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Abstract 

 

The paradigm that single nucleotide polymorphisms (SNPs) are the primary metric to judge 

bacterial diversity is outdated. This is particularly true for the main causative agent of whooping 

cough, Bordetella pertussis- a species with limited nucleotide variation. Examined in a holistic 

way, however, B. pertussis has high potential for genetic diversity with over 250 copies of the 

same insertion sequence- perfect genetic material for structural variations to arise via 

homologous recombination. Indeed, many deletions and inversions have been described which is 

in contrast to the third type of structural variation: CNVs (copy number variations), which have 

been only infrequently described. 

 

In this thesis, I systematically investigated the prevalence and dynamics of CNVs (and other 

structural variants) in B. pertussis using both long and short read sequence data. 

I developed a reliable pipeline to predict CNVs in >2000 isolates by analysing the read-depth of 

Illumina sequencing samples to find regions of increased coverage. A low rate of false positives 

and negatives was achieved by normalising inter-sample noise. The majority of these mutations 

were predicted to be >50kb long and clustered at 11 hotspot loci (rather than evenly distributed 

throughout the genome), a phenomenon described and analysed using network graphs.  

 

One CNV was verified by qPCR and by capturing entire tandem arrays of CNVs in single ultra-

long reads generated on the Oxford Nanopore sequencing platform. Further investigation 

demonstrated the plasticity of the B. pertussis genome and it was found that multiple putative 

structural variants were being generated genome-wide within a single culture.  

Finally, preliminarily work established the compatibility of the B. pertussis with the Genome 

Wide Association (GWA) framework. I investigated how to represent CNVs and how 

homoplasic deletions were, given the highly clonal nature of the species and its low mutation 

rate. . It was found that deletions were more homoplasic than previously thought but that there 

are still considerable hurdles to using CNVs in GWAS.  
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1. Introduction 

 

 

1.1. The Bordetella 

 

Bordetella pertussis (B. pertussis), the primary agent of whooping cough (1), is a bacterium 

which has evolved enhanced pathogenicity without gaining new genes. It shares a recent 

common ancestor with modern day Bordetella bronchiseptica (B. bronchiseptica), the extant 

species that is the most similar to the progenitor of the ‘classical’ members of the genus, which 

in addition to B. pertussis include Bordetella parapertussis (B. parapertussis). B. parapertussis 

can cause a milder form of whooping cough and is composed of a human and an ovine host 

restricted clade. As a host generalist bacterium, B. bronchiseptica has been found in a number of 

mammals (including humans) and birds although some clades are host-specific (6, 7). It is also 

capable of causing a variety of respiratory pathologies ranging from nearly asymptomatic to life-

threatening (8, 9). 
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Outside of these classical Bordetella, there exists a wide range of host restricted and host general 

species. Of note is B. holmesii which is distantly related to B. pertussis but causes whooping 

cough that is sometimes indistinguishable from that caused by B. pertussis but can also be milder 

(and sometimes causes bacteraemia)  (1) . Other species capable of colonising humans include B. 

hinzii (2), B. avium (3) and B. petrii (3–5) which can cause a whooping cough like illness or 

milder symptoms, but most often in immunocompromised individuals. To understand how 

whooping cough effects the human population and how gene loss is linked to an unstable 

genome in B. pertussis, it is important to understand the disease in the context of the evolution of 

both B. pertussis and the whole genus. As such, this is the lens by which I will describe the work 

I undertook and introduce it.  

 

1.2. Whooping cough 

 

1.2.1. The course of whooping cough 

 

B. pertussis is a human-restricted pathogen and the primary cause of whooping cough in humans. 

The full course of the disease can stretch up to 5-6 months and the symptoms can be split into 

three symptomatic stages: catarrhal, paroxysmal and convalescent (2). Prior to the catarrhal stage 

there is a 6-10 day incubation period (although this can stretch up to 3 weeks). The catarrhal 

stage of the disease is indistinguishable from many upper respiratory tract infections as it has 

generic and relatively mild symptoms such as dry cough, malaise and nasal discharge (3). This 

stage is the most infectious period of the disease and lasts approximately 1-2 weeks. Whooping 

cough is rarely suspected at this stage unless exposure to a known case has been ascertained (4–

6). The severity and frequency of the cough worsens during this time until the most characteristic 

symptoms start to develop, in the paroxysmal phase. 

 

Progression to the paroxysmal stage of the disease is characterised by significantly more 

troublesome symptoms, the most recognisable of which are: post-tussive vomiting, paroxysmal 

cough and ‘whooping’ between coughing bouts. This stage lasts 3-6 weeks and is the most 
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characteristic of the disease (3). Coughing fits can be so intense that in addition to post-tussive 

vomiting, cyanosis, bulging eyes and haemorrhage can occur. Paroxysms can also leave children 

vulnerable to secondary infection or complications involving hypoxia (7). In neonates, 

paroxysms can be replaced by episodes of apnoea in which breathing stops. Neonates are the 

most at-risk population and suffer the highest mortality rates in all countries, vaccine schedules 

and time periods (8–10).  Towards the end of paroxysmal stage, the coughs become less frequent 

and severe. This disease gradually transitions into the convalescent phase, which can last up to 3 

months. The nasopharynx is still damaged however, and regular respiratory infections can trigger 

paroxysmal coughing during this period (9). 

 

1.3. Diagnosis 

 

NICE guidelines suggest that whooping cough should be suspected if the symptoms: paroxysmal 

cough, inspiratory whoop, post-tussive vomiting or undiagnosed apnoeic attacks in young infants 

are observed in addition to >=14 days of coughing (11). The disease can be officially diagnosed 

when either culture, PCR or serology tests positive for B. pertussis. The effectiveness of PCR 

and culture is limited as the bacteria are present at testable levels in the nasopharynx only for 

approximately 2 weeks after cough onset and levels decrease over the next two weeks. However, 

this is when the immune system is highly active against B. pertussis antigens and patients begin 

to seroconvert. Therefore serological testing is often the most reliable testing method as patients 

are seropositive for approximately a year after the infection (12–14).  In terms of treatment, 

antibiotics are effective against B. pertussis and the species has low antibiotic resistance levels 

outside of China (15). Because of the disparity between symptom onset and the presence of the 

bacteria, however, current guidelines recommend administering antibiotics only within 3 weeks 

of onset of symptoms (11).   

 

1.4. The evolution of the Bordetella genus 
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The Bordetella have been found in many environmental samples as many previously 

undiscovered species were found in environmental metagenomic data sets. Furthermore, when 

put on a phylogenetic tree, the environmentally associated species were found near the root of 

the tree, indicating that the ancestor of the Bordetella genus was environmental and that 

adaptation to hosts was evolved later (16). In support of the environmental origins of the genus, 

B. bronchiseptica is able to grow in soil and to not only survive phagocytosis by the amoeba 

Dictyostelium discoideum but be able to ‘hitch-hike’ on its spores and propagate (17). Survival in 

amoebae is thought to be a pivotal feature in other bacterial adaptation stories as amoeba can be 

thought of as a ’training ground’ for macrophage survival.  

 

1.4.1. The evolution of the Bordetella genus 

 

1.4.1.1. Host-associated and host-specific clades of B. bronchiseptica reveal the 

evolutionary history of B. pertussis 

 

Most clades in the B. bronchiseptica phylogenetic tree have a number of strains isolated from 

immunocompromised humans, although a small number were isolated from healthy individuals  

(18, 19). Some B. bronchiseptica clades are associated with specific hosts (although not 

necessarily exclusively restricted) and range from seals to dogs and pigs (18,20,21). This host 

association, rather than total restriction, suggests that B. bronchiseptica has retained the genetic 

pathways responsible for host generalism.  

 

Multi Locus Sequence Typing (MLST) analysis of the classical Bordetella species categorised 

the genus into 4 clades, with clade 1 and 4 comprised of B. bronchiseptica and clade 2 and 3 

comprised of B. pertussis and the human specific clade of B. parapertussis, respectively (Figure 

1.1) (18). Phylogenetic analysis by Diavatopoulos et al established that B. pertussis was most 

related to a human-restricted clade of B. bronchiseptica (clade 4), indicating that they shared a 

common ancestor (18). It is likely therefore that the most recent common ancestor of these two 

groups had begun the process of host restriction before B. pertussis speciated and perhaps this 

meant it too had an increased tropism for humans before the speciation event. 
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Extant members of clade 4 B. bronchiseptica have defined their own pathway for increased 

pathogenicity as it was found that some clade 4 isolates of B. bronchiseptica were hyper-virulent, 

although there was considerable phenotypic diversity in the clade. When mice are intranasally 

infected with the reference strain of B. bronchiseptica (RB50, from clade 1), colonisation (but 

not symptomatic or lethal infection) occurs, bacterial load peaks at 10 days and then gradually 

decreases. Whilst some clade 4 isolates caused a similar infection to RB50, a number of clade 4 

isolates caused lethal infection in mice (despite colonisation of mice with B. pertussis not being 

symptomatic) and histological examination of lung tissue of these infections showed widespread 

inflammation. Most clade 4 isolates were more virulent in vitro by measuring lysis of HeLa cells 

during infection, although the diversity of in vivo lethality was also reflected in these in vitro 

tests (22). No exclusive gene gain or loss events can differentiate clade 1 and clade 4 isolates of 

B. bronchiseptica, indicating that their phenotypic differences were likely caused by more subtle 

nucleotide changes. 

 

 

1.4.1.2. The presence of repeat elements 

 

One of the most striking differences between B. pertussis and B. bronchiseptica is the high level 

of insertion sequences in B. pertussis, but their sporadic appearance in B. bronchiseptica (23).  

Strains from B. bronchiseptica clade 4 have IS1663 present in only 80% of isolates (24,25). 

Whilst IS1663 is present in B. pertussis, the B. pertussis genome is most markedly dominated by 

the approximately 250 copies of IS481; but also has a number of copies of IS1002. It is apparent, 

therefore, that at some point in the speciation of B. pertussis, additional insertion sequences 

integrated into the genome and started to accumulate. It is possible that the clade 4 isolates 

gained IS1663 independently and there is not yet a consensus in the literature on this.  

 

 

 

Insertion sequences were pivotal to help shape the B. pertussis genome into its current 

streamlined form (23) which is associated with increased host-restriction in the species, 
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throughout the genus (24) and more generally in other bacteria too (26).This dramatic rise in 

repetitive DNA during the speciation process is synonymous with the increased pathogenicity of 

B. pertussis. The evolutionary trajectory of B. pertussis has taken the species to be the dominant 

cause of whooping cough- a deadly disease which has historically had high morbidity, mortality 

and infectivity. To some extent these factors have been reduced by vaccination, but 

understanding the natural history of the disease can lead to a greater understanding of the disease 

and the causative bacterium. 

 

1.5. The speciation of B. pertussis: less is more  

 

 

1.5.1. B. pertussis has recently speciated 

 

The first historical accounts of whooping cough occurred between 1100-1600 (27–30). In these 

records it was described exactly the same as it is diagnosed today (although of course variably by 

each writer) with Thomas Willis in 1674 describing one of the symptoms as: "...inspiration and 

expiration being suppressed for a space the vital breath can scarcely be drawn; insomuch that 

coughing as being almost strangled by a hoop...." (31), an early reference to the characteristic 

‘whoop’ made by patients during paroxysms. Despite sporadic mentions of a whooping cough 

like illness, there were no mention of epidemics in the comprehensive manuals of medicine 

published that were contemporary with the first accounts of the disease. It was found however, 

that there was considerable mention that whooping cough epidemics were occurring in Europe 

and Persia in the 16th century (27,32). 

 

Whilst it is tempting to think of historical records as prohibitively incomplete, this late 

emergence is in contrast to many infectious diseases which have long and rich history. Evidence 

of tuberculosis has been found in Egyptian mummies from 2400BC (33,34) (but no 

contemporary records of the disease), in references written in Indian texts 3200 years ago (35) 

and is mentioned in the Old testament (36). The story is similar too for plague, with the first 
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historical accounts (which can be verified using genomics to be due to Yersinia pestis) in 541AD 

for Justinian Plague (37–39), 1000 years earlier than for pertussis.  

 

Later historical texts, beginning in the 18th century and 19th century, document dramatically 

increased cases of whooping cough, deaths and epidemics thus indicating increased prevalence 

and mortality (40,41). This coincided with increased movement of people and rapid human 

population increases (32). Early data from this time surprisingly echoes modern epidemiological 

observations and found a cycle comprising increased incidence every 3-4 years on a backdrop of 

persistent cases (40). Historical records are important because they can inform us on the 

evolution of the bacteria and provide context to modern data sources. 

 

A landmark phylogenetic analysis of 343 isolates revealed that the likely speciation of B. 

pertussis was far earlier than its first historic mention (Figure 1.1). Bart et al report that Bayesian 

inference estimated the divergence of the two extant lineages of B. pertussis to be approximately 

2000 years ago (42). It was found that of the 72% of pseudogenes shared between two isolates 

which represent these extant lineages, all had the same inactivation mutations. It could therefore 

be concluded that host-restriction was also at least 2000 years old. Further molecular clock 

experiments by Bart et al could date the expansion of the lineage 2b clade of B. pertusiss, which 

comprised 98% of the study and is the vastly dominant clade in circulation in the past century, to 

be in approximately the 18th century which is in agreement with the historical records of the first 

whooping cough outbreaks (42). 

 

This is manifest in the population structures of these different bacterial species. TB is ancient but 

with a low SNP rate and therefore there is low diversity, but each isolate has many unique 

mutations (43). B. pertussis is clonal but all strains diverged recently, giving a population with 

very little variation (42). This is consistent with a tight bottleneck event during the host-

restriction process leading to very little diversity. Y. pestis is not as clonal as either TB or B. 

pertussis and has a more diverse population (44).
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Figure 1.1. [1] MLST tree showing that B. pertussis is most related to B. bronchiseptica isolates 

from the human associated clade 4. [2] Bart et al studied the core genome SNPs (generated from 

Illumina sequencing) to show two deep clades of B. pertussis. The expanded section shows 

lineage 2b, which makes up the vast majority of circulating isolates. The vaccine eras are noted 

on the 2b subtree. Reproduced from Diavatopoulos et al and Bart et al (18,42).
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1.5.2. Evolution by genome reduction: less is more 

 

Whilst phylogenetic dating shows B. pertussis is a recently speciated, host-restricted pathogen, it 

does not show by what mechanism this has happened. This becomes clear when the size of the 

genomes are compared. The first published genomes of B. pertussis (4.1Mb) and B. 

bronchiseptica (5.3Mb) indicated that B. pertussis contained 1Mb less DNA than B. 

bronchiseptica, and B. parapertussis (human associated) (4.7Mb) contained 600kb less DNA 

(23).   Genome reduction in B. pertussis has occurred primarily by recombination between 

homologous insertion sequences, of which there are approximately 250 copies of IS481, 17 

copies of IS1663 and 6 copies of IS1002 in each B. pertussis genome (23). As B. pertussis shares 

a common ancestor with the human-associated B. bronchiseptica clade 4 isolates, the host 

restriction process likely predated the speciation of B. pertussis and was occurring in their 

common ancestor. Genome reduction was therefore likely a catalyst for host specificity rather 

than the sole driver (18). 

 

In addition to gene loss, gene inactivation can occur when either a frameshift, premature stop 

codon mutation or when an IS translocates to disrupt the open reading frame. Both B. pertussis 

and B. parapertussis genomes have a considerable number of such pseudogenes, with B. 

pertussis having approximately 300 and B. parapertussis having 200 despite the reference B. 

bronchiseptica genome having only 13 (23). Recent RNA-seq analysis of B. pertussis does show 

that many pseudogenes are still transcriptionally active however  (45, 46), thus indicating that 

despite being divergent from their original structure, the gene still may be contributing to the 

phenotype of the cell in some cryptic way. Disruption by frameshift mutations or insertion 

sequences may therefore be modifying the transcriptome in some cases, rather than just reducing 

it (expanded on below). 

 

The maintenance of insertion sequences, particularly when they get to high copy numbers, is 

costly for the host bacterium (47). Insertion sequences can be seen as parasitic, existing purely to 
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maximise their own success. It is likely that the initial copies of insertion sequences in B. 

pertussis were detrimental to the cell and were acting in a parasitic capacity. This is because 

there is likely no benefit to a single random insertion of an insertion sequence. Beyond genome 

streamlining, homologous recombination between insertion sequences can also cause 

rearrangements and CNVs (copy number variants) - processes can be beneficial to bacteria 

(reviewed in ‘The unique biology of structural variations’). In addition to structural changes, it 

has been found that some insertion sequences in the B. pertussis genome have outward facing 

promoters and therefore affect the transcription of neighbouring genes (46). It is likely that the 

co-existence of insertion sequences and bacterial cells is a multi-factorial relationship that has 

both benefits and costs to both sides. 

 

It is likely that the transition to the human host was a bottleneck event that was pivotal to the 

expansion of insertion sequences and to the loss of genes in the species. This is because 

bottleneck events lower the diversity of the species and thus the power of purifying selection. 

This allows the ‘selfish’ insertion sequences to proliferate. This occurs for two main reasons. 

Firstly, living in the host as compared to the environment means a drastic reduction in the 

effective population size of the species. This decreases the competition and allows genetic drift 

to erode the genome via frameshifts or for the genome to tolerate IS expansion. Secondly, the 

change of environment means many genes are superfluous and therefore have reduced purifying 

selection acting on them and as such, IS transposition into these genes is tolerated. The 

transposition of insertion sequences can also occur into seemingly useful genes and it is viewed 

that these events are weakly deleterious and cannot be purged by the weak purifying selection. 

This means that a mixture of weak purifying selection and genetic drift allows the proliferation 

of insertion sequences, either because they provide useful benefits or simply because they cannot 

be purged (48–50). 

 

All the same key virulence factors are present in B. bronchiseptica, B. pertussis and B. 

parapertussis and there is very little DNA that is unique to either B. pertussis or B. parapertussis 

(24). The increased pathogenicity and host restriction of these species are not due to the gain of 
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new factors. B. pertussis has lost approximately 1000 genes whereas B. parapertussis has lost 

approximately 600 genes. Gene presence/absence in these species was compared to a manually 

curated database of gene functions and it was found that many of these genes were involved in 

membrane transport, metabolism, regulation and cell surface structures (23). 

 

The idiom that less is more is certainly true for the pathogenicity of B. pertussis: a slimline 

genome is associated with increased pathogenicity. Other members of the genus have also shown 

similar (although not identical) evolutionary paths. Members of the pathogenic Bordetella genus 

can therefore be seen as a case study for a number of factors which are pivotal to the success of 

B. pertussis: evolution of host restriction and subtle changes to the function and regulation of 

virulence factors  (18, 23, 24, 42). For example, whilst B. holmesii is not closely related to B. 

pertussis, it has also evolved by genome reduction and in fact has a smaller genome than B. 

pertussis by approximately 400kb. This has also been driven by IS expansion (with a different 

complement of IS, but including horizontally acquired IS481). Additionally, B. parapertussis 

appears to have a host restricted, ovine clade in addition to the human restricted clade and has 

undergone genome reduction. 

 

1.5.3. The factors that drove the evolution of whooping cough caused by B. pertussis 

 

Multiple host restricted pathogens emerged from a common ancestor in the Bordetella genus. It 

is hard to define exactly what factors allowed host restriction in these species or why B. pertussis 

appears to be the dominant causative agent of whooping cough, however. Although mechanisms 

of pathogenesis in B. pertussis are known, they are often shared between the classical Bordetella 

species and their function in other Bordetella species is less well described.  

 

Common to all Bordetella species, is the two-component system BvgAS. The expression of 

many virulence factors in the classical Bordetella are under control of this system. It is often 

described that the system has three states: off (Bvg-), on (Bvg+) and intermediate (Bvgi) which 

respond to temperature (25oC, 37oC, intermediate respectively) and MgSO4 concentration (51). 
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The Bvg+ phase also has early, middle and late genes (52–54). Whilst these categories and sub-

categories are useful to describe observations, in reality a continuum of gene expression is 

induced by a continuum of these environments. 

 

The Bvg+ state is clearly a virulent state, due to its induction at human body temperature and that 

it turns on expression of all key virulence genes. The role of the Bvg- state, which activates 

expression of genes which include motility and urease operons, has been linked to transmission, 

survival and persistence (55,56), such as in aerosolised droplets, the key transmission route of 

the bacterium (57,58). In B. bronchiseptica, the role of Bvg- is related to the environmental 

survival or environmental growth of an ancestor (17).  

 

Animals prevent bacterial growth on mucosal surfaces by reducing free iron levels (Fe3+), a key 

component in cell growth. In general, bacterial growth is supported at concentrations of free iron 

as low as 10^-7 M but in mucosal surfaces this is restricted to levels of approximately 10^-24 M 

(59). Therefore, the acquisition of iron is critical to the success of a pathogen. As such, the 

classical Bordetella have at least 3 systems: alcaligin, enterobactin and heme utilisation to 

scavenge iron from the host- the former two being siderophore pathways. B. parapertussis 

appears to lack the enterobactin iron acquisition pathway, however (60). In general, iron 

acquisition can be seen in all of the animal-associated isolates in the genus (in various pathways) 

and is absent from B. petrii (an environmental species).  

 

On the mucosal surface, many factors are used by B. pertussis for adherence and cytotoxicity. 

Factors which are implicated in the adherence of cells include pertactin (PRN), fimbriae (fim) 

and filamentous hemagglutinin (FHA). In brief the function of these factors is as follows. 

Pertactin is an autotransporter which has a role in attachment (61), although it likely also has a 

role in immunomodulation (62). Fimbriae bind to monocytes and epithelial cells in the upper and 

lower respiratory tract (63). FHA binds heparin and thus allows binding to epithelial and 

macrophage cells (63). 
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Bacteria which cause severe disease, such as B. pertussis, often have more advanced systems to 

evade host immunity than bacteria that are opportunistic or only cause mild symptoms (64).  

For example, one significant difference between B. pertussis and the other classical Bordetella is 

the lack of O-antigen- an important factor in pathogenicity. B. parapertussis and B. 

bronchiseptica both have and express the LPS O-antigen genes whereas they are deleted from B. 

pertussis. The O-antigen is highly immunogenic and how this affects B. pertussis is not clear, but 

appears important for B. parapertussis to colonise hosts convalescent for B. pertussis by 

inhibiting antibody binding (65). In addition, systems have developed to evade complement 

killing in B. pertussis, such as binding the host complement regulator (C1-inh) which activates 

complement. B. pertussis sequesters this molecule on its cell surface, avoiding complement 

killing. This activity is absent in the other Bordetella species  (66, 67).  

 

B. pertussis encodes a number of toxins which cause damage to the host epithelium and 

contribute to the development of whooping cough. Adenylate cyclase causes haemolysis but also 

can bind to a variety of cells, bind to calmodulin and cause an overproduction of cAMP, 

depleting the cells of ATP and impairing their function (68). One of the main toxins known in B. 

pertussis, and one that it exclusively produces within the classical Bordetella, is pertussis toxin. 

Pertussis toxin is secreted by a type 3 secretion system and once inside host cells, blocks 

inhibition of adenylate cyclase activity, leading to an increase in cAMP in the cell. The factor 

responsible for the bacterium to trigger such intense paroxysms in the host has not been found 

(68), however. Other toxins include dermonecrotic toxin and tracheal cytotoxin, which also play 

roles in pathogenesis, although their contribution is not well known. Pertussis toxin is so key to 

the pathogenesis of B. pertussis, that acellular vaccines containing just this toxin are of 

comparable efficiency to 5 component vaccines (69). 

