error i.e.,

𝐸𝐼 = [/∥𝜖 ∥𝑋 . (3.4)

If 𝐸𝐼 → 1 as ℎ → 0 we say the estimator is asymptotically exact.

The final stage of the mesh adaptivity process is to refine the marked elements. A commonly adopted
approach is mesh refinement by bisection, where any marked element is divided into two sub-elements
of same size, see Figure 3-1. This process can introduce hanging or irregular nodes which would give
a non-conforming mesh, e.g. in 2D a node N ∈ 𝐾 but not a vertex of 𝐾. These nodes are identified
and the associated elements are also scheduled for refinement. The procedure is repeated until all
the hanging nodes are removed in a process called completion. A description of the algorithms is
outside of the scope of this thesis but the process is explained in reference [Nochetto, G. Siebert,
and Veeser 2009]. From an implementation perspective we will use the standard refine routine from
the FENICS library, this uses a bisection algorithm based upon [Plaza and Carey 2000]. In the next
section we will consider some methods used to compute the error estimation function [𝐾 .

Fig. 3-1. The bisection refinement process. Note after the initial bisection there are hanging nodes
at A and B. The completion process removes these from the mesh.

During the various numerical experiments described in this thesis there was no evidence to suggest
that the mesh degenerated. Observations showed that after successive adaptive refinements, the
mesh remained shape regular.

3.3 A posteriori error estimation

In this section we consider three a posteriori error estimators for the Poisson problem, these are
described below.

1. The explicit Ainsworth error estimator described in [Ainsworth and Oden 2000] for the primal
case which is used to control the error

∥∇𝑢 − ∇𝑢ℎ∥𝐿2 (Ω) ≤ [𝐴

in the natural 𝐻1(Ω) norm.

2. The Braess error estimator in reference [Braess and Verfurth 1996] for the mixed case, used

48



to control the error
∥p − pℎ∥𝐿2

ℎ
(Ω) + ∥∇𝑢 − ∇𝑢ℎ∥𝐿2

ℎ
(Ω) ≤ [𝐵

in mesh dependent norms specified in (3.15).

3. The Carstensen error estimator set out in [Carstensen 1997] for the mixed case, used to control
the error

∥p − pℎ∥𝐻 (𝑑𝑖𝑣,Ω) + ∥𝑢 − 𝑢ℎ∥𝐿2 (Ω) ≤ [𝐶

in the natural 𝐻 (𝑑𝑖𝑣,Ω) × 𝐿2(Ω) norm.

The estimators [𝐴,𝐵,𝐶 will be defined in subsequent sections of this chapter.

3.3.1 Primal method

Developing an a posteriori error estimator can be more complicated in the mixed formulation. To
illustrate the process we derive an explicit estimator used to control error in the 𝐻1 norm for the
primal formulation of the model Poisson problem (2.13). This follows reference [Ainsworth and Oden
1997].

Suppose 𝑢 ∈ V which is a Hilbert space of appropriate regularity and Vℎ is a finite dimensional
subspace of V. In the following sections we use 𝐶 to represent a generic constant. This estimator
makes use of the following.

• The Galerkin approximation 𝑢ℎ.
• The data 𝑓 .
• The equation characterising the true error:

𝑎(𝜖, 𝑣) = 𝑎(𝑢, 𝑣) − 𝑎(𝑢ℎ, 𝑣) = 𝑙 (𝑣) − 𝑎(𝑢ℎ, 𝑣) ∀𝑣 ∈ V

• The Galerkin orthogonality property:

𝑎(𝜖, 𝑣ℎ) = 0, ∀𝑣ℎ ∈ Vℎ .
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Consider the error,

𝑎(𝜖, 𝑣) = 𝑎(𝜖, 𝑣 − 𝑣ℎ), using Galerkin orthogonality,

= 𝑙 (𝑣 − 𝑣ℎ) − 𝑎(𝑢ℎ, 𝑣 − 𝑣ℎ),which upon decomposition may be written,

=
∑︁
𝐾∈T

{∫
𝐾

𝑓 (𝑣 − 𝑣ℎ) 𝑑x −
∫
𝐾

∇𝑢ℎ · ∇(𝑣 − 𝑣ℎ) 𝑑x

}
∀𝑣ℎ ∈ Vℎ,

applying the divergence theorem,

=
∑︁
𝐾∈T

{∫
𝐾

𝑓 (𝑣 − 𝑣ℎ) 𝑑x −
∫
𝐾

(∇ · ((𝑣 − 𝑣ℎ)∇𝑢ℎ) − (𝑣 − 𝑣ℎ)∇ · ∇𝑢ℎ) 𝑑x

}
∀ 𝑣ℎ ∈ Vℎ,

=
∑︁
𝐾∈T

∫
𝐾

( 𝑓 + Δ𝑢ℎ) (𝑣 − 𝑣ℎ) 𝑑x −
∑︁
𝐾∈T

∫
𝜕𝐾

(𝑣 − 𝑣ℎ)∇𝑢ℎ · n𝐾 𝑑𝑠,∀ 𝑣ℎ ∈ Vℎ,

where n𝐾 is the outward facing normal on the edges of 𝐾,

=
∑︁
𝐾∈T

∫
𝐾

( 𝑓 + Δ𝑢ℎ) (𝑣 − 𝑣ℎ) 𝑑x +
∑︁
𝑒∈T

∫
𝑒

(𝑣 − 𝑣ℎ)⟦∇𝑢ℎ⟧𝑒 𝑑𝑠,∀𝑣ℎ ∈ Vℎ,

where ⟦∇𝑢ℎ⟧𝑒is the jump, definition (2.29) in the outward flux on an edge 𝑒.

The first term is known as the interior residual and the second the boundary residual.

Applying the Cauchy-Schwarz inequality,

≤
∑︁
𝐾∈T

∥ 𝑓 + Δ𝑢ℎ∥𝐿2 (𝐾 ) ∥𝑣 − 𝑣ℎ∥𝐿2 (𝐾 ) +
∑︁
𝑒∈T

∥⟦∇𝑢ℎ⟧∥𝐿2 (𝑒) ∥𝑣 − 𝑣ℎ∥𝐿2 (𝑒)∀ 𝑣ℎ ∈ Vℎ .

(3.5)

Suppose 𝑢 = 𝐻1
0 (Ω), and let 𝐾 denote the subdomain of elements sharing a common edge with

element 𝐾,
�̃� = {∪𝐿 ∈ T | �̄� ∩ �̄� ≠ ∅}.

For a generic 𝑣 ∈ 𝐻1(Ω) approximated by a piecewise linear polynomial function using (2.27), it can
be shown using interpolation theory that ∃ a constant 𝐶 s.t.

∥𝑣 − Πℎ𝑣∥𝐿2 (𝐾 ) ≤ 𝐶ℎ𝐾 |𝑣 |𝐻1 (�̃� ) and

∥𝑣 − Πℎ𝑣∥𝐿2 (𝜕𝐾 ) ≤ 𝐶ℎ
1/2
𝑒 |𝑣 |𝐻1 (�̃� ) ,

(3.6)

where ℎ𝐾 is the diameter of 𝐾 and ℎ𝑒 the length of the edge. Let

[𝑅 = ∥ℎ𝐾 ( 𝑓 + Δ𝑢ℎ)∥𝐿2 (𝐾 )

and
[𝐽 = ∥ℎ−1/2

𝑒 ⟦∇𝑢ℎ⟧∥𝐿2 (𝑒) .
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Selecting 𝑣 − 𝑣ℎ = 𝜖 and 𝑣ℎ = Πℎ𝑣 and substituting the results from (3.6) into (3.5),

∥∇𝜖 ∥2
𝐿2 (Ω) ≤ 𝐶

∑̃︁
𝐾∈T

([𝑅 + [𝐽 ) |𝜖 |𝐻1 (�̃� ) , applying the Cauchy Schwartz inequality,

≤ 𝐶
( ∑̃︁
𝐾∈T

([𝑅 + [𝐽 )2

)1/2 ( ∑̃︁
𝐾∈T

|𝜖 |2
𝐻1 (�̃� )

)1/2

and since
∑̃︁
𝐾∈T

|𝜖 |2
𝐻1 (�̃� ) = 𝐶∥∇𝜖 ∥

2
𝐿2 (Ω) ,

∥∇𝜖 ∥𝐿2 (Ω) ≤ 𝐶
( ∑̃︁
𝐾∈T

([𝑅 + [𝐽 )2

)1/2

,

(3.7)

which gives a reliable estimate for the error on an element 𝐾 ∈ T of

∥∇𝑒∥𝐿2 (𝐾 ) ≤ [𝑅 + [𝐽 . (3.8)

Equation (3.8) provides an estimator for the error measured in the natural norm 𝐻1(Ω), and this can
be used in step 2 - estimate the error within a mesh adaptivity algorithm. It is also shown in [Ainsworth
and Oden 2000] that there is a lower bound to ensure the efficiency of the error estimator. This is
given by

[𝑅 ≤ 𝐶∥∇𝜖 ∥𝐿2 (�̃� ) and

[𝐽 ≤ 𝐶∥∇𝜖 ∥𝐿2 (�̃� ) ,
(3.9)

up to data oscillation, which is the error introduced by the averaging processes associated with finite
element methods (FEM) regardless of quadrature.

3.3.2 Mixed method

A computable error estimator for the mixed finite element is given by Carstensen in reference [Carstensen
1997] for the model Poisson problem (2.29), to control the error with 𝑋 ≡ 𝐻 (𝑑𝑖𝑣,Ω) × 𝐿2(Ω) norm,
specifically

∥𝜖 ∥2
𝑋 := ∥𝑢 − 𝑢ℎ∥2

𝐿2 (Ω) + ∥p − pℎ∥2
𝐻 (𝑑𝑖𝑣,Ω) . (3.10)

The reliability and efficiency results from [Carstensen 1997] are stated in equations (3.13) and (3.14),
respectively.

Definition 3.9 Local error reference [Carstensen 1997]

For any edge 𝑒 of 𝐾 ∈ Tℎ, let ⟦pℎ · t⟧𝑒 denote the jump of pℎ · t across 𝑒 with t being the tangential
unit vector along 𝑒. Let ℎ𝑒 denote the length of 𝑒. Then for this problem define

[2
𝐾,𝐶 = ∥ 𝑓 + ∇ · pℎ∥2

𝐿2 (𝐾 ) + ℎ
2
𝐾 ∥curl(pℎ)∥2

𝐿2 (𝐾 ) + ℎ
2
𝐾 min
𝑣ℎ∈Vℎ

∥pℎ − ∇𝑣ℎ∥2
𝐿2 (𝐾 ) + ∥ℎ1/2

𝑒 ⟦pℎ · t⟧𝑒∥2
𝐿2 (𝜕𝐾 ) ,

(3.11)
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for any 𝐾 ∈ T and consider the sum of all element contributions,

[𝐶 =

√︄ ∑︁
𝐾∈T

[2
𝐾,𝐶

. (3.12)

The following results provide a posteriori error bounds for certain types of finite elements when applied
to the model Poisson problem.

Theorem 3.10 Reliable a posteriori error bound reference [Carstensen 1997]

For the RT, BDM or the BDFM elements there is a positive constant 𝑐1 which only depends on A, Ω,
and on the shape of the elements and their polynomial degree p, such that,

∥p − pℎ∥2
𝐻 (𝑑𝑖𝑣,Ω) + ∥𝑢 − 𝑢ℎ∥2

𝐿2 (Ω) ≤ 𝑐1[
2
𝐶 . (3.13)

Theorem 3.11 Efficient a posteriori error bound reference [Carstensen 1997]

For the RT, BDM or the BDFM elements there is a positive constant 𝑐2 which only depends on A, Ω,
and on the shape of the elements and their polynomial degree 𝑝, such that,

𝑐2[
2
𝐶 ≤ ∥p − pℎ∥2

𝐻 (𝑑𝑖𝑣,Ω) + ∥𝑢 − 𝑢ℎ∥2
𝐿2 (Ω) . (3.14)

Equation (3.11) can be used in step 2 of the mesh adaptivity process when using the mixed method,
enabling the error to be monitored element-wise during computation. Following definition 3.6, an
example of a mesh refinement algorithm 1 that uses the element-wise error estimates to mark those
requiring refinement is given below.

Algorithm 1 Equidistribution Strategy
Require: 𝑟 ∈ (0, 1), [𝐾 , 𝐾 ∈ T ,N

1: Calculate

[ =

( ∑︁
𝐾∈T

([2
𝐾 )/N

)1/2

.

2: for all 𝐾 ∈ T do
3: if [𝐾 > 𝑟[ then
4: mark 𝐾 for refinement
5: end if
6: end for

An alternative formulation of an a posteriori error estimator for the mixed method is described by
Braess and Verfurth in reference [Braess and Verfurth 1996]. This uses the following mesh-dependent
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norms,

∥ξ∥𝐿2
ℎ

:=

(
∥ξ∥2

𝐿2 (𝐾 ) + ℎ
∑︁
𝑒∈T

∥ξ · n∥2
𝐿2 (𝑒)

)1/2

ξ ∈ 𝐻 (𝑑𝑖𝑣,Ω) and

∥∇𝑣∥𝐿2
ℎ

:=

(∑︁
𝐾

∥∇𝑣∥2
𝐿2 (𝐾 ) + ℎ

−1
∑︁
𝑒∈K

⟦𝑣⟧2
𝐿2 (𝑒)

)1/2

𝑣 ∈ 𝐿2(Ω).

(3.15)

These are used to control the error,

∥𝜖 ∥2
𝑋 := ∥∇𝑢 − ∇𝑢ℎ∥2

𝐿2 (Ω) + ∥p − pℎ∥2
𝐿2 (Ω) . (3.16)

The formulation uses the following residual contributions to the error from the elements and the jumps
on the inter-element boundaries:

[𝐾,𝐵,1 = ∥∇𝑢ℎ − pℎ∥𝐿2 (𝐾 ) ,

[𝐾,𝐵,2 = ℎ𝐾 ∥∇ · pℎ − 𝑓 ∥𝐿2 (𝐾 ) and

[𝑒,𝐵 = ℎ−1/2∥⟦𝑢ℎ⟧∥𝐿2 (𝑒) .

(3.17)

In this case the local error estimator is a weighted combination,

[𝐾,𝐵 =

(
[2
𝐾,𝐵,1 + [

2
𝐾,𝐵,2 +

∑︁
𝑒∈𝜕𝐾

[2
𝑒,𝐵

)1/2

. (3.18)

In the next section we will use a benchmark problem to examine the effectivity indices for the three
estimators.

3.4 Test problems

In this section we apply the h-adaptivity algorithm to a range of problems. In the first experiment we
compare the error estimators from Ainsworth (3.8), Carstensen (3.11) and Braess (3.18) by computing
EI ratio on a successively globally refined mesh. We use the manufactured benchmark Poisson
problems given in (2.44) and (2.45). For ease of reference these are restated below,

−Δ𝑢 = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω.
(3.19)

For case 1 let
𝑢 = sin(2𝜋𝑥) sin(2𝜋𝑦),

and for case 2 let
𝑢 = exp

(
−𝛼((𝑥 − 1/2)2 + (𝑦 − 1/2)2)

)
.

In each case we select Ω = [0, 1]2 and determine the forcing function using 𝑓 = −∇ · ∇𝑢. For case 2
set 𝛼 = 1000.
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The aim of this experiment is to show that each estimator is robust with respect to the specified norms.
Whilst the stated intention is to focus on the mixed method we have included the Ainsworth estimator
which used the primal method for comparison and validation purposes.

We solve the problem (3.19) with primal and mixed methods, using successive global mesh refine-
ment. At each refinement, we calculate ∥𝜖 ∥𝑋. Also we determine the a posteriori error estimates,
Ainsworth (primal), Carstensen and Braess (mixed) following the process set out below.

1. Select method of solution i.e. primal or mixed and select the appropriate a posteriori error
estimator.

2. Specify an initial mesh.
3. Compute the dimension of the solution space, if this exceeds a specified tolerance exit the

process.
4. Solve the discrete problem using the chosen method.
5. Using the solution compute the global error ∥𝜖 ∥𝑋 and the a posteriori error estimate [.
6. Calculate EI using equation (3.4).
7. Refine mesh globally and repeat from step 3.

The results from these experiments are shown graphically in figure 3-2 and 3-3. They are consistent
and indicate that all three error estimators give reasonably tight upper bounds for the error when
computed in their respective norms. The EI ratios for the mixed method, Carstensen and Braess,
show they are nearly asymptotically exact.

Remark 3.12 Comparison of 𝐸𝐼 for the various estimators

In the case of the Ainsworth estimator, it is a known result that 𝐸𝐼 ∼ 10 for a linear Poisson problem,
[Cheddadi et al. 2008]. For both of the mixed error estimators, the reconstructions occur in a richer
𝐻 (𝑑𝑖𝑣,Ω) space with superconvergence properties to facilitate sharper error bounds.
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(a) Error in Ainsworth estimator [𝐴 with Vℎ ≡ P2∩C0,
and ∥𝜖 ∥𝑋 ≡ ∥∇𝑢 − ∇𝑢ℎ∥𝐿2

(b) Ainsworth estimator 𝐸𝐼 = [𝐴/∥𝜖 ∥𝑋

(c) Error in Carstensen estimator [𝐶 with Wℎ ≡
𝑅𝑇1 × P1, and ∥𝜖 ∥𝑋 ≡ ∥p − pℎ∥𝐻 (𝑑𝑖𝑣) + ∥𝑢 − 𝑢ℎ∥𝐿2

(d) Carstensen estimator 𝐸𝐼 = [𝐶/∥𝜖 ∥𝑋

(e) Error in Braess estimator [𝐵 with Wℎ ≡ 𝑅𝑇1 × P1,
and ∥𝜖 ∥𝑋 ≡ ∥p − pℎ∥𝐿2 + ∥∇𝑢 − ∇𝑢ℎ∥𝐿2

(f) Braess estimator 𝐸𝐼 = [𝐵/∥𝜖 ∥𝑋

Fig. 3-2. Comparative performance of a posteriori error estimators Ainsworth, Braess
and Carstensen when applied to the 2D benchmark problem (3.19) for case 1 with 𝑢 =

sin(2𝜋𝑥) sin(2𝜋𝑦). The 𝐸𝐼 ratio indicates that the Carstensen and Braess estimators are more ac-
curate and produce tighter estimates than the Ainsworth estimator in these experiments.
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(a) Error in Ainsworth estimator [𝐴 with Vℎ ≡ P2∩C0,
and ∥𝜖 ∥𝑋 ≡ ∥∇𝑢 − ∇𝑢ℎ∥𝐿2

(b) Ainsworth estimator 𝐸𝐼 = [𝐴/∥𝜖 ∥𝑋

(c) Error in Carstensen estimator [𝐶 with Vℎ ≡ 𝑅𝑇1 ×
P1, and ∥𝜖 ∥𝑋 ≡ ∥p − pℎ∥𝐻 (𝑑𝑖𝑣) + ∥𝑢 − 𝑢ℎ∥𝐿2

(d) Carstensen estimator 𝐸𝐼 = [𝐶/∥𝜖 ∥𝑋

(e) Error in Braess estimator [𝐵 with Vℎ ≡ 𝑅𝑇1 × P1,
and ∥𝜖 ∥𝑋 ≡ ∥p − pℎ∥𝐿2 + ∥∇𝑢 − ∇𝑢ℎ∥𝐿2

(f) Braess estimator 𝐸𝐼 = [𝐵/∥𝜖 ∥𝑋

Fig. 3-3. Comparative performance of a posteriori error estimators Ainsworth, Braess
and Carstensen when applied to the 2D benchmark problem (3.19), case 2 with 𝑢 =

exp
(
−𝛼

(
(𝑥 − 0.5)2 + (𝑦 − 0.5)2) ) and 𝛼 = 1000. The 𝐸/𝐼 ratio indicates that the Carstensen and

Braess estimators are more accurate and produce tighter estimates than the Ainsworth estimator in
these experiments. 56



For the next set of experiments, we will focus attention on estimators for the mixed method. Our
objective is to make a choice suitable for use in approximating solutions to large scale and physically
complex problems. Before doing so we introduce a variant of the Braess estimator described in the
latter sections of [Braess and Verfurth 1996]. This modifies the second term

[𝐾,𝐵,2 = ℎ𝐾 ∥∇ · pℎ − 𝑓 ∥𝐿2 (𝐾 )

of equation (3.18), with an additional power of ℎ, s.t.

[̃𝐾,𝐵,2 = ℎ−1
𝐾 [𝐾,𝐵,2.

This gives an error estimator
∥𝑒∥𝑋 ≤ 𝐶[𝑊𝐵

where 𝑋 ≡ 𝐻 (𝑑𝑖𝑣,Ω) × 𝐿2(Ω).

In this case the local error estimator is a weighted combination,

[𝐾,𝑊𝐵 =

(
[2
𝐾,𝐵,1 + [̃

2
𝐾,𝐵,2 +

∑︁
𝑒∈𝜕𝐾

[2
𝑒,𝐵

)1/2

. (3.20)

We will refer to this estimator as ’Weighted Braess’. To examine the performance of the Carstensen,
Braess and Weighted Braess error estimators we will use the same test problems as in the first
experiment, (3.19). We use the following process for each estimator defined in equations (3.12),
(3.18) and (3.20).

1. Determine the choice of a posteriori error estimator.
2. Define an initial mesh and select the refinement threshold parameter 𝑟.
3. Determine the dimension of the mixed solution space Wℎ.
4. If dimension Wℎ is greater than a specified tolerance 𝐷, then exit.
5. Solve the discrete problem using (2.31) for (𝑢ℎ,pℎ).
6. Calculate the following errors: ∥𝑢 − 𝑢ℎ∥𝐿2 , ∥p − pℎ∥𝐿2 , and ∥p − pℎ∥𝐻 (𝑑𝑖𝑣) .
7. Estimate the local error using the selected estimator.
8. Mark the elements requiring refinement using algorithm 1.
9. Refine the mesh using a bisection and completion algorithm 1 over the elements marked.

10. Repeat from step 2.

In these experiments we use 𝑟 = 0.5, Wℎ ≡ 𝑅𝑇1 × P1 and set 𝐷 = 1500000, a practical limit based
upon available computing resources.

The results of the experiments are shown in figures 3-4 and 3-5.

1The mesh refinement is achieved through the application of the standard FENICS library bisection algorithms.
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(a) Carstensen estimator - error measured in the
specified norms following h-adaptive refinement.

