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Summary

This thesis sits at the intersection of deep learning and inverse imaging prob-
lems and looks at the use of generative models in the framework of variational
regularisation.

The first chapter, the introduction, motivates why inverse problems and specif-
ically deep learning approaches to inverse problems are exciting and relevant
before setting out key research questions that this thesis hopes to contribute to.
A more detailed summary of the work presented in this thesis sets out a narrative
that runs through the research. The chapter is concluded with a discussion of
how the research will be evaluated.

The background of this thesis is set out in chapters[2]and 8] Chapter [2]starts with
a brief introduction to inverse problems, the variational regularisation approach
and the optimisation methods used in this work. The chapter then moves on to
introduce deep learning and provides a critical analysis of deep learning applied
to inverse problems. This sets the scene for the learned regularisation methods
presented in this thesis. Chapter [3|looks at generative models, deep learning ap-
proaches for producing images similar to some training set. The chapter provides
an introduction to a range of state-of-the-art models, including autoencoders,
variational autoencoders and generative adversarial networks, with a unified no-
tation and approach. The derivations of the variational autoencoder, in particu-
lar, will be useful for later chapters.

Chapter {]starts with an introduction to the main theme of this thesis: generative
reqularisers. Generative regularisers penalise solutions to the inverse problem
that are far from the range of a trained generative model. A literature review
highlights and unifies key emerging themes from the literature. The success of
generative regularisers depends on the quality of the generative model and one
of the main contributions of this chapter is a set of desired criteria for generators
that will go on to be used in an inverse problem context. These criteria are
not sufficient for success, but they are a useful starting point that could guide
future generative model research. The chapter finishes with a range of numerical
experiments to test and compare generative models and generative regularisation
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methods.

The direction of the thesis now forks into two possible extensions of the genera-
tive regularisers set out in chapter [ Chapter [ looks closer at how generative
regularisers measure the distance from the range of a generative model and uses
an adapted variational autoencoder to learn this distance in a way that is adap-
tive across an image and throughout the set of images. Numerical experiments
demonstrate the flexibility of this approach and compare it to other learned and
unlearned reconstruction methods. Chapter [6] considers the training of the gen-
erative model and how to train generators, specifically variational autoencoders,
without access to ground truth or high-quality reconstructed data. The learned
generators are tested for their ability to regularise inverse imaging problems.

Finally, chapter [7] gives a summary of the contributions of this thesis, linking to
the key areas highlighted in the introduction, and outlines directions for future
work following on from this thesis.
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Notation

This section does not aim to comprehensively list all notation used in this thesis
but just key pieces of notation than runs through the work.

Let X be the image space with target probability density distribution p3 :
X — Rsg. Usually take X = R a d-dimensional vector space where vectors
in X can be arranged in a 2D grid of dimensions d; X ds, where dids = d.

The measurement or observation space Y is usually taken to be ) = R™.

Define € to be the additive noise in an inverse problem. The exact vector
is unknown but we usually assume the noise model is known or can be
approximated.

Define D : Y x Y — R0 to be a similarity measure on the measurement
space, which we will assume smooth in its first argument and non-negative.

Define £ : X x X — R0 to be a similarity measure on the image space,
which we will assume smooth in its first argument and non-negative.

Generally take P4 to be a probability distribution on the set A and py4 to
be a corresponding density.

Define R : X — R>( to be a regularisation function.
Let A\, i € R> be regularisation parameters.

Let Z be the latent space with probability density function pz : Z — Rxy.
Usually take Z = R".

Take G : Z — X to be a generator, usually parameterised by 6.

Let Pg be the distribution in the image space induced by the generator.
Let F: X — Z be an encoder, usually parameterised by .

Let D : X — R be a discriminator, usually parameterised by ¢.

Let ¥ : Z — R%4 and ¥(z) be the covariance associated with the gen-

erated image G(z). Note that X is usually parameterised by 6. Often
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Y = p*I, for some p € R but in chapter 5, ¥ is dense, and we define the
precision A where A=! = 3 and has Cholesky decomposition LLT = A.

Define N'(+; 1, 2) : A — R to be the probability density function of a normal
distribution with mean p and covariance 2 over the space A.

Define Po(-;A) : A — R to be to be the probability density function of a
Poisson distribution with mean A over the space A.

Define the VAE encoded distribution N, ,(2) := N (2; py(x), diag(o} (2))),
a distribution over the latent space Z.

Define the VAE generator distribution pg s(-|z;0) = N (Go(2), Xe(2)).

Denote J to be the AE or VAE objective function that we wish to minimise.
It is usually a function of # and .

Denote K to be the saddle point objective of a GAN usually a function of
0 and ¢.

Let F : X — [0, 00] be a distance used in a generative regulariser to measure
the distance from the range of the generator.

Define d(-,-) to be a distance between two probability distributions.

The support of a function f: A — B is given as
supp(f) = {a € Alf(a) # 0} (1)

The range of a function f: A — B is given as:

Range(f) ={be B | 3Ja € A s.t. f(a) = b}. (2)

The characteristic function, defined for an arbitrary set C is defined as:

=, mge 0

The Kullback-Leibler (KL) divergence is defined to be

a0 = Euto 05 (2. (1

The Kullback-Leibler divergence is defined only if for all z, g(x) = 0 implies
p(z) = 0.

Throughout we use the p-norm, for p > 1 and z € X, ||z[|, :== (3_; |$i|p)l/p.
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We define the adjoint of the operator A, denoted A* as

(Az)Ty = 2T A*y,Vo € X,y € . (5)

Define AT : Y — X to be some mapping from the measurement to the
image space, usually a ‘rough’ inverse.

Define the weighted norm ||z|j3, = 27 Mz,

Denote the determinant of a matrix M by |M].
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Chapter 1

Introduction

1.1 Motivation

Solving an inverse problem is the task of computing an unknown quantity, x € X,
from observed measurements, y € ). The unknowns and the observed measure-
ment are related by a forward model, A : X — ). We consider the problem of
finding x, given y and A, connected by

Az =~ y. (1.1)
The equation is approximate due to potential noise in the measurements.

Inverse problems are ubiquitous in modern science and engineering. In image pro-
cessing, many of the imaging tools smartphones now implement automatically are
inverse problems: deblurring images when our hand wobbles; denoising images
when we take them in low light; or providing super-resolution when zooming in
further than the camera’s physical capability. Taking black and white images
and colourising them or filling in missing patches in images are also examples
of inverse problems. Inverse problems tell us about parameters that we cannot
directly observe. In geophysics, seismic inversion uses seismic measurements to
infer physical properties below the earth’s surface. Similarly, sonar systems on
ships can be used to create images of the ocean floor and RADAR is a detec-
tion system that uses the scattering of radio waves to find objects in a region.
This thesis will mainly focus on image reconstruction, for example, in computed
tomography (CT) 1D line measurements are taken in a ring around the outside
of a patient and the challenge is to create a 2D slice of the patient, useful for
interpretation by medical professionals. In magnetic resonance imaging (MRI)
strong magnets and computer-generated radio waves produce faint signals which
are detected outside the body and again can be used to produce 2D slice images.
In 2019, we saw the first image of a black hole [§] reconstructed from observations
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from the event horizon telescope conducted over 4 nights using eight stations in
six geographic sites across the world.

Inverse problems are useful and applicable but they are also challenging in a
mathematical sense. Interesting inverse problems are often ill-posed, there does
not exist a solution, the solution may not be unique or you may see large variations
in the solution in response to small changes in measured data. For example in
the case of inpainting, filling in missing pixels in an image, there could be many
possible solutions. Blurring is a smoothing operator, so deblurring can be very
sensitive to changes in the measured data.

Traditional approaches to inverse problems involve incorporating additional in-
formation in the form of a regulariser function that encourages solutions to the
inverse problem to have certain hand-crafted properties. Examples include total
variation regularisation [192, [172] or functions that encourage sparsity in some ba-
sis |88} |42} |35]. The latter is closely linked to theories on compressed sensing [37,
60]. An alternative approach uses a Bayesian framework, providing additional
information to the inverse problem in the form of a prior [213].

Increasingly available datasets, hardware and software have led to a boom in deep
learning in recent years. In deep learning for imaging, there has been fast growth
from the first photo-realistic images of non-existent people [121] 122] to Dalle-2,
which can create original, realistic images and art from a text description [182].
See figure for an example generated image from Dalle-2. Language models can
now produce realistic text given short prompts on a vast range of topics [33] and
Github co-pilot can turn natural language prompts into coding suggestions in a
range of programming languages [236]. Google DeepMind has created AlphaFold
that predicts a protein’s 3D structure from its amino acid sequence and has
created a database for nearly all catalogued proteins known to science [114} [220].
There has also been fast growth in the area of inverse problems; between 2018
and 2021 the number of papers on the topic “deep learning and inverse problems”
measured by Web of Science increased by a factor of 4.5 [9]. As we shall see in
section [2.4] there are a range of approaches for incorporating deep learning in
inverse problem reconstruction, including supervised, unsupervised and unlearned
approaches.

The work presented in this thesis sits at the intersection of generative machine
learning models and inverse imaging problems. Generative models are trained to
output images close to some training distribution and are then incorporated into
generative reqularisers, a learned regularisation approach that penalises images
far from the range of the trained generative model.
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1.2 Active Research Areas

Despite the fast growth and excitement in the field, there are still problems left to
solve in the area of deep learning and inverse problems. This subsection discusses
a range of current research areas.

Data and training requirements Deep learning often has large data require-
ments. For example, one supervised method for low dose CT reconstruction,
learned primal dual [3], uses 2168 training images, each 512 x 512 pixels in size
from the AAPM Low Dose CT Grand Challenge [151]. Another unsupervised
method [160] for compressed sensing MRI reconstruction uses 14513 slices, each
640 x 368 pixels from the fastMRI dataset [238]. A deep equilibrium method [76]
for supervised learning with some convergence guarantees uses 10000 celebrity
faces [144] for a deblurring problem and 2000 fastMRI knee images [238] resized
to a window of size 320 x 320, for MRI reconstruction. AutoMAP, a supervised
approach for image reconstruction was trained on 50,000 images from 131 subjects

taken from the MGH-USC HCP public database [71].

Data is expensive to collect, for example, MRI takes 15-90 mins per subject [161].
Depending on the method, any changes in the MRI set-up, such as the sampling
patterns or coil sensitivities, may require more data to be collected. Once data is
collected, then it may need to be pre-processed, curated, centred, anonymised and
labelled. This can be time-consuming but may also require the loss of data. For
example, the Low Dose Parallel Beam dataset (LoDoPaB-CT) [140] takes images
from the LIDC/IDRI dataset [14]. They manually removed scans that were of
poor quality or had an unusual image size or patient orientation. In total 1010
individual scans were reduced to 812. For another example, a recent paper on
equivariant neural networks [38] took 10000 fastMRI [238] brain DICOM images
and sorted out just 6200 for training, test and validation, removing images based
on quality.

Future growth in deep learning and inverse problems could consider methods that
can learn and generalise from smaller training sets. Large scale benchmarking
datasets, such as the Low Dose CT Grand Challenge and the fastMRI dataset,
form important testing sets for new methods and allowing benchmarking and
comparisons between methods. Sharing data in this way is also important for
the future of the field.

Even with sufficient time and budget, there may be cases where ground truth
or high-quality reconstructions are not available. For the first image of a black
hole [§], there was no previous data to draw on. Designing algorithms with lower
data requirements is important when data is difficult or expensive to collect and
collate.



Mathematical convergence guarantees For safety-critical applications such
as medical imaging, it is important to consider what, if any, guarantees can be
given for reconstruction algorithms. Mathematically, there are many possible
properties we could ask for. Stability results could allow us to control and esti-
mate the error in the reconstruction given small deviations in the measured data.
For iterative methods or methods that involve iterative optimisation schemes, we
could require convergence in the sense that the iteration converges to a fixed point.
We would probably also require that fixed point to be a “good” reconstruction.
In section we will define a regularisation scheme and require that, if there is
noise in the data, a reconstructed solution converges to the noise-free solution, as
the noise level decreases. A recent review paper [159] presents an overview of re-
cent deep learning-based image reconstruction methods that fit into the different
notions of convergence. There are some interesting trade-offs here, for example, a
reconstruction method that always outputted the same constant image would be
stable to changes in the measured data but would not be accurate. Alternatively,
as discussed in |159], for a forward operator with a non-trivial null space, high
accuracy requires large Lipschitz constants for the reconstruction operator and
thus makes the reconstruction less stable.

It is well known for image classification that small, imperceptible changes in
the original image can lead to confident erroneous classifications |82, 214, 69,
133]. From this, a whole field of research has emerged in adversarial machine
learning e.g. [240, 237, (183, |149]. A model being stable to small deviations is
sometimes called ‘adversarial robustness’. The authors of [12] investigate well-
known deep learning methods for image reconstruction [243, 232, |113},/197,|93| and
give empirical examples of tiny, almost undetectable perturbations, both in the
image and sampling domain, resulting in artefacts in the reconstruction, some of
which are not obvious and could be missed. They also show how small structural
changes, for example, a tumour, may not be captured in the reconstructed image
and finally show how more samples may yield poorer performance. A subsequent
paper [48] demonstrated a trade-off between stability and accuracy, with limits
on how well a stable NN can perform in inverse problems. However, a later paper
responds to this, finding that in the scenarios they consider deep-learning-based
methods that are at least as robust as a popular non-learned method, Total
Variation regularisation. They consider both random noise in the measurements
and adversarial noise, where small deviations to the original measurements are
chosen specifically to have the largest effect on the reconstruction [75].

The speed of research into generative models and deep learning means there is
a gap between state-of-the-art methods and available mathematical results and
theoretical guarantees. Future work in this area will continue to bridge this gap
as well as providing insight and results that will guide future research.
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Explainability Convergence and stability guarantees are steeped in the lan-
guage of mathematics however, in the safety-critical applications of inverse prob-
lems, methods must be convincing to a wider audience. The idea of ‘explain-
ability’ encompasses thoughts of a model being trustworthy, logical and reliable.
All stakeholders need not understand the technical details but the concepts and
motivations of the method should be understandable. For example, when clas-
sifying an image of a tissue sample as cancerous or not, a model could be made
more explainable if it could highlight the area of the image that produced the
decision [242]. Another avenue for explainability would be if the model could also
output an equivalent healthy sample or, linking to the previous paragraphs on
robustness, if it could output the smallest change in the tissue image that would
change the classification. Finally, the model could also output a probability dis-
tribution, rather than a binary classification. Outputting 60% ‘yes’ and 40%
‘no’ is more informative than a simple ‘yes’ decision. Explainability is less well
explored for image reconstruction. One common complaint is that methods are
‘black boxes’ and that we don’t understand the implicit assumptions the models
and architectures bring. Another common discussion is how to incorporate ex-
pert physical knowledge and modelling alongside data-driven methods. For this
section, the conversation about future work in this area is perhaps less focused
on “what” but “how”. The research communities will need to engage with stake-
holders to understand the context and subtleties of the real-world problems to
design effective and explainable solutions.

Generalisability = When designing inverse problem reconstruction algorithms,
there is a trade-off between generalisability, the extent to which methods designed
for one use case can be applied to other situations, and specificity, the accuracy
of a method to a particular use case. A highly specific application could be
acquiring a series of images of the same patient over time and using the first image
as a guide for reconstructing subsequent images. This method is not general;
if we used the image from one patient to guide the reconstruction of another,
the reconstruction accuracy could decrease. In contrast, Total Variation (TV)
regularisation [192] is an unlearned method that favours cartoon-like images with
constant areas separated by sharp edges. TV is a general method with a wide
range of applications but is not specific.

This trade-off between specificity and generalisability is similar to the ‘bias-
variance trade-off’, a common phrase in machine learning. High-variance methods
get a low error on the training dataset but at the risk of overfitting to noise or
small fluctuations in the training dataset. In contrast, algorithms with high bias
typically produce simpler models that may under-fit the training data. The high
bias low variance case is likely to perform similarly on training and test data
whereas the low bias high variance case can reproduce the training data so well
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that it doesn’t generalise.

Models that are more able to generalise may have reduced data requirements.
For example, if the model can generalise to a new setting it may not need to be
retrained on new data. More general models may also be able to overcome flaws
in the data. Sample bias occurs when the realities of the environment in which
a model will run do not reflect the dataset. For example, the creators of text-
to-image software Dalle and Dalle-2 [182] have had to purposefully implement
new techniques to ensure the generated image reflects the diversity of the world’s
population [185]. Their original results reflected the biases in the data it was
trained on e.g. there were more images of male over female firefighters. In medical
image reconstruction, in practice, imaging is done when there is a clinical need,
such as injury or illness, and so we should be careful that models have either not
just seen healthy examples in training or are capable of generalisation.

Recent high-profile deep learning methods such as GPT4 [171] and Segment Any-
thing Model (SAM) |126] have focused on this breadth of applications. However,
for scientific applications, where image acquisition methods, noise type, artefacts
and datasets are so different to natural images, we are a long way off these large
models. I do, however, expect though that future demand will be for more general
models.

1.3 Overview of Research Presented in this The-
Sis

Generative models Suppose we want to train a model to take points sampled
from some known distribution and output images similar to a training dataset.
We make a ‘low-dimensional manifold’ assumption, that the desired images, the
images in the training dataset, lie on some lower dimensional manifold of the
full image space. The full image space X has a high dimension: if we treated
X as a function on a 2D domain, then we would have infinite dimension, or in
the discretised space, where X is defined on a 2D grid, we have a finite but high
dimension given by the number of pixels. However, we are only interested in a
subset of desired images, for example, those of a knee MRI ground truth images.
This space of images has fewer degrees of freedom: the pixels in the background
are all black; the underlying knee structures are always present and can only vary
in size and location; tumours or growths have similar presentations, sizes shapes
and locations; and there are similar textures, colours and repeating patterns. The
space of knee MRI ground truth images is smaller than the full image space and
we assume that these images lie on some lower dimensional manifold in the image
space. See figure for a pictorial representation of this and figure for an
artistic rendition by Dalle-2 of a low-dimensional cat manifold. The generator
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Figure 1-1: A low dimensional cat manifold. Obtained from the Dalle-2 prompt
“three cats walking along a spiral in space with dogs floating in the background”

G : Z — X takes points from the latent space Z, which is lower in dimension
than the image space, out outputs images in X. The idea is that the generator
G parametrises the lower dimensional manifold.

In addition, many generative models place a prior on the latent space which is
a known distribution, usually a standard normal N (0, ) distribution. We can
further ask, not only that the generator outputs images close to some training
set, but that high probability points in the latent space are mapped to high
probability images in the image space. The generator takes the distribution over
Z and induces a probability distribution over the manifold in X.

A generative model consists of a generator, a prior on the latent space and some
mechanism for inducing a distribution of desirable images in the image space.
By changing the mechanism for inducing a distribution, and the strategy for
learning the generator parameters, we obtain different generative models. In
chapter 3, we introduce some common generative models and formalise some of
these ideas mathematically. Chapter 4 compares autoencoders (AEs), variational
autoencoders (VAEs) and generative adversarial networks (GANs), and chapters
5 and 6 focus on VAEs in particular.

Generative regularisers In this thesis, we use generative models in a varia-
tional regularisation approach to inverse problems. The considered regularisers
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z ~ N(0,1)

Figure 1-2: This diagram considers the low dimensional manifold assumption and
generative models. We show the example Knee MRI ground truth images lying
on the red lower dimensional manifold in the latent space. The generative model,
Gy, takes points in the latent space, z, and outputs points along the manifold.
With a probability distribution on the latent space, this can induce a distribution
on the image space. The generator G is taken to be a parametrised function, with
parameters 6.

penalise images that are far from the range of a generative model that has learned
to produce images similar to a training dataset. We name this family generative
reqularisers. Consider a general form,

©* € argmin {D(A:v, Y) + A (rzneig]-"(G(z) — )+ Rg(z)) } . (12)

where D : Y x Y — Rsg, A € Ryg, F: & — [0,00] and Rz : Z — [0,00]. The
first term is a data discrepancy term that encourages the reconstructed image
to match the observed data. The scalar \ is a regularisation parameter and the
bracketed section, Rg(x) = min,cz F(G(2)—z)+Rz(z), is a regulariser, designed
to be small if the reconstructed image, x, satisfies some desired property. In the
case of generative regularisers, the desired property is that the reconstructed
image is close, in the sense of the function F, to something in the range of the
generator, G. The final term Rz term contains extra information about the
latent space and the locations in the latent space that maps to feasible images.
In chapter [5| we also derive from a Bayesian approach to inverse problems.

The benefit of retaining a variational regularisation approach is that we can
take advantage of previous work mathematically modelling the forward and noise
model, and tuning regularisation parameters, see e.g. for more information on
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variational regularisation. We can balance the terms of the objective , taking
into account information from the prior and observed data. Another benefit of
a generative model prior is that it can be explicitly sampled, and thus we can
visually analyse the information it provides to the inverse problem.

By training unsupervised, without knowledge of the forward problem, there is
no requirement for paired training data where both high-quality reconstructions
and measured data need to be available. It also means we do not have to retrain
the generative model for small deviations in the forward model. For example,
changes in the sampling pattern in MRI or changes in the noise model or level.
This makes the approach more general.

In chapter 4] we consider different choices for F in the literature and perform
a literature review. We test three different choices of generative regularisers on
the inverse problems of deblurring, deconvolution, and tomography. We show
that restricting solutions of the inverse problem to lie exactly in the range of a
generative model (F(x) = tf0y(x) a characteristic function) can give good results
either in the case where the observed data is particularly poor, or when the
image to be reconstructed is sufficiently simple. However, we find that when the
observed data improves, e.g. the noise is reduced or more measurements are taken,
the reconstruction does not improve much or at all. Allowing small deviations
from the range of the generator (F is the 2-norm, 1-norm or TV-norm) produces
more consistent results on more complex datasets, but also, with a suitable choice
of regularisation parameter, A, the results continue to improve as data quality
improves. Allowing small deviations gives flexibility for the generative regularisers
to generalise to cases not seen during training.

The success of generative regularisers depends on the quality of the generative
model. For example, if the generative model can output just a small range of
images, and not the full range of potential inverse problem solutions, then re-
stricting close to this range might not lead to good solutions. Practically, we
also need our generators to be differentiable so we can differentiate (1.2)) with
respect to z. We propose a set of desired criteria to assess generative models,
that are necessary but not sufficient for generative regularisers to be successful.
In numerical experiments, we evaluate three common generative models: autoen-
coders, variational autoencoders and generative adversarial networks, against our
desired criteria.

VAEs with structured covariance applied to inverse problems Figure
shows three example MR images: an original ground truth image (a), an image
with additive Gaussian noise (b), and an image with the right edge of the knee
moved (c). Both of the changed images are the same distance in the 2-norm to
the original. Image (b) is not a desirable solution to an MRI inverse problem,
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whereas (c) could be a possible solution. Any prior that we put on the inverse
problem should be able to distinguish between the two.

In chapter [4] we discuss restricting solutions to be close to the range of a generative
model trained on example ground truth images. In chapter 5, we will focus more
on what it means to be ‘close to” and investigate one avenue for learning a suitably
weighted norm for the function F in . For each point on the manifold of
generated images, Gy(z) we also learn a symmetric positive definite covariance
matrix Yy(z), with height and width given by the number of image pixels, that
induces a weighted norm ||z||3 = 27Y7'z. Both G and ¥ are parametrised
functions, with parameters 6. For some intuition, consider first that ¥y(2) is a
diagonal matrix. For each pixel, the corresponding value in the diagonal gives
a weighting as to the allowable deviation from the range of the generator. The
generative model may be very certain about a black pixel in the background of
the image, giving a low value in the covariance matrix and high weighting in
the norm, but be uncertain around an edge, giving a higher variance and lower
weighting in the norm. In this way, the added noise in the background of figure
B[b) could be penalised highly, while the edge changes in (c), less so.

Extending this analogy, we consider not just areas of the image with high or low
uncertainty, but also the structures in the image. For example, there may be
a high variance along an edge, but we might also want to take into account the
structure of the edge. We might wish to penalise moving the whole edge one pixel
to the left much less than breaking up the edge completely. This can be achieved
with a dense covariance matrix, ¥y(z). See figure for a toy example of an L2
norm weighted by a dense matrix being able to differentiate between moving a
whole edge and the breaking up of an edge. In chapter [5| we embed these ideas
into a Bayesian approach to inverse problems and use a variational autoencoder
with structured uncertainty to learn this covariance matrix. We can visualise the
generated images and learned covariances, making explicit the priors we placed
on the inverse problem. We compare against other state-of-the-art deep learning
approaches to inverse problems with favourable results.

Generative regularisers without ground truth data As discussed in sec-
tion [I.3] data can be difficult and expensive to obtain or simply unavailable. In
chapter [0 we consider learning a generative model for high-quality reconstruc-
tions, from a dataset of noisy or partial measurements, where the forward model
for the observations is known. We base our model on a VAE, optimising a bound
on the Kulback-Lielbler, in the measurement space, between the training dataset
and generated images observed under the known forward model. We are careful
with our choice of VAE generative model and training loss in order to keep an ex-
plicit probability distribution over the generated images in the image space. We
demonstrate our proposed noisy VAE on hand-built datasets, learning from noisy
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(a) Original (b) Additive Gaussian Noise (c¢) Changing edge location

Figure 1-3: The left-hand side of (b) and (c) are deviations from the original
image (a). The deviations are highlighted in green. Both (b) and (c) are the
same distance from (a) when measured in the 2-norm. Being able to tell these
two options apart is a challenge in evaluating the quality of reconstructed images
and when designing priors for inverse problems.

and blurred data, and demonstrate their effectiveness for use in inverse problems.
One example inverse problem where data is difficult to obtain is Positron Emis-
sion Tomography (PET) due to inherent noise in the measurement procedure. In
addition, in this chapter, we demonstrate how the PET forward problem, with a
Poisson noise model, could be effectively approached. Finally, we set out avenues
for future work, including learning generators with structured covariance models
from noisy and incomplete data.

Which of the identified problems does it tackle? In this work, we
will consider learned regularisation methods, where the learning is unsupervised,
without the need for paired training data, that do not need to be re-trained with
small changes in the forward model or noise level. This reduces data and training
requirements and also makes these methods more generalisable. Using generative
models as priors to inverse problems has the added benefit of being able to sam-
ple from the generative model, and thus visualise explicitly the prior information
being provided to the reconstruction. This benefits explainability. Finally, we
consider learning generative models without ground truth data, for use in in-
verse problems, again reducing data requirements. We do not tackle convergence
guarantees although we will signpost to the literature, where available.

1.4 Evaluation Methods

Some of this work will be evaluated on small, hand-built test datasets, such as a
dataset of rectangles and circles in chapter 4] and single and overlapping ellipses
in chapter [6] The benefit of such a dataset is that it can be specifically designed
to test certain properties. For example, the rectangles and circles dataset tests
the ability of generative models to produce sharp edges and corners, which can be
difficult for VAEs. We will also evaluate our work against existing deep learning
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(a) Original, = (b) Diagonal covariance matrix, ¥p. The left shows the

individual pixel variances and, on the right, the corre-
sponding diagonal covariance matrix.
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(c) Two variations on the original, x; (left) (d) A dense covariance matrix, X,
and x4y (right) which has pixels in the same column

as highly correlated.

Figure 1-4: Take an image x, a 5 X 5 array containing one vertical edge in the
4th column, given in (a). Assign each pixel a variance with the highest variance
around the edge (left of (b)). This gives a diagonal covariance matrix for the
image, YXp, (right of (b)). The image in (c) gives the case of the edge moving
one pixel to the right (x; on the left) or breaking up (zo on the right). With
the covariance model given by »p both x; and x5 are the same distance from
z, ie. (v — )85 (1 — 2) = (12 — )78, (z2 — ). The dense covariance
matrix in (d) represents the case where pixels in the same column are highly
correlated but pixels in different columns are independent. Under this matrix,

(11 — )78 Ny —2) << (29 — 2)TE Y29 — 2).

datasets such as MNIST [136], in chapter [4] knee fastMRI in chapters [i] and
and PET data in chapter 6. With these, we can compare our work on realistic
images, more reflective of real-world scenarios, and with other methods. These
datasets, although ‘real’ in that they are real digits or real brain MR images,
as discussed above, have been nicely curated, cropped and centred for us. As
discussed in the relevant chapters, we also do some resizing and rescaling, to
better suit our architectures and the size of our memory. Our datasets can’t be
considered ‘real’ in the sense of ‘raw’. This is not to say that our results are
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worthless, learning and insight can still be gained and indeed if methods failed
on these curated datasets they would certainly fail on a more ‘raw’ dataset.

Evaluating generative models is complex and we will discuss this in more detail
in chapter 4l For a known forward problem and observed data, inverse prob-
lem solutions can be evaluated on the extent to which the reconstructed image
matches the observed data, e.g. by taking just the first term of . In addi-
tion, when using existing or hand-built datasets, we usually have access to the
ground truth to compare and can measure the distance between reconstructed
and ground truth images. As seen in figure [I-3] measures such as the 2-norm can
be tricky. If a radiologist were evaluating figure [1-3] if the ground truth image
were (a), it may be that they prefer (b), which although noisy is anatomically
correct, in comparison to (c¢) with the structural change in the edge, but both
have the same error in the 2-norm. There exist other measurement metrics, e.g.
peak signal-to-noise ratio (PSNR) or structural similarity index measure (SSIM),
but none are a perfect measure of image quality. Given the issues with quantita-
tive measures, qualitative evaluation is important. We will endeavour to provide
example images for analysis throughout the thesis.

As discussed, inverse problems is an established research area and deep learn-
ing and inverse problems is a fast-growing domain. Our proposed methods do
not exist in a vacuum and so we compare against both unlearned variational
regularisation approaches, such as TV; other learned regularisation approaches
that don’t require paired data; and other learned methods, that require paired
training data. We consider both accuracy and generalisability. It is important
to note, however, that in most cases one can’t just take the most recent paper
and off-the-shelf apply it to your data. The website “papers with code” reports
that on average, so far in 2022, less than 30% of papers were published with
code [175]. Even if the code is available, well maintained, well documented and
runs off-the-shelf on your specific hardware, you still may need to adapt the ar-
chitectures for your dataset and forward problem. You may also have to retune
parameters such as learning rates or initialisations. Some models may also be
too large or expensive to train [201]. As good scientists, we endeavour to get the
best results to provide a fair comparison. However, with limited resources and
time, it is likely that with more effort and expertise, results could be improved.

1.5 Thesis Structure

This thesis has two background and three core chapters and we list their contri-
butions below.

e Chapter |2 contains background information on inverse problems and deep
learning before a brief review of current deep learning approaches to inverse
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problems.

Chapter [3| introduces common generative models including autoencoders,
variational autoencoders and generative adversarial networks, that will be
referenced in subsequent chapters. It also discusses some more recent mod-
els.

Chapter [4] introduces generative regularisers, providing a literature review
and then numerical examples and comparisons. This chapter also sets out
qualitative desired criteria for generative models for use in inverse imaging
problems. The majority of this chapter is under review and available as a
preprint [64].

Chapter [5| considers VAEs with structured covariance and provides detailed
numerical experiments for compressed sensing MRI on the fast MRI dataset.
The majority of this chapter is available as a pre-print [65].

Chapter [6] looks at learning generative models without ground truth data
using only observed data, where the forward model is known. It introduces
a loss function for training a VAE on observed data and demonstrates its
efficacy on datasets of ellipses. It has some early proof of concept results
on positron emission tomography (PET) images.

Finally, chapter [7] concludes this thesis by revisiting the key themes set out
in the introduction and identifies areas for future work.
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Chapter 2

Inverse Problems and Deep
Learning

In this chapter we will introduce background information on inverse problems and
deep learning. We also include a review of deep learning approaches to inverse
problems in order to set generative regularisers within a wider context.

2.1 Inverse Problems

Recall from equation that solving an inverse problem is the task of com-
puting an unknown quantity, z € X, from observed (potentially noisy) measure-
ments, y € ), related by a forward model, A : X — Y. In this work, we assume
that the forward model A is known and easy to compute. Measurement errors
or additional, poorly understood physical processes mean that the observations
come with additional noise and we generally assume that this noise model is
known or can be approximated. For example, the case of additive noise, €, gives

Az +e=y. (2.1)

2.1.1 Example Applications

The applications we focus on in this report are inverse problems in imaging. Some
examples running through this thesis include:

e Image denoising - Take the forward model, A, in (2.1) to be the identity
operator and we can define the inverse problem to be y = x + ¢. Here we
wish to recover x € X on observing the noisy y € J = &X.
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e Deconvolution - Movement during the image capture process or out-of-
focus optics can be modelled using a convolution. Take X = R%*92 and
Y = R™>*™2 and define a forward model

a b
Yup = § E Ks,txu—s,v—t

s=1 t=1

where z is the original image, y the observed image and K is a a X b matrix.
The image x is either padded to ensure that ) has the same dimension as
X, or Y has a smaller dimension than X.