 

Beyond the mechanisms thought to be key to the development of whooping cough, the function 

of genes in B. pertussis is under-studied and this is also true of the other human-restricted 

pathogens in the genus. Therefore, considerable work needs to be undertaken to ascertain which 

genes (and mutations) are critical to human pathogenicity of the genus and full development of 



24 
 

whooping cough. Further investigation into genotype-phenotype links, as is needed in the 

Bordetella, can be undertaken on a large scale using the framework of Genome Wide 

Association Studies (GWAS) (70). This is a statistical framework that strives to link genotypes 

to phenotypes whilst controlling for the underlying population structure. This is complicated by 

the fact that bacteria reproduce largely asexually and thus have a very strong phylogenetic 

relationship with most mutations occurring together, since there is no ‘scrambling’ of the 

genome during sexual reproduction. Traditionally, GWAS is undertaken using the SNPS or gene 

presence or absence as genotypes. Technological and theoretical advancements have meant that 

recently, other mutation types such as small indels can also be included by analysing the genome 

as K-mers (K- length sequences) which present a unified framework to study all mutations. The 

work in Chapter 3 includes an investigation into GWAS for B. pertussis using structural variants 

as a genotype in order to test the suitability of the framework for use with the species. 

 

1.6. The evolution and epidemiology of B. pertussis in the era of vaccines 

 

 Evolution is clearly not a static process and as such is continuous. The previous 100 years have 

seen dramatic changes in the incidence of whooping cough and the evolution of B. pertussis in 

response to vaccination schedules (71). Whilst the incidence and epidemiology of the disease is 

linked to the vaccine schedule, the link between genetics and vaccination schedule is not clear 

(72). I review these factors briefly in the pre-vaccine era and in-depth in the whole cell and 

acellular vaccine periods which are most relevant to understand the disease of today. 

 

1.6.1. Pre-vaccine era (1800’s-1940’s) 

 

 

The 19th and early 20th century saw drastic increases in the number of whooping cough cases 

and epidemics (31). By 1910 it was a huge public health burden with mortality at 10% for 

children under 5. At approximately the same time B. pertussis was confirmed to be the causative 



25 
 

agent and within just 30 years, by 1940 (73), the first chemically inactivated whole cell vaccine 

had been extensively rolled out for children. This ushered in a new era of the way whooping 

cough was considered by society and altered its epidemiology. 

 

1.6.2. Whole-vaccine era (1940’s-1990’s) 

 

1.6.2.1. A drastic reduction in disease 

 

Whole cell vaccines were incredibly effective at reducing the incidence of whooping cough in 

countries with good vaccine coverage. The incidence of whooping cough fell from 

approximately 115,000 to 270,000 cases a year (with 5000-10000 deaths) in 1940 to 1200 to 

4000 cases (with just 5-10 deaths) a year in the 1980’s in the US (74).  This was therefore a 

highly successful programme and representative of many other vaccination success stories, 

although the success fluctuated over the years. 

 

1.6.2.2. A shift in demographic 

 

Whilst the vaccine schemes were effective in reducing the number of cases of whooping cough, 

the disease was not eradicated and carriage of the bacterium likely still persisted. Early studies 

suggested that carriage was still ongoing as the 3-4 year spikes in incidence, clearly seen in the 

pre-vaccine era, were still ongoing (75). This is in contrast with measles, where an increased 

cycle time was noted.  

 

In this era, efforts to reduce the incidence of the disease focused on rolling out vaccines to as 

many as possible, and 79% of British children were being vaccinated by 1973. There were, 

however, vulnerable parts of the global population who could not be vaccinated effectively, 

including neonates and developing countries in which vaccine coverage was not optimal. It is 

interesting to note that a change in demographic was recorded in this period. It was noticed that 
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adolescents were becoming more vulnerable to the disease as early as the 1960’s (76). The 

longer the time since last vaccination was an important factor to determine the attack rate of the 

bacterium.  There were also an undetermined amount of cases in adolescence and adults (77–79) 

and mild cases of the disease (78).  

 

1.6.2.3. Vaccine scares and an aversion to ‘crude’ vaccines 

 

As the cases of whooping cough dropped by 99%, the public lost the fear of the disease, despite 

the era of extremely high prevalence still being within living memory. A lot of attention was 

instead paid to both real and perceived side effects of the vaccine. Real side effects (although 

temporary) included fever, limb swelling and persistent crying (80–82) whilst notable and 

tenaciously associated perceived side effects were sudden infant death syndrome (SIDS), 

neurological disorders  (84, 85) and febrile seizures. Many of the real side effects were 

associated with the highly antigenic cell-wall components of the whole-cell vaccine. These 

effects caused increasing concern about the vaccine and thus vaccination rates fell UK-wide to 

just 30%, a trend that was echoed in many developed countries with some stopping vaccination 

entirely (85). Predictably, this caused outbreaks almost immediately with Sweden (with a fully 

suspended vaccine programme) experiencing two outbreaks in 1983 and 1985. There were more 

than 4 times more cases in 1981 compared to 1985, which corresponded with 2 and 6 years after 

the cessation of vaccinations and reflected the demographic of whooping cough in 

unvaccinated/semi-vaccinated populations  (86, 87). The UK suffered similar outbreaks between 

1978 and 1982 (87). With the public distrustful of the whole cell vaccine and whooping cough 

cases on the rise there was an urgent need for a new vaccine with fewer side effects. 

 

1.6.3. Acellular vaccine era (1990- present) 

 

Work began on making acellular vaccines composed of varying combinations of up to 5 key 

antigens: pertussis toxin (PTX); filamentous haemagglutinin (FHA), pertactin (PRN) and 
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fimbrial protein 2 and 3 (FIM2/3). Early efficacy trials demonstrated such vaccines provided 

similar short-term protection to whole cell vaccines and fewer side effects and they were rolled 

out in most developed countries between 1990 and 2005. At first these acellular vaccines 

replaced the whole cell vaccine booster vaccinations in a hybrid whole cell and acellular vaccine 

schedule and then a few years later acellular vaccines replaced all use of whole cell vaccines in 

many developed countries (88). In developing countries, whole cell vaccines were still used and 

many still use them today. 

1.6.3.1. A demographic change to adolescence and neonates 

 

The switch to the acellular vaccine is correlated with an increase in cases of whooping cough and 

a shifting of the demographic. The ACV is known to grant a shorter period of immunity than the 

WCV or natural infection. A meta-analysis showed that for every year after an ACV booster, the 

odds of contracting the disease increased by 1.33 and that after 6-8 years from the last booster, 

only 10% of children would have sufficient immunity (89). In addition, it was found that 

adolescents who had received solely the acellular vaccine were 6.6x more likely to get the 

disease than those who had received only the whole cell vaccine and that those receiving a 

mixture had directly proportional risk to how many acellular boosters they had received. This fits 

well with the epidemiological data which shows that since the introduction of the acellular 

vaccine, there has been a large increase in the number of adolescent whooping cough cases. The 

waning immunity provided by the vaccine was not related to how many antigens are included in 

the vaccine, how many booster shots are given or the method by which the vaccine was produced 

and is supported by a number of studies  (91, 92). 

 

1.6.3.2. The resurgence of whooping cough 

 

The introduction of the acellular vaccine coincides with global increases in incidence of 

whooping cough. For example, in 2012 there were large outbreaks in both the UK and the US, 

the worst, in some cases, for 60 years. An holistic examination of the data indicates that cases 



28 
 

started to increase 15 years prior to the introduction of the acellular vaccines, despite the 

prevailing thought being that the acellular vaccine is the main factor in the resurgence of the 

disease  (93, 94). It is therefore possible that the increased awareness of the disease and 

improved testing by PCR and serology was contributing to an increase in reported cases in 

addition to the waning immunity from the ACV. 

 

One of the problems of the ACV is that they do not prevent colonisation and transmissions. 

Infant baboons were given a standard course of ACV and when challenged with B. pertussis did 

not show any symptoms of whooping cough, but were colonised by B. pertussis and able to 

transmit the bacterium to other baboons (94). Further evidence for asymptomatic or cryptic 

transmission of the bacteria is that between 12% and 30% of adults reporting prolonged cough 

are seropositive for B. pertussis (94). This means that B. pertussis is likely in wide circulation 

within the human population which allows transmission to at-risk populations such as neonates. 

In the UK, however, neonates are protected by immunisation of pregnant mothers, a strategy that 

seems to be highly effective  (96, 97).  

 

1.6.3.3. The weakness of acellular vaccines 

 

 

Unfortunately, antimicrobial drugs do not enjoy the long lifespan that vaccines do as most 

vaccines have remained effective for many decades. Some vaccines, however, have not had long 

life spans and it appears there are two key factors that in influence vaccine escape of a bacterium 

or virus: the ability of the vaccine to stop colonisation/transmission and the ability of the vaccine 

to raise a sophisticated and complex immune response against the pathogen. The acellular 

pertussis vaccine fails both of these tests (97). 

 

Vaccine escape is not often seen because vaccines often raise an immune response to a wide 

range of antigens. Antimicrobial resistance is much more common partly because its use is not 

prophylactic (allowing large populations to exist and evolve mutations) and partly because they 
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target either a single residue or small number of residues. Vaccine escape has been seen 

previously in a few rare cases where vaccines have been designed to (sometimes inadvertently) 

target a small number of bacterial or viral molecules(97). For example, in Yersinia ruckerii, a 

pathogen of salmonids, an inactivated whole-cell vaccine was produced using currently 

circulating flagellated isolates. Isolates could evolve resistance to the vaccine that had multiple 

mechanisms of action by a small number of mutations: Single mutations in the bacterium could 

turn off expression of the flagellum, which did not affect pathogenicity  (98, 99). 

 

The jettison or inactivation of genes by the pathogen that are included in an acellular vaccine can 

be seen patently in B. pertussis. In particular, the pertactin gene has undergone homoplasic 

deletion/inactivation mutations and these mutations are clearly under positive selection as many 

countries report a rapid rise in Prn-negative isolates. For example, in the US it was found that 

85% of isolates were Prn-negative (99) and in Europe it could be shown that pertactin deficiency 

rose from 1.9% in 1998-2001 to 25% in 2012-2015 (100). This is clearly alarming but it is 

known that Prn is not crucial to pathogenicity of B. pertussis and as such has been omitted from 

many acellular vaccine formulations that comprise only two or three components. 

 

Pertussis toxin has been considered to be important in the pathogenicity of whooping cough, but 

it is possible to isolate strains that have deleted or inactivated the ptx operon (responsible for 

pertussis toxin production) and do not produce the toxin (101–103). These isolates are rare 

however, and less than 5 have been previously isolated. A screen of over 300 strains for pertussis 

toxin production did not see any isolates beyond these few to be defective in pertussis toxin 

production (104). Filamentous haemagglutinin deficient strains have also been described (105). 

There is therefore considerable potential for isolates to evade the immunity generated by 

acellular vaccines. It appears that the prn-deficient isolates are fitter in acellular-primed hosts but 

at a disadvantage in naïve hosts  (62, 106, 107). 

 

Crucially, it could be seen that the acellular vaccine could not prevent colonisation or 

transmission (94,108). This was also inferred for the whole cell vaccine too, due to 
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seroprevalence and mild cases of whooping cough (109,110). Colonisation allows the bacteria to 

accumulate to high levels in the host giving ample time for genetic diversity to accumulate and 

the selective forces of the vaccine primed immune system to select for vaccine-escape mutations. 

 

1.7. The genetics of modern B. pertussis 

 

An understanding of both the natural history and the evolutionary history of B. pertussis can 

shape the knowledge of its evolution in the current era. The first B. pertussis genome sequence 

was generated in 2003 from the reference Tohama strain (23). Tohama had been the reference 

strains for some time and was isolated from a Japanese patient in the 1950’s. Because of its age, 

it is now not representative of circulating isolates and may also be adapted to laboratories due to 

passaging (111). The use of Tohama continues, but a closed genome sequence is available for 

B1917 which is now being promoted as a new, more representative reference genome (112) as it 

was isolated from a Dutch patient in 2000. B1917 has the promoter allele for pertussis toxin 

(ptxP3) which is found in the majority of many modern circulating isolates and is therefore 

representative of such isolates, although the ptxp3 allele may be a marker for other mutations 

(see Chapter 5 and ‘Key alleles associated with vaccination schedule’ below). 

 

When B. pertussis entered the human population, which was at least 2000 years ago (42), it is 

thought that this was associated with a dramatic bottleneck event that decreased genetic diversity 

and gave rise to the current population structure of the species today. This is one of the main 

factors that influence the population structure and genome of B. pertussis, in addition to a low 

SNP rate and a small accessory genome. Factors which are detailed here. 

 

1.7.1. Low SNP rate 

 

The low SNP rate of B. pertussis was shown by Bart et al (42) who studied a diverse set of 343 

isolates from different time periods. A SNP rate of 2.24x10^ -7 per site per year was found and 
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reanalysis by a study of mutation rates in 38 diverse bacterial species (including the Bart data) 

supported this  (115, 116). Duchêne et al also found that in comparison to many other species 

(such as Enterococcus faecium, Staphylococcus aureus and Streptococcus pyogenes), the 

mutation rate of B. pertussis was found to be an order of magnitude lower (113).  

 

The ratio of synonymous (SM) to non-synonymous mutations (NSM) gives an insight into the 

selection pressures acting on the species. This is because genetic drift alone would cause both 

mutation types to occur at the same frequency whilst purifying selection would remove non-

synonymous mutations, allowing synonymous mutations to occur at a higher frequency. Sealey 

et al used the ratio of SM and NSM in a dataset of 100 UK isolates to identify that genes 

encoding proteins included in the acellular vaccine were evolving at faster rates than other cell-

surface genes (a comparable control group as cell-surface proteins are generally under positive 

selection to avoid host immunity) (114). The mutation rates in these genes were highest after the 

introduction of the acellular vaccine in many parts of the world. Overall, the findings of the study 

supported the idea that the genes encoding proteins in the ACV were under positive selection as 

the ratio of NSM to SM was higher than in cell surface genes, although it wasn’t clear if the 

higher rate of mutations in the ACV era was due to selection pressures or enhanced mutability. 

 

This work by Sealey et al was extended by Etskovitz et al who compared the SM/NSM ratios 

between only the 5 genes encoding products of the acellular vaccine (115). They found that FHA 

and PRN were under positive selection but that PTX genes were under purifying selection. This 

sheds light onto the Sealey et al study by showing that overall, these genes may be under positive 

selection, but that masks a more subtle pattern between the 5 regions. 

 

It therefore appears that some of the genes involved in coding for the proteins contained in the 

acellular vaccine are under positive selection, likely in response to the increased selection 

pressure of the acellular vaccine. It is unclear, however, the selection pressures acting on other 

sites in the genome or how much of this effect can be explained purely by time  (42, 119). There 

is therefore more work to be undertaken to establish what selection pressures shape the modern 
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population of B. pertussis (in particular, outside of the well-studied virulence genes) and how 

tolerant the genome is to deleterious or neutral mutations. 

 

1.7.2. Key alleles associated with vaccination schedule 

 

Pressure acting on key virulence genes was described when it was found that novel alleles 

rapidly displaced older alleles in selective sweeps at least 4 times in the period of 1949-2010 in 

the Netherlands (71). This result was echoed by other studies in other countries, including 

Australia (117–119). These findings are consistent with the theory that the B. pertussis 

population is under selection by vaccine-induced immunity for key virulence genes.This theory 

is not universally supported and many speculate that many other factors could be partially or 

wholly responsible. 

 

One of the alleles to become dominant has been ptxP3, caused by a single SNP (compared to 

ptxP1, the previously dominant allele) in the promoter region of the genes encoding the pertussis 

toxin. PtxP3 is now the dominant allele in nearly all countries with the acellular vaccine and 

whilst it was first found in the 1980’s it gradually replaced ptxP1 in the 1990’s (71). Whether 

this allele is the ptxP3 mutation has occurred only once on the phylogenetic tree and as such is 

associated with many other mutations and their contribution to the phenotype attributed to ptxP3 

is not clear. PtxP3 is associated with both enhanced virulence in vivo (increased colonisation), in 

vitro (increased toxin production and macrophage killing) and statistically (increased 

hospitalisations) but when the ptxP3 allele was created in the genetic background of a ptxP1 

isolate, the in vivo virulence associated with ptxP3 was not recapitulated- an elegant experiment 

that demonstrates the importance of other genomic features (120). 

 

1.7.3. An accessory genome by gene loss 
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Many species have highly variable gene contents between isolates. This can be described as the 

core genome, the part of the genome found in 99% of all isolates, and the accessory genome, 

genes which are variably present. The combined core and accessory genomes are known as the 

pangenome. Well known examples of species with extensive accessory genomes include 

Klebsiella and E. coli, which have core genomes of 17% (121) and <10% (122,123), 

respectively. In these species, the creation of large accessory genomes is driven by horizontal 

gene transfer, although this is not the case in B. pertussis. 

 

B. pertussis has a large core genome of approximately 90% that is driven purely by gene loss. 

On-going genome reduction causes considerable variation between circulating isolates in their 

gene complements. The categories of genes that were deleted ancestrally (membrane transport, 

metabolism, regulation and cell surface structures) are the same categories to which genes that 

are being deleted among recently circulating isolates belong, indicating that the same selection 

pressures that gave rise to the species are also acting now. In addition, it can be shown that 

pseudogenes are over-represented among those genes in recently occurring deletions (18%) 

compared to the whole genome (10%) (71,120) and that recently isolated strains have smaller 

genomes that older isolates. This indicates that the B. pertussis genome is undergoing continual 

streamlining, perhaps to purge defunct pseudogenes. Gene deletion therefore creates genetic 

diversity in the species, although modest. 
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1.8. The unique biology of structural variations 

 

Structural variants (SVs) are mutations which alter the order of the DNA in large contiguous 

blocks. Whilst these mutations can cause minor alterations to the nucleotide composition at the 

points at which the mutation occurs, their effect is mostly on the intervening DNA. There are 

three main classes: deletion, CNV and inversion. The formation of structural variants relies on 

the intrinsic mechanisms of DNA and DNA replication, an appreciation of which is required to 

understand how SVs are formed. 

 

1.8.1. How SVs are formed 

 

1.8.1.1. Homologous recombination as a chromosome maintenance mechanism 

 

Structural variants are formed through errors in routine DNA maintenance and replication 

pathways, much the same as single nucleotide polymorphisms or small insertions/deletions and 

therefore are classed as mutations. It is common to class structural variants as mutations 

(124,125) and as such I will refer to them this way in this thesis. The mutational pathways that 

lead to the formation of structural variants are described here. 

 

DNA damage leading to single stranded breaks or double stranded breaks in the DNA double 

helix can be repaired by a variety of pathways, including homologous recombination, non-

homologous end-joining, nucleotide excision repair and mismatch repair. Each pathway is useful 

for repairing different types of DNA damage whilst also being able to non-specifically repair any 

damage (mismatch repair, nucleotide excision, non-homologous end-joining) or repair only 

specific sections of DNA (homologous recombination) (126–129). 

 

Homologous recombination is responsible for the genesis of most of the known structural 

variants in B. pertussis and so is reviewed extensively here (130–132). Homologous 
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recombination is a mechanism of DNA repair primarily but secondary effects include the transfer 

of DNA inter-chromosomally or intra-chromosomally. The majority of structural variations are 

generated by the process of homologous recombination, despite it playing a minor role in DNA 

maintenance overall. But the process is also involved in horizontal gene transfer (133,134). 

 

There are two paths of homologous recombination in bacteria that are used as an ‘average’ 

mechanism (Figure 1.2), although there is considerable diversity in this process. They deal with 

single (ss) and double stranded (ds) breaks in DNA. Both involve the Rec genes with dsDNA 

breaks being repaired by the RecBCD genes and ssDNA breaks repaired by the RecFOR genes. 

Both pathways use RecA to bind homologous sequences (125, 126) but have subtly different 

mechanisms. 

 

Double stranded DNA breaks can be caused by a variety of mechanisms, such as UV light or 

chemical mutagenesis. DNA lesion or single stranded breaks can also be turned into double 

stranded breaks through the DNA replication process. During replication, the replication fork 

progresses from the origin of replication to the terminus but will encounter DNA lesions or 

single-stranded breaks en-route which cause a stall in the replication complex. Because the DNA 

replication process involves synthesising a new DNA strand for each of the parental strands, 

when the DNA replication fork reaches the single stranded break the leading strand (and its 

newly synthesised complementary strand) will disassociate causing: a double stranded break, 

replication fork demise and the creation of two separate dsDNA molecules  (129, 130, 135). 

When a double stranded break occurs, the RecBCD complex is recruited (128). RecBCD binds, 

unwinds and degrades the DNA until it reaches an ‘X’ (Chi) site (analogous to a checkpoint) 

(135). At this point RecBCD synthesises an extension to the leading strand in the form of a new 

single stranded DNA coated in RecA (136,137). The reaction then proceeds to the RecA process 

(128,138,139).  

 

Alternatively, when a single stranded break has occurred the enzymes RecFORJQ are involved 

in recruiting RecA. The RecJ exonuclease enlarges the single strand break thus creating an 



36 
 

exposed ssDNA portion of the DNA molecule. The RecFOR complex then recruits RecA to the 

exposed ssDNA and the reaction proceeds to the RecA process. Although more complex events 

can lead to further modifications and repair pathways (140,141). 

 

The RecA coated DNA (either newly synthesised DNA in the case of dsDNA breaks or newly 

degraded DNA in the case of ssDNA breaks) binds to a homologous region. This may be the site 

where the DNA replication fork stalled (See ‘replication restart’ in Figure 1.2), homologous 

region of the same chromosome or a sister chromosome generated during DNA replication that is 

still within the cell. The RecA coated single stranded molecule invades the target DNA and binds 

to it  (130, 144, 145). This forms a complex junction (Holliday junction) between two double 

stranded DNA molecules (if recombination between two different DNA molecules) or section of 

the same DNA molecule (if intrachromosomal recombination). The junctions are then cut to 

resolve the junction (144–146). Whilst homologous recombination is an effective pathway for 

DNA repair,  a by-product of this results in the generation of genetic diversity (124,147,148). 
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Figure 1.2. Schematics of ssDNA (gap) repair and dsDNA repair by homologous recombination 

via RecA. Reproduced from: “Recombination proteins and rescue of arrested replication forks” 

(144). 
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1.8.1.2. How deletions, duplications and inversions are formed by homologous 

recombination 

 

If the two homologous sequences are in the same orientation, then a deletion or CNV can occur 

(Figure 1.3). If this occurs between two molecules of DNA (such as between sister chromosomes 

during DNA replication), one molecule will donate the recombined region to the other and 

experience a deletion whilst the recipient molecule would receive the extra DNA and have a 

CNV. If a deletion occurs between different sites on the same chromosome then the intervening 

DNA is ‘looped out’ and forms a non-replicating circular DNA molecule (124,148). If the two 

DNA regions are in the opposing orientation on the same molecule of DNA then an inversion 

can occur. It is not possible for inversions to occur between different DNA molecules (Figure 

1.3). 
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Figure 1.3. Repeats in opposite orientation on the same molecule recombine to form an inversion 

(A). Repeats in the same orientation on different molecules recombine to form a Holliday 

junction which is then resolved to give one molecule a duplication of the intervening sequence 

and the other molecule a deletion (B). Adapted from: “Homologous Recombination—

Experimental Systems, Analysis and Significance” (149). 

 

1.8.1.3. Rarer mechanisms of SV formation 
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SVs can also form by processes which are collectively known as illegitimate recombination. This 

occurs when aberrant DNA complexes form from incorrect annealing during DNA processing, 

rather than from a break in the DNA. This type of recombination may require a small section of 

homology or could be carried out with no homology. This can lead to deletion, duplication or 

inversion of the DNA (150). 