(b) Braess estimator - error measured in specified
norms following h-adaptive refinement.

(c) Weighted Braess estimator - error measured in
specified norms following h-adaptive refinement.

(d) Comparison of ∥p − pℎ∥𝐿2 error using the
Carstensen, Braess and Weighted Braess estima-
tors.

Fig. 3-4. Comparison of h-adaptivity algorithm applied to problem (3.19) case 1 with 𝑢 =

sin(2𝜋𝑥) sin(2𝜋𝑦), with 𝑟 = 0.5, and Wℎ = 𝑅𝑇1 × P1.
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(a) Error measured in specified norms following re-
finement using Carstensen estimator.

(b) Error measured in specified norms following re-
finement using Braess estimator.

(c) Error measured in specified norms following re-
finement using Weighted Braess estimator.

(d) Comparison of ∥p − pℎ∥𝐿2 error using the
Carstensen, Braess and Weighted Braess estima-
tors.

Fig. 3-5. Comparison of h-adaptivity algorithm applied to problem (3.19) case 2 with 𝑢 =

exp
(
−𝛼

(
(𝑥 − 0.5)2 + (𝑦 − 0.5)2) ) , with 𝑟 = 0.5, 𝛼 = 1000 and Wℎ = 𝑅𝑇1 × P1.
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The results indicate that both the Carstensen and Weighted Braess estimators give similar results for
the errors in the more complex peak function example. Carstensen is consistent in that it performs
well in reducing the ∥p − pℎ∥𝐿2 error in both of the benchmark cases. We conclude that for our
purposes either the Carstensen or the Weighted Braess error estimators are likely to be suitable for
use in solving the practical multi-layered aquifer flow problems described in chapter 4.
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Chapter 4

The forward flow model

Abstract

In this chapter, we consider the steady-state problem of approximating the outflow into a well sited in an un-
confined aquifer. In this context steady-state means that the dynamic height of the water in the well is such
that the rate of flow into the well (stabilisation flow) matches the external pumping rate. We introduce Richards’
equation which is used to model ground water flow and reduces to an elliptic PDE in the steady state. A mixed
FE discretisation of the weak formulation of Richards’ equation is used to solve the problem. An h-adaptive
algorithm with a local error estimator based upon [Braess and Verfurth 1996] is applied to improve compu-
tational efficiency and solution accuracy. Numerical experiments using data from 3 working wells in the São
Paulo region of Brazil are used to validate the model.

4.1 Introduction

Aquifers are geological formations capable of holding and transferring water. They may contain sev-
eral layers of permeable and impermeable material creating either confined or unconfined structures,
which can be exploited. An unconfined aquifer has an upper water surface (water table) at atmo-
spheric pressure and thus is able to rise and fall. Figure 4-1 shows a cross section of the physical set
up for well within a three layered aquifer.

Within this chapter, we apply the FE method of solution discussed in chapter 2 and the h-adaptivity al-
gorithm from chapter 3 to approximate solutions to Richards’ equation, subject to physically motivated
boundary conditions determined by the set up of the well. Our primary interest is in the calculation
of flux which we use to determine the flow into the well and subsequently quantify the hydraulic con-
ductivity. To that end we will make use of mixed finite element techniques. The auxiliary flux variable,
whilst subject to regularity constraints, may provide higher fidelity approximation than with classical
finite element techniques. This method is well illustrated in [Bause and Knabner 2004], where the au-
thors study time dependent examples of single layer one and two dimensional flows. The reference
models the evolution of pressure subject to appropriate physical boundary conditions using lowest
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Water

𝑢 > 0
Saturated zone

Unsaturated zone
𝑢 < 0

Seepage face

Layer 1

Layer 2

Layer 3

𝑢 = 0

Ground level

Impervious boundary

𝐻𝑠

Fig. 4-1. A typical seepage problem showing a cross section of a well with 3 soil layers in the sur-
rounding aquifer. The upper part of the left lateral boundary is in contact with the atmosphere, while
the lower part is underwater. The height, 𝐻𝑠, at which the level set 𝑢 = 0, the phreatic interface,
meets the left hand boundary is unknown in many seepage problems.

order 𝑅𝑇0 finite elements within the discretisation.

We develop a finite element discretisation to the weak form of Richards’ equation for the mixed for-
mulation which is used to quantify the impact of including soil layers within the discrete model. An
h-adaptive algorithm from chapter 3 is used to improve computational efficiency and accuracy in the
approximation of pressure and flux variables, the latter being required to calculate the stabilisation
flow. The results are validated using measurements from 3 working wells of increasing complex con-
figuration, in the São Paulo region of Brazil. The first example contains 2 soil layers, the second 3
layers and a free boundary at the phreatic interface (water table) and the third 5 layers with outflow
constrained between 2 filters. The modelling approach here does not appear in any current literature.

4.2 Richards’ Equation

The movement of groundwater as described in chapter1, is frequently modelled by Richards’ equation
under the assumption that the unsaturated zone can be approximated as a porous medium. Let us
initially consider Richards’ equation in a 3D spatial domain (𝑥, 𝑦, 𝑧), the 𝑧 direction being vertical.
Infiltration is mainly driven by gravity but the horizontal diffusion is generally not negligible and will
depend upon the porosity of the soil. The ability of unsaturated soil to retain water is described
by a hydraulic conductivity function. It is a function of the water pressure in the void pores and
assumes that the air pressure is constant. The soil layers are split into non-overlapping regions, each
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of which is characterised by different hydraulic functions. We also assume that the groundwater flow is
isotropic within a soil layer. Modelling the solution behaviour between the soil layers requires particular
attention, as in our mathematical model we require continuity in the pressure 𝑢 at this interface.

Using this background we follow the formulation of Richards’ equation described in reference [Bause
and Knabner 2004]. We state the governing PDE for the pressure head variable 𝑢 in the following
way, if 𝐼 = (0, 𝑇) ⊂ R, and 𝑢(x, 𝑡) : Ω̄ × 𝐼 → R,

(Θ(𝑢))𝑡 − ∇ ·
(
K(𝑢)∇(𝑢 + 𝑧)

)
= 𝑓 , in Ω. (4.1)

The relative water content is given by Θ(𝑢) and the function 𝑓 : Ω̄ → R describes sources and sinks.
The hydraulic head (𝑢+ 𝑧) represents the height of the water column above some reference elevation
𝑧 = 0. The elevation head 𝑧 at any point is the height of that point with a direction opposite to gravity.
The vertical distance between the point and the water table is defined as the pressure head 𝑢. The
formulation of Richards’ equation (4.1) assumes that the medium is incompressible and so the porosity
does not change with time or pressure. Empirical formulations for Θ(𝑢) and the coefficient K(𝑢) have
been developed by Van Genuchten, see [Genuchten 1980] and also by Haverkamp, [Haverkamp et
al. 1977]. These formulations are described below.

4.2.1 Van Genuchten description of hydraulic conductivity

Let 0 < 𝛼, 𝑛, 𝑚 ∈ R be soil dependent parameters, then the relative water content is expressed in
terms of pressure by the following relationship,

Θ(𝑢) =


1/(1 + |𝛼𝑢 |𝑛)𝑚 if 𝑢 < 0,

1 if 𝑢 ≥ 0,
(4.2)

where 𝑛, 𝑚 are related through:
𝑚 = 1 − 1/𝑛. (4.3)

Let 𝑘 > 0 ∈ R denote the saturated hydraulic conductivity, then the hydraulic conductivity K(𝑢) is
defined through:

KVG (𝑢) =

𝑘 (Θ(𝑢))1/2 (

1 − (1 − Θ(𝑢)1/𝑚)𝑚
)2 if 𝑢 < 0,

𝑘 if 𝑢 ≥ 0.
(4.4)

Further note that the hydraulic conductivity is sometimes written as

K(𝑢) = 𝑘K𝑟 (𝑢) (4.5)

where K𝑟 denotes the relative hydraulic conductivity. For reference some values for the soil param-
eters used within the Van Genuchten model are given in Table 4.1.

63



soil type 𝛼 𝑛

silty sand 0.66 1.65
sandstone 0.08 1.36
basalt 1.07 1.52
clay 0.15 1.17

Table 4.1. Soil parameters for Van Genuchten model.

4.2.2 Simplified Haverkamp description of hydraulic conductivity

Let 𝑀, 𝛽 ∈ R as parameters that depend upon the type of soil, the hydraulic conductivity K is de-
scribed in the Haverkamp model [Haverkamp et al. 1977] as:

KHK (𝑢) =

𝑘
(
1/(1 + |𝛽𝑢 |𝑀 )

)
if 𝑢 < 0,

𝑘 if 𝑢 ≥ 0.
(4.6)

In reference [Bause and Knabner 2004], the authors provides details of the Haverkamp parameters
to be used for sandy soil. We were unable to find a parametric set for general soils in the literature.
Given our requirement to address a range of soil types we have calculated the parameters 𝛽 and 𝑀
as those that ensure K𝐻𝐾 (𝑢) is the optimal least squares approximation of K𝑉𝐺 (𝑢) of the form given
in (4.6). Table 4.2 gives the Haverkamp parameters for the soil types within the examples used here.
We will use these values in conjunction with equation (4.6) for future examples. From a computational
perspective it was observed that there was no significant difference between the VG and HK descrip-
tions. Both are easy to implement from a programming perspective. A practical consideration is that
the Van Genuchten model is more widely adopted. As a result, there are abundant measurements of
soil parameters available in reference literature.

Soil Type 𝛽 𝑀

Silty Sand 4.53 1.31
Fine Sandstone 2.6 0.63

Basalt 11.03 1.2
Claystone 100.3 0.51

Coarse Sandstone 0.07 1.17
Diabase 11.03 1.2

Table 4.2. Haverkamp parameters used in the numerical experiments. Note that for cases where
there is either no flow or where the soil is saturated, the parameters are not required in the applica-
tion of the algorithm. In addition based upon our BGS references we have assumed that Basalt and
Diabase have similar hydraulic properties, as do Claystone and Shale.
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4.2.3 Saturated hydraulic conductivity 𝑘

Frequently it may be possible to classify the type of soil but without detailed tests estimates for 𝑘 within
the layers in the aquifer are not available. In such cases it will be necessary to use values derived from
the BGS reference documentation [Lewis, Cheney, and O’Dochartaigh 2006]. Reference [Loáiciga,
W. Yeh, and Ortega-Guerrero 2006] indicates that the parameter 𝑘 is widely assumed to follow a log-
normal distribution. Reference [Mesquita 2002] validates this assumption for the area of Brazil from
which we have data. At this stage our main interest is in the mean values of the hydraulic conductivity
for soil types, as part of our investigation into the forward model. The values of 𝑘 for various soil types
are shown in table 4.3.

Soil Type min 𝑘 (m/s) max 𝑘 (m/s) 𝑚𝑒𝑎𝑛

Sand 1.16 × 10−6 5.79 × 10−3 2.24 × 10−4

Silt 1.16 × 10−8 1.16 × 10−6 1.56 × 10−7

Sandstone 5.79 × 10−10 2.31 × 10−4 3.68 × 10−6

Fractured Basalt 1.16 × 10−9 1.16 × 10−5 3.77 × 10−7

Dense Basalt 2.78 × 10−10 2.78 × 10−7 1.7 × 10−8

Shale 5.79 × 10−13 1.16 × 10−9 5.78 × 10−11

Fractured Diabase 1.16 × 10−9 1.16 × 10−5 3.77 × 10−7

Dense Diabase 2.78 × 10−10 2.78 × 10−7 1.7 × 10−8

Clay 5.79 × 10−12 1.16 × 10−8 5.78 × 10−10

Table 4.3. A sample of hydraulic conductivity data taken from the British Geologic Survey [Lewis,
Cheney, and O’Dochartaigh 2006], for various soil types.
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Fig. 4-2. Relative permeability coefficients K𝑉𝐺
𝑟 and K𝐻𝐾

𝑟 as a function of pressure head 𝑢. Note
that K𝑟 (𝑢) → 0 as 𝑢 → −∞ but K𝑟 (𝑢) > 0 for all 𝑢. Further, observe the smoothness of K𝑟 is
quite different at 𝑢 = 0 for different soil types. This lack of regularity makes the numerical simulation
of, say clay, particularly challenging. We also note that these functions are scaled by the saturated
hydraulic conductivity, 𝑘 , which varies enormously between different soils. For example the values
are approximately: 1 × 10−5 ms−1 silty sand, 1 × 10−6 ms−1 sandstone, 1 × 10−5 ms−1 basalt and
1 × 10−9 ms−1 clay.

Figure 4-2 illustrates the behaviour of the hydraulic conductivity using the Van Genuchten and Haverkamp
descriptions. As can be seen from equations (4.4) and (4.6), there are two regimes of interest, firstly
where the medium is fully water saturated, 𝑢 ≥ 0 and K(𝑢) = 𝑘 . Secondly where the medium is
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partially water saturated 𝑢 < 0, and 0 < K(𝑢) < 𝑘. This means that equation (4.1) is linear and
elliptic in the saturated zone and non-linear elliptic in the unsaturated zone.

4.3 Modelling the outflow in steady state

To approximate the outflow into an aquifer we consider a steady state situation where the flux into the
well is matched by the rate of pumping the liquid out. As there is no variation in time equation 4.1 is
simplified with the first term (Θ(𝑢))𝑡 ≡ 0. Then equation 4.1 reduces to the following elliptic PDE:

−∇ ·
(
K(𝑢)∇(𝑢 + 𝑧)

)
= 𝑓 , (4.7)

which may be solved subject to specified boundary conditions. We assume the soil can be repre-
sented as isotropic layers, where as previously stated there is no variation in the physical properties
in the horizontal direction.

4.3.1 Boundary conditions

Figure 4-3 show a cross section of a typical well in this instance with 2 soil layers. The boundary
conditions are determined by the physical configuration of the well, in particular the static height of
the water table 𝐻, the seepage interface height 𝐻𝑠 and the dynamic (pumping) height of the water
level in the well, 𝐻𝑤 . The water table height far from the well is known. The conditions on each
boundary are described below.

• We consider the right hand boundary to be in a position where the net flow across it is approx-
imately zero. For 𝑧 < 𝐻 the pressure head 𝑢 depends upon the depth below 𝐻 and a Dirichlet
boundary condition 𝑔𝐷 = 𝐻 − 𝑧 is applied. Above the water table, the right hand boundary is in
the unsaturated zone, there is no flow and so a homogeneous Neumann condition is applied.

• On the left hand boundary for 𝑧 < 𝐻𝑊 the pressure head 𝑢 is determined by the depth of the
water and a Dirichlet boundary condition 𝑔𝐷 = 𝐻𝑊 − 𝑧 is applied. On left hand boundary the
seepage interface 𝐻𝑤 < 𝑧 < 𝐻𝑠 is at atmospheric pressure and so a Dirichlet condition 𝑢 = 0
is used. On the left hand boundary for 𝑧 > 𝐻𝑠 there is zero flow as it sits in the unsaturated
zone. Hence a homogeneous Neumann condition is applied.

• Assuming no rainfall there is no flow on the upper boundary and a homogeneous Neumann
condition is applied.

• The lower boundary is assumed to sit on an impervious layer with no flow. Hence a homoge-
neous Neumann condition is applied.

We collect all internal boundaries between soil layers into a set of interfaces that we denote I. The
boundary conditions we impose are given as:

𝑢 = 𝑔𝐷 on Γ𝐷 and

(K(𝑢)∇(𝑢 + 𝑧)) · n = 𝑔𝑁 on Γ𝑁 .
(4.8)
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Figure 4-3 shows the physical boundary conditions, observe that for this problem 𝑔𝑁 = 0. The
underlying assumptions in developing the model which are discussed later in this chapter imply radial
symmetry and figure 4-3 also defines the coordinate system.

𝑥

𝑧

𝐻𝑠
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Layer 2

Layer 1

𝑔𝐷 = 0 𝑔𝐷 = 𝐻 − 𝑧

Well axis

𝑔𝐷 = 𝐻𝑤 − 𝑧

𝑔𝑁 = 0

𝐻𝑤

𝑧 = 𝑧𝐵 (bottom)

𝑧 = 𝑧𝑇 (ground)

𝑢 = 0

𝑔𝑁 = 0

𝑔𝑁 = 0

I𝑧 = 𝑑1
𝑥 = 𝑥𝐿 𝑥 = 𝑥𝑅

𝑔𝑁 = 0

𝑧 = 𝐻

Fig. 4-3. Boundary conditions (BCs) for a cross-section of a well for dual layer seepage problem.

4.3.2 Weak formulation of steady state Richards’ equation

Following equation (2.30) an auxiliary variable

p = −K(𝑢)∇(𝑢 + 𝑧),

is introduced to represent the flux density vector, enabling equation (4.7) together with boundary
conditions, to be rewritten as a first order system:

∇ · p = 𝑓 in Ω, (4.9)

(K(𝑢))−1p + ∇(𝑢 + 𝑧) = 0 in Ω, (4.10)

𝑢 = 𝑔𝐷 on Γ𝐷 and (4.11)

p · n = 𝑔𝑁 on Γ𝑁 , (4.12)

where 𝑔𝐷 is assumed to be an affine function. Following the method set out in problem (2.31) we will
seek a solution (p, 𝑢) ∈ 𝐻 (𝑑𝑖𝑣,Ω) × 𝐿2(Ω). We will also need the subspace

𝐻0(𝑑𝑖𝑣,Ω) ≡ {ξ ∈ 𝐻 (𝑑𝑖𝑣,Ω) | ξ · n = 0, on Γ𝑁 }.

Taking the inner product of equation (4.10) with test function ξ ∈ 𝐻0(𝑑𝑖𝑣,Ω),∫
Ω

(
ξ · (K(𝑢))−1p + ξ · ∇(𝑢 + 𝑧)

)
𝑑x = 0,
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giving ∫
Ω

(
ξ · (K(𝑢))−1p + ∇ · ((𝑢 + 𝑧)ξ) − (𝑢 + 𝑧)∇ · ξ

)
𝑑x = 0,

applying the Gauss Theorem and rearranging gives,∫
Ω

(K(𝑢))−1p · ξ 𝑑x −
∫
Ω

𝑢∇ · ξ 𝑑x =

∫
Ω

𝑧∇ · ξ 𝑑x −
∫
Γ𝐷

(𝑢 + 𝑧)ξ · n 𝑑𝑠 −
∫
Γ𝑁

(𝑢 + 𝑧)ξ · n 𝑑𝑠,

applying the BCs, the Neumann boundary term is zero.∫
Ω

(K(𝑢))−1p · ξ 𝑑x −
∫
Ω

𝑢∇ · ξ 𝑑x =

∫
Ω

𝑧∇ · ξ 𝑑x −
∫
Γ𝐷

(𝑔𝐷 + 𝑧)ξ · n 𝑑𝑠,

with further simplification of the RHS,∫
Ω

ξ · (K(𝑢))−1p 𝑑x −
∫
Ω

𝑢∇ · ξ 𝑑x = −
∫
Γ𝐷

𝑔𝐷ξ · n 𝑑𝑠 +
∫
Ω

(∇ · (𝑧ξ) − ∇𝑧 · ξ) 𝑑x −
∫
Γ𝐷

𝑧ξ · n 𝑑𝑠.

= −
∫
Γ𝐷

𝑔𝐷ξ · n 𝑑𝑠 +
∫
Γ𝐷

𝑧ξ · n 𝑑𝑠 −
∫
Ω

∇𝑧 · ξ 𝑑x −
∫
Γ𝐷

𝑧ξ · n 𝑑𝑠.

= −
∫
Γ𝐷

𝑔𝐷ξ · n 𝑑𝑠 −
∫
Ω

∇𝑧 · ξ 𝑑x.

Hence the weak form of equation (4.10) becomes∫
Ω

ξ · (K(𝑢))−1p 𝑑x −
∫
Ω

𝑢∇ · ξ 𝑑x = −
∫
Γ𝐷

𝑔𝐷ξ · n 𝑑𝑠 −
∫
Ω

b𝑧 𝑑x. (4.13)

Multiplying equation (4.9) by test functions 𝜙 ∈ 𝐿2(Ω) and integrating,∫
Ω

𝜙∇ · p 𝑑x =

∫
Ω

𝜙 𝑓 𝑑x. (4.14)

Combining equations (4.14) and (4.13) gives rise to the following mixed variational problem: find
(𝑢,p) ∈ 𝐿2(Ω) × H0(𝑑𝑖𝑣,Ω) s.t.

A((𝑢,p), (𝜙, ξ)) = L((𝜙, ξ)) ∀ (𝜙, ξ) ∈ 𝐿2(Ω) × H0(𝑑𝑖𝑣,Ω), (4.15)

with
A((𝑢,p), (𝜙, ξ)) =

∫
Ω

(K(𝑢))−1p · ξ 𝑑x −
∫
Ω

𝑢∇ · ξ 𝑑x +
∫
Ω

𝜙∇ · p 𝑑x (4.16)

and
L(𝜙, ξ) =

∫
Ω

𝜙 𝑓 𝑑x −
∫
Γ𝐷

𝑔𝐷ξ · n 𝑑𝑠 −
∫
Ω

b𝑧 𝑑x. (4.17)

Examining the variational form, we see that in the mixed formulation, the Neumann boundary condition
for the flux ξ · n|Γ𝑁

= 0, becomes an essential boundary condition, which must be enforced in the
function space, while the Dirichlet boundary condition 𝑢 = 𝑔𝐷 is a natural boundary condition which
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is present weakly in the variational form. This is in contrast to the primal formulation of the problem.
We will assume that 𝑔𝐷 is sufficiently smooth for (4.17) to make sense.

4.3.3 Discretisation

To solve equation (4.15) we follow the discretisation process for the Poisson problem described in
section 2.5.1. We seek a solution in the finite-dimensional subspace Hℎ × Uℎ. The spaces Hℎ ⊂
H0(𝑑𝑖𝑣,Ω) and Uℎ ⊂ 𝐿2(Ω) are chosen to satisfy the stability requirement given in theorem 2.36.
For example, a stable choice of finite elements is the Raviart Thomas elements of degree 1 (quadratic
approximation) and the discontinuous linear Lagrangian elements of degree 1 giving a mixed function
space 𝑅𝑇1(Ω) × P1(Ω) = Wℎ .