If the convolution kernel is known then the inverse problem could be tack-
led using a Fourier transform, however, this is always ill-posed (in infinite
dimensions). The case of an unknown kernel is called ‘blind convolution
and is even more challenging.

o Compressed sensing - Consider y = Ax to be an under-determined linear
system where A is an R™*? Gaussian random matrix, z € R? is a vec-
torised image and d > m, see for example [55]. The matrix A will have a
non-trivial kernel and so, if a solution exists, there will be infinitely many
solutions. There are usually two conditions under which recovery of the so-
lution is possible, the first is that the solution is sparse under some domain
and the second is a condition on the matrix A to behave like an isometry, a
distance-preserving map, restricted to the set of possible sparse solutions.
In chapter [4] we take A to be a random matrix, with entries drawn indepen-
dently from a Gaussian distribution, as many classes of random matrices
have been shown to be suitable for compressed sensing.

e Tomography - Tomography is the technique of imaging by sections through
the use of a penetrating wave. For many tomography applications, the
underlying forward problem is the X-ray transform, given by

y(0,5) = (Az)(0, ) = / ()t (2.2)
teR2: t-0=s

Integrals are taken along lines in the image that satisfy ¢ -6 = s for a

given f, the x-ray angle, and s, the distance from the object centre. In this

thesis, we usually consider discrete data where z is defined on a grid and

so a discrete set of # and s are chosen and the integral is approximated.

In X-ray computed tomography (CT), the unknown quantity = represents a
spatially varying density that is exposed to radiation from different angles
and absorbs radiation according to its material or biological properties.

For positron emission tomography (PET), a short-lived radioactive tracer
is injected into the patient. As the tracer decays it emits a positron which
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travels in the tissue for a short distance before interacting with an electron.
The encounter annihilates both the electron and positron producing a pair
of photons which travel in opposite directions. By measuring the locations
of the photons hitting a scanner surrounding the patient, a line can be
drawn between the two detected positions, which contains the location of
the original event. The process can be approximated using with a
suitable noise model. For more detail see e.g. [184] and chapter [6]

o Compressed sensing MRI - MRI machines employ powerful magnets which
produce a strong magnetic field that forces protons in the body to align
with that field. Stimulating these protons with radio waves breaks the
alignment and sensors detect the energy released when protons realign with
the magnetic field. It is a non-damaging process, in contrast to the X-ray
radiation dose in CT, and can obtain clear images of soft tissue such as
muscles, ligaments, and tendons. Mathematically, let X C C? where the
d = dyds is the image dimension and complex vectors in X' can be arranged
into a d; X dy complex image. Let ) C C?%", be the measurement space,
often called k-space. Consider A = S o F o () where () performs point-wise
multiplication with ¢ coil sensitivity maps; F' is a Fourier transform, and M
is an under-sampling mask that returns only values at specified locations
in k-space, according to a selected sampling pattern. MRI acquisition is
slow (typically 15-90 minutes according to the NHS [161]) and the idea is
by taking fewer k-space samples, hence fewer measurements, acquisition
can be quicker and therefore cheaper and more conformable for the patient.
For a recent review see e.g. [234]. Note that, in chapter , we deal with
real magnitude images, and so define X C R? and define an extra operator
B : R — C? which maps into the complex domain by setting the complex
component to be equal to zero, B(x) = z + 0i. For simplicity, we also
ignore coil sensitivity maps, replacing () with an identity operation. Thus

A=SoFoB.

2.1.2 Ill-posedness

For arbitrary spaces X and ), a problem is well-posed, in the sense of Hadamard [91],
if it satisfies the following

e Existence:- For all observed measurements there exists at least one solution
to the problem.

e Uniqueness:- For all observed measurements there is at most one solution.

e Stability:- The solution of the problem depends continuously on the ob-
served data.

Problems that are not well-posed, in the sense of Hadamard, are termed #ll-posed.
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For example, in the discrete case for Y = R™, A € R™*% and X € R?, if d < m,
there exists points in the measurement domain Y for which there are no solutions
to Az = y. Conversely, if m < d and the system is under-determined, the null
space of A will be non-trivial, and solutions may not be unique. Finally, if the
condition number of A, the ratio between the biggest and smallest eigenvalues of
A, is very large, then the problem will be sensitive to even very small changes
in the observed measurements. In the previous examples, deconvolution and
tomography inverse problems can be unstable to small changes in the measured
data. Both the compressed sensing and compressed sensing MRI inverse problems
have a non-trivial kernel and thus if there exists a solution, it will not be unique.

Hadamard argued in that original paper [91] that well-posed problems corre-
spond to physical scenarios and are therefore worth studying. However, in the
introduction, we gave many examples of ill-posed inverse problems that are worth
studying and indeed I believe that the additional challenge of ill-posedness makes
inverse problems such an interesting research area for mathematicians.

Inverting the Forward Operator The ill-posedness caused by the existence
or uniqueness of solutions could be alleviated by re-writing the problem as a least
squares problem, searching for solutions z that minimise

Az —y]3- (2:3)

In the case of multiple minima of this least squares formulation, one could define
a solution uniquely, for example, as the minimum solution, as measured by a
norm in X. With suitable choices of operators, spaces and norms, this minimum
norm solution to the least squares problem coincides with the Moore-Penrose
pseudoinverse (see e.g. [22]). This is now an inverse problem reconstruction
approach that gives both existence and uniqueness for the inverse problem.

However, this inverse is not necessarily stable or of acceptable quality and often
further work is required.

2.1.3 Variational Regularisation

Regularisation replaces the original problem with a closely related problem that
has better stability properties. Variational regularisation, sometimes called Tikhonov-
type regularisation, looks for solutions to the inverse problem as solutions to the
minimisation problem:

" € argmin D(Ax,y) + \R(z), (2.4)

where D : Y x Y — R0 is a similarity measure, which we will assume smooth in
its first argument and non-negative; the constant \ is a regularisation parameter
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and R : X — Ry is a regularisation function. Note that we could extend to the
case where D is non-smooth in the first argument e.g. if D were the 1-norm.

Theoretical Properties As discussed in |196] there are a number of desired
theoretical results that are of interest in regards to variational regularisation
methods:

e Fuxistence: For a fixed regularisation parameter, A, and observed data, vy,
there exists (unique) minimisers of ([2.4)).

e Stability: For a fixed regularisation parameter, A\, the regularised solution,
x*, to (2.4) depends continuously on the observed data,y.

e (Convergence: As the regularisation parameter tends to zero, A — 0, and
the noise in the observed data tends to zero, y — Ax' for some 27 € X,
then z* in (2.4) converges to a solution of y = Ax.

One might then go on to consider both convergence rates and bounds on stability.

Choosing a Regularisation Function The idea of the regularisation function
is that it is small when some desired property of the reconstructed image is
satisfied. Some examples include:

e Tikhonov regularisation, R(z) = ||z||?, encourages the recovered unknown
to be small in the 2-norm. More generally, Tikhonov-Phillips regularisa-
tion [216, 179], R(x) = ||Bz||?, where B : X — Z is a linear operator,
penalises some features of x.

e Total variation (TV) regularisation [192] aims to denoise images while pre-
serving edges, favouring images that have a sparse gradient. The regulari-
sation functional is the one norm of the gradient of the image, R = ||Vz||;.
For an image € R%*% _in matrix form, the total-variation can be approx-
imated

R=>_ \/|xz'+1,j = Tij? + i — zigl (2.5)
0

e Sparsity penalties encourage sparsity of the reconstructed image under a
certain representation. For example, for z € R?, the 1-norm is often used
as a regulariser to enforce sparse solutions. For example take R(x) = ||Bz||;
where B: X — Z.

As discussed in the introduction, choosing a suitable regularisation term is a
trade-off between specificity and generalisability. TV regularisation can give rea-
sonable results on a wide range of datasets at a cost of providing cartoon-like
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images and blob-like artefacts in some cases. Hand-crafting a regularisation strat-
egy for a given dataset can require expert knowledge and risks overfitting to only
a specific special case. A natural question to ask is: given a set of images, which
regulariser would work well? Alternatively, how can we produce regularisers that
are tailored to specific data or tasks? This thesis attempts to answer this question
through learned regularisation.

For this approach, we still need to choose the regularisation parameter A\. One
common a-posterior parameter choice rule is the Morozov discrepancy princi-
ple [155]. If Az = y and noisy data y° is observed, with ||y — °|| < 4, then
the Morozov discrepancy principle chooses the largest regularisation parameter A
such that ||Az*(\,y°) — y°|| < d, where z*()\, °) is the regularised solution with
observed data Y = y° and regularisation parameter \.

Note that variational regularisation is not the only possible form of regularisation.
For a review of modern regularisation methods see [23].

2.1.4 Bayesian Approach

An alternative approach to solve the inverse problem given in is through
Bayesian statistics. With a known probability distribution on the additive noise,
define a likelthood distribution, a probability distribution on data y given image
x. The posterior probability of x given data y is given by Bayes’ theorem:

(2.6)

el — P@pylr)
p(ly) T

ply

Here, p(z) is a prior model that represents the known information about the
model parameter before observing data y. A prior could be uninformative, e.g.
uniform over an image space, or could be very specific, e.g. centred on a partic-
ular example image. The benefit of this approach is that it allows for a complete
statistical analysis including quantification of the uncertainty. Sampling from
the posterior, for example through Monte Carlo methods, allows for not just one
reconstructed image but a range of images and an idea of uncertainty. However,
there are several hurdles to overcome. Except for a small number of carefully
chosen conjugate priors, the posterior is intractable, with no closed-form expres-
sion. As we shall see below, choosing a ‘good’ prior is also analogous to choosing
a good regularisation parameter and, as discussed, this choice can be challenging.
For a textbook on Bayesian inverse problems see |213].

Bayesian and Variational Equivalences Consider calculating a mode of
the density p(x|y), also called the maximum a posteriori (MAP) estimate. From
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Bayes’ theorem this gives

T € arg maxZM (2.7)
= ply)
< x € argmax p(z)p(y|z) (2.8)
<= z € argmin{—logp(x) — log p(y|x)}. (2.9)
Consider —logp(x) := R(z) to be the regularisation term. For example if we

put a standard normal prior on X = R%, p(z) o exp(—3||z||3) and —logp(z) =
sllz]|3 and we have Tikhonov regularisation. Similarly, a Laplace prior will give
regularisation in the 1-norm. The second term, — log p(y|z) corresponds to the
data discrepancy term. For example, if we assume that the added noise, € is

Gaussian, with zero mean, and (potentially unknown) standard deviation 7 i.e.
_ llAz—y|i3

e ~ N(0,7%) we have that p(z|y) o exp( T) This gives —logp(y|x) =
%. Incorporating this into 1) gives

Tyap € argmin |[|[Ax — y|3 + 2 R(z) (2.10)

which can be directly compared to , the variational regularisation framework.
The noise level in the data, v, acts as a regularisation parameter, balancing
between the prior and the data. Other possible likelihood distributions could be
derived from other noise models. For example, see chapter [6] for a case of Poisson
noise.

2.1.5 Inverse Problem Discretisation

A two-dimensional image could be given as a two-dimensional grid of pixels or
it could be defined as an infinite-dimensional function over a two-dimensional
domain. A thorough discussion of inverse problem discretisation is out of the
scope of this thesis. Instead, in this work, we choose the former and define
X = R a d-dimensional vector space where vectors in X can be arranged in a
2D grid (size dy X dy where didy = d). Also take ) = R™ (C™ for the compressed
sensing MRI problem ) and so A € R™*? (e C™*4),

2.2 Optimisation Algorithms

To optimise we utilise several different optimisation schemes. First consider
gradient descent with backtracking, algorithm [1] (see e.g. Algorithm 9.2 of [30]).
The method initially takes a large step size in the direction of the negative gradi-
ent and checks to see if this decreases the objective sufficiently. If not, the method
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iteratively shrinks the step size (i.e., “backtracking”) until the update reduces the
objective sufficiently. Backtracking gives some convergence guarantees, ensuring,
for example, that the iterates don’t oscillate around a critical point.

Algorithm 1 Gradient Descent with Backtracking to solve min, f(z).

1: Initialise 2o, L > 0,0 <mp < 1, 1 > 1.
2: fori=1,..., K do

3: Let 2(L) =21 — %Vf(zi,l)
5: L= Lnl
6: z; =z and L = Ln,.

When optimising over two or more variables, we can use alternating gradient
descent with backtracking, algorithm [2| which takes a backtracking gradient step
over each variable in turn, allowing a different step size for each variable.

Algorithm 2 Alternating gradient descent with backtracking to solve
min, , f(z,z).

1: Initialise 2y and xg, L, > 0,L, >0,0<ny < 1land n > 1

2: fort=1,...., K do

3: Let Z(L,) := z; — L%Vf(zi, x;)

4: while f(3(L.), %) > f(zi, %) — 52|V f(zi,2:)[13 do

5: L,=1L,m

6 Let z;11 = Z2(L,) and then L, = L,ng

7: Let 2(L,) := x; — L%Vf(ziﬂ,xi)

8  while f(2i41,2(Ls)) > f(zit1, 1) — 57 [IVf (2041, 2)|5 do
10: Let x;11 = Z(xr) and L, = Lyno

Consider instead that (some part of) the function you wish to minimise is not
differentiable. For example, if it contained the 1-norm or TV semi-norm. We can
instead use the proximal, prox,,(z) = arg min,{h(z)+ ||z — 2|3}, which projects
solutions onto an admissable space given by the regulariser, h in the case. We
take a Proximal Alternating Linearised Minimisation (PALM) approach, algo-
rithm [3} [25]. Note that in the version given in algorithm [3| we do not assume
we know the Lipschitz coefficients of the terms in our objective and so estimate
them using a line search.
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Algorithm 3 PALM with backtracking to solve min, ,, f(z,u) + ¢1(2) + g2(u).
. Initialise zg, ug, L, >0, L, > 0,0 <mny <1 and n; > 1.
:fori=1,..K do

Let 2(L,) := proxigl(zi — L%sz(zi, u;))

while f(g(Lz),Ui) > f(ziaui> +sz(2i,ui)T(5(Lz) —Uz‘) + %
do

HL:) = zll3

@

L.=1L.m

6: Let z;11 = Z2(L,) and then L, = L,no

7 Let w(L,) := proxiw(ui - L%Vuf(ziﬂ,ui))

8  while f(zip1,0(La)) > flzir,w) + Vaf(zinw) (@(Le) — w) +
%HfL(Lu) - Uz”% do

9: L,=L,m

10: Let w11 = u(L,) and then set L, = L,no

2.3 Deep Learning

When giving talks to mathematicians, I find it is often worth avoiding the words
“machine learning”. It generally causes a not insignificant portion of the audience
to switch off, believing it to be some form of dark magic, or dismissing the work
as immediately uninteresting. Using the phrase ‘function approximation’ or ‘pa-
rameterised function’ generally gives a better response. This is not misleading, in
essence, deep learning aims to estimate a function f that maps input u to output
v. Using training data, some loss function and a suitable optimisation scheme,
one hopes to choose some parameters, 6, such that the parametrised function fy
approximates f well. Finally, we hope that fy makes accurate predictions based
on unseen data.

2.3.1 Choosing a Parameterised Function

Feed forward neural networks The basic unit of a neural network is a
neuron (or node). Given a vector input u; € R™ | weights W;,; € R™+1*" biag
term b; 11 € R}, and non-linear activation function, o;;;, the neuron outputs:

Uiy1 = Tip1 (Wit + bigr) - (2.11)

The activation function is usually applied element-wise and activation functions

used in this work include: Sigmoid function: o(z) = m, Rectified Linear

Unit: ReLU(z) = max(0,z) and Leaky Rectified Linear Unit: LeakyReLU(x) =
r ifx>0

- where « is some small positive constant.
axr otherwise
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The basic structure of a neural network contains multiple nodes arranged in
layers. Given layer dimensions ng, ny and ns, input u = ug € R™ and output
v =uy € R™, an example of a 2-layer network is given in the following equation:

v = (fg(u)) = 09 (W2 [0'1 (Wlu + b1>] + bg) y 1= 1, ey N (212)

This is an example of a fully connected feed-forward neural network that first
takes a weighted sum of the input variables, adds a bias and then applies an
activation function, before repeating for the second layer. In the case of (2.12),
the parameters 6 would be the set {W;, W5, b1,bs}. Note that throughout this
work, the parameters 0, are also called weights and this refers to any trainable
neural network parameters including biases.

Modern architectures Fully connected feed-forward neural networks have
been surpassed by other architectures in most domains. For example, in imaging,
convolutional neural networks [136] learn convolution kernels (or filters), which
have a lower dimension than the full image and are passed over the image, trans-
forming it based on the kernel values. It has two major benefits: the focus on
local structures and repeated calculations across the image seems to work well
with natural images and, also, there is a significant parameter, and therefore
memory, reduction compared to fully connected layers.

Layers are also commonly built into structures, such as residual neural net-
works [96] which mimic the shape of an iterative update of a discretised ordinary
differential equation solver and UNETs [189] which contract and then expand
in dimension, causing an information bottleneck. Both require the use of skip
connections [96] to pass data between layers.

There are a growing number of choices for architectures with new and exciting
possibilities and applications. Transformer architectures [221], for example, were
originally introduced for text-to-text challenges, such as translation, but have fast
become crucial in large image models [68]. Transformers can take an input (e.g.
an image) and, in parallel, attention layers try to capture the relations between
the different input values. The resulting information could be used, for example,
to predict the value of missing pixels in an image [45].

2.3.2 Determining Suitable Weights

Neural networks, with as few as one hidden layer, are universal approximators.
This means that, under some conditions on the activation function and with
sufficient nodes, they can approximate any continuous function on a compact
set-up to arbitrary precision [56, |73} 102}, [139]. The now pertinent question is: a
given network may be expressive enough to estimate the function we want, but
can the parameters required be found?
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Data Sets The type of data determines the type of learning we can do. There
are three broad types: supervised, unsupervised and semi-supervised learning.
The definitions generally refer to the following:

e Supervised: Input data and the corresponding output data are known for

the function we wish the neural network to approximate i.e. training set
{w/, v}, where f(u;) =wv; for j=1...N.

e Unsuperuvised: Datasets consists of input data without corresponding out-
put data i.e. {u’ }jvzl C X, where X is some space we are interested in
investigating.

e Semi-supervised: Datasets are any mixture of the above. For example, there
could be a selection of input and output data but they may not necessarily
correspond. Else there may be a small amount of corresponding input and
output data alongside a larger amount of either input or output data.

Loss function The network is trained through the minimisation of a loss func-
tion, usually averaged over the training data with parameters consisting of the
network weights. For example, in supervised learning, one could take the objec-
tive as to minimise Zjvzl |v7 — fo(u?)||? with respect to 6 for some norm.

Learning algorithms Minimisation of the loss function is usually done through
gradient descent methods, usually stochastic gradient descent [204] and its vari-
ants e.g. Adam [123]. Stochastic gradient descent computes gradient calculations
over just an individual sample or small batch of training data with each iteration,
reducing the computational cost.

In addition to the weights, there are often a large number of parameters that
are not learnt but set before training, such as learning rate, number of layers,
number of nodes per layer, iteration numbers, activation functions, regularisation
parameters and potentially many more. It is common practice to use validation
sets to tune these parameters but this can be time-consuming.

Automatic differentiation Optimising the loss function using gradient de-
scent requires calculating gradients of the network outputs with respect to the

weights, %. In addition, throughout this work, we require the gradient of the
network output with respect to its input, %i“). If the gradients of the activation

function are known, these gradients can be calculated by repeated use of the chain
rule, sum rule and product rule. This is efficiently calculated using automatic
differentiation packages, such as TensorFlow.
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2.3.3 Learning Neural Network Weights is an Inverse Prob-
lem

Learning the weights of a neural network is an inverse problem. The unknowns
are the weights of the network, the observed data is the training dataset and
the forward model is the application of the neural network, with given weights.
This inverse problem is ill-posed. For example, the choice of fy could not be
expressive enough to approximate the function f and a solution to the inverse
problem wouldn’t exist. Even if a solution exists, the underlying structure of most
neural networks means this solution will not be unique. For example, swapping
two nodes in the same layer in (2.12) would lead to the same solution.

In addition to the ill-posedness, the loss functions are usually non-convex so
gradient descent-based methods can get stuck in local minima. Suboptimal local
minima do exist e.g. [77] shows that poor local minima can readily be found with
a poor choice of hyperparameters. We would usually expect neural networks with
a large number of parameters to overfit to a training dataset and thus see a large
deterioration in performance when tested on an unseen dataset. As discussed
in the introduction, we desire neural networks to be generalisable: the network
should give good results on data not seen in training.

There are a variety of ‘tricks’ available that can be utilised to improve network
properties, for example, initialisation strategies and regularisation techniques
such as weight penalties (e.g. section 5.2.2 of [80]), drop out layers [211] or batch
normalisation [106]. The choice of network architecture is also assumed to have
a regularising effect, e.g. the bottleneck layer in an autoencoder [130] forces the
network to develop a compact representation of the input data and it thus may
not be possible to learn the details of high-frequency noise and this information
is lost. Stochastic gradient descent methods may also implicitly regularise: often
SGD will converge to solutions with smaller norm [239]. Data augmentation can
also improve accuracy and stability. Again, often the behaviour of these is not
well understood. For example, [239] shows that although explicit regularisation,
such as weight penalties, can improve generalisation, regularisation is neither nec-
essary or sufficient for generalisation. They also show how popular deep learning
architectures can fit random labels successfully and quickly, suggesting implicit
regularisation by architecture is not always sufficient.

2.4 Deep Learning and Inverse Problems

In this section, we provide a brief overview of approaches to image reconstruction
using deep learning. We try and split our overview based on the graph given in
figure[2-1] On the x-axis, we have the type of training data: no data, ground truth
only data or paired training data. On the y-axis, we have the role of the forward
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Figure 2-1: A graph comparing various deep learning approaches to inverse prob-
lems.

model during the deep neural network training. Some methods decouple the
forward model and image reconstruction from the modelling of the image space
with a deep neural network and others utilise information about the forward
model in the deep neural network architecture. A summary of the analysis is also
given in table 2.1} For other reviews consider 159].

2.4.1 Untrained Methods
Deep Image Priors (DIP)[222] [219, take an untrained convolutional neural

network and use the weights of the neural network parameterise the image space
i.e. for a fixed z, © = fy(z) maps the weights, 0, to images, x. Given some
observed measurements, y, and a fixed z, the inverse problem can be reformulated
as

0* € argmin D(Afy(2),v), ¥ = fo(2), (2.13)
0

where D(-,-) : ¥ x Y — R is some loss function. The idea is that the network
provides implicit regularisation as the convolutional networks favour ‘natural im-
ages’. Exactly what ‘natural’ means is hard to define.

The success of DIP usually relies on further regularisation of (2.13). If the gen-
erator network is sufficiently wide and given sufficiently many iterative updates,
then gradient descent will solve the non-convex optimisation problem in to
fit any signal, y, however noisy or corrupted , which is not desirable. Addi-
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tional regularisation could be in the form of early stopping, regularisation on the
network output, e.g. TV regularisation, or regularisation on the network weights
[222]. In one particular example, Holler and Habring [90] adapt the DIP idea,
restricting their reconstructions to be close in the TV norm to the output of an
untrained network, with carefully defined mathematical properties.

DIP is also not quick to evaluate, as for each new image the weights of a neural
network must be learned. This however makes the method very general, as each
new image is reconstructed from scratch.

2.4.2 Supervised Methods: Paired Training Data

On the opposite end of the data spectrum, we consider a training set of paired
data {z;,y;}Y,, such that y; ~ Az; for all i = 1,...n up to some noise in the
observations. The learning challenge for an end-to-end method is now to learn
fo ' Y — X which minimises the objective

N
0" € arg min > L(foly), 1) (2.14)
i=1

where L(-,-) : X x X — R is again some suitable loss function.

The most naive approach would be to ignore the forward model, A, define some
deep architecture for fy going from space ) to X', and optimise for . Although
there have been some successes with this simple approach, e.g. AUTOMAP [243],
this requires an extremely large amount of training data and incorporating do-
main knowledge from A can lead to improved results. Linking back to our aims
in the introduction, incorporating expert knowledge, in the form of physical mod-
elling for A, and encouraging solutions to be consistent with the measured data,
can make approaches more trustworthy. In addition, if the forward model is
included as an input to the network explicitly, then any small changes in the for-
ward model can also be passed to the network and can make the learned network
more generalisable.

Learned post processing Learned post-processing uses knowledge of the for-
ward model to provide a rough reconstruction from measured data, before using
a neural network to clean up the resulting image. For example, we decompose
fo = hgo AT, for AT : Y — X a rough inverse mapping the measurements back
to the image space and hy : X — X a neural network acting in the image space
[241], 44, |113] |119]. The hope is that this method could provide the best of both
worlds: the rough reconstruction could be a best-case unlearned method and the
learned part could provide small improvements. In addition, the rough recon-
struction maps back to the image domain, and the neural network, therefore,
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acts only in the domain X. This allows for the use of architectures like convo-
lutional neural networks built into U-Nets|189], that are known to be successful
on images. The speed of this approach depends on the rough reconstruction, the
learned component is generally quick to evaluate.

This is approach is limited by the quality of the reconstruction. For example,
if the rough reconstruction is unstable to noise in the observed data, then it
may be difficult for the network to rectify this. The authors of [12] investigate
[113] and note that these learned post-processing networks are unstable to small
structural perturbations and also to any changes in the forward model sampling
pattern. There is also some danger that the rough reconstruction could, in some
way, destroy information, e.g. by providing an over-smoothed result. On the
other hand, we note that, if the ‘rough reconstruction’ Afy is consistent with
the observed data, i.e. AATy = AATAx = Az = y, such is the case when AT
is the pseudo-inverse, then the additional post-processing can destroy this data
consistency. One solution is to ensure that the neural network acts only in the
null space of the forward operator [199, |198|. However, this places limitations on
the network and the final solution will still depend on the quality of the initial
reconstruction.

Learned unrolled methods Learned unrolled methods are architectures in-
spired by traditional iterative schemes. Consider that we wish to find z* €
arg min, . v{D(z) = D(Az,y)}. A common approach would be to consider gra-
dient descent, with updates

Tl = T — ()CtVD(JIt>. (215)

In the ‘Learning to learn by gradient descent’ paper [10], the authors replace the
gradient step with a learned update rule

Tep1 = T — fo,(VD(1y)). (2.16)

where fp, is a network with parameters 6;. In addition, the number of iterations
is fixed and usually small. The parameters 8; could be allowed to vary for each
iteration number ¢ or be fixed throughout the network.

The name ‘unrolled” comes from this fixed number of iterations. By considering
the initialisation of the optimisation scheme as an input and the result after
k iterations the output, the iterative updates can be viewed as k modules of
one large network. The method is trained like any other end-to-end method,
choosing weights so that reconstructed and ground truth images match on a
training dataset. Also, like other end-to-end approaches, the method is usually
fast to evaluate once trained, and the small number of iterations is quick to
evaluate.
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There are many extensions to this work, for example, by providing the network
with more inputs, such as information from previous updates, or through network
choices and initialisation [4]. There is also the choice of other iterative schemes,
other than basic gradient descent, that could be adapted. One very popular ap-
proach is Learned Primal-Dual Hybrid-Gradient (LPDHG)|3] where learned net-
works replace the proximal operators in the standard primal-dual hybrid-gradient
algorithm.

Variational networks Variational networks [93] are an instance of an unrolled
iterative scheme where gradient descent iterations for optimising a variational
regularisation objective are unrolled. We include it in preparation for chapter 5
Consider the minimisation

A
min R(z) + §||Ax —yll3 (2.17)
and note that optimisation by gradient descent will lead to updates of the form
Ty = 2 — oy (ANA"(Azy — y) + VR(wy)) (2.18)

where A* is the adjoint and oy is a step-size. Replacing the VR (x;) term with
a learned component, inspired by the Fields of Experts model [190], and again
fixing iterations, gives an end-to-end method which includes information from
the forward and its adjoint. For each iteration, the parameters of the regulariser,
the step-sizes oy and the regularisation parameter A are learned. One pleasing
feature is that if the network were to just output zeros, this leaves update x;, 1 =
x; — oy AA*(Azxy, — y), which is gradient descent for the least squares solution.

Deep equilibrium methods Note that even though the unrolled methods
may be inspired by mathematically well-understood iterative optimisation tech-
niques, the learned unrolled network does not necessarily inherit any of these
properties. Deep equilibrium models [18, 76] are also inspired by iterative opti-
misation methods, but instead, consider iterating to convergence at a fixed point.
Consider a network fy included as part of an iterative method

Tev1 = fo(T:y). (2.19)

Note here that fy is independent of ¢ and the weights are the same with each iter-
ation. The architecture of fs may depend on A, as in unrolled iterative methods
or variational networks. For example, Deep Equilibrium Gradient Descent|76],
takes

fo(z;y) =z + A" (y — Az) — Sy (2) (2.20)
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for some trainable network Sy. Note that by setting Sy = VR, (2.20) is identical
in form to (2.18).

In comparison to the unrolled approaches, deep equilibrium methods consider
iteration to convergence. The idea is that, if the limit, x;, — x*, exists, as t — oo,
then it should be the solution to the inverse problem, y = Ax*. The convergence
aspect is straightforward and can be guaranteed for a suitable choice of fy, but
the hard part is ensuring that the limit is a good solution to the inverse problem.

Consider that we wish to optimise S~ | £(2s0 (i, 8), 2;), where £(-,-) 1 X x X —
R>¢. Taking gradients with respect to 6 is not straightforward as it depends on
858“—(3", and back-propagating through the potentially infinite number of iterations
to reach the limit is impossible. Instead, note that the limit is a fixed point and
so satisfies o = fop(2oo;y). It is now possible to differentiate both sides with

0o
respect to 6 and rearrange to find <3<

Deep equilibrium networks give an iterative method that will converge, hopefully
to a good reconstruction of the inverse problem, although there are no guarantees
for the latter. One benefit of the convergence result is that you expect stability
with repeated applications of . The iterations should not become unstable.
This allows the user to trade off computational budget and desired accuracy at
test time. For example, you could use just a few iterations for a rough reconstruc-
tion or iterate to convergence to try and aim for the best possible prediction.

Learned regularisers - supervised Recall the variational regularisation
framework and how difficult it can be to choose a regulariser or choose
regularisation parameters. One option is to set the regulariser to be a parame-
terised function, Ry(x), where € could be just one or two parameters, such as a
regularisation parameter, or paramaterise a more complex function. One could
then learn # in an end-to-end fashion, for example in a bi-level optimisation
problem

N
argminZﬁ(x*(@,yi),xi) s.t. x%(0,y;) € argmin D(Ax, y;) + ARg(x). (2.21)
0 i1 x

This is computationally challenging, especially as there is usually no analytic
solution to the inner optimisation problem. See e.g. [132, |186] 51], for examples
of learning parameters in the regularisation term.

2.4.3 Semi-supervised Methods: Unpaired Data

We consider a recent example of a semi-supervised method for inverse problems.
Consider a dataset of ground truth images with some additional information, in
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this case, some measured data, that need not be paired with the ground truth
images.

Adversarial regularisation One possible interpretation of a regulariser is not
just that the regularisation term is small for some desired property of the im-
age, but that it is large for some set of undesired properties. For adversarial
regularisation [146], the regulariser is chosen to maximise the Kantorovich for-
mulation of the Wasserstein distance between the ground truth images and the
poor reconstructions. This is very similar to the Wasserstein GAN formulation
(see chapter |3) and indeed the regulariser plays the role of a discriminator, out-
putting small values for images similar to the ground truth training set, and
large values for images produced from rough or poor reconstructions from the
measured data dataset. The idea is that the critic should learn both an idea of
the ground truth data distribution, and also common unwanted reconstruction
artefacts. Once trained, the regulariser can be used in a variational regularisation
scheme. Although inspired by the Wasserstein distance, there are no guarantees
that learning the regulariser approximates the Wasserstein distance well, see e.g.
[212].

The original paper has been extended to convex critics [158] and incorporated
into an unrolled iterative method [157].

2.4.4 Unsupervised Methods: Ground Truth Training Data
Only

Collecting and curating paired training data can be time-consuming and expen-
sive. In addition, relying on paired data means that whenever something changes
in the forward model, the methods trained in the previous regime either need
to be retrained or need to be sufficiently general so that they can be applied to
unseen data. Unsupervised methods, trained without a forward operator, are
naturally more robust to forward model changes.

Plug and Play methods For a purely unsupervised approach, plug-and-play
methods (PnP)[223] use denoisers trained on ground truth images and ‘plug’
them into iterative reconstructions for inverse problems. For example, consider
the variational regularisation objective and introduce a new variable u € X
to give the the constrained minimisation problem

z* € argmin D(Az,y) + AR (u) s.t T =u. (2.22)

U

Reformulating this using an alternating direction method of multipliers (ADMM)
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[29] approach, adding in another variable v € X, leads to an optimisation scheme

1 1
xy € arg;nin {@D(Ax,y) + %Hx —up_1 + vk1||} (2.23)
1
uy, € argmin{%ka — Up_1 —xH%%—AR(m)} (2.24)
Vg, = Up—1 + (l’k - Uk) (2.25)

If the distance D is the 2-norm then is solvable analytically. Equation
is the denoising of x; + vip_; under the regulariser 'R. This is the only
place R appears and so instead of explicitly defining it, PnP methods implic-
itly regularise the optimisation by plugging in a ‘good’ denoiser to replace step
. This denoiser acts on the image space X and requires no forward model
knowledge.

There is a huge body of work on PnP methods, including on convergence guar-
antees [194], and on applications to other schemes other than ADMM e.g. fast
iterative shrinkage/thresholding algorithm [117] or primal-dual splitting [169].
For a review paper focused on compressed sensing MRI, see [7].

Learned regularisers - unsupervised Learning a regulariser, or regularisa-
tion parameters, in an end-to-end fashion was covered in section [2.4.2, However,
as set out in the introduction, the focus of this thesis is on learning the regulariser
independently of the forward problem, using ground truth training data only.