 

When only one copy of the bacterial chromosome is present (precluding homologous 

recombination for most areas of DNA in the chromosome), non-homologous end joining (NHEJ) 

can be used to repair dsDNA aberrations. This process requires homology of only 4-12 base-

pairs and sometimes can be undertaken on areas with no homology. The system is not present in 

all bacteria, however and its impact in the bacterial kingdom is unclear. Structural variants can 

occur from this process when more than one double stranded break occurs in the genome and the 

breaks become incorrectly ligated to one another (150–153). 

1.8.1.4. Amplifications from duplications 

 

Once a gene duplication has taken place, the tandem array can further amplify to greater copy 

numbers. This can occur by the standard homologous recombination pathway or through the 

related rolling circle amplification pathway. In the homologous recombination scenario, 

amplification from a tandem array can proceed using homologous recombination between 

random copies in the array, the full array or only part of it. This can mean that the array can 

amplify nearly exponentially, if a second copy of the full array enters the recombination process. 

This will occur at the rate of 2n-1, as the second array must share an overlap of at least 1 repeat 

with the first array. At this maximal rate, where the whole array recombines, a duplication can 

turn into an array of 100 repeats in 7 generations. Taking into account ‘sub-optimal’ 

recombination between random subunits of the array means 100 copies could be obtained in 

approximately 11 generations (124,154–156). 

 

It has been observed that amplification of tandem arrays can occur faster than the maximum 

speed that Rec-A dependent mechanisms can provide. Petit et al found that arrays can be 
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amplified by the rolling circle amplification pathway. As the DNA replication fork progresses 

through the tandem array, recombination between the leading strand-based molecule and the 

lagging strand-based molecule can cause a circular DNA molecule to form with a trapped 

replication fork. The replication fork then replicates this circular molecule which is highly 

unstable and non-replicable. This intermediate molecule can be stabilised and made heritable 

through further homologous recombination with the remaining array (or potentially single locus) 

left on the main chromosome of the cell (155,157). It has been found that large tandem arrays are 

commonly made from sequences that are less than 40kb long, although it is unclear why this 

might be, considering that an array of 100 copies of a 40kb region would extend the genome by 

the same amount as 10 copies of an 400kb region (124,156). 

 

1.8.1.5. Selection acting on CNVs 

 

Whilst the work in this thesis concerns mainly the highly unstable tandem arrays of duplications, 

these events are the most frequent source of new genes with new functions. The early models of 

gene duplication proposed that following the duplication of the gene, the second copy is free to 

evolve a new function because the original copy of the gene continues to fulfil the original role. 

This model (known as the neo-functionalisation model) makes sense only if the second copy of 

the gene is under neutral selection pressure from its inception so that it can occur at a sufficient 

frequency and time to acquire new mutations. For example, if a perfect second copy of the gene 

was deleterious at its inception but this fitness cost could be ameliorated by a single SNP that 

was under positive selection for a secondary function, the second copy of the gene would be 

selected against before the new function could evolve. This is known as Ohno’s dilemma, after it 

was Ohno who proposed the neo-functionalisation model (158–160). 

 

A more sophisticated model was proposed to explain the fate of duplications which takes into 

account the continuous selection pressure that acts on all genes-the Innovation, Amplification 

and Divergence model (IAD) (158). Genes have primary functions which they are under 

selection for, but also secondary functions which may have residual activity and/or are neither 
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positively or negatively impacting the cell before the IAD process starts. When a change in 

environment occurs and these secondary functions of the gene are beneficial to the cell (or 

alternatively, secondary functions of the gene occur by point mutations during a constant positive 

selection for this other function), they are now under positive selection (158). This is the 

innovation stage. In this Amplification stage of IAD, because gene duplication events are much 

more common than point mutations (see below), an increase in the activity of these secondary 

functions of the original gene is likely to come from gene duplications rather than point 

mutations(158).   

 

The new selection pressure the cell is under can also select for point mutations in any of the 

copies of the original gene. This is the divergence stage of the IAD process. Because of these 

extra copies of the gene there are also extra chances for the mutation to occur due to increased 

mutation targets. Once beneficial mutations accumulate in one of these copies, the selection on 

the secondary function of the original gene and its identical copies reduces. This is because 

tandem arrays are a fast but crude way to respond to the change in environment which can be 

easily out-competed by subsequently occurring more elegant solutions. For example, 

amplification of an array of genes to 50 copies may cause 50x as much activity in the secondary 

function but a single SNP may mean the enzyme coded for has 50x more activity in this 

secondary function. In this scenario both mutations cause the same effect, but the SNP is more 

efficient as less product is produced. Subsequently, the array may reduce in copy number or 

additional copies may become inactivated  (161, 164–166). 

 

Experimental studies have found that most gene duplications are under purifying selection given 

that, over a long period of time and a stable environment, the function and level of expression of 

the gene is generally well adapted and thus a disturbance to this is deleterious (164). It has been 

found that duplication (or tandem array) size is not necessarily correlated with fitness cost but 

instead it is the disturbances to gene expression and regulatory networks which are under strong 

purifying selection themselves. In this regard, it is not the cost of replicating and maintaining 

extra DNA, but instead the cost is associated with superfluous protein synthesis which is an 
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energy highly intensive task (165). The work in this thesis focuses on mainly the short-medium 

term tandem arrays of identical genes, the ‘amplification’ stage of the IAD model (158). 

 

1.8.1.6. SV formation occurs more frequently than other mutations 

 

From experimental systems using Salmonella enterica and E. coli, species with a low number of 

repeats, the frequency of duplications has been tested  (150, 169, 170). It was found that the rate 

of duplication was highest in areas of high density of repeat sequences, such as loci near two 

rRNA operons. In a seminal paper, an E. coli strain was created containing a lactase gene (lac) 

which encoded an enzyme with only 2% of the activity of wild type via a frameshift mutation. 

This activity was not sufficient to allow the strain to grow when lactose was the only carbon 

source. It could be demonstrated that this gene could revert back to the wildtype at a frequency 

of 10^-8, yet when 10^8 cells were plated on minimal media supplemented with lactose, 100 

colonies were observed, 100 times greater than was expected. This was due to gene 

amplifications encompassing the lac gene and was explainable under the AID model  (166, 171, 

172). 

 

The standing variation of the initial population meant there were multiple cells with duplications 

of the lac gene which could survive initially. As these populations grew there was selection for 

higher copy numbers of the lac gene giving a higher chance of a lac revertant gene forming. As 

such it could be noticed that some of the colonies growing on lactose plates, when grown in the 

absence of lactose would revert back but a smaller minority had gained stable lactase function. 

This smaller population had amplified the tandem lac array leading to a lac revertant and a 

collapse of the frame-shifted lac tandem array. These experimental systems are exactly that, 

however- experimental (125). Organisms with higher repeat content will experience higher rates 

of SV formation. This means that structural variations may be the primary response to 

environmental change as their rapid formation allows the population to quickly change due to the 

high standing variation (124). 
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1.8.1.7. Selection acting on inversions 

 

Circular bacterial genomes are composed of two halves (known as replichores) which start at the 

origin of replication and end at the terminal region. The replichores are normally evenly sized 

and as such the terminus is 180 degrees from the origin of replication. An upset to replichore 

balance, such as a large CNV in one half of the chromosome, is associated with fitness costs. 

Espe et al found that an imbalance of 50 degrees in E. coli (168) was associated with fitness 

costs but other studies have found that this could also be as low as 16 degrees (169). This is 

because the unbalanced time to replicate each replichore can slow down the total time taken to 

complete genome replication and as such replichore imbalance correlates proportionally to 

slower growth rates. This may depend on how fast the cells are replicating, however (170). 

 

When population growth is fast, cell division can outpace DNA replication and as such multiple 

DNA replications must occur in order to keep pace. As DNA replication starts at the origin of 

replication and proceeds to the terminus, multiple simultaneous replication forks mean that as 

replication proceeds round the genome, there will always be more copies of genes near the origin 

than near the terminus. This means that genes near the origin will have higher expression (as 

there are more copies being transcribed) than genes near the terminus, this is termed the gene 

dosage effect. Due to this, some genes are located near the origin and are less likely to be near 

the terminus. Most commonly these genes are the essential genes for growth, but may be limited 

to genes involved in transcription and translation  (176, 177). 

 

The gene dosage effect likely only affects fast growing bacteria, which excludes B. pertussis 

which has a generation time of 5-8 hours. It is thought that in slow growing species, there are 

fewer replication forks needed as DNA replication and cell division are well matched and thus 

the gene dosage effect is reduced (170). However, it is also known that in slow-growing 

organisms DNA replication can be slower (and therefore still outpaced by cell division) and that 

multiple forks can still exist (173). 
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A considerable challenge to cells is the concurrent replication and transcription of the genome. 

Fundamentally, these two processes are bound to collide as DNA replication and transcription 

are co-occurring at the same time in cells and occur at a rate of approximately 1000nt/sec and 

80nt/sec, respectively (in E. coli) (174). Collisions can cause replication fork arrest or slowing 

and as such there is a selection pressure to reduce these events. Due to their different speeds, 

collisions of the two complexes can occur even when a gene is transcribed on the leading strand 

in the direction of replication (5‘ to 3’) but the head-on collisions if genes are transcribed in the 

opposite direction to replication slow down the replication fork more (175).  

 

Because of these interactions between the replication and transcription process, it was initially 

thought that highly expressed genes would be preferentially located on the leading strand (176) 

but later it was shown that essential genes were preferentially located on this strand (172). It was 

thought this was because replication fork stalling due to head on collisions created a higher 

chance of mutations locally and mutations in essential genes are often lethal (172). Evidence 

from later studies with more data extended the categories of genes found preferentially on the 

leading strand, revealing that transcription factors were favoured on the lagging strand and that 

slower growing species tended to have a lower strand bias (177). 

 

1.9. How single molecule sequencing has revolutionised the study of SVs in B. pertussis 

 

The rapidly expanding knowledge of the B. pertussis genome is catalysed by technological 

innovations in sequencing. The latest advancement is single molecule sequencing, described as 

the third wave of sequencing (after Sanger sequencing and short-read sequencing) and has 

enabled the mass production of closed B. pertussis genome sequences. Single molecule 

sequencing, which is undertaken most frequently on the two competing platforms of Pacific 

Biosciences (PacBio) and Oxford Nanopore (Nanopore), generates long reads which can span 

nearly all the repeat regions found in a genome. This makes closing genome sequences a feasible 

task. 
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1.9.1. Pacbio SMRT DNA sequencing enables closures of B. pertussis genome sequences  

 

Nearly all bacterial species sequenced using just short reads will produce an assembly which is 

fragmented. It is therefore not clear the order in which these fragments (known as contigs) occur. 

This is particularly true for B. pertussis as reads on the Illumina platform are a maximum size of 

300 bp and thus cannot bridge the 1kb IS481. Assemblies of B. pertussis genome sequence data 

therefore contain at least as many contigs as there are repeat regions. In the reference Tohama I 

genome there are >270 repeats (23) and so an assembly of this data with short reads gives at least 

270 contigs. When analysing a fragmented assembly, therefore, it is not clear if any genomic 

rearrangements or CNVs have occurred. In contrast, platforms which produce reads longer than 

1-3kb (the range of most repeat sizes in B. pertussis) are able to produce closed assemblies in 

which the position of all genes is known (23).  

 

To fully resolve CNVs the reads must be larger than the tandem array and have adequate 

coverage (normally at least 30x) which often is not possible on most platforms (and with most 

protocols) for large CNVs (over 5-10kb in length)  (106, 132, 134, 183). Due to the transient 

nature of the tandemly duplicated loci they are nearly always identical and therefore during 

assembly they are often collapsed into a single copy of the locus and can remain invisible to 

short-read sequencing or long-read sequencing, and are hard to spot even with genome mapping  

(106, 134). 

 

Molecular epidemiology at the CDC has focused on the production and analysis of closed 

genome sequences. These are assembled by a combination of enzyme mapping (a computer 

analysed restriction digest using an infrequent cutting endonuclease), PacBio sequencing and 

Illumina sequencing. This facilitates the generation of hundreds of closed genomes a year for B. 

pertussis and at the moment there are 470 uploaded to the Sequence Read Archive (SRA). 

Multiple technologies are used for these assemblies because long-read sequencing platforms, 

such as PacBio and Nanopore, offer long read lengths but higher error rate than Illumina 
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sequencing which offers short but accurate reads. Usually, they are both used on the same 

sample so that each of the dataset’s strength complements the other’s weakness. Enzyme maps 

help in this regard in that they contain very long DNA fragments, often showing the DNA order 

in fragments as long as 750kb  (184, 185). Enzyme maps do not contain the base composition of 

the fragments however and thus must be combined with sequencing platforms to produce closed 

genome sequences. 

 

1.9.1.1. Resolving CNVs and complex SVs 

 

When the resolution of a genome sequence using automated tools has been impossible with 

short-read, long-read and enzyme mapping data, this implies there is a complex or very long 

structural variation. This, at the moment of writing, requires manual resolution which involves 

finding areas of altered read depth coverage and cross examining this with the enzyme mapping 

before manually inserting the sequence of the suspected structural variant. This is then checked 

to be true by mapping long reads back to this manually altered assembly- if the junctions 

between the proposed structural variants have good coverage then it can be said that the reads 

support the hypothesised structure  (106, 134).  

 

1.9.1.2. The study of inversions in B. pertussis 

 

It has been seen previously using PFGE that the B. pertussis genome was fluid in gene order 

(181) but the huge number of closed genomes generated by long-read platforms allows the study 

of genome inversions in B. pertussis on a large scale. The landmark study by Weigand et al 

could demonstrate that there were considerable gene order differences amongst a cohort of over 

200 B. pertussis isolates (130). It was found that trees made from these gene orders 

approximately matched the phylogenetic tree made using SNPs meaning that there was not a 

random assortment of gene orders but that they were changing in a clock like fashion (similar to 
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SNPs). This meant that despite the large potential for rearrangement, there was limited and 

incremental change.  

 

How these inversions were shaped by the forces of selection remains unclear. The inversions 

found by Weigand et al, however, did fit in with the fundamental selection pressures that face all 

bacterial genomes (130). It was found that the inversions were largely symmetrical around the 

origin or terminus, thus preserving replichore balance and any potential leading-strand bias. 

However, a number of asymmetrical inversions were also found and certain gene orders 

appeared more conserved than others  (132, 176). These are both potential evidence of selection 

and this was expanded on in a second study in which Weigand et al found that there were 

patterns of inversions that were more common than others (131). The four most frequently 

observed gene orders were highly similar and when put onto a core-genome SNP-based tree it 

was observed that there were cyclical repeated inversion mutations that meant isolates were 

cycling through these 4 gene orders. This may have meant that these gene orders were conserved 

because of purifying selection, positively selected for under certain fluctuating environmental 

conditions or were fluctuating because they were under neutral selection and were drifting 

between conformations. The study was ultimately inconclusive in this regard. 

 

Elegant studies have shown that genomes can undergo remarkable structural changes without 

significant fitness costs, as long as replichore and genome organisation rules are adhered to. A 

key study by Cui et al demonstrated that cells with circular genomes which had been linearised 

were just as fit as cells with the natively circular genome, if the origin of replication was central 

in the molecule (preserving replichore balance) (182). Another study by Itaya et al could show 

that randomly inserting 3.4Mb of DNA from Synechocystis into the Bacillus subtilis genome did 

not affect its fitness, as long as replichore balance was preserved (183). 

 

It is interesting to note that although E. coli and Salmonella differ considerably in their 

nucleotide composition, their genomes have an almost identical gene order and structure. This is 

likely because of their large population sizes in which greater purifying selection effectively 
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purges any deleterious (or marginally deleterious) mutations such as inversions. Following this, 

it is possible that the low effective population size of B. pertussis means that the species is more 

prone to genetic drift as there is not the population size needed to have strong purifying selection 

(175).  

 

1.10. CNVs in B. pertussis 

 

The study of CNVs in B. pertussis appears in the literature a number 14 times, although their 

study has been serendipitous and sporadic  (106, 134, 189–192). One of the earliest and most 

comprehensive descriptions of CNVs in B. pertussis described a CNV of the adenylate 

cyclase/hemolysin gene (185). An isolate produced mixed colonies with either high or low 

haemolytic activity. The low haemolysis phenotype was stable whilst high haemolysis was 

unstable and could go onto produce both high and low haemolytic colonies. PFGE results 

showed that the higher haemolysis was due to a 350kb CNV. Phenotyping of this strain was 

undertaken by a variety of ways. The enzyme responsible for haemolysis had higher expression 

but a number of other virulence factors had the same expression between the two colony types. 

This indicated that the CNV was not disrupting expression genome-wide. Studies in a mouse 

model of respiratory infection revealed that high and low haemolysis clones did not show a 

significant difference in colonisation and revealed that the CNV was unstable in vivo, although 

the spectrum of mutants recovered after in vivo challenge was not reported. In addition, 

epithelial cell invasion models and macrophage survival assays did not show significant 

differences between colony types. This has been the only study to investigate the phenotype 

arising from CNVs in B. pertussis. The results showed that beyond the most fundamental level 

the CNV did not affect any broad in vitro or in vivo phenotypes (185). 

 

Other studies of CNVs in B. pertussis have been limited. These studies relied on either CGH, 

PFGE or long-read sequencing (combined with enzyme mapping) technologies to describe the 

structure of the CNVs and were not able to phenotype them (106, 134, 189, 191, 192).  No 

systematic analysis of CNVs in B. pertussis has been undertaken however. Systematic analysis 
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of these mutations are rare in the study of bacterial species, although there are many case studies 

of them. 

1.11. Structural variations as an overlooked class of mutation in bacteria 

 

In humans a variety of CNVs are known to directly cause diseases or be associated with complex 

diseases. Complex diseases such as autism (188), schizophrenia (189) and Parkinson’s (190) 

have been known to associate with structural variants. SVs have been implicated in the evolution 

of cancers with high grade ovarian cancer (191) and invasive breast cancer  (197, 198) being two 

types that have a particularly close relationship with SV formation. 

 

Due to the known importance of SVs in human populations they are routinely tested for, not only 

for diagnosis but also for epidemiological investigations. It is therefore equally important to 

describe the diversity of structural variants that can be observed but also to make specific 

genotype-phenotype links. The known significance of structural variants in humans means that 

micro arrays and analysis of whole-genome sequencing is routinely included in their study 

(188,194–196). 

 

Whilst there are a multitude of case studies on structural variants in bacteria, the surveillance and 

systematic description of them for whole species is rare. This is in stark contrast to human 

genomics. I believe this means the prevalence and impact of CNVs in the bacterial kingdom is 

vastly under-appreciated and I hope to contribute to describing this dimension of bacterial 

genomics throughout the thesis. 

 

1.12. Aim of study 

 

Structural variations have been established as a ubiquitous type of mutation in all forms of life, 

including viruses. Their study, however, is predominantly limited to eukaryotic organisms (188–

196). I therefore sought to investigate the prevalence of these mutations in B. pertussis, a species 
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with a highly repetitive genome that has been known to be prone to structural variation (Aims 1 

and 2). 

 

Further to this, I wanted to explore the suitability of Genome Wide Association Studies to study 

CNVs and deletions in B. pertussis. In the absence of phenotypic data for B. pertussis I studied 

two potential problems of a future GWAS in the species: how to represent CNVs and the level of 

homoplasy (and therefore linkage) of deletions. GWAS is in high demand as CNVs are a 

mutation type which is heavily understudied in the bacterial kingdom and the impact of deletions 

on the species is unknown. 

 

Aims 

1. To investigate the prevalence of CNVs in B. pertussis. 

 

2. To characterise the genome plasticity of B. pertussis 

 

3. To define a reliable method to represent CNVs for a future Genome Wide 

Association Study 

 

4. To investigate the level of homoplasy of deletions in B. pertussis 
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2. Methods 

 

2.1. Sequence read mapping 

 

Short-read data originating from the Illumina platform were retrieved from the National Centre 

for Biotechnology Information's (NCBI) Sequence Read Archive (SRA). One run was chosen at 

random for each BioSample, totalling 2709 runs including 94 locally provided runs. Reads were 

mapped to the B. pertussis B1917 genome sequence, which is broadly representative of the 

modern circulating strains (112) (RefSeq ID: NZ_CP009751.1), using BWA (197) implemented 

in Snippy (available: https://github.com/tseemann/snippy).   

 

2.2. CNV prediction 

 

CNVnator (198) was used to predict CNVs from read depth data generated from the mapping 

process. Statistical tests for significance within CNVnator discriminate high and low confidence 

calls. To further increase specificity, we implemented a very low P-value cut-off (p<0.0001). 

Abyzov et al empirically tested CNVnator to determine that ratios of the average read depth to 

the standard deviation of 4-5 produce the best balance between sensitivity and specificity (198). 

In accordance, samples exhibiting ratios < 3 were discarded as CNV calls were unreliable on 

such variable data (198). Window length was optimised for each genome, testing window sizes 

500 -1000bp at intervals of 100bp to evaluate which gave a ratio closest to 4.5 as to minimize the 

effect of stochastic and/or artefactual fluctuations in read depth across the genome. Copy number 

https://github.com/tseemann/snippy
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estimates were rounded to the nearest 0.1. Code is available: https://github.com/Jonathan-

Abrahams/Duplications. 

 

2.3. Control data for CNVnator 

As a negative control, short reads were simulated from the B1917 reference genome using ART 

to simulate the error profile of Illumina HiSeq paired-end 150 bp data (-ss HS25 -p -l 150 -f 20 -

m 200 -s 10) (199). Simulated reads were mapped back to the reference genome using Snippy 

and CNVnator was used to call any spurious CNVs, as described above (198).  

 

 

2.4. Heatmap 

 

The read depth-based predictions were hierarchically clustered based on the similarities of CNV 

profiles (including deletions) of samples using the R package Hclust. This therefore meant that 

strains with similar complements of CNVs and deletions were clustered together on the heatmap 

which was plotted using the R package Plotly (200). 

 

2.5. Networks 

 

Overlapping gene content among CNVs was evaluated by constructing undirected network 

graphs which quantified the relationships (edges) between each CNV (nodes). An edge was 

constructed between nodes if both CNVs had a 75% overlap (non-reciprocal). Network analysis 

was undertaken in R using the Igraph package (201) and networks layout was generated by the 

Fruchterman algorithm (202). 

 

2.6. qPCR 

 

Bacteria were grown on charcoal agar for 3 days at 37oC before inoculation into Stainer-Scholte 

(SS) broth (203) and grown overnight at 37 oC with shaking at 180 rpm. These cultures were 

https://github.com/Jonathan-Abrahams/Duplications
https://github.com/Jonathan-Abrahams/Duplications
https://paperpile.com/c/dOX3nk/FJiW
https://paperpile.com/c/dOX3nk/FJiW
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used to inoculate fresh media at an OD600 = 0.2. Bacterial cells were harvested (1ml for DNA 

and 10ml for RNA extraction) at OD600 = 1.1+0.1 by centrifugation (4000xg for 10 min) and 

resuspended in 700 µl of Tri-reagent (Invitrogen, ThermoFisher, Loughborough, UK), vortexed 

vigorously, and frozen at -80ºC. DNA was purified using QIAamp kit (Qiagen, Manchester, UK) 

in accordance with the manufacturer’s instructions. The concentration of DNA was determined 

using Qubit broad range DNA quantification kit (Fisher Scientific). 