In order to ensure continuity in the pressure variable 𝑢ℎ over the interface I we adjust the mesh to
ensure that the interface I coincides with finite element boundaries. Then a discrete approximation
of (4.16)–(4.17) is to find (𝑢ℎ, 𝑝ℎ) ∈ Wℎ such that

A((𝑢ℎ,pℎ), (𝜙ℎ, ξℎ)) = L(𝜙ℎ, ξℎ)∀(𝜙ℎ, ξℎ) ∈ Wℎ . (4.18)

4.3.4 Linearisation

Solving equation (4.18) involves a non-linear system. To address the non-linearity we will use a
Picard iterative process, a comprehensive reference for which is [Kelley 1987], to solve the system
given by the discretisation. Specifically, given an initial guess 𝑢0

ℎ
(for example we set K ≡ 1), then for

𝑗 = 0, . . . , 𝐽, we seek (𝑢 𝑗+1
ℎ
,p

𝑗+1
ℎ

) ∈ Wℎ such that

A 𝑗 ((𝑢 𝑗+1
ℎ
,p

𝑗+1
ℎ

), (𝜙ℎ, ξℎ)) = L(𝜙ℎ, ξℎ) ∀ (𝜙ℎ, ξℎ) ∈ Wℎ, (4.19)

where

A 𝑗 ((𝑢 𝑗+1
ℎ
,p

𝑗+1
ℎ

), (𝜙ℎ, ξℎ)) =
∫
Ω

(K(𝑢 𝑗
ℎ
))−1p

𝑗+1
h

·ξh 𝑑x−
∫
Ω

𝑢
𝑗+1
ℎ

∇ ·ξh 𝑑x+
∫
Ω

𝜙ℎ∇ ·p 𝑗+1
ℎ

𝑑x, (4.20)

and L(𝜙, ξ) is as defined in equation (4.17), with an appropriate termination criterion on the iterative
approximation.

The linearised equation (4.20) gives us an essential building block to solve problem (4.9) and ap-
proximate the stabilisation flow 𝑄ℎ. Observing radial symmetry this is given at each iterative step 𝑗

by

𝑄
𝑗

ℎ
= 2𝜋𝑥𝐿

∫ 𝑧𝑇

𝑧𝐵

p
𝑗

ℎ
· n 𝑑𝑧. (4.21)

The LH boundary coincides with the side of the well 𝑥𝐵.

We will use equation (4.21) within an h-adaptive algorithm used to compute𝑄ℎ, described in algorithm
2 below.
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An alternative approach would be to use Newton’s method. This has the potential advantage of
quadratic convergence and so reducing the number of iterative steps. However, there is a disadvan-
tage that it is necessary to compute the Jacobean at each iteration. On balance it was consider that
the Picard was simpler to apply and that any performance benefits were likely to be marginal and so
Newton’s method was not used in the experiments
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Algorithm 2 Calculate stabilisation flow 𝑄ℎ

Require: K0, (p0
ℎ
, 𝑢0
ℎ
),T 0

ℎ
, 𝐷,Wℎ, 𝑡𝑜𝑙, 𝐽, 𝐾, 𝑟, 𝑄

0
ℎ

Ensure: (𝑄𝑚
ℎ
, 𝑑𝑖𝑚𝑚) 𝑚 = 0, . . . , 𝑀

1: 𝑚 = 0
2: 𝑗 = 0
3: while 𝑚 < 𝑀 do:
4: compute 𝑑𝑖𝑚 = Wℎ .𝑑𝑖𝑚, defined on T𝑚

5: if 𝑑𝑖𝑚𝑚 > 𝐷 then
6: 𝑄𝑀

ℎ
= 𝑄𝑚

𝑗

7: 𝑑𝑖𝑚𝑀 = 𝑑𝑖𝑚𝑚

8: break
9: end if

10: while 𝑗 < 𝐽 do:
11: solve (4.20) for (p 𝑗+1

h
, 𝑢
𝑗+1
ℎ

)
12: calculate K(𝑢 𝑗+1

ℎ
) using equation (4.6)

13: if ∥𝑢 𝑗+1
ℎ

− 𝑢 𝑗
ℎ
∥𝐿2 < 𝑡𝑜𝑙 or 𝑗 = 𝐽 − 1 then

14: (p𝐽
h
, 𝑢𝐽
ℎ
) = (p𝐽+1

h
, 𝑢
𝑗+1
ℎ

)
15: break
16: end if
17: 𝑗 := 𝑗 + 1
18: end while
19: Compute 𝑄𝑚

ℎ
using (p𝐽

h
, 𝑢𝐽
ℎ
) in equation (4.21)

20: Compute [𝐾,𝑊𝐵 ∀𝐾 ∈ T𝑚, using equation (3.20)
21: Mark 𝐾 ∈ T𝑚 for refinement using (3.6)
22: Refine mesh: T𝑚 := T𝑚+1, using bisection (standard FENICS software)
23: m := m + 1
24: end while

Within algorithm 2 let 𝐷 be the maximum permissible dimension of Wℎ, generally a limit set by the
available computing resources. The value 𝐽 is the maximum number of Picard iterations to be used
to solve equation (4.20). The maximum number of mesh refinement iterations is given by 𝑀. A
tolerance 𝑡𝑜𝑙 > 0 is set to determine the accuracy of the numerical approximation 𝑢ℎ, and 𝑟 ∈ (0, 1)
the mesh refinement parameter as defined in (3.6).

Initial values (p0
ℎ
, 𝑢0
ℎ
) for algorithm 2 may be obtained by solving the equation (4.15) using K(𝑢) ≡ 1

on the starting mesh.

Remark 4.1 The use of different sub-components within algorithm 2

In algorithm 2 we have specified using the Weighted Braess error estimator and the equidistribution
strategy to mark elements for refinement. It should be noted that there are other error estimators
or marking strategies that can be applied and are likely to achieve similar results. For example the
Carstensen error estimator.

Remark 4.2 Expected behaviour

Selecting 𝑟 = 0 will result in global refinement. The expectation is that the sequence (𝑄𝑚
ℎ
) → 𝑄ℎ, 𝑚 =
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0, . . . , 𝑀, for given 0 ≤ 𝑟 < 1.

4.3.5 Calculation of seepage face height

Whilst in many problems it is not necessary to compute the height of the seepage interface 𝐻𝑠, for
example when it sits naturally within an impervious boundary imposed by a concrete cap or a liner
to the well. Under these conditions, there can be no flow resulting in a homogeneous Neumann
boundary condition. However in some cases it is an important component of the physical boundary
conditions and is not known prior to the solution of the problem. This gives rise to a free boundary
problem, see figure 4-3. In such cases we require an additional iterative process. An initial estimate
𝐻0
𝑠 is made for the height of the seepage interface and the boundary problem is solved using algorithm

2. If we have estimated the height 𝐻0
𝑠 too low, points on the boundary directly above the estimated

seepage boundary will be computed to have

𝑢ℎ (𝑥𝐿 , 𝐻0
𝑠 + 𝜖) > 0 for some 𝜖 > 0

which is not physically possible. If the estimate is too high any point directly below the seepage face
will have

𝑢ℎ (𝑥𝐿 , 𝐻0
𝑠 − 𝜖) < 0

which is also not physically possible. This argument is used in [Cooley 1983] and shown diagrammat-
ically in figure 4-4. One method is to gradually increase 𝐻𝑠 using a series of guesses, 𝐻𝑛+1

𝑠 := 𝐻𝑛𝑠 +𝜖 ,
with 𝐻0

𝑠 = 𝐻𝑤 , and where 𝜖 > 0 is a small increment. The size of 𝜖 will depend upon the problem.
We use algorithm 2 to solve the problem for each value of 𝐻𝑛𝑠 𝑛 = 0, 1, . . . and stop the process when

𝑢ℎ (𝑥𝐿 , 𝐻𝑛−1
𝑠 ) > 0

and
𝑢ℎ (𝑥𝐿 , 𝐻𝑛𝑠 ) < 0.

Having determined that at least from a computational perspective

𝐻𝑛−1
𝑠 < 𝐻𝑠 < 𝐻

𝑛
𝑠

depending upon the degree of accuracy required we can repeat the process on the bracketing interval
using smaller 𝜖 . Another similar approach is to solve the linear problem with K ≡ 1, and use this to
determine 𝐻0

𝑠 , which in this case will be an overestimate. Hence we are able to specify Algorithm 3
which addresses the range of problems where 𝐻𝑠 is unknown.

Remark 4.3 Choice of 𝜖 and 𝑡𝑜𝑙

In algorithm 3 it is important that the parameter 𝜖 which is used to increment 𝐻𝑛𝑠 is chosen to be suf-
ficiently small e.g. 𝜖 < ℎ to ensure we are able to satisfy the condition |𝑢ℎ (𝑥𝐿 , 𝐻𝑁𝑠 | < 𝑡𝑜𝑙. Alternative
and potentially more accurate strategies can be employed but we have chosen this approach for its
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phreatic interface u = 0

Hw

Hs

uh(xL, Hs − ϵ) > 0

uh(xL, Hs + ϵ) < 0

1

Fig. 4-4. The diagram show the conditions that the computed solution 𝑢ℎ must satisfy on the well
boundary at (𝑥𝐿 , 𝐻𝑠)

Algorithm 3 Unknown seepage Height 𝐻𝑠
Require: K0, (p0

ℎ
, 𝑢0
ℎ
),T 0

ℎ
, 𝐷,Wℎ, 𝑡𝑜𝑙, 𝐽, 𝐾, 𝑁, 𝑟, 𝑄

0
ℎ
, 𝐻0

𝑠 , 𝜖 , 𝑡𝑜𝑙

Ensure: 𝐻𝑁𝑠 , (𝑄𝑚ℎ , 𝑑𝑖𝑚
𝑚) 𝑚 = 0, . . . , 𝑀

1: 𝑛 = 0
2: while 𝑛 ≤ 𝑁 do
3: solve BVP using algorithm 2
4: if |𝑢𝐽

ℎ
(𝑥𝐿 , 𝐻𝑛𝑠 ) | < 𝑡𝑜𝑙 then

5: 𝐻𝑛+1
𝑠 = 𝐻𝑛𝑠 + 𝜖

6: 𝑛 := 𝑛 + 1
7: else
8: 𝐻𝑁𝑠 = 𝐻𝑛𝑠
9: break

10: end if
11: end while

relative simplicity. Given the measured accuracy ±10% for the stabilisation flow in the examples it is
considered fit for purpose.

For all subsequent examples where we compute (pℎ, 𝑢ℎ) using algorithms 2 or 3 we will refer to the
process as the ’forward model’. In the next section we will validate the forward model using data
including the measured stabilisation flow from 3 examples of working wells.

4.4 Computation of the stabilisation flow for 3 working wells

The examples are multi-layered wells used to supply water to different cities in São Paulo State, Brazil.
The data for these examples was provided by the CPRM (Brazilian Geological Survey) and includes
the following information.

1. The dimensions of the well.
2. Details of the static water table, the dynamic height and the stabilisation flow.
3. The approximate positions and types of the soil layers.

We denote the measured stabilisation flow as 𝑄 and the computed approximation as 𝑄ℎ, unless oth-
erwise stated the units of measurement are cubic metres/hour (𝑚3ℎ−1). The principal objectives for
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the numerical experiments are to confirm that the forward FEM model gives approximations for 𝑄ℎ
that are of similar magnitude to the measured outflow 𝑄 for test cases of increasing complexity. As
the data specifies the type of soil but not precise values for the hydraulic conductivity. This is not an
ideal situation but is sufficient at this stage to show that we can achieve consistent results by selecting
physically possible values for the hydraulic conductivity parameter 𝑘 . In addition, we examine the per-
formance of the h-adaptivity mesh refinement algorithm towards optimising computational efficiency
and accuracy. In all three examples there are no source or sink terms hence when using equation
(4.17) we consider 𝑓 ≡ 0. The experiments were conducted on an HP Z2 workstation with 16GB of
RAM.

4.4.1 Well 1: Ibirá, Rua Ceara

Figure 4-5 show a cross section of the well which is 60𝑚 deep and has a diameter of 0.1524𝑚. The
inside of the well is treated with an impervious layer to a depth of 15𝑚. There are no filters. Based on
local measurements there are two layers of porous soil and rock. We assume there is radial symmetry
to a distance of 50𝑚. This model was proposed by the CPRM. There is residual silty sand soil to a
depth of 22𝑚 and then fine to very fine immature Sandstone to a depth of 60𝑚 below which there is
impervious rock. The static water level is 10.2𝑚 and the dynamic height of the well is 17.3𝑚. The
stabilisation flow for this well has been measured to be 2𝑚3ℎ−1 ± 10%. Given the assumed radial
symmetry we are able to consider a cross section of the well in 2 spatial dimensions (𝑥, 𝑧), as defined
in figure 4-3.

In this case as there can be no flow into the well above 15𝑚 and the static height is 10.2 we assume that
the position where the phreatic interface meets the left hand boundary is such that−15 ≤ 𝐻𝑠 ≤ −10.2,
where a no flow boundary condition is specified. This can be confirmed post computation, in this case
by testing that 𝑢(𝑥𝐿 ,−15) > 0. If this were not the case then it would be necessary to apply algorithm
3 to determine 𝐻𝑠 as part of the computation.

The computational domain
x ∈ [𝑥𝐿 , 𝑥𝑅] × [𝑧𝐵, 𝑧𝑇 ]

was subdivided into a uniform mesh with initial mesh size ℎ = 1𝑚. The observations of the local CPRM
team are that the mean hydraulic conductivity �̄� for the area is approximately 3.01 × 10−6𝑚𝑠−1. The
value of 𝑘 for Sandstone for the experiment was therefore selected to be the estimated mean for the
region. We observe that this easily fits into the ranges for Sandstone specified in table 4.3. A value of
𝑘 for the upper layer was also selected from within the specified ranges for Silty Sand. These values
are shown in table 4.4 below.

Layer 𝑘 𝑚𝑠−1

Silty Sand 1.56 × 10−7

Fine to very fine Sandstone 3.01 × 10−6

Table 4.4. Values of 𝑘 used for the computation of the stabilisation flow 𝑄ℎ for well 1
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𝑚

60
𝑚

phreatic interface (est. position)

Layer 1 Silty Sand

0.1524𝑚

22
𝑚

50𝑚

10
.2
𝑚

17
.3
𝑚

Water Layer 2 Fine to very fine Sandstone

Fig. 4-5. A diagram of Well 1. In this instance the height of the seepage interface 𝐻𝑠 is not required
in the computation of 𝑄ℎ as it will be positioned on the boundary where there is a zero flow condi-
tion. Note the cap which extends to 15𝑚 below the top of the well.

We apply algorithm 2 to compute 𝑄ℎ and the results for 𝑟 ∈ {0, 0.25, 0.5} are shown in figure 4-6.
Figure 4-6a shows that for each value of 𝑟 there is convergence to 𝑄ℎ ≈ 2.86𝑚3ℎ𝑟−1. Further, these
figures illustrate the profound impact of the h-adaptivity mesh refinement algorithm on computational
efficiency. Figure 4-6b illustrates the resulting mesh refinement along the boundary of the well.

Remark 4.4 The results from figure 4-7 illustrate that the actual hydraulic conductivity of the Sand-
stone layer is likely to below the value of 3.01 × 10−6 𝑚𝑠−1 used in the experiment.
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(a) Computed stabilisation flow 𝑄ℎ for a range of
values of 𝑟. Note convergence to 𝑄ℎ ≈ 2.86𝑚3ℎ−1

and the efficiency of the h-adaptive algorithm. (b) The refined mesh after 2 iterations with 𝑟 = 0.5

Fig. 4-6. Results of applying algorithm 2 to well 1

(a) Comparison of the dimensions of
the solution spaces required to reach a
threshold of 𝑄ℎ = 2.84, using global re-
finement 𝑟 = 0 and h-adaptive refinement
with 𝑟 = 0.5. The h-adaptivity algorithm re-
duces the size of the solution space from
7.6 × 105 to 2.76 × 104 i.e. by a factor of
approximately 28.

(b) Comparison of the cumulative CPU
time in seconds required to reach a
threshold of 𝑄ℎ = 2.84, using global re-
finement 𝑟 = 0 and h-adaptive refinement
with 𝑟 = 0.5. The h-adaptivity algorithm
reduces the time from 170 to 8.2 i.e. by a
factor of approximately 21.

Fig. 4-7. Well 1 - Results illustrating the computational benefits of the h-adaptivity algorithm 2 to
well 1. The threshold value of 𝑄ℎ = 2.84 was the final value obtained using global mesh refinement
before computation resources were exceeded.
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The resulting computed solution for pressure and velocity (𝑢ℎ,pℎ) is shown in figures 4-16a and
4-16b respectively.

(a) The figure shows the pressure distribu-
tion within the aquifer. The white contour
lines show how the pressure gradient in-
creases along the edge of the well bound-
ary. The thicker white line shows the posi-
tion of the phreatic interface.

(b) The figure shows the flow velocity,
greatest in the neighbourhood of the well
boundary. The interface between the soil
layers with different hydraulic properties is
visible.

Fig. 4-8. Computational results for the well 1 figure 4-5 showing the distributions of pressure and
flux.
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4.4.2 Well 2: Ibirá, Sao Paulo

Figure 4-9 shows a cross section of the well which is 140𝑚 deep and has a diameter of 0.2032𝑚. The
inside of the well is treated with an impervious layer to a depth of 28𝑚. There are no filters. Based on
local measurements there are three layers of porous soil and rock. We assume these to be radially
symmetric to a distance of 50𝑚 again as proposed by the CPRM. There is residual silty sand soil to
a depth of 22𝑚 and then fine sandstone to a depth of 78𝑚. From a depth of 78𝑚 to 140𝑚 there is a
basalt layer.

The stabilisation flow for this well has been measured to be 8.5𝑚3ℎ−1 ± 10%. Since the dynamic
(pumping) height is 72𝑚 and the static (water table) height is 30𝑚 we assume that the height of the
seepage face 𝐻𝑠 is such that −72 ≤ 𝐻𝑠 ≤ −30. In this case it is necessary to calculate 𝐻𝑠 the height
of the seepage interface by application of algorithm 3.

The value of k for the experiment is shown in table 4.5. These are consistent with the descriptions
provided by the local engineering team and also with the ranges specified in reference table 4.3.

Layer 𝑘 𝑚𝑠−1

Silty Sand 1.56 × 10−7

Fine Sandstone 2.0 × 10−6

Basalt 1.7 × 10−8

Table 4.5. Value of k used for the computation of stabilisation flow 𝑄ℎ for well 2.
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phreatic interface

Water

Layer 1 Silty sand

Layer 2 Fine sandstone

Layer 3 Basalt

Fig. 4-9. A diagram of Well 2, observe that the height of the seepage interface is unknown prior to
computation and hence there is a free boundary and we apply algorithm 3 to compute the stabilisa-
tion flow 𝑄ℎ

The results using algorithm 3 to compute 𝑄ℎ for 𝑟 ∈ {0, 0.25, 0.5} are shown in figure 4-10. Figure
4-10a shows that for each value of 𝑟 > 0 there is convergence to 𝑄ℎ ≈ 8.4𝑚3ℎ−1. Given the scale
of the problem there are practical limitations for the case 𝑟 = 0. In this case the dimension of the
solution space rapidly exceeds the limit 𝐷. The results are consistent and as expected. Figure 4-6b
illustrates the resulting mesh refinement along the boundary of the well.
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(a) Computed stabilisation flow 𝑄ℎ for a range of
values of 𝑟. Note convergence for 𝑟 > 0 to 𝑄ℎ ≈
8.4𝑚3ℎ−1, and 𝑟 ≈ 0.5 is computationally efficient.
There are practical limitations in the case 𝑟 = 0
where the size of the solution space soon exceeds
the limit 𝐷.

(b) The refined mesh after 2 itera-
tions for 𝑟 = 0.5.

Fig. 4-10. Results of applying algorithm 3 to well 2.
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(a) Comparison of the dimensions of
the solution spaces required to reach a
threshold of 𝑄ℎ = 7.95, using global re-
finement 𝑟 = 0 and h-adaptive refinement
with 𝑟 = 0.5. The h-adaptivity algorithm re-
duces the size of the solution space from
4.65 × 105 to 5.9 × 104 i.e. by a factor of
approximately 8.

(b) Comparison of the cumulative CPU
time in seconds required to reach a
threshold of 𝑄ℎ = 7.95, using global re-
finement 𝑟 = 0 and h-adaptive refinement
with 𝑟 = 0.5. The h-adaptivity algorithm
reduces the time from 95 to 14 i.e. by a
factor of approximately 7.

Fig. 4-11. Well 2 - Results illustrating the computational benefits of the h-adaptivity algorithm 2 to
well 2. The threshold 𝑄ℎ = 7.95 was the value achieved using global mesh refinement before avail-
able computing resources were exceeded.

Remark 4.5 The results from figure 4-11 illustrate that the actual hydraulic conductivity of the Sand-
stone layer is likely to be around the value of 2.0 × 10−6 𝑚𝑠−1 used in the experiment.
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(a) The figure shows the pressure dis-
tribution within the aquifer. The white
contour lines show how the pressure
gradient increases along the edge of
the well boundary. The thicker white
line shows the position of the phreatic
interface.

(b) The figure shows the flow velocity,
greatest in the neighbourhood of the well
boundary. The interfaces between the soil
layers with different hydraulic properties are
visible.

Fig. 4-12. Computational results for well 2 figure 4-9 showing the distributions of pressure and flux.
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4.4.3 Well 3: Porto Ferreira, Jardim Santa Marta
46
𝑚

Water

Layer 1 Sandy loam

Layer 2 Medium sandstone

Layer 3 Claystone
Layer 4 Coarse sandstone

Layer 5 Diabase

Fig. 4-13. A diagram of Well 3. The flow is regulated through the use of filters and the height of the
seepage interface is not required to compute the outflow 𝑄ℎ.