Similar to PnP methods, a denoiser trained to remove added noise from ground
truth data can be used as a regulariser for example R(z) = (z,z — fp(z)) where
fo : X — X is a denoiser [188| 223|143, |152|. Learning a basis or sparse coding
of the ground truth dataset can also provide an avenue for regularisation [6].
For example, take a sparse basis {¢;} spanning the space of ground truth data
then R(z) = min, g [t10}(3; vidi — 2) + ||7]1] encourages reconstructions, z, to
be sparse in this basis. Generative reqularisers, the focus of this thesis, can be
seen as a non-linear version of this. Instead of encoding the ground truth images
as a set of weights and then reconstructing them by linearly combining basis
elements we encode them in a latent space and reconstruct them using a non-
linear function. A detailed overview of generative regularisers will be provided in
subsequent chapters e.g. section [4.2
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Chapter 3

Generative Models

In this short chapter, we introduce generative models in a unified notation, in-
cluding a variational autoencoder derivation that will be referred to in other chap-
ters. We provide background on generators and generative models, focusing in
particular on autoencoders (AEs), variational autoencoders (VAEs), generative
adversarial networks (GANs), normalising flows and diffusion-based generative
models. Note that this chapter is not meant to be exhaustive and other good
review papers include [193] 129, 227].

3.1 Autoencoders

An AE has two parts, an encoder and a decoder. The encoder encodes an image
in some latent space and the decoder takes a point in this latent space and
decodes it, outputting an image. The lower dimensional latent space forms a
‘bottleneck’ that forces the network to learn representations of the input with
reduced dimensionality and prevents the model from simply learning the identity
mapping.

Take the encoder to be Ey: X — Z and decoder Gy: Z — X, neural networks
with parameters v and 6. The network is trained by minimising a reconstruction
loss

J(1,0) = Eypy [l — Go(Ey(2))]]3 (3.1)

with respect to 6 and 1. Post training, the decoder can be used as a generator,
taking values in Z and outputting points in X.

The encoder is not required to cover a certain area of the latent space, or indeed
restricted to a certain area, thus generating from points in the latent space may
not lead to outputs similar to the training set. Furthermore, similar images
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may not have a similar latent encoding. Nevertheless, this method of training is
simple and has recently been used in learned singular valued decomposition and
for applications in sparse view CT [24} 165].

3.2 Probabilistic Models

In the introduction, generative models were introduced as having three parts:
a generator, a prior on the latent space, and some mechanism for inducing a
distribution in the image space. As such, the AE doesn’t fit this definition,
as there are no distributions on the X or Z space. In order to move on to a
probabilistic approach we first discuss some mathematical preliminaries.

Consider the image and latent spaces to be measurable spaces, (X, Ax) and
(Z,Ay), respectively. As X and Z are Euclidean spaces, we choose Az and Ay
to be their Borel o-algebras, the smallest o-algebra containing every open set
[66]. We consider a prior probability distribution on the latent space, Py: Ay —
[0, +00] with corresponding probability density function p; (with respect to the
Lebesgue measure). Recall the unknown target probability distribution on the
image space Py: Ax — [0,+0c]. Consider a measurable (e.g. continuous) gen-
erator, G : Z — X.

We build a generated distribution by taking the prior distribution P, transformed
by the generator, G, to give a generated distribution Py on X. Imposing a prior
on the latent space sets out the locations in the latent space where we would like
to be able to generate from. The generator, GG, is chosen to minimise the distance
between Py and Py,

d<P:’7PG)' (32)

We now consider two different options for defining P using the generator G and
the prior Pz. These correspond to the approaches taken by GANs and VAEs,
respectively:

e Define GyPy: Ax — [0,+00] to be the push-forward distribution of G
applied to Pz so that for any B € Ay, GuP;(B) == P;({z € Z|G(z) €
B}). For f a real-valued Ax-measurable function on X' that Eq,p,[f] =
Ep,[f o G] [66, Proposition 2.6.8]. This gives generated distribution

PG = G#Pz. (33)

There may not exist a corresponding density function with respect to the
Lebesgue measure, as G may not be invertible, see for example [225, The-
orem 12.7]. A random sample = from P; can be obtained as z = G(z),
where z is a random sample from the prior Py.
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e In some modelling regimes, it may be beneficial to be able to define a
continuous density distribution for Py and so instead of the push-forward
operator we use a likelihood distribution P(X|Z;G) which depends on the
generator, G. We would then define the generated distribution Pg to have
density

pe(x) = /Z p(a]z: Gpz(2)dz. (3.4)

3.3 Generative Adversarial Networks

The choice of Wasserstein distance in (3.2]) leads to the Wasserstein GAN, a
popular generative model [13]. Taking IT(P%, Pg) to be the set of joint probability
distributions with marginals Py and P, the Wasserstein distance is given by

W(P;}, Pg> = infl,en(p;(’pg) f HJZ’ — .i”gdl/(l',i) (35)

= infl,en(p;{,pc) E(x,i)wzz||$ — ZZ’”Q (36

Here we have used the 2-norm as a distance measure on X, but other alternatives
such as p-norms or Sobolev norms are possible [5].

Equation is intractable as, for example, P} is unknown. We instead rewrite
(3.6) using the Kantorovich-Rubinstein dual characterisation (see Remark 6.5
[224])

W(PX», Pg) = sup {E:DNP;D(‘%) — E@NPGD(i’)} s (37)

DELip(X,R)

where Lip(X) denotes the space of real-valued 1-Lipschitz functions on X. For
any D € Lip(X), for almost all x € X, the gradient VD(z) exists and | VD(z)|2 <
1. We call the function D a discriminator. Comparing this formulation to ,
can now be approximated using samples from the two distributions, without
knowledge of the full distribution.

Take Gig and Dy to be parameterised functions, e.g. neural networks, with param-
eters 6 and ¢, respectively. Using (3.3), the task of minimising the Wasserstein
distance becomes

min max {K(0,0): =EsupyDy(x) — E.op, Dy(Go(2))} - (3.8)

To enforce the Lipschitz constraint a penalty term, E__s (||VDgy(z)|2 — 1), is

added to the loss function of the discriminator. Samples of P are calculated as
T =1tGy(z) + (1 —t)x for t ~U[0, 1], x ~ P} and z ~ Pz [86].

The objective (3.8)) is a saddle point problem. We say that (6*, ¢*) is a local saddle
point if (0%, ¢) < (0%, ¢*) < K(0, ¢*) for all ¢ and € in neighbourhoods of ¢*

37



»
_

Latent space, 2

(a) A GAN consists of a generator and a discriminator. The generator aims to take
points in the latent space and output points along a lower dimensional of desired images.
The discriminator tries to learn a decision boundary for this manifold. The generator
is successful if the discriminator believes its generated images to be on this manifold.
The discriminator is successful if it can label real example images as on the manifold
and generate images as fake and not part of this manifold.

Dy (Gy(2))

x

(b) Another pictorial representation of a GAN. Latent vectors, z are inputted into the
generator to generate images and both real and generated images are tested by the
discriminator.

Figure 3-1: Two pictorial representations of a GAN.
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and 0%, respectively. If P; = Py, the desired result, then with D, = constant,
the result is a saddle point. However, there are many other, non-optimal critical
points. For example, if Py collapses down to just a Dirac delta distribution
around a single image from Py and again Dy is constant, then this would also be
a critical point. This example is often called mode collapse, when the generator
just outputs a subset of the full training distribution.

See figure for a pictorial view of a GAN. In the game-theoretic interpreta-
tion of [81], a generative model is pitted against a discriminative model.
The generator produces fake data and the discriminative model determines real
from fake. The discriminator aims to accurately identify real images, maximising
E.wp; Dg(z), and generated (fake) images, maximising —E..p, Dy(Gy(2)). The
discriminator forms a decision boundary around the manifold in [B-I(a). The
generator tries to force the discriminator to label generated images as real, min-
imising —E,.p, Ds(Gy(2)).

Although motivated by the Wasserstein distance, the quantity calculated by
K(0, ¢) is unlikely to be an accurate approximation of the Wasserstein distance |13,
74, [212]. There are several reasons for this. Instead of optimising over all Lips-
chitz functions D in (3.6) we restricted to a family of functions parameterised by
¢. The Lipschitz constraint is also not guaranteed to hold, enforced only by the
addition of the gradient penalty. Additionally, is calculated based on finite
samples, not full distributions.

Other GAN variations Other choices of distance measure, in (3.2), may lead
to other GAN variations. For example, choosing d in to be an f-divergence
leads to a range of GAN options [162]. Taking d to be the Jensen Shannon
Divergence, an f-divergence, gives the original, ‘vanilla’, GAN [81]

K(0,¢) = Eznp, [log(1 — Dy(Go(2)))] + Eznpy, [log(Dy(2))] - (3.9)

For definitions and details of the derivation see for example [227].

In the numerical experiments in chapter 4] we choose to use a Wasserstein GAN
(3.8) as it is often more robust to a range of network designs and there is less
evidence of mode collapse compared to the ‘vanilla” GAN [13].

Note that there has been extensive research into GANs over the past few years
to extend the models and to and this chapter is not meant to be exhaustive.
3.4 Variational Autoencoders

In the case of a VAE [125], we choose d, in (3.2)) to be the Kullback—Leibler (KL)
divergence and choose to induce a distribution Pg using (3.4)).
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Latent space, Z

(a) A VAE consists of two parts, an encoder (E here) and a generator. The encoder
takes images and outputs a mean and a diagonal covariance of a normal distribution in
the latent space, depicted in blue. The KL term in the VAE loss encourages the
encoded (blue) and prior distribution (red) to be similar. The generator takes samples
from the latent space and outputs images.

. pole):

: [:}”:l = GB(Z)

Wit

(b) An image x is passed to the encoder, outputting mean /() and diagonal variance
oy (). This distribution is sampled to get a vector z which is then passed to a generator.
The second term in (3.23)) encourages input and output images to be similar.

Figure 3-2: Two pictorial representations of a standard VAE
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For P, Q, probability distributions on X', with probability density functions p and
q, where P is absolutely continuous with respect to ), the KL divergence from
Q@ to P is defined as

01, (P][Q) = E,p log (%) . (3.10)

Parametrising the generator, GG, with values 0, we take the KL divergence from
Pg, to Py, and using (3.4]), we get

. Pk (x)
dir(Py||Pg,) = Epy lo 3.11
KL( X” Ge) D nge(x) ( )
= E,pr, log py(7) — Epepr, log pa, (7). (3.12)

The first term does not depend on 6 and so minimising the KL divergence is
equivalent to maximising E,.,+ log pg, (x) with respect to the parameters 6.

In most cases, the integral for pe, (), defined in , is intractable, except by ex-
pensive sampling. Using variational inference (note this is distinct to variational
regularisation discussed in section we introduce a new density distribution
on Z, q(-;%), from a family of functions parameterised by . Starting with the
definition of pg in we multiply and divide by ¢ giving

(|2 0)pz(2) [p(fEIZ; 9)pz(2)}
Pe, () = | q(zs)——F—"—Fdz =E, gop) | —F———| - 3.13
Since the logarithm is concave, Jensen’s inequality results in
p(-’BIZ;H)pz(Z)]
log pg, () > E,qyr.p) loO [— 3.14
gD, () q(-) 108 q(z; ) ( )
q(Z;w))}
=E, .0 [logp(x|z;0) —lo 3.15
= E.q(aw) log p(x]2:0) — dier [q(5 9)Ip2]] - (3.16)

= _j(w7 0)

For the KL divergence in the second term to be well defined, ¢(z; ) must vanish
whenever pz(z) = 0, but as pz is usually a Gaussian distribution, this is not a
concern here. Equation (3.16)) gives a lower bound for log pg, (x). By Baye’s rule,

p(x|2;0)pz(2)

p(z|x,0) = 3.17
(2|z,0) () (3.17)
and therefore we can make the lower bound more obvious:
p(x|z;0)pz (2
—j(w, (9) = Ezwfl('|%¢) log M (3.18)

q(z[v)
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po(z|2)pe, (%)
=E,q(|zp) log ——F"F
) q(2[¢)

= log pg, () — dicra(2|¢)|[p(z|z, 0)]. (3.20)

Line (3.20) along with the non-negativity of the KL divergence highlights again
that —7(¢,0) is a lower bound for log ps(x|@). Moreover, one can see that this
lower bound can be maximised when ¢(z|¢) = p(z|x, ).

(3.19)

The previous calculations were standard variational inference results. We now
make choices particular to the VAE. Define the prior on Z to be a standard
normal distribution. Introduce p, ai: X — Z, neural networks parameterised
by 1, and hence let ¢(-;1) on Z be the Gaussian distribution

q(-|z;¢) = N (uy (), diag (o7 (2))) == Noy. (3.21)
In addition to the assumption that ¢ is Gaussian, we have also made the modelling
choice that the distribution depends on z through neural networks. This choice is

sometimes called ‘amortised inference’. Also, let p(x|z;#) be normally distributed
with mean Gy(z) and covariance matrix, 3,

p(+|z;0) = N(Go(z), ). (3.22)
Maximising the bound in (3.16)) can now be written as a minimisation of

T06.6) = Buv, (Beon [Io8(1Za)) + 50— Gale) 55" o - Gat)|

+dkr, (./\/’xﬂ/,

) (329

ignoring constant terms.

In most cases, Yy is taken to be some multiple of the identity
Yo = p*I (3.24)

where p is either fixed or learned and it is this derivation that we use in chapter
. However, in chapter |5/ we consider a more general ¥y(z), where the covariance
is learned, with weights 6, and dependent on the latent space vector, z.

The expectation over P% is calculated empirically using the training set but the
expectation over N, , is more complicated. To minimise J one might want to dif-
ferentiate J with respect to ¢. Estimating gradients of the form VyE. ., , f(2)
is possible using Monte-Carlo methods but the estimator tends to exhibit high
variance [173]. A significant contribution of the original VAE paper [125], is the
so-called ‘reparameterisation step’. Instead consider z ~ N, implies z = p,(2)+
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eoy(x) where € ~ N(0,1). Now VyE. n, , f(2) = %Zle Vo f(pg(z) + ePoy)
where ¢ ~ A(0,I). This approximation is experimentally seen to be more
stable and values as small as L = 1 are regularly used.

For a pictorial interpretation of a VAE, see figure [3-2l We can interpret the two
terms in ([3.23) as a reconstruction term and a regularisation term, respectively.
In the first term, an image is encoded to a distribution, the distribution is sampled
from and the expected reconstruction and the original image are compared. See
figure [3-2(a). Encoding to a distribution in the latent space, rather than just a
single vector, enforces that points close to each other in the latent space should
produce similar images. In the second term, the KL divergence encourages the
encoded distributions to be close to standard normal. The A(0, 1) prior also
encourages independence between the latent dimensions. The balance between
the two terms is determined by the noise level, p.

Note that the original KL objective, to maximise E,,+ log pg, (), describes max-
imising the probability, under the generated distribution, of samples from the
training or desired distribution. In this objective, there is no requirement for the
reciprocal relationship, that samples from the generated distribution should be
likely under the desired distribution. Thus VAEs are often criticised for producing
blurry or unrealistic images.

Updates in VAEs There have been several recent improvements in VAEs
including vector quantised VAEs (VQVAESs) [170] that utilise a discrete latent
representation. The V(Q method is designed to prevent posterior collapse when
the decoder starts outputting values independent of the latent space value z.
In addition, Hierarchical VAEs [187) [205] consist of VAEs effectively stacked
on top of each other. The idea is that this could improve the lower bond in
and decrease reconstruction error while learning a feature hierarchy for
the images, similar to those learned by a convolutional neural network. In this
thesis, chapters [o] and [6] also discuss variations on the standard VAE.

3.5 Invertible Neural Networks/Normalising Flows

Invertible neural networks or normalising flows [78, 174, (129, |108| train an in-
vertible generator that forms a bijection between a latent space and the image
space. Consider x as a transformation of a real vector z, under the transform
Gy : Z — X. The weights 6 parameterise the transformation. Ensuring that
Gy is invertible and both Gy and Ge_l are differentiable, we have that, using the
change of variables formula,

pa(x:0) = pz(Gy ()16, (Gy (@)1 = pz(Gy ' (@) Jo ()7 (3.25)
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where Jg, and JG(;l are the Jacobian of Gy and G ! respectively. Recall that
if z (and z) is d dimensional then the Jacobian is a d x d matrix of partial
derivatives. The formula can be interpreted as the probability of an image x is
a multiplication of the probability of the latent vector that corresponds to the
image z, 2 = G, ' (), and a scaling factor given by the determinant of Jacobian,
that describes the change in volume moving from pz to py.

Usually, z is sampled from an standard normal distribution and Gy is split up into
a series of transformations e.g. if Gg = G, © Gr_19,_, 0---0G1p,, then G(;l =
Gig, 0Ghg 000Gy and det Jg,(z) = det Jyo, (Gi-10, 1 (- (G10,(2)))) -+
det Jg,, (G1p,(2))-det Jg, , (2). Thus complex transformations can be built out
of simpler transformations.

To choose parameters, 8, one possible choice of loss is the KL divergence between
the target distribution p? and the distribution generated by the invertible neural
network

L(0) = Drcr.(pi () [lpx (;0)). (3.26)

In general, the distribution p% is unknown, and so instead the (3.26]) is calculated
empirically using the change of variables formula (3.25):

L(O) = —Epir(a) [long(Ge_l(x)) + log | det JG(;l(:r)|] + const. (3.27)

The feed-forward and convolutional architectures discussed in section 2.3 are
not necessarily invertible. There are several approaches for choosing invertible
architectures, one is called the Non-linear Independent Components Estimation
(NICE) [58] which partitions the input to a layer, z into vectors z; and 2. The
forward mapping sends z; to x; with an identity mapping and calculates x5 =
2o + fo(21) where fp can be any, non-invertible neural network. To calculate the
inverse, z; = x1 again remains unchanged and zy = xo — fy(x1). The partition is
free to change with each application of a bijective function and there is complete
freedom in the choice of fy and this allows complex functions to be built up. Note
that one benefit of this formulation is that the Jacobian is lower triangular and
the determinant is easy to calculate.

3.6 Diffusion/Score Based Generative models

A generative model takes a known prior probability distribution and acts to
transform it into the desired distribution. Continuous time Stochastic Differential
Equations (SDEs) can smoothly transition between complex distributions and can

be used as generative models. Much of this section is based on the derivations in
[210].
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Take p% to be the desired data distribution and pz the known prior distribution
over a latent space with the same dimension as the image space. Let z(t), 0 <
t < T be a diffusion process, define p;(x) be the probability density of x(t), and
take py = p% and pr = pz. The diffusion process can be modelled as the solution
to the SDE

dr = f(z,t)dt + g(t)dw (3.28)

where w is the standard Brownian motion, f(-,¢) : R? — R? is a vector-valued
drift coefficient, and g(-) : R — R is a scalar-valued diffusion coefficient. With
suitable choices of f and g the SDE will diffuse the initial desired distribution,
p% into the fixed prior distribution, py.

Taking images and transforming them into noise is not so useful. Instead, we wish
to model the other direction, starting with samples from the prior and output
images and so consider the reverse time SDE. This can be expressed analytically

dz = [f(z,t) = g(t)*Vapi(2)]dt + g(t)dw (3.29)

where w is the reverse time standard Brownian motion. The term V,p:(x) is
called a score function that can be approximated by a neural network [105], 209,
208]. This is where the learning comes in, and what makes this a deep learning-
based approach. With an approximation of the score function, numerical SDE
solvers can be used to generate new samples. As discussed in [210], different
choices of f and g will give different SDE schemes, for example f(z,t) = —13(t)x
and g(t) = \/W where 0 < G(t) < 1 206} [101] or f(x,t) = 0 and g¢(t) =

@ for o an increasing function [20§].

Sampling from the SDE can be slow. As discussed in [210], it is possible to define
an ODE that induces the same marginal probability density as the SDE. This
allows for fast sampling, with standard ODE solvers. This deterministic scenario
also allows each image to be encoded to a point in the latent space and each
latent space vector to generate an image. Conditional generation is also possible,
in some cases without any retraining of the score function |210].

An alternative formulation to this score-based SDE approach is diffusion mod-

elling. The above case where f(z,t) = —13(t)z and g(t) = \/3(t), can alterna-

tively be formulated with a parameterised 2Markov chain trained using variational
inference to produce samples matching the data after finite time [101]. In one
direction, samples from the image space repeatedly have noise added until even-
tually, it reaches a sample from a standard normal distribution. The reverse

direction reverses the diffusion process and allows for image generation.
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3.7 Low Dimensional Manifold Assumption

AEs, VAEs and GANs work with the idea of a low dimensional manifold, such
as depicted in figure[1-2] The newer diffusion-based models and invertible neural
networks, choose their latent space Z to be the same as the image space. In the
rest of this thesis, we will focus primarily on probabilistic models with a lower
dimensional manifold assumption, such as VAEs and GANs. This is partly for
reasons of timing. When we were scoping and planning for this thesis, VAEs and
especially GANs were state-of-the-art and invertible neural networks and diffusion
models were in their infancy and considered difficult to train for any meaningfully
sized images. It is also because we hoped that the lower dimensional manifold
would have a regularising effect. One concern, especially for use of invertible
neural networks for inverse problems is whether they might add more instabilities
to the problem, rather than mitigate the original ill-posedness. There has been
some work looking at the instabilities of invertible neural networks [21]. Finally,
is also worth noting that, especially in section [4] the training and application of
the generative model are separate, so that any function Gy can be included.
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Chapter 4

Generative Regularisers

4.1 Introduction

Generally, ill-posed problems are solved by incorporating some prior information.
As discussed in section this is often given in the form of a regulariser in a
variational regularisation framework [196] [107 [23], see equation (2.4). Hand-
built regularisers are better suited to some types of images over others, e.g. TV
is tailored to piece-wise smooth images. A natural question to ask is: given a set
of images, which regulariser would work well?

There is a wide body of research into learning regularisers. Approaches include
using a regulariser to force reconstructions to be sparse in some learned basis for
feasible images [6]. Others have included a network trained for denoising [223,
152, |188] or removing artefacts [141} 164, 79|, favouring images that are un-
changed by the network. More recently, ‘adversarial regularisation’ [146] uses
a neural network trained to discriminate between desired images and undesired
images that contain artefacts. For a recent overview of approaches to using deep
learning to solve inverse problems, see for example [16].

In this chapter, we consider the case where the regulariser depends on a learned
generative model. We investigate regularisers [26, |57, 90, |218| that penalise values
of z € X that are far from the range of the generator, G, and call these generative
reqularisers. A popular example [26], revisited in section limits solutions
to those that are exactly in the range of the generator,

v'=G(), 2" €argmin [[AG(2) —yl5 + All=]5. (4.1)

Generative regularisers combine the benefits of both a variational regularisation
and a data-driven approach. The variational approach builds on the advance-
ments in model-based inverse problems over the last century, while the data-
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driven approach will provide more specific information than a hand-crafted regu-
lariser. The method remains flexible as the machine learning element is unsuper-
vised and therefore independent of the forward model and the noise type. In this
chapter, we test different generative regularisers, inspired by the literature, on de-
convolution, compressed sensing and tomography inverse problems. The success
of generative regularisers will depend on the quality of the generator. We propose
a set of criteria that would be beneficial for a generative model destined for use in
inverse problems and demonstrate possible methods of testing generative models
against these criteria.

4.2 Generative Regularisers for Inverse Prob-
lems

In this section, we bring together current approaches in the literature that pe-
nalise solutions of an inverse problem that are far from the range of the generator
GG. We consider variational regularisation ([2.4)) and regularisers of the form

Rea(z) = rzrélg F(G(z) —x) + Rz(z) (4.2)

where F : X — [0,00] and Rz : Z — [0,00]. We consider different choices for
F.

4.2.1 Choices of F

Restricting solutions to the range of the generator

The characteristic function of an arbitrary set C is defined as

0, fortecC
te(t) =
1, fort¢cC

Taking F(z) = to1(z) and Rz(z) = |23 in gives and describes
searching over the latent space for the encoding that best fits the data. Their
choice Rz(z) reflects the Gaussian prior placed on the latent space. Bora et
al. [26] first proposed this strategy, applying it to compressed sensing problems.
There are a number of interesting applications using this method, such as de-
noising [21§], semantic manipulation [85], seismic waveform inversion [156], light
field reconstruction [41], blind deconvolution [17] and phase retrieval [94]. Bora
et al. [26] assume the existence of an optimisation scheme that can minimise (4. 1)
with small error and from this probabilistically bound the reconstruction error.
However, the non-convexity introduced by the generator makes any theoretical
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guarantees on the optimisation extremely difficult. Assuming the forward opera-
tor is a Gaussian matrix (the generator weights have independent and identically
distributed Gaussian entries) and the layers of the generator are sufficiently ex-
pansive in size, there exist theoretical results on the success of gradient descent

for optimising (4.1)) [95] 138, 54].
This formulation can also be optimised by projected gradient descent [200, 109]:

Wit1 = T — HAT(A% - y)

Zip1 = argmin flwe — G2 (4.3)
Ti11 = G(2t11).

With analogies to the restricted isometry property in compressed sensing [36],
Shah and Hegde [200] introduce the Set Restricted Eigenvalue Condition (S-
REC). 1If the S-REC holds, then the operator A preserves the uniqueness of
signals in the range of G. Theoretical work considers the case where A is a
random Gaussian matrix, and shows, under some assumptions, it satisfies the S-
REC with high probability. In addition, if the generator is an untrained network,
then the projected gradient descent approach with sufficiently small step size
converges to z*, where Axz* =y [200, (109, |17§].

Relaxing the Constraints

Returning to Bora et al. |26], the authors note that as they increase the number
of compressed sensing measurements, the quality of the reconstruction levels off
rather than continuing to improve. They hypothesise that this occurs when the
ground truth is not in the range of the generator. One could consider relaxing
the constraint that the solution is in the range of the generator, for example
setting F(x) = ||z||2 allows for small deviations from the range of the generator.
One could also encourage the deviations to be sparse, for example by taking
F(x) = ||z||l1 [57,97]. Some theoretical considerations for this softly constrained
approach is given in [79]. This approach is similar to the approaches of [141]
164] where they take Go E : X — X an encoder-decoder network and define
Rg(x) = ||xr — G(E(z))||3. The idea is that this regulariser approximates the
distance between x and the ideal data manifold. Less explicitly, there are a
number of approaches that extend the range of the original generator, through
optimisation of intermediate layers of the network [153, 53, |87] or tweaking the
generative model training in response to observed data [160} [103].

4.2.2 Additional Regularisation

Additional regularisation on Z is given by Rz in (4.2). The most common
choice is Rz(z) = ||z]|3 |26, 17] but there are other possibilities, for example
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Rz(2) = v_114(2) [218], where d = dimZ. Often, the regularisation matches the
prior on the latent space used in generator training. Menon et al. [153] discuss
that Rz(z) = ||z||3 forces latent vectors towards the origin. However, most of
the mass of the d-dimensional standard normal prior on their latent space is
located near the surface of a sphere of radius d. Instead, they use a uniform
prior on dS?!. This idea has also been explored for interpolations in the latent
space [229]. In addition, the prior on the latent space may not be a good model
for the post-training subset of z that maps to feasible images. For a VAE there
may be areas of the latent space that the generator has not seen in training and
for a GAN, there could be mode collapse. A few recent papers consider how to
find the post-training latent space distribution [52} 20].

Other regularisation choices could be based on features of the image, r = G(z2).
For example VanVeen et al. [222] use Rz(z) = TV(G(z)). For a GAN generator,
it is possible to take the regularisation term to be the same as the generator loss
Rz(z) =log(1 — D(G(z))). This regulariser utilises the discriminator, D, which
has been trained to differentiate generated from real data. Examples include
inpainting [235], 134] and reconstruction from an unknown forward model [11].

4.2.3 Other Approaches

There are a number of ideas that are linked to earlier discussions in this section
but we will not cover them in detail. A major benefit of generative regularisers
is the flexibility to changes in the forward model. We have therefore ignored
conditional generative models [2, [176] 232, |148] 244, |167, 203] and those that
train with a specific forward model in mind [141] 115, [89]. We also exclude work
that uses an untrained neural network, for example, Deep Image Priors [222, 219,
59] or [90].

4.3 Regularisation Analysis

We briefly analyse here the soft regularisation functional given by Rg(x) =
min, ||z — G(2)|3 + pl2]|3, with D(Az,y) = ||Az — y||3 in (2.4). We note that,
in general, it will not satisfy the desired theoretical properties for variational
regularisation as set out in section . Consider for example, G : R — R?
where G(z) = (z,2?)T. In this case, the generative model parameterises a lower
dimensional manifold, a parabola in the larger ‘image’ space R?. Note that the
range of the generative model is a non-convex set.

Consider that A = I : R* — R?. Consider that we observe data point y = (4,4)7.
The solution to our regularised problem is now:

min [L(z1, 22, 2) 1= (21 — 6)* + (22 — 4)” + Mz1 — 2) + A(aa — 2%)% + pA2?[4.4)

Z,x
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We have that

S e ey 49
8L(x5;;;cg,z) L0 e ot >\§2++14 (4.6)
Substituting these gives
L(x},25,2) = a i\ N ((z=0)* + (2* — 4)%) + Auz? (4.7)
For the case 6 =0
QL(QJT,J';,Z):O &= z=00r2>=7—(1+\)u (4.8)

0z

and we have that z = 0 is a local maximum of L and, provided (1 + \)u < 7, we
have two possible minimisers for L at

A [T— 1+
A1 2
M7= (14 X)p) +8

200+ 1)

r==x (4.9)

These both have the same value in the objective, L and hence there is not a
unique minimiser for L.

Consider the case where A = 1, u = 1/2 and now we vary §. We have that

L(a%, a3 2) = % (== 6 + (22— 4)? + 22) (4.11)
which has two local minima sandwiched by local maximum as long as |§]| < 4.
As 0 varies from small and positive to small and negative, the location of the
global minima jumps from a positive 27 to a negative zj. See figure for a
visualisation. Thus we do not have stability, the regularised solution does not
depend continuously on the observed data.

We have seen that when minimising the objective L with respect to z, the non-
convex nature of this minimisation and multiple local minima, give rise to situ-
ations where there are no unique global minima and/or the global minima can
jump locations with just small perturbations in the observed data. We note that

we demonstrated this for the case when F(x) = ||x||3 but there would be the
same non-uniqueness issue for F(x) = toy(x) or F(x) = ||x||;, for sufficiently
small .
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Figure 4-1: Reconstruction results using 4.4 with A = 1, g = 1/2 showing that
this generative regulariser is not stable. The solution may not be unique, and
small changes in the observed data, (J,4), may lead to large changes in the

solution.
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The possibility of a lack of stability is something to be aware of but does not mean
that the approach cannot be useful or effective. Indeed, many of the approaches
set out in chapter |2, do not meet these theoretical guarantees.

Future work could consider what properties of the generator might satisfy the
properties of uniqueness, stability and convergence as set out in section 2.1.3]
This counterexample uses a generator whose range is non-convex. If 1 was zero
and the range of the generator was convex then Rg(x) = min, ||G(2) — z||% would
also be convex and this could lead to an avenue for theoretical consideration.
Ensuring convexity in the range of the generator might require careful thought,
for example, a linear generator would have a convex range, but would not be
expressive enough for most of our needs.

We note that the augmented NETT approach [163], gets around the problem of
multiple local minima in the minimisation for Rg(z) by removing the minimi-
sation over z but instead using the encoder, which can be made continuous by
construction. They are thus able to give a provable regularisation scheme. The
work of [163] also considers the importance of a non-zero p to ensure that their
regulariser is coercive. In our case, take, for example, if G = I, the identity, then
Re(z) = ﬁ”x”% which is coercive, only if ¢ # 0. In general, where the first
term of R (z) fails to be coercive, the second term might be able to compensate.
Coercivity is important for the existence of minimisers and says that if ||z||3 — oo
then Reg(x) — oo.

4.4 Generative Model Evaluation

Typically the aim of a generator has been to produce high fidelity images. How-
ever, the success of relies not just on the ability of the generator to produce
a few good images but to be able to produce every possible feasible image. In this
section, we discuss desired properties for a generator trained for use in inverse
problems and numerically explore methods to test these properties.

4.4.1 Desired Properties

To evaluate a generative model, in the context of inverse problems, we consider
two overall aims which we will go on to further decompose:

A Samples from the generator are similar to those from the target distribution.

B Given a forward model and an observation, the image in the range of the
generator that best fits the observation can be recovered using descent
methods.

We split aim A into a set of properties:
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A1 The generator should be able to produce every possible image in the target
distribution. That is, for all x € X such that x is similar to images in the
training dataset, there exists z € Z such that G(z) = z.

A2 The generator should not be able to produce images far from the target
distribution. That is, for all x € X such that z is not similar to images in
the training dataset, then there does not exist z € Z such that G(z) = z.

Al includes that the generator should be robust to mode collapse and that the
model should not trivially over-fit to the training data.

In the probabilistic case, with a prior over the latent space, property A becomes:

A That samples from the latent space, when mapped through the generator, will
produce samples that approximate a target distribution. We should have
that d(P*, Pg) is small for some distance measure d.

We also note that in the probabilistic case, A1 and A2 are not independent.
By assigning probability mass to parts of the image space close to the target
distribution, it is less likely that images far from the target distribution can be
generated. In the probabilistic case, a third property is added:

A3 The generator should map high-probability vectors in the latent space dis-
tribution to high-probability images in the target distribution.

It is possible that A1l and A2 are satisfied but not A3. Note that these properties
may not be possible to achieve for a given dataset.

We define two properties for Property B, these are
B1 The generator should be smooth with respect to the latent space, Z.

B2 The area of the latent space, Z, that corresponds to images similar to those
in the training set should be known.