 

qPCR was run on a StepOne Real-time PCR System (Applied Biosystems, ThermoFisher) using 

TaqMan™ Universal PCR Master Mix (Applied Biosystems), in a total reaction volume of 20 µl 

with 100pmol of DNA and with primer and probe concentrations as described in Table 2.2. 

Triplicate reactions were run for each sample. Reaction conditions were: 10 min at 95ºC 

followed by 40 cycles of 15 sec at 95ºC and 1 min at 60ºC. Copy number was quantified by 

using the 2-ΔΔCT method. Three biological repeats were used for determination of copy number in 

UK54. 

 

To isolate RNA, nucleic acids were precipitated with ethanol, residual DNA was removed by 

incubation with 4U of Turbo DNase (Ambion, ThermoFisher) for 1 hour at 37 ºC, and RNA was 

purified using the RNeasy kit (Qiagen, Manchester, UK) in accordance with the manufacturer’s 

instructions. The concentration of RNA was determined using Qubit broad range RNA 

quantification kit (Fisher Scientific). RNA integrity was determined by agarose gel 

electrophoresis. Finally, RNA was confirmed as being DNA-free by PCR using 50 ng of RNA as 

template in PCR with recAF and recAR primers. First strand cDNA was synthesised using 

ProtoScript II (NEB) with 1µg of total RNA as template and 6 µM random primers and 

incubated for 5 min at 25ºC, 1 h at 42ºC. The reaction was stopped by incubating at 65ºC for 20 

min. cDNA was diluted 1/30 in H2O for use in qPCR. 

 

RT-qPCR was run on a StepOne Real-time PCR System using SyberGreen Turbo Master mix 

(Applied Biosystems), in a total reaction volume of 25 µl with primers at 300 nM. Triplicate 

reactions were run for each sample. Reactions conditions were: 95ºC for 10 min and 40 cycles of 
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95ºC for 15sec and 1 min at 60ºC. The housekeeping gene recA was used as a stably expressed 

control gene (Table 2.2). The ∆CT and ∆∆CT were calculated by determining the difference 

between the reference condition and experimental condition. Relative expression was 

represented as fold change (fold change =2-∆∆CT). Significance was determined with one-way 

ANOVA. I undertook the initial qPCR to quantify the copy number of the locus in the original 

sample of UK54 and Iain MacArthur undertook all subsequent qPCR experiments. 

 

Table 2.2. Table of primer and probe sequences and their optimal concentrations for two 

experiments: DNA and RNA quantification. 

Name Role Sequence (5’ to 3’) 

Optimal 

concentration 

(nM) 

Role 

CNV_fw 
Forward 

primer 
TCTGGGGAGTCGAAAGCAAT 300 

DNA 

CNV_rv 
Reverse 

primer 
TCTTGAGGGTGGCGAAGAAT 900 

DNA 

CNV_probe Probe 
FAM-ACGCCCCTTGCTGACGTCGC-

BHQ 
200 

DNA 

BP283_fw 
Forward 

primer 
CAGGCACAGCACTATTGCG 500 

DNA 

BP283_RV 
Reverse 

primer 
GACGATTACCAGCGAGATTACGA 300 

DNA 
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BP283_probe Probe 

FAM-

CCGCCATCGCAACCGTCGCATTCA-

BHQ 

200 

DNA 

RecA_fw 
Forward 

primer AACCAGATCCGCATGAAGAT 

300 
RNA 

RecA_rv 
Reverse 

primer ACCTTGTTCTTGACCACCTT 

300 
RNA 

 

 

2.7. Phylogenetics 

 

To investigate the phylogenetic relationship between strains containing CNVs, a core genome 

SNP alignment was created using Snippy (available: https://github.com/tseemann/snippy). 

Phylogenetic trees were constructed using RAxML-ng (204,205). RAxML was used with the 

GTRgamma model, 10 starting trees and 500 bootstraps. Itol (206) was used to display the tree. 

HomoplasyFinder was used to find ancestral states (207). 

  

https://github.com/tseemann/snippy


57 
 

 

 

 

 

3. Chapter 3: A systematic investigation in Bordetella pertussis reveals 273 

CNVs 

 

3.1. Introduction 

 

At the time of writing there are over 1.2 million bacterial whole genome sequencing runs 

archived on the European Nucleotide Archive (ENA), the majority of which have not been 

analysed for large deletions, inversions or tandem CNVs, collectively known as structural 

variants. Despite this, there is a rich and diverse literature describing structural variants and their 

phenotypes (124) including antimicrobial resistance (208,209) and increased virulence (210,211) 

– topics of major public health concern. 

 

As many structural variants are formed through homologous recombination, bacterial species 

with highly repetitive genomes are likely to experience increased burden of SVs (124). In this 

study we focus primarily on Bordetella pertussis, the main causative agent of whooping cough , 

genomes of which have approximately 200 copies of IS481 (15,23). Speciation of B. pertussis 

from a B. bronchiseptica-like ancestor was synonymous with the accumulation of insertion 

sequence (IS) elements and subsequent large-scale rearrangements and deletions, likely though 

homologous recombination between repeats. As a result, genomes of B. pertussis encode at least 

1000 fewer genes than B. bronchiseptica (23). 

 

Homologous recombination between repetitive IS elements still plays a major role in the genetics 

of B. pertussis and as such it is described as having a plastic genome (23,120,130). B. pertussis 

genomes experience deletions, inversions and amplifications of large tracts of DNA, although 

these distinct forms of SV have been described to widely varying levels. Deletions mediated by 



58 
 

homologous recombination continue to streamline the genome in extant B. pertussis lineages and 

have enjoyed systematic description (120,212). Similarly, inversions have been subject to recent 

study (213), catalysed by advances in long read sequencing. This is in contrast to amplifications, 

which have been found 11 times previously, primarily using techniques that predate whole 

genome sequencing (178,184–187,214,215). There exists now a wealth of whole genome 

sequencing data suitable for studying amplifications, yet there has been no systematic 

investigation of their contribution to genomic diversity within the B. pertussis population. 

 

The highly repetitive genome of B. pertussis is known to be capable of a high frequency of 

structural variants, such as deletions and rearrangements (130,212,216). This contrasts with the 

third type of structural variant, CNVs, of which only twelve in B. pertussis have been 

serendipitously discovered (105,132,184–187). I therefore hypothesised that the B. pertussis 

population contained vastly more than twelve CNVs. In this chapter I aimed to define an 

accurate method to describe, categorise and compare CNVs in B. pertussis. 
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3.2. Methods 

3.2.1. Manual assembly methodology 

 

 

28 B. pertussis isolates, each containing 1 CNV were assembled (Table 2.1). This involved short 

read data from the Illumina platform, long read data from the PacBio platform and either Opgen 

or Nabsys genome maps. The genomes were assembled with PacBio reads using Hierarchical 

Genome Assembly Process version 3 (Pacific Biosciences) (HGAP) software.  

 

The Opgen and Nabsys enzyme mapping technologies are evolutions of pulsed-field gel 

electrophoreses (PFGE) as both platforms rely on the analysis of physical patterns of DNA. 

These patterns are generated from either tagging (Nabsys) or enzyme cutting (Opgen) at 

regularly spaced sites on the genome. Both platforms create maps of individual DNA molecules 

which are then assembled to produce a consensus map (but not base sequence) of the input DNA. 

The advantage of these platforms is that the DNA molecules are long, often over 500kb, and as 

such provide long-range information which is outside of the normal range of long-read DNA 

sequencing platforms. 

 

A hybrid assembly process is used on these isolates and produced closed genomes for the vast 

majority of strains. This process normally results in a single closed genome, but if a genome was 

not closed, it was checked against genome maps. Genome maps were combined with increased 

read depth indicating a copy number variant (CNV). CNVs were resolved by manually altering 

the assembly to match the data from the optical maps. This DNA structure could be verified by 

mapping the PacBio reads back to the assembly-gapless coverage meant the reads supported this 

configuration. Illumina reads were then used to polish this assembly (217–219). 
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If genomes were resolved using Nabsys genome maps, the protocol was as follows. Genomic 

DNA isolation from B. pertussis strains was performed at the CDC according to a Nabsys 

solution-based protocol modified from the bacterial DNA protocol for AXG 20 columns and 

Nucleobond Buffer Set III (Macherey-Nagel, Bethlehem, PA). Purified DNA was sent to Nabsys 

for nicking, tagging, coating and data collection on an HD-Mapping instrument. Nicking enzyme 

Nb.BssSI (NEB) was used for strain D236 and the nicking enzyme combination 

Nt.BspQI/Nb.BbvCI (NEB) was used for strains D800, H624, J085, J196, and J321. Resulting de 

novo assembled HD maps, raw data, and data remapped to PacBio de novo assemblies were 

provided by Nabsys for further analysis and sequence assembly comparisons at the CDC using 

NPS analysis (v1.2.2424) and CompareAssemblyToReference (v1.10.0.1).  

 

If genomes were resolved using Opgen genome maps, the protocols was at follows (and is 

reproduced from (218) ). Optical maps for each isolate were prepared from cells of single 1-mm 

colony equivalents following growth on Regan-Lowe agar without cephalexin using the Argus 

system (OpGen, Gaithersburg, MD) according to special company protocols. Briefly, high-

molecular-mass bacterial DNA (205-kbp average size) was isolated with minimal shearing and 

applied to a chemically modified glass surface with fabricated microfluidic channels. The 

stretched DNA on the channels was digested in situ with KpnI in a partial digestion mode and 

stained with a JoeJoe fluorescent dye on an automatic MapCard processor. To confirm the 

unusual insertions and CNVs that were revealed, restriction enzyme BamHI was used. The 

digested DNA molecules were imaged using an Argus fluorescence microscope and Path-Finder 

automated image-acquisition and tiling optical map assembly software (OpGen). The resulting 

single-molecule restriction maps were assembled into consensus whole-genome maps with 

Gentig software (OpGen) that recurrently aligned overlapping DNA molecules with similar 

fragments to calculate a concluding map. Final whole-genome maps in this study are composites 

from at least 32 single fragmented molecules at every point and typically represent an average 

depth of 50 to 300 molecules. Restriction map alignments between different strains were 

generated using MapSolver software (v.2.1.1; OpGen, Gaithersburg, MD).  
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All manually resolved genomes were generated by Michael Weigand and collaborators at the 

CDC (132,218,219). 

 

Table 2.1. Accession numbers for the genome sequence data of the 28 isolates for which genome 

sequences were manually resolved genomes. 

Alias BioSample 

Isolation 

Location 

J448 SAMN05770316 India 

D236 SAMN08200080 USA: UT 

J737 SAMN11822393 USA: CO 

J196 SAMN10161199 USA: CO 

J767 SAMN11822404 USA: CO 

J085 SAMN07352199 USA: CO 

J085 SAMN07352199 USA: CO 

J029 SAMN07352195 USA: CO 

J385 SAMN11822230 USA: CO 

J083 SAMN07352198 USA: CO 

A639 SAMN11821629 USA: OH 

D800 SAMN11821631 USA: PA 

D800 SAMN11821631 USA: PA 

J742 SAMN11822397 USA: CO 

J741 SAMN11822396 USA: CO 

J739 SAMN11822394 USA: CO 

J740 SAMN11822395 USA: CO 

D665 SAMN08200081 USA: NV 

H624 SAMN08200082 USA: OR 

J412 SAMN11822239 USA: VT 

J447 SAMN05770315 India 
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J299 SAMN07352224 USA: CO 

J299 SAMN07352224 USA: CO 

J139 SAMN08200079 USA:TX 

J733 SAMN11822392 USA: CT 

J349 SAMN11822226 USA: OR 

J318 SAMN10161200 USA: MN 

 

3.3. Results 

 

3.3.1. CNVs in a small set of genomes 

 

The US Centers for Disease Control and Prevention (CDC) conducts routine molecular 

epidemiology of pertussis. This involves using data from PacBio and Illumina sequencing 

platforms and enzyme mapping from the Nabsys and Opgen platforms (105,130,213,220) to 

produce closed genomes (see chapter methods). Including retrospectively sequenced samples and 

prospectively sequenced samples, 725 isolates were sequenced during the years 2014-2018 . Of 

these, 45 assembled isolates could not be resolved by this analysis and contained evidence of 

CNVs (mis mapping reads, increased coverage etc). This indication, in addition to the 

availability of high-quality long-range data from long reads and long DNA fragments in enzyme 

maps, meant these isolates were good candidates for further analysis.  

 

Assemblies which may have had CNVs were analysed using the manual assembly method which 

resulted in closed genomes being obtained for 28 isolates (Figure 3.2), including two used for the 

production of vaccines against pertussis. Each of these strains had one resolved CNV. 

Conflicting genome orders from multiple data sources and/or inadequate coverage of the CNV 

junction when reads were mapped to the hypothesised genome order led to the remaining 16 

genomes not being closed using the manual assembly method. Further automation utilising 

enzyme maps and long reads may mean these isolates can be fully assembled in the near future.. 

Analysing these CNVs in conjunction reveals there was several recognisable characteristic: A 
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conserved and clustered distribution of CNVs primarily at 3 loci; the variable length of CNVs 

which were often over 50kb (Figure 3.2) and all these CNVs were flanked by repeat sequences 

over 1kb in length, primarily IS481.  
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Figure 3.1: Reads were mapped against the B1917 reference genome (X axis) and how many 

reads covered each base was plotted (Y axis). This revealed a region with twice as much read 

coverage as other parts of the genome-an example of a large spike in read coverage. Such spikes 

were accompanied by a failure of PacBio assemblies to close the genome sequence and further 

investigation into these genomes identified that each had a CNV at the location of the spike in 

coverage. 
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Figure 3.2: CNVs (represented by horizontal lines proportional to the size of the resolved CNV) 

were resolved in 24 isolates (Y axis) in a variety of genomic loci (in relation to B1917, X axis). 

It can be seen that CNVs appeared frequently at 3 loci and had overlapping but not identical 

start/end locations. There was also diversity with the size of CNVs, with many CNVs over 50kb 

long. 

 

These results (Figure 3.2) were foundational to the thesis. It was plausible that there were many 

isolates containing undiscovered CNVs and that there was evidence of this in their sequencing 

data. However, most isolates do not have long read data or enzyme maps available for them, but 

just short read data. Using the manually resolved dataset as a benchmark, we sought to develop a 

prediction and screening tool to identify CNVs in B. pertussis within the 1000’s of isolates in the 

Sequence Read Archive (SRA), which is formed mostly of short read data. 
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3.3.2. Establishing a methodology 

 

3.3.2.1. Read depth: pros and cons of different read depth tools 

 

As short-read sequencing platforms are popular and a lot of data exist in this format, I sought to 

define a method to predict CNVs from this type of data. The read length (<300 bp) of this 

platform means that it is inadequate to resolve these CNVs (which are commonly ~100kb) or 

span the junction between tandem arrays which are bound by repeat elements >1kb in size. As 

the copy number of a locus is beyond the resolution of short read data, it is necessary to use other 

sources of data as proxies. There are a number of these that can be used, but the most 

fundamental and informative is the read depth (Figure 3.3). The logic is simple: increased copy 

number of a locus (in comparison to the reference genome) will mean more reads map to this 

region in the reference genome than would be expected if the locus was at single copy (Figure 

3.4). 

 

 

Figure 3.3: Reads from 3 isolates were mapped to the reference genome (X axis) (see ‘Sequence 

read mapping’ section in methods) and the average read depth (Y axis) plotted in 5kb windows. 

Genomes A, B and C show low, medium and high read depth noise respectively, as can be seen 

by the spread of read coverage in each graph. This proves problematic for downstream analysis 

as high read depth noise leads to false positive CNVs being predicted. 
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Other signals from short read data include split read signals (a read spanning an SV junction) and 

read-pair data (measuring the distance between read pairs). These two sources of data can 

provide base pair resolution to the junction sequences and thus infer the structure of the tandem 

array. Both methods, however, rely on the CNV junction to not be in a repeat region that is larger 

than the read size. This is not applicable to the CNVs studied here which have been formed by 

homologous recombination between large repeats. This data is absent in the CNVs described 

here. 

 

3.3.2.2. How window length effects CNV predictions 

 

Predicting CNVs in data sets of bacterial genome sequences, which frequently consist of 

sequences of hundreds to thousands of small genomes, rather than fewer but larger sequences for 

eukaryotes, presents a challenge- one that is not often mentioned in the literature. Comparing 

read depth coverage data across thousands of samples which vary by a multitude of factors such 

as sequencing chemistry, sequencing instruments and read lengths is complex and causes 

fluctuations in coverage. It is not known, however, exactly how these factors contribute to the 

inter-sample differences in read coverage. 

 



68 
 

 

 

Figure 3.4: Schematic overview of prediction of CNVs from sequencing read depth. In the 

theoretical example (purple box, left), the query strain contains a perfect tandem CNV of gene 1 

whilst gene 2 and 3 are at single copy (A). Short reads from the query strain are generated (B) 

and mapped to the reference genome, that contains all genes at single copy (C). Reads from both 

copies of gene 1 in the query strain map to this locus in the reference sequence and thus twice as 

many reads map to this gene compared to genes 2 and 3. This data must be processed to obtain 

estimates of copy number and to avoid technical bias (D). Using an example with real data (red 

box, right) the strain SAMN08200079 was analysed using the CNVnator method (see Methods). 

Read coverage was graphed to reveal a CNV at 1.4Mb (E, analogous to theoretical graph C). An 

example of a statistical analysis of these data was then graphed (F, analogous to theoretical graph 

D). 

 

 

As read depth is the proxy used here for predicting CNVs, artefactual fluctuations can appear as 

false positive CNVs in the analysis. It is therefore necessary to normalise these fluctuations 
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(198). All read depth-based prediction tools will analyse the read depth in windows to analyse 

how read depth changes across the genome. However, the size of this window influences the 

results. Larger windows are less sensitive to fluctuations in read depth but are also very specific 

(low false positives) whilst the inverse is true for smaller windows. Therefore, larger windows 

can be used on genomes with high read depth fluctuations and smaller windows for less noisy 

genomes. CNVnator provides extensive supplementary data and methods pertaining to this and 

notes a heuristic: the optimum ratio of average read depth to the standard deviation is generally 

between 4-5. Choosing window size, therefore, is a balancing act of these factors (198). 

 

CNVnator (198) is one of the most highly cited read-depth based CNV prediction tools and as 

such was an attractive choice to use in this analysis. In addition, it was easy to use in a parallel 

way as it is available containerised on the Docker platform. A recent benchmarking study (221) 

noted CNVnator was highly sensitive but lacked specificity but this study was run with 

CNVnator on its default setting- not having optimized window length. 

 

3.3.2.3. Why use B1917 for mapping? 

 

The choice of reference is important when using a mapping pipeline. Although the pangenome of 

B. pertussis is small, any gene that is not present in the reference will not be analysed in the 

mapped data. Additionally, and much more relevant for B. pertussis (130), when data is mapped 

to a reference the true gene order of the sample is masked. Therefore, strains with CNVs in 

rearranged loci may appear as discontinuous stretches of duplicated DNA in the reference-

obscuring the true genomic structure of the CNV and distorting the number of CNVs predicted 

for strains. 

 

To minimise the side-effects of read mapping, therefore, an isolate that was broadly 

representative of the global population of B. pertussis in terms of gene content and gene order 

was needed. Additionally, the strain must be widely used so that any results can be tested and 

replicated by the scientific community. It is known that the strain B1917 is generally 
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representative of the gene content of recent circulating isolates and has been recently established 

as a modern reference genome (112), thus leading to many labs having a stock of it. It is 

therefore a viable alternative to the traditionally used reference strain Tohama I (23), which was 

isolated in the 1950’s. 

 

It was not clear, however, if B1917 had a representative gene order and therefore this was 

investigated. A whole genome alignment was conducted with 3 of the genomes with manually 

resolved CNVs (isolated during outbreaks in the US), B1917, Tohama I and 2 additional closed 

genomes isolated from other countries using Mauve (222). As the vast majority of the closed 

genomes contained on the SRA were isolated in outbreaks in the US, it is therefore important to 

include diverse isolates from other countries. More genomes could not be used as the 

progressiveMauve (222) algorithm, aligns genomes in a pairwise fashion which means that 

computational time scales exponentially with extra genomes. This experiment resulted in a high 

quality phylogenetic tree (Figure 3.5) which showed that B1917 was separated by less gene order 

changes from all isolates in the dataset compared to Tohama. B1917 is therefore a more 

appropriate reference genome than Tohama.
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Figure 3.5: A tree showing that Tohama is separated by roughly 3x as many unique gene order 

changes (branch length: 0.027) from the rest of the phylogenetic tree as compared to B1917 

(branch length: 0.004). This demonstrates that B1917 has a gene order that is closer to modern 

isolates than Tohama. 
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3.3.3. Establishing accuracy 

 

3.3.3.1. Training dataset- B1917 

 

The first test of CNVnator on B. pertussis data was to simulate short read data for the B1917 

reference genome and map it against itself. When this data is analysed with CNVnator, all genes 

should be identified as being present and at single copy. As expected, analysis with CNVnator 

returned no false negatives or false positives in this experiment as all gene were correctly 

identified as being at single copy. The approach was subsequently evaluated by analysing the set 

of 28 manually resolved genomes. 

 

3.3.3.2. Manually resolved genomes 

 

Read depth is only a proxy for copy number, so it is best suited to predict simple CNVs rather 

than complex CNVs. Here I define simple CNVs as a single stretch of DNA that is contiguous in 

both the reference genome and the genome from which the data was generated. A complex CNV 

is defined as a stretch of DNA that is contiguous in the reference but non-contiguous in the 

genome from which the data was generated. A complex CNV may be formed by tandem arrays 

of different genes in close proximity or by a tandem array of a rearranged segment of DNA, for 

example. 

 

When establishing the accuracy of the pipeline I considered the 25 simple CNVs and two of the 

three complex CNVs separately. Only one (J321) of the 25 data sets containing simple CNVs 

failed the quality control checks (see Methods) for high read depth noise and was excluded. This 

left 24 high quality strains with simple CNVs. Whilst the 24 simple CNVs mainly occurred at 

three distinct loci (Figure 3.2), their beginning and ending coordinates, as well as overall length, 

varied between strains. Thus, three measures of accuracy were tested: the correct prediction of 

the 24 CNVs, the quantity of false positives and the discrepancy between the predicted start and 

end coordinates of the predicted CNVs and the true coordinates from the manually resolved 
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genome sequences (breakpoint accuracy). Here a breakpoint is defined as the start and end of the 

CNV locus and these two points form the junction between the two tandem copies. 

 

 

Figure 3.6. A schematic detailing how predicted CNVs(red) were compared to true CNVs(blue), 

in order to evaluate the accuracy of the pipeline. (A) The strain J085 had two CNVs predicted 

(red) despite only 1 confirmed in the manual assembly (blue). One prediction had an 84% 

reciprocal overlap with the true CNV and was considered a true positive whilst the other 

predicted CNV had only an 11% overlap and was considered a false positive. This also caused 

the predicted end of the true positive fragment to be further from the true end, impacting the 

breakpoint accuracy, denoted by a black arrow. (B) A stereotypical CNV was predicted which 

had a 95% overlap with the true CNV in strain D236. 

 

Of the 24 resolved, high quality and suitable CNVs, 23 were correctly predicted (defined as 

>=80% reciprocal overlap between the predicted and true CNV regions) (Table 3.1). One CNV 

was counted as a false negative as no prediction was made for this isolate. Three false positives 

were detected in three different strains. Two of these were due to one gene within the CNV locus 
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being predicted as single copy, causing the true, single CNV to be predicted as two, separated by 

the falsely predicted single copy gene (described in Figure 3.6). In the third false positive, a 

second locus was predicted as a CNV. Interestingly, mapping PacBio reads generated from this 

strain to the reference also showed increased coverage at the same locus, however enzyme 

mapping showed no evidence of a second duplicated locus in this isolate. To be conservative, 

this was therefore counted as a false positive, despite the mixed evidence that this locus 

contained additional copies. 