Figure 4-13 shows a cross section of the well which is 46𝑚 deep and has a diameter of 0.317𝑚. The
inside of the well is treated with an impervious layer except for filters 𝑓1 and 𝑓2. These are located such
that 23.0 ≤ 𝑓1 ≤ 27.0 and 29.0 ≤ 𝑓2 ≤ 41.0. There are five layers of porous soil and rock assumed
to be radially symmetric to a distance of 50𝑚. The top layer is dark red sandy loamy soil to a depth of
12𝑚. Then yellowish brown sandstone, fine to medium sub-angular with low clay content to a depth
of 28𝑚. This is followed by yellow brown Claystone from 28𝑚 to 30𝑚. The next layer is fine to coarse
sub-angular reddish brown sandstone with low clay content from 30𝑚 to 38𝑚. Finally to a depth of
46𝑚 there is a layer of dark grey Diabase. The latter is similar in hydraulic characteristics to Basalt.
The static water level is 12.1𝑚 and the dynamic height of the well is 28.56𝑚. The stabilisation flow
for this well has been measured to be 17𝑚3ℎ−1. There is no free boundary condition as the phreatic
interface meets the boundary such that −15 ≤ 𝐻𝑠 ≤ −10.2 where a zero flux boundary condition is
specified.

The value of k for the experiment is shown in table 4.6. These are consistent with the descriptions
provided by the local team and within the ranges specified in reference table 4.3.

Layer 𝑘 𝑚𝑠−1

Loam 5 × 10−6

Medium Sandstone 8 × 10−6

Claystone (fractured) 5.0 × 10−8

Coarse Sandstone 1.8 × 10−5

Diabase (fractured) 2.0 × 10−5

Table 4.6. Value of k used for the computation of stabilisation flow 𝑄ℎ for well 3. Note that layers 3
and 5 are understood to be fractured.

The results from using algorithm 2 to compute 𝑄ℎ for 𝑟 ∈ {0, 0.25, 0.5, 0.8} are shown in figure 4-15.
Figure 4-14a shows that for each value of 𝑟 > 0 there is convergence to 𝑄ℎ ≈ 17𝑚3ℎ𝑟−1. Given the
scale of the problem there are practical limitations for the case 𝑟 = 0 i.e. global refinement, in that the
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dimension of the solution space rapidly exceeds the practical limit 𝐷. The results are consistent and
as expected. Figure 4-14b illustrates the resulting mesh refinement along the boundary of the well.

(a) Computed stabilisation flow 𝑄ℎ for a
range of values of 𝑟. Note convergence
for 𝑟 > 0 to 𝑄ℎ ≈ 17𝑚3ℎ−1, and 𝑟 ≈ 0.5
is computationally efficient. There are
practical limitations in the case 𝑟 = 0
where the size of the solution space soon
exceeds the limit 𝐷.

(b) The refined mesh after 2 iterations for
𝑟 = 0.5 Note the refinements along the
Mudstone layer which is a result of the
change in hydraulic conductivity and flow
velocity in that region.

Fig. 4-14. Results showing the impact of applying the h-adaptivity algorithm 2 to the well 3 problem.

Remark 4.6 The results from figure 4-15 illustrate that the actual hydraulic conductivity of the Sand-
stone layers is likely to be around the values of 8.0 × 10−6 𝑚𝑠−1 and 1.8 × 10−5 𝑚𝑠−1 used in the
experiment.

4.4.4 Results

Table 4.7 gives the selected values of 𝑘 and summarises the principal computational results for the
3 examples.

Test 𝐻𝑠 𝑄ℎ 𝑄 Rel error %
Well 1 - 2.86 2.0 42.5
Well 2 -34.0 8.4 8.5 1.2
Well 3 - 17.0 17.0 0.0

Table 4.7. Summary results from examples well 1-3. The relative error is only a guide, the impor-
tant principle is that by using physically possible values of 𝑘 in the forward model we are able to
match the stabilisation flow.

The results from all three examples show that the computed outflow𝑄ℎ compares favourably with the
measured values when selecting physically possible values of 𝑘 for the soil layers. Having used tests
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(a) Comparison of the dimensions of
the solution spaces required to reach a
threshold of 𝑄ℎ = 16.7, using global re-
finement 𝑟 = 0 and h-adaptive refinement
with 𝑟 = 0.5. The h-adaptivity algorithm re-
duces the size of the solution space from
7.74 × 105 to 5.7 × 104 i.e. by a factor of
approximately 14.

(b) Comparison of the cumulative CPU
time in seconds required to reach a
threshold of 𝑄ℎ = 16.75, using global re-
finement 𝑟 = 0 and h-adaptive refinement
with 𝑟 = 0.5. The h-adaptivity algorithm
reduces the time from 215 to 20 i.e. by a
factor of approximately 11.

Fig. 4-15. Well 3 - Results illustrating the computational benefits of the h-adaptivity algorithm 2.
Note in the case 𝑟 = 0 i.e. global refinement available computational resources are soon exceeded.

(a) The figure shows the pressure distribu-
tion within the aquifer. The white contour
lines show how the pressure gradient in-
creases along the edge of the well bound-
ary. The thicker white line shows the posi-
tion of the phreatic interface.

(b) The figure shows the flow velocity,
greatest in the neighbourhood of the well
boundary. The interfaces between the soil
layers with different hydraulic properties
are visible.

Fig. 4-16. Computed pressure and flow for well 3 figure 4-13.

of increasing complexity we conclude that it is likely that the forward model will in general provide
good approximations to the stabilisation flow from a well or borehole sunk into a multi-layered aquifer.
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The h-adaptivity algorithm built around the weighted Braess error estimator and the equidistribution
strategy for marking error performed well against this type of problem. It offers profound performance
benefits over global mesh refinement. Summary results are shown in table 4.8. These vary by prob-
lem and will be impacted by factors such as the configuration of the well and the size of the boundary.
For example well 2 has a comparatively longer boundary which under refinement yields a larger num-
ber of degrees of freedom. Similarly well 3 is complicated by the increased number of soil layers. The
results indicate that for a complicated problem the application of h-adaptivity can lead to an approx-
imate 90% improvement in computational efficiency. This is measured in terms of the size of the
solution space and the total CPU utilisation. Such benefits mean that it is now possible to repeatedly
run the forward model for different values of k. This enables us to examine the characteristics of
the stabilisation flow 𝑄ℎ as part of a Monte Carlo experiment. The details of which are explained in
chapter 5. Using well 1 as an example suppose we want to run the forward model for well 1 10, 000
times using different input values of k, then approximations to the total CPU time for this experiment
would be as follows.

Global refinement elapsed CPU time =
10000 × 170
24 × 60 × 60

≈ 20 days.

Adaptive mesh refinement elapsed CPU time =
10000 × 8.2

60 × 60
≈ 23 hours.

This illustrates that the application of algorithm 2 or 3 may be expected to reduce the total computa-
tional time for the experiment from weeks to hours.

Test Threshold 𝑄ℎ 𝐷𝑖𝑚𝑟=0 𝐶𝑃𝑈𝑟=0 𝑠 𝐷𝑖𝑚𝑟=0.5 𝐶𝑃𝑈𝑟=0.5 Dim saving % CPU gain %
Well 1 2.84 7.6 × 105 170 2.76 × 104 8.2 96 95
Well 2 8.0 4.65 × 105 95 5.9 × 104 14.2 87 85
Well 3 16.7 7.74 × 105 215 5.7 × 104 20 93 91

Table 4.8. Summary results from example wells 1-3 showing the dimension of the solution space
and the CPU time required for global 𝑟 = 0 and h-adaptive 𝑟 = 0.5 mesh refinement for the algo-
rithm to reach a predefined threshold value of 𝑄ℎ. The results show that there are ∼ 90% perfor-
mance benefits from using the h-adaptive algorithm both in terms of solution space dimension and
CPU.

Remark 4.7 Alternatives for error estimation and marking

Although not stated in the results section it was observed that the Carstensen estimator produced
equivalent results. It performed equally well when used within the h-adaptivity algorithm. We also
tested the maximum strategy within the algorithm. The distribution of the error computed by the esti-
mator was such that the latter algorithm was not as efficient as when using the equidistribution strategy.
This was because of the distribution of the error. Initially the error on elements near the well boundary
and soil interface was much greater than the error over the rest of the domain. If the refinement pa-
rameter 𝑟 was chosen too large the mesh was only refined in that area and the resulting computation
of 𝑄ℎ was inaccurate.
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4.5 Summary

It is considered that the flow model using algorithms 2 and 3 is effective for determining the stabilisation
flow. It would be appropriate for use as a decision support tool to optimise locations and potential
yields of boreholes and wells.

The application of the h-adaptivity algorithms improves computational performance profoundly in the
examples considered. In the examples considered by around 90% or in some cases better. These
performance improvements mean that it is feasible to conduct Monte Carlo experiments which involve
the repeated application of the forward model using different input parameters. Experiments that could
take weeks to run can be completed in hours. We will use the h-adaptivity algorithm within the forward
model in subsequent chapters and in particular to address the inverse problem. This considers the
situation when we have known flow characteristics and would like to use the data to approximate
hydraulic parameters.
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Chapter 5

The inverse flow problem

Abstract

In this chapter, we consider the inverse of the ’forward problem’ discussed in the previous chapter. We examine
a number of techniques to extract details of the hydraulic characteristics of the component soil layers using
known data. The data required for inversion is the stabilisation flow, the configuration of the well and the
approximate positions of the soil layers. We develop an algorithm that uses the ’forward model’ combined
with a Tikhonov regularisation to match the stabilisation flow and calculate optimal values for k. Numerical
experiments using data from the same 3 working wells in the São Paulo region of Brazil are used to validate
the algorithm.

5.1 Introduction

An inverse problem is the process of calculating from a set of observations the causal factors that
produced them. In our case, we are interested in calculating geophysical parameters from measure-

Fig. 5-1. Modelling an inverse problem.

ments of groundwater flows. They are called inverse problems because essentially they start with
the results and then calculate the causes. This is the inverse of a forward problem, which starts with
the causes and then calculates the results. One of the principal difficulties associated with an inverse
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problem, as in figure 5-1, is how to make it computationally viable as it will require many forward
solutions. It may be necessary to use statistical modelling to reduce the dimensions of parameter
spaces and reduce the number of times needed to run computations.

Definition 5.1 Saturated hydraulic conductivity vector

We use the notation 𝑘 to refer generically to the saturated hydraulic conductivity of a rock layer and the
vector k = (𝑘1, . . . , 𝑘𝐿)𝑇 , where 𝑖 = 1, . . . , 𝐿 is the number of layers and 𝑘𝑖 is the saturated hydraulic
conductivity of layer 𝑖.

We have shown in the previous chapter that, subject to certain assumptions it is possible to use the
’forward model’ with known values of k to compute the steady-state outflow 𝑄ℎ. We are able to do
this by having prior knowledge of the well dimensions and soil characteristics. It was demonstrated
that by selecting physically possible values for k we were able to match𝑄ℎ with the measured outflow
𝑄. These findings lead naturally to a consideration of the inverse problem. This may be stated as
if 𝑄 is known along with some of the physical characteristics of the aquifer is it possible to compute
estimates for 𝑘 for each of the soil layers? In a multilayered scenario, it should be recognised that
there will be many different values of k that give a good approximation to the outflow 𝑄. Our interest
is in finding values of k that are optimal for the physical problem.

There are a number of tomographic methods used by geophysicists to characterise hydraulic parame-
ters, and these are discussed in reference [Fienen, Clemo, and Kitanidis 2008]. These include the use
of hydraulic tomography, seismic measurements, electrical conductivity and radar wave propagation.
There is a significant amount of ongoing research in all these areas.

A traditional method involves the use of vertical electrical sounding (VES) surveys which are used to
measure the electrical impedance of subsurface soil layers. The data from such surveys can be used
to infer hydraulic characteristics. Reference [Jin, Khan, and Maass 2011] describes a reconstruction
algorithm for electrical impedance tomography based on sparsity regularisation. Electrical impedance
tomography (EIT) is a diffusive imaging modality for determining the electrical conductivity/resistivity
distribution of an object from boundary measurements. The process can frequently result in under-
determined systems and the authors describe the use of a Tikhonov regularisation method for EIT in
unbounded domains.

Reference [Hinnell et al. 2010] describes the concept of coupled inversion. This relies on the direct
coupling of hydrologic models and geophysical models during inversion. The author compares the
abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical
conductivity surveys are used to monitor 1d infiltration and redistribution.

In this chapter, we focus attention on hydraulic tomography. There are many techniques to gather
further information to solve an under-determined problem. For example, increasing the sources of
data by using measurements from clusters of wells in a zonal model to address inherent heterogeneity
as described in reference [Fienen, Clemo, and Kitanidis 2008]. Alternatively this can be achieved by
obtaining more measurements from the same well as suggested by references [J. Yeh and Shuyun
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2000] and [J. Yeh and Cheng-Haw 2007]. Rather than installing more wells to reduce the ratio of
parameters to observations, multiple pumping tests or stimulation events can be performed using
various configurations of existing wells. The pumping/drawdown response from the series of tests
can form a single inverse problem that can be solved to find the set of hydraulic parameters that best
represents the observations. This technique has been called hydro-pulse tomography.

Reference [McLaughlin and Townley 1996] describes a general functional formulation of a groundwa-
ter flow inverse problem. Unknown hydrogeological properties are assumed to be spatial functions
that can be represented in terms of a basis function expansion with random coefficients. The unknown
parameter function is related to the measurements used for estimation by a "forward operator" which
describes the measurement process. The parameter of interest is the log hydraulic conductivity and
the forward operator is derived from consideration of the 1d groundwater flow equation. The inverse
algorithm described in the reference seeks the most probable a posteriori estimate of the unknown
parameter function through the minimisation of an error function. Reference [McLaughlin and Townley
1996] characterises an inverse method in the following way.

• The way it describes spatial variability in the parameterisation it adopts.
• The forward equation it uses to relate parameters to measurements.
• The performance criterion it uses to define good parameter estimates.
• The solution technique it uses to find these estimates.

The reference observes that parameterisation has a strong influence on whether an inverse problem
is well-posed and on the physical plausibility of its solution. We develop our inversion algorithms
following the characteristics described above. Firstly we use the assumption that k follows a lognormal
distribution as described in reference [Mesquita 2002], this is discussed in more detail in chapter 6.
Additionally we use the assumptions of homogeneity and radial symmetry as specified in chapter
4. The forward model developed in chapter 4 is central to our inversion algorithms. Measurements
of stabilisation flow and the well configuration are used as the input data. The performance of the
algorithms is measured using a comparison of the computed parameters with those specified in BGS
reference [Lewis, Cheney, and O’Dochartaigh 2006] using known data for example the soil type.

The algorithms we develop use the concept of a coupled inversion process described in [Hinnell
et al. 2010] albeit in a different context. In our case for two of the methods proposed, we link the
geophysical calculation to the forward flow model which is used as a constraint within an iterative
process. In the final method considered each iterative step uses a Tikhonov regularisation to solve
an under-determined system and optimise k in the manner of reference [Jin, Khan, and Maass 2011].

We consider three alternative approaches to finding the optimal value of k, using different parame-
terisations. These are described below.

5.1.1 Approach 1 - Monte Carlo

The first approach uses a Monte Carlo (MC) method which is described in general circumstances
within reference [Barbu and S. Zhu 2020, Chapter 1]. This is used to minimise the error |𝑄 −𝑄ℎ (k) |
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in the stabilisation flow for a range of possible values of k, following the principles described in
[McLaughlin and Townley 1996]. The MC approach is explained in more detail in chapter 6 so we
give only an overview in this section. It is a mathematical technique used to estimate the possible
outcomes of an uncertain event. Initially it was developed by John von Neumann and Stanislaw Ulam
during World War II whilst working on the Manhattan Project. Since the element of chance was core
to their modelling approach they named it after the famous Monaco Casino. The simulation generally
involves running a model numerous times with a random selection from an input distribution for each
variable. The results generated from these multiple scenarios can give a "most likely" case, along
with a statistical distribution to understand the risk or uncertainty involved. Modern computers make
it relatively easy to run thousands of random simulations quickly. MC simulations are used to assess
the impact of risk in many diverse real life scenarios. These include particle physics, artificial intelli-
gence, insurance and financial services. They can provide a number of advantages over predictive
models such as the ability to conduct sensitivity analysis or calculate the correlation of inputs. We use
a combination of the BGS reference material from [Lewis, Cheney, and O’Dochartaigh 2006] and the
data provided by the Brazilian CPRM to define a distribution for physically possible values of k. This
enables us to take into account the various soil types. This approach involves repeated use of the
forward model and consequently consumes significant computational resources. However it provides
an effective way to visualise how the error |𝑄 −𝑄ℎ (k) | changes depending on the choice of k.

5.1.2 Approach 2 - Fixed point iteration

The second approach examines the stabilisation flow 𝑄 and then breaks this down into ranges of
physically possible values for the contributions from each soil layer. This enables us to set up a fixed
point iterative process, explained generically in [Kelley 1987, Chapter 4]. We will use the concept of
coupling, namely using the forward model as a constraint within the fixed-point algorithm to determine
optimal values of k. A similar process was followed in [Hinnell et al. 2010] to map VES survey data to
hydraulic conductivity. By using physically possible approximations of the flow from each layer we are
able to approximate the likely value of 𝑘 . This approach requires repeated applications of the forward
model described in chapter 4 for each of the assumed component flow combinations. Given there
is a range of input values for the layer flows the output is similarly a range of possible values for k.
By using practical observations of the composite soil layers’ physical properties, we can tighten the
range estimates and reduce computational effort.

5.1.3 Approach 3 - Tikhonov regularisation

The third approach builds upon the second and has the advantage of not requiring any estimation
of the outflows from component layers. This means there is no need to break down 𝑄 into sub-
components. Given we use only the stabilisation flow the set up results in an under-determined
system with unknown parameters 𝑘𝑖 , 𝑖 = 1, . . . , 𝐿 where 𝐿 is the number of soil layers. This is
an ill-posed problem as specified in [Korolev and Latz 2020]. Reviewing the various techniques to
solve such problems described in reference [Willoughby 1979] we apply the Tikhonov regularisation
process. A good practical guide for implementation is set out in [Hansen 2001]. This seeks to find an
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optimal solution to a linear system that minimises the sum of the squares of the solution and residual
norms. Used with our algorithm it facilitates the computation of an optimal solution for k. In the
manner of [Hinnell et al. 2010] we couple the geophysical characteristics with the forward flow model
within an iterative process which constrains and successively updates and optimises 𝑘 . This enables
the computed flow to be tested against the measured stabilisation flow at each step. The algorithm
is validated against the 3 working well examples from chapter 4.

To the author’s knowledge the three approaches combining MC, fixed point iteration and Tikhonov
regularisation to address this type of inverse problem do not appear in the available literature. In the
remainder of this chapter we will apply the three approaches described above to the inverse problem
of determining the parameter k for each of the three example wells described in chapter 4.

5.2 Minimising outflow error

In this section we will follow approach 1 and apply the Monte Carlo method to a series of numerical
experiments with the objective of finding values of k that minimise the error in computing the stabili-
sation flow. The forward model described in chapter 4 using algorithms 2 and 3 was used to compute
the stabilisation flow 𝑄ℎ (k). We used a large number 𝑁 of randomly selected input values k. These
were selected randomly from a uniform distribution of physically possible values for a given soil type.
The soil types were specified by the CPRM team and the ranges of values of k were taken from
reference [Lewis, Cheney, and O’Dochartaigh 2006]. For the purposes of these experiments, 𝑁 was
selected to be 1, 000, which offered a reasonable compromise between accuracy and time taken to
determine the results. In the two layered example the total run time was 2.3 hrs, and this increased
linearly with the number of soil layers.

In order to generate the input values of k suppose

k 𝑗 = (𝑘 𝑗1 , . . . , 𝑘
𝑗

𝐿
)𝑇 , 𝑗 = 1, . . . , 𝑁 (5.1)

where 𝑖 = 1, . . . , 𝐿 is the number of soil layers. The maximum and minimum values of k𝑖, 𝑘𝑖max and
𝑘𝑖min will depend upon the type of soil in the layer. They are extracted from the source ranges supplied
in the BGS reference data table 5.1, reproduced below.

92



Soil Type min 𝑘 (m/s) max 𝑘 (m/s) 𝑚𝑒𝑎𝑛

Sand 1.16 × 10−6 5.79 × 10−3 2.24 × 10−4

Silt 1.16 × 10−8 1.16 × 10−6 1.56 × 10−7

Sandstone 5.79 × 10−10 2.31 × 10−4 3.68 × 10−6

Fractured Basalt 1.16 × 10−9 1.16 × 10−5 3.77 × 10−7

Dense Basalt 2.78 × 10−10 2.78 × 10−7 1.7 × 10−8

Shale 5.79 × 10−13 1.16 × 10−9 5.78 × 10−11

Fractured Diabase 1.16 × 10−9 1.16 × 10−5 3.77 × 10−7

Dense Diabase 2.78 × 10−10 2.78 × 10−7 1.7 × 10−8

Clay 5.79 × 10−12 1.16 × 10−8 5.78 × 10−10

Table 5.1. A sample of hydraulic conductivity data taken from the British Geologic Survey [Lewis,
Cheney, and O’Dochartaigh 2006], for various soil types, 𝑚 is the mean value of 𝑘 .
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Algorithm 4 describes the generation of the source data. Using the values k 𝑗 , 𝑗 = 1, . . . , 𝑁 derived

Algorithm 4 Generate input k

Require: 𝑈{𝑘𝑖min, 𝑘𝑖max} 𝑖 = 1, . . . , 𝐿, 𝑁
Ensure: k 𝑗 , 𝑗 = 1, . . . , 𝑁

1: 𝑗 = 1
2: 𝑖 = 1
3: while 𝑗 ≤ 𝑁 do
4: while 𝑖 ≤ 𝐿 do
5: 𝑘

𝑗

𝑖
= 𝑟𝑎𝑛𝑑{𝑈{𝑘𝑖min, 𝑘𝑖max}}

6: 𝑖 := 𝑖 + 1
7: end while
8: 𝑗 := 𝑗 + 1
9: end while

from algorithm 4 we use the forward model described in algorithms 2 and 3 to compute the outflow
𝑄ℎ (k 𝑗) and the flow error |𝑄 −𝑄ℎ (kj) |, 𝑗 = 1, . . . , 𝑁 . Assuming 𝑁 is chosen to be sufficiently large,
using the minimum computational error we are able to determine the most likely k.

If there are only 2 layers of significance from an outflow perspective, we are able to visualise the result
by producing a scatter plot. In the case 𝐿 = 2 showing |𝑄 − 𝑄ℎ (kj) | for each (𝑘 𝑗1 , 𝑘

𝑗

2) 𝑗 = 1, . . . , 𝑁 .
By plotting the error values against k it is possible to identify the minimum computational error and
so determine the most likely k graphically. This process is illustrated using the 3 test cases, used
in chapter 4. The scatter plot is converted to a contour map using triangle based linear interpolation
applied through the MATLAB function Griddata. This function uses a method described in [Sandwell
1987]. Several other approaches could be used, for example, a Delaunay triangularisation.