B1 ensures that gradient—based optimisation methods can be used. Continuity is
also desirable: we wish that, in some way, points close together in the latent space
should produce similar images. B2 considers that we need to have a distribution
on or subset of Z to sample from in order to use the generator to sample images.
This distribution may not necessarily be equal to any priors on the latent space
used during training. We recognise that B1 and B2 are perhaps vague, and are
not sufficient for Property B. It is an area for future work to consider making
these statements precise enough to support theoretical work.

4.4.2 Generative Model Evaluation Methods

There is a wide range of existing generative model evaluation methods [2§], fo-
cused mostly on Property A. We assume the availability of some test data drawn
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from the same distribution as the training data and unseen by the generative
model. The average log likelihood [81] of test data under the generated distri-
bution is a natural objective to maximise. There is evidence, however, that the
likelihood is generally unrelated to image quality and is difficult to approximate
in higher dimensions [215]. To calculate a distance between generated and desired
distributions, one possibility is the earth movers distance (EMD) [191], a discre-
tised version of the Wasserstein distance. One could also encode the generated
and unseen data in a lower dimensional space before taking distance calculations,
for example by taking the outputs of one layer of any neural network trained
for classification [99) 84]. A model that overfits the training data would perform
perfectly in these distance measures. Also, the low dimensional representation
used for the evaluation is likely to have the same inherent problems and draw-
backs as the embedding learnt by the generative model. Similarly, a number of
tests train an additional, separate, neural network discriminator to distinguish
between test data and generated data [13| [145]. Failure to classify the two is a
success of the generative model. For testing a GAN, the new discriminator is
unlikely to be able to pick up failures that the original discriminator, used in
training, missed. Finally, Arora et al. [15] estimate the size of the support of the
generated distribution. A low support size would suggest mode collapse. Their
technique depends on manually finding duplicate generated images which can be
time-consuming and require expert knowledge.

Property B is less explored in the literature. One approach is to directly attempt
to reconstruct test data by finding a latent space vector that when pushed through
the generator, matches the data. With these found latent vectors, analysing their
locations could check Property B2. To test the smoothness of the generator with
respect to the latent space, Property B1l, many previous papers, including the
original GAN and VAE papers [81, [125], interpolate through the latent space,
checking for smooth transitions in the generated images.

4.4.3 Numerical Experiments

In this section, we evaluate AE, VAE and GAN models against the desired prop-
erties given in section [4.4.1 We consider experiments on two datasets. Firstly,
a custom-made Shapes dataset with 60,000 training and 10,000 tests 56 x 56
grey-scale images. Each image consists of a black background with a grey circle
and rectangle of constant colour. The radius of the circle; the height and width
of the rectangle; and the locations of the two shapes are sampled uniformly with
ranges chosen such that the shapes do not overlap. This dataset is similar to the
one used in [176]. Secondly, the MNIST dataset [136] consists of 28 x 28 grey-scale
images of handwritten digits with a training set of 60,000 samples and a test set
of 10,000 samples. For examples of both datasets, see the ground truth images
in figure 4-3|
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Architecture details are given in the appendix. We chose to use the same gen-
erator network for all three models, for comparison. Architecture choices were
guided by [125, 86, 195]. All models have gone through a similar amount of op-
timisation of hyperparameters, including: the noise level p in the VAE decoder
(3-24)); the latent dimension; the number of layers; choice of convolution kernel
size; drop out probability; leaky ReLLU coefficient and learning rate. In order to
select hyperparameters we manually inspected generated images. Models were
built and trained using Tensorflow [83] in Python and made use of the Balena
High-Performance Computing Service at the University of Bath. The models
were trained using a single Dell PowerEdge C8220X node, with two Intel E5-
2650 v2 CPUs, 64 GB DDR3-1866 MHz Memory and an Nvidia K20X GPU, 6
GB memory. The MNIST and Shapes VAE models take approximately 25 and 45
minutes to train, respectively.

Reconstructing a Test Dataset

Property A1 asks that the generator is able to produce every image in the target
distribution. Gradient descent with backtracking line search (Algorithm [1] in
is used to approximate

Z*(z) € argmin ||G(z) — =|3, (4.12)

for each © € X\, an unseen test dataset. For the AE and VAE, the algorithm
is initialised at the (mean) encoding of the test image, £y (z) and p,(x), respec-
tively. For the GAN, we take 4 different initialisations, drawn from a standard
normal distribution, and take the best result. We find empirically, especially for
the GAN, that different initialisations lead to different solutions.

Figure shows [|G(z*(x)) — z||2/||x||2, the normalised root mean squared er-
ror (NRMSE) for reconstructions on Shapes and MNIST for the three different
generator models. We see that, for both datasets, the AE and VAE have almost
identical reconstruction results and the GAN results are comparatively worse.
For the Shapes dataset the difference in results between the three generative
models is less stark. In addition, NRMSE values are given for three different la-
tent dimensions to show that the results are not sensitive to small changes in the
latent dimension. Latent dimensions of 8 and 10 for MNIST and Shapes, respec-
tively, are used in the rest of this paper. Figure 4-3| also shows reconstruction
examples providing context to the results in figure [4-2]  Numerical values on
the image use the Peak-Signal-to-Noise-Ratio (PSNR, see definition 3.5 in [31]).
The non-circular objects in the GAN results for Shapes could be a failure of the
discriminator to detect circles.
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Figure 4-2: NRMSE between values of G (arg min, ||G(z) — z||2) and  and plot-
ted as a histogram for all x € Xl.. The horizontal lines show the median and
range and the shaded area is a histogram. Note the brown colour is the result of
the overlapping orange (VAE) and blue (AE).
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Figure 4-3: Example reconstructions for the MNIST and Shapes dataset with eight
ten-dimensional generative models respectively. In each sub-figure, the top row
shows the ground truth, the second row the reconstruction and the third row the
difference between the two.
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Figure 4-4: EMD between the test dataset and samples from a trained generator.

Distance Between FP; and P*

To investigate Property A3, the EMD [191] is calculated between empirical ob-
servations of the generated and the data distributions Py and P*. For the sets
of test and generated images, Xiest = {21,...,2n} and {G(z1),...,G(zn) : 2; ~
N(0,1)}, the EMD between their empirical distributions is defined as

N N N
i=1 j=1

1,j=1

The EMD is calculated using the Python Optimal Transport Library [72] with
N = 10,000, the full test set. The results are given in figure |4-4. In both
the MNIST and Shapes examples, the VAE has a lower EMD across the latent
dimensions. The AE is added to this plot for comparison purposes but, as there
is no prior on the latent space, z; ~ N(0,I) may not be a suitable choice to
sample from.

Visualisations of the Latent Space

Property B2 requires that the area of the latent space that maps to feasible
images is known. There is no prior on the latent space enforced for AEs and a
N(0, I) prior is imposed for VAEs and GANs. In figure [4-5] gradient descent with
backtracking (Algorithm 1| in chapter [2]) is used to approximate , finding
a latent vector z*(x) for each © € Xyt For comparison, the values z*(x) for
the test set and 10,000 vectors drawn from a standard normal distribution are
randomly projected into 2 dimensions. The encodings in the latent space match
the prior N(0,7) for VAEs and GANs. For AEs, there are examples in lower
latent dimensions, where the area covered by the encodings does not match a
standard normal distribution.
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Figure 4-5: Comparisons of the latent space encodings of a test dataset with a
standard normal distribution by projecting the vectors into 2 dimensions. En-
codings of the test dataset are in orange and the standard normal vectors are in

blue.

Generating Far from the Latent Distribution

-10

-20

(a) MNIST (b) Shapes

Figure 4-6: Images generated far from the high-probability region of the prior
distribution.

A known latent space gives known areas to sample from to produce new images.
Figure shows image examples generated far from a standard normal distribu-
tion. The images are not recognisable as similar to the training datasets. This
emphasises the importance of Property B2, that the area of the latent space that
corresponds to images similar to those in the training set should be known.

Interpolations in the Latent Space

We consider interpolating between points in the latent space, testing property
B1. We hope to see smooth transitions between interpolated images, and that
generated images are similar to those seen in training. We take three images
from the test data, x1,x2 and x3, find 21, 25 and z3, their encodings in the latent
space, using (4.12)) and then plot interpolations G(z1 + aq (22 — 21) + aa(z3 — 21))
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(d) Shapes - AE (e) Shapes - VAE (f) Shapes - GAN

Figure 4-7: Interpolation ability of an AE, VAE and GAN. The highlighted top
left, bottom left and top right latent space values were chosen close to the test
dataset and the other images are computed via linear combinations in the latent
space.

for a;,as € [0,1]. Figure shows one example for each model and dataset
for ay,ay = {0,0.25,0.5,0.75,1}. In the AE and VAE, you see transitions that
are smooth but blurry. The GAN images appear sharper but some outputs are
not similar to training data examples, for example, in figure [I-71 there are a
set of images that contain no rectangle. These images could be evidence of a
discriminator failure: the discriminator has not yet learnt that these images are
not similar to the training set.

Discussion

As expected, none of the three generator models, AE, VAE and GAN, fulfil
Property A and B fully. For A, the GAN does poorly in the reconstruction results
of figures and [4-3] The lack of an encoder makes this more challenging.
There is evidence of mode collapse, where parts of the training data are not
well reconstructed and discriminator failure, where the images produced are not
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realistic, see figures 4-3| and The VAE does consistently better, demonstrated
by the lower EMD between generated and test data in figure [d-4l The lack of
prior on the AE, and thus a known area of the latent space to sample from, is
a problem. Figure demonstrates that sampling from the wrong area of the
latent space gives poor results.

Pulling apart the cause of a failure to recover an image is difficult. It could
be that the image is not in the range of the generator, a failure of Property
A, or that the image is in the range of the generator but the image cannot be
recovered using descent methods, a failure of Property B. For property B1, the
mathematical properties of continuity or differentiability of a network, depending
on the architecture. The interpolations in figure [4-7| show some evidence of large
jumps between images in the GAN cases, but in general, the interpolations are
reasonable. For both the GAN and the VAE, in figure [4-5 the encodings of the

test images in the latent space seem to match the prior, Property B2.

4.5 Numerical Results for Inverse Problems

In this section, we apply AE, VAE and GAN models, evaluated in the previous
section, on three inverse problems. Firstly tomography, the X-ray transform [39)
with a parallel beam geometry. Secondly, deconvolution with a 5 x 5 Gaussian
kernel. Lastly, compressed sensing where y = Ax is an under-determined linear
system where A is an R™*¢ Gaussian random matrix, € R? is a vectorised
image and d > m, see for example [55]. In each case, zero-mean Gaussian
noise with standard deviation ¢ is added to the data. The forward operators
were implemented using the operator discretisation library (ODL) [1] in Python,
accessing scikit—learn [177] for the tomography back-end.

We consider variational regularisation methods in the form of and
with D(Az,y) = ||Ax — y||3. To match the literature themes, we compare three
different methods: hard, F(u) = ¢{o1(u) and Rz(z) = ||z||3; relaxed, F(u) = ||ul|3
and Rz(z) = pl|z||3; and sparse, F(u) = ||ull; and Rz(z) = u||z||3, where p is an
additional regularisation parameter. We compare with regularisers independent
of the generator: Tikhonov regularisation, Rg(x) = ||z||3, for the convolution and
tomography examples and TV regularisation [192], for the compressed sensing
example.

The optimisation algorithms are given in the appendix. Hard and Tikhonov
are optimised using gradient descent with backtracking line search, algorithm
[ TV regularisation is implemented using the Primal-Dual Hybrid Gradient
method [40]. For relaxed, alternating gradient descent with backtracking is used,
see algorithm [2 Finally, for sparse, the 1-norm is not smooth, and so Proximal
Alternating Linearised Minimisation (PALM) [25] with backtracking, algorithm
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B3] is used to optimise the equivalent formulation min,e v .cz || A(G(2) +u) —y||3+
A (JJulls + p||z||3). In all cases, initial values are chosen from a standard normal
distribution.

4.5.1 Deconvolution

Figure[4-8shows solutions to the deconvolution inverse problem with added Gaus-
sian noise (standard deviation ¢ = 0.1) on the MNIST dataset. We test the relaxed,
hard and sparse methods with a GAN against Tikhonov and try a range of reg-
ularisation parameters. Each reconstruction used the same realisation of noise
affecting the data. Hard gives good PSNR results despite not reaching the Moro-
zov discrepancy value, the expected value of the 2-norm of the added Gaussian
noise [217]. For the hard constraints reconstructions are restricted to the range of
the generator and we do not expect the data discrepancy to go to zero as A\ de-
creases. In the relaxed and sparse constrained reconstructions, for smaller values
of A the solutions tend towards a least squares solution which fits the noise and
is affected by the ill-posedness of the inverse problem. The additional variation
in the choice of u, as shown by the additional coloured dots, has little effect for
the smaller values of \.

Figure again shows a deconvolution problem with added Gaussian noise (stan-
dard deviation o = 0.1) on the MNIST dataset. We choose the hard reconstruction
for the three different generator models and show three random initialisations in
Z. Regularisation parameters were chosen to maximise PSNR. The best results
are given by the AE and the VAE. The GAN has failed to find a good value in
the latent space to reconstruct the number three. The choice of initial value of z
significantly affects the outcome of the reconstruction in the GAN case.

4.5.2 Compressed Sensing

Consider the compressed sensing inverse problem (m = 150 measurements) with
added Gaussian noise (standard deviation o = 0.05) on MNIST images. We choose
regularisation parameters that optimise PSNR over 20 test images. Figure 4-10
includes a table with the PSNR results on an additional 100 test images. Due
to the cartoon-like nature of the MNIST digits, TV regularisation is particularly
suitable, however, VAE and AE hard and VAE relaxed are competitive with TV.
For more context, example plots for the VAE and TV reconstructions are given

in figure 4-10

To give an indication of computational cost, Tikhonov reconstruction on the com-
pressed sensing inverse problem on the MNIST dataset took on average 32 itera-
tions of backtracking until the relative difference between iterates was less than
1078, In comparison, the hard and relaxed took on average 54 and 325 backtrack-
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Figure 4-8: Solution of the deconvolution problem on MNIST with an eight-
dimensional GAN. The plot shows the 2-norm reconstruction loss against regu-
larisation parameter choice A in comparison with the Morozov discrepancy value
in black. Differing choices for u are plotted as additional markers. The image
plots correspond to the parameter values shown by the grey lines and include the
PSNR values.

(a) GT (b) AE

Figure 4-9: Comparisons between the three generators, with eight-dimensional la-
tent space, for the deconvolution problem. Reconstructions use the hard method.
The plot shows 3 different initialisations for each generator. The ground truth
(GT) is given on the left, the top line shows the reconstruction and the bottom
line the residuals with the PSNR values.
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Generative Model
Method AE VAE GAN None
Relaxed | 19.31 +£2.26 20.07 £ 1.66 17.12 & 1.67
Sparse | 19.52 £2.72 21.08 +£3.16 17.06 £ 2.5
Hard 21.84 +4.09 22.33 £ 4.17 16.93 + 2.57
TV 21.54 + 1.32

}1:92
& &

Hard Relaxed Sparse

Figure 4-10: Results compare the three different regularisers and three different
methods against the unlearned TV reconstruction on the compressed sensing
inverse problem. The table shows the mean and standard deviations of PSNR
values of 100 reconstructions. The plots show three example solutions, comparing
the VAE reconstructions to TV reconstruction. The left column shows the ground
truth, even columns the reconstructed images and odd columns the residuals with
the PSNR values.

ing steps, respectively, without random restarts. The algorithms took up to 1
second for Tikhonov, 5 seconds for hard and 10 seconds for relaxed.

4.5.3 Tomography

Taking the tomography inverse problem with added Gaussian noise (standard de-
viation o = 0.1), figure includes a table which gives the average and standard
deviation for the PSNR of 100 reconstructed Shapes images. The regularisation
parameters were set to maximise the PSNR over a separate validation set of 20
test images. The GAN has a particularly poor performance but the AE and VAE
results are all competitive with TV. Example reconstructions for the AE methods
and TV reconstruction are given in figure The generative regulariser gives a
clear rectangle and circle while the TV reconstruction gives shapes with unclear
outlines and blob-like artefacts. In terms of computational cost, Tikhonov took
on average 157 iterations of backtracking until the relative difference between it-
erates was less than 107®. In comparison, the hard and relaxed took on average 37
and 255 iterations, respectively, without random restarts. The algorithms took
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Generative Model
Method AE VAE GAN None
Relaxed | 30.70 £ 1.59 28.79 £ 0.71 24.20 £+ 0.49
Sparse 33.12 £ 0.80 33.09 & 0.89 22.72 £ 1.80
Hard 33.17 £ 0.80 32.92 +£0.95 22.92 + 2.10
TV 29.94 +0.75

TB2.77

GT Hard Relaxed Sparse

Figure 4-11: Results compare the three different regularisers and three different
methods against the unlearned TV reconstruction on the tomography inverse
problem. The table shows the mean and standard deviations of PSNR values of
100 reconstructions. The plots show five example reconstructions, comparing the
AE reconstructions to TV reconstructions. The left column shows the ground
truth, the even columns the reconstructions and the odd columns the residuals
with the PSNR values.

up to 40 seconds for Tikhonov, up to 12 seconds for hard and up to 60 seconds
for relaxed.

4.5.4 QOut-of-Distribution Testing

We augment the Shapes dataset, creating a shapes+ dataset, with the addition
of a bright spot randomly located in the circle. We then take the Tomography
inverse problem on the shapes+ dataset with added Gaussian noise (standard
deviation ¢ = 0.05). For a generative regulariser we use sparse, with F(z) =
V|1, the TV norm. Crucially, the VAE generator used was trained only on
the standard Shapes dataset, without bright spots. We compare with standard
TV reconstruction. The regularisation parameters were chosen to maximise the
PSNR on 20 ground truth and reconstructed images. The mean PSNR over 100
test images for the sparse case is 32.83 with a standard deviation of 0.65 and
for the TV reconstruction is 32.01 with a standard deviation of 0.67. Figure
show five reconstructions. The sparse deviations allow reconstruction of the
bright spot demonstrating that generative regularisers can also be effective on
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GT TV Sparse

TV Norm

Figure 4-12: Tomography inverse problem on random images from the shapes+
dataset. It compares the use of sparse method, where sparsity is measured in the
TV-norm, with a standard TV reconstruction. The generator is a 10-dimensional
VAE trained on Shapes images. In the final column, the part of the reconstruction
lying in the range of the generator is coloured red and the sparse addition is green.
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images close to, but not in, the training distribution.

4.5.5 FastMRI Dataset

We also train a VAE to produce knee FastMRI images. The VAE architecture
is based on Narnhofer et al. The FastMRI knee dataset contains data 796 fully
sampled knee MRI magnitude volumes [128, 238], without fat suppression. We
extract 3,872 training and 800 test ground truth image slices from the dataset,
selecting images from near the centre of the knee, resizing the images to 128 x 128
pixels and rescaling to the pixel range [0,1]. The FastMRI VAE models took
approximately 12 hours to train on the same system as above.

Results for the tomography inverse problem with added Gaussian noise of vary-
ing standard deviation are given in figure For each image and noise level,
the same noise instance is used for each reconstruction method, and additionally,
for each method, a range of regularisation parameters are tested, and the recon-
struction with the best PSNR value is chosen. This is to evaluate best achievable
performance. The plot shows how the PSNR values, averaged over 50 test images,
vary with the noise level. The relaxed method gives the best PSNR values, out-
performing Tikhonov although with a larger variance. The sparse method curve
has a similar shape to Tikhonov, but performs consistently worse suggesting that
this choice of deviations from the generator is not suited to this dataset, generator
or inverse problem. We see that for the hard method the results are consistent
across the range of noise levels, not improving with reduced noise. The example
images reflect the data with the hard reconstruction doing comparatively better
with larger noise levels, but the relaxed method captures more of the fine details
at the lower noise level.

4.6 Summary, Conclusions and Future Work

We considered the use of a generator, from a generative machine learning model,
as part of the regulariser of an inverse problem, generative regularisers. Gener-
ative regularisers link the theoretically well-understood methods of variational
regularisation with state-of-the-art machine learning models. The trained gener-
ator outputs data similar to training data and the regulariser restricts solutions
(close) to the range of the generator. The cost of these generative regularisers is
in the need for generative model training, the requirement for a large amount of
training data and the difficulty of the resulting non-convex optimisation scheme.
Weighing up the costs and benefits will depend on the inverse problem and the
availability of data.

We compared three different types of generative regularisers which either restrict
solutions to exactly the range of the generator or allow small or sparse deviations.
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Figure 4-13: Reconstructions of the tomography inverse problem with additive
Gaussian noise of varying standard deviations. Regularisation parameters are
chosen to maximise the PSNR value for each image. The left shows the average
PSNR values, taken over 50 test images, with the standard deviation in the
error bars and the right shows one particular example reconstruction with PSNR
values.
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We found that in simpler datasets the restriction to the range of the generator
was successful. Where the ground truth was more complex, then allowing small
deviations produced the best results. A key benefit of generative regularisers
over other deep learning approaches is that paired training data is not required,
making the method flexible to changes in the forward problem. We demonstrated
the use of generative regularisers on deconvolution and fully sampled tomography
problems, both with gradually decaying singular values of the forward operator;
and compressed sensing, with a large kernel and non-unique solutions.

The training of the generator is crucial to the success of generative regularisers,
and a key contribution of this chapter is a set of desirable properties for a gen-
erator. Numerical tests linked to these properties were discussed and applied to
three generative models: AEs, VAEs and GANs. None of these models fulfils
the criteria completely. We observed known issues such as mode collapse and
discriminator failure in the GAN, blurry images in the VAE and the lack of a
prior in the AE. In the inverse problem experiments in this paper, the AE and
the VAE yielded the most consistent results. The success of the AE, despite the
lack of prior on the latent space, surprised us. We suspect the implicit regular-
isation on the model from the architecture and initialisations helped make the
AE a usable generator. The GAN models did worst in the inverse problem exam-
ples: they generally seemed more sensitive to the initialisation of the non-convex
optimisation, making the optimal point in the latent space difficult to recover.

4.6.1 Future Outlook

We identify three key areas for future growth in the field. Firstly, the desired
criteria set out in section for a generative model to be an effective regulariser
are useful guidelines but they are not mathematically precise. The field of gener-
ative modelling is growing quickly and generators are improving every day. For
safety-critical inverse problems, such as medical imaging, being able to quantita-
tively assess the quality of a given trained generator, would be hugely beneficial.
Future work could consider refining these criteria into mathematically precise
statements that could be used to quantitatively assess a given regulariser.

Secondly, we noted in section that the soft method does not always lead to
a convergent regularisation method in the strict mathematical definition. Future
work could consider conditions on the generator needed to indeed yield a conver-
gent regularisation method. Due to the non-linear nature of the generator G, we
could also instead consider work from the non-linear inverse problems literature
(e.g. [116]) which could be more able to deal with non-linear behaviour such as
the sensitivity of the regularisers to different initialisations.

Finally, generative models are currently trained first and subsequently applied to
an inverse problem. The benefit of this split approach is that the model does not
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need retraining if there are changes in the forward problem. However, future work
could consider how to train generative models with inverse problems in mind.
For example, linking to the desired criteria, if B1 was refined to require Lipschitz
continuity with a small coefficient, then with suitable choices of architecture and
loss function, this could be ensured. Similarly, if convexity of the generator was
required, then convex architectures could be considered. With a specific inverse
problem in mind, one could also consider training the generator with a penalty
for producing images with artefacts or choosing a loss function to encourage a
smooth transition between images from the same subject.

4.A Generative Model Architectures

The architectures for the three different generative models, for the different
datasets are given in this Appendix.

We first define a architecture for a convolution block, that consists of a con-
volution (or convolution transpose) with a given kernel size, stride length and
number of filters, an activation function and a drop out layer. This pattern can
be repeated to build up network expressivity.

Down-conv: [f4, 2, ..., fil. Convolution with f; filters, kernel, stride s, activation
[$1. 52, . S, Dropout layer {prob=0.8}
activation, H
[dy, ds, d3] Convolution with f; filters, kernel, stride s,, activaticn

Dropout layer {prob=0.8}
Output size=[dy, dy, d3]

Up-conv: [f1. f2. . fil. Convolution transpose with f; filters, kernel, stride s,, activation
[$1. 52, ... 51l Dropout layer {prob=0.8}
activation, i
[dy. ds, d3] Convolution transpose with f; filters, kernel, stride s;, activation

Dropout layer {prob=0.8}
Output size= [dy, d5, d3]

Figure 4-14: Definitions used in Figure |4—15|, |4—16| and |4—17l

For the MNIST dataset, the network is relatively simple with 3 convolution layers
and a dense layer for the encoder/discriminator, and two dense layers followed
by 3 convolution layers and a dense layer for the decoder/generator. The input
image is size 28 x 28 and the latent dimension can vary, up to 25.
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Encoder/Discriminator Decoder/Generator

AE VAE GAN AE VAE GAN

Input shape = [r,n, 1] Input shape = [latent dimension]

Dense layer, LeakyRelU, [25]
2
Dense layer, LeakyRelU, [

nn E
Reshape, [Z'Z' 1]

Down-conv: [64,64,64],(2,2,1], Up-conv: [64,64,64],[1,2,2],
LeakyRelLU, [2,2,64] RelU, [n,n, 64]
Reshape, [16n?] Reshape, [641?]
Dense layer, Dense layer, Dense layer, Dense layer, [r?]
[latent [2*latent [1] Reshape, [r, 1]
dimension] dimension]

Figure 4-15: The architectures for the 3 generative models, AE, VAE and GAN,
for the MNIST dataset. The convolution block definitions are given in figure 4-14}

For the shapes dataset, the network is very similar to the MNIST network, however
the input images are size 56 x 56. The latent dimension can vary up to size 59.

Encoder/Discriminator Decoder/Generator
AE VAE GAN AE VAE GAN
Input shape =[n,n, 1] Input shape = [latent dimension]

2
Dense layer, LeakyRelU, [:—4]
n n
Reshape, [E’ 5 1]

Down-conv: [64,64,64],[1,2,2], Up-conv: [64, 64,64, [2,2,1],
LeakyReLU, [2,2,64] LeakyRelU, [n,n, 64]
Reshape, [16n?] Reshape, [64n?]
Dense layer, Dense layer, Dense layer, Dense layer, [n?]
[latent [2*latent [1] Reshape, [, n]
dimension] dimension]

Figure 4-16: The architectures for the 3 generative models, AE, VAE and GAN,
for the Shapes dataset. The convolution block definitions are given in figure M

For the FastMRI knee the network is is deeper and, to deal with the increased
memory requirements of the 128 x 128 images, the dense layers are removed.
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Encoder/Discriminator

Decoder/Generator

VAE

VAE

Input shape = [n. 7, 1]

Input shape = [latent dimension]

71.2
Dense layer, Rel\J , [?]
16]

Reshape, [%,:—6,

Down-conv: [8,16,32],[1,1,1],
LeakyRelU, [n,n, 32]
Down-conv: [64,64,64],(2,1,1],
LeakyRelU, [,7, 64]
Down-conv: [128,128,128],(2,1,1],
LeakyRell, [7,%,128]
Down-conv: [256,256,256],[2,1, 1],
LeakyRelU, [2, 2, 256]
Down-conv: [64,32,8],[1,1,1),
LeakyRelU, [£,%,8]

Up-conv: [32,64,128,256],[1,1,1,1],
RelU, [, =, 256]
Up-conv: [512,512,512,512],[1,1,1,1),
Rell, [z, 72, 512]
Up-conv: [256,256,256,256],(2,1,1,1],
Rell, [, 7, 256]
Up-conv: [128,128,128,128], [2,1,1,1],
Rell, [5,%,128]
Up-conv: [64, 64, 64,64],[2,1,1,1],
RelU, [2,7,64]
Up-conv: [32,16,8,4],[2,1,1,1],
RelU, [n,n,8]

Dense layer, [2*latent dimension]

Up-conv: [1],[1], RelU, [n.n. 1]
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tion block definitions are given in figure -14]




Chapter 5

Compressed Sensing MRI
Reconstruction Regularised by

VAEs with Structured Image
Covariance

Learned regularisation for MRI reconstruction can provide complex data-driven
priors to inverse problems while still retaining the control and insight of a vari-
ational regularisation method. Moreover, unsupervised learning, without paired
training data, allows the learned regulariser to remain flexible to changes in the
forward problem such as noise level, sampling pattern or coil sensitivities. One
such approach uses generative models, trained on ground-truth images, as priors
for inverse problems, penalising reconstructions far from images the generator
can produce. In this chapter, we utilise variational autoencoders (VAEs) that
generate not only an image but also a covariance uncertainty matrix for each
image. The covariance can model changing uncertainty dependencies caused by
structure in the image, such as edges or objects, and provides a new distance met-
ric from the manifold of learned images. We demonstrate these novel generative
regularisers on radially sub-sampled MRI knee measurements from the fastMRI
dataset and compare to other unlearned, unsupervised and supervised methods.
The results show that the proposed method is competitive with other state-of-
the-art methods and behaves consistently with changing sampling patterns and
noise levels.
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5.1 Introduction

In this chapter, we choose to explore the inverse problem of compressed sens-
ing Magnetic Resonance Imaging (MRI). A challenging inverse problem, that, if
successful, provides the benefits of MRI with faster acquisition times. Sophis-
ticated mathematical reconstruction techniques allow for high-quality images to
be produced with just a subset of the full MRI measurements, which are quicker
to obtain. This reduces costs but can also improve image quality by reducing
motion artefacts. Mathematically, we seek to recover an image, * € X, from
observed measurements, y € ). The two are related by a linear forward model,
A: X — Yasin (LI). In MRI, A is composed of a Fourier transform and a sub-
sampling operator that takes just a subset of the Fourier data. Measurements
are incomplete and so multiple solutions may exist and the problem is ill-posed.

The ill-posedness can be mitigated by incorporating prior information; we con-

sider this to be given in the form of a regulariser, R, in a variational regularisa-
tion (5.5)) framework [147, 127, 230].

In this chapter, we build on the previous chapter and the introduced generative
reqularisers 26| |57, 90|, 218, 64] that consider the use of a generative machine
learning model as part of the regulariser. As in the case of the previous chapter,
the generative model is trained on high-quality data, obtained from fully sampled
measurements, with no knowledge of the forward model, A, or any sub-sampled
data. The idea of generative regularisers is to penalise inverse problem solutions
that are dissimilar to the learned distribution on ground truth, or high-quality
reconstructed, images.

As we saw in the generative part of a VAE consists of a network, such that
for any point z € Z, within the learned latent space, the network outputs a
distribution on the image space X,

pax(x|z) = N(2;Go(2), 29(2)) (5.1)

for parameterised functions Gy : Z — X and %y : £ — R4 d = dim(X).
In a standard VAE model, ¥y is taken to be a multiple of the identity matrix,
i.e. Bg(2) := p?I, where the predicted variance p is either fixed or learned. This
assumes that the reconstruction error of the generated image is independent and
identically distributed for all pixels. In reality, parts of an image, such as the
background, will be easy to model whereas sharp edges are harder to model
accurately. Similarly, as images are commonly piece-wise smooth, there are often
local correlations in the errors made by the model. A well-known issue with VAEs
is their tendency to produce smooth images (see e.g. [193]), missing the sharp
edges that exist in real data. In this chapter we consider the effect of a more
expressive covariance matrix, Yy, in a generative regulariser.

74



Contributions We propose a highly adaptive generative regulariser where edge
and correlations in the data are modelled with a structured covariance network.
We demonstrate the strength of this model by reconstructing knee MRI images
from retrospectively sub-sampled real-valued data from the fastMRI dataset [238].
Contributions include:

e Adaption and tuning of the structured covariance model introduced by
Dorta et al. [63] for the fastMRI dataset of knee MR images.

e An extension of the denoising example from Dorta et al. [63] for use in
inverse problems with a non-trivial forward model, producing a novel gen-
erative regulariser.

e A demonstration of how the prior provided by the VAE with structured
covariance can be explicitly visualised. We see that the structured covari-
ance model has learned long-range correlations between pixels, taking into
account image structure.

e An ablation study to compare three different options for the decoder co-
variance, Y4(z): X is a fixed constant multiplying the identity matrix,
is a diagonal matrix with a learned diagonal and the proposed structured
covariance where ¥ is dense. We show the most flexible, dense covariance
method, produces the best inverse problem results.

e Comparisons of our proposed regulariser with a variety of regularisers: the
unlearned Total Variation (TV) [192] and least squares methods. Also
with two unsupervised methods: a deep image prior approach with a pre-
trained generator from Narnhofer et al. [160] and the original Compressed
Sensing using Generative Models work by Bora et al. [26]. Finally, with
a state-of-the-art, learned, end-to-end method, variational networks [93].
We demonstrate that our method is competitive with the state-of-the-art
neural networks, yet offers superior generalisation to other noise statistics
and sampling patterns.

5.2 Related Work

As discussed in chapter [2| deep learning approaches to image reconstruction in
inverse problems is a growing field. For example, there are several supervised
deep learning approaches [243, |93} 166, [226| |181}, 104, |150] that require datasets
of sub-sampled measurements paired with high-quality reconstructions. With
any change in the forward model, e.g. a different k-space sampling pattern, or
noise level, new data needs to be acquired and models retrained. Furthermore,
with these methods, care needs to be taken to ensure the image reconstruction
is consistent with the observed measurements and these methods can also be
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unstable to small perturbations in the measured data [12]. In contrast, deep
image priors [219, [160], seen in section [2.4.1 have no data requirements and
instead use an untrained convolutional neural network as a prior for the inverse
problem. The prior is implicit and comes from the architecture choices, another
choice to make, but also requires regularisation in the form of early stopping to
prevent over-fitting to the potentially noisy data.