 

The breakpoint accuracy of estimates was calculated (Figure 3.7). As a true positive was counted 

if it had >80% reciprocal overlap with the true CNV, this meant that a true CNV could have both 

false positive and true positive predictions associated with it (Figure 3.6). To prevent false 

positive fragments skewing further analysis, false positives predictions were excluded. The 

median distance between the true end point coordinates and the CNVnator-derived estimates was 

0.5 genes. There were five estimated start/end points which were considerably (>=5 genes) less 

accurate than the rest of the dataset, mainly arising from the two strains in which the CNV was 

predicted as two separate loci- a false positive and a false negative. Thus, the pipeline correctly 

predicted, and with good breakpoint accuracy, the CNVs for 20 of the 27 resolved genomes 

(74%), with 2 further correctly CNVs predicted (11%) but as two adjacent but separate loci. 
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Figure 3.7: For each CNV, the start and end coordinates of the predictions were compared to the 

true coordinates and the distribution of these discrepancies was plotted(Y axis). This showed a 

tight distribution around the median distance of 0.5 genes discrepancy.
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Figure 3.8: The true (orange) and estimated (blue) copy number (X axis) of CNVs was plotted 

for the manually resolved cohort (Y axis). Large discrepancies (black bars) between the estimate 

and the true CNV copy number state can be seen for the majority of isolates.
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Table 3.1. The 27 predicted CNVs compared to the true CNVs. 

Alias 

Estimate 

start 

(B1917 

gene 

index) 

Estimate 

end 

(B1917 

gene 

index) 

Estimated 

Length 

Copy 

number 

estimate 

True 

start 

(B1917 

gene 

index) 

True 

start/Estimated 

start discrepancy 

True end 

(B1917 

gene 

index) 

True 

end/Estimated 

end 

discrepancy 

True 

copy 

number 

Copy 

number 

discrepancy 

Reciprocal 

overlap 

J448 2331 2440 109 2.9 2331 0 2440 0 3 +/-0.2 >=0.8 

D23

6 2798 2947 149 1.7 2799 1 2947 0 2 Lower >=0.8 

J737 2798 2947 149 2 2799 1 2947 0 2 +/-0.2 >=0.8 

J196 2840 2999 159 1.7 2840 0 3000 1 2 Lower >=0.8 

J767 2840 2900 60 2.1 2840 0 2900 0 2 +/-0.2 >=0.8 

J085 2752 2769 17 1.5 2752 0 2915 146 2 Lower FALSE 

J085 2770 2907 137 1.6 2752 -18 2915 8 2 Lower >=0.8 

J029 2830 2907 77 1.6 2830 0 2871 -36 2 Lower FALSE 

J385 2831 2871 40 2 2830 -1 2871 0 2 +/-0.2 >=0.8 

J083 2830 2866 36 1.8 2830 0 2867 1 2 Lower >=0.8 

A63

9 2830 2870 40 1.8 2830 0 2870 0 2 Lower >=0.8 

D80

0 778 834 56 2.3 779 1 834 0 2 Higher >=0.8 
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D80

0 2098 2362 264 1.3 779 NA 834 NA 2 Lower FALSE 

J742 1403 1444 41 2.1 1403 0 1446 2 2 +/-0.2 >=0.8 

J741 1403 1445 42 2.1 1403 0 1446 1 2 +/-0.2 >=0.8 

J739 1403 1445 42 2 1403 0 1446 1 2 +/-0.2 >=0.8 

J740 1403 1444 41 2 1403 0 1446 2 2 +/-0.2 >=0.8 

D66

5 1790 1827 37 1.7 1791 1 1828 1 2 Lower >=0.8 

H62

4 1965 1978 13 1.7 1966 1 1978 0 2 Lower >=0.8 

J412 50 67 17 1.9 50 0 68 1 2 +/-0.2 >=0.8 

J447 2331 2439 108 1.9 2331 0 2440 1 2 +/-0.2 >=0.8 

J299 2269 2303 34 1.7 2276 7 2440 137 2 Lower FALSE 

J299 2304 2440 136 1.8 2276 -28 2440 0 2 Lower >=0.8 

J139 2289 2403 114 2 2289 0 2405 2 2 +/-0.2 >=0.8 

J733 2277 2357 80 1.8 2276 -1 2363 6 2 Lower >=0.8 

J349 2276 2401 125 1.5 2276 0 2405 4 2 Lower >=0.8 

J318 2291 2376 85 1.4 2288 -3 2432 56 2 Lower FALSE 
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3.3.3.3. Predicting complex CNVs 

 

In the dataset of 28 manually resolved genomes, three genomes were excluded from the previous 

analyses for having complex CNVs. As Weigand et al had demonstrated that the B. pertussis 

population has undergone diverse rearrangements (130), it was unclear how this would affect the 

prediction of CNVs. This is because multiple SVs occuring at the same locus is a challenging 

signal for read-depth based approaches to correctly predict CNVs. Rearrangements have no 

impact on read depth and adjacent CNVs or CNV/deletion combinations leave an amalgamated 

read depth signal, because it is not clear that there is a separation between the SVs. For example, 

if there was a two-copy region next to a 3-copy region, it is possible that CNVnator would not be 

able to identify that this was two distinct SVs and would predict a long CNV of copy number 

2.5. 

 

It is therefore important to investigate how these events appear in practice in the analyses. Two 

samples with resolved, complex CNVs were examined. In strain B199 (105) there is a 

triplication followed by a CNV of a larger region (which includes the original triplication region) 

leading to some parts of the locus to be at 2 and some at 3 copies (Figure 3.9). In strain F701, the 

CNV locus had a different gene order than B1917 (Figure 3.10), having likely been affected by 

an ancestral inversion mutation.   

 

For both isolates the predicted CNVs did not satisfy the strict >=80% reciprocal overlap rule for 

any of the true CNVs and thus could not be classed as successfully predicted. Merging the true 

CNVs into a single CNV also did not satisfy the strict 80% reciprocal overlap rule. These results 

indicate that CNVnator struggles to accurately estimate the boundaries of such CNVs. Whilst 

gene order changes are common in B. pertussis, it is unlikely that a rearrangement will affect a 

CNV given that only 2 out of the 28 manually resolved genomes presented here were affected by 

rearrangements (7%).  
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Figure 3.9: A: The genome of B1917 (X axis) compared to strain B199 (Y axis) . The section 

that has a resolved CNV is highlighted in the blue box and expanded in (B). The DNA 

corresponding to 2.54Mb to 2.67Mb in B1917 has a complex arrangement of CNVs. The 

structure is characterized by an initial triplication and then followed by a CNV of a larger region 

(which includes the original triplication region). This isolate therefore has some loci at 4 copies, 

and 2 copies. The longest region estimated as a CNV by CNVnator is highlighted using blue bars 

(for start and end positions). 
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Figure 3.10: A: The genome of B1917 (X axis) compared to strain F107 (Y axis). The section 

that has a resolved CNV is highlighted in the blue box and expanded in (B). The DNA 

corresponding to 3.1Mb to 3.24Mb in B1917 is duplicated in F107 but partway through it has 

been disrupted by an inversion. The two relatively evenly sized estimates by CNVnator are 

highlighted using two colours (blue and red) at both the start and end points. Where the two 

estimates meet in the middle, the line appears purple. 
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3.3.4. Predicting CNVs in a cohort of 2709 isolates 

 

3.3.4.1. Cohort statistics 

 

The pipeline was applied to predict CNVs in 2803 B. pertussis isolates for which short-read 

sequence data was available in the Sequence Read Archive (SRA). Of the 2709 total B. pertussis 

samples, 94 exhibited 30x average coverage and 185 had high read coverage noise. Therefore, 

the final dataset included 2430 B. pertussis isolates. Due to its size, this dataset was dubbed the 

‘large cohort dataset’ and is referred to as such throughout the thesis. 

 

Of the 2430 studied isolates, 1711 had all genes predicted at single copy and therefore did not 

make any further appearances in the analysis apart from in the phylogenetic tree. This confirmed 

that B1917 had a highly representative gene complement as these 1711 isolates contained all of 

the genes present in B1917 at single copy. This left 719 strains with at least one deletion or 

CNV. Of the 719 strains with CNVs: 191 isolates contained 272 CNVs as some isolates had 

more than 1 CNV predicted. In summary, therefore, 7.8% of the studied B. pertussis strains 

contained at least one CNV. 

 

It was found that 43 isolates had more than 1 CNV, containing 143 CNVs in total. The median 

number of CNVs for this group was 2. This data was used to estimate how many predictions may 

have been false positives due to CNVs being split into two, as had occurred in the manually 

resolved dataset (Figure 3.6) in 10% of the cohort. I calculated the distance between CNVs in 

this group and found that 23 isolates had CNVs within 3 genes of each other. In total this 

comprised 27 CNVs that may have been false positives due to CNV splitting- which was 10% of 

the predictions. The oversensitivity of the method therefore likely did not significantly impact 

the findings. 
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Figure 3.10: Reads were mapped to the reference genome for 2430 isolates, of which 

approximately 100 are shown here (X axis). The copy number prediction for each gene is 

displayed (Z axis) for every gene in the genome (Y axis), of which 600 genes are shown here. 

Sections of higher copy number (yellow colour) are visible. This section of the genome 

corresponds to the locus of Network 1. A legend of the colour scale is on the far right. 

 

A visual analysis of this data revealed that the key results observed in the manually resolved 

dataset are confirmed in the global cohort of 2709 B. pertussis strains, namely: CNVs clustered 

at specific loci, varying gene content within these clusters and many long CNVs (Table 3.2 and 

Figure 3.11). It was clear from this analysis that the vast majority of CNVs were found at a small 

number of locations, which I therefore termed ‘hotspot’ loci.  
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3.3.5.  Leveraging network graphs to analyse hotspots 

 

Hotspot formation has been previously described in bacteria (209,223,224). Hjort et al showed 

that when Salmonella enterica clones were exposed to colistin, a region was amplified and this 

conferred resistance. It was determined that  a single gene involved in regulating lipidA 

biosynthesis conferred colistin resistance when amplified and positive selection for this drove 

formation of the hotspot, despite the amplification being >50kb in length.  Similarly, Domenach 

et al showed that multiple isolates of Mycobacterium tuberculosis (M. tuberculosis) had CNVs 

which were under selection in vitro but not in vivo but did not determine which genes were under 

selection in this condition. Both studies found these amplifications arranged in hotspots which 

appeared to be similar to those described here (large size and overlapping but not identical gene 

contents). Given the similarities between the hotspots identified here and those in the literature, I 

hypothesised that positive selection was driving hotspot formation in B. pertussis. Furthermore, 

If hotspots were driven by positive selection, it was likely that the genes common to CNVs in the 

hotspots were driving this (209). I therefore developed a quantitative framework in order to 

define hotspots, analyse their properties and find which genes were in the core of the network. 

 

3.3.5.1. Using networks graphs to analyse hotspots 

 

In microbiology, trees are frequently used to compare differences (normally 

SNPs) in a DNA sequence that is shared between multiple individual strains (the core genome), 

yet trees are a generic concept and form part of the mathematical field of graph theory. A tree is 

a type of graph in which all elements are related to one another other, in this example, by sharing 

the same core genome DNA. Graphs are constructed using nodes and edges, which represent 

data points and relationships, respectively. A phylogenetic tree aims to quantify the relationships 
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between the datapoints (isolates) by creating the simplest graph that explains the observed DNA 

patterns. 

 

In order to create the network graph, the relationship between all CNVs was quantified as the 

proportion of gene content overlap between all pairwise comparisons. Network graphs were 

constructed between CNVs (‘nodes’) that overlapped with each overlap coded as a line (‘edges’). 

The 272 identified CNVs formed 24 network graphs, representing 24 distinct genomic loci. Only 

11 network graphs, corresponding to the hotspot loci, included three or more isolates and 

contained 254/272 (93%) of the predicted CNVs (Table 3.2).  

 

3.3.5.2. Using networks to leverage new data 

 

Once CNVs were coded within a network structure, the core genes could be investigated. It was 

hypothesised that most networks would centre on a small group of genes, as can be visually seen 

in the heatmap (Figure 3.12). To define the network core, I determined the genes contained in at 

least 90% of the amplified genes in each network. A number of network cores contained genes 

with varied predicted functions (Table 3.2). For example, Network 1 contained the genes 

involved in flagella assembly and function (Figure 3.11)  (225); Network 2 contained the nuo 

operon which codes for NADH dehydrogenase, a key component of the electron transport chain 

(Figure 3.13)  (227, 228) and Network 3 contained the fim3 gene involved in the pathogenesis of 

B. pertussis and present in some acellular vaccine formulations (Figure 3.13) (228). 
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Figure 3.11. A schematic of the genes (on the forward and reverse strand) contained in the core 

of Network 1 in B1917(X axis). The genes involved in flagella assembly and function are 

highlighted. 
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Figure 3.12. A schematic of the genes (on the forward and reverse strand) contained in the core 

of Network2 in B1917 (X axis). The nuo operon, involved in respiration, are highlighted. 
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Figure 3.13. A schematic of the genes (on the forward and reverse strand) contained in the core 

of Network 3 in B1917 (X axis). A number of genes of interest are highlighted. 

  



89 
 

Table 3.2 Core genes of the three most frequent hotspots 

Index 

Network 

1 core 

genes 

Network 

2 core 

genes 

Network 

3 core 

genes 

1 BP1350 BP0840 BP1558 

2 BP1352 nuoA BP1560 

3 BP1353 nuoB BP1561 

4 BP1354 nuoC BP1562 

5 BP1355 nuoD BP1563 

6 leuD nuoE BP1565 

7 BP1358 nuoF mutS 

8 BP1359 nuoG BP1567 

9 BP1360 nuoH fim3 

10 BP1361 nuoI BP1569 

11 BP1362 nuoJ dapA 

12 BP1363 nuoK BP1572 

13 BP1364 nuoL glnH 

14 BP1365 nuoM glnP 

15 flhB nuoN glnQ 

16 BP1370 BP0855 spoT 

17 flgM bfrD rpoZ 

18 flgA bfrE gmk 

19 flgB BP0858 BP1579 

20 flgC fabG BP1580 

21 flgD BP0860 BP1581 

22 flgE BP0861 BP1582 

23 flgF BP0862 amn 

24 flgG serB BP1584 

25 flgH mfd BP1585 

26 flgI ispD BP1586 

27 flgJ ispF BP1587 
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28 flgK BP0867 rph 

29 flgL fbp BP1589 

30 tsr pepN BP1590 

31 tar 
 

BP1591 

32 BP1388 
 

BP1592 

33 fliR 
 

BP1593 

34 fliQ 
  

35 fliP 
  

36 fliO 
  

37 fliN 
  

38 fliM 
  

39 fliL 
  

40 BP1397 
  

41 fliJ 
  

42 fliI 
  

43 fliH 
  

44 fliG 
  

45 fliF 
  

46 fliE 
  

47 BP1405 
  

48 BP1406 
  

49 fliT 
  

50 fliS 
  

51 fliD 
  

52 flaG 
  

53 folC 
  

54 BP1413 
  

55 cvpA 
  

56 purF 
  

57 dsbB 
  

58 glnD 
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59 map 
  

60 rpsB 
  

61 tsf 
  

62 pyrH 
  

63 frr 
  

64 uppS 
  

65 cdsA 
  

66 dxr 
  

67 BP1426 
  

68 BP1427 
  

69 BP1428 
  

70 lpxD 
  

71 fabZ 
  

72 lpxA 
  

73 lpxB 
  

74 rnhB 
  

75 BP1434 
  

76 BP1435 
  

77 ppsA 
  

78 BP1437 
  

79 BP1438 
  

80 BP1439 
  

 

In addition to the Nuo operon, a number of genes found in the core hotspots appeared to be 

essential in-vivo and in-vitro in broth culture and the murine model of colonisation, respectively 

(229). Amplified essential genes included RNA polymerase coding genes (RpoB, RpoC & RpoZ) 

and lipid biosynthesis (LpxA& LpxB). Essential genes are often preferentially near the origin of 

replication and experience increased copy number as multiple replication forks start at the origin, 

leading to those genes having increased copy number and expression. It was possible that 

amplification was a second path to increasing gene dosage of essential genes. 
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Statistical analysis (Fishers exact test) of the association between essential genes and 

amplifications found that 44% of amplifications (123/272) were enriched for in vitro essential 

genes and 3% (8/272) for in vivo essential genes. This may have indicated that essential genes 

were under positive selection for increased copy number. Analysing hotspot cores resulted in 5 of 

the 6 not enriched for essential genes of either type, with only the core of hotspot 2 being 

significantly enriched for in-vitro essential genes. On the premise that hotspot cores are the genes 

which are driving the positive selection of the amplification, the association between 

amplifications and essential genes appears to be largely incidental, although network 2 may be 

driven by gene essentiality. Essential genes in the core of network 2 included the nuo operon 

(detailed above) in addition to genes involved in terpenoid synthesis (ispD & ispF) and 

gluconeogenesis (fbp). The relationship between essential genes and amplifications appears 

nuanced and complex and may be just one factor that influences amplifications in B. pertussis. 
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Network 

name 

Frequency 

 (CNVs) 

Mean 

length 

 (genes) 

Median 

start 

 (B1917 

gene 

name) 

Median 

end 

 (B1917 

gene 

name) 

Mean 

copy 

number 

Core 

(>=90%) 

proportion 

 (%) 

Network 

density 

 (%) 

1 102 106 RS12140 RS12755 1.6 67 55 

2 57 82 RS15100 RS15490 1.7 37 63 

3 21 80 RS07175 RS07660 1.68 44 60 

4 18 20 RS00010 RS00130 1.35 10 100 

5 13 67 RS19230 RS19625 1.93 40 50 

6 11 75 RS05505 RS05935 1.6 33 73 

7 8 49 RS04185 RS04430 1.88  71 

8 8 74 RS09665 RS10290 1.82  43 

9 7 13 RS19965 RS10580 2.49  100 

10 6 23 RS19465 RS19565 1.32  100 

11 3 45 RS01035 RS01300 1.63  67 

 

Table 3.3: Table of network statistics. Columns correspond to the network name, the frequency 

of CNVs in each network, the mean length of the CNVs, the median start and end genes of the 

network, mean copy number, how big the core network is in relation to the mean length and the 

network density. The core network was defined as the genes contained in >90% of the CNVs in 

the network. Network density is defined as how interconnected the network is and therefore how 

overlapping the CNVs are. 
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3.3.5.3. qPCR verification of a CNV 

 

In order to validate predictions made via CNVnator, a CNV was chosen for further analysis. The 

initial verification method was undertaken by qPCR but later verification was achieved by 

Nanopore sequencing, which forms a substantial amount of work described in Chapter 4. It was 

therefore necessary to choose a CNV with a tractable size that could fit, in its full tandem 

configuration, into an ultra-long Nanopore read. The genome of UK54 (SAMEA1920853) was 

predicted to have a 16 kb long CNV at a copy number of 4; short enough to observe the CNV 

locus in a single sequence read on the Nanopore platform (as its tandem length was predicted to 

be up to 64kb), assuming that each copy occurred in tandem as observed in both our data and 

previous reports. This was the highest copy number CNV in the dataset. The CNV was part of 

Network 9 (Table 3.3 and Figure 3.13) which was comprised of 7 other CNVs, one of which was 

also predicted at a copy number >2 (3.3, Strain SAMN11822098). 

 

The copy number of this locus in UK54 was validated using qPCR to ensure the copy number 

prediction was correct. A probe and primer set were designed to quantify the DNA copy number 

of a DNA segment inside (in gene B1917_RS10525) of the CNV and outside of the CNV, using 

a2^ΔΔCT analysis. This method is most often used to quantify the changes in the expression 

levels of genes, but is equally suited to comparing copy number between two samples.The 

relative copy number of the B1917_RS10525 gene within the CNV compared to a single- copy 

gene encoded outside the CNV locus was 4.38 +/- 0.4 which matched the read depth-based 

prediction, supporting the ability of CNVnator to predict CNVs in B. pertussis. Further analysis 

of the CNV in UK54 is presented in Chapter 4. This method successfully verified one CNV, but 

required primer/rpboes to be designed for each CNV. I therefore sought to verify CNVs in an 

alternative way. 

 

3.3.6. Predicted CNVs are highly associated with repeats 

 



95 
 

Verification was possible by investigating the association of predicted CNVs with repetitive 

elements in comparison to all genes. All previously resolved CNVs were adjacent to repetitive 

sequences in line with homologous recombination between large (>1kb) repeats being the 

driving mechanism of SV formation in B. pertussis. Suggesting this was a clear marker for true 

CNVs. Analyses were restricted to isolates for which closed genome sequence information was 

available (excluding 28 isolates with manually resolved genome sequences were analysed 

above), as it is possible to locate accurately IS elements only in closed genome sequences. This 

left 16 CNVs in 13 isolates remaining for analysis. 

 

The predicted boundaries of these 16 CNVs were significantly (p<6^-08) closer to repeat genes 

(median distance of +/- 1 gene) than non-CNV genes (median distance of +/- 5 genes) (Figure 

3.15). This, in conjunction with our stringent quality control steps and the previously accurate 

predictions (of which the median distance to true CNV starts and ends was 0.5 genes- marginally 

higher), supports the accuracy of the prediction of 272 CNVs. 
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Figure 3.15: The distance (measured in genes) between CNVs and repeat genes (Y axis) was 

identified in closed genomes. The genes at breakpoints were compared to all genes in the 

genome (X axis). The ends of CNV loci were found to be significantly closer (median: 0 genes) 

to repeats than the average gene (median:5 genes). 

 

3.3.7. CNVs occur as homoplasies throughout the phylogenetic tree 

 

It was demonstrated that while CNVs did overlap at hotspot loci, often they had varying gene 

contents-strongly indicating each arose from an independent mutation. It was possible, however, 

that there could have been a single CNV event and subsequent remodelling gave rise to the 

hotspot like effect. It has been previously shown that hotspots arise by mutations in independent 

lineages and therefore I hypothesised that this was the case in the dataset presented here. 
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Figure 3.16. Maximum likelihood phylogenetic tree of a sub-population (n=317) of the large B. 

pertussis cohort studied here. All branches had >=99% bootstrap support. Mapping CNVs to the 

tree demonstrated strains containing CNVS belonging to the same hotspot had distant 

phylogenetic relationships. CNVs are therefore highly homoplasic mutations. 

 

3.4. Discussion 

 

B. pertussis is described as a monomorphic bacterium that has evolved as a human-specific 

pathogen through gene loss via homologous recombination between direct repeats (23). 

However, homologous recombination can also cause multi- gene CNVs. Although 12 multi-gene 

CNVs had been described previously(105,132,184–187), no systematic analysis of CNVs in B. 

pertussis had been carried out. In this chapter, short-read genome sequence data generated on the 

Illumina platform for 2430 strains was analysed using read depth as a proxy for copy number. 

The results revealed 11 clusters consisting of 272 CNVs, some of which comprised hundreds of 
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genes, revealing a novel aspect of genetic variation among B. pertussis. This contributes to a 

growing literature that demonstrates that quantifying B. pertussis diversity requires a 

comprehensive view of mutation types, not just the quantification of DNA base changes. 