5.2.1 Well 1: Ibirá, Rua Ceara

In this example there are 2 soil layers, see Figure 4-5. To recap these are Silty Sand and Sandstone.
Figure 5-2 shows the scatter and contour plots of the output, note the series of local minimum values
for the error |𝑄 − 𝑄ℎ (k) |. It can be seen that these lie in a horizontal line. The conclusion is that
the choice for 𝑘1 is arbitrary. The upper layer in this example makes no significant contribution to the
outflow of the well, which is in line with the practical observations and the forward simulation figure
4-16b. Using 𝑄 = 2 the analysis shows the position of minimum error |𝑄 −𝑄ℎ (k) |, by the position of
the red asterisk in figure 5-2b. This coincides with the values 𝑘1 = 8× 10−7 and 𝑘2 = 2.7× 10−6. This
is consistent with observations. The value of 𝑘1 should be verified using alternative tests as it is the
surface layer. For example by using the results from VES tests.

5.2.2 Well 2: Ibirá, Sao Paulo

In this example, there are 3 soil layers, see figure 4-9. These are from the top, Silty Sand, Fine
Sandstone and Basalt. Figures 5-3a and 5-3b show the scatter and contour plots of the error |𝑄 −
𝑄ℎ (k) | respectively. In this example there is flow into the well from both layers 2 and 3 and so there
is a series of local minimum values depending on (𝑘2, 𝑘3) giving us a range of possible values of
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(a) Scatter plot of |𝑄 − 𝑄ℎ (k) | graded by
colour for 1000 possible combinations of
(𝑘1, 𝑘2).

(b) Contour plot of |𝑄 − 𝑄ℎ (k) |. This
is produced by defining a mesh grid on
the domain. Linear interpolation is used
to approximate the error at each of the
mesh points. The random distribution of
the scatter data points impacts the in-
terpolation and can produce darkly or
lightly shaded ’patches’. These are a
consequence of the contour approxi-
mation rather than something produced
from the numerical model. The red aster-
isk shows the position of minimum error,
𝑘1 = 8 × 10−7 and 𝑘2 = 2.7 × 10−6.

Fig. 5-2. The results from a Monte Carlo experiment on well 1 used to infer the most likely value
for 𝑘2, i.e. that giving minimum error |𝑄 − 𝑄ℎ (k) |. Given the configuration of the well, there is no
outflow through layer 1, hence from a computational perspective the value of 𝑘1 is arbitrary. An al-
ternative test should be used to determine 𝑘1
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k. Again in this example the value of 𝑘1 has no significant impact on 𝑄ℎ. The analysis predicts that
the hydraulic conductivity of the two significant soil layers is in the region of 𝑘2 = 1.7 × 10−6 and
𝑘3 = 6.4 × 10−7. This is shown by the red asterisk in 5-3b.
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(a) Scatter plot graded by colour of |𝑄 −
𝑄ℎ (k) | for 1000 possible combinations of
(𝑘2, 𝑘3).

(b) Contour plot showing |𝑄 − 𝑄ℎ (𝑘) |.
This is produced by defining a mesh grid
on the domain. Linear interpolation is
used to approximate the error at each
of the mesh points. The random distri-
bution of the scatter data points impacts
the interpolation and can produce darkly
or lightly shaded ’patches’. These are
a consequence of the contour approxi-
mation rather than something produced
from the numerical model. The red aster-
isk shows the position of minimum error,
𝑘2 = 1.7 × 10−6 and 𝑘3 = 6.4 × 10−7.

Fig. 5-3. The results from a Monte Carlo experiment on well 2 used to infer the most likely combi-
nations of 𝑘2 and 𝑘3 i.e. those giving minimum error |𝑄 − 𝑄ℎ (k) |. Given the configuration of the
well, there is no outflow through layer 1.
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5.2.3 Well 3: Porto ferreira, Jardim Santa Marta

In this example there are 5 soil layers, see figure 4-13. These are from the top, Sandy Loam, Medium
Sandstone, Claystone, Coarse Sandstone and Diabase. Whilst there are 5 layers the problem is
simplified by observing that there is no outflow through the top layer. From a mathematical perspective
the choice of 𝑘1 is again arbitrary. The position of the filters indicates that predominantly the outflow
will occur through the Sandstone layers, 2 and 4 respectively. The Claystone and Basalt, layers 3 and
5 respectively are likely to have significantly lower saturated hydraulic conductivity than Sandstone
see table 4.3. As a result we focus on possible values 𝑘2 and 𝑘4 for the second and fourth layers.
Values of k

𝑗

𝑖
, 𝑖 = 1, . . . , 5, 𝑗 = 1, . . . , 1000 are generated using algorithm 4. The results are shown

in figure 5-4. This analysis shows that for this well it is likely that the hydraulic conductivity of the two
Sandstone soil layers is in the region of 𝑘2 = 5.3 × 10−6 and 𝑘4 = 4.5 × 10−5. This is shown by the
red asterisk in 5-4b. It would be possible to assess the impact of layers 3 and 5 by repeating the
experiment fixing 𝑘2 and 𝑘4.

(a) Scatter plot graded by colour of |𝑄 −
𝑄ℎ (k) | for 1000 possible combinations of
(𝑘2, 𝑘4).

(b) Contour plot showing |𝑄 − 𝑄ℎ (𝑘) |.
This is produced by defining a mesh grid
on the domain. Linear interpolation is
used to approximate the error at each of
the mesh points. The random distribu-
tion of the scatter data points impacts the
interpolation and can produce darkly or
lightly shaded ’patches’. These are a con-
sequence of the contour approximation
rather than something produced from the
numerical model. The red asterisk shows
position of minimum error, 𝑘2 = 5.3 × 10−6

and 𝑘4 = 4.5 × 10−5.

Fig. 5-4. The results from a Monte Carlo experiment on well 3 used to infer the most likely com-
binations of 𝑘2 and 𝑘4 i.e. those giving minimum error |𝑄 − 𝑄ℎ (k) |. There is little or no outflow
through layers 1, 3 and 5 because of the configuration of the well and the significantly lower hy-
draulic conductivity within those layers

.
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5.2.4 Summary

This approach to inferring the likely values of k using prior knowledge of the outflow, well configu-
ration and soil type produces results that are consistent with the known soil types. The downside is
that it is relatively expensive from a computational perspective, requiring a large 𝑁 . Without making
some simplifications it is difficult to visualise examples with increased dimensionality i.e. 𝐿 > 2 and
where significant outflow occurs through more than 2 of the layers. When considering the relation-
ship between two parameters there are other potentially more efficient methods that could be applied.
This might for example include a uniform parameter sweep. The MC approach was selected here as
a precursor to that used in chapter 6, where it is very useful in handling problems with increased
dimensionality resulting from aquifers with greater than 2 soil layers

5.3 A fixed point inversion algorithm

There are some limitations to the Monte Carlo approach described above. For the 2-layered example
it took approximately 2.3 hours to produce 1000 samples. Hence we are motivated to look for ways to
simplify the level computation and find a more direct method to solve the inverse problem. Suppose
we have a problem setup with a number of soil layers, say 𝐿, where the position of each layer is
(𝑑𝑖−1, 𝑑𝑖], 𝑖 = 01, . . . , 𝐿, 𝑑0 = 𝑧𝐵 and 𝑑𝐿 = 𝑧𝑇 . Let 𝑘 be a piecewise constant function in the 𝑧

direction where 𝑘 | (𝑑𝑖 ,𝑑𝑖+1 ] = 𝑘𝑖. This is often the set up since a sample of soil is typically taken from
the borehole. Figure 5-5 illustrates a general example that considers three soil layers.

x

z

Water

layer 3 𝑘3

layer 2 𝑘2

layer 1 𝑘1

𝐻𝑊

𝑢 = 0

𝑧 = 𝑧𝑇

𝑧 = 𝑧𝐵

𝐻𝑠

𝐼1

𝐼2𝑧 = 𝑑2

𝑧 = 𝑑1

𝑥 = 𝑥𝐿 𝑥 = 𝑥𝑅

𝑄2

𝑄3

𝑄1

Fig. 5-5. Cross section of well showing 𝑄1, 𝑄2, and 𝑄3 which represent the approximate outward
flux on layers 1, 2 and 3 respectively. If 𝑑𝑖 > 𝐻𝑠, then 𝑄𝑖 = 0 for 𝑖 = 1, 2. In the configuration shown
in the diagram 𝑄1 = 0.
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If the total measured outflow on the well boundary is 𝑄, then

𝑄 =

𝐿∑︁
𝑖=1

𝑄𝑖 for 𝑖 = 1, . . . , 𝐿 and

𝑄ℎ =

𝐿∑︁
𝑖=1

𝑄ℎ𝑖 for 𝑖 = 1, . . . , 𝐿.

The computed outflow contribution from layer 𝑖 = 1, . . . , 𝐿 is

𝑄ℎ𝑖 = −2𝜋𝑥𝐿
∫ 𝑑𝑖

𝑑𝑖−1

K(𝑢ℎ)∇((𝑢ℎ + 𝑧)) · n 𝑑𝑧,

with 𝑑0 = 𝑧𝑇 and 𝑑𝐿 = 𝑧𝐵.

Since there is no outflow above the phreatic interface, K(𝑢ℎ (𝑥𝐿 , 𝑧)) = 𝑘𝑖 , ∀ 𝑧 ≤ 𝐻𝑠 . Then for 𝑖 =
1, . . . , 𝐿

𝑄ℎ𝑖 =


0 if 𝑑𝑖 > 𝐻𝑠,

−2𝜋𝑥𝐿𝑘𝑖
∫ 𝑑𝑖
𝑑𝑖−1

∇(𝑢ℎ + 𝑧) · n 𝑑𝑧 if 𝑑𝑖 ≤ 𝐻𝑠 .
(5.2)

Let
𝐴𝑖 (𝑢ℎ) = −2𝜋𝑥𝐿

∫ 𝑑𝑖+1

𝑑𝑖

∇(𝑢ℎ + 𝑧) · n 𝑑𝑧 𝑖 = 1, . . . , 𝐿. (5.3)

We write 𝐴𝑖 (𝑢ℎ) rather than 𝐴𝑖 as the flow in the layers is coupled. Define

Q = [𝑄1, . . . 𝑄𝐿]𝑇 ,

Qℎ = [𝑄ℎ1, . . . 𝑄ℎ𝐿]𝑇 , and

A = 𝑑𝑖𝑎𝑔(𝐴𝑖 (𝑢ℎ)), 𝑖 = 1, . . . , 𝐿.

If k 𝑗 is an approximation for the saturated hydraulic conductivity, then

A 𝑗k 𝑗 = Q 𝑗

ℎ
.

resulting in residual layer errors of |𝑄𝑖 −𝑄 𝑗

ℎ𝑖
|, 𝑖 = 1, . . . , 𝐿.

If some increment 𝚫kj gives rise to a better approximation, then if any change in 𝐴𝑖 (𝑢ℎ) 𝑗 is small,
since it was computed using k 𝑗 and not (k 𝑗 + 𝚫kj) then assume,

A 𝑗Δk 𝑗 ≈ Q − Q
𝑗

ℎ
.

This leads us to propose an iterative scheme to find values of k that will match the specified outflow
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conditions for each layer,
A 𝑗Δk 𝑗 = Q − Q

𝑗

ℎ
, 𝑗 = 0, . . . , 𝐽,

k 𝑗+1 = k 𝑗 + 𝚫𝑘 𝑗 ,
(5.4)

with k0 and 𝚫k0 as starting values.

A condition to exit the iterative procedure is when for a given layer, |𝑄𝑖 −𝑄 𝑗

ℎ𝑖
| < 𝜖, 𝑖 = 1, . . . , 𝐿 where

𝜖 > 0 is some specified tolerance.

Algorithm 5 Inverse algorithm to compute k from the measured outflow 𝑄

Require: Q, 𝐿, 𝑑𝑖 , 𝑖 = 1, . . . , 𝐿,k0, 𝑢0
ℎ
, 𝐽, 𝜖 , flag𝑖 = 0, 𝑖 = 1, . . . , 𝐿

Ensure: k𝐽

1: 𝑗 = 0
2: while 𝑗 ≤ 𝐽 do
3: calculate A 𝑗 using equation (5.3)
4: calculate Q

𝑗

ℎ
using equation (5.2)

5: 𝑖 = 1
6: while 𝑖 ≤ 𝐿 do
7: if

∑𝐿
𝑖=1(flag𝑖) = 𝐿 then

8: break
9: if flag𝑖 = 0 then

10: if |𝑄𝑖 −𝑄ℎ 𝑗𝑖 | < 𝜖 then
11: 𝑘 𝐽

𝑖
= 𝑘 𝑗

12: flag𝑖 = 1
13: else
14: calculate k 𝑗+1 using equation (5.4)
15: end if
16: end if
17: end if
18: i=:i + 1
19: end while
20: Use algorithm (2) or if required (3) to find 𝑢 𝑗+1

ℎ

21: end while
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Fig. 5-6. Well 2: Ibirá, Sao Paulo, comparison of computed phreatic interface positions, the linear
Laplace equation K(𝑢) ≡ 1 is in black and the red is that from computing 𝑢ℎ using algorithm 3. This
illustrates that using solving the linear Laplace equation gives reasonable starting values for the
subsequent iteration.

To apply this algorithm we require suitable starting values 𝑢0
ℎ

and k0. We obtain these by solving
equation 4.20 and specified boundary conditions with K(𝑢) = 1. To give an idea of the accuracy of
this first approximation on the position of 𝐻𝑠, we conduct an experiment on well 2: Ibirá, Sao Paulo
which has a free boundary. This enables a direct comparison between the computed height of the
phreatic interface 𝐻𝑠, given in table 4.7 with that computed using K(𝑢) = 1. The results are shown in
table 5.2 and pictorially in figure 5-6. These results indicate that the position of 𝐻𝑠 is approximately
6% higher using the linear approximation. This provides a reasonable approximation 𝑢0

ℎ
for use in

algorithm 5.

𝑘1 𝑘2 𝑘3 𝐻𝑠 Rel error%
1 1 1 -33.0 -

1.56 × 10−7 3.01 × 10−6 1.7 × 10−8 -35.0 5.7

Table 5.2. The values of 𝑘 used in the comparison are the mean values from table 6.1 for the soil
layers in Well 2, used in chapter 4. The results show that solving the linear Laplace equation with
K(𝑢) = 1 gives a reasonable first approximation to 𝐻𝑠 and is consistent with our assumption that
the solution of this equation gives us a first approximation 𝑢0

ℎ
.

To apply algorithm 8 to this example, we define a range of possible values for 𝑄2 and 𝑄3. This is
based upon the assumption that 𝑄1 = 0 and there is no outflow from layer 1 which sits above the
phreatic interface. Given 𝑄2 +𝑄3 = 8.5 and assuming that both 𝑄2 and 𝑄3 are non-zero then for the
purposes of the experiment suppose we have the following distributions:

𝑄2 = 0.5, 1.0, 1.5, . . . , 8.0, and 𝑄3 = 8.0, 7.5, 7.0, . . . , 0.5. (5.5)

This gives 16 possible values 𝑄1, 𝑄2, 𝑄3. We compute 𝑢0
ℎ

as described above. Equation 5.3 is used
to calculate A0

𝑖
, which then gives 𝑘0

𝑖
= 𝑄𝑖/𝐴𝑖 (𝑢0

ℎ
), 𝑖 = 2, 3.

5.3.1 Results

Figure 5-7 shows the results of applying the inverse algorithm 5 to well 2. This shows that for the
given starting values k0 the inverse algorithm converges to values near to the approximated starting
values which in practice minimises the amount of computation.
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(a) The blue values represent the start-
ing values k0, generated from possible
combinations of 𝑄1, 𝑄2, 𝑄3. The corre-
sponding final values of k𝐽 generated
by the algorithm are shown in black.
The black lines map the starting values
to the final values. The algorithm indi-
cates that 2.9×10−7 ≤ 𝑘2 ≤ 3.1×10−6,
and 8.9 × 10−8 ≤ 𝑘3 ≤ 1.3 × 10−6.

(b) The results for Well 2: Ibirá, Sao
Paulo using algorithm 5 are shown
as black circles and are taken from
figure 5-7a. They are superimposed
on the contour plot for this well
produced by the method in 5.3,
with the minimum error plotted as
a red circle. As might be expected
there is close agreement between
the results of the two approaches.

Fig. 5-7. Application of the inverse algorithm 5 to Well 2: Ibirá, Sao Paulo.

The results shown in 5-7a indicate that the approximate ranges for 𝑘2 and 𝑘3 are 1 × 10−6 ≤ 𝑘2 ≤
3 × 10−6, and 1 × 10−7 ≤ 𝑘3 ≤ 9 × 10−7 respectively. This is a reasonable result and is consistent
with table 6.1. In general Basalt may be expected to have a hydraulic conductivity at least an order
of magnitude lower than Sandstone. Figure 5-7b shows a direct comparison of the results using the
fixed point algorithm 5 shown in red, superimposed on the direct Monte Carlo results from figure 5-
3b. The values (𝑘2, 𝑘3) giving minimum values for the error derived from the Monte Carlo method
coincide with the range of values determined by the fixed point algorithm. Since the underlying flow
model is the same in both cases this is as anticipated.

This method is significantly more computationally efficient than the approach set out in section 5.2.
However Algorithm 5 is slow to converge and also requires the use of a dampening parameter to
ensure that k > 0 in the iteration. To implement this equation 5.13 is restated as

k 𝒋+1 := kj + `𝚫kj

where 0 < ` < 1 is a problem dependent damping parameter chosen by the user, ensuring that
k 𝑗 > 0, ∀ 𝑗 . For the purposes of this example ` = 0.75 was found to work well, with the given
starting values converging.
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5.4 A Tikhonov approach to the inverse problem

One of the problems in applying algorithm 5 is that rather than providing an optimal solution for k

we obtain a range of possible values. This is a consequence of breaking down 𝑄 into a range of
possible contributions layer by layer. In the above example we considered a worst case scenario with
a full range of possible values of the flows 𝑄1 + 𝑄2 + 𝑄3 = 𝑄 with 𝑄1 = 0. Applying the method
in practice we anticipate being able to narrow these ranges based upon local observations to infer
relative hydraulic properties.

Whilst understanding the possible ranges of 𝑘 for the component layers is useful, in this section we
describe an alternative approach which will yield an optimal value of k. Consider for some iterate 𝑗

the equation: ∑︁
𝑖

𝐴𝑖 (𝑢ℎ) 𝑗 𝑘 𝑗𝑖 = 𝑄
𝑗

ℎ
. (5.6)

As an example for the three layered problem in well 2 Ibirá, Sao Paulo we have the equation,

𝐴1(𝑢ℎ) 𝑗 𝑘 𝑗1 + 𝐴2(𝑢ℎ) 𝑗 𝑘 𝑗2 + 𝐴3(𝑢ℎ) 𝑗 𝑘 𝑗3 = 𝑄, (5.7)

where 𝑄 = 8.5𝑚3ℎ−1. If 𝚫kj represents an incremental change in k 𝑗 s.t.∑︁
𝑖

𝐴𝑖 (𝑢ℎ) 𝑗 (𝑘 𝑗𝑖 + Δ𝑘
𝑗

𝑖
) ≈ 𝑄

giving ∑︁
𝑖

𝐴𝑖 (𝑢ℎ) 𝑗Δ𝑘 𝑗𝑖 ≈ 𝑄 −𝑄 𝑗

ℎ
. (5.8)

Using the well 2 Ibirá, Sao Paulo example,

𝐴1(𝑢ℎ) 𝑗Δ𝑘 𝑗1 + 𝐴2(𝑢ℎ) 𝑗Δ𝑘 𝑗2 + 𝐴3(𝑢ℎ) 𝑗Δ𝑘 𝑗3 = 𝑄 −𝑄 𝑗

ℎ
. (5.9)

For 𝑖 > 1 equation (5.8) is an under-determined system and there is not a unique solution. One
approach to finding an optimal solution is to use a Tikhonov regularisation, reference [Hansen 2001].

5.4.1 Tikhonov Regularisation

Regularisation methods for computing stable solutions to inverse problems generally involve a trade-
off between the “size” of the regularised solution and the quality of the fit that it provides to the given
data. What distinguishes the various regularisation methods is how they measure these quantities
and how they decide on the optimal trade-off between the two quantities. For example, given the
discrete linear least-squares problem min ∥Bx − b∥𝐿2 which reduces to Bx = b if B is square, the
Tikhonov regularisation solves the minimisation problem

x_ = arg min{∥Bx − b∥2
𝐿2 + _2∥L(x − x0)∥2

𝐿2}, (5.10)
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where _ is a real regularisation parameter that must be chosen by the user. Note that, if _ = 0, equation
(5.10) reduces to a least squares solution which is not necessarily well posed, the addition of _ > 0
facilitates the choice of a unique solution. Here the “size” of the regularised solution is measured by
the norm ∥L(x−x0)∥𝐿2 , while the fit is measured by the norm ∥Bx−b∥𝐿2 of the residual vector. The
vector x0 is an a priori estimate of x which is set to zero when no a priori information is available.
The problem is in standard form if L = I, the identity matrix. The Tikhonov solution x_ is given as the
solution to the regularised normal equations

(B𝑇B + _2L𝑇L)x_ = B𝑇b + _2L𝑇Lx0. (5.11)

To apply equation (5.11) to the problem specified in equation (5.9), set

x = 𝚫k,B = A 𝑗 = [𝐴 𝑗1, . . . , 𝐴
𝑗

𝐿
]𝑇 , b = 𝑄 −𝑄 𝑗

ℎ
,x0 = k0, and L = I,

then following reference [Hansen 2001], the solution to equation 5.9 is given by(
(Aj)TA 𝑗 + _2I

)
𝚫k 𝑗 = (Aj)𝑇 (𝑄 −𝑄 𝑗

ℎ
) + _2I(𝚫𝑘) 𝑗−1. (5.12)

Equation (5.12) enables us to find.
k 𝑗+1 := k 𝑗 + 𝚫𝒌 𝑗 . (5.13)

This leads us to a straightforward modification of algorithm 5.