We choose to take an unsupervised approach, where we have example ground
truth images but no paired data. The image modelling, for training the regu-
lariser, and the forward modelling for the inverse problem reconstruction, are
completely decoupled. We model the images using a generative model incorpo-
rating it as part of a regulariser for the inverse problem reconstruction. There
has been previous work in this area |26} 57, |90} 218, [64], discussed in chapter ,
and we extend it with the addition of a structured image covariance network.

We discuss a range of generative models in section |3, When choosing and training
a generative model for use in inverse problems, the generative model must be able
to produce a whole range of possible solutions. A common issue with GANs [81]
is, that they do not generate across the range of images they were trained on. This
failure can be subtle [15] and therefore difficult to identify. GANs also do not have
an encoder, and finding a latent space value that corresponds to a particular image
is a non-convex optimisation problem with multiple local minima. In comparison,
a VAE is more suitable for use in generative regularisers because they are able to
reconstruct images across the span of the training distribution although with the
consequence of fewer high frequencies. We consider VAEs over other generative
models such as normalising flows or invertible neural networks, both of which
have been applied to inverse problems [110, [124], because of the regularising
effect of a lower dimensional latent space in the VAE. Dorta et al. [63] proposed
the use of a structured covariance as part of a VAE for denoising, and the novel
addition of this work is the application to the non-trivial forward problem of MRI
reconstruction.

5.3 Method

We build a probabilistic model for the reconstructed image, =, given an obser-
vation, y. First, consider the likelihood of the measurement, y, given image, x,
denoted p(y|z), and usually taken to be N (y; Az, 1) for additive Gaussian noise
over the observations with standard deviation, v. We choose a prior on the im-
ages x given by a pre-trained generative model, pg x(z|z) as in (5.1). Finally, let
pz be the prior on the latent space used to train the generator, usually N'(z;0, I).
Combining these parts, we have that

p(x, z|y) o< p(ylz, 2) pas(x|2) pz(2) (5.2)
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= p(y|z) pa s (z]2) pz(2). (5.3)

Ideally, we would seek to marginalise out the latent vector, z, however this integral
is intractable, except by expensive sampling; instead, we take a maximum a
posteriori (MAP) estimate. By taking logarithms, maximising with respect
to z and z is equivalent to variational regularisation (2.4) with

1
D(Az,y) = 2_72||A56 —yll2 (5.4)

and

x— Gz 22 R z||2
R(z) = mzin (10g(|29(2)]) + | 02( L 02 4 H 2” ) , (5.5)

where we denote the weighted norm by ||z[|3, := 27 M~'z and the determinant
of a matrix X by |X|. Equation (5.4) ensures that = explains the observation ,
while the second term in constrains x to be close to images in the range of
the generator. The first term in (5.5)) is a log-determinant term and ensures that
the second term in (5.5)) is not made arbitrarily small by choosing a large variance
across all pixel values. The final term in matches the prior on the latent
space and should encourage Gy(2) to be similar to images seen during generative
model training. We use N (z;0, I) because it is easily accessible, however, it may
not match the post training distribution in the latent space that maps to feasible
inverse problem solutions.

VAEs with Structured Covariance The generative model is trained to min-
imise the distance between the generated, pgx(-;#), and training, p%, distribu-
tion. A VAE is derived by choosing the distance measure to be a Kullback—
Leibler divergence and then maximising a lower bound approximation to this
distance |125]. The intractable distribution over the latent space, pg x(z|x;0), is
approximated by an encoder

q(zlz39) = N (2 py (@), diag(oy(2))) =: Ny (2) (5.6)

with neural networks p,,, 0%, parameterised with weights, 1. Following the deriva-
tion in [125] or in section , training a VAE becomes a minimisation with respect
to ¢ and 6 of

Earpin B, (0ll(z, Go(2), Do (2)) + dicr(Newllpz)) (5.7)

where we write the negative log-likelihood as
1
nll(z, G, %) = log(|X]) + §||x — G||% + constants (5.8)

and the expectation over x is calculated empirically over the training set. The
expectation over z is also calculated empirically and for more details see chapter 3]
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Ly(z)

Figure 5-1: Comparison of the standard VAE (top) and the Structured Uncer-
tainty Prediction Networks as developed by Dorta et al. [63] (bottom). The VAE
has an encoder network that outputs a distribution, N (z; uy(z), diag(oy(z))),
which is then sampled from to get a latent vector, z, which is passed to the gen-
erator network, Gy(z). In addition to the usual generator, the proposed network
includes a network that takes latent vectors, z, and outputs the weights of a
sparse lower triangular matrix, Lg(z). This matrix corresponds to the Cholesky
decomposition of the inverse covariance for the generated image.

Structure of ¥y(z) Using a dense matrix 3y is computationally infeasible for
even moderate-sized images as it is expensive to calculate both the log determi-
nant and the inverse required for the norm. We use the computationally efficient
Structured Uncertainty Prediction Networks as developed by Dorta et al. [63].
For each point in the latent space, an additional decoder, parameterised by 6,
outputs a sparse lower triangular matrix, Ly(z), with the diagonal constrained
to be positive. This forms the Cholesky decomposition of precision matrix, E;l,
such that Xy = (LpL} ). The Cholesky decomposition is taken to be sparse:
(Lp)i,; = 0 if pixels ¢, j are not in a small neighbourhood. This leads to a sparse
precision matrix, Y, 1A zero value at entry i and j in Ee_l means these pixels
are independent, conditioned on all other image pixels. The pixels could still be
correlated and thus this still allows for a dense covariance matrix. Indeed we
would not choose to make Yy sparse because zero values in the covariance indi-
cate two uncorrelated pixels and we wish to allow complex dependencies across
images. The local sparsity structure is also amenable to parallelisation on the
GPU and for more details see [62]. A pictorial view of the full network including
an example sparse Cholesky matrix is given in figure [5-1|
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Objective functions This sparse Cholesky decomposition of the precision
makes predicting a dense covariance matrix computationally feasible. The nega-
tive log-likelihood from ([5.7)) becomes

d
1
all(z, G, %) = ~2 3 log(La) + 51 L(z — Gl (5.9)
=1

up to constant terms and with, as above, ¥~! = LLT. The log determinant is now
just a summation over the diagonals of the Cholesky matrix, we have removed the
dense matrix inversion and there is no need to build the full covariance matrix.
This also simplifies the regulariser from (5.5)), giving

R(z) = min <nll(x, Go(z), Xo(2)) + %HZH%) : (5.10)

z

Moreover, sampling from the extended VAE is possible by solving a sparse system
of equations to get a sample z = Gy(z) + (Lg(2)")"'u where u ~ N(0, I).

We note that the minimisation problems in (5.7) and (2.4) with (5.10]) are not

well defined as they are not bounded from below. Pixel values that can be
determined with high accuracy e.g. those of a consistent black background, can
have extremely low variance and the log determinant term may become large
and negative. We both bound the size of the diagonals of Ly using a scaled tanh
activation and added a very small amount of noise to the black background to
deal with this. Investigating other priors on Ly is an interesting area for future
work.

5.4 Experiments

Dataset The NYU fastMRI knee dataset contains, amongst other data, 796
fully sampled knee MRI magnitude volumes |128] 238], without fat suppression.
This data was acquired on one of three clinical 3T systems (Siemens Magne-
tom Skyra, Prisma and Biograph mMR) or one clinical 1.5T system, using a
15-channel knee coil array and conventional Cartesian 2D TSE protocol em-
ployed clinically at NYU School of Medicine. We use the ground truth data
from the fastMRI single coil challenge, where the authors used emulated single-
coil methodology to simulate single-coil data from the multi-coil acquisition. In
addition, in the fastMRI dataset, the images are cropped to a square, centring
the knee. We extract 3,872 training and 800 test ground truth images from this
dataset, selecting images from near the centre of the knee, resize the images, using
the Python imaging library [46] function with an anti-aliasing filter, to 128 x 128
pixels and linearly rescale each image to the range [0,1]. The training and test
datasets correspond to the training and validation sets of the fastMRI dataset
and images from the same volume are always contained in the same dataset.
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Forward Problem Our forward problem is inspired by the fastMRI single-coil
reconstruction task; reconstructing images approximating the ground truth from
under-sampled single-coil MR data [238]. The ground truth images are Fourier
transformed and sub-sampled. To this end, a mask selects the points in k-space
corresponding to a sampling pattern. We use both radial and Cartesian sampling
patterns, selecting radial spokes and horizontal lines in k-space, respectively. We
use the operator discretisation library (ODL) [1] in Python and take the same
radial sub-sampling MRI operators as in [34]. Note that this is a relatively simple
MRI model, yet a good starting point to test the feasibility of the proposed
approach. We discuss its limitations in section [5.6]

Model Architecture See figure for a comparison of the VAE and the VAE
with structured image covariance. All the networks are built of resnet-style blocks
which consist of a convolutional layer with stride 1, a resizing layer, followed by
two more convolutional layers, and then a ReLLU activation function. The output
of this process is then added to a resized version of the original input to the
block. The resizing layer is either a bilinear interpolation for an up-sampling
layer, increasing width and height by a factor of 2; convolutions with stride 2
for a down-sampling layer or a convolution with stride 1 for a resnet block that
maintains image size. We choose a latent space of size 100. The generative
network consists of a single dense layer outputting 8x8 images with 16 channels
before a resnet block without resizing to give 8x8 images with 256 channels,
then four up-sampling blocks are applied giving image sizes 16x16, 32x32, 64x64
and 128x128 with channels 512, 256, 128 and 64 and final another resnet block
without resizing to reduce the channels down to one output image. The covariance
network is identical but outputs a 128x128 image with 5 channels, from which
the sparse Cholesky matrix is formulated, based on code from Dorta et al. [63].
The sparsity pattern is chosen such that the Cholesky matrix Ly(2); ; is non-zero
only if pixels j is contained in a 5 x 5 patch, centred at pixel i. The encoder
is reversed copy of the generator, with down-sampling layers replacing the up-
sampling layers. We include drop-out layers during training.

Model Training  Training the VAE with structured covariance is done in
a two-stage process. First the generated mean, Gy, and the encoder, N, ,, are
trained with a standard VAE loss i.e. 3y = pI where p is fixed [125]. The weights
for the mean and encoder are then fixed before the covariance model is trained
using . The choice of this two-stage training is two-fold: firstly, it forces as
much information as possible to be stored in the weights of the mean, and not
the covariances, and secondly, it allows us to compare the effect of just changing
the covariance models in the ablation study. Models were built and trained in
TensorFlow using an NVIDIA RTX 2080 - 8GB GPU. It took approximately 8
hours to train the means and then 24 hours and 30 hours for the diagonal and

80



structured covariance models.

Ablation Study We consider three variations on the structure of ¥y(z): g
is a fixed constant multiplying the identity matrix, >y is a diagonal matrix
with a learned diagonal and our proposed method where Yy is a dense ma-
trix. We call these options: mean+identity, mean+diagonal and mean+covar*.
The mean+identity model is just taken to be the output of the first part of
the mean+covar* training described above. For mean+diagonal, we again take
the learned generated mean, Gy, and the encoder, N, , from the mean+identity
model and then optimise for the covariance network, but choose the off
diagonals of the Cholesky matrix, Lg(z), to be zero, so that the final covariance

matrix is diagonal.

Proposed reconstruction method For the proposed method mean+-covar*
and the versions mean+identity and mean+diagonal we choose a variation on the

above regulariser (5.5

R(x) = min \ (nll(:c, Go(2), So(2)) + guzug) . (5.11)
The addition of the two regularisation parameters A and p is in recognition that
this is a non-convex problem and that our modelling assumptions are imperfect,
for example, the prior on Z may not match the posterior after VAE training.
We use alternating gradient descent with backtracking line search, see algorithm
[2, where gradient descent steps are taken, alternating in the z and z space,
with step size chosen to insure the objective decreases. We initialise at a rough
reconstruction, given by the adjoint of the forward operator, and the encoding
of the adjoint for z and z, respectively. Regularisation parameters were selected
via a grid search to maximise the peak signal-to-noise ratio (PSNR). This is to
demonstrate the best achievable results. An alternative approach would be to
use a validation set to set the regularisation parameters but this is an approach
for future work.

Unlearned method comparisons We compare against Total Variation (7'V)
regularisation [192] implemented using the Primal-Dual Hybrid Gradient (PDHG)
method [40], with regularisation parameter chosen to maximise PSNR. As a base-
line, we also calculate the least squares solution, min, || Az —y/||3, optimised using
gradient descent with backtracking line search and regularised with early stop-
ping. The stopping point is optimised to give the best PSNR value for each
image, the best achievable result.

Data driven prior comparisons For another example of a generative reg-
ulariser, we take our learned mean generator Gy and implement the method of
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Bora et al. [26], minimising with respect to z the objective

1
L(z) = FIIAG(z) = ylls + w213, (5.12)

searching for an image in the range of the generator that best matches the mea-
surements. The regularisation parameter, p, is chosen to maximise PSNR. We
also implement the approach of [160] which takes a trained generator but then,
after observing data, tweaks the weights of the network, optimizing z*, 6* €
argmin || AGy(z) — y||3, we call this Narnhofer19. We use the same mean gen-
erator as in our other experiments, gradient descent with backtracking for the
z optimisation and TensorFlow’s inbuilt Adam optimiser for the network weight
update, 8. We choose 1000 iterations to find an initial value of z and then select
the number of iterations for the alternating z and 6 updates via a grid search to
maximise the PSNR to give the best achievable result.

Supervised end-to-end method comparison Finally, we also demonstrate
comparisons with a variational network (VN) [93]. This is a end-to-end approach
which takes with d(Az,y) = 3||Az—y||3 and treats the regulariser R as some
unknown function. Optimising by gradient descent will lead to updates of
the form

T = 1 — ANAT (Azy — y) + VR(z), (5.13)

where AT is the adjoint of A and o, is a step-size. The authors replace the
unknown VR (z;) term with a learned component, inspired by a Fields of Experts
model [190]. Fixing the number of iterations and unrolling leads to an end-to-end
method that includes information from the forward and its adjoint. We use the
same network design and parameters as the original paper. The iterations are
first initialised with a rough reconstruction given by the adjoint. The gradient of
the regulariser consists of a convolution with 24 filters, kernel size of 11 and stride
1; a component-wise activation function; and then a convolution transpose with
the same dimensions to return an image with the same dimensions as the input.
The activation function consists of a weighted sum of 31 radial basis functions
with learnable means, variance and weights. All learnable parameters are allowed
to vary independently in each layer and the step-size a; and parameter A\ are also
learned. We train three variations on our data: 25 radial spokes with 0.05 and
0.0125 added noise and 125 radial spokes with 0.05 added noise.

5.5 Results

Ablation Study To compare the covariance models mean+identity, mean+diagonal
and mean+covar*, visualisations of samples from the learned covariances are
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Figure 5-2: Comparing the covariance models mean+diagonal and mean+covar*.
The first column gives the ground truth, and the second column a reconstruction
in the range of the VAE generator. The third gives the residual which can be
considered as one sample of a zero mean Gaussian distribution with unknown
covariance. The final two columns give single residual samples from our learned
covariances mean+diagonal and mean+covar® models. Columns are rescaled for
better visualisation.

given in figure 5-2] The first three columns compare the original images, the
generated mean images and the residual. This residual can be considered as one
sample of a zero mean Gaussian distribution with unknown covariance. The final
two images show single residual samples from our learned covariances. We see
that the mean+diagonal places uncertainty in the right locations, but without
structure, the samples are speckled and grainy. The mean+covar* models can
match some of the missing structures from the generated mean images. We note
that these are random samples and therefore not expected to match the residual
precisely but rather illustrate statistical similarity.

Figure [5-3| compares the effectiveness of the three covariance models as generative
regularisers. The same observed data was used for each reconstruction method
for each image. It is clear that the results for mean+covar* give a consistently
higher PSNR value than mean+diag and mean+identity and we use this method
throughout the rest of the results section. These results support our hypothesis
that learning a more flexible distance measure allows us to better fit the data
and gives a better regulariser for our inverse problem.
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Figure 5-3: Ablation study comparing generative regularisers based on VAEs
with different noise models mean+identity, mean+diagonal and mean+covar*.
The plots show PSNR values average over reconstructions of 50 test images. The
mean is given by the solid line and standard deviation in the shaded box. The
x-axis measures the number of radial spokes in the sampling pattern and the
measured data was corrupted with additive Gaussian noise of standard deviation

0.0125 on the left and 0.05 on the right.

Prior introspection We can explicitly examine the learned structured covari-
ance, to visually assess the prior information passed to the generative model. To
do this, we take a test image, z, and use the encoder to give a latent vector, z,
that corresponds to the test image. From this we can calculate the structured
covariance, Yy(z) € R¥? where d = dim X. Each row of the covariance matrix
corresponds to a pixel in the generated image, and the row can be reshaped into
an image, showing the correlations between the chosen pixel and all others. Two
example images with chosen pixels highlighted with a star are shown in figure
b-4] Positive correlations are given in red, and negative correlations are in blue.
We can see that the structure of the edges is present, and that, despite the local
structure of the precision matrix, longer-range correlations have been learned.

Comparison with unlearned methods Figure shows comparisons with
TV and least squares reconstructions for a range of noise levels and the number
of radial spokes in the sampling pattern. Image examples can be seen in columns
2 and 3 of figures [p-5] and [5-6] We see the results of mean+covar* track TV but
with improvements across the range of radial spokes and noise levels tested. Es-
pecially in the examples in figure [5-6| you can see the piece-wise constant shapes
typical of a TV reconstruction, whereas for the same measured data mean+-covar*
has managed to reconstruct more of the fine detail. As expected, due to the dif-
ficult nature of the inverse problem, the least squares reconstruction does poorly.
As a rough indicator, our un-optimised implementation took 1.8 seconds for re-
constructing one image using least squares, and 6.4 seconds using TV, for one
choice of regularisation parameter. For one choice of regularisation parameter,
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Figure 5-4: Visualisation of learned covariances between example pixels (yellow
stars) and other pixel locations for the mean+covar model. Red indicates a high
positive correlation, and blue is a strong negative correlation.

VN VN

25-0.05 125-0.05 mean-+covar

=125

Spokes

e

Figure 5-5: Example reconstructions of a test image for different amounts of
measured data: 5, 25, 45 and 125 radial spokes, all with additive Gaussian noise
with standard deviation 0.05. The columns give different reconstruction methods.
The PSNR values are added in white and the red boxes indicate the settings the
highlighted variational network has been trained on.
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Figure 5-6: Example reconstructions of a test image with additive noise of differ-
ent standard deviations: 0.2, 0.05 and 0.0125, all with a sampling pattern with
25 radial spokes. The layout is as in figure

mean+covar® took 78.2 seconds.

Comparison with other data-driven priors Comparisons with Narnhofer19
and range are given in figure and columns 4 and 5 of figures and .
We see that the results of searching in the range of the generator saturate so
that even with increased data in the form of radial spokes, or better data in the
form of less noise, the reconstructions don’t see significant improvement. The
example image reconstructions reflect this; they show overly smoothed images
that, although have the right structure, don’t contain any of the fine detail of
the ground truth. This could be because the generative model is not expressive
enough to match this fine detail. Alternatively, it could be because the non-
convex optimisation has failed to find a good enough minimum to match the
measured data. The results of Narnhofer19 are much more detailed and very
similar in PSNR values to our mean+covar*. In the images, there is some evi-
dence of smoothing of details e.g. in figure[5-6 Our un-optimised implementation
took 106.7 seconds for Narnhofer19 and 23.9 seconds for the range method.

Comparison with supervised end-to-end methods We now compare mean
+ covar® with variational networks , trained end-to-end on particular noise
and sampling settings. Figure[5-9/shows the PSNR results for 50 test images, with
vertical lines highlighting the settings where the networks were trained. Example
images are shown in columns 6 and 7 of figures and with the trained for
setting highlighted in red. We note that the variational networks achieve the best
results, in comparison to the other methods, for the settings they were trained
on. This is as expected for end-to-end reconstructions. We see that the results
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Figure 5-7: Comparison of the mean+covar* method with the training-free meth-
ods TV and least squares. The plots show the mean PSNR values for reconstruc-
tions averaged over 50 test images, with the standard deviations given by the
shaded area. The left plot shows results from measured data with additive Gaus-
sian noise of standard deviation 0.05 and differing numbers of measured radial
spokes. The right plot gives results where 25 radial spokes are used for each
reconstruction but the standard deviation of the added noise varies.
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Figure 5-8: Comparison of the mean+covar* method with range and Narn-
hofer19 |160], generative regulariser approaches. The experimental set-up is as

figure
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Figure 5-9: Comparison of the unsupervised mean+-covar* method with the su-
pervised variational networks [93]. The experimental setup is as figure but
in addition, the vertical lines depict the experimental settings the variational
networks were trained on.

are less optimal the further from the trained for setting, with some particularly
poor results, e.g. in figure [5-5| while our unsupervised method remains consistent.
Also as expected, the variational networks are quick to implement once trained,
taking 3.4 seconds for one image

Generalisation to a Different Sampling Pattern Finally, we test the gen-
eralisation ability of the methods by changing the sampling pattern. We mask
horizontal rows in the k-space, taking 16 (out of 128) centre rows and a uniformly
random selection of other rows with a given probability, p. Fully sampled images
correspond to p = 1. Example sampling patterns and one example reconstruction
is given in figure [5-10] We see an improvement over TV for mean+covar*. Narn-
hofer19 gives good PSNR values but the images are potentially over-smoothed.
For example, the vertical lines in the top left part of the zoomed-in region are
consistently missing from the Narnhofer19 reconstructions. The variational net-
work has not been trained on this horizontal sampling pattern and although gives
a reasonable reconstruction, seems to have some artefacts, for example in the top
right and bottom left of the image.

5.6 Discussion

The numerical results show that the generative regulariser mean+-covar* consis-
tently outperforms TV, figure [5-7, and is competitive with other unsupervised
generative model regularisation schemes, figure [5-8| over a range of noise levels
and sampling patterns. This is an important contribution, demonstrating a gen-
erative model, trained on an MRI dataset, provides an effective prior for image
reconstruction. As part of the ablation study, figures [5-2 and we demon-
strated that models mean+diag and mean-+identity provided some regularisation
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Figure 5-10: Example reconstructions of an image using measured data taken
with different horizontal random sampling unseen in the training of the variational
networks. The first column gives the k-space mask used to sample the data. The
remaining columns give reconstructions for the different methods.

but mean+-covar* provided the most flexibility to fit the data and thus the best
results. Searching in the range of the generator we saw evidence that the gener-
ator was not expressive enough to fit the data and that the reconstructed images
did not continue to improve with more or higher-quality data, this matches with

similar results in , .

The generative regularisers presented are not end-to-end methods and still re-
quire the use of an iterative optimisation scheme to reconstruct an image given
an observation, furthermore the optimisation objective is non-convex. However,
this optimisation is practically straightforward as the gradients can be calcu-
lated automatically, using automatic differentiation, and the optimisation can be
initialised with the adjoint reconstruction. The benefit of the unsupervised ap-
proach is that retraining is not required for different forward models. Figure
shows that the variational network end-to-end method , although provides
the best results on the forward model it was trained on, sees its success drop off
as you test it on other forward model settings. An additional benefit of genera-
tive reqularisers is that you can visually inspect the learned image prior and we
demonstrate this in figure

Training the Cholesky weights for the precision matrix proved tricky. As shown
in figure the structured covariance model has learned some of the residual
structure that we expect but at the expense of applying higher variances across
the whole image. This may make the structured covariance model too permissive,
allowing it to fit noise or artefacts from the measurements. With an improved
model, we expect that the regularisation parameters in would not be re-
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quired, they could be set by the hierarchical Bayesian derivation. Future work
could consider what additional priors or alternative modelling schemes could help
the learning of this structured covariance model, such as described in [62)].

Although this work demonstrates a data-driven approach to inverse problems
that is flexible and powerful there are a number of ways the MRI simulation
could be made more realistic. As discussed in section [5.4] our experiments are
inspired by the single coil fastMRI challenge which uses real-valued images and,
as the name suggests, a single-coil acquisition. In reality, modern MRI scans use
a multi-coil acquisition and usually produce complex images with a non-trivial
phase. A multi-coil acquisition could be incorporated into our framework with a
change of the forward model, e.g. via a SENSE formulation[180]. Modelling the
structures and correlations between the real and complex parts of an MR image is
an interesting open problem and subject to future work, potentially guided by the
approach to colour images in [62]. Finally, the radial masks we used to simulate
a radial sampling pattern, were just an approximation of the actual MR physics
and future work could consider bringing this closer to real-world applications.

As in most machine learning approaches, we have assumed that the images we
wish to reconstruct are similar to those in the training dataset used to train
the generative model. This is not obvious in medical imaging, where damage,
tumours, and illness can lead to different image presentations that may be far
from those of healthy volunteers used to create datasets. Modelling this, e.g.
by sparse deviations [57, |64] away from the range of a generative model, is an
interesting area of future development.

5.7 Conclusion

Generative regularisers provide a bridge between black-box deep learning methods
and traditional variational regularisation techniques for image reconstruction. We
propose a highly adaptive generative regulariser that models image correlations
with a structured noise network. The proposed method is trained unsupervised,
using only high-quality reconstructions and is thus adaptable to different noise
and k-space sampling levels. Our results show that generative regularisers are
most effective when the underlying generative model outputs both an image but
also a non-trivial covariance matrix for each point in the latent space. The
covariance provides a learned metric that guides where the reconstruction can or
cannot vary from the learned generative model. We demonstrated the success
of this approach through comparisons with other unsupervised and supervised
approaches.
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5.A Sparsity in the Precision and Consequences
for the Variance

As discussed in section for reasons of computational efficiency we restrict the
Cholesky decomposition of the precision matrix to be sparse. This restricts the
type of covariance matrices we can learn. A natural question is thus: is what
effect does this restriction have? Which covariance models are we not able to
model with this parameterisation?

We first note that the precision matrix A = LL" is also sparse if L is sparse. We
will drop the 6 parameters in this appendix. Recall the precision matrix

Aig = LiLj (5.14)
l

and see that for this summation to be non-zero, there must exist a pixel [ <
max (i, j) such that L;; # 0 and L;; # 0. In this work, we take L;; to be non-
zero only if 7 < ¢ and pixel j lies in a k x k patch centred on pixel 7, where k is
odd. See figure for possible values of j for a given highlighted ¢, for k£ = 3,
i.e. it shows for ¢ = 36 the positions of pixels j such that L;; can be non-zero.
Again, from this sparsity pattern, see figure for the resulting values of j for
a given ¢ that A; ; can be non-zero.

(a) Support of L; ; for fixed i (b) Support of A; ; for fixed i

Figure 5-11: For k = 3 and a fixed ¢, given by the yellow square, the red squares
correspond to the pixels 7 where the matrix is allowed to be non-zero.

Now consider inverting this precision matrix A. Think about A as the connectivity
of a graph: A;; # 0 if there is a connection between graph nodes (pixels) i and
j. In a similar multiplication as in , Af’j can be non-zero, if there exists a
node [ such that {i,1} and {l,j} are connected. Repeating this up to d, where
A is a d X d matrix, we have Aj-fj can only be non-zero if there exists any path
between the nodes i and j. Now consider using Cayley Hamilton theorem (see

e.g. theorem 3.16 in [233]), ¥ = A~! = %(A"*1 + Cp g A"+ F ]y, for
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some constants cy, ..., ¢,, and so again J; ; can be non-zero if there exists a path
between the nodes ¢ and j.

We can thus see that

e If A is diagonal, then no element is connected to any other, each power of
A is diagonal and so ¥ is also diagonal.

e If A is a block diagonal matrix, then there are unconnected regions of the
graph. Each power of A has the same diagonal block structure and  is also
a block diagonal matrix with X; ; = 0 if nodes ¢, j are in different regions.

e If the graph corresponding to A is connected, then there exists a path
between all of the nodes, then ¥ is dense.

As we discussed in section [5.3] a zero value in the precision matrix means that
two pixels are independent, conditioned on all the other pixels in the image.
From this discussion, we determine that the restriction to small neighbourhoods
in the Cholesky decomposition means that we are unable to model long-range
correlations with no dependent path between them. For example, consider eye
colour. The eyes are two regions in an image of a face that should be highly
correlated. However, between the eyes, is the nose, with skin colour and texture
that is independent of the eyes, conditioned on all other pixels in the image. We
can’t draw a path, between the two eye regions, that moves between neighbour-
ing pixels that have a dependent relationship between the two eye regions. As
they are unconnected in the precision matrix, they remain unconnected and thus
uncorrelated in the covariance matrix.

Experimentally, consider a set of 10 x 10 images, with striped rows. The pixel
value of each of the top 5 rows is chosen independently from a uniform distribu-
tion. The top five rows are then repeated for the bottom five rows. Each pixel
is identical to the other pixel in the row and all the pixels in the row 5 below
and independent of pixels in any other row. An example image is given in figure
[b-12a] We take 10,000 such images and numerically produce a covariance matrix,
given in figure [5-12b] In this matrix, you can see the correlations between pixels
in the same row, the main diagonal squares, and those in the row five rows above
or below, in the off-diagonal squares. We then choose three different connectivity
parameters for the Cholesky decomposition, k = 3, k = 5, and k£ = 11. The last
was chosen such that pixels five rows apart, can be connected. We see that for
k = 3, the learned covariance matrix, with the restricted parametrisation, has
failed to learn the longer range connections, instead only reproducing the local
correlations. For k = 5, we see that the long-range correlations between the rows
have been modelled, however, this is at the expense of some spurious correlations
between rows that should be independent. Although, as discussed above, these
two separate regions can’t be highly correlated with independent regions in be-
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tween, with the extra flexibility given by more non-zero values in the Cholesky
decomposition, we can approximate the covariance matrix well. Finally, when the
connectivity in the precision can cover the jumps between rows, we can reproduce
the covariance matrix without additional spurious correlations.

5.B Priors on the Sparse Cholesky Decomposi-
tion

In section[5.3] we discuss how the objective functions we use are not bounded from
below and noted the need to use a sigmoid activation function on the diagonal of
the Cholesky decomposition in order to bound the diagonals and give a well-posed
minimisation problem. Also in section [5.4] we discussed the need to split the
training between first training the means and then the covariance matrix. Finally,
we discussed in the conclusion, that the learned network is still too permissive
and that training the covariance network was challenging. An effective prior over
the covariance matrix might help to mitigate all three of these issues. However,
priors are tricky as we generally do not have access to the full covariance matrix,
except from slow, and computationally demanding, matrix multiplication and
then inversion. This means that calculating a log prior over the covariance for
each iteration of training a VAE is not currently possible.

There are several possible future directions:

e Determine an efficient calculation of the covariance matrix that can be
implemented on a GPU. This could allow priors to be defined on the full
matrices and the log prior evaluated at each iteration of training.

e Consider priors that we could place on the Cholesky decomposition of the
precision or the precision matrix. For example, the conjugate prior for the
covariance matrix of a Gaussian distribution is the inverse Wishart dis-
tribution and there is a corresponding Wishart distribution over precision
matrices. This, and other options, are discussed in [61], but they note the
difficulty in choosing a prior that was broad enough to cover the desired
covariance matrices but informative enough to be useful. This is the same
trade-off that we discussed when choosing priors for inverse problems and
led to us considering learned rather than hand-crafting priors. One could
consider learning a prior for the covariance matrices, e.g. using a hierarchi-
cal model to determine some hyperparameters, but this could be difficult
to train [228].

e Investigating the architecture of the generator and thus the implicit priors
placed on the network. Currently, as shown in figure [5-1], we use one gen-
erator network to output both the values for the mean and the covariance
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(a) Example random image (b) Covariance matrix

(c) Precision connectivity example k =3  (d) Fitted covariance matrix, k = 3

(e) Precision connectivity example k =5  (f) Fitted covariance matrix, k = 5

(g) Precision connectivity example k =
11 (h) Fitted covariance matrix, k = 11

Figure 5-12: In (a) you see an example sample of an image from which the
covariance matrix in (b) is calculated empirically. In (d),(f) and (h) you see ap-
proximations of the covariance matrix in (b), limited by a sparse parameterisation
of the Cholesky decomposition of the precision matrix. In (c), (e) and (g) you
can see, for the yellow pixel highlighted, the other pixels it is identical to (and
thus highly correlated), in grey, and ingpd the possible connections that can be
described by the precision matrix.



network for a single latent vector. It could be that this is not the correct ap-
proach and this puts undesirable implicit priors on the covariance or mean
networks. An architecture search could include: decoupling the two net-
works but still generating from a single latent vector; having a completely
different latent space and generator for mean and covariance, or perhaps
using a generated mean image and input to a network that outputs the
covariance values.

95



Chapter 6

Training a VAE Without Ground
Truth Images for use in Inverse
Problems

6.1 Introduction

In this chapter, we again take the approach of generative reqularisation (26, 57,
90, 218, 164]) which penalises solutions that are far from the range of a generative
model. In previous work, the generator was trained to generate images similar
to some training set of ground truth or high-quality reconstructed images. The
challenge of this approach is the requirement for large amounts of high-quality
ground truth training data. For some inverse problems, such as MRI it is difficult
and expensive to collect the necessary datasets: patient confidentiality, cost and
time of data acquisition, differences between hardware and imaging systems and
the rarity of some diseases. In other inverse problems, such as Positron Emission
Tomography (PET), high-quality ground truth images may be difficult to obtain
because of the inherent noise in the measurement procedure. In this work, we
consider an approach to learning a generative model for images only based on
observed measurements.