 

3.4.1. Evaluation of the method 

 

3.4.1.1. Manually resolved dataset construction and evaluation 

 

Analysing read depth data for the presence of CNVs is an indirect method of finding CNVs and 

as such its use carries its own inherent strength and weaknesses. To quantify these, estimates 

were generated for a dataset containing known CNVs. A set of 28 isolates which had been 

analysed by a combination of Pacbio and Illumina sequencing and genome mapped by Opgen 

and Nabsys provided an excellent set of known CNVs in B. pertussis. The goal of the method 

presented here was to predict these CNVs using read depth signals from short read data alone to 

simplify the process of screening for CNVs. 

 

Read depth based CNV prediction are best suited to predicting CNVs that occur as a single 

stretch of contiguous DNA in both the reference and the isolates being analysed. This is in 

addition to being affected by highly fluctuating read depth in a sample. As such, the dataset fell 

into three groups: ideal for analysis (n=24); not ideal for analysis (n=2) and poor quality (n=1). 

Two genomes with complex CNVs were separated into the ‘non-ideal’ group due to having 

CNVs composed of multiple SV events (Figures 3.10 and 3.11). A single genome failed quality 

control tests (testing for low read depth noise and <30x coverage) and was excluded from further 

analysis. 

 

It was not possible to express the results of this comparison experiment formally as sensitivity 

and specificity because a true CNV could be predicted correctly (at a minimum 80% reciprocal 

overlap) but a false positive also predicted for that CNV (for example at 20% of the length of the 

CNV) (Figure 3.7). This therefore meant that a contingency table where each element of the test 
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(here a CNV) could only fall into one category (true positive; false positive; true negative or 

false negative) was not suitable. This also meant that whilst one true negative was simulated 

here, it was not directly comparable to the true positives. 

 

Establishing true negatives from real data was not carried out. This is because it cannot be 

verified that a closed genome truly did not have a CNV unless it had been heavily scrutinised for 

indirect evidence of CNVs. Only genomes which did not assemble into a single contig were 

heavily scrutinised for indirect evidence of a CNV and then the genome maps were consulted for 

further evidence. It was not possible to verify that the high levels of scrutiny that were applied to 

the true positives was applied to these ‘true negatives. In support of unresolved CNVs remaining 

in apparently fully resolved closed genomes, 16 CNVs were predicted in publicly available 

closed genomes and were found to be adjacent to repeats-a hallmark of true CNVs (Figure 3.15). 

 

By varying the window length in response to the read depth noise of each sequencing sample, it 

was possible to normalize CNV predictions between samples. However, there were limited 

chances to test this methodological step as the manually resolved dataset was of a generally high 

quality. Flexible window lengths likely enabled the study of 1000’s of bacterial isolates of 

varying quality generated using a range of different instruments. This is a scale of CNV 

prediction in prokaryotes that is not often achieved, likely due to high false positive predictions. 

 

3.4.1.2. A Low incidence of false positives and false negatives 

 

A considerable strength of the pipeline was the low incidence of false positives and false 

negatives (Table 3.1). Out of the 24 CNVs which were judged to be highly suitable for this 

analysis, 23 were correctly predicted (95%), as defined here by a strict minimum 80% reciprocal 

overlap. An 80% reciprocal overlap is superior to many published methods which use 50% 

overlap between a predicted and a true CNV to be sufficient for a prediction to be considered 

correct (198,230). There was, however, one false negative and it was unclear why this CNV had 
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been failed to be predicted in this case. Overall, it was demonstrated that this method was 

comparable to many studies. 

 

A small number of false positives were predicted. Of the 24 suitable CNVs, 3 (13%) of these 

CNVs were predicted as two CNVs: a major fragment and a minor fragment (explained in Figure 

3.7). In these 3 cases the major fragment was big enough to satisfy the reciprocal overlap rule 

and so therefore the true CNV had been predicted. The three minor fragments, although part of 

the true CNV, were reported as false positives (Figure 3.7). The pipeline is therefore too 

sensitive and I hypothesise that in certain datasets small drops in sequencing coverage are 

associated with an adjacent CNVs being predicted. This is a small issue, however, given that the 

vast majority of the predictions were highly accurate. The balance between sensitivity and 

specificity was achieved through testing various window lengths, to select the lengths which 

gave a mean over the standard deviation of read coverage between 4 and 5 (198). It could be that 

there are extra heuristics or noise-smoothing tools that can reduce the over-sensitivity of this 

analysis by further tweaking the window length. Over-sensitivity of the method is likely to 

inflate the number of CNVs predicted in the large cohort analysis. 

 

A false positive CNV was predicted at a second locus in the D800 sample. The existence of a 

CNV was investigated in this isolate and whilst both PacBio and Illumina showed a moderate 

rise in coverage at this locus, genome maps did not corroborate this. It is therefore unclear 

exactly what was causing this rise in coverage, but it may have been indirectly caused by a 

mixed population of cells (see Chapter 4). Seeding cultures for DNA extracting from single 

colonies derived from a mixed population containing different genotypes would mean that 

analysis of differing genotypes was undertaken on each sequencing instrument. This would give 

conflicting results, as was observed for D800. The aim of this dataset was to evaluate this 

pipeline in the most conservative way and therefore this result was counted as a false positive, 

despite mixed evidence that it was a CNV. 
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3.4.1.3. Achieving high breakpoint accuracy 

 

The predictions were also highly accurate, having a median distance of 0.5 genes between the 

predicted and the true start/end positions. However, there were predictions that had considerably 

worse break-point accuracy. Two of these estimates were related to the over-sensitivity of the 

pipeline leading to a CNV being correctly predicted but ending a large distance before the true 

CNV end. It is to be expected, therefore, that the CNVs predicted in the larger cohort of B. 

pertussis isolates are highly accurate. 

 

3.4.1.4. Indirect evidence of breakpoint accuracy from novel predicted CNVs 

 

Beyond the 28 isolates with known CNVs, an indication that the predictions were accurate was 

found in the analysis of the global cohort of isolates. As homologous recombination is thought to 

be the primary driver of SV formation in B. pertussis, I sought to determine the relationship 

between predicted CNVs and repeats. I found that the predicted CNVs were significantly closer 

to repeats (median: 0 gene) than the majority of genes in the genome (median 5 genes). The 

closer association of CNVs to repeats indicates the predictions were not spurious results with no 

association to the known underlying biological processes of CNV formation. As this evidence is 

indirect, however, this association could be caused by a different mechanism which is as of yet, 

unknown. Additional direct and indirect evidence of CNVs is provided in Chapter 4. The best 

source of direct evidence of CNVs is by capturing whole CNV arrays in single long sequencing 

reads, but failing that, long reads that span the end of one copy of the tandem CNV and the start 

of the second copy (junction sequences) provide indirect evidence of CNVs. 

 

3.4.1.5. Copy number discrepancies 

 

Many of the estimates presented here were non-integer values such as 1.2 or 2.3. Naively, this 

appears to be purely a technical artefact. An interesting feature of read-depth mapping, however, 

is that it is an amalgamation of information from many different cells in the population that was 
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sequenced. This was key to the work in Chapter 4 and was one of the driving forces that led to 

the investigation of mixed populations of cells. It is evidenced in Chapter 4 that CNV instability 

is likely to account for many of these ‘intermediate’ copy number estimates. 

 

The accuracy of the copy number prediction was demonstrated by qPCR which verified the copy 

number of a CNV in UK54. UK54 was chosen as it contained the highest copy number CNV in 

the dataset and was therefore an attractive option for qPCR, which can struggle with quantifying 

changes of a twofold difference (e.g. between single and double copy regions). The qPCR 

resulted in a prediction of 4.4 +/- 0.4, verifying the predicted copy number of 4. 

 

3.4.1.6. A failure to resolve complex CNVs 

 

In the comparison of predicted CNVs to known CNVs, complex CNVs could not be predicted 

correctly as the predicted regions did not satisfy the >80% reciprocal overlap rule. Complex 

CNVs are likely to be present in the large cohort of isolates and therefore there is likely a 

diversity in the accuracy of the predictions: some are inaccurate. As complex CNVs were judged 

to be ‘not-ideal’ for CNVnator to predict, the two isolates with complex CNVs were analysed 

separately in order to investigate how the pipeline interprets this data. The CNV in the B199 

strain was composed of nested CNVs arranged in an extremely complex way whilst in F701 

there was a CNV disrupted by a small genomic inversion compared to the reference B1917 

sequence. 

 

When CNVnator was used to predict these CNVs, none of the results shared an >=80% 

reciprocal overlap with the true CNVs and thus they were not predicted correctly. However, it is 

notable that the region had been predicted as a CNV in B199 although it did not satisfy the 

overlap rule. An additional problem was that the isolate F701 had been predicted as two 

separates but adjacent CNVs which indicates over-specificity (see below). However, even 

merging the CNVs into a single unit for F701 did not enable the predictions to pass the strict 

reciprocal overlap threshold. Strain F701 from the manually resolved dataset had a small 
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inversion and it is likely that some isolates in large cohort dataset would have been disrupted by 

bigger inversions and therefore be predicted as two CNVs that are distant on the B1917 genome 

but may be contiguous on the CNV isolates. This effect may have inflated the number of CNVs 

predicted and the basis of future work could be to resolve many of these isolates using long read 

technologies. Current platforms and analysis appear be unable to generate consensus sequences 

in isolates with large CNVs (178), however. These results highlight how challenging it is to 

predict complex CNVs using read depth alone. It is likely that in the large cohort dataset that a 

number of CNVs would be complex and therefore have reduced breakpoint accuracy. 

 

3.4.1.7. Pipeline conclusions 

 

Taking all the results of the comparison into consideration, the most conservative statistic is that 

74% (20/27) of CNVs of adequate quality were correctly predicted with excellent breakpoint 

accuracy. Less conservatively, including the 2 extra CNVs which were predicted as a correct 

(satisfying overlap rules) major fragment but also generated false positive minor fragments, the 

accuracy was 85% (23/27). This is similar to what is reported for CNVnator and what is 

generally considered good for read-depth based CNV prediction tools. 

 

3.4.2. Analysis of CNVs in a large cohort of B. pertussis 

 

3.4.2.1. Theoretical hurdles in analysing hotspot loci 

 

It was readily apparent from the heatmap (Figure 3.11) that CNVs occurred at specific loci. 

Without further analysing this data it was not possible to gain further insight into the structure of 

hotspot loci. This was a considerable theoretical hurdle to overcome and I eventually found that 

network graphs were an attractive solution to this problem. I considered how novel describing 

hotspot loci using networks was, considering that hotspot loci have been found in multiple 

species. It was apparent that network analysis of CNVs is almost non-existent in the literature. 

Retrospectively searching for publications which utilise network graphs to analyse the spatial 
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organisation of CNVs returned only one methods paper (detailing the bioinformatics tool HD-

CNV) with a modest number of citations (15 as of 27/01/2019) (231). Many of these studies 

utilised HD-CNV to simplify their CNV calls in eukaryotes to a non-redundant set of regions 

that experienced frequent CNVs, but went no further in analysing the composition of these 

networks (232,233). 

 

In the present work I exploit the properties of networks to describe how much CNVs overlap, 

how frequently they overlap and which genes are contained in the majority of CNVs in a 

network. The analysis shown in this chapter extends networks beyond just a way to group 

overlapping CNVs and is a novel utilization the inherently flexible and generic properties of 

networks to analyse the poorly described phenomena of CNV hotspots. The generic nature of 

networks is particularly important given CNVs are a ubiquitous feature in all kingdoms of life. 

 

An advantage of using networks to describe hotspot loci was the ability to semantically 

categorise CNVs to unite the findings of many studies and contextualise them with new data. 

Previously, using limited data, a ‘hotspot-like’ effect had been demonstrated by resolving four 

CNVs with subtle gene content variations at the same loci corresponding here to Network 1, at 

which other CNVs had also been reported(105,132). This is contextualised both by the dataset of 

24 high quality manually resolved CNVs (Figure 3.6) and the results from the B. pertussis cohort 

which provided another 90 CNVs at this location. I propose that the naming convention proposed 

here be used in future analysis to categorize CNVs in B. pertussis in order to generate new 

insights. 

 

3.4.2.2. The relationship between network analysis and prediction accuracy 

 

It was demonstrated that the pipeline was oversensitive, thus leading to some CNVs predicted as 

multiple fragments in addition to a number of predictions to stop short of the true CNV end. This 

had the potential to impact how the data were interpreted. It is possible that this fragmentation 
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causes an inflated number of CNVs to be predicted. I examined how this might have a knock-on 

effect to how CNVs were analysed as networks. 

 

Fragmentation of CNV calls was unlikely to significantly affect the network density statistic. 

Split-CNV calls were observed in two cases (8%) of the ‘high suitability’ dataset and 27 (10%) 

of the 272 CNVs in the large cohort were found to be directly adjacent (<3 genes). This is also 

under the assumption that splits do not fall directly on regions which are CNV start/end points in 

other CNVs, which appeared true (Figure 3.12). Whilst each extra fragment would increase the 

total number of possible connections in the network, under these assumptions each of the new 

fragments would inherit all of the overlaps of the true CNV by the same amount and therefore 

the network density would be unaffected. 

 

The core network statistic was generated by taking the genes that were contained in 90% of the 

genes in CNVs within a network. As it appears that predicted CNVs do not get split into multiple 

predictions at the same genes, CNV fragmentation would not decrease the size of the network 

core for large networks but may have a minor impact on smaller networks.  

 

 

3.4.3. Potential impacts of CNVs 

 

3.4.3.1. Potential phenotypes of CNVs 

 

One of the most frequent hotspots observed in this study included flagella biosynthesis genes 

which have been shown to provide motility to B. pertussis (Table 3.2 & Table 3.3). These genes 

may be linked with colonisation and/or virulence as they were found to be expressed during 

murine challenge(45). The exact role these genes play in these processes is unclear, although at 

least motility and biofilm formation are clear roles for these genes in the genus, with other roles 

also possible. B. pertussis has been shown to be motile and produce flagellum on their cell 

surface (225) in addition to flagella being vital to biofilm development in B. bronchiseptica 
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(234). Flagella encoding genes w ere upregulated in the initial stages of B. bronchiseptica 

biofilm formation but downregulated during the mature biofilm stage, after 48h (234).  

 

Tandem duplication of the genes encoding the flagella apparatus has not been documented 

before, but the literature suggests that overexpression of these genes results in increased 

flagellum on the cell surface and can lead to higher motility (235,236). It is therefore possible 

that increased gene dosage of the flagella encoding genes would lead to increased motility. 

However, Yang et al found that overexpression of the flagella apparatus effected the integrity of 

the membrane, making cells vulnerable to osmotic pressure and macrophage killing (237). It is 

likely that any increase in flagellum therefore comes with additional costs to the cell which may 

be tolerated by B. pertussis if enhanced motility was under positive selection. 

 

Motility is a phenotype that has been described recently in B. pertussis. Hoffman et al found that 

some isolates were never motile but others were motile in only a proportion of experiments 

(225). It is yet to be determined if the observations of Hoffman et al reflect the true behaviour of 

B. pertussis or are artefacts of the assay. It appears that flagella genes have not previously been 

subjected to tandem duplication in the manner described here, although Dalet et al observed that 

the unstable phenotype of high haemolytic activity (185) was caused by CNVs. The instability of 

CNVs may be contributing to the instability of the motility phenotype as described by Hoffman 

et al or may be an added layer of cell-to-cell heterogeneity, which has been described previously 

by different mechanisms in other species (238–240).  

 

The core of network 3 contained the fim3 gene which codes for the major subunit of the serotype 

3 fimbriae (most commonly annotated as fimA)- a potent virulence factor that allows adhesion to 

the host cells (63,241,242). The B. pertussis fimbriae fall into the type 1 category. Amplification 

is likely to increase expression and translation of this gene and as such, whilst amplification of 

fimbriae has not been previously documented, this mutation is comparable to overexpression of 

fim. Overexpression of the major subunit of the fimbriae has been shown to cause elongation of 

the structure in Porphyromonas gingivalis which increased adhesive properties of the 
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cells(243,244). Similarly, Vizcarra et al, who overexpressed the whole fim system, fimA-fimH, 

found increased adhesion, macrophage survival and intracellular bacterial load of Escherichia 

coli (245). Considering the whole fim operon was overexpressed, it was likely that 

overexpression of fimA alone was not enough to cause such phenotypes. It is therefore unclear 

the exact impact that amplifying only fim3 would have on B. pertussis but given the importance 

of fimbriae to virulence for many pathogens, warrants further investigation.  

3.4.4. Is the observed distribution of CNVs driven by selection? 

 

Selection acts on phenotypes which are caused by specific genotypes and as such, how CNVs 

may affect the phenotype of an isolate are important to investigating the selection pressure on 

CNVs in B. pertussis. Selection also directly leaves a signature on the frequency and distribution 

of CNVs in bacteria, however, and this is discussed here (125). The large number of copies of 

IS481 throughout the B. pertussis genome suggests that a very large number of different genome 

rearrangements and CNVs are possible (23). Despite the vast diversity of possible CNVs, 

however, 94% of observed CNVs appeared at just 11 hotspot loci. Similarly, Weigand et al 

demonstrated that there were a number of conserved gene orders  (128, 129). 

 

I suggest that this discrepancy between the potential and observed distribution of CNVs is an 

indication that strong purifying selection acts on CNVs in B. pertussis. This is supported by 

studies that show that in other species genome-wide genesis of structural variants can be shown 

(166,246,247), but other studies show CNVs only rise to noticeable frequencies under positive 

selection (125,163). Whilst this hypothesis is supported by experiments on other bacteria, how 

this impacts B. pertussis is unclear. It is also possible that this is attributable (at least in part) to 

certain loci having a higher likelihood of mutation (166,246). 

 

A seminal study by Anderson and Roth (246) found that in Salmonella, certain regions of the 

genome experienced higher rates of duplication than others, based on their proximity to rRNA 

operons. This was carried out by ‘trapping’ CNVs as they form by transduction assays  (165, 

234, 236). However, it is unclear how this translates to B.pertussis, which is replete with 
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repetitive DNA. Further analysis of the work presented here could investigate if the hotspot loci 

have a denser than average cluster of repeats at the median start and end points. 

 

In order to quantify selection pressures acting on DNA sequences, the most used tool is the 

dN/dS ratio (249), the ratio of non-synonymous (dN) to synonymous mutations (dS) which in 

this case, however, is not applicable. The unstable nature of CNVs in bacteria, and in particular 

in combination with the low rate of SNPs in B. pertussis, mean that the lifespan of a CNV is 

much too fleeting to acquire even a single SNP- synonymous or not. This short lifespan was 

described in the ancestral state reconstruction analysis- hypothesised inheritance of a CNV 

occurred over a timescale that corresponded to just a few SNPs across the whole genome, in the 

most pronounced example. 

 

3.4.5. Applicability of the work outside of B. pertussis 

 

Whilst the repetitive nature of the B. pertussis genome is unusual, it is not unique, as its 

abundance of IS elements ranks in the top 30 in a study of 1000’s of bacterial isolates (250). It is 

likely that CNVs are a common mutation type amongst genomes with repetitive genomes 

(224,251). The unusually high number of insertion sequences within the B. pertussis genome, 

and their relatively even distribution, likely facilitates the genome-wide distribution of structural 

variants. Indeed, genomes of related species B. parapertussis and B. holmesii each harbour fewer 

IS elements and thus exhibit fewer rearrangements 50 and very rare CNVs (M.R. Weigand, 

unpublished). Future work could seek to replicate these analyses for many species and indeed at 

least one study (PanX) has sought to do this (252), although with its own strengths and 

weaknesses. 
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4. Chapter 4- The in vitro genome plasticity of B. pertussis 

 

4.1. Introduction 

 

The instability of the B. pertussis genome is likely to have given rise to the documented 

deletions, inversions and CNVs that have been described in the global population of B. pertussis 

. However few studies have documented the dynamics of the B. pertussis genome in vitro. This 

is highly important as the genome dynamics in small populations over very short timescale of 

hours and days underpins the behaviour of large populations over long timescales, such as those 

documented in Chapter 3. Given that CNVs are known to be highly unstable, I hypothesised that 

heterogenous populations of cells containing different copy number states of the CNV would be 

rapidly generated in vitro. In this chapter I aimed to investigate how populations of B. pertussis 

cells changed CNV copy number over short timescales. Establishing methodologies to do this 

will allow future research to achieve results on a large scale which in turn would allow a viable 

comparison between the spectrum of mutations in vitro vs the spectrum of mutations in 

sequenced samples, themselves likely a mixture of mutations forms by in vitro and in vivo 

pressures. 

 

A variety of methods can be used to study copy number changes in single cells within a 

population, but most involve synthetic constructs in genetically malleable organisms. Few 

methods are able to study naturally occurring CNV dynamics in bacterial populations (124). 

Small repeats (10-100bp in length) can be captured by small reads, such as those generated on 

the Illumina platform. The CNVs presented in this thesis, however, range in size from 10-350kb 

and therefore to capture them in the tandem configuration, would require reads up to 

approximately 700kb long. To study these CNVs fully, therefore, I aimed to study CNV 

dynamics by generating ultra-long read Nanopore data, analysing it for CNVs and exploring how 

to assemble this data to resolve CNVs. 
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4.2. Methods 

4.2.1. Nanopore sequencing 

 

B. pertussis strains were stored at -80oC in PBS/20% glycerol at the University of Bath. Bacteria 

were grown for 72 hours at 37oC on charcoal agar (Oxoid) plates. Harvested cells were 

resuspended in 10 ml SS broth to an OD600 of 0.1 and grown overnight. At approximately OD600 

1.0, cultures were diluted in 50 ml SS broth to an OD600 of 0.1 and grown to OD600 1.0. Bacteria 

were centrifuged at 13 000xg for 5 minutes and processed for gDNA extraction using the 

protocol available from dx.doi.org/10.17504/protocols.io.mrxc57n. The rapid adaptor (SQK-

RAD004) Nanopore library preparation steps were included, adapted for sequencing of very long 

gDNA molecules.  

 

DNA was sequenced for 48 hours on GridION or MinION sequencers using R9.4 flow cells. 

Base-calling was performed with Guppy (V2.1.3 or V3.2.1) using the “fast” Flip-flop model. 

Reads spanning the CNV locus were identified using Blastn alignment with a minimum query 

length coverage of 90% for the 16kb CNV locus and 10% for the single copy flanking regions 

(~1kb). DNA preparation and Nanopore sequencing was undertaken by Natalie Ring. 
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4.2.2. Identifying SVs in single long reads  

 

Each read was compared to the consensus sequence using a BLAST search. This was technically 

very challenging as this process was frustrated by the high repeat content of B. pertussis. Each 

time a repeat sequence was found, it was a technical hurdle to decide if there was a sequence 

following the repeat that would be expected or if there was an unexpected sequence (indicating 

an SV). To overcome this efficiently, it was necessary to remove the repeat gene content from 

the B. pertussis genome sequence. The sequence was split up into 1kb windows at a step of 

200bp and any 1kb section that appeared more than once with adequate homology in at least 

50% of the length of the window was deleted. For UK54 this removed 600kb of sequence giving 

a consensus sequence length of 3.5Mb. Whilst this was highly conservative it aided efficient and 

accurate analysis of reads. 