Algorithm 6 Regularised inverse algorithm to compute k from the measured outflow 𝑄

Require: 𝑄, 𝐿, 𝑑𝑖 , 𝑖 = 1, . . . , 𝐿,k0, 𝑢0
ℎ
, 𝐽, 𝜖

1: j = 0
2: while 𝑗 ≤ 𝑁 do
3: calculate A 𝑗 using equation (5.3)
4: calculate 𝑄 𝑗

ℎ
using equation (5.2)

5: if |𝑄 −𝑄ℎ 𝑗 | < 𝜖 then
6: k𝐽 = k 𝑗

7: break
8: else
9: calculate k 𝑗+1 using equations (5.12) and (5.13)

10: apply algorithm 2 or 3 to find 𝑢 𝑗+1
ℎ

11: end if
12: end while

Note for the purposes of computation since the units of 𝑘 are 𝑚𝑠−1 we require the units of 𝑄 and 𝑄ℎ
in 𝑚3𝑠−1.

5.4.2 Results using the Tikhonov inversion algorithm

Algorithm 6 was applied to the 3 example wells: well 1 Ibirá, Rua Ceara, well 2 Ibirá, Sao Paulo and
well 3 Porto ferreira, Jardim Santa Marta, for which the stabilisation flows are known to an accuracy of
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±10%. The results from the inversion process are shown in tables 5.3 and figure 5-8, the ranges are
a consequence error measurement in 𝑄. Figure 5-8 shows a comparison of the computed hydraulic
conductivity ranges against the specified ranges of BGS values for the types of soil. The results are
within the expected ranges and consistent with the ranges of values determined using algorithm 5
which gives results in the case of well 2. In some instances it is possible to use the results to infer
whether the rock may be fractured or have porous properties, in circumstances where no data is
available. For example in the well 3 example, 5-layered example the inverse model predicts that the
Mudstone and Basalt layers may be fractured as the computed values for hydraulic conductivity are
at the higher end of the BGS scale.

𝑘𝑁1 𝑘𝑁2 𝑘𝑁3 𝑘𝑁4 𝑘𝑁5
well 1 1 × 10−6 [4.2, 5] × 10−7 - - -
well 2 1 × 10−6 [8.2, 8.5] × 10−7 [2.5, 3.4] × 10−7 - -
well 3 1 × 10−6 [1.1, 1.4] × 10−5 [6.7, 8.1] × 10−6 [1.5, 1.9] × 10−5 [1, 1.3] × 10−5

Table 5.3. Results from the application of algorithm 6 (Tikhonov) to the 3 well examples. In all
cases starting values of 𝑘0

𝑖
= 1 × 10−6, 𝑖 = 1, . . . , 5 were used. Since for well examples 1, 2 and 3

there is little or no outflow through the first layer the starting values 𝑘0
1 are unchanged by the algo-

rithm. Since these are the surface layers it is easier to determine the hydraulic conductivity by a
direct method, for example using Vertical Electrical Sounding (VES) or laboratory testing.

5.5 Summary

The chapter has given 3 different approaches to solving the inverse problem. These are set out below.

1. A direct Monte Carlo approach using repeated applications of the forward model to compute
the error |𝑄 −𝑄ℎ | using randomly generated input data.

2. A fixed point algorithm that determined a range for the hydraulic conductivity of layers by as-
suming a distribution of the stabilisation flow across the layers.

3. A Tikhonov regularisation of the under-determined system to determine optimal values of 𝑘 for
each soil layer.

All the methods produced results that were consistent with the observed data from the CPRM and
with the BGS reference material. The relative advantages and disadvantages are summarised in the
table 5.4 below.

As shown in table 5.4 there are computational advantages in using the Tikhonov approach to solve
the inverse flow problem. For the problems specified within this chapter, it is the preferred choice.
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Fig. 5-8. The computed hydraulic conductivity ranges for the layered well examples 1-3. Note
since there is little or no flow through layer 1 there is no update to the initial value 𝑘0

1 = 1 × 10−6

and this has not been plotted. The length of the bar indicates the size of the range. The computed
values compare favourably with the BGS references data 6.1, which for ease of reference is plotted
on the LHS of the figure.
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Method Computational requirements Type of result Dealing with
dimensionality

Monte Carlo algorithm
4.

High, comparative MC experi-
ments with 1000 samples:

• 2 layers - 2.3 hrs,
• 3 layers - 3.9 hrs and
• 5 layers - 5.6 hrs.

The time increases linearly with
the number of layers.

Direct esti-
mates.

No limits1, hard
to visualise
𝐿 > 2.

Fixed point algorithm 5. Medium, for the 3-layered ex-
ample. Times are approxi-
mately 240 secs per layer dis-
tribution of the stabilisation flow
Q. Using the example with 35
distributions then approximately
2.3 hrs to run the algorithm.
Given the free boundary in the
example then allow 4 iterations
to determine the position of the
seepage interface, a total time
of 9.2 hrs.

Range of val-
ues.

complex for
𝐿 > 3, this a
consequence
of increased
combinations of
input data.

Tikhonov algorithm 6. Low, run times for the algo-
rithm:

• 2 layers - 9 secs,
• 3 layers - 77 secs, given

the free boundary in the
example allow for 4 it-
erations, total 308 secs
and

• 5 layers - 91 secs.

Direct esti-
mates.

No limits1.

Table 5.4. Summary of the characteristics of the 3 inversion algorithms used to compute k. The
experiments were run on an HP Z2 workstation with 16GM RAM. The timings are indicative as they
depend upon the setup parameters and tolerances used within the algorithms. Note1 - increased
dimensionality will require proportionately more computing resources
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Chapter 6

Quantification of hydraulic
characteristics using a stochastic
approach

Abstract

In this chapter, we use a Monte Carlo (MC) method to help address soil layer heterogeneity. This also helps
reduce the complexity introduced by increasing soil layers and is useful where there is limited data or uncertainty
in the measurement of hydraulic conductivity. A multi-layered MC algorithm to quantify the outflow from a well
is developed. This requires prior knowledge of the configuration of the well and the approximate positions
and types of the soil layers. The algorithm is validated against the three working well examples described in
chapter 4. The results show that by using a minimal set of input data the likely range of stabilisation flows may
be computed with a reasonable degree of accuracy. In the final section of this chapter we consider the use of
a Markov Chain Monte Carlo (MCMC) method to solve an inverse problem to estimate hydraulic conductivity
using known flow data.

6.1 Introduction

This chapter uses the results from chapters 3 and 4 within a stochastic framework to deliver a decision
support tool. This may be used by engineers wishing to examine the economic and environmental
impact of siting a well or borehole in a particular location. In general the method for determining
the yield which is described in reference [Macdonald and Calow 2005] requires drilling and then
conducting tests. By initially using the decision support tool it is envisaged that those responsible for
siting the well or borehole would be able to use the results and include them in the decision-making
process within their planning. This may help to avoid drilling in areas that are not viable.

As part of the study of the inverse problem in chapter 5 section 5.2 described a Monte Carlo approach
that used a selection of uniformly distributed values of k as input data to the forward model. This
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provided a distribution for 𝑄ℎ. We were able to determine those values of k that minimised the
outflow error |𝑄−𝑄ℎ |. This approach leads us to consider the possibility of selecting the initial k from
some more physically representative distributions, known as the prior distributions. Also whether by
using the forward model we would be able to generate an outflow distribution enabling us to quantify
the uncertainty in the stabilisation flow 𝑄 with greater degree of accuracy.

The assumption of a lognormal probability density function (PDF) as a good statistical model is widely
adopted by many groundwater hydrologists and is seen as an effective way to interpret hydraulic
conductivity data. This option is justified in references [Mesquita 2002] and [Loáiciga, W. Yeh, and
Ortega-Guerrero 2006]. Attractive features of the lognormal PDF in the modelling of hydraulic con-
ductivity are set out below.

1. It can fit positively skewed data which is a common trait of hydraulic conductivity.
2. The parameters describing the normally distributed log conductivity, mean ` and the variance
𝜎2, symbolically 𝑌 ∼ 𝑁 (`, 𝜎2) are easily estimable.

Depending on the nature of the problem some hydrologists prefer to use the gamma PDF or its exten-
sion the loggamma PDF. This is because it can allow lower or upper bounds on hydraulic conductivity.
Reference [Loáiciga, W. Yeh, and Ortega-Guerrero 2006] examines the role of the PDF choice on the
statistical characterisation of hydraulic conductivity. It uses the lognormal, gamma and loggamma
PDFs in the study. Results based upon a sample of 201 laboratory measurements of hydraulic con-
ductivity in the main clay aquitard underlying Mexico were provided. The reference indicates that all
of the distributions produce similar results. Furthermore the reference concluded that as well as being
adequate for the task the lognormal PDF was a good choice from an ease of use perspective as it
was the simplest to apply.

Reference [Mesquita 2002] focused specifically on the optimal choice of PDF for the São Paulo Region
of Brazil. In this reference, the authors tested the lognormal, loggamma and beta distributions to
search for a PDF that best described the distribution of k in that area. Their experiments used a
constant head permeameter method 1. This was used to determine k from undisturbed samples of 3
soils of different textures extracted from the central western region of the São Paulo State. Statistical
tests were conducted to find the best fit asymmetrical distribution to represent them. From the various
statistical tests it was found that the lognormal probability density function gave the best fit.

Having considered the above data, we select the lognormal PDF to represent the distribution of hy-
draulic conductivity for our numerical experiments. This decision is based upon ease of implementa-
tion [Loáiciga, W. Yeh, and Ortega-Guerrero 2006] and the fact that our data comes directly from the
area surveyed in reference [Mesquita 2002].

Whilst our aim is in general to apply an MC method we note that when used in its direct form it
can be computationally expensive and requires a large number of simulation runs. This leads us to
consider ways of improving performance, in particular by using a Markov Chain random walk process

1https://theconstructor.org/geotechnical/soil-permeability-test-constant-head/2993/
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(MCMC), reference [Barbu and S. Zhu 2020, Chapter 3]. This means choosing input values from
some candidate distribution that based on the previous selection are conditionally more likely to fit
the prior distribution. As the selection process is random the stationary distribution from the MCMC
will eventually converge to the prior distribution. The MH algorithm is widely used to implement an
MCMC method and the details are explained later in this chapter.

MC and MCMC algorithms are widely used to infer hydraulic parameters. Reference [X. Du et al.
2022] uses an MH algorithm to improve estimates of the parameters used within the Van Genuchten
soil water retention curve (4.2) for a range of soil types. As part of the process it uses a candidate
distribution based on the ranges of the Van Genuchten parameter and uses specific prior distributions
which are described in the reference. The authors use a uniform candidate to select values from the
prior distribution. This particular choice of candidate is justified in reference [Geyer 1992] which
addresses practical implementations of the MH algorithm. The same choice is used by [H. Wang, C.
Wang, et al. 2017] to quantify daily river flow rate forecast and uncertainty. An interesting reference
[Hongbe et al. 2019] which is related to our problem compares results from a laboratory experiment
with multiple soil layers with those from a 1d model used within an MCMC algorithm to infer possible
values of k.

At this stage we introduce the effective hydraulic conductivity. This parameter averages the hydraulic
conductivity across layers and helps to simplify multi-layered problems. It is used by hydrologists
and geophysicists to describe the reference hydraulic conductivity of a geotechnical structure when
addressing large scale groundwater flow problems.

Definition 6.1 Effective hydraulic conductivity

The effective hydraulic conductivity of the aquifer in the neighbourhood of a well is defined as the
homogenised 𝑘 that produces the same total flow rate as that given by the same well within the multi-
layered aquifer.

Reference [Ching, Chen, and Phoon 2023] describes a MC approach to determine the effective hy-
draulic conductivity of a geotechnical structure. The effective hydraulic conductivity is defined as
the homogeneous 𝑘 that produces the same total flow rate 𝑄 as that generated using a random FE
analysis (RFEA) model. To simulate rock heterogeneity each element in the domain is assigned a
randomly generated 𝑘 . For each realisation of the 𝑘 𝑖 , 𝑖 = 1, . . . , 𝑁 random field a FE model is used
to determine the total flow rate, denoted by 𝑄𝑖

ℎ
. Then, another FE analysis with a homogeneous 𝑘 is

conducted. The homogeneous 𝑘 is adjusted until the resulting 𝑄 matches 𝑄𝑖
ℎ
. The adjusted 𝑘 value

is then the effective hydraulic conductivity for this random field realisation. The population of effective
hydraulic conductivity values determined from the population of random field realisations empirically
defines its probability density function. The effective hydraulic conductivity value simulated by this
procedure is used by engineers as the reference value, the ’𝑘 value’ for the geotechnical structure.
Note that it is computationally costly to obtain the effective 𝑘 values because this requires repeated
applications of the RFEAs.

In practical scenarios, there may be limited or data of uncertain accuracy. To reduce the requirement
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for high density surveys a stochastic framework can be used to predict the geological characteristics
of layered rock approximations to a reasonable degree of accuracy. The approach presented here de-
scribes a worst-case scenario in that nothing more may be known than ’layer X is a type of Sandstone’.
If more accurate input data is available for example ’layer X is a coarse Sandstone’ then this may be
incorporated into the model. The novel features include the integration of an efficient FE forward flow
model. By using an h-adaptive algorithm the computational efficiency is improved by ∼ 90%. This
model is applied by considering the hydraulic conductivity of each layer as a fixed random variable.
This is an alternative approach to assigning randomly generated hydraulic conductivity values to ev-
ery element in the domain such as described in [Ching, Chen, and Phoon 2023]. It is demonstrated
that the MH algorithm can also be incorporated into the model further improving computational effi-
ciency. The principal results from this chapter were presented at the American Geophysical Union
(AGU) Fall meeting held in Dec 2021.

6.2 Modelling saturated hydraulic conductivity as a random variable

In this section we will demonstrate how the forward flow model may be used within MC experiments
to infer the likely outflow characteristics of a well sunk into a multi-layered aquifer. As discussed in
the introduction groundwater hydrologists frequently adopt the lognormal probability density function
(PDF) as a good statistical model of saturated hydraulic conductivity. In particular we refer to refer-
ences [Mesquita 2002] and [Loáiciga, W. Yeh, and Ortega-Guerrero 2006]. The former reference is
based upon measurements made in the vicinity of wells 1-3 and is hence considered to be directly
relevant. We will consider the parameter k as a random variable generated from component layer
lognormal PDFs. This approach will help to address the impact of inherent rock heterogeneity and
also accommodate practical scenarios where we have limited or incomplete input data.

By considering k as a random variable from equation (4.4) we will need to develop a weak formulation
of the PDE (4.1) with a random coefficient K(𝑢). There are principally two ways to address the
requirement. Both methods are described in reference [Scheichl, Stuart, and Teckentrup 2017]. The
most direct method is to fix k and then adopt a ’k by k’ approach. This is used in the examples
described below. That is supposing we have 𝑁 randomly generated values of k then we apply the
algorithm 2 (or 3) from chapter 4 𝑁 times for each value of k. The advantage of this approach is
that the results from chapter 4 used in developing the forward model will apply. Given we repeat
the experiment 𝑁 times the results will provide a randomly generated variable 𝑄 𝑗

ℎ
(k), 𝑗 = 1, . . . , 𝑁 .

This data can be mapped to a best-fit outflow distribution which can be used to determine the mean
stabilisation flow 𝑄𝑁

ℎ
and to deduce likely flow characteristics for the well. As an alternative to the ’k

by k’ approach it is possible to develop a single weak form for the whole PDE [Scheichl, Stuart, and
Teckentrup 2017], although this is not followed here.

In describing the problem we will use the following definitions.

Definition 6.2 Lognormal PDF
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If the random variable 𝑋 > 0 is log-normally distributed, then 𝑌 = ln(𝑋) is normally distributed. The
values ` and 𝜎2 are the mean and variance of this normal distribution. They are known as the shape
parameters of the lognormal PDF Π(𝑥), 𝑥 ∈ R+ given by

Π(𝑥) = (1/𝜎
√

2𝜋𝑥) exp(− (ln 𝑥 − `)2

2𝜎2 ).

This may be written as Π(𝑥) ∼ lognormal(`, 𝜎).

Definition 6.3 Mean and variance of the lognormal distribution

The mean 𝑚 and variance 𝑣 of the lognormal distribution can be expressed in terms of ` and 𝜎 and
are given in [Hammersley and Handscomb 1964] as

𝑚 = exp (` + 𝜎2/2),

𝑣 = 𝑚2
(
exp (𝜎2) − 1

)
.

(6.1)

Definition 6.4 Simulation

A simulation means a single application of algorithm 2 (or 3) using some randomly generated values
for the hydraulic conductivity k 𝑗 (defined below) of the layers to compute the corresponding outflow
𝑄
𝑗

ℎ
.

Remark 6.5 Properties of the best fit distribution of 𝑄 𝑗

ℎ
𝑗 = 1, . . . , 𝑁

The computed outflow depends implicitly on k, equation (5.2). However from chapter 4 as shown in
section 5.3 and figure 5-6 the dependence is relatively weak. As a working we assume that the com-
puted outflow will approximately follow the distribution of the input data i.e. a lognormal distribution.
All the subsequent tests indicated that this was a reasonable assumption.

Definition 6.6 PDF of the outflow distribution 𝑄 𝑗

ℎ
, 𝑗 = 1, . . . , 𝑁

Suppose `𝑁
𝑄ℎ

and 𝜎𝑁
𝑄ℎ

are the shape parameters of the best-fit lognormal PDF

G𝑁 (Q) ∼ lognormal(`𝑁𝑄ℎ, 𝜎
𝑁
𝑄ℎ), Q > 0, (6.2)

for 𝑄 𝑗

ℎ
𝑗 = 1, . . . , 𝑁 . Then the probability that 𝑄ℎ1 ≤ 𝑡 ≤ 𝑄ℎ2 is given by

𝑝(𝑄ℎ1, 𝑄ℎ2) =
∫ 𝑄ℎ2

𝑄ℎ1

G𝑁 (𝑡)𝑑𝑡. (6.3)

For large 𝑁 it is expected that the mean of the outflow distribution 𝑄𝑁
ℎ

will be a reasonable approxi-
mation to the measured stabilisation flow 𝑄.

Definition 6.7 Mean of the best fit lognormal outflow distribution 𝑄 𝑗

ℎ
, 𝑗 = 1, . . . , 𝑁
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𝑄𝑁
ℎ
=

∫ ∞

0
𝑡G𝑁 (𝑡)𝑑𝑡. (6.4)

In applying the ’k by k’ approach there are two sources of error. Firstly there is the error inherent in
the numerical approximation. To examine this we use theorem 2.36. In this case observing that there
will be different values of the constant 𝐶 resulting from the 𝑁 simulations. These depend on k giving

∥p − p
𝑗

ℎ
∥𝐿2 (Ω) ≤ 𝐶 (k 𝑗)ℎ𝑝+1∥p∥𝐻 𝑝+1 (Ω) , ∀ 𝑗 = 1, . . . , 𝑁.

Hence
𝑁∑︁
𝑗=1

(
∥p − p

𝑗

ℎ
∥𝐿2 (Ω)

)
≤

𝑁∑︁
𝑗=1

(
𝐶 (k 𝑗)ℎ𝑝+1∥p∥𝐻 𝑝+1 (Ω)

)
.

This gives

(1/𝑁)
𝑁∑︁
𝑗=1

(
∥p − p

𝑗

ℎ
∥𝐿2 (Ω)

)
≤ max

𝑗
{𝐶 (k 𝑗)}ℎ𝑝+1∥p∥𝐻 𝑝+1 (Ω) .

Providing 𝐶 (k) is bounded the mean flux error measured in the 𝐿2 norm remains ∼ O(ℎ𝑝+1). If we
used the mixed function space 𝑅𝑇0 × P1 to compute the flux then assuming appropriate regularity of
the solution the mean flux error measured in the 𝐿2 norm would be O(ℎ).

The statistical error resulting from the MC simulation is a well known result for example refer to [Ham-
mersley and Handscomb 1964, Section 2] and is ∼ O(1/

√
𝑁). We conclude that the total flux error

using the MC approach is likely to be O(ℎ𝑝+1)+O(1/
√
𝑁). To relate this to the error in the stabilisation

flow consider equation (5.2) from chapter 5. For 𝑖 = 1, . . . , 𝐿

𝑄ℎ𝑖 =


0 if 𝑑𝑖 > 𝐻𝑠,

−2𝜋𝑥𝐿𝑘𝑖
∫ 𝑑𝑖
𝑑𝑖−1

∇(𝑢ℎ + 𝑧) · n 𝑑𝑠 if 𝑑𝑖 ≤ 𝐻𝑠 .
(6.5)

This shows that the outflow 𝑄 is proportional to the flux and so we anticipate that

|𝑄 −𝑄𝑁
ℎ
| ∼ O(ℎ𝑝+1) + O(1/

√
𝑁).

It is required that both ℎ → 0 and 𝑁 → ∞ to achieve a reduction in the error.

In chapter 2 the theory relating to our model elliptic equation requires that it is necessary that K be a
positive definite matrix or positive real number for the problem to be well-posed. Since the assumption
is that 𝑘 is a lognormal random variable it will by definition have the necessary property that 𝑘 > 0. In
the next section we consider how to construct lognormal PDFs from available source data for different
rock layers.
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6.3 Lognormal probability density function (PDF) for 𝑘

Suppose we wish to approximate the log normal PDFs for the component rock layers within an aquifer.
From definition 6.2 we can see that we need to find the mean and variance of the normal distribution
of log 𝑘 . This might be achieved by sampling and conducting laboratory tests although achieving a
reasonable degree of accuracy would require many samples and the process would be very lengthy.
By using standard BGS reference data we can approximate the ` and 𝜎 shape parameters. Table
6.1 reproduced below from Chapter 2 gives the reference maximum and minimum values of 𝑘 for a
given type of rock. We can use these values to approximate the lognormal distribution Π(𝑘) (`, 𝜎)
using equation (6.6).