We assume that instead of a dataset of high-quality reconstructions, we have
access to both observed data and the forward model that produced the observa-
tions. For example we have samples (y*, A*);—; ... ,, from a distribution Py 4, such
that there exists 2° € X and that A‘2! ~ y* up to some additive noise. We also
assume the existence of some pseudo-inverse for A® given by Aty S5 x , which
gives a rough reconstruction. For inverse problems that map between the same
spaces, this could just be the identity, for MRI it could be a zero-filled recon-
struction, or for X-ray tomography a filtered back-projection. We use this data
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to train a variation on a variational autoencoder (VAE) [125], we call noisy VAE.
As in a standard VAE, the VAE generator, G : Z — X C RY, takes points in the
latent space and outputs a mean in the image space, with associated covariance
¥ € R¥4 which gives a conditional distribution on X. For the noisyVAE, the
encoder takes rough reconstructions of observed data, Afy, and outputs a dis-
tribution in the latent space. For each forward model, A%, we seek to minimise
the Kullbach-Leibler (KL) divergence between the generated distribution, with
A" applied, and the measured data, observed under A*. The KL divergence is
considered in the measurement space, ). This gives a powerful and flexible for-
mulation and we will demonstrate its ability to learn characteristics of the desired
image distribution from only observed data.

We will also demonstrate the ability of these learned generative models to act as
a generative regulariser. We then go on to test these generative models as priors
to inverse problems and consider both inverse problems that match the forward
model used to create the training set and inverse problems independent from the
training set.

6.1.1 Contributions

e We propose a training loss for a noisyVAE, which learns from a training
dataset containing only observed data, in space ), and the related forward
model. The noisyVAE generates images in the image space X.

e We demonstrate effective training of the noisyVAE on two hand-built el-
lipses datasets.

e We perform an ablation study looking at a second additional reparameter-
isation step used to calculate the noisyVAE loss in the domain ).

e We demonstrate that the VAE is effective in providing regularisation for in-
verse problem reconstruction. We consider the inverse problems of denois-
ing, deconvolution and PET and first compare against other VAE models
including standard VAEs trained on ground truth data or rough reconstruc-
tions of ground truth data. We compare against the generative regulariser
approach of [26] and against unlearned TV, Tikhonov and maximum like-
lihood expectation minimisation.

e A brief literature review provides context for our work and we then set out
clear avenues for future work.
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6.2 Method

Standard VAE derivation Consider a standard VAE model, as discussed in
chapters [3] and [5] and consider that for any point z € Z, in the latent space,
the network outputs a conditional distribution on the image space, X, given by
pex(-2z;0) = N(x;Go(z), Xe(2)) given by or (3.22). The VAE is trained by
minimising an upper bound on the KL divergence between the generated, pg s,
and data distribution, which is equivalent to maximising E,-,x logpgx(z;0),
with respect to the neural network parameters 6.

In order to obtain pe »(z; ) from the conditionally generator pe s (z|2), equation
integrates our the latent vector, z. However, this is intractable, except by
expensive sampling and instead the intractable distribution over the latent space,
pa.n(z|x; ) is approximated by an encoder ¢(z|z; 1) = N (z; uy(x), diag(o7, () =:
N:.(2) with mean and variance given by neural networks p, and ¢j. Following
the derivation in chapter [3, we maximise a lower bound to the KL divergence
given by

log pGZ(ﬁ 0) > Ez~q(z|z;w) [10g pG,E(x|Z5 9)] —dgr(q(z|lz; ) ||lpz) (6.1)

After incorporating the Gaussian distribution choices for p and ¢, training a VAE
becomes a minimisation of

1
Ervrs (B, (I8(0E0(2)) + 3l = GalodRyio ) + dicelWosllpz)| (62

with respect to b and 6. Note that the KL divergence is taken over the latent
space Z. The expectation over x ~ p3 is approximated empirically over the
training dataset. Similarly, the expectation over z ~ N, , is estimated empirically
although this must be done carefully because we wish to optimise over 1 and
hence take derivatives with respect to 1. The reparamaterisation trick writes
z = py(x) + € - diag(oy(x)) where € ~ N(0,1). It is straightforward to sample
from a standard normal distribution, and in practice, only one sample is taken
to approximate the expectation.

NoisyVAE Consider now that we do not have samples x ~ p% but instead
only have samples {y’, A'},_, ., from a distribution py a. Thus we have both
the observed data and the forward model used to make the observation, i.e.
Alxt =~ o for z* € X. We also assume the existence of some pseudo-inverse to
Al given by A" 1 Y — X. For a pictorial representation of the noisyVAE, see
figure [6-1] As above, set pe s (x|2;0) = N'(2;Gy(z), So(z)). We consider that the
posterior of the observed data given latent vector z is

Posialylz A,0) = / p(yl, = Apes (]2 0)da (6.3)
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/ (y|z; A)pas(z|z; 0)dx (6.4)
= Eonpe s (2] =0)P(y] 73 A). (6.5)

We consider the objective of a VAE is to minimise the KL divergence, in the mea-
surement space ), between the distribution of generated data, under a forward
model A, and the training data distribution, conditioned on the same forward
model.

meinEAd(Py‘A,quA) (66)

where both are distributions over ). The expectation over A allows for informa-
tion from multiple forward models to be combined.

We take ¢(z|y; ¥) = N (z; py(Aly), diag(o3(ATy))) =: Nayw(z). Hence, for the
encoder, we first calculate a rough reconstruction of the measured data before
using neural networks p,, and oy, to encode a distribution in the latent space.
This allows us to use the same architectures for the encoder as the standard VAE
and we will discuss this choice further in the chapter conclusion.

Hence, by replacing = with y in (6.1]), and using (/6.5 we consider the maximisa-

tion of an objective:

1ngG,E(y|A; 0) Z Ey,A (EzNNy@ 1Og [EINN(x ;Go(2),29(2 ( (yll‘ A))} - dKL (NA,y,¢||pZ)>
(6.7)

> IE:y,A (Ezw v [ExNN(x;Gg(z),Zg(z)) (1ng<y|x7 A))] - dKL (NA(wﬂl} ‘)|pZ))
6.8

where we have ignored terms independent of ¢ and 6. Note that the KL diver-
gence term is in the latent space Z as before.

The hope is that we can use the same re-parameterisation trick to calculate
the expectation over z as we do over z. Thus for the expectation over z set
z = py(z) + € - diag(oy(x) and instead take empirical samples of € ~ N(0,I).
Again the expected value can now be calculated empirically, taking samples of
v~ N(0,I). This is a standard variational inference strategy.

Example 1: Inverse Problem with Gaussian noise and Y4(z) = p*I For
a simple example where the inverse problem noise model is additive Gaussian
noise and the generated distribution has a spherical noise model, take:

e p(y|z, A) = N(y; Az, ~+*I) where 7 is a fixed constant. Thus log p(y|z, A) =

_ [Az—y|i3

52+ terms independent of x and z.
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AGy(2)

Figure 6-1: Pictorial representation of a noisyVAE. Observed data is roughly
reconstructed, using Af, before encoding to a mean and variance in the latent
space. A sample from the resulting distribution is passed to the generator, which
outputs an image in the space X. The first part of the noisyVAE objective
measures the loss between the original measured data, and the output of the
forward model applied to the generated image, given by the dotted line labelled
‘Loss’ in the diagram.

e 3y(z) = p?I so that pgx(z;0) = N(x;Gy(2), p*I) and x ~ N (x; Gy(z), p*I)
if z ~ Gy(27) + pv* and vF ~ N(0,1).

We thus have that maximising becomes a minimisation of:

E,.(E E 142 = YIENT 4 g, 6.9
y, A 2Ny z~N(x;Gg(2),021) 272 + KL( A,y,w“pZ) ( : )

with respect to 1, € and p. Using the reparameterisation trick we find that
can be estimated

N J K . . . . .
Al ]’ k:7 z’ Az, 0, 02
7 J k

where 2(e, ¥, 4, A%, 0,) = Gol(29)+pr*, 29 = iy (A i) 4 el (ATy) and ¥, & ~
N(0,I) and J and K are the number of samples, usually some small positive
integer.

Example 2: Inverse Problem with Poisson noise and ¥(z) = p?°I For
the case where measured data is an instance of a Poisson distribution with mean
given by Az and the generated distribution has a spherical Gaussian noise model,
take:
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p(y|lz, A) = Po(y; Axz). We choose that

lo x,A) = (Az —y); +y 1o ( ) 6.11

gp(yl ; )t wlog | o (6.11)

up to constant terms independent of . Note that this is defined only for
(Az); > 0,V and that y; > 0,VI due to the data being measured counts.

o Yy(2) = p*I sothat pgx(x;0) = N(z;Ge(2), p*I) and z ~ N (z; Gy (2), p*I),
if z ~ Gy(27) + pv* and vF ~ N(0,1).

We thus have that maximising becomes a minimisation of:

Eya (Ez~ v | BanN(@:Go(2),021) <Z<Ax ~ Yt uilog ((A:E)z)>]

1=1
with respect to ¢, # and p. Using the reparameterisation trick we find that (6.12)
is equivalent to

tdis (NA,y,¢\|pz>) (6.12)

N

J K m {
Al F i A i i . yl, :
Z;;Z( x(e VLY, ,9,1/1)) Y )H-yl 0og ((Azx<€j’Vk’yz’A27€7w>)l>

% =1

+dgr, (NAi7yi’¢|’pZ) (613)

Where {E(Ej, Vka yia Aia 0, ¢) = G@(Zj)+pyk7 Zj = M¢(A1Tyl)+€]0-(AZTyl) and Vk7 Ej ~
N(0,1).

Priors to inverse problems With this generative model as a prior, we can
derive a generative regulariser using Bayes’ formula. As above, consider an ob-
served noise model, p(y|z; A), the likelihood of the observation y, given data x
and with a forward model, A, where A could be the from the same distribution
as used to train the generative model but need not be. Take the prior on Z to
be given by p(z) = N(z;0,I). With our learned noisyVAE, pg s, we have the
posterior of the reconstructed image given the observed data given by:

p(, 2y) o< p(ylz, 2) pa.s(z]2) p2(2) (6.14)
= p(ylr) pas(x]2) pz(2). (6.15)

A MAP estimate for  can be found by minimising the following objective with
respect to x and z

1 1
log p(s1; A) +log(|2o())) + 5 e = Gol2) By + 51213 (6.16)
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Compared to a variational regularisation framework, e.g. equation ({2.4)), we can
treat the final three terms of (6.16)) as a regularisation function.

We recognise that is only an estimate for the MAP, as we should inte-
grate out z in ([6.15]), before maximising over z. Currently integrating over z is
intractable, except by expensive sampling. Note also that the prior on z here
should really be the amalgamated posterior over z after training, i.e. pgx(x|2)
should be pg (|2, {yi,Ai }izl )+ It is dependent on the data and training. We
instead use the A (0, I) prior used in training because we have easy access to it.

6.3 NoisyVAE Training and Evaluation

6.3.1 Datasets

We test on three datasets. The first two are custom-built datasets of ellipses,
called single ellipse and ellipses. In the single ellipse dataset there is just one
ellipse on a black background with a solid fill of intensity drawn from a uniform
distribution between 0 and 1. In the ellipses dataset, there are three ellipses
in each image. Each ellipse is added onto a black background with an intensity
drawn from a uniform between 0.16 and 0.33. Their centres, major and minor
axis and rotation angle are also chosen from a uniform distribution. Both datasets
have image size 128 x 128 and have 5000 and 10000 training examples for the
single ellipse and ellipses datasets, respectively. Example images are given in the
first column of figures and for ellipses and single ellipse, respectively. In
addition, we use a set of positron emission tomography images based on 20 brain
MRI phantoms obtained from BrainWeb [50, 47]. Each phantom is segmented
into grey matter, white matter and skin and are then assigned a constant intensity
reflecting an expected PET radiotracer, 18F-FDG uptake. The constant uptake
in the regions has been modelled as 1, 0.25 and 0.125, respectively. We extract
665 2D slices from 19 3D brain scans and reserve one scan, of 35 images for
testing. Each slice is cropped to the centre 128x128 pixels. Two example images
are given in figure [6-3

6.3.2 Forward models
Denoising For denoising experiments, we take A = [ and consider additive
Gaussian noise. Note that X = Y = RY. We don’t use a rough reconstruction

method and instead take AT = I.
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Deconvolution We consider a Gaussian blur with convolution kernel K € RF*F

given by
K; j(a) < exp (—(Z Dl 5)2) (6.17)

)

which is then normalised by the sum of all the entries of the kernel. The measured
data is a result of a convolution with this kernel, with zero padding, to ensure
that X = Y = R"*9%_  We fix k = 40 and allow « to vary. The larger the value
of o the more blurred the image. We take 50 iterations of the TV reconstruction
algorithm as a rough reconstruction. The regularisation parameter was chosen
for the rough reconstruction by visual inspection.

Positron Emission Tomography The goal of PET imaging is to reconstruct
the concentration of a radioactive tracer from measurements along line integrals.
We estimate a PET 2D forward problem with the following elements:

e The Radon transform, denoted S. We choose a parallel beam geometry and
choose the detector shape and number of measured angles to ensure that

this is injective. The tomographic modelling is done via the open-source
package ODL [1].

e Factors, F', a combination of attenuation from the simulated CT and nor-
malisation factors.

e Background, b, consisting of random observations, which are modelled as
spatially constant, and scatter of which magnitude varies smoothly across
the domain, resembling the shape of the X-ray transform of the ground
truth.

e A scaling factor [, which determines the number of counts observed. We
vary the noise level between 100,000-1,000,000 counts, the higher the count
the ‘easier’ the problem, with another 100,000 counts contributing to the
background.

See figure for example values for each of these parts. Thus for ground truth
image, x, we observe data, y, as an instance of Poisson noise with mean SFSx+b.
We consider that for observed data, y, the components of the forward model,
F, S, p and b, are known. In PET reconstruction, these values are usually
pre-computed (for example see [67]). It might be an interesting future research
direction to use machine learning or generative model approaches to predict these
quantities from observed data.

We use a maximum likelihood expectation minimisation (MLEM) method to
give a rough reconstruction for the PET forward problem [202, [135]. MLEM is
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defined by the following iterative updates, where all operations are completed
element-wise:

g By (Y (6.18)
AT1 Azk 4+ b

In each update, the current estimate of the image is forward projected using the
weighted sinogram, and the background is added. This is then compared to the
measured data to obtain a ratio of correction factors. These factors are then
back projected using the adjoint of the forward operator, and normalised by the
adjoint applied to an image of constant magnitude one. The result of this is
then used to correct the current estimate. We use 50 updates to provide a rough
reconstruction. Example MLEM reconstructions are given in figure [6-3

6.3.3 Models and Training

NoisyVAE Objective We consider the proposed noisyVAEs with Xy = p?I,
where p is a learnable parameter. For the single ellipse and ellipses datasets, we
consider denoising and deconvolution inverse problems with Gaussian noise. For
the PET dataset we consider a simulated PET forward problem. We minimise
a slight variation of the objective given in (6.13) or (6.10) for measurements
observed with Poisson or Gaussian noise, respectively. We include a factor in
front of the KL term, which is tuned as a hyperparameter. This is similar to a
B-VAE [100]. This extra parameter encompasses the noise level in the data, -,

in (E10)

Comparisons In this work, we train three different types of VAEs. The first is
a standard VAE [125], trained on ground truth images (VAE-GT). With a dataset
of observations and the forward model that produced the observations, it is pos-
sible to use existing methods to reconstruct image data. The second comparison
method, VAE-TV, trains a standard VAE on TV reconstructed images.

Architectures All the VAE networks are built of a combination of three types
of resnet-style blocks: up-sampling, down-sampling or identity. Each block con-
sists of a convolutional layer with stride 1, a resizing layer, followed by two more
convolutional layers, and then a ReLLU activation function. The output of this
process is then added to a resized version of the original input to the block. The
resizing layer is either a bilinear interpolation for an up-sampling block, increasing
width and height by a factor of 2; convolutions with stride 2 for a down-sampling
block or a convolution with stride 1 for an identity block. We choose a latent
space of size 20, 100 and 100 for the single ellipse, ellipses and PET datasets,
respectively. The generative network consists of a single dense layer outputting
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(b) Sinogram, Sz

1.0 1.0
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(¢) The support of the ground truth image (d) Factors, I, where attenuation is mod-
elled from the forward projection, S ap-
plied to the support of the ground truth
image.
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(e) Background, b, modelled as a gaussian  (f) Observed data, Po(BF Sz + b).
blur, with reflective boundary conditions,
of the support of the sinogram data Sz.

Figure 6-2: Example PET forward problem - 500,000 counts.
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(a) Ground truth image, = (b) MLEM reconstruction - 1,000,000
counts
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(¢) Ground truth image, (d) MLEM reconstruction - 500,000
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Figure 6-3: Example PET MLEM reconstructions.
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8x8 images with 16 channels before a resnet block without resizing to give 8x8
images with 256 channels, then four up-sampling blocks are applied giving image
sizes 16x16, 32x32, 64x64 and 128x128 with channels 512, 256, 128 and 64 and
finally another resnet block without resizing to reduce the channels down to one
output image.

Training Models were built and trained in TensorFlow using an NVIDIA RTX
2080 - 8GB GPU. After calculating rough reconstructions over the dataset, train-
ing the noisyVAEs took approximately 24 hours on single ellipse and ellipse and
13 hours on the PET dataset, due to its smaller size.

Generation examples For an example of how a noisyVAE has learned from
data with added Gaussian noise, see figures and [6-5] These plots show images
from the test set and for each test image, x, we have used gradient descent with
a random initialisation to output G(argmin, ||G(z) — x||3). Linking to criteria
A in chapter [d] we would hope that our learned generators can reconstruct all
possible images in the test dataset. We can see that the noisyVAE has achieved
very good results for the ellipses dataset in figure [6-4 obtaining better PSNR
values than the results trained on the ground truth data (VAE-GT) and TV
reconstructions (VAE-TV), even managing to reconstruct the small white triangle
indicated by the red arrow. In particular, the edges are much sharper than those
generated from VAE-TV, which has inherited the blurred ragged edge from the
rough reconstructions, see e.g. the green arrow. On the single ellipse dataset,
figure [6-5] there is even more noise in the data, and the noisyVAE has gained
some added texture in its generated images, compared to those generated by
VAE-GT. In the slice plot, in figure you can see that the VAE-TV has lost
both sharp boundaries, at the base and top of the ‘hat’ shape, giving the purple
smoothed line. VAE-GT has managed both sharp boundaries while the noisyVAE
has managed the sharp boundaries at the bottom, correctly learning the black
background, but has added texture in the middle of the ellipse.

One has to be careful when making conclusions from these plots. As discussed
in chapter [4] a failure to reconstruct a test image could be a failure to find a
suitable point in the latent space to map to a test image and does not necessarily
mean a test image is not in the range of the generator The encoder and latent
spaces for each of these generators were trained independently and, due to the
stochastic nature of training, one could be more or less suitable for this type of
reconstruction. However, the noisyVAE can learn something from some quite
degraded data.

Ablation study - reparamaterisation step Figure compares a VAE
trained on ground truth ellipses data, with a VAE-TV and three noisyVAEs
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VAE - GT  VAE - GT

Noisy Data noisyVAE
33.187 g

noisyVAE TV Data
32.97

VAE - TV VAE - TV
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32.886

33.92 31.74
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30.443 33.51 29.42
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Figure 6-4: The first column gives ellipses from the test dataset we wish to
reconstruct. The second column gives the result of G(argmin, ||G(z) — z||3),
where G is a VAE trained on ground truth data. The third column gives the
error. The next three columns demonstrate the data the noisyVAE was trained
on (0.6 added noise), and the attempt to reconstruct the ground truth. The final
three columns give the TV reconstructions of the noisy data used to train the
VAE-TV and the ground truth data reconstructions.
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(a) The first column gives an ellipse from the test dataset we wish to reconstruct. The
second column gives the result of G(argmin, |G(z) — z||3), where G is a VAE trained

on ground truth data. The third column gives the error.

The next three columns

demonstrate the data the noisyVAE was trained on (0.6 added noise), and the attempt
to reconstruct the ground truth. The final three columns give the TV reconstructions
of the noisy data used to train the VAE-TV and the ground truth data reconstructions.
The slice along the red line of the final column is plotted in figure
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(b) Image slices along the red lines in figure
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—— noisyVAE
0 20 40 60 80 100 120

Figure 6-5: Testing the ability of the generative models to reconstruct examples
from the single ellipse test dataset.
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trained with data obtained with a convolution forward operator (o = 5) and 0.1
standard deviation added noise. The plot has two key messages. The first is that
we can learn a noisyVAE from observed data from an ill-posed inverse problem
such as deconvolution. As shown by the green arrow, the generated images from
the noisyVAEs have undesired learned texture, and all generative models have
failed to get the point indicated by the red arrow, however, there are three ellipses
in all the noisyVAE reconstructions.

The noisy VAEs were trained using a second reparameterisation step, in the image
space. Recall, in , the expectation E,n(2;q,(2),5(2)) 18 calculated empirically
and we now investigate the number of samples required for this estimation. There-
fore, the second point of this plot, is that, in practice, we don’t see any effect of
changing the number of samples we take at this step. In all other experiments in

this chapter, we take just one sample (K=1 in (6.13]) and (6.10])).

6.4 Numerical Results - Inverse Problems

6.4.1 Reconstruction Methods

We test our proposed noisyVAE on its effectiveness as a prior for use in inverse
problems. We use the variational regularisation framework given in . For the
data-discrepancy term, D, we use the 2-norm for the denoising and deconvolution
inverse problem, and then the KL loss in for the PET inverse problem.
For the regularisation term, R, we consider a soft restriction to the range of the

generator, inspired by (6.16])
- 1
R(w) = min A (|G (z) = 2l + S11213) (6.19)

The addition of the two regularisation parameters A and p is in recognition that
this is a non-convex problem and that our modelling assumptions are imperfect,
for example, the prior on Z may not match the posterior after VAE training.

We compare to restricting solutions to be in the range of a VAE, a method
introduced by [26], giving regulariser

R(x) = min A (L((;(z) — )+ guzug) . (6.20)

z

For the range approach we use gradient descent with backtracking, see algo-
rithm [1], initialised at a point in the latent space sampled from a standard nor-
mal distribution. For the soft approach, we use alternating gradient descent with
backtracking line search, see algorithm [2] where gradient descent steps are taken,
alternating in the x and z space. For the ellipses and single ellipse datasets, to
initialise we first run the range approach, to find a suitable point in the latent
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noisyVAE - 1 noisyVAE - 5 noisyVAE - 10

Figure 6-6: Plots to show the affect of the reparameterisation step in ; taking
different numbers of samples to approximate E,n(x:G,(2),5(z)) - Lhe first column
gives ellipses from the test dataset we wish to reconstruct. The second column
gives the result of G(arg min, ||G(z) — z||3), where G is a VAE trained on ground
truth data. This is restricting to the range of the generative model. The third
and fourth column gives examples of rough reconstructions used to train VAE-TV
and the results of reconstructing the noise-free test images using VAE-TV. The
fifth column gives the noise data used to train the noisyVAEs and the last three
columns give the reconstruction results for noisyVAES trained with 1, 5 and 10
samples for the parametrisation step.
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space that matches the data to initialise zg, and initialise zo = G(z) up to a
small perturbation. For the PET dataset and forward problem, we initialise by
running 50 iterations of MLEM and then use this rough reconstruction and an
encoding of the rough reconstructions to initialise x and z, respectively. Addi-
tionally, PET images are restricted to be positive and so the gradient descent
steps in x in algorithms [I| and [2| are followed by a projection onto the set of
positive pixel values.

We compare these reconstructions to range and soft results obtained from VAEs
trained on ground truth data (VAE-GT) and TV reconstructed data (VAE-TV).
We will also compare against unlearned Tikhonov and TV reconstructions and,
for PET, an MLEM approach. Regularisation parameters, and the iteration
number for MLEM, were selected via a grid search to maximise the peak signal—
to—noise ratio (PSNR) for each image, demonstrating best achievable results.

For rough timings, for one set of regularisation parameters and the denoising
inverse problem, the soft method took on the order of 1-2 seconds for the ellipses
and single ellipse dataset and a similar amount of time for the PET inverse
problem on the PET dataset. TV denoising in comparison took between 1 and 2
minutes for the single ellipse and ellipses datasets and MLEM took on the order
of 1-2 seconds.

6.4.2 Denoising

Single ellipse dataset We first consider denoising with a range of different
noise levels. We use a noisy VAE trained on observations with 0.6 added noise for
the single ellipse dataset. The VAE-TV model is trained on TV reconstructions
from the same noisy datasets and VAE-GT is trained on clean data. Example
reconstructed images for the single ellipse are given in figure and figure
shows mean and standard deviation PSNR results. The left plot of figure
[7 shows that the proposed generative regularisers do better than unlearned TV
reconstruction for the mid-range noise levels. Indeed we can see in figure[6-8|, that
in the third row, while the TV reconstruction still has blob-like artefacts, all three
generators produce good reconstructions. The right plot, of figure [6-7 compares
the generators trained on the different types of data and notes that the VAE-GT
and noisy VAE seem to perform better than VAE-TV for all but the highest noise
levels. We anticipate that this is due to some blurring around the edges of the
VAE-TV reconstructions. Figure[6-8 shows that in the very high noise cases, the
standard VAE-GT struggles to find a point in the latent space to match the data,
whereas the VAEs trained on noisy data, seem to perform visually better. We
highlight the noise case that was seen in training for the VAE-TV and noisy VAE,
in red in figure and with a vertical grey line in figure and note that there
is no clear change in the behaviour of the regulariser around this point.
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Figure 6-7: Reconstruction results for denoising on the single ellipse dataset. The
x-axis gives amounts of added noise and reconstruction quality is assessed using
PSNR. The bold lines denote the mean, and the shaded areas standard deviation
of the soft approach, taken over 10 test images. The vertical grey line gives the
noise level in the data used to train VAE-TV and VAE-GT.

Range Soft Range Soft Range Soft
GT Tikhonov TV VAE - GT  VAE - GT VAE - TV VAE - TV noisyVAE noisyVAE
] 14.71 16.88

0.15

0.0375

Noise

Figure 6-8: Reconstruction results for denoising on the single ellipse dataset.
The rows give different amounts of added noise in the data. The columns give
the ground truth image, the observed data, Tikhonov and TV reconstructions,
reconstructions from a VAE trained on ground truth data, reconstructions from
a VAE trained on TV reconstructed data and then the reconstructions from the
proposed noisyVAE. The red boxes highlight the amount of noise in the data
used to train VAE-TV and noisyVAE.
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Figure 6-9: Reconstruction results for denoising on the ellipses dataset. The
x-axis gives amounts of added noise and reconstruction quality is assessed using
PSNR. The bold lines denote the mean, and the shaded areas standard deviation
of the soft approach, taken over 10 test images. The grey line gives the noise
level in the data used to train VAE-TV and VAE-GT.

Ellipses dataset We consider a noisyVAE trained on observations of the el-
lipses dataset with 0.3 added noise. The VAE-TV model is trained on TV recon-
structions from the same noisy datasets and again VAE-GT is trained on clean
data. We then test their use as generative regularisers for the denoising inverse
problem, for a range of noise levels. On the left of figure [6-9, you see again
generative regularisers outperforming TV in the mid-range noise levels. On the
right, you see that the generators trained on the different types of data behave
very similarly and there doesn’t seem to be a significant penalty when training
with noisy data. Example images are given in figure [6-10] where you can see that,
even with 0.6 added noise, a high noise case, the soft approach for the noisyVAE
manages to reconstruct three ellipses and the green arrow indicates where it has
managed to reconstruct a small overlapping triangle, where none of the other
methods succeeded. The red arrow indicates where the noisyVAE has also man-
aged to reconstruct a sharp outline successfully. Again the red box in figure [6-10
and the grey line in figure indicate the noise level in the training data seen
by the noisyVAE and VAE-TV but again there seems no indication of this point
in the data.

Out of distribution testing on ellipses dataset Like the previous para-
graph, consider a noisyVAE trained on observations of the ellipses dataset with
0.3 added noise. The VAE-TV model is trained on TV reconstructions from the
same noisy datasets and again VAE-GT is trained on clean data.

We consider testing these learned generators on a dataset with a different range of
ellipse sizes and shapes than those that produced the training data. In training,
the ellipse axes were of length between 64-90 and 40-90 pixels and centred with
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Figure 6-10: Reconstruction results for denoising on the ellipses dataset. The
figure is set up as in figure

(x,y) coordinates taken between 40-90. For testing, we take ellipses with each
axis between 40-80 and 13-40, centred with coordinates taken between 32-96. So
the test ellipses are thinner and can be located in different places in the image.
An example image is given in the ground truth of figure[6-8 The best example of
the success of the generative regularisers, is the 4th row, with 0.15 noise, where
the TV reconstruction has attempted to fill the area between the ellipse, but
VAE models have better separation. In addition, as shown by the red arrow, the
noisyVAE has some indication of the overlap, which is not seen in any of the
other reconstructions.

In the high noise cases, all models struggle to reconstruct, although the VAE
models attempt to fit ellipses, giving images with sharp boundaries and clear black
backgrounds, for example, see the green arrow. If this were a medical imaging
scenario, then further research into uncertainty quantification would be necessary.
One avenue of research could consider looking at the latent space distribution.
One might imagine that, for ground truth, x, not seen during training, the latent
vector, z, required to ensure G(z) = z, could be far from the distribution over
z used in training. Note, however, that this posterior distribution in z may not
necessarily be the standard normal prior distribution.

PSNR results for this out-of-distribution test are given in figure [6-11] This is very
similar to the results for the in-distribution test, figure [6-9, which suggests that
these generative regularisers can generalise to this small shift in distribution.
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Figure 6-11: Reconstruction results for denoising on out of distribution ellipses
dataset. The x-axis gives amounts of added noise and reconstruction quality is
assessed using PSNR. The bold lines denote the mean, and the shaded areas
standard deviation of the soft approach, taken over 10 test images.
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Figure 6-12: Reconstruction results for denoising on the out of distribution el-
lipses dataset. The figure is set up as in figure [6-§|
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Figure 6-13: Reconstruction results for deconvolution on the ellipses dataset, for
different scaling factors « in (see (6.17))).The plots show the reconstruction error.
In the columns we show the ground truth image, the observed data, a Tikhonov
and TV reconstruction, then a VAE trained on ground truth data for both the
range and soft methods and finally the soft method for a noisyVAE trained on
observed data from a deconvolution inverse problem (o = 3, 0.1 added noise) and
a noisy VAE trained on noisy data (0.6 added noise).

6.4.3 Deconvolution

Single FEllipse Dataset In figure we demonstrate the success of two
noisyVAEs on the deconvolution inverse problems. One model was trained on
single ellipse denoising data with 0.6 added noise and the other was trained on
Gaussian blurred data with 0.1 added noise and o = 3. Each is applied as a
regulariser for a convolution inverse problem, with varying scaling o in (6.17]).
The plot shows the reconstruction error and for this particular example, the soft
approaches for all the VAEs behave similarly. The noisyVAE trained on the
denoising problem has the most blob-like artefacts inside the ellipse, suggesting
the model had more flexibility to overfit to the noise in the data, but produced
good visual results. We have demonstrated how the noisyVAE is flexible to be
applied as a generative regulariser for forward models not seen during training.
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6.4.4 PET
In this final paragraph, we give preliminary results for PET reconstructions.

Two PET reconstruction examples are given in figure [6-14. We test two noisy-
VAEs, one trained on 500,000 counts and the other on 1,000,000 counts, against
a VAE trained on ground truth data and compare against Tikhonov and MLEM
reconstructed images.

We can see that the soft approach for VAE-GT and noisy VAEs gives similar visual
results to the MLEM iterations. However, it is clear from the range images that
the generator is producing overly smoothed images without some of the detail
seen in the ground truth images. The architecture is the same for all the VAE
models and the current choice may just not be suited to the data.

6.5 Related Work

Deep Learning applied to inverse problems is a fast-growing field. See |16] or [168]
for a review. Successful end-to-end approaches, such as 3] or [93], require large
amounts of paired training data, and even unsupervised approaches, such as [26,
110}, |146], require large amounts of high-quality ground truth data. As discussed,
this data requirement can be challenging. If some data exists, there has been
some previous work on using data augmentation to make the most of limited
data [70, [120]. This can be challenging for inverse problems, as augmenting the
image data also requires updating the corresponding measurement. In the case of
no data at all, one can’t pre-train a network. Instead, deep inverse priors [219],
for example, train a convolutional neural network to output the solution to an
inverse problem in response to measured data, using the network to implicitly
regularise the solution. Similarly, CryoGANSs take input projected measurements
of the unknown object and use a discriminator to train a generator to output a
reconstruction [89].

There are a variety of deep learning models for inverse problems that aim to de-
noise or remove artefacts and are trained without ground truth data. Noise2Noise [137]
learns to denoise from a dataset consisting of two separate noise instances for each
unknown ground truth and the methods. This is often not a realistic scenario
and instead, Noise2Void[131] and Noise2Self[19] consider training from just one
noise instance of each unknown but aren’t able to handle correlated noise. Stein’s
Unbiased Risk Estimation provides another method for denoising without ground
truth [207, 154]. The work of [43] applies Stein’s Unbiased Risk Estimation to
an ill-posed inverse problem, with a non-trivial forward operator, incorporating
additional information in the form of image equivariances. Denoisers trained
without ground truth can be used as part of iterative reconstruction schemes e.g.
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Figure 6-14: Two PET reconstruction examples. The background gives the loss
and the zoomed-in region an indication of the reconstructed image. PSNR results

are given in the top left-hand corner.
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[245], plug and play methods (for a review see [7]) or as regularisers [143]. The
Noise2Inverse method [98] deals with a non-trivial forward operator and learns
to remove the effects of added noise in the observation domain, training without
ground truth, however, is not designed to deal with ill-posedness or remove arte-
facts caused by the forward operator. The approach of [231] considers compressed
sensing MRI and performs cross-validation using subsets of k-space data to learn
a clean reconstruction from partial k-space observations.