4.2.3. Generating random sequences and comparing homology 

 

In order to demonstrate how challenging homology matching a read to a Nanopore adapter 

is, a simulation of this task was undertaken. An adapter sequence was compared to 2000 

simulated true negatives (random sequences with GC content of 67%- the same as B. 

pertussis) and 2000 true positives, the first 100bp of each read. This was undertaken using 

BLAST. 
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4.3. Results 

 

4.3.1. Indication from short read data of mixed populations 

 

Intermediate copy number estimates were most recognisable in the dataset of 25 manually 

resolved genomes (Figure 4.1). The discrepancy between the estimated copy number and the 

resolved copy number was evident as 52% (13/25) strains had a copy number that differed by at 

least 0.3. Whilst both sequencing and genome mapping data supported the final genome 

sequence assembly in these isolates, the data was still a consensus, e.g. an average sequence for 

the sequenced bacterial population. This means there may have been cells in the population with 

a different genome sequence, potentially with 3 copies of the locus, for example. A similar trend 

was observed in the 272 CNVs predicted in the large cohort dataset, in which 71% (193/272) of 

CNVs were predicted to be have non-integer copy numbers (+/- >=0.3 of an integer); although 

the true copy numbers of these isolates were not known.  
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Figure 4.1: The true (orange) and estimated (blue) copy number (X axis) of CNVs was plotted 

for the manually resolved cohort (Y axis). Large discrepancies between the estimate and the true 

CNV copy number state can be seen for the majority of isolates.(Reproduced from Chapter 3) 

 



114 
 

 

 

Figure 4.2: Copy number estimates (X) and their frequency (Y) in the full dataset of 273 CNVs 

described in Chapter 3. It can be seen that most copy number estimates are not integers nor are 

they clustered closely at integers but are instead a relatively even distribution between integers. 

This may have been artefactual or a sign of mixed populations of cells with varying copy 

numbers being present in the populations sequenced.  

 

 

A technical artefact or combination of artefacts could have been the source of such a pattern, for 

example: uncorrected sequencing bias (such as poor coverage of certain motifs (253); 

bioinformatic analysis (e.g. not strict enough coverage cutoffs or not enough normalisation) or 

sample preparation (254). Alternatively, this pattern could be produced, at least in part, by a 

biological source. It is hoped, in most sequencing applications, that all cells in the population are 

clonally derived and have identical genomes. This leads to an easy to analyse genome sequence 

during the assembly stage: all reads (derived from a number of different cells in the population) 

will contain the same DNA sequence differing only by sequencing errors. Whilst ideal, this 

scenario is not often achieved as some mutation types occur so frequently that within just a few 

generations, either within the host or in-vitro after isolation, variation between clonally derived 

cells is generated. Most of these mutations are small and inaccuracy in determining their exact 
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composition is well tolerated for most applications. The best-known example is slip-strand 

mispairing mutations in homopolymeric tracts (255). In model organisms with few repeats, copy 

number variants are also a mutation type that occurs very frequently, far more frequently than 

SNPs (161,166,167,246,256). This may be exaggerated in B. pertussis, however, which appears 

to have a low SNP rate and a high number of repeats (42). It was therefore possible that the 

intermediate copy numbers observed in the dataset were products of cell to cell variation in copy 

number. These fluctuations may have occurred before (in-vivo) (167) and/or after (in-vitro) 

isolation of the sample. 

 

4.3.2. Nanopore sequencing confirms mixed populations 

 

4.3.2.1. Resolving CNVs to find cell to cell differences 

 

In order to understand if mixed populations of cells were driving intermediate copy number 

estimates in B. pertussis it was necessary to resolve CNVs on single DNA molecules using long 

read sequencing. It was hypothesised that if reads could be sequenced that were longer than a 

CNV in its tandem array then cell to cell differences could be studied. For example, if two reads 

were found to span the entire CNV locus including the single copy flanking regions, but each 

read contained a different copy number of the locus it could therefore be deduced there was at 

least two genotypes in that population. The most parsimonious explanation of such a result is that 

the two reads came from different cells, each with a different copy number. In this way, long 

read sequencing can be used to investigate cell-cell differences in copy number. 

 

Whilst long read sequencing on the PacBio platform has been undertaken previously to resolve 

CNVs in B. pertussis, this was achieved only in combination with genome maps (which produce 

DNA fragments 50-750 kb long) as a guide (105,132). The short-read length of Illumina data or 

the limited length of PacBio reads (on average 10kb long), prohibits the study of CNVs as the 

reads are shorter than the CNV length. The Nanopore sequencing platform was therefore very 

attractive as its unique architecture allows long reads (reads 1Mb-2.2Mb have been observed 



116 
 

previously (257)) to capture a whole CNV in its tandem array (predicted to be 50kb to >600kb). 

Previously, B. pertussis isolates had been sequenced on the Nanopore platform using standard 

length reads and whilst this produced closed genomes, there was evidence that large CNVs 

remain unresolved (178).I therefore investigated using ultra-long Nanopore reads in resolving 

long CNVs in B. pertussis and in turn, investigating mixed populations of cells. 

 

4.3.2.2. Intermediate copy numbers in short read data linked to mixed populations in 

UK54 

 

To confirm my predictions from short-read sequencing data (Figure 4.2 and 3) and investigate 

the basis for non-integer copy numbers, we exploited the tractable size of one relatively small 

CNV. The genome of UK54 (SAMEA1920853) was predicted to have a 16 kb CNV at a copy 

number of 4.1; short enough to observe the entire CNV locus in a single sequence read on the 

Nanopore platform, assuming that each copy occurred in tandem as observed in the manually 

resolved dataset in Chapter 3. 

 

Ultra-long DNA was prepared according to the Quick protocol (258). Whole genome sequencing 

on the Nanopore platform yielded 85k reads. This sample contained a median and mean read 

length of only 1kb and 9.1kb respectively but produced over 3000 reads with a length exceeding 

50kb (Figure 4.3). Sequence reads that contained both flanking regions of the CNV locus and the 

CNV locus itself were identified (n = 9) and contained the CNV at different copy numbers 

(Figure 4.4). This demonstrated that a laboratory culture of UK54 comprised a mixture of copy 

numbers at this locus and explains the non-integer copy numbers predicted by the short-read 

prediction pipeline. Genomic DNA for sequencing is derived from laboratory populations of 

bacteria and if these harbour CNVs at different copy numbers, subsequent read-depth based 

predictions will represent the average read depth of all of the bacteria sequenced. 

 

It was not known if the original culture of UK54 involved isolation of a single colony or 

collection of multiple clones from the diagnostic plate growth. Thus, it was unclear whether the 
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observed variation in copy number resulted from collection of a mixed population or emerged 

during laboratory growth prior to sequencing. To investigate this, single colonies of UK54 were 

isolated. 

 

 

 

Figure 4.3: Read length (X axis) histogram for UK54. A median of 1kb (red line) and a mean of 

9kb (blue line) were observed in addition to over 3000 reads exceeding 50kb in length (light blue 

line). 

 

4.3.2.3. Mixed populations from pure cultures 

 

To investigate mixed populations, eight single colonies of UK54 were passaged once by growth 

on agar and then once by growth in SS broth. Each of these clonal populations were theoretically 

derived from a single bacterium. The copy number of the CNV locus in each of the resulting 

clones was estimated using qPCR (Figure 4.5) and ranged from 2.2 (clone 6) to 51.2 (clone 8). 
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The results were not conclusive in regards to what timescale this variation was generated 

however and the question still remained: were CNVs unstable over very short timescales (<30 

generations)? 

 

Seven of the 8 clones had expected copy numbers of between 1 and 4, but clone 8 had an 

unexpectedly high copy number. Whilst a copy number of 51 may seem improbable from a 

population which has an average copy number of 4, it is known that tandem duplications are 

highly unstable and prone to further amplification (155,161,167,208,211). This clone was further 

analysed using Nanopore sequencing. 
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Figure 4.4: Ultra-long read sequencing of UK54 revealed the presence of different copy number 

CNV loci within a single culture. Individual sequence reads that spanned the CNV loci were 

identified using BLASTn, labelled J to R. (Panel A). The data shows each read (x-axis) 

containing 1, 4 or 5 copies of the locus (y- axis) and therefore, as each read appears to be 

integrated into the chromosome, there were cells present in the population with 1, 4 or 5 copies 

of the locus. The arrangement of the relevant section of three reads (J, L and M) is illustrated in 

panel B. 

 

The genome dynamics of CNVs in B. pertussis were investigated by ultra-long nanopore 

sequencing two of these UK54 clones, a low copy (clone 4, copy number 4.3) and high copy 

(clone 8, copy number 51.2) clone. It was hypothesised that as these samples were clonally 

derived each sample should, if copy number was not plastic over short time scales (the null 
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hypothesis), contain reads containing the CNV locus at the same copy number. The same 

BLAST search method was applied as previously. 

 

For clone 4 sequence reads were observed with copy numbers 2 and 5 (Figure 4.8). These data 

strongly suggested that CNV copy number was plastic, with copy number variants arising during 

in vitro growth from a single bacterium to the culture from which the gDNA was extracted. 

Together, these results (Figure 4.5 & Figure 4.6) suggest that copy number change of CNVs is a 

dynamic, fluid and continual process in B. pertussis. 
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Figure 4.5: Quantification of CNV copy number (Y axis) of 8 clones of UK54 (X axis) by qPCR 

demonstrated a range of copy numbers from 2.17 to 51.21. 

 

 

For clone 8, no reads spanning the entire CNV locus (i.e. the CNV locus with single copy 

flanking DNA on each side) were produced, presumably due to its extreme length (predicted 

length, 816kb) (Figure 4.6). However, reads containing up to 7 copies of the locus, without 

flanking regions, were identified. Relaxing the BLASTn alignment parameters from a 90% 

minimum query length of the CNV locus to 50% identified a maximum of 9 copies of the locus 

present on a single read with incompletely sequenced copies at each end. Consistent with the 

copy number prediction from qPCR, the read depth at this locus for UK54 clone 8 from the 

Nanopore data was approximately 60x higher than the genome average, strongly supporting the 

very high copy number estimate for this locus in this clone (Figure 4.7). 
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Figure 4.6: Ultra-long read sequencing of UK54 clones 4 and 8 (C-4 and C-8) revealed the 

presence of different copy number CNV within a single culture. Individual sequence reads that 

spanned the CNV loci were identified using BLASTn. Such reads were identified in clone 4 

whilst clone 8 had no reads spanning the full locus. Therefore, partial reads were plotted for 

clone 8. The data shows each read (X axis) contained between one and seven copies of the locus 

(Y axis). 
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Figure 4.7: 10% of the ultra-long Nanopore data generated from the UK54 clone 8 sample was 

mapped back to the UK54 consensus sequence. A clear spike in coverage can be seen at the 

CNV locus which corresponds to approximately 60x higher coverage (baseline coverage ~100 

and peak coverage of ~6000). 

 

4.3.2.4. Gene expression is linked to copy number 

 

A preliminary investigation of the effect of CNV formation on phenotype was undertaken. It was 

reasoned that an increase in gene copy number by CNV formation would increase the relative 

level of gene expression for that gene, compared to genes outside of the CNV. To investigate 

this, the relative expression level of one gene within the CNV locus was compared to a non-

amplified gene, in three UK54 clones was measured. We selected clones 2, 4, and 8, with 

originally screened copy numbers of 2.63, 4.32, and 51.21, respectively. RNA expression of gene 

B1917_RS10525 (CNV gene) was normalised to the single copy gene recA, often used as a 

stably-expressed, housekeeping, control gene in RT-qPCR experiments (259). 

 

As it was demonstrated that each culture comprises a heterogenous mixture of cells with varied 

CNV copy number, the locus copy number for each clone was re-assayed using the same 

laboratory culture from which RNA was extracted. Upon regrowing these clones for RNA 
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extraction, the average copy number in each changed (statistically non-significantly) to 4.1, 6.5, 

and 53.1 in clones 2, 4, and 8, respectively. 

 

The relative expression of the gene B1917_RS10525 correlated with the copy number (Figure 

4.8); normalising the transcript level in clone 2 to a value of 1, it was 16.8-fold higher 

(P<0.0001) in clone 8. It was also higher, but not significantly, in clone 4 (P=0.76). However, 

broadly, using the data as a whole, there was correlation between DNA copy number and 

transcript abundance. This strongly suggests that the CNV had a gene dosage effect.  
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Figure 4.8: Copy numbers of clones 2, 4 and 8 were quantified using qPCR (X axis) and 

expression of a gene within the CNVs was quantified by RT-qPCR. Expression is shown as a 

relative fold change to Clone 2 (Y axis). Error bars represent standard deviation of relative gene 

expression. The results show that copy number corresponds to the level of expression. 

 

4.3.3. Genome wide structural variants in Nanopore reads  

 

Analysing the Nanopore data from clonally derived populations strongly suggested that the CNV 

locus in UK54 was plastic, leading clonal populations to quickly diversify. These analyses and 

experiments, however, studied only one specific locus- the locus that was predicted to change. I 

hypothesised that other genomic loci were also undergoing structural variation. I tested this 

hypothesis in order to generate further insights into genome dynamics of B. pertussis. 

 

4.3.3.1. Naive identification of SV events in single reads 

 

To investigate if other loci underwent SV during in vitro culture, reads that contained sequences 

which were proximal on the read but distant on the consensus genome sequence were identified. 

These reads were derived from putative structural variants. After reads were BLASTed against 

the consensus genome, any read which satisfied the SV criteria (see methods) was studied 

further. This resulted in 29 reads in this analysis. 

 

It is naive, however, to assume that all these reads are true SVs. It is possible that they are 

sequencing errors known as chimeras. These errors are named as such because they read derived 

from two or more distant parts of the genome. They can arise either physically or through data 

analysis (expanded on below) and have a characteristic appearance (260,261). In order to verify 

these results, the hypothesis that at least some of these reads are chimeras was thoroughly 

investigated. 
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4.3.3.2. How do sequence errors appear? 

 

It is possible that adapter sequences can be attached to two DNA fragments on either side, 

effectively joining two random parts of the genome and thus, when sequenced, appearing as a 

structural variation. It is also possible that two separate reads can pass through the pore in quick 

succession, leading to them being classed as a single read. Both situations produce chimeric 

reads. Some studies have estimated that chimera formation happens at a rate of up to 2% 

(260,261) during Nanopore sequencing, although this may depend on whether a ligase enzyme is 

used in the library preparation, which was not the case here. 

 

There are three traits of SVs that allow them to be distinguished from chimeric reads: long 

length, association with repeats and gapless junctions. This means these characteristic hallmarks 

in combination are rare to appear by chance in sequence data. This is in contrast to SNPs for 

which, due to their comparatively simple nature, it is impossible to tell the difference between a 

true SNP and a sequencing error- there is simply not enough information. It is therefore 

theoretically possible to distinguish between an SV and a sequencing error in a single read.  

 

There is a type of sequencing artefact that can be mistaken as a SV. Adapter sequences are 

synthetic DNA that is added to the sequencing reaction and does not occur in the sequenced 

genome. When two reads pass through the nanopore in very quick succession, or when two read 

are accidently ligated together, a chimeric read composed of two parts of the sequenced genome 

is produced. In order to distinguish between chimeric reads and SV reads I hypothesised that 

when each read was BLASTed against the consensus sequence the chimeric reads will have a 

gap in sequence homology to the reference and that within this gap an adapter sequence may be 

found. 
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Figure 4.9: A Circos plot with all the 29 reads found to have juxtaposed genome positions. Lines 

join the two regions of the genome sequence that were proximal on the read but distant on the 

genome. 

 

 

4.3.3.3. Gaps in alignments indicate chimeric DNA 

 

Analysing the BLAST results, three main types of reads were found: reads with junctions in 

close proximity (but not immediately adjacent) to repeats (Figure 4.10); reads with gaps 

immediately adjacent to a repeat element (Figure 4.11) and gapless reads (Figure 4.12). The 

Circos plot was modified to reflect these categories (Figure 4.13). 

 

Nine reads were found to contain junctions (with or without gaps) in close proximity to, but not 

directly adjacent to, repeats. Reads with junctions in close proximity are likely identified in this 

experiment because I selected reads in which the junction occurred within 1kb up or downstream 

of an insertion sequence. This was done to study the appearance of chimeras in this analysis as I 
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expected chimeras to have junctions outside of repeat sequences. These reads may indicate 

CNVs arising from alternative processes which make SVs (such as non-homologous end joining) 

chimeric reads. They were analysed for adapter sequences and then excluded from further 

analysis. Future work will include limiting the junction to occurring only within 50bp of the 

repeat to only capture likely SVs. 

 

Reads with gaps immediately adjacent to a repeat sequence are likely to be chimeras, based on 

the hypothesis that an adapter sequence would cause a gap in an alignment. Several reads 

appeared with no gap in the sequence alignment. I hypothesise that these reads are true SVs that 

have occurred during brief culturing. Whilst gaps indicate that a read might be a chimera, the 

presence of an adapter sequence in this gap is unequivocal evidence of this. Adapter sequence 

searching, however, is complicated by the inherent raw error rate of Nanopore reads which, for 

the chemistry used here, results in approximately 75-90% accurate reads. It was therefore 

necessary to identify reads not only containing the perfect adapter sequence, but sequences that 

were similar to the adapter sequence- a fraught process.
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Figure 4.10: A read which contained a gap near, but not adjacent to a junction sequence. The full read is shown in A and shown in 

closer detail in B. This is likely a chimera. Short areas of the read (X axis) which are present multiple times in the consensus genome 
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(Y axis) appear as vertical ‘columns’ of hits whereas long regions of the read which map to single areas of the consensus form 

horizontal lines.
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Figure 4.11: A read that contained a gap following a repeat element, in this case a 3kb sequence which has two copies in distant parts 

of the genome. The full read is shown in A and shown in closer detail in B. This read is likely to be a chimera. Short areas of the read 

(X axis) which are present multiple times in the consensus genome (Y axis) appear as vertical ‘columns’ of hits whereas long regions 

of the read which map to single areas of the consensus form horizontal lines.
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Figure 4.12: An exemplary read which did not contain any gaps in the read and consensus sequence alignment. The full read is shown 

in A and shown in closer detail in B. This read is likely a true SV. Short areas of the read (X axis) which are present multiple times in 

the consensus genome (Y axis) appear as vertical ‘columns’ of hits whereas long regions of the read which map to single areas of the 

consensus form horizontal lines.
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Figure 4.13: A Circos plot of the three main types of reads identified in this analysis. 
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4.3.3.4. Inexact string matching on error prone data is difficult. 

 

As DNA is composed of a 4-letter alphabet, two random sequences can match with 

approximately 50% homology (Figure 4.14). Therefore, identifying sections of DNA that are 

approximately 60-80% similar to their true sequence is a technical challenge. 

 

To demonstrate how random sequences may share high homology, simulated and true positive 

DNA segments were aligned to the adapter (see methods) and the percentage homology plotted 

(Figure 4.14) . The results show that in order to recognise 99% of adapter sequences in this 

dataset it would be necessary to allow homology matching down to 52% homology. This has a 

true positive rate of 99.1%, a false positive rate of 21.6% and a false negative rate of just 1%. 

However, if only 90% of the chimeras were to be excluded then adapter homology threshold 

could be set to 78%, leading to a true positive rate of 91%, a false positive rate of 0 and a false 

negative rate of 8.7%. The impact of this on the UK54 dataset is worked through in Table 4.1, 

with an estimation that chimeras are formed at a rate of 2% (261).  
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Figure 4.14: A histogram of adapter homology search results (X axis) in real data containing 

adapters and simulated data which did not contain adapters. The threshold that would remove 

90% of chimeras (76% homology) is indicated with a dashed line and the threshold that would 

remove 99% of chimeras is indicated with a dash-dot line. 
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 Table 4.1: A table of worked examples of chimera matching based on the UK54 clone 4 

datasets. 

 

 

Conducting a simulated analysis on adapter sequence matching demonstrated how easily false 

positives are generated when inexact string matching is undertaken on error prone reads. It was 

found that even removing chimeras with a permissive homology match would result in 200 

chimeric reads being produced in the UK54 dataset. I sought to find reads with adjacent DNA 

sequences that mapped to distant parts of the consensus sequence, a process that would also 

highlight many chimeras. Therefore, in order to increase the confidence in my dataset, I needed a 

more stringent method to remove chimeric reads. 

 

4.3.3.5. Searching for adapters within alignment gaps effectively identifies chimeras 

 

There were 9 reads that were selected by the Circos analysis as having junction sequences within 

1.5kb of a repeat element. A broad search was conducted to find reads close to repeat elements 

but only the reads which have junctions fully adjacent to repeats are likely true SVs, thus these 9 

reads were excluded. It was hypothesised that these reads were chimeras. In support of this, 7 out 

of these 9 reads contained an adapter sequence at the sequence gap, one of which is shown in 

Figure 4.15. This indicated they were chimeras rather than true SVs caused by non-homologous 

recombination or homologous recombination between small repeats. 

Genome Reads 

generated 

Example 

chimera 

rate 

Adapter 

exclusion 

threshold 

Adapter 

homology 

threshold 

True 

positive 

False 

positives 

False 

negatives 

UK54 

clone 4 

700,000 2% (14,000 

chimeric 

reads) 

99% 56% 13874 3031 210 

90% 75% 12803 0 1225 
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Figure 4.15: A read with a gap in sequence homology between the read(X axis) and the 

consensus sequence (Y axis). An adapter was found in the gap with 58% homology to the true 

adapter sequence. Additional matches to the adapter sequence are marked with a red circle. The 

alignment of the adapter sequence to the found sequence is shown and differences are 

highlighted red and gaps with a dash. 

 

Interestingly, despite the adapter being only 50bp long, the gaps were often much larger. This 

may indicate how the chimeras were formed. It may be the chimeras formed by two DNA 
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sequences quickly passing through the pore cause large gaps in sequence (Figure 4.11) as the 

pause between reads gets interpreted as random sequence. Small gaps in sequence may be caused 

by two reads physically joined together in the adapter attachment step (Figures 4.10 and 4.15). 

Excluding these 9 reads from the 29 reads left 20 reads which had junctions directly adjacent to 

repeat elements. 

 

Table 4.2: The categories of reads representing putative SVs that were analysed for chimeras.  

 

Read category Number of reads Number with 

detectable adapter 

Number without 

adapter 

Junction not adjacent 9 7 2 

Adjacent with gap 11 9 2 

Adjacent without gap 9 1 8 

 

As expected, gaps in sequence alignment were often due to adapter sequences being present 

(Table 4.2). This provided evidence that in order to exclude chimeras with the highest 

stringency, an additional search rule should be added: reads which contained gaps directly 

adjacent to junctions in their alignment to the consensus sequence should be excluded. 
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In summary these are the rules which were adhered to in order to highlight reads as true 

SVs:Contains DNA sequences which are proximal on the read but at least >=30kb apart on the 

consensus sequence, forming a ‘junction sequence’; The junction sequence must be directly in or 

adjacent to a repeat region; There must be no gaps in homology between the read and the 

consensus sequence adjacent to the junction sequence. Following these search parameters left 8 

reads which passed all tests and had no evidence that they were chimeras. I hypothesise that 

these are structural variants. 

 

4.3.3.6. High confidence reads and SV type 

 

The final step in this analysis was to determine which SV type gave rise to the high confidence 

reads. A rearrangement can be distinguished from a deletion or CNV by analysing the orientation 

of the pre- and post-junction sequences. If the two sequences are in an opposing orientation then 

an inversion has been detected, whilst if the two sequences are in the same orientation then a 

deletion or CNV has occurred (Figure 4.16). This was exploited to label each SV as either a 

deletion/CNV or rearrangement (Figure 4.17). 