Soil Type 𝑘𝐿 (m/s) 𝑘𝑈 (m/s) ` 𝜎 𝑚

Sand 1.16 × 10−6 5.79 × 10−3 -9.409 1.419 2.24 × 10−4

Silt 1.16 × 10−8 1.16 × 10−6 -15.97 0.768 1.56 × 10−7

Sandstone 5.79 × 10−10 2.31 × 10−4 -14.821 2.149 3.68 × 10−6

Fractured Basalt 1.16 × 10−9 1.16 × 10−5 -15.97 1.535 3.77 × 10−7

Dense Basalt 2.78 × 10−10 2.78 × 10−7 -18.55 1.151 1.7 × 10−8

Shale 5.79 × 10−13 1.16 × 10−9 -24.376 1.267 5.78 × 10−11

Fractured Diabase 1.16 × 10−9 1.16 × 10−5 -15.97 1.535 3.77 × 10−7

Dense Diabase 2.78 × 10−10 2.78 × 10−7 -18.55 1.151 1.7 × 10−8

Clay 5.79 × 10−12 1.16 × 10−8 -22.074 1.267 5.78 × 10−10

Table 6.1. A sample of hydraulic conductivity data taken from the British Geologic Survey for vari-
ous soil types, 𝑘𝐿 , 𝑘𝑈 correspond to the minimum and maximum expected values.

` ≈ (log(𝑘𝐿) + log(𝑘𝑈))/2,

𝜎 ≈ (log(𝑘𝑈) − log(𝑘𝐿))/6.
(6.6)

These approximations follow a British Medical Council (BMC) methodology, [S. Hozo, Djulbegovic,
and I. Hozo 2005]. The calculated parameters ` and𝜎 are also shown in table 6.1. The corresponding
PDFs for some example soil types are shown in figure 6-1.

We consider how to apply the MC method to our flow problem. MC methods vary, but in general tend
to follow a particular pattern, described below.

1. Define a domain of possible inputs.
2. Generate inputs randomly from a probability distribution over the domain.
3. Perform a deterministic computation on the inputs.
4. Aggregate the results.

This methodology is adapted in a straightforward way to a multi-layered scenario using the following
steps.

1. Use BGS data in table 6.1 to define the possible ranges for 𝑘1, . . . , 𝑘𝐿 for the soil layers in the
aquifer.
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(a) Silt (b) Sandstone

(c) Fractured Shale (d) Basalt

(e) Fractured Basalt (f) Clay

Fig. 6-1. PDF of hydraulic conductivity for various types of soil constructed from the ranges speci-
fied in reference [Lewis, Cheney, and O’Dochartaigh 2006] with parameters calculated using refer-
ence [S. Hozo, Djulbegovic, and I. Hozo 2005].

2. Calculate the shape parameters `𝑖 , 𝜎𝑖 for each layer 𝑖 = 1, . . . , 𝐿 using equation 6.6.
3. Derive the PDF Π𝑖 (𝑘) for each of the soil layers within the aquifer, as shown in figure 6-1.
4. Generate input vectors k 𝑗 = (𝑘1

𝑗 , . . . , , 𝑘𝐿
𝑗) 𝑗 = 1, . . . , 𝑁 , with each 𝑘

𝑗

𝑖
selected randomly

from Π𝑖 (𝑘). Typically for such experiments 𝑁 > 10000.
5. Compute 𝑄 𝑗

ℎ
using the forward model for each k 𝑗 , 𝑗 = 1, . . . , 𝑁 .
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6. Analyse the outflow distribution G𝑁 (𝑡) and calculate best fit lognormal shape parameters `𝑁
𝑄ℎ

and 𝜎𝑁
𝑄ℎ

.

7. Calculate mean value of G𝑁 (𝑡) = 𝑄𝑁
ℎ

.

For step 6. in the above algorithm we used the standard MATLAB statistical functions fitdist and
mle to determine best-fit distributions and the corresponding shape parameter values. In the case of
lognormal distributions, these functions determine maximum likelihood estimates from the data set.
The method is described in reference [Pishro-Nik 2014, section 8].

Algorithm 7 follows the prescribed methodology and is used to compute the expected outflow 𝑄𝑁
ℎ

from a multi-layered aquifer. Figure 6-2 illustrates how the algorithm is applied to a 3-layered well.

Algorithm 7 MC algorithm to compute mean outflow 𝑄
𝑁

ℎ

Require: k𝐿 ,k𝑈 , 𝑁
1: j = 1
2: Determine Π𝑖 (𝑘) 𝑖 = 1, . . . , 𝐿, using equation 6.6 and MATLAB software
3: while 𝑗 ≤ 𝑁 do
4: i = 1
5: while 𝑖 ≤ 𝐿 do
6: select 𝑘 𝑗

𝑖
randomly from Π𝑖 (𝑘)

7: i:= i+1
8: end while
9: k 𝑗 = (𝑘 𝑗1 , . . . , 𝑘

𝑗

𝐿
)

10: Calculate 𝑄 𝑗

ℎ
using forward model algorithm 2 or if free boundary algorithm 3

11: j:=j+1
12: end while
13: Using distribution 𝑄 𝑗

ℎ
𝑗 = 1, . . . , 𝑁 find best fit G𝑁 (𝑡) ∼ lognormal(`𝑁

𝑄ℎ
, 𝜎𝑁
𝑄ℎ

)
14: Use `𝑁

𝑄ℎ
and 𝜎𝑁

𝑄ℎ
to calculate 𝑄𝑁

ℎ
, following (6.1)
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Fig. 6-2. MC process applied to a 3 layer well. Input data to the forward model is selected randomly
from the lognormal prior PDFs generating (𝑘1, 𝑘2, 𝑘3) 𝑗 , 𝑗 = 1 . . . , 𝑁. The resulting population of the
outflow 𝑄

𝑗

ℎ
is used to develop the best fit outflow distribution.
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6.4 A single layered example using MC

The purpose of this test case is to validate the performance of algorithm 7 and to examine the charac-
teristics of the outflow distribution G𝑁 (𝑡). In particular we want to check the validity of the assumption
that the outflow distribution is approximately lognormal. We construct a single layered test case from
well 1. Data from the CPRM team indicates that the mean saturated hydraulic conductivity in the
area of the well is 𝑘 ≈ 3.01 × 10−6. Suppose instead of 2 layers, we have only a single soil layer of
Sandstone. This type of rock is chosen as the flow into the well is primarily through the Sandstone
layer. All other configuration details and boundary conditions remain the same. Refer to 6-3 below.

Test case based upon Well 1: Ibirá, Rua Ceara, with the assumption of a single layer of Sand-
stone

15
𝑚

60
𝑚

phreatic interface (est. position)

0.1524𝑚

50𝑚

10
.2
𝑚

17
.3
𝑚

Water Sandstone

Fig. 6-3. A single layered example constructed from Well 1.

Using the measured mean value in the forward model algorithm 2 gives an expected stabilisation flow
of 𝑄 = 3.41𝑚3ℎ−1. The expectation is that if algorithm 7 is applied for a large 𝑁 then 𝑄𝑁ℎ would be
similar in value to this and that G𝑁 (𝑡) follows a lognormal distribution.

Applying algorithm 7, with 𝑁 = 15, 000 random values of 𝑘 are generated from the PDF for Sandstone.
These are used as input data for 𝑁 simulations using the forward model, algorithm 2. For each value
𝑁0 ≤ 𝑗 ≤ 𝑁 we are able to calculate 𝑄 𝑗

ℎ
from the best fit outflow distribution. Here 𝑁0 = 10 is a

parameter specified within the MATLAB software and is the least number of data points required to
determine the best fit shape parameters 𝜎 and `.
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Table 6.2 shows the expected stabilisation flow and compares it to 𝑄𝑁ℎ . Figure 6-4a and 6-4b shows
the histogram of the outflow distribution and the best fit PDF. The mean computed outflow 𝑄𝑁

ℎ
is

consistent with the outflow computed using the measured 𝑘 as shown in figure 6-4c. Equation 6.3
is used to calculate the probability showing that algorithm 7 predicts there is a 90% probability that
0 ≤ 𝑄 ≤ 4.5𝑚3ℎ−1 for this test problem, see figure 6-4d.

Expected 𝑄 𝑄
𝑁

ℎ

3.41 3.17

Table 6.2. Comparison of expected 𝑄 using 𝑘 = 3.01 × 10−6 with that computed using algorithm 7
with 𝑁 = 15000. The objective was to show that algorithm 7 would produce a consistent result and
this is considered to be a positive outcome.

6.4.1 Observations

The results support the assumption that the best fit outflow distribution G𝑁 (𝑡) for the random variable
𝑄
𝑗

ℎ
𝑗 = 1, . . . , 𝑁 is approximately lognormal. The result from the application of algorithm 7 is consis-

tent with the value of 𝑄ℎ computed using the forward model with the measured mean 𝑘 for the area.
This gives us sufficient confidence to progress to applying algorithm 7 to a multi-layered example.
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(a) Histogram of the outflow distribution.

(b) The best fit lognormal distribution PDF
of 𝑄 𝑗

ℎ
𝑗 = 1, . . . , 𝑁 .

(c) Plot of 𝑄𝑁
ℎ

in blue, with expected 𝑄
computed using the measured 𝑘 and
shown in red.

(d) Cumulative probability, red line shows
that algorithm 7 predicts that a 90% proba-
bility that 𝑄 < 4.5.

Fig. 6-4. Results for MC method applied to a single-layered test problem based on well 1. The re-
sults support the assumption that the best fit distribution of 𝑄𝑁

ℎ
for large 𝑁 is lognormal. As antici-

pated the 𝑄𝑁
ℎ

is near to the expected value of 𝑄 computed using 𝑘 .
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6.5 Application of MC algorithm 7 to Well 1 Ibirá, Rua Ceara

We apply algorithm 7 to well 1. For ease of reference, the diagram is reproduced from chapter 2 and
shown below.
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22
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50𝑚

10
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.3
𝑚

Water Sandstone

Fig. 6-5. A diagram of Well 1.

There are two layers, Silty Sand and Sandstone. The well configuration and the approximate position
of the layers are specified. The stabilisation flow is measured to be 𝑄 = 2𝑚3ℎ−1 ± 10%. For the
purposes of the experiment, we will assume that the top layer may be approximated by using the
BGS distribution for Silt. Table 6.1 then gives the following ranges for the hydraulic conductivity of
layers 1 and 2,

1.16 × 10−8 ≤ 𝑘1 ≤ 1.16 × 10−6

and
5.79 × 10−10 ≤ 𝑘2 ≤ 2.31 × 10−4,

respectively.

Table 6.3 shows the input data and the summary results from the experiment.

Figures 6-6a shows the best-fit lognormal outflow distribution. Figure 6-6b illustrates that for large
𝑁, 𝑄𝑁

ℎ
≈ 2.67𝑚3ℎ−1. Given the experiment uses only the generic soil layer types this is considered

to compare quite favourably to the measured value 𝑄 = 2 ± 10%. The error function |𝑄 −𝑄𝑁 | plot is
shown in figure 6-6c. Figure 6-10a shows that 𝑝(𝑄 ≤ 3.8) ∼ 90%, viz. the results from the experiment
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` 𝜎 𝑚

Prior Silt -15.97 0.77 1.55 × 10−7

Prior Sandstone -14.82 2.15 3.68 × 10−6

`𝑁
𝑄ℎ

𝜎𝑁
𝑄ℎ

𝑄ℎ𝑁

outflow G𝑁 (𝑡) -1.23 2.1 2.67

Table 6.3. Input data and results from the application of algorithm 7 to well. Observe the similarity
in the parameters 𝜎 for Sandstone and 𝜎𝑄ℎ

. This is expected as the outflow occurs predominantly
through the Sandstone layer.

show a 90% probability that the outflow is within the limits, 0 ≤ 𝑄𝑁
ℎ

≤ 3.8𝑚3ℎ−1.

Remark 6.8 Interpretation of the results

Given the computed stabilisation flow is higher than the measured value see figures 6-6b and 6-6c, it
might be inferred that the soil layers have saturated hydraulic conductivity values lower than the mean
values stated in reference [Lewis, Cheney, and O’Dochartaigh 2006] and used in the experiment.
This observation is consistent with available data in that the CPRM estimate is 𝑘 = 3.01 × 10−6 for
the area. The outflow is predominantly through the Sandstone layer and from table 6.3 it can be seen
that a mean value of 𝑘 = 3.68 × 10−6 was used to define Π2(𝑘).

If further details about any of the particular types of soil layers were known prior to an experiment
then they could be built into the model. For example actual measurements of the known ranges of
the saturated hydraulic conductivity would lead to modifications of the parameter `. This would be
expected to improve the accuracy of the computation.
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(a) Outflow distribution, best fit lognormal
distribution PDF of 𝑄ℎ.

(b) Plot of 𝑄𝑁
ℎ

in blue, with measured 𝑄 ±
10% shown in red.

(c) Measuring the error |𝑄 − 𝑄𝑁
ℎ
| which

as expected stabilises for large 𝑁 . In this
case there is only a small change for 𝑁 >

5000.

(d) Cumulative probability showing
𝑝(𝑄ℎ ≤ 3.8) = 90%, i.e. if this were to
be representative of the physical situation
then for this well there is a 0.9 probability
that the outflow will not exceed 3.8𝑚3ℎ−1.

Fig. 6-6. Results of the application of the MC method using algorithm 7 to examine the flow charac-
teristics of well 1, with 𝑁 = 15000.
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6.6 MC algorithm applied to well examples 2 and 3

We will use algorithm 7 to infer the characteristics of the outflow from the well examples 2 and 3.
These are reproduced from chapter 4 and shown in figures 6-7 and 6-8 respectively. Noting from
previous examples that the error |𝑄 − 𝑄𝑁

ℎ
| settled for 𝑁 ∼ 3000 we use 𝑁 = 3000. The soil layer

types and the parameters used to determine the PDFs for both problems are given in table 6.4.

𝑘𝐿 𝑘𝑈

Silt 1.16 × 10−8 1.16 × 10−6

Medium Sandstone 5.79 × 10−6 2.31 × 10−4

Fractured Mudstone 1 × 10−8 1 × 10−4

Mudstone 5.79 × 10−13 1.16 × 10−9

Sandstone 5.79 × 10−10 2.31 × 10−4

Fractured Diabase 1.16 × 10−9 1.16 × 10−5

Diabase 2.78 × 10−10 2.78 × 10−7

Table 6.4. Values of 𝑘 extracted from [Lewis, Cheney, and O’Dochartaigh 2006] and used in MH
algorithm to generate simulation data for Wells 2 and 3

6.6.1 Well 2: Ibirá, Sao Paulo example from chapter 4

14
0𝑚

28
𝑚

phreatic interface

Water

Silty sand

Fine sandstone

Basalt

Fig. 6-7. Well 2 reproduced from chapter 4

The stabilisation flow is measured to be 𝑄 = 8.5𝑚3ℎ−1 ± 10%. There are 3 soil layers, Silty Sand,
Sandstone and Basalt. It is not known whether the Basalt layer is fractured which would increase the
hydraulic conductivity significantly, see table 6.4. To address this uncertainty the experiment is run
twice, covering both possibilities.

The results are shown in figure 6-9a and in table 6.5. These indicate that it is probable that the Basalt
layer is unfractured.

Remark 6.9 Height of seepage interface 𝐻𝑠
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As previously observed well 2 has a free boundary and 𝐻𝑠 has to be computed at the same time
as the solution(pℎ, 𝑢ℎ). The application of algorithm 3 within an MC framework requires significant
computing resources and time. Whilst recognising that each value of k will alter the value of 𝐻𝑠 we
assume for the purposes of the experiment that any change is small. Using this assumption we fix 𝐻𝑠
first by solving the problem using the mean values of k as specified in table 6.1 for each of the soil
layers as the input data. This enables us to use algorithm 2 with a fixed 𝐻𝑠 within the experiment.

6.6.2 Well 3: Porto Ferreira, Jardim Santa Marta example from chapter 4

46
𝑚

Water

Sandy loam

Medium sandstone

Mudstone

Coarse sandstone

Diabase

Fig. 6-8. Well 3 reproduced from chapter 4

The outflow is measured to be 𝑄 = 17𝑚3ℎ−1 ± 10%. There are 5 soil layers, Silty Sand, Fine Sand-
stone, Mudstone, Coarse Sandstone and Diabase. The positioning of the filters indicates that much
of the outflow is through the two Sandstone layers. It is not known whether the Mudstone and Dia-
base layers are fractured which would increase hydraulic conductivity significantly, see table 6.4. To
address this uncertainty the experiment is run twice using fracture and unfractured PDF. The results
are shown in figure 6-9a and in table 6.5. These indicate that it is probable that the Mudstone and
Diabase layers are fractured. The case of unfractured Mudstone and fractured Diabase was not con-
sidered as the impact of the Mudstone layer is small whether fractured or unfractured. Furthermore
the assessment of the local engineers is that it is fractured.
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(a) Well 2 results from the simulation runs for un-
fractured and fractured Basalt layers. The results
indicate that it is likely that the Basalt layer is unfrac-
tured.

(b) Well 3 results from the simulation run for unfrac-
tured and then fractured Mudstone and Diabase lay-
ers. The results support the local assessment that
the layers are fractured.

Fig. 6-9. Comparative results for wells 2 and 3 showing the impact of fractured and unfractured soil
layers. The solid red lines indicate the measured stabilisation flow and the dotted lines the mea-
surement error ±10%.

Well Combination 𝑄𝑁
ℎ

𝑄 Rel error
2 Fractured Basalt 14.1 8.5 ± 10% 50 − 84%
2 Unfractured Basalt 9.6 8.5 ± 10% 2 − 25%
3 Fractured {Mudstone and Diabase} 14.8 17 ± 10% 0 − 20%
3 Unfractured {Mudstone and Diabase} 12.1 17 ± 10% 20 − 35%

Table 6.5. Table showing the variation in the mean of the computed outflow for well examples 2
and 3. From the results that use a sample size of 3, 000 we can infer that it is likely that the Basalt
layer in well 2 is unfractured whilst in well 3 it is probable that the Mudstone and Diabase layers are
fractured.

6.7 Markov Chain Monte Carlo (MCMC) Methods

To address the problems in sections 6.3 - 6.6 we used a MC algorithm to sample directly from the
predetermined prior distributions {Π𝑖 (𝑘)}𝑖 and computed 𝑄ℎ (k 𝑗) using the forward model. In this
section, we consider an inverse situation, how by using available measurements can we condition the
prior distribution to provide a more accurate representation of the hydraulic conductivity? In section
6.3 we assumed a generic prior lognormal distribution for the hydraulic conductivity of a soil layer. If
measurements of stabilisation flow are known we consider a Bayesian approach to reduce the level
of uncertainty in the estimation of the hydraulic conductivity.

We use the definition of effective hydraulic conductivity and replace the multi-layered flow model with
a single homogeneous soil layer with the same outflow properties. Let Π𝑒 (𝑘) be the prior distribution
of the effective hydraulic conductivity. If 𝑄 is the measured stabilisation flow, then the conditional
distribution of 𝑘 given 𝑄 is represented as P(𝑘 |𝑄). It is given by Bayes Theorem, reference [Pishro-
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Nik 2014, chapter 9], as
P(𝑘 |𝑄) = L(𝑄 |𝑘)Π𝑒 (𝑘)

P(𝑄) . (6.7)

In the Bayesian framework the conditional distribution P(𝑘 |𝑄) is known as the posterior distribution
and L(𝑄 |𝑘) the likelihood.

In order to apply this Bayesian framework to the inverse flow problem we introduce the Markov chain
which is defined below.

Definition 6.10 Markov chain

A Markov chain or Markov process is a stochastic model describing a sequence of possible events in
which the probability of each event depends only on the state attained in the previous event.

A Markov process is defined over a state space E by its transition probabilities 𝑝( �̃� |𝑘), the probability
of transitioning from any given state 𝑘 to state �̃� . The conditions for the process to asymptotically
reach a unique stationary distribution Π(𝑘) are as follows,

• reversibility and
• ergodicity.

These conditions are defined below and referenced in [Barbu and S. Zhu 2020, p. 53-63 ].

Definition 6.11 Condition of detailed balance - reversibility

A Markov Chain over a state space E with transition probabilities denoted by 𝑝( �̃� |𝑘) is said to be
reversible if ∃ a probability distribution Π s.t.

𝑝( �̃� |𝑘)Π(𝑘) = 𝑝(𝑘 | �̃�)Π( �̃�) ∀ 𝑘, �̃� ∈ E . (6.8)

Definition 6.12 Ergodicity

There are two requirements to fulfil this condition. The first is that every state must be aperiodic, that is
the system doesn’t return to the same state at fixed intervals. Secondly the condition requires positive
recurrence, that is the number of steps for returning to the same state is finite.

In practical circumstances, the posterior distribution given in equation (6.7) is not generally known and
so direct sampling is not possible. One way to address this problem is to generate samples using
a Markov chain Monte Carlo (MCMC) algorithm. This must fulfil the two conditions above such that
its stationary distribution Π(𝑘) is chosen to be P(𝑘 |𝑄). This is addressed in reference [Barbu and
S. Zhu 2020, chapter 4]. There are two main steps as described below.

• Given a previous sample a new sample is generated according to a proposal distribution.
• The likelihood of this new sample, that is how it fits with the measured data is compared to the

likelihood of the previous sample.

Based on this comparison the proposed sample is either accepted and used for inference or rejected
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and the previous sample is used again. This creates the Markov chain. All simulated samples can be
considered random but correlated samples of the posterior distribution. Providing there are enough
samples, the sample density will converge to the population density. However, it may take thousands
or tens of thousands of simulations to make the sample density sufficiently close to the target poste-
rior distribution, which generally is significantly more than is required with a Monte Carlo simulation
with independent samples. The method used to construct the Markov chain is described in the next
section.

6.8 An MCMC algorithm

Using the flow problem as an example, assume that the measured stabilisation flow 𝑄 is known. For
an experiment using randomly selected 𝑘 we may assume a Gaussian error model for the likelihood
as follows,

L(𝑄 |𝑘) ∝ exp

[
−0.5

(
log(𝑄ℎ (𝑘)) − log(𝑄)

𝜎𝐿

)2
]
, (6.9)

where 𝜎𝐿 is an estimate of the standard deviation of the likelihood function. If Π𝑄 (𝑘) represents the
posterior distribution and 𝑔𝑄 (𝑘) is an approximation given to some normalisation constant, then

Π𝑄 (𝑘) ≡ P(𝑘 |𝑄) ∝ exp

[
−0.5

(
log(𝑄ℎ (𝑘)) − log(𝑄)

𝜎𝐿

)2
]
Π𝑒 (𝑘) ≡ 𝑔𝑄 (𝑘). (6.10)

Remark 6.13 Approximating the prior distribution

Selection is complicated as we want to derive a single distribution from a layered structure. As a first
approximation consider the dominant layer within the flow model. In the three examples from sections
6.5 and 6.6 it is Sandstone that contributes most to the outflow. For the MCMC experiment, we will use
the lognormal distribution of Sandstone to approximate Π𝑒 (𝑘). This is generated using the method
described in 6.3. It is also considered to be a reasonable choice as the range of possible values for 𝑘
is very large and therefore more likely to cover the complete range of soil types within the multi-layered
aquifer.