In terms of learning generative models from observed data, ambient GAN[27] as-
sumes the forward model and noise type is known. They learn generator from
the latent to image space Gy : Z — X, and treat this as a generator producing
outputs on the observed data space Ao Gy : Z — ). They train this generator
by learning a discriminator Dy : Y — R, acting in the observation space that
differentiates between genuine observed data and observations of the results of
the generator. They use the standard Wasserstein GAN loss (3.8). Several pa-
pers follow from this, using similar ideas. For example, MisGAN [142] focuses on
inpainting but where the masks for producing the observed data are unknown.
They learn a generator for both the images and the masks and also two discrimi-
nators: one acting on the masked images and another on the masks. Noise robust
GANSs [118] consider learning a generator from noisy data, where the noise model
may be unknown and may be dependent on the image, learning a generator for
both the image and the noise. A later paper [49] trains a conditional GAN, with
a generator taking MRI k-space measurements and outputting a complex MRI
image. The MRI forward problem is then applied to the image, with a random
sampling mask and a discriminator comparing real and generated k-space data.
The discriminator is being used as a tool for training an end-to-end method,
the generator. All these approaches focus on GANs, which require saddle point
optimisation and can be tricky to train and susceptible to mode collapse. For
inverse problem applications, learned generators should be able to produce the
whole range of possible image reconstructions.

One could also consider taking the AmbientGAN approach with the VAE, re-
placing the usual generator by A o Gy and choosing an encoder that maps ) to
Z. However, in the VAE derivation, this would mean that we only have control
of the distribution p(y|z) = N (y; A(Gy(2)), Xe(2)) and not of the distribution we
wish to learn, p(z|z). There are a number of benefits of learning the latter. The
first is that a distribution on p(z|z) can be incorporated directly as a prior to
the inverse problem reconstruction, in the Bayesian framework (6.16)), giving an
explainable regularisation function. The second is that we could include struc-
tured noise models, in the form of chapter 5| Finally, the third is that it is very
flexible in combining different forward models and scenarios. For example, for an
inverse problem scenario where different forward models produce measurements
with different dimensions, such as inpainting with different image masks, forc-
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ing the same noise model onto each measurement space might not make sense.
Instead, by determining the noise model we are fitting, in the image space, the
forward operator is free to vary, and information from different sources can be
combined.

There has been previous work in incorporating generators as part of regularisers
for inverse problems, for example |26} 57, (90, 218| |64]). These all took a two-
step approach to solve inverse problems: first training a generator on ground
truth data and then using the generator to regularise an inverse problem. Any
generator could plug into this framework, including one trained on noisy partial
measurements.

6.6 Conclusions

In this work, we have introduced a noisyVAE, a variation on the VAE objective
that learns a generator outputting images, from observed data and the forward
model that produces the observations. This is designed to deal with the case
where high-quality or ground-truth images are not available.

We demonstrated the generation ability of noisyVAEs learned from noisy and
convolved data and demonstrated their ability to reconstruct example ground
truth images from a test dataset of ellipses. We were able to show that these
learned generators were effective as generative regularisers for inverse problems

both seen (figures and and unseen (figure [6-13]) during training and
flexible enough to deal with a small shift in test image distribution (figure |6-12)).

The noisy VAE framework is flexible to different noise models in the observed data,
including Poisson noise for PET imaging. Preliminary results show that learning
a VAE from PET data is possible, but further work is required to improve the
detail in the generated images and thus provide a more effective inverse problem
prior.

6.7 Future Work

Numerical experiments and evaluation There are more numerical experi-
ments and evaluation methods that we wish to investigate.

The flexibility of the set-up in is that we could incorporate information
from a variety of sources together, making use of the option of different forward
models. For example, information could be obtained from different MRI scanners,
with different sensitivities. We could also envision cases where there are a few
high-quality reconstructions available, where the forward model is the identity,
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alongside measured data, with non-trivial forward operators. Future work could
investigate scenarios like this.

This chapter wished to address cases where ground truth or high-quality recon-
structed data is difficult or expensive to obtain. The models that we train require
just observed data and the corresponding forward model, removing the need for
ground truth data. However, even measured data can be difficult to obtain, and
it would be interesting to run experiments changing the amount of data used
to train the generators and investigating the resulting properties of the learned
generators.

Finally, the PET experiments given in this paper were preliminary and, as dis-
cussed, with a systematic architecture search, we would expect to get better
results from all VAE models. In addition, we simulated PET data from ground
truth images that were themselves simulated from MRI phantoms. To bring
these experiments closer to reality, an obvious next set is to find suitable real-
world datasets. PET scans are usually three-dimensional and this would be an
interesting challenge for our generative models. Another useful qualitative ex-
periment would be to test the ability of the generative regularisers to reconstruct
abnormal lesions, not seen in the training data.

Extending noisyVAEs In the current formulation, we utilise a rough recon-
struction to transform the observed data from the measurement space to the
image space. For different forward models, this rough reconstruction could vary.
We then consider just one encoder that takes these rough reconstructions as
inputs in the image space and outputs a latent vector encoding. When data
is gathered from a variety of sources (forward models), it may be beneficial to
train a separate encoder for each forward model. For example, for a convolution
forward problem, with different levels of blurring, the rough reconstruction may
have different noise statistics and reconstruction artefacts and asking one encoder
to deal with all cases may not be optimal. Future work could also consider the
encoder(s) taking measurement data as an input. We choose encoders acting
on the image space because architectures acting on images, such as CNNs, are
reasonably well understood. If we were to define an encoder going from the mea-
surement space, it could be that different architectures are more suitable. For
example, if the forward model measures a physical quantity at a set of points in
a domain, then those points may not be uniformly spaced and so one might want
to consider architectures that could take into account the physical locations of
the sensors.

Finally, allowing Y4(z) to be non-trivial could allow greater flexibility of our
models and a more effective prior, as seen in chapter As discussed in [3], in
order to parametrise a dense 34(z) in a computationally efficient way, we param-
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eterised a sparse Cholesky decomposition of the precision matrix, Ly(z)Lg(2)T =
¥, (2). In the noisyVAE objective , Y9(z) only appears in the expecta-
tion Eqon(a:G,(2),50())- Note that sampling from Pgx(x|2) is possible through
x = Go(2) + (Lo(2)")'u where u ~ N(0,I) and as Lg(z) is lower triangular
this should be computationally efficient. However, consider that in chapter [5 we
were concerned about the diagonals of Ly(z) becoming infinite, and thus capped
the values of the diagonal, in we are more likely to be concerned about
Ly(z) collapsing to zero and thus the discussions in section on priors will be
important.
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Chapter 7

Conclusions and Future Work

In this final chapter, we return to the four challenge areas identified in the intro-
duction and also consider interesting directions for future work.

7.1 Summary

Returning to the challenge areas identified in the introduction, we summarise
both the work presented in this thesis and our contributions to the challenge
areas.

Data and training requirements The requirement for large amounts of high-
quality paired training data needed for supervised learning can be punitive in
regimes where data is expensive or impossible to obtain. In the supervised learn-
ing scenario, changes in the forward model can require re-training with new data.
In chapter 4] and chapter [5| we focus on the case where we have a large amount
of high-quality reconstructed images or ground truth images. We train inde-
pendently of the forward operator and don’t require paired training data. This
means that the model remains flexible to changes in the forward model, for ex-
ample changing the MRI sampling pattern in chapter 3], and extensive retraining
is not required. A valid criticism of this approach is that we could easily create
a dataset of paired training data, in order to train in a supervised manner, using
the ground truth data and a known forward operator. In chapter [0, we consider
the case where we don’t have access to any high-quality reconstructed images and
instead have just a dataset of observed data and the forward model that relates
the two. We show that we are able to learn generative regularisers with similar
properties and behaviour as those trained on ground truth data.
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Explainability Trustworthiness is crucial for safety-critical applications, such
as medical imaging. In chapter 4, we set out a set of desired criteria in order to
evaluate generative models for use in inverse problems. We hope that these could
guide future research into generative models for inverse problems and therefore
produce better and more trustworthy generative regularisers. One benefit of using
generative models as a prior to inverse problems is that by generating from them,
one can explicitly visualise the prior it places on the inverse problem. For the
MNIST digits in chapter [4, we use generative models to reconstruct example test
images, and we can see that the VAE models can reconstruct the structure of
the digit with some blurriness. Going on to use this model as a regulariser, one
can be aware that the regulariser has a tendency to produce blurry images. In
chapter [5, we go one step further and visualise the learned dependencies between
pixels generated from a VAE with structured covariance. Thus, as well as being
able to explicitly visualise images favoured by a prior, for each pair of pixels
in that generated images, we were able to see the learned correlations between
them. Throughout, we consider generative regularisers under the framework of
variational regularisation, chapter [ and Bayesian inverse problems, chapters
and [0l Both frameworks balance information from the prior and observed data
and incorporate the physical information provided by the forward model. In
chapter 4, we visualise this trade off, showing the data discrepancy loss and
example images for a range of regularisation parameters.

Theoretical guarantees Of the four key areas, this area is the least explored in
this thesis. In chapter 2 we introduced deep learning models and discussed how
training a neural network is itself an ill-posed inverse problem. for generative
regularisers, the objective, see e.g. , is non-convex with potentially many
local minima. Theoretical guarantees are difficult. However, in chapter [ we
highlighted some areas where theoretical results exist and we have identified
potential future work in this direction.

Generalisability  Lastly, it is important to ensure that our proposed algo-
rithms and regularisers remain flexible and are able, to some extent, to be effec-
tive outside of the datasets used during training. By keeping most of the training
of our generative models unsupervised, without knowledge of the forward oper-
ator, we demonstrated in chapter [5], how the model can remain flexible to some
changes in the forward model. In chapter [ and [5] we discussed how restricting
solutions to lie exactly in the range of the generator, is limited by the quality of
the generator which is determined by the training data, the expressiveness of the
generator, and the success of the training procedure. Allowing small deviations
in the 2-norm, l-norm or TV norm (chapter or measured by some learned
weighted norm (chapter [5) allows more flexibility in the prior. In chapter |§|,
we tested models trained on data for one inverse problem applied as a genera-
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tive regulariser for a different problem. In chapters [] and [0, we also consider
out-of-distribution testing on data not seen during training.

7.2 Future Work

Generative models One of the visions of chapter 4 was to answer the question
“if a colleague sends me a generative model, how can I determine its suitability
for use in inverse problems?”. We were able to give some ‘must have’ criteria, for
example, the generative model should be able to reconstruct a range of possible
solutions to the inverse problem (Al), and it must be differentiable (B1), for
use in gradient-based optimisation schemes. These criteria are neither complete,
they might all be satisfied but a good reconstruction is not guaranteed, or math-
ematically precise enough to test definitively. Future work in formulating these
criteria would be beneficial to the field. For example, with precise criteria, we
could consider designing generative models with inverse problems in mind. For
instance, if the criteria set out that the network should be able to interpolate
between points in the latent space, with all intermediate images being realistic,
then this could be added to the loss function of a GAN, with the discriminator
assessing the intermediate images. Similarly, if it was required that the range of
the generator should be convex, then this might also be ensured by a suitable
choice of the generative model architecture.

One aspect of VAEs and GANs that we would have liked to have researched in
more detail, is the role of the latent space and, for VAEs, the encoder. In chapter
[} we consider a range of latent dimensions but found no real difference between
different choices. In chapters[pland [], for the knee MRI and brain PET images, we
kept the latent dimension relatively small at just 100 for 128 x 128 images. This
was for several reasons, the first was that it seemed to help with the structured
covariance network training. The second was that we found that the samples
taken from random points in the latent space were of better quality and it was
easier to find points in the latent space that matched test images. It is not quite so
straightforward to consider that a higher latent dimension for a VAE means less
of a network bottleneck and thus and a more expressive generator because often
the encoder and decoder networks will also have a regularising effect. Similarly,
a smaller latent dimension may still be able to produce impressive samples e.g.
if each training image was encoded and decoded from a unique scalar-valued
range, the latent dimension could be as small as one. We also mention, e.g.
in chapter [d that the prior on Z we use in the Bayesian formulation of the
generative regularisers might not be an accurate reflection of the post-
training distribution in the latent space that maps to desired images. In general,
we found that varying the regularisation parameter in front of this term had
little difference, as long as it wasn’t too large. Perhaps with a more accurate
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post-training distribution, this term would have more of an effect and we could
try larger latent dimensions.

As discussed in chapter 3], during the period of this PhD research several new gen-
erative models have emerged, including Normalising Flows and Diffusions/Score
Based generative models. They differ from the AEs, VAEs and GANs that we
have primarily focused on as their latent and generated space have equal di-
mensions, removing the low dimensional manifold assumption. With this comes
potential benefits, for example, invertible generators allow for a well-defined and
tractable probability density function over the image domain. This allows, for
example, the learned probability of an image to be used directly as a prior for
the inverse problem. However, it could also come with potential drawbacks, such
as the instabilities of invertible neural networks. Additionally, in the past few
years, we have also seen new architectures emerge, such as transformers [221]
which were originally introduced for text-to-text challenges, such as translation,
but have fast become crucial in large image models [68]. New architectures are
interesting because of the implicit priors they place on networks and may lead
to generative regularisers with different behaviours. Future work could consider
incorporating these architectures and generators into a generative regularisation
framework and analysing their behaviour.

Geometric machine learning [32] is a fast-growing research area that includes
the study of data and machine learning from the perspectives of symmetry and
invariance. In the context of this thesis, we could ask that our generator and
hence generative regulariser had some desired symmetry. If there is no prior
knowledge of the orientation of an object we wish to reconstruct, then we might
wish that the generative model is somehow invariant to rotations, it produces
all possible orientations with equal probability. Equivariant neural networks can
have equivariance or invariance properties built-in [38]. Other symmetries could
be considered e.g. scale and contrast. On the other hand, a dark spot on the
lung might be much more significant than a dark spot in the background of a
chest CT scan, and we do not want our network to be translationally invariant,
at least globally. Indeed, in chapter 5| we explicitly allowed the loss function in
our generative regulariser to vary across an image. When considering learning
generative models effectively, perhaps with limited data, then explicitly building
networks with some symmetry, might be an interesting avenue for future work.

Geometric machine learning could also open up new inverse problems over non-
Euclidean data structures. We view images as Fuclidean, as 2 or 3-dimensional
arrays of equal-sized square pixels, but often we are imaging or measuring over
non-Euclidean domains. For example, meshes of electrodes are used to measure
the electrical activity of the heart (electrocardiogram) or the brain (electroen-
cephalogram) and are often considered as just a vector or grid at a given time
point, rather than taking into account the spatial information. Graph convolu-
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tional networks open up avenues for taking into account more of the geometric
information e.g. [112, 111} and it could be possible to design generators suited to
non-Euclidean inverse problems.

NoisyVAEs In the conclusion of chapter [ we set out a range of further work
for investigating the success of the noisyVAE objective for learning to generate
without access to ground truth data. This included looking into incorporating
information measured from different forward models, experimenting with the ar-
chitecture of the encoder and assessing the amount of training data required to
still give good generated images. Positron Emission Tomography (PET) is an
important imaging modality that suffers from high noise and thus high-quality
reconstructed images are difficult and expensive to obtain. Future work could
consider a detailed architecture search to find a generator suited for PET images
and assessing noisyVAEs on real-world PET datasets.

Structured Covariance Models As discussed in the summary and conclu-
sions of chapter [f] although the structured covariance model learned the correla-
tions within the images and was able to be used as an effective prior, training was
challenging. The trained model that we used for the numerical results was too
permissive, applying higher variances across the whole image and we would hope
to do better. As discussed in[5.B] future work in this direction could consider pri-
ors on the structured covariance, which could be computationally challenging, or
further investigations to determine the best architecture and training regime for
the network. To make the MRI images scenario used in chapter [5| more realistic,
complex valued images with could be considered, and modelling the correlations
between real and imaginary parts, would be an interesting avenue for future work.

Another future research direction is to combine the power and flexibility of the
learned covariance networks of chapter [5| with the generative networks learned
from noisy or partially observed data in chapter [6] The formulation of the noisy-
VAE was chosen with this in mind, and it would be interesting to see what
correlations and structure can be learned from only observed data.

Generative regularisers In chapter 4, we discuss how generative regularisers
are not a convergent regularisation method. At the end of the chapter, we then
go on to discuss directions for future theoretical research, including considering
what the minimum properties of the generator are required to give a convergent
regularisation method. The non-linear nature of the generator might also suggest
looking at the non-linear inverse problem literature.

Practically, there are also a few directions for future work. The first considers
uncertainty quantification. As seen in some of the inverse problems in chapter
6, where the observed data is poor, the generative regularisers can still output
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‘confident’ results i.e. clear plausible images. In this case, you might expect that
the data discrepancy term is still high, suggesting that the results do not fit the
observed data well. However, there may be other avenues for exploring uncer-
tainty. One could consider the latent encoding and compare the optimised 2z with
a post-training learned distribution over the latent space. We would anticipate
that images far from the training distribution will require latent vectors from
obscure parts of the latent space. Another avenue for uncertainty quantification
could be in multiple sampling from the generative model, perhaps around a found
latent vector, or by initialising optimisation schemes at multiple locations. This
fits well with our discussion on ‘explainability’.

The second considers the regularisation parameters. For generative regularisers
, the regularisation parameter \ is crucial for determining how strictly solu-
tions are restricted to be near the range of the generator. A small regularisation
parameter leads to little or no regularisation and high values restrict solutions to
be in the range of the generator. The Bayesian framework suggests that if the
noise level in the observed data is known, then these regularisation parameters
should also be known, provided the probabilistic modelling is sufficiently accu-
rate. Future work could consider different strategies for optimally setting these
regularisation parameters or if, with improved structured covariance models, how
they could be removed.

Consider an inverse problem reconstructed with TV regularisation and that for
large regularisation parameters, blob-like cartoon images are obtained, but, for
small parameters, more natural images are possible. The regularisation parameter
can be tuned in response to different problems or scenarios. If one just needed
the rough structure of a knee from MRI data to perform a measurement or
segmentation a large regularisation parameter and a block-like reconstruction
would be sufficient. However, if one needed to look carefully and a small structure,
a more detailed image is required. It might be interesting to consider how different
generators could be combined to produce a similar effect, for example, one could
have a patch-based generator trained to produce texture and a global generator
trained to produce image structure and combining the two with different weights
could give different results depending on need.

129



Bibliography

[10]

Jonas Adler, Holger Kohr, and Ozan Oktem. Operator Discretization Li-
brary (ODL). 2017.

Jonas Adler and Ozan Oktem. “Deep Bayesian Inversion”. In: ArXiv
Preprint (2018).

Jonas Adler and Ozan Oktem. “Learned Primal-Dual Reconstruction”. In:
IEEFE Transactions on Medical Imaging 37 (6 2018), pp. 1322-1332.
Jonas Adler and Ozan Oktem. “Solving ill-posed inverse problems us-
ing iterative deep neural networks”. In: Inverse Problems 33 (12 2017),
p. 124007.

Jonas Adler and Sebastian Lunz. “Banach Wasserstein GaN”. In: NeurlPS
(2018).

Michal Aharon, Michael Elad, and Alfred Bruckstein. “K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse representation”.
In: IEEE Transactions on Signal Processing 54 (11 2006), pp. 4311-4322.
Rizwan Ahmad, Charles A Bouman, Gregery T Buzzard, Stanley Chan,
Sizhuo Liu, Edward T Reehorst, and Philip Schniter. “Plug-and-Play
Methods for Magnetic Resonance Imaging: Using Denoisers for Image Re-
covery”. In: IEEE Signal Processing Magazine 37 (1 2020), pp. 105-116.
Kazunori Akiyama, Antxon Alberdi, Walter Alef, Keiichi Asada, Rebecca
Azulay, Anne-Kathrin Baczko, David Ball, Mislav Balokovi¢, John Bar-
rett, and Dan Bintley. “First M87 event horizon telescope results. IV.
Imaging the central supermassive black hole”. In: The Astrophysical Jour-
nal Letters 875 (1 2019), p. L4.

Analyze Results: inverse problems deep learning (Topic). URL: https://
www . webofscience . com/wos /woscc /analyze - results /ef71ea9e -
ade2-4dd7-acc6-ded622d642e0-50b441e3.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman,
David Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas.
“Learning to learn by gradient descent by gradient descent”. In: NeurlPS
29 (2016).

130


https://www.webofscience.com/wos/woscc/analyze-results/ef71ea9e-ade2-4dd7-acc6-ded622d642e0-50b441e3
https://www.webofscience.com/wos/woscc/analyze-results/ef71ea9e-ade2-4dd7-acc6-ded622d642e0-50b441e3
https://www.webofscience.com/wos/woscc/analyze-results/ef71ea9e-ade2-4dd7-acc6-ded622d642e0-50b441e3

[11]

[12]

[13]

[14]

[17]

[18]
[19]
[20]

[21]

Rushil Anirudh, Jayaraman J. Thiagarajan, Bhavya Kailkhura, and Timo
Bremer. “MimicGAN: Robust Projection onto Image Manifolds with Cor-
ruption Mimicking,” in: IJCV (2020).

Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock, and Anders
C. Hansen. “On instabilities of deep learning in image reconstruction and
the potential costs of AI”. In: Proceedings of the National Academy of
Sciences (2020), p. 201907377.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein gen-
erative adversarial networks”. In: ICML (2017), pp. 298-321.

Samuel G. Armato et al. “The Lung Image Database Consortium (LIDC)
and Image Database Resource Initiative (IDRI): A completed reference
database of lung nodules on CT scans”. In: Medical Physics 38 (2 2011),
pp. 915-931.

Sanjeev Arora, Andrej Risteski, and Yi Zhang. “Do GANs Learn the Dis-
tribution? Some Theory and Empirics”. In: ICLR (2018), pp. 1-16.
Simon Arridge, Peter Maass, Ozan Oktem, and Carola Bibiane Schénlieb.
“Solving inverse problems using data-driven models”. In: Acta Numerica
28 (2019), pp. 1-174.

Muhammad Asim, Fahad Shamshad, and Ali Ahmed. “Blind Image De-
convolution Using Deep Generative Priors”. In: IEEE Transactions on
Computational Imaging 6 (2020).

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. “Deep equilibrium mod-
els”. In: NeurIPS 32 (2019).

Joshua Batson and Loic Royer. “Noise2self: Blind denoising by self-supervision”.

In: ICML (2019), pp. 524-533.

Matthias Bauer and Andriy Mnih. “Resampled priors for variational au-
toencoders”. In: PMLR, 2020, pp. 66—75.

Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jorn-
Henrik Jacobsen. “Understanding and Mitigating Exploding Inverses in
Invertible Neural Networks”. In: AISTATS, PMLR 130 (2021), pp. 1792
1800.

Adi Ben-Israel and Thomas N E Greville. Generalized inverses: theory and
applications. Vol. 15. Springer Science Business Media, 2003.

Martin Benning and Martin Burger. “Modern regularization methods for
inverse problems”. In: Acta Numerica 27 (27 2018), pp. 1-111.

Yoeri E. Boink and Christoph Brune. “Learned SVD: solving inverse prob-
lems via hybrid autoencoding”. In: ArXiv Preprint (2019).

Jérome Bolte, Shoham Sabach, and Marc Teboulle. “Proximal alternat-
ing linearized minimization for nonconvex and nonsmooth problems”. In:
Mathematical Programming 146 (1-2 2014), pp. 459-494.

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. “Com-
pressed sensing using generative models”. In: ICML (2017), pp. 822-841.

131



[34]

[35]

[36]

[37]

Ashish Bora, Eric Price, and Alexandros G Dimakis. “AmbientGAN: Gen-
erative models from lossy measurements”. In: ICLR (2018).

Ali Borji. “Pros and cons of GAN evaluation measures”. In: Computer
Vision and Image Understanding 179 (2019), pp. 41-65.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eck-
stein. “Distributed optimization and statistical learning via the alternating
direction method of multipliers”. In: Foundations and Trends in Machine
learning 3 (1 2011), pp. 1-122.

Stephen Boyd and Lieven Vandenberghe. Convexr Optimization. 2004.
Kristian Bredies and Dirk Lorenz. Mathematical image processing. Springer
International Publishing, 2018, pp. 1-469.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovi¢.
“Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges”.
In: ArXiv Preprint (2021).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, and Amanda Askell. “Language models are few-shot learners”. In:
NeurIPS 33 (2020), pp. 1877-1901.

Leon Bungert and Matthias J. Ehrhardt. “Robust Image Reconstruc-
tion with Misaligned Structural Information”. In: IEEE Access 8 (2020),
pp. 222944-222955.

E Candes, David L. Donoho, Emmanuel J. Candes, and David L. Donoho.
“Curvelets: A Surprisingly Effective Nonadaptive Representation of Ob-
jects with Edges”. In: Curves and Surface Fitting C (2 2000).

Emmanuel J. Candes and Terence Tao. “Decoding by linear program-
ming”. In: IEEE Transactions on Information Theory 51 (12 2005), pp. 4203~
4215.

Emmanuel J. Candes, Justin K. Romberg, and Terence Tao. “Stable signal
recovery from incomplete and inaccurate measurements”. In: Communi-
cations on Pure and Applied Mathematics 59 (8 2006), pp. 1207-1223.
Elena Celledoni, Matthias J Ehrhardt, Christian Etmann, Brynjulf Owren,
Carola-Bibiane Schonlieb, and Ferdia Sherry. “Equivariant neural net-
works for inverse problems”. In: Inverse Problems 37 (8 2021), p. 85006.
Yair Censor. The mathematics of computerized tomography. Vol. 18. SIAM,
2002, p. 283.

Antonin Chambolle and Thomas Pock. “A first-order primal-dual algo-
rithm for convex problems with applications to imaging”. In: Journal of
Mathematical Imaging and Vision 40 (1 2011), pp. 120-145.
Paramanand Chandramouli, Kanchana Vaishnavi Gandikota, Andreas Go-
erlitz, Andreas Kolb, and Michael Moeller. “Generative Models for Generic
Light Field Reconstruction”. In: TPAMI (2020).

132



[42]

[43]

[44]

Caroline Chaux, Patrick L. Combettes, Jean Christophe Pesquet, and
Valérie R. Wajs. “A variational formulation for frame-based inverse prob-
lems”. In: Inverse Problems 23 (4 2007).

Dongdong Chen, Julian Tachella, and Mike E Davies. “Robust Equivariant
Imaging: a fully unsupervised framework for learning to image from noisy
and partial measurements”. In: CVPR (2022), pp. 5647-5656.

Hu Chen, Yi Zhang, Mannudeep K Kalra, Feng Lin, Yang Chen, Peixi
Liao, Jiliu Zhou, and Ge Wang. “Low-dose CT with a residual encoder-
decoder convolutional neural network”. In: IEEFE transactions on medical
imaging 36 (12 2017), pp. 2524-2535.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David
Luan, and Ilya Sutskever. “Generative pretraining from pixels”. In: PMLR,
2020, pp. 1691-1703.

A. Clark. Pillow (Python Imaging Library Fork). 2015.

Chris A Cocosco, Vasken Kollokian, Remi K.-S. Kwan, and Alan C Evans.
“BrainWeb: Online Interface to a 3D MRI Simulated Brain Database”. In:
Neurolmage (1997).

Matthew J Colbrook, Vegard Antun, and Anders C Hansen. “The diffi-
culty of computing stable and accurate neural networks: On the barriers of
deep learning and Smale’s 18th problem”. In: Proceedings of the National
Academy of Sciences 119 (12 2022), p. 1119.

Elizabeth K Cole, Frank Ong, Shreyas S Vasanawala, and John M Pauly.
“Fast unsupervised MRI reconstruction without fully-sampled ground truth
data using generative adversarial networks”. In: ICCV (2021), pp. 3988-
3997.

Casper da Costa-Luis. PET-MR - BrainWeb-based multimodal models of
20 normal brains. 2020. URL: https://pet-mr.github.io/brainweb/.
Caroline Crockett and Jeffrey A Fessler. “Bilevel Methods for Image Re-
construction”. In: Foundations and Trends in Signal Processing 15 (2-3
2022), pp. 121-289.

Bin Dai and David Wipf. “Diagnosing and enhancing VAE models”. In:
ICLR (2019).

Giannis Daras, Joseph Dean, Ajil Jalal, and Alexandros G. Dimakis. “In-
termediate Layer Optimization for Inverse Problems using Deep Genera-
tive Models”. In: ICML (2021).

Constantinos Daskalakis, Dhruv Rohatgi, and Manolis Zampetakis. “Constant-
expansion suffices for compressed sensing with generative priors”. In: NeurlPS
(2020).

Mark A. Davenport, Marco F. Duarte, Yonina C. Eldar, and Gitta Ku-
tyniok. Introduction to compressed sensing. Ed. by Y Eldar and G Ku-
tyniok. 2012.

133


https://pet-mr.github.io/brainweb/

[57]

[58]

[59]

Chen Debao. “Degree of approximation by superpositions of a sigmoidal
function”. In: Approximation Theory and its Applications 9 (3 1993),
pp. 17-28.

Manik Dhar, Aditya Grover, and Stefano Ermon. “Modeling Sparse De-
viations for Compressed Sensing using Generative Models”. In: ICML 3
(2018), pp. 1990-2005.

Laurent Dinh, David Krueger, and Yoshua Bengio. “Nice: Non-linear in-
dependent components estimation”. In: arXiv preprint arXiv:1410.8516
(2014).

Soren Dittmer, Tobias Kluth, Peter Maass, and Daniel Otero Baguer.
“Regularization by Architecture: A Deep Prior Approach for Inverse Prob-
lems”. In: Journal of Mathematical Imaging and Vision 62 (3 2020), pp. 456—
470.

David L. Donoho. “Compressed sensing”. In: IEEE Transactions on In-
formation Theory 52 (4 2006), pp. 1289-1306.

Garoe Dorta. “Learning models for intelligent photo editing”. In: Student
Thesis - Doctor of Engineering (EngD) (2020).

Garoe Dorta, Sara Vicente, Lourdes Agapito, Neill D F Campbell, and Ivor
Simpson. “Training vaes under structured residuals”. In: arXiv preprint
arXiv:1804.01050 (2018).

Garoe Dorta, Sara Vicente, Lourdes Agapito, Neill D.F. Campbell, and
Ivor Simpson. “Structured Uncertainty Prediction Networks”. In: CVPR
(2018), pp. 5b477-5485.

Margaret Duff, Neill D. F. Campbell, and Matthias J. Ehrhardt. “Regu-
larising Inverse Problems with Generative Machine Learning Models”. In:
ArXiv Preprint (2021).

Margaret Duff, Ivor J. A. Simpson, Matthias J. Ehrhardt, and Neill D.
F. Campbell. “Compressed Sensing MRI Reconstruction Regularized by
VAEs with Structured Image Covariance”. In: (2022).

Rick Durrett. Measure Theory. Springer, 2012, pp. 1-40.

Matthias J. Ehrhardt, Pawel Markiewicz, and Carola Bibiane Schonlieb.
“Faster PET reconstruction with non-smooth priors by randomization and
preconditioning”. In: Physics in Medicine and Biology 64 (22 2019).
Patrick Esser, Robin Rombach, and Bjorn Ommer. “Taming transformers
for high-resolution image synthesis”. In: CVPR (2021), pp. 12873-12883.
K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, C Xiao, A Prakash,
T Kohno, and D Song. “Robust Physical-World Attacks on Deep Learning
Visual Classification”. In: CVPR (2018), pp. 1625-1634.

Zalan Fabian, Reinhard Heckel, and Mahdi Soltanolkotabi. “Data aug-
mentation for deep learning based accelerated MRI reconstruction with
limited data”. In: PMLR, 2021, pp. 3057-3067.

134



78]

[79]

[80]

[81]

Qiuyun Fan et al. “MGH-USC Human Connectome Project datasets with

ultra-high b-value diffusion MRI.” In: NeuroImage 124 (Pt B 2016), pp. 1108

1114.

Rémi Flamary and Nicolas Courty. POT python optimal transport library.
2017.

Ken-Ichi Funahashi. “On the approximate realization of continuous map-
pings by neural networks”. In: Neural Networks 2 (3 1989), pp. 183-192.
Aude Genevay, Gabriel Peyré, and Marco Cuturi. “GAN and VAE from
an Optimal Transport Point of View”. In: ArXiv Preprint (2017).
Martin Genzel, Jan Macdonald, and Maximilian Marz. “Solving Inverse
Problems With Deep Neural Networks - Robustness Included”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).
Davis Gilton, Greg Ongie, and Rebecca Willett. “Deep Equilibrium Ar-
chitectures for Inverse Problems in Imaging”. In: IEEE Transactions on
Computational Imaging (2021).

Micah Goldblum, Jonas Geiping, Avi Schwarzschild, Michael Moeller, and
Tom Goldstein. “Truth or Backpropaganda? An Empirical Investigation
of Deep Learning Theory”. In: ICLR (2020).

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. “The
reversible residual network: Backpropagation without storing activations”.
In: NeurIPS 30 (2017).