Definition 6.14 Selecting a proposal distribution

The proposal distribution F ( �̃� |𝑘) is the conditional probability of proposing a state �̃� given 𝑘 . This is
the distribution from which candidate values of 𝑘 for the Markov Chain will be drawn. The reversibility
condition indicates that a good choice would be a symmetric distribution. In such a case we could
use a uniform distribution 𝑘 ∼ 𝑈 (𝑘𝐿 , 𝑘𝑈) or a normal distribution 𝑘 ∼ 𝑁 (`, 𝜎2). Here 𝑘𝐿 , 𝑘𝑈 are
the estimated lower and upper values of the saturated hydraulic conductivity in the aquifer across all
layers. The parameters ` and 𝜎 are estimated using equation (6.6).

Using the condition of detailed balance, if 𝑘, �̃� are a pair of states within the chain then

Π𝑄 ( �̃� |𝑘)Π𝑄 (𝑘) = Π𝑄 (𝑘 | �̃�)Π𝑄 ( �̃�). (6.11)
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This is rewritten as
Π𝑄 ( �̃� |𝑘)
Π𝑄 (𝑘 | �̃�)

=
Π𝑄 ( �̃�)
Π𝑄 (𝑘)

. (6.12)

Let F ( �̃� |𝑘) be the conditional probability of proposing a state �̃� given 𝑘 and 𝐴( �̃� , 𝑘) be the probability
of accepting the proposed state �̃� . The transition probability can be written as the product,

Π𝑄 ( �̃� |𝑘) = F ( �̃� |𝑘)𝐴( �̃� , 𝑘). (6.13)

Using equation (6.13) in equation (6.12) gives

𝐴( �̃� , 𝑘)
𝐴(𝑘, �̃�)

=
Π𝑄 ( �̃�)F ( �̃� |𝑘)
Π𝑄 (𝑘)F (𝑘 | �̃�)

. (6.14)

Since Π𝑄 is unknown we can use equation (6.10) to rewrite equation (6.14) as

𝐴( �̃� , 𝑘)
𝐴(𝑘, �̃�)

=
𝑔𝑄 ( �̃�)F ( �̃� |𝑘)
𝑔𝑄 (𝑘)F (𝑘 | �̃�)

. (6.15)

The ratio
𝛼 =

𝐴( �̃� , 𝑘)
𝐴(𝑘, �̃�)

is known as the acceptance ratio. An algorithm defining a Markov process to reach a unique stationary
distributionΠ𝑄 will need to satisfy equation (6.15). The Metropolis-Hastings (MH) algorithm described
below is a relatively simple method to take any algorithm that tries to jump from a current state 𝑘 to
a new state �̃� and slightly modify it by accepting the move with a probability in order for the resulting
algorithm to satisfy the detailed balance equation.

Algorithm 8 MH algorithm
Require: Target probability distribution Π(𝑘), current state 𝑘 𝑗 and proposal distribution F (𝑘, 𝑦).
Ensure: New state 𝑘 𝑗+1.

1: Propose a new state 𝑦 by sampling from F (𝑘 𝑗 , 𝑦).
2: Compute the acceptance ratio,

𝛼 = min
{
Π(𝑦)F (𝑦, 𝑥 𝑗)
Π(𝑘 𝑗)F (𝑥 𝑗 , 𝑦)

, 1
}
.

3: With probability 𝛼 accept the move and 𝑘 𝑗+1 := 𝑦 otherwise 𝑘 𝑗+1 := 𝑘 𝑗 .

Reference [Barbu and S. Zhu 2020, p.73] contains a proof showing that the MH algorithm satisfies
the detailed balance equation. To apply algorithm 8 to the inverse flow problem let Π𝑄 (𝑘) ≡ Π(𝑘)
and consider the case where F is chosen to be symmetric. Then F (𝑘 𝑗+1 |𝑘 𝑗) = F (𝑘 𝑗 |𝑘 𝑗+1) and this
simplifies the acceptance ratio as shown in the following equation.

𝛼 = min

{
Π𝑄 (𝑘 𝑗+1)
Π𝑄 (𝑘 𝑗)

, 1

}
. (6.16)
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Using equation (6.15)

𝛼 = min

{
𝑔𝑄 (𝑘 𝑗+1)
𝑔𝑄 (𝑘 𝑗)

, 1

}
,

= min


exp

[
−0.5

(
log(𝑄ℎ (𝑘 𝑗+1 ) )−log(𝑄)

𝜎𝐿

)2
]
𝑝(𝑘 𝑗+1)

exp
[
−0.5

(
log(𝑄ℎ (𝑘 𝑗 ) )−log(𝑄)

𝜎𝐿

)2
]
𝑝(𝑘 𝑗)

, 1

 ,
(6.17)

where 𝑝(𝑘 𝑗) is the probability of 𝑘 𝑗 defined by the prior distribution in equation (6.7). Hence for
randomly generated values 𝑘 𝑗 , 𝑘 𝑗+1 we are able to compute 𝛼.

Definition 6.15 Burn-in period

The burn-in period is the expected number of steps until the Markov chain enters the subspace of
typical states.

The burn-in notion is not very precise since it is hard to estimate when the distribution of the Markov
chain is sufficiently close to the target distribution Π.

Remark 6.16 Computational cost

Note that for every value of 𝑘 selected whether accepted or not, it is necessary to calculate the likeli-
hood function which requires a forward simulation to determine 𝑄ℎ (𝑘). It is also necessary to allow a
period for the Markov chain to stabilise. This is known as the burn-in period. Early states of the chain
may depend upon the choice of starting value. In practice selecting an appropriate burn-in parameter
is difficult. Some references suggest a method of selecting different starting values and examining
where the chain stabilises. Given the high computational overhead, this may be impractical. A trace
plot of the states can be useful in this scenario. Successive states of the chain are correlated and it
is necessary to thin samples to ensure they are independent. To assist in selecting the thinning pa-
rameter we use an autocorrelation plot which examines the correlation between successively lagged
values of the chain. The selection of burn-in and thinning parameters is covered in [Barbu and S. Zhu
2020, section 7.2]

6.8.1 Determining effective hydraulic conductivity

To illustrate the use of the MH algorithm in computing effective hydraulic conductivity we consider the
five layered example from 6.6. The stabilisation flow for this well is 𝑄 = 17𝑚3ℎ−1. The experiment
was set up using a lognormal Sandstone PDF as the prior. Candidate state values were selected
randomly from a proposal PDF 𝑘 ∼ U(𝑘𝐿 , 𝑘𝑈). The choice of 𝑘𝑈 is important. Too large a value
will produce disproportionately large 𝑄ℎ (𝑘) values. Some tuning with trial simulation runs of the MC
algorithm was required to ensure that 𝑄ℎ (𝑘) was generally of a similar order of magnitude to 𝑄. In
this instance 𝑘𝑈 was selected to be 5 × 10−5𝑚𝑠−1. and 𝑘𝐿 = 5.79 × 10−10.

To apply the approximation for the likelihood function described in equation (6.9) we require an esti-
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simulations 4513
accepted samples 2215
acceptance rate 49%

burnin 500
thin 10

samples after burnin and thinning 171
mean prior 1 3.68 × 10−6𝑚𝑠−1

mean posterior 1.58 × 10−5𝑚𝑠−1

cpu time ≈ 5.6 hrs per 1000 simulations

Table 6.6. The table summarises the results from the MCMC experiment to determine an estimate
for the effective hydraulic conductivity in the neighbourhood of the well. The results illustrate the
effect of conditioning on the prior distribution. They also illustrate the high computational cost of the
MCMC method.

mate for 𝜎𝐿 . This was obtained by running an MC experiment as described in section 6.5. then by
considering the range of the error 𝑒𝑟 and estimating 𝜎𝐿 ≈ 𝑒𝑟/6 using the empirical rule. In this case
𝜎𝐿 = 1.5 was used.

Figures 6-10b and 6-10c were used to help determine the size of the burn-in and thinning parameters.
Figure 6-10b shows a time series plot of the accepted values of 𝑘 . It indicates that the Markov Chain
settles quickly. This is probably because the distribution of the Markov chain is sufficiently close to the
target distribution. This makes it hard to estimate the size of the burn-in parameter. For the purposes
of the experiment, the first 500 samples were rejected. The dependency between successive samples
was investigated using figure 6-10c. Figure 6-10c demonstrates that the level of correlation is low for
a lag ≥ 2 onwards. In the experiment, every 10𝑡ℎ sample was retained.

Remark 6.17 Validation

To check the validity of the estimate for the effective hydraulic conductivity we return to the forward
model described in 6.9. If the value of the effective hydraulic conductivity derived through the use
of algorithm 8 is a reasonable estimate, then using input data of 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 𝑘5 = 1.58 ×
10−5 𝑚𝑠−1 in the forward model we would expect a stabilisation flow of approximately 17.0𝑚3ℎ−1, that
is the measured value. The MH algorithm produces 𝑄ℎ ≈ 19.0𝑚3ℎ−1 within 11% of the measured
result.

The computed effective hydraulic conductivity was also compared to the hydraulic conductivity for well
3 computed using the Tikhonov approach, algorithm 6 in chapter 5. The results are shown in figure
6-11 which indicates good agreement between the effective hydraulic conductivity and that computed
for 𝑘2, 𝑘3, 𝑘4 and 𝑘5 using the Tikhonov algorithm.

Remark 6.18 Optimising the model

There is potential to tune the inputs used by the MH algorithm. For example by optimising the choice
of the proposal distribution and by finding a better approximation to the prior distribution within a
multi-layered aquifer. This was not investigated here but is an area for possible future research.
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(a) Time series plot of the MCMC chain.
The trace indicates that the chain appears
to settle quickly. This is probably because
the distribution of the Markov chain is suf-
ficiently close to the target distribution
making it hard to estimate the size of the
burn-in parameter. For the purposes of the
experiment, the first 500 values were dis-
carded.

(b) The autocorrelation plot indicates that
the correlation to the lagged time series is
small. For the purposes of the experiment,
the MCMC values were thinned such that
every 10𝑡ℎ value was retained.

(c) The prior PDF for Sandstone used in
the experiment.

(d) The PDF of the posterior distribution.

Fig. 6-10. Results of a MCMC experiment using algorithm 8. The total cpu time was ≈ 5.6 hrs
per 1000 simulations. The experiments were run on an HP Z2 workstation with 16GM RAM. The
timings are indicative as they depend upon the setup parameters and tolerances used within the
algorithm. Figure 6-10d show the impact of conditioning the prior distribution. The effective hy-
draulic conductivity, the mean value of the posterior distribution was calculated to be approximately
1.58 × 10−5 𝑚𝑠−1.
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Fig. 6-11. The computed effective hydraulic conductivity for well 3 is shown by the blue dot super-
imposed on figure 5-8 from chapter 5. The diagram shows the result is consistent with the values
(𝑘2, 𝑘3, 𝑘4, 𝑘5) computed using the Tikhonov approach, algorithm

6.
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6.9 Summary

We developed a stochastic framework to quantify both stabilisation flow and the hydraulic conductivity
of soil layers in the neighbourhood of unconfirmed aquifers. Using basic information MC algorithm
7 gave consistent results that are in line with the practical measurements. As well as giving good
estimates of the expected yield from a well in a multilayered aquifer they also illustrate how the actual
saturated hydraulic conductivity of the aquifer is likely to relate to the BGS mean values. For example
from section 6.5 remark 6.8 it might be inferred that the true hydraulic conductivities are somewhat
below the mean value used in the experiment. In the well 2 and well 3 examples we are able to predict
whether or not the layers are likely to be fractured or not as described in figure 6-9.

To ensure that the forward model is not a bottleneck we proposed coupling an h-adaptive approxima-
tion. This makes it possible to run extensive MC experiments.

We demonstrated the use of an MCMC method to reduce uncertainty and improve estimates of hy-
draulic conductivity without the requirement for high-fidelity ground surveys. This was achieved by
using known measurements of the stabilisation flow to condition an estimated prior distribution. The
effective hydraulic conductivity for well 3 the 5 layered example from section 6.6 was calculated using
algorithm 8 to be 𝑘 ≈ 1.58 × 10−5𝑚𝑠−1. This was validated by using the forward model from section
by setting 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 𝑘5 = 1.58 × 10−5. The forward flow model result, 𝑄ℎ ≈ 19𝑚3ℎ−1, was
within 11% of the measured stabilisation flow. The computed effective hydraulic conductivity for well
3 was also demonstrated to be in agreement with the Tikhonov inversion algorithm 6 from Chapter 6,
refer to figure 6-11.
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Chapter 7

Conclusions and areas for further
research

Abstract

In this chapter, we review the findings from chapters 2 to 6 and consider possible areas for future research.

7.1 Conclusions

In the summary section we sought to address two practical problems. Firstly, when given basic
geological information is it possible to predict with reasonable accuracy the rate of flow into a well
or borehole? Secondly in consideration of the inverse situation if we have prior data on the flow
characteristics is it possible to infer the hydraulic properties of the component soil layers?

Table 7.1 provides an overview of the various engineering use cases addressing the initially posed
questions. It indicates when the use of the associated algorithms is appropriate and shows the data
requirements to compute a solution.

The mixed finite element forward model developed in chapter 4 gave consistent results and provided
a useful description of the pressure and flux distributions. The computed stabilisation flows com-
pared favourably to the measured values for each of the 3 working in the data supplied by the CPRM
(Brazilian Geological Survey).

Through the application of the h-adaptivity algorithm developed in chapter 3 we were able to signifi-
cantly improve the computational efficiency of the forward model. The improvements were quite pro-
found when using the weighted Braess a posteriori error estimator combined with an equidistribution
marking strategy. The experiments demonstrated run time improvements of ∼ 90% when compared
to a standard global mesh refinement approach, refer to table 4.8. Application of this algorithm typi-
cally reduced the run time of a single execution of the forward model from minutes to seconds even
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Use case Data requirements Method of solution
To accurately model the flow
and pressure distribution in
the neighbourhood of a well
or borehole. To determine the
stabilisation flow for a given
dynamic height.

Well or borehole specification,
water table height, dynamic
height, details of soil/rock lay-
ers and hydraulic conductivity.

Chapter 4 algorithms 2 and 3

To predict hydraulic character-
istics of the soil or rock layers.

Well or borehole specification,
water table height, dynamic
height, approximate positions
of soil or rock layers and mea-
sured stabilisation flow.

Chapter 5 algorithms 4, 5 and
6. Refer to table 5.4

To examine the viability of a
well or borehole site where
there is limited or uncertain
data. To infer characteristics
of soil or rock layers in these
circumstances.

Well or borehole specification,
water table height, dynamic
height, basic geological data
with types and approximate
positions of soil or rock layers.
For the application of the MH
algorithm details of the mea-
sured stabilisation flow.

Chapter 6 algorithms 7 and 8

Table 7.1. Overview of use cases addressed in chapters 4 - 6

in a complex multilayered scenario.

These performance improvements identified above provide a framework that enabled us to apply
MC and MCMC methods to each of the well problems. Each experiment required the running of the
forward model in excess of 10,000 times. It was demonstrated in chapter 4 see table 4.8 that in the
case of well 1 we were able to reduce the total run time from 14 days to 21 hours. The other two well
examples showed similar improvements.

Overall we conclude that the forward model proposed in chapter 4 could be used as a decision sup-
port tool in either a forward or inverse sense. It is able to provide decision support data on flow
characteristics or hydraulic parameters depending upon the context of use.

Based on the results it is considered that a model using the primal FEM would produce similar results.
Although not presented here the author has found this to be the case for the three well examples
given in chapter 4. Furthermore, the Weighted Braess error estimator could be replaced by that
of Carstensen and the results from algorithms 2 and 3 would be very similar. We also found that
during the refinement process, the local errors were greatest near to the well boundary and the soil
layer interfaces. The distribution of the errors made it more difficult to apply the maximum strategy
as a method for marking elements although under these circumstances the equidistribution strategy
worked very well.

The three fixed point inversion algorithms proposed in chapter 5 gave hydraulic conductivity estimates
within expected ranges for the types of soil in the layers. They were also consistent with local obser-
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vations. The Monte Carlo approach using algorithm 4 provides a good way of visualising the solution.
However it was relatively computationally expensive and time-consuming. In addition in multi-layered
scenarios, given increased dimensionality the method is harder to apply. The fixed point iterative
approach used in algorithm 5 proved to be efficient and produced some good results. Because of
the assumptions regarding the distribution of outflow across layers, the method only provides a range
of possible values of k. The Tikhonov regularisation process used within algorithm 6 provided an
efficient method to directly determine optimal values of k and would be the preferred approach for
future work.

The stochastic approach described in chapter 6 helped to address the uncertainty in outflow char-
acteristics resulting from the heterogeneous nature of the soil layers. Modelling the distribution of k

using a log normal distribution and applying the multi-layer MC algorithm 7 to compute stabilisation
flow was consistent with observations and produced accurate results. The MH algorithm 8 was used
to determine effective hydraulic conductivity. Despite the relatively high computational overhead, the
method produced good estimates for the effective hydraulic conductivity. In the MC experiments we
considered the worst case scenario. This meant assuming only the broadest classification of soil
within a layer. Even in this scenario we were able to infer the likely stabilisation flow to a reasonable
degree of accuracy, see table 7.2 below.

Well Number of layers 𝑄
𝑁

ℎ 𝑄 Rel error %
1 2 2.63 2.0 ± 10% 19 − 46%
2 3 9.6 8.5 ± 10% 2 − 25%
3 5 14.8 17 ± 10% 3 − 21%

Table 7.2. Summary results from chapter 6 illustrating that algorithm 7 with 𝑁 = 3000 yields consis-
tent and relatively accurate results when compared to the measured stabilisation flow

It was observed that other available data could be built into the model. For example, understanding
the type of Sandstone whether fine or coarse would alter the ` shape parameter from the BGS mean
value used in the experiments. This would adjust the PDF which when used in algorithm 7 and would
be expected to improve accuracy. From an inverse perspective having prior knowledge of the outflow
gives us the opportunity to infer hydraulic characteristics. In chapter 6 it was shown that the model
can be used to determine whether it is likely that a particular layer is fractured or unfractured.

7.2 Areas for further work

7.2.1 Mapping hydraulic conductivity

Feedback from engineers at CEMADEN the National Center for Monitoring and Early Warning of
Natural Disasters based in São José dos Campos, Brazil suggests it would be useful to produce a
map of hydraulic conductivity for the Baura formation for cities in the area as a planning and support
tool. Currently, this doesn’t exist. The idea would be to link data from the many wells in the Ibirá
region using one of the inversion algorithms proposed in chapter 5. by applying the Tikhonov inversion
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algorithm it would be possible to approximate the hydraulic conductivity using the data for each well
e.g. specifications, dynamic and static heights, approximate positions of soil layers and the measured
stabilisation flow. The method only approximates the hydraulic conductivity for layers through which
there is outflow. However it would be possible to integrate VES measurements to calculate hydraulic
conductivity for the surface layer if that were required. The effective hydraulic conductivity of the areas
surrounding wells could be mapped using algorithm 8.

7.2.2 Examine the boundary element method

Chapter 4 also highlights some of the drawbacks of the forward model. Firstly given the scale of
the physical problem to achieve accuracy we require a large number of elements which result in
a significant number of degrees of freedom. In such circumstances, it is easy to exceed available
computing resources. In addition based upon the recommendation of the local geophysicists, we
have used 𝑥𝑅 = 50 as the far field boundary within the model. Whilst this appears to work reasonably
well the question still remains how far from the well should the far field boundary be positioned so that it
has little impact on the pressure at the well boundary? The idea of boundary element methods (BEMs)
described in [Brebbia, Dominguez, and Tassoulas 1991] is that we can approximate the solution to
a PDE by looking at the solution on the boundary. Then to use that information to find the solution
inside the domain. In order to apply the BEM to this problem we would then only have to create
a mesh on the boundary of the domain. For an infinite reservoir, the only boundaries are the wells.
This means that we potentially only use computing resources to find the solution at the well boundary,
which would meet our requirements. Since the BEM mesh only approximates the pressure solution
at the wells the domain is relatively small and so this can be a computationally inexpensive way to
solve the problem. One of the complexities would be adapting the method for use in a multi-layered
scenario. Alternatively might be to apply the technique using the effective hydraulic conductivity of
the area surrounding the well.

7.2.3 Accelerating uncertainty quantification

Reference [Lykkegaard, Dodwell, and Moxey 2021] describes an algorithmic approach which fuses
MCMC and Machine Learning (ML) methods to accelerate uncertainty quantification for groundwa-
ter flow models. The reference formulates the governing mathematical model as a Bayesian inverse
problem, considering model parameters as a random process with an underlying probability distribu-
tion. The reference designs a MH proposal distribution which exploits a deep neural network (DNN)
approximation of a groundwater flow model. This is used to accelerate an MCMC sampling process
that could be considered in the context of the stochastic model flow model developed in chapter 6.

7.2.4 Optimising the performance of the MH algorithm

There is scope to consider tuning the inputs to the MH algorithm. For example by optimising the choice
of the proposal distribution and by a better approximation to the prior distribution within a multi-layered
aquifer.
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7.2.5 Reduced order model for practitioner use

Following the assumption that the outflow from a homogeneous layer will be proportional to its depth
chapter 4, it might be possible to produce a reduced-order model for practitioner use. This could be
accessed through an app which aims to predict likely stabilisation flow for a particular site based upon
a minimal set of input data. This would use the results from 6 together with the dimensions of the
well, approximate soil layer types, water table height and dynamic height as input data.

7.2.6 Data fusion - Linking VES survey results to the data inversion algorithm

If possible obtain appropriate VES survey results from the neighbourhood of a well and use them to
determine the likely hydraulic conductivity of the component soil layers. These would be compared
to the results obtained using the inversion process described in Chapter 5. Examine how the two
models can be linked through a data fusion process, perhaps along the lines set out in [Hinnell et al.
2010] which describes coupled inversion.
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