Mario Gongzalez, Andrés Almansa, Mauricio Delbracio, Pablo Musé, and
Pauline Tan. “Solving Inverse Problems by Joint Posterior Maximization
with a VAE Prior”. In: SIAM Journal on Imaging Science 15 (2 2022),
pp. 822-859.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Gen-
erative adversarial nets”. In: NeurIPS (2014), pp. 2672-2680.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining
and harnessing adversarial examples”. In: arXiv preprint arXiv:1412.6572
(2014).

GoogleResearch. TensorFlow: Large-scale machine learning on heteroge-
neous systems. Software available from tensorflow.org. 2015.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Alexander Smola,
Bernhard Scholkopf, and Alexander Smola GRETTON. “A Kernel Two-
Sample Test”. In: JMLR 13 (2012), pp. 723-773.

Jinjin Gu, Yujun Shen, and Bolei Zhou. “Image processing using multi-
code GaN prior”. In: CVPR (2020), pp. 3009-3018.

135



[38]

[89]

[90]

[91]

[92]

[93]

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron Courville. “Improved training of wasserstein GANs”. In: NeurlPS
(2017), pp. H768-5778.

Sean Gunn, Jorio Cocola, and Paul Hand. “Regularized Training of Inter-
mediate Layers for Generative Models for Inverse Problems”. In: ArXiv
Preprint (2022).

Kanghui Guo and Demetrio Labate. “Optimally sparse multidimensional
representation using shearlets”. In: SIAM Journal on Mathematical Anal-
ysis 39 (1 2007).

Harshit Gupta, Michael T. McCann, Laurene Donati, and Michael Unser.
“CryoGAN: A New Reconstruction Paradigm for Single-Particle Cryo-EM
Via Deep Adversarial Learning”. In: IEEE Transactions on Computational
Imaging (2021).

Andreas Habring and Martin Holler. “A Generative Variational Model for
Inverse Problems in Imaging”. In: STAM Journal on Mathematics of Data
Science 4 (1 2022), pp. 306-335.

Jacques Hadamard. “Sur les problemes aux dérivées partielles et leur sig-
nification physique”. In: Princeton University Bulletin (1902), 49-52.
Markus Haltmeier, Linh Nguyen, Daniel Obmann, and Johannes Schwab.
“Sparse Lg-regularization of inverse problems with deep learning”. In:
ArXiv Preprint (2019).

Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P. Recht, Daniel
K. Sodickson, Thomas Pock, and Florian Knoll. “Learning a variational
network for reconstruction of accelerated MRI data”. In: Magnetic Reso-
nance in Medicine 79 (6 2018), pp. 3055-3071.

Paul Hand, Oscar Leong, and Vladislav Voroninski. “Phase retrieval under
a generative prior”. In: NeurIPS (2018), pp. 9136-9146.

Paul Hand and Vladislav Voroninski. “Global Guarantees for Enforcing
Deep Generative Priors by Empirical Risk”. In: IEFEE Transactions on
Information Theory 66 (1 2020), pp. 401-418.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition”. In: CVPR (2016), pp. 770-778.
Chinmay Hegde. “Algorithmic Aspects of Inverse Problems Using Gener-
ative Models”. In: 56th Annual Allerton Conference on Communication,
Control, and Computing (2019), pp. 166-172.

Allard Adriaan Hendriksen, Daniel Maria Pelt, and K. Joost Batenburg.
“Noise2lnverse: Self-Supervised Deep Convolutional Denoising for Tomog-
raphy”. In: IEEFE Transactions on Computational Imaging 6 (2020), pp. 1320
1335.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. “GANs trained by a two time-scale update rule

136



[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]
[108]
[109]

[110]

111]

[112]

[113]

converge to a local Nash equilibrium”. In: NeurIPS (2017), pp. 6627—
6638.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glo-
rot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. “B-
VAE: Learning basic visual concepts with a constrained variational frame-
work”. In: ICLR (2017).

Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion proba-
bilistic models”. In: NeurIPS 33 (2020), pp. 6840-6851.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feed-
forward networks are universal approximators”. In: Neural Networks 2 (5
1989), pp. 359-366.

Shady Abu Hussein, Tom Tirer, and Raja Giryes. “Image-Adaptive GAN
based Reconstruction”. In: AAAI (2019), pp. 3121-3129.

Chang Min Hyun, Hwa Pyung Kim, Sung Min Lee, Sungchul Lee, and
Jin Keun Seo. “Deep learning for undersampled MRI reconstruction”. In:
Physics in Medicine and Biology 63 (13 2018).

Aapo Hyvérinen and Peter Dayan. “Estimation of non-normalized statis-
tical models by score matching.” In: JMLR 6 (4 2005).

Sergey loffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”. In: PMLR,
2015, pp. 448-456.

Kazufumi Ito and Bangti Jin. Inverse Problems: Tikhonov Theory And
Algorithms (Applied Mathematics). 2014.

Jorn Henrik Jacobsen, Arnold Smeulders, and Edouard Oyallon. “I-RevNet:
Deep invertible networks”. In: JCLR (2018).

Gauri Jagatap and Chinmay Hegde. “Algorithmic guarantees for inverse
imaging with untrained network priors”. In: Neur[PS 32 (2019).

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G. Di-
makis, and Jonathan I. Tamir. “Robust Compressed Sensing MRI with
Deep Generative Priors”. In: NeurlPS (2021).

Manhua Jia, Wenjian Liu, Junwei Duan, Long Chen, C L Philip Chen,
Qun Wang, and Zhiguo Zhou. “Efficient graph convolutional networks
for seizure prediction using scalp EEG.” In: Frontiers in Neuroscience 16
(2022), p. 967116.

Xiajun Jiang, Sandesh Ghimire, Jwala Dhamala, Zhiyuan Li, Prashnna
Kumar Gyawali, and Linwei Wang. “Learning geometry-dependent and
physics-based inverse image reconstruction”. In: MICCAT (2020), pp. 487—
496.

Kyong Hwan Jin, Michael T. McCann, Emmanuel Froustey, and Michael
Unser. “Deep convolutional neural network for inverse problems in imag-
ing”. In: IEEE Transactions on Image Processing 26 (9 2017), pp. 4509—
4522.

137



[114]

[115]

[116]

117]

[118]

119

[120]

[121]

[122]

[123]
[124]
[125]

[126]

[127]

[128]

John Jumper et al. “Highly accurate protein structure prediction with
AlphaFold”. In: Nature 596 (7873 2021), pp. 583-589.

Maya Kabkab, Pouya Samangouei, and Rama Chellappa. “Task-aware
compressed sensing with generative adversarial networks”. In: AAAT (2018),
pp. 2297-2304.

Barbara Kaltenbacher, Frank Schopfer, and Thomas Schuster. “Iterative
methods for nonlinear ill-posed problems in Banach spaces: Convergence
and applications to parameter identification problems”. In: Inverse Prob-
lems 25 (6 2009).

U S Kamilov, H Mansour, and B Wohlberg. “A Plug-and-Play Priors Ap-
proach for Solving Nonlinear Imaging Inverse Problems”. In: IEEE Signal
Processing Letters 24 (12 2017), pp. 1872-1876.

Takuhiro Kaneko and Tatsuya Harada. “Noise Robust Generative Adver-
sarial Networks”. In: CVPR (2020), pp. 8401-8411.

Eunhee Kang, Junhong Min, and Jong Chul Ye. “A deep convolutional
neural network using directional wavelets for low-dose X-ray CT recon-
struction”. In: Medical physics 44 (10 2017), e360-e375.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehti-
nen, and Timo Aila. “Training generative adversarial networks with lim-
ited data”. In: NeurIPS 33 (2020), pp. 12104-12114.

Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator archi-
tecture for generative adversarial networks”. In: CVPR (2019), pp. 4401—
4410.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehti-
nen, and Timo Aila. “Analyzing and improving the image quality of style-
gan”. In: CVPR (2020), pp. 8107-8116.

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic op-
timization”. In: ICLR (0205).

Diederik P. Kingma and Prafulla Dhariwal. “Glow: Generative flow with
invertible 1x1 convolutions”. In: NeurIPS (2018), pp. 10215-10224.
Diederik P. Kingma and Max Welling. “Auto-encoding variational bayes”.
In: ICLR (2014).

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland,
Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-
Yen Lo, Piotr Dollar, and Ross Girshick. “Segment Anything”. In: (2023).
URL: http://arxiv.org/abs/2304.02643.

Florian Knoll, Kristian Bredies, Thomas Pock, and Rudolf Stollberger.
“Second order total generalized variation (TGV) for MRI”. In: Magnetic
Resonance in Medicine 65 (2 2011), pp. 480-491.

Florian Knoll et al. “fastMRI: A Publicly Available Raw k-Space and DI-
COM Dataset of Knee Images for Accelerated MR Image Reconstruction
Using Machine Learning”. In: Radiology: Artificial Intelligence 2 (1 2020).

138


http://arxiv.org/abs/2304.02643

[129]

[130]

[131]

132]

133

[134]

[135]

[136]

[137]

138

[139)]

[140]

[141]

[142]

Ivan Kobyzev, Simon J.D. D Prince, and Marcus A. Brubaker. “Normal-
izing flows: An introduction and review of current methods”. In: IEEFE
transactions on pattern analysis and machine intelligence 43 (11 2020),
pp- 3964-3979.

Mark A Kramer. “Nonlinear principal component analysis using autoas-
sociative neural networks”. In: AIChE journal 37 (2 1991), pp. 233-243.
Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. “Noise2void-
learning denoising from single noisy images”. In: CVPR (2019), pp. 2129-
2137.

Karl Kunisch and Thomas Pock. “A Bilevel Optimization Approach for
Parameter Learning in Variational Models”. In: STAM Journal on Imaging
Sciences 6 (2013).

Alexey Kurakin, lan J. Goodfellow, and Samy Bengio. “Adversarial ex-
amples in the physical world”. In: ICLR (2019).

Avisek Lahiri, Arnav Kumar Jain, Divyasri Nadendla, and Prabir Ku-
mar Biswas. “Faster Unsupervised Semantic Inpainting: A GAN Based
Approach”. In: ICIP (2019), pp. 2706-2710.

Kenneth L Lange and Richard E Carson. “EM reconstruction algorithms
for emission and transmission tomography.” In: Journal of computer as-
sisted tomography 8 2 (1984), pp. 306-316.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
based learning applied to document recognition”. In: Proceedings of the
IEEFE 86 (11 1998), pp. 2278-2323.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero
Karras, Miika Aittala, and Timo Aila. “Noise2Noise: Learning image restora-
tion without clean data”. In: ICML 7 (2018).

Qi Lei, Ajil Jalal, Inderjit S. Dhillon, and Alexandros G. Dimakis. “Invert-
ing deep generative models, one layer at a time”. In: NeurIPS 32 (2019).
Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken.
“Multilayer feedforward networks with a nonpolynomial activation func-
tion can approximate any function”. In: Neural Networks 6 (6 1993),
pp. 861-867.

Johannes Leuschner, Maximilian Schmidt, Daniel Otero Baguer, and Peter
Maafl. “The LoDoPaB-CT Dataset: A Benchmark Dataset for Low-Dose
CT Reconstruction Methods”. In: Scientific Data 8 (1 2021), pp. 1-12.
Housen Li, Johannes Schwab, Stephan Antholzer, and Markus Haltmeier.
“NETT: Solving inverse problems with deep neural networks”. In: Inverse
Problems 36 (6 2020).

Steven Cheng Xian Li, Benjamin M. Marlin, and Bo Jiang. “Misgan:
Learning from incomplete data with generative adversarial networks”. In:

ICLR (2019).

139



143

144]
[145]
[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

Jiaming Liu, Yu Sun, Cihat Eldeniz, Weijie Gan, Hongyu An, and Ulugbek
S. Kamilov. “RARE: Image Reconstruction Using Deep Priors Learned
without Groundtruth”. In: IEEE Journal on Selected Topics in Signal
Processing 14 (6 2020), pp. 1088-1099.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep learning
face attributes in the wild”. In: ICCV (2015), pp. 3730-3738.

David Lopez-Paz and Maxime Oquab. “Revisiting classifier two-sample
tests”. In: ICLR (2017).

Sebastian Lunz, Ozan Oktem, and Carola Bibiane Schonlieb. “Adversarial
regularizers in inverse problems”. In: NeurIPS (2018), pp. 8507-8516.
Michael Lustig, David Donoho, and John M. Pauly. “Sparse MRI: The
application of compressed sensing for rapid MR imaging”. In: Magnetic
Resonance in Medicine 58 (6 2007), pp. 1182-1195.

Jun Lv, Jin Zhu, and Guang Yang. “Which GAN? A comparative study of
generative adversarial network-based fast MRI reconstruction”. In: Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 379 (2200 2021).

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. “Towards deep learning models resistant to adversarial
attacks”. In: ICLR (2018).

Morteza Mardani, Enhao Gong, Joseph Y. Cheng, Shreyas S. Vasanawala,
Greg Zaharchuk, Lei Xing, and John M. Pauly. “Deep generative adversar-
ial neural networks for compressive sensing MRI”. In: IEEFE Transactions
on Medical Imaging 38 (1 2019), pp. 167-179.

C. McCollough. “TU-FG-207A-04: Overview of the Low Dose CT Grand
Challenge”. In: Medical Physics 43 (6Part35 2016), pp. 3759-3760.

Tim Meinhardt, Michael Moeller, Caner Hazirbas, and Daniel Cremers.
“Learning Proximal Operators: Using Denoising Networks for Regularizing
Inverse Imaging Problems”. In: ICCV (2017), pp. 1799-1808.

Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia
Rudin. “PULSE: Self-Supervised Photo Upsampling via Latent Space Ex-
ploration of Generative Models”. In: CVPR (2020), pp. 2437-2445.
Christopher A Metzler, Ali Mousavi, Reinhard Heckel, and Richard G
Baraniuk. “Unsupervised learning with Stein’s unbiased risk estimator”.
In: arXiv preprint arXiv:1805.10531 (2018).

Vladimir Alekseevich Morozov. Methods for solving incorrectly posed prob-
lems. Springer Science Business Media, 2012.

Lukas Mosser, Olivier Dubrule, and Martin J. Blunt. “Stochastic Seismic
Waveform Inversion Using Generative Adversarial Networks as a Geolog-
ical Prior”. In: Mathematical Geosciences 52 (1 2020), pp. 53-79.

140



[157]

[158]

[159]

[160]

[161]

162]

163

[164]

[165]

[166]

[167]

[168]

[169]

[170]

Subhadip Mukherjee, Marcello Carioni, Ozan Oktem, and Carola-Bibiane
Schonlieb. “End-to-end reconstruction meets data-driven regularization
for inverse problems”. In: Neur/PS (2021).

Subhadip Mukherjee, Soren Dittmer, Zakhar Shumaylov, Sebastian Lunz,
Ozan Oktem, and Carola-Bibiane Schénlieb. “Learned convex regularizers
for inverse problems”. In: ArXiv Preprint (2020).

Subhadip Mukherjee, Andreas Hauptmann, Ozan Oktem, Marcelo Pereyra,
and Carola-Bibiane Schonlieb. “Learned reconstruction methods with con-
vergence guarantees”. In: ArXiv Preprint (2022).

Dominik Narnhofer, Kerstin Hammernik, Florian Knoll, and Thomas Pock.
“Inverse GANSs for accelerated MRI reconstruction”. In: SPIE-Intl Soc Op-
tical Eng, 2019, p. 45.

NHS - MRI Scans. 2022. URL: https://www.nhs.uk/conditions/mri-
scan/.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. “f~GAN: Training
generative neural samplers using variational divergence minimization”. In:
NeurIPS (2016), pp. 271-279.

Daniel Obmann, Linh Nguyen, Johannes Schwab, and Markus Haltmeier.
“Augmented nett regularization of inverse problems”. In: Journal of Physics
Communications 5 (10 2021), p. 105002.

Daniel Obmann, Linh Nguyen, Johannes Schwab, and Markus Haltmeier.
“Sparse Anett for Solving Inverse Problems with Deep Learning”. In: In-
ternational Symposium on Biomedical Imaging Workshops, Proceedings
(2020).

Daniel Obmann, Johannes Schwab, and Markus Haltmeier. “Deep synthe-
sis regularization of inverse problems”. In: ArXiv Preprint (2020).
Changheun Oh, Dongchan Kim, Jun Young Chung, Yeji Han, and Hyun
Wook Park. “Eter-net: End to end mr image reconstruction using recurrent
neural network”. In: Lecture Notes in Computer Science (2018).
Gyutaek Oh, Byeongsu Sim, Hyung Jin Chung, Leonard Sunwoo, and Jong
Chul Ye. “Unpaired Deep Learning for Accelerated MRI Using Optimal
Transport Driven CycleGAN”. In: IEEE Transactions on Computational
Imaging (2020), pp. 1285-1296.

Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk,
Alexandros G Dimakis, and Rebecca Willett. “Deep learning techniques
for inverse problems in imaging”. In: IEEE Journal on Selected Areas in
Information Theory 1 (1 2020), pp. 39-56.

S Ono. “Primal-Dual Plug-and-Play Image Restoration”. In: IEEE Signal
Processing Letters 24 (8 2017), pp. 1108-1112.

Aaron Van Den Oord, Oriol Vinyals, and Koray Kavukcuoglu. “Neural dis-
crete representation learning”. In: NeurIPS 2017-Decem (2017), pp. 6307—
6316.

141


https://www.nhs.uk/conditions/mri-scan/
https://www.nhs.uk/conditions/mri-scan/

[171]

[172]

178]

[179]

[180]

[181]

[182]

183

[184]

OpenAl. “GPT-4 Technical Report”. In: (2023). URL: http://arxiv.
org/abs/2303.08774.

Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao
Yin. “An Iterative Regularization Method for Total Variation-Based Im-
age Restoration”. In: Multiscale Modeling Simulation 4 (2 2005), pp. 460—
489.

John Paisley, David M. Blei, and Michael I. Jordan. “Variational Bayesian
inference with stochastic search”. In: ICML 2 (2012), pp. 1367-1374.
George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir
Mohamed, and Balaji Lakshminarayanan. “Normalizing flows for proba-
bilistic modeling and inference”. In: JMLR 22 (57 2021), pp. 1-64.
Papers with code - trends. URL: https://paperswithcode.com/trends.
Hyoung Suk Park, Jineon Baek, Sun Kyoung You, Jae Kyu Choi, and
Jin Keun Seo. “Unpaired image denoising using a generative adversarial
network in x-ray CT”. In: IEEE Access 7 (2019), pp. 110414-110425.
Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duches-
nay. “Scikit-learn: Machine Learning in Python”. In: JMLR 12 (2011),
pp. 2825-2830.

Pei Peng, Shirin Jalali, and Xin Yuan. “Auto-encoders for compressed
sensing”. In: NeurIPS (2019).

David L. Phillips. “A Technique for the Numerical Solution of Certain
Integral Equations of the First Kind”. In: Journal of the ACM (JACM) 9
(1 1962).

K P Pruessmann, M Weiger, M B Scheidegger, and P Boesiger. “SENSE:
sensitivity encoding for fast MRI.” In: Magnetic resonance in medicine 42
(5 1999), pp. 952-962.

Tran Minh Quan, Thanh Nguyen-Duc, and Won Ki Jeong. “Compressed
Sensing MRI Reconstruction Using a Generative Adversarial Network
With a Cyclic Loss”. In: IEEE Transactions on Medical Imaging 37 (6
2018), pp. 1488-1497.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. “Hierarchical text-conditional image generation with clip latents”.
In: arXiv preprint arXiv:2204.06125 (2022).

Jonas Rauber, Wieland Brendel, and Matthias Bethge. “Foolbox: A Python
toolbox to benchmark the robustness of machine learning models”. In:
arXiv preprint (2017).

Andrew J. Reader, Guillaume Corda, Abolfazl Mehranian, Casper da
Costa-Luis, Sam Ellis, and Julia A. Schnabel. “Deep Learning for PET

142


http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://paperswithcode.com/trends

[185]

[186]

[187]

[188]

[189)]

[190]

[191]

[192]

193]

[194]

[195]

[196]

197]

Image Reconstruction”. In: IEEE Transactions on Radiation and Plasma
Medical Sciences 5 (1 2020).

Reducing Bias and Improving Safety in DALL-E 2. 2022. URL: https:
//openai . com/blog/reducing-bias-and- improving-safety-in-
dall-e-2/.

Juan los Reyes and Carola-Bibiane Schonlieb. “Image denoising: Learn-
ing the noise model via nonsmooth PDE-constrained optimization”. In:
Inverse Problems and Imaging 4 (2013).

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochas-
tic backpropagation and approximate inference in deep generative mod-
els”. In: ICML 4 (2014), pp. 3057-3070.

Yaniv Romano, Michael Elad, and Peyman Milanfar. “The little engine
that could: Regularization by Denoising (RED)”. In: SIAM Journal on
Imaging Sciences 10 (4 2017), pp. 1804-1844.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolu-
tional networks for biomedical image segmentation”. In: MICCAI (2015),
pp. 234-241.

Stefan Roth and Michael J Black. “Fields of experts”. In: International
Journal of Computer Vision 82 (2 2009), pp. 205-229.

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. “Metric for distri-
butions with applications to image databases”. In: ICCV (1998), pp. 59—
66.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. “Nonlinear total vari-
ation based noise removal algorithms”. In: Physica D: Nonlinear Phenom-
ena 60 (1-4 1992), pp. 259-268.

Lars Ruthotto and Eldad Haber. “An introduction to deep generative
modeling”. In: GAMM-Mitteilungen 44 (2 2021).

Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang,
and Wotao Yin. “Plug-and-play methods provably converge with prop-
erly trained denoisers”. In: International Conference on Machine Learning
(2019), pp. 5546-5557.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. “Improved techniques for training GANs”. In:
NeurIPS (2016), pp. 2234-2242.

Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier,
and Frank Lenzen. Variational reqularization methods for the solution of
1nwverse problems. 2009.

Jo Schlemper, Jose Caballero, Joseph V. Hajnal, Anthony N. Price, and
Daniel Rueckert. “A Deep Cascade of Convolutional Neural Networks for
Dynamic MR Image Reconstruction”. In: IEEE Transactions on Medical
Imaging 37 (2 2018), pp. 491-503.

143


https://openai.com/blog/reducing-bias-and-improving-safety-in-dall-e-2/
https://openai.com/blog/reducing-bias-and-improving-safety-in-dall-e-2/
https://openai.com/blog/reducing-bias-and-improving-safety-in-dall-e-2/

198

[199]

200]

[201]

[202]

[203]

[204]

205]

[206]

[207]

[208)]

209]

[210]

[211]

Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. “Big in
Japan: Regularizing Networks for Solving Inverse Problems”. In: Journal
of Mathematical Imaging and Vision 62 (3 2020), pp. 445-455.

Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. “Deep null
space learning for inverse problems: Convergence analysis and rates”. In:
Inverse Problems 35 (2 2019), p. 025008.

Viraj Shah and Chinmay Hegde. “Solving Linear Inverse Problems Using
Gan Priors: An Algorithm with Provable Guarantees”. In: I[CASSP (2018),
pp. 4609-4613.

Or Sharir, Barak Peleg, and Yoav Shoham. “The Cost of Training NLP
Models: A Concise Overview”. In: ArXiv Preprint (2020).

L A Shepp and Y Vardi. “Maximum likelihood reconstruction for emis-
sion tomography.” In: IEEE Transactions on Medical Imaging 1 (2 1982),
pp. 113-122.

Byeongsu Sim, Gyutaek Oh, and Jong Chul Ye. “Optimal Transport Struc-
ture of CycleGAN for Unsupervised Learning for Inverse Problems”. In:
ICASSP (2020), pp. 8644-8647.

Naresh K. Sinha and Michael P. Griscik. “Stochastic Approximation Method”.
In: IEEE Transactions on Systems, Man and Cybernetics 1 (4 1971),
pp. 338-344.

Casper Kaae Sgnderby, Tapani Raiko, Lars Maalge, Sgren Kaae Sgnderby,
and Ole Winther. “Ladder variational autoencoders”. In: NeurIPS (2016),
pp. 3745-3753.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya
Ganguli. “Deep unsupervised learning using nonequilibrium thermody-
namics”. In: International Conference on Machine Learning (2015), pp. 2256—
2265.

Shakarim Soltanayev and Se Young Chun. “Training deep learning based
denoisers without ground truth data”. In: NeurIPS 31 (2018).

Yang Song and Stefano Ermon. “Generative modeling by estimating gra-
dients of the data distribution”. In: Neur/PS 32 (2019).

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. “Sliced score
matching: A scalable approach to density and score estimation”. In: Un-
certainty in Artificial Intelligence (2020), pp. 574-584.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Ku-
mar, Stefano Ermon, and Ben Poole. “Score-Based Generative Modeling
through Stochastic Differential Equations”. In: ICLR (20201).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: A simple way to prevent neural networks
from overfitting”. In: JMLR 15 (2014), pp. 1929-1958.

144



[212] Jan Stanczuk, Christian Etmann, Lisa Maria Kreusser, and Carola-Bibiane
Schonlieb. “Wasserstein GANs Work Because They Fail (to Approximate
the Wasserstein Distance)”. In: ArXiv Preprint (2021).

[213] A. M. Stuart. “Inverse problems: A Bayesian perspective”. In: Acta Nu-
merica 19 (2010), pp. 451-459.

[214] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. “Intriguing properties of
neural networks”. In: ICLR (2014).

[215] Lucas Theis, Adron Van Den Oord, and Matthias Bethge. “A note on the
evaluation of generative models”. In: ICLR (2016).

[216] A N Tikhonov. “On the stability of inverse problems”. In: Doklady Akademii
Nauk Sssr 39 (5 1943).

[217) A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola.
Numerical Methods for the Solution of Ill-Posed Problems. 1995.

[218] Subarna Tripathi, Zachary C. Lipton, and Truong Q. Nguyen. “Correction
by Projection: Denoising Images with Generative Adversarial Networks”.
In: ArXiv Preprint (2018).

[219] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Deep Image
Prior”. In: International Journal of Computer Vision (2020), pp. 1867
1888.

[220] Mihaly Varadi et al. “AlphaFold Protein Structure Database: massively
expanding the structural coverage of protein-sequence space with high-
accuracy models”. In: Nucleic Acids Research 50 (D1 2022), pp. D439-
D444.

[221]  Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you
need”. In: NeurIPS 30 (2017).

[222] Dave Van Veen, Ajil Jalal, Mahdi Soltanolkotabi, Eric Price, Sriram Vish-
wanath, and Alexandros G. Dimakis. “Compressed Sensing with Deep
Image Prior and Learned Regularization”. In: ArXiv Preprint (2018).

[223] Singanallur V. Venkatakrishnan, Charles A. Bouman, and Brendt Wohlberg.
“Plug-and-Play priors for model based reconstruction”. In: GlobalSIP (2013),
pp- 945-948.

[224] Cédric Villani. Optimal Transport: Old and New. Number 338. Springer
Verlag, 2009.

[225] Paul Vos and Qiang Wu. Probability Essentials. Vol. 38. Springer Science
Business Media, 2018, pp. 75—-109.

[226] Shanshan Wang, Zhenghang Su, Leslie Ying, Xi Peng, Shun Zhu, Feng
Liang, Dagan Feng, and Dong Liang. “Accelerating magnetic resonance
imaging via deep learning”. In: Proceedings - International Symposium on
Biomedical Imaging 2016-June (2016), pp. 514-517.

145



227]

[228]

[229]

[230]

[231]

[232]

Yang Wang. “A Mathematical Introduction to Generative Adversarial
Nets (GAN)”. In: ArXiv Preprint (2020).

Bradley a. Warner and Radford M Neal. “Bayesian Learning for Neu-
ral Networks”. In: Journal of the American Statistical Association 92
(1997), p. 791. URL: http://www. jstor.org/stable/296573170rigin=
crossref.

Tom White. “Sampling Generative Networks”. In: ArXiv Preprint (2016).
Jingyan Xu and Frédéric Noo. “Convex optimization algorithms in medi-
cal image reconstruction—in the age of AI”. In: Physics in Medicine and
Biology 67 (7 2022), 07TRO1.

Burhaneddin Yaman, Seyed Amir Hossein Hosseini, Steen Moeller, Jutta
Ellermann, Kamil Ugurbil, and Mehmet Akgakaya. “Self-supervised learn-
ing of physics-guided reconstruction neural networks without fully sampled
reference data”. In: Magnetic resonance in medicine 84 (6 2020), pp. 3172
3191.

Guang Yang, Simiao Yu, Hao Dong, Greg Slabaugh, Pier Luigi Dragotti,
Xujiong Ye, Fangde Liu, Simon Arridge, Jennifer Keegan, Yike Guo, and
David Firmin. “DAGAN: Deep De-Aliasing Generative Adversarial Net-
works for Fast Compressed Sensing MRI Reconstruction”. In: IEEE Trans-
actions on Medical Imaging 37 (6 2018), pp. 1310-1321.

Yisong Yang. A concise text on advanced linear algebra. 2014.

Jong Chul Ye. “Compressed sensing MRI: a review from signal processing
perspective”. In: BMC Biomedical Engineering 1 (1 2019).

Raymond A. Yeh, Chen Chen, Teck Yian Lim, Alexander G. Schwing,
Mark Hasegawa-Johnson, and Minh N. Do. “Semantic image inpainting
with deep generative models”. In: CVPR (2017), pp. 6882—6890.

Your Al pair programmer. URL: https://github.com/features/copilot.
X Yuan, P He, Q Zhu, and X Li. “Adversarial Examples: Attacks and
Defenses for Deep Learning”. In: IEEE Transactions on Neural Networks
and Learning Systems 30 (9 2019), pp. 2805-2824.

Jure Zbontar et al. “fastMRI: An Open Dataset and Benchmarks for Ac-
celerated MRI”. In: ArXiv Preprint (2018).

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. “Understanding deep learning (still) requires rethinking general-
ization”. In: Communications of the ACM 64 (3 2021), pp. 107-115.
Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui,
and Michael Jordan. “Theoretically Principled Trade-off between Robust-
ness and Accuracy”. In: ICML 97 (2019). Ed. by Kamalika Chaudhuri and
Ruslan Salakhutdinov, pp. 7472-7482.

Ji Zhao, Zhigiang Chen, Li Zhang, and Xin Jin. “Few-view CT reconstruc-
tion method based on deep learning”. In: 2016 IEEE Nuclear Science

146


http://www.jstor.org/stable/2965731?origin=crossref
http://www.jstor.org/stable/2965731?origin=crossref
https://github.com/features/copilot

242

243

[244]

[245]

Symposium, Medical Imaging Conference and Room-Temperature Semi-
conductor Detector Workshop (NSS/MIC/RTSD) (2016), pp. 1-4.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. “Learning Deep Features for Discriminative Localization”. In:
CVPR (2016), pp. 2921-2929.

Bo Zhu, Jeremiah Z. Liu, Stephen F. Cauley, Bruce R. Rosen, and Matthew
S. Rosen. “Image reconstruction by domain-transform manifold learning”.
In: Nature 555 (7697 2018), pp. 487-492.

Jun Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. “Un-
paired Image-to-Image Translation Using Cycle-Consistent Adversarial
Networks”. In: ICCV (2017), pp. 2242-2251.

Magauiya Zhussip, Shakarim Soltanayev, and Se Young Chun. “Train-
ing deep learning based image denoisers from undersampled measure-
ments without ground truth and without image prior”. In: CVPR (2019),
pp. 10247-10256.

147



	List of Figures
	Introduction
	Motivation
	Active Research Areas 
	Overview of Research Presented in this Thesis
	Evaluation Methods
	Thesis Structure 

	Inverse Problems and Deep Learning 
	Inverse Problems
	Example Applications
	Ill-posedness 
	Variational Regularisation 
	Bayesian Approach
	Inverse Problem Discretisation

	Optimisation Algorithms
	Deep Learning
	Choosing a Parameterised Function
	Determining Suitable Weights
	Learning Neural Network Weights is an Inverse Problem

	Deep Learning and Inverse Problems
	Untrained Methods 
	Supervised Methods: Paired Training Data
	Semi-supervised Methods: Unpaired Data
	Unsupervised Methods: Ground Truth Training Data Only


	Generative Models
	Autoencoders 
	Probabilistic Models 
	Generative Adversarial Networks 
	Variational Autoencoders 
	Invertible Neural Networks/Normalising Flows
	Diffusion/Score Based Generative models
	Low Dimensional Manifold Assumption 

	Generative Regularisers
	Introduction 
	Generative Regularisers for Inverse Problems 
	Choices of F 
	Additional Regularisation
	Other Approaches

	Regularisation Analysis  
	Generative Model Evaluation
	Desired Properties
	Generative Model Evaluation Methods
	Numerical Experiments

	Numerical Results for Inverse Problems 
	Deconvolution
	Compressed Sensing
	Tomography
	Out-of-Distribution Testing
	FastMRI Dataset

	Summary, Conclusions and Future Work 
	Future Outlook

	Generative Model Architectures 

	Compressed Sensing MRI Reconstruction Regularised by VAEs with Structured Image Covariance
	Introduction
	Related Work
	Method 
	Experiments 
	Results
	Discussion 
	Conclusion
	Sparsity in the Precision and Consequences for the Variance
	Priors on the Sparse Cholesky Decomposition 

	Training a VAE Without Ground Truth Images for use in Inverse Problems
	 Introduction
	Contributions

	Method 
	NoisyVAE Training and Evaluation 
	Datasets
	Forward models 
	Models and Training 

	Numerical Results - Inverse Problems 
	Reconstruction Methods
	Denoising 
	Deconvolution
	PET 

	Related Work 
	Conclusions
	Future Work

	 Conclusions and Future Work 
	Summary 
	Future Work