 

Using this method, it could be demonstrated that putative SVs in single reads that were not 

present in the consensus sequence could be identified. In this sample there were only 8 such 

reads. Whilst it appears that there was a slight bias of reads towards the terminus, that was not 

repeated in the following analysis of UK76. What this data does demonstrate, however, is that 

the B. pertussis genome is highly plastic and this can be observed in as little as two passages 

using Nanopore reads. 
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Figure 4.16: A read which had no evidence of being a chimera and appears to be a genome 

rearrangement. The pre junction DNA from 0-53kb on the read (X axis) is in the inverse 

orientation to the genome (Y axis) as it matches in a negative orientation (appearing as a 

negatively sloped line)- starting at 1.63Mb and ending at 1.62Mb in the consensus sequence. The 

DNA after the junction, however, is positively orientated with the consensus sequence 

(appearing as a positively sloped line) - the read sequence from 53kb-200kb matches from 

2.62Mb to 2.76Mb on the consensus sequence. 
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Figure 4.17: A Circos plot showing the 8 reads from UK54 with no evidence of being a chimera. 

Blue lines indicate reads which arose from CNVs or deletions and red lines indicate reads which 

arose from rearrangements. 
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4.3.3.7. UK76 contains at least 6 unique junction sequences 

 

Having established that structural variations could be detected in single Nanopore reads in the 

UK54 dataset; it was important to establish this phenomenon in another sequence dataset. The 

strain UK76 presented one of the largest CNVs at >300kb (with a tandem length of >600kb) and 

had a predicted copy number of this locus of 1.3. This strain was sequenced as part of a generic 

investigation into CNVs in B. pertussis. When ultra-long nanopore sequencing was undertaken it 

was unsurprising that no reads were found to span the whole tandem repeat region. 

 

Undertaking the same analysis on this sample provided insight into CNV formation in B. 

pertussis. Of the 400k reads generated, 136 reads were found to contain DNA sequences that 

were proximal on the read but distant on the consensus sequence of which 95 were found to have 

junction sequences in repeat elements. Of these 95, 67 had no adapter sequence or homology 

gaps at the junction -remarkably higher than 8 reads passing the same tests in the UK54 sample. 

This different abundance of these reads was not proportional to how many total reads there were 

in each sample, given that both UK54 clone 4 and the original UK54 sample both contained 

approximately 700k reads.  

 

It was found that UK76 had multiple different CNV junctions present in the sample (Figure 

4.18). Whilst previous experiments demonstrated that heterogeneity of copy number was 

possible, these results indicated that heterogeneity of the sequence composition of CNVs was 

possible within a single sample. Comparing this spectrum of start/end positions to those found 

within the global cohort of isolates in Chapter 3 resulted in considerable overlap. For example, 

20 reads had the junction of 1.315Mb and 1.709Mb (Figure 4.19) matched the predicted CNV for 

UK76 in Chapter 3, an estimate based on read depth of Illumina data. There were many reads 

which had subtle variations of this, however, with junctions differing by only a few thousand 



143 
 

bases.  The second most popular configuration was 1.385Mb-1.655Mb where at least 6 reads had 

the breakpoint, again with subtle variations (Figure 4.20). There was a small number of reads 

that appeared to have their own unique junctions. Whilst it was not feasible to manually check 

each break point, every new break point configuration that was manually analysed indicated that 

the Circos analysis was true (Figure 4.18). There were at least 6 junctions present in this sample: 

2 popular (Figures 4.19 and 4.20) and 2 rare/unique (Figures 4.21 and 4.22).  

 

Of these 6 studied junctions, 5 were found previously in the large-scale analysis in Chapter 3. 

This may mean that certain breakpoints are particularly prone to SV and therefore occur 

repeatedly both on long timescales, such as in the large dataset in Chapter 3 and on short scales, 

such as described here. Whilst the gene sets of each of the 6 CNV identified here do differ, and 

this includes genes with functions involved in homeostasis (pdxK,BP1320) and glycogen 

biogenesis (glgB, glgX), such subtle differences are overshadowed by the size of the CNVs, 

which involve approximately 200 genes. 
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Figure 4.18: A Circos plot showing the 67 reads with no evidence of being a chimera in UK76. 

Red lines indicate reads which arose from CNVs or deletions and blue lines indicate reads which 

arose rearrangements. Many reads with slight variation in junctions were found between 0.9Mb 

and 1.5Mb. 
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Figure 4.19: An alignment of a read (X axis) to the consensus genome (Y axis) with the most frequent junction (A). The junction is 

enlarged in (B) and corresponds to a CNV between 1.315Mb-1.709Mb.



146 
 

 

 

 

 

Figure 4.20: An alignment of a read (X axis) to the consensus genome (Y axis) with an alternative breakpoint (A). The junction is 

enlarged in (B). The breakpoint was 1.385Mb-1.655Mb. In red are the breakpoints displayed in (Figure 4.19).
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Figure 4.21: An alignment between a read (X axis) and the consensus genome (Y axis) with an alternative breakpoint (A). The 

junction is enlarged in (B). The breakpoint was 1.315Mb-1.172Mb. In red are the breakpoints found in previous analyses but not in 

this read (Figure 4.19 & Figure 4.20). 
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Figure 4.22: An alignment between a read (X axis) and the consensus genome (Y axis) with an alternative breakpoint (A). The 

junction is enlarged in (B). The breakpoint was 1.413Mb-1.665Mb. In red is the breakpoints found in previous analyses but not in this 

read (Figures 4.18-4.20). 
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This analysis of UK76 therefore was a valuable experience. It was clear that in this sample a high 

amount of genome plasticity had been observed. I had, however, hypothesised that there would 

be frequent de-novo SVs all around the genome. This was not true in either sample, although in 

UK54 not many reads with de-novo CNVs were observed. Like other B. pertussis isolates from 

the 2012 epidemic, it was unclear if these samples had been isolated from a single colony on a 

plate or the observed diversity was generated in vivo and had been captured by taking a sweep of 

the plate. It cannot therefore be concluded whether this observed diversity of breakpoint occurred 

during in vitro passage or in vivo.  

 

4.3.3.8. Analysis of CNV containing reads 

 

I detected 8 reads in UK54 and 4 reads in UK76 that contained strong evidence of CNVs 

occurring in loci unrelated to the known CNV in each genome. Of these, 7 were CNVs/deletions 

and 5 were inversions. The majority of these reads bore no resemblance to each other and 

appeared to be ‘randomly’ distributed throughout the genome- not at the 11 hotspot loci 

previously established. One read did overlap Network 1, although this is not enough evidence to 

suggest that this locus is a mutational hotspot, rather than a hotspot generated by selection. There 

was slightly elevated frequency of CNVs between 2Mb and 3Mb in both genomes, however, 

although the dataset is too small to definitively suggest this. The general lack of overlap with the 

hotspots found in highly interesting considering that 93% of the CNVs found in the dataset in 

Chapter 3 were found at hotspots. This supports the argument that the CNVs found in that 

dataset were not products of the populations adapting to invitro environments, but adaptations to 

other environments, given the disparity in gene sets that were observed. These SVs were too long 

to have their genes and putative functions listed; however, the functional categories were 

described in Figure 4.23 and were expressed in terms of fold enrichment compared to the whole 

genome. 
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Figure 4.23 Seven putative deletions/CNVs were analysed for enrichment of genes belonging to 

the 21 COGS (X axis) in comparison to the genome as a whole. This was expressed as a fold 

enrichment (Y axis). It can be seen that most boxplots have a median of 1(noted as a horizontal 

line), indicating no functional enrichment on average. Values above 1 indicate enrichment and 

values below 1 indicate depletion. 

 

 

 

 

Table 4.3 COG categories and their full designation.  
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A RNA processing and modification 

B Chromatin Structure and dynamics 

C Energy production and conversion 

D Cell cycle control and mitosis 

E Amino Acid metabolism and transport 

F Nucleotide metabolism and transport 

G Carbohydrate metabolism and transport 

H Coenzyme metabolism 

I Lipid metabolism 

J Translation 

K Transcription 

L Replication and repair 
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M Cell wall/membrane/envelop biogenesis 

N Cell motility 

O 
Post-translational modification, protein 

turnover, chaperone functions 

P Inorganic ion transport and metabolism 

Q Secondary Structure 

T Signal Transduction 

U Intracellular trafficking and secretion 

Y Nuclear structure 

Z Cytoskeleton 

R General Functional Prediction only 

S Function Unknown 
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Analysing the six reads using COGs revealed that on average these reads were not enriched or 

depleted for most functions. Categories A(RNA processing and modification) ,B(Chromatin 

Structure and dynamics) ,N (Cell motility) and U (Intracellular trafficking and secretion) were 

highly depleted, having median fold enrichments of 0. Whilst both COGs A and B were depleted 

on average, each had one CNV which was highly enriched for these categories. This may have 

been because the two that were enriched were CNVs and those which were depleted were 

deletions, given that these categories of genes are likely to be essential for growth. The putative 

CNV with the highest enrichment was the one CNV that overlapped with network 1 and was 

highly enriched for motility genes. Category G (Carbohydrate metabolism and transport) was on 

average not enriched, but had an upper quartile significantly above 1. This may have indicated 

that CNVs were enriched for these genes whilst deletions were not. Such an arrangement could 

be due to in vitro selection for carbohydrate metabolism. Future research should aim to establish 

if this spectrum of enrichment/depletion is consistent between samples.  

 

4.3.4. Mining assembly graphs for supporting data 

 

It has been previously reported that long read assemblers failed to assemble B. pertussis genomes 

predicted to contain long tandem CNVs  (105, 130, 178). Assembly is not a single stage process, 

however, and there exists many intermediate steps that generate data. I investigated several 

intermediary graphs in the assembly process of Unicycler to investigate how this data 

corroborates my Circos analysis and to generally explore the assembly process for any potential 

utility. 

 

Unicycler relies on the Miniasm (262) assembler which uses de-Bruijn graphs constructed with 

nodes and edges which are made of reads and overlaps, respectively. The process of de-novo 

genome assembly using de-Bruijn graphs underpins most assembly tools and at its very core, is 

as simple as finding overlaps between reads (or K-mers in many other tools) and then 

determining which overlaps have the best support. During the assembly process the graph gets 

more refined as low-support relationships and redundant reads/relationships are pruned until only 
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the most high-confidence nodes and edges remain. Unicycler, almost uniquely, allows viewing 

of these intermediate assembly graphs and I used these to understand how junction sequences 

were being interpreted throughout the assembly process. 

 

As Ring et al noted in their assemblies, use of Nanopore reads with Illumina reads in a hybrid 

assembly resulted in a single contig but with the probable CNVs collapsed (178). Conversely, 

assembling just long read data also gives a poor assembly although with different flaws. The 

‘nanopore-only’ assemblies of the Ring et al study were replicated here, but only in Unicycler 

(263) and with ultra-long nanopore data rather than standard length. In this experiment, not only 

were the final assemblies studied, but also intermediate graphs, which may be informative on 

why the genome could not be closed. 

 

The genome of UK48 had a predicted CNV size of 170kb and this strain had been sequenced 

with ultra-long Nanopore sequencing in an attempt to resolve the CNV. Like other samples, 

however, it was not possible to resolve the CNV. Assembling long read data for UK48 with 

Unicycler gave a fragmented assembly of 12 contigs and a total assembly size of 4.4Mb- 300kb 

longer than would be expected if the CNV was not resolved (Figure 4.24). BLASTing the 

putative 170kb duplicated locus, in addition to 90kb of flanking sequence either side of it (300kb 

total), against this graph revealed that the CNV locus had not been resolved as a tandem array 

nor was it present in two full copies (264). The data showed the locus was spread over multiple 

contigs- one of which contained 40% of the CNV locus and was noted in the genome assembly 

graph as having a copy number of 1.52. In total the CNV locus was present at 130% of its 

original length. It therefore appeared that the CNV was partly resolved, although it is unclear 

which parts had been collapsed to a single copy. It also was not clear why the assembly was 

larger than it should be, even accounting for the CNV being partly resolved.  

 

Using the same ’BLAST-to-graph’ methodology (264), a contig was identified which had a 

juxtaposed colour scheme of green next to red (Figure 4.23). This indicated that this contig 

contained an order of DNA that was different to the reference genome. On further examination it 
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was clear that this was a junction sequence between the tandem duplication copies - direct 

evidence a CNV is present in this sequence. The ability to resolve junction sequences from 

sequence data is a clear advantage of long read Nanopore data. 

 

In order to further understand the assembly process and data which gave rise to such an 

assembly, the UK76 string graph was examined. In this graph, the >500k reads have been 

reduced to a less redundant set, although with much redundancy still present. The duplicated 

region was shown as a complex structure with reads that were clearly junctions and a ‘bubble’ 

that contained the duplicated sequence. Examining this graph revealed the complexities of long 

read assembly for B. pertussis. Such junction sequences can be used, in combination with other 

sources of evidence, to automate the construction of hypothesised CNVs in the future. This could 

provide a genome sequence which is of a quality intermediate between fully resolved and 

partially resolved. This task, however, was outside of the scope of the current work and this 

process would struggle to resolve very complex CNVs such as those outlined in Chapter 3.
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Figure 4.24: UK48 was assembled into 12 contigs (A) and the putative CNV sequence, with 

flanking regions, was searched against the assembly (B). The rainbow colour spectrum (red, 

orange, yellow, green, blue, indigo, violet) is used to show matching sequences in the subject 

(the assembly) to the query (the CNV). Panel C shows a closer examination of a contig: green 

sequences are adjacent to red sequences, despite these sequences being separated by 170kb on 

the query sequence (B). The contig therefore appears to be a junction sequence as these locations 

correspond to increased coverage in the UK48 short read dataset. 

 

I then investigated how unicycler handled the UK76 assembly which had many different junction 

sequences. Assembling UK76 with Unicycler resulted in a single contig which did not have the 

CNV resolved, something also observed by Ring et al (178). I searched for the duplicated locus 

from UK76 (with single copy flanks) in an intermediate graph. I could identify many sequences 

that were SV junctions, visible because of their juxtaposed colour scheme (Figure 4.24). Further 

investigation into these reads corroborated the work from the Circos plot: there were reads 

showing different breakpoints thus indicating multiple duplication events co-occurring within the 

population. As the process of assembly aims to reduce the readset to increasingly less redundant 

state and that this was a graph mid-way through this process, it can be presumed that these nodes 
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had multiple reads which covered them, meaning they were unlikely to be chimeric sequences. 

Unicycler was discarding these reads, likely because of their divergent gene content. I could 

therefore show in two independent ways, analysing the same dataset, this novel feature of the 

UK76 sample. 

 

 

 

Figure 4.25: An early stage of the assembly was examined further. Reads (coloured lines) with 

homology are connected by a blank linker region. The CNV region with single copy flanks 

(coloured bar, top right) was blasted against this graph. The rainbow colour spectrum (red, 

orange, yellow, green, blue, indigo, violet) is used to show matching sequences in the subject 

(the assembly) to the query (the CNV). Reads with an expected order of DNA have the colour 

spectrum in the same order as the query (blue-purple-green-yellow) whilst lines with  juxtaposed 

colours (yellow to blue) indicate junction sequences and are indicated with arrows.  

 

4.4. Discussion 

 

4.4.1. Copy number estimates using short read data predicts mixed populations 
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The large cohort dataset was reanalysed to find that many of the copy number estimates were not 

integers. This was in addition to the copy number discrepancies described in Chapter 3 in the 

manually resolved dataset. I hypothesised that this is because cells in the population have 

different copy numbers of the locus and when an average is taken (as is the case for read depth-

based estimates), the value is intermediate between the true copy numbers. 

 

These non-integer estimates could be, at least partly, due to inaccuracies of CNVnator estimating 

the copy number via read depth. The distributions of copy number estimates in both the manually 

resolved and full cohort (Figure 4.2 and 4.4, respectively) datasets were skewed towards lower 

copy numbers. For example, in the manually resolved CNV dataset, of the 25 CNVs that were 

approximately copy number 2, 5 were exactly copy number 2, only one was considerably higher 

(copy number 2.3) and 11 were considerably lower (<=1.7). I hypothesise that such estimates 

were produced by a biological process as no mention of this systematic bias has been reported. 

Future work should include the analysis of published data to find if CNVnator systematically 

under-estimates copy number. Under this hypothesis, eukaryotic datasets, where genomes are 

generally more stable, should have a relatively even distribution of copy numbers around 

integers when compared to prokaryotic datasets.  

 

4.4.2. Nanopore sequencing confirms mixed populations in UK54 

 

4.4.2.1. Ultra-long Nanopore reads can resolve tandem arrays 

 

 

The CNV estimates generated in Chapter 3 were used to screen for a CNV that was tractable 

using Nanopore sequencing. In this instance, this also highlighted the CNV with the highest copy 

number in the dataset. The UK54 strain had a CNV locus that was 16kb long. with its full 

tandem configuration, at a copy number of 4, predicted to be 64kb- short enough to be captured 

on single, long, Nanopore reads. Regular protocols produce reads with an N50 of 5-10kb which 

was not adequate to sequence this CNV in its tandem configuration (178). As the Nanopore 

platform can theoretically sequence unlimited length reads, given careful DNA and library 
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preparation, much longer reads can be generated. To this effect, the ultra-long read protocol was 

followed. 

 

Sequencing UK54 using ultra-long reads demonstrated that a mixture of copy numbers could be 

isolated (Figure 4.4). This was a successful experiment in two ways: resolving the CNV and 

demonstrating that there was a mixed population. Due to the wide distribution of read lengths 

within a sequencing sample (Figure 4.3) which is skewed towards short reads, it is much less 

likely to isolate a read with a higher copy number than it is to isolate a read with a lower copy 

number. There was, therefore, no attempt here to use these single reads to quantify the average 

copy number of the sample as each copy number, from 1 to 5, would have a different minimum 

read length needed to observe it and therefore a different chance of being observed, given the 

spectrum of read lengths generated. It is more reliable to use the read depth as this is derived 

purely from how many reads covered that position with no stipulation of their length. 

 

It could not be confirmed if the original stock of UK54 had been clonally derived. Public Health 

England guidance suggests that multiple single colonies from a plate can be used to prepare 

samples for sequencing and also for identification (265). This strategy is a good way to represent 

the diversity of bacteria from the sample and will assist in accurate phenotyping for this specific 

scenario. One such scenario where this strategy would be beneficial, for example, would be if a 

mixture of antibiotic resistant and sensitive isolates are on the diagnostic plate and picking a 

single colony would inaccurately describe the antibiotic resistance profile of the sample. As 

mixed populations were sequenced here, the quantity of B. pertussis samples on the SRA which 

are not clonally derived is unknown. It could not therefore be established if the mixed 

populations from this initial sample had evolved in vitro or were present in vivo. Despite this, I 

hypothesised that these CNVs were unstable in vitro under limited passage, as this has been 

previously documented (167,208,266). I repeated the experiment with clonally derived samples. 

 

4.4.2.2. Mixed populations from clonally derived isolates 

 

Eight clones from the UK54 stock were isolated and their copy number established using qPCR 

(Figure 4.5). qPCR was used to screen for copy number differences between clones and to select 
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clones to sequence. Clones 4 and 8 were chosen as they captured an average (copy number 4) 

and extreme copy number (copy number 51) respectively. The results from sequencing clone 4 

clearly indicated that mixed copy numbers could still be recovered as reads with both 5 and 2 

copies were found (Figure 4.6). This therefore meant that culturing UK54 from both single 

colonies and the original stock produced a similar result. It could therefore be established that 

copy number changes were being generated rapidly during limited in vitro passage. Although the 

3 reads with two different copy numbers observed in this experiment were sufficient to prove the 

hypothesis, it was unexpected that many fewer reads were found to span the locus in this sample 

(3) than in the original sample (9). This may involve an interplay between the generated read 

lengths and the time taken for tandem arrays to segregate (125,167,208). Further experiments 

showing how tandem arrays degrade over time and understanding how this process would be 

expected to be observed, given the spectra of read lengths generated by the Nanopore platform, 

should be undertaken. 

 

Finding that brief in-vitro passage can lead to intermediate copy numbers supports that the 

‘inaccuracies’ of copy number estimates from Illumina data generated in Chapter 3 were at least 

partly due to populations of mixed genotypes being sequenced. This evidence indicates that 

entering clinical isolates into in vitro passage leads to generation of mixed populations of cells. 

This is highly interesting and one of the key results of the thesis. What remains unsolved, 

however, is whether or not in vivo instability (211) occurs in B. pertussis, as observing in vitro 

instability of the CNV does not exclude the possibility that the observed genome plasticity of the 

original mixed sample of UK54 also happened in vivo. 

 

4.4.2.3. ‘Extreme’ gene amplifications 

 

One of the most surprising results generated here was the isolation of a clone with a copy 

number of 51. Whilst such an outlier was at first approached with scepticism, read depth 

coverage on the Nanopore platform agreed with the qPCR results. It is widely reported that 

tandem arrays are highly unstable and that instability increases with increasing copy number 

(208,267). Such knowledge comes from experimental systems which are manipulated with 

extreme in vitro selection pressures such as single carbon sources (161). Whilst mutations are 
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being produced at all loci with an array of mutation types (SNPS, indels and inversions), the 

frequency at which mutations are observed within a population is determined by both its 

mutation rate and its fitness impact  (234, 256). Therefore, if thousands of UK54 clones had been 

studied and picked in the same way (which minimised selection), it is expected to see a number 

of ‘extreme’ copy number clones, yet in the present study only 8 clones were studied.  

 

These ‘extreme’ gene amplifications have been studied in bacteria for decades, although mostly 

in non-pathogenic experimental systems. A recent landmark study by Nicoloff et al was able to 

demonstrate that clinical isolates of several species contained copy number variable repeats and 

the isolates were able to rapidly amplify their native antibiotic resistance cassettes, in some cases 

up to 100 copies, in response to antibiotic challenge in vitro (208). Whilst these isolates were 

clinically derived, they underwent extreme amplifications in response to extreme selection 

pressures. It is therefore puzzling why a clone had been isolated with 50 copies of the CNV locus 

as it was assumed that the CNV was not being selected for. A key direction for future work is 

￼to identify the impact on fitness of these CNVs, although this may help to further identify why 

this clone was isolated. The most important parallels between the Nicoloff et al study and the 

work presented here is that both studies are observing amplification of genes using systems 

native to the isolates(208), rather than relying on genetic constructs and mutants (124,161). This 

highlights the need to understand more about the UK54 population and why such a high copy 

number clone had been isolated. 

 

 

 

 

4.4.2.4. Removing adapters via homology search is effective 

 

Given that there was a lack of pre-existing tools and/or data to identify chimeric reads with very 

high sensitivity and specificity, alternative methods were undertaken. Adapter sequence searches 

were combined with read-consensus homology searches to indicate if a read is likely to be a 

chimera. The results showed that gaps in alignment between the read and the consensus sequence 

were highly correlated with the presence of adapter sequences (Table 4.2). In the cases where 
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adapter sequences were not found but a gap had occurred, it can be assumed, due to the close 

relationships between gaps and adapters, that this ‘foreign’ DNA is an adapter sequence which 

was sequenced with drastically lower accuracy. Therefore, any read which contained an adapter 

or gap directly adjacent to the repeat was excluded (Figures 4.10 and 4.11). This was a highly 

effective strategy which produced reads which had no evidence of being chimeric. 

 

Due to the results of the simulation study (Figure 4.14 and Table 4.1), it was decided to not rely 

on only string-matching tools such as Porechop (available: https://github.com/rrwick/Porechop). 

Porechop is one of the most popular read trimming tools which removes adapters from the 

start/end of reads and splits reads or deletes them if adapters are found in the middle. It is 

technically possible to rely on Porechop with a low adapter homology threshold to split 

chimeras- even though this may produce many false positives. The resulting highly fragmented 

set of reads would likely still contain the right information (e.g. reads containing DNA from two 

different parts of the genome adjacent on the read). There are many disadvantages to this strategy 

however and it was not pursued for the following reasons. The primary concern was that there 

would be less ‘anchoring’ DNA on either side of the junction leading to a difficult analysis for 

some reads and given that Porechop may split approximately 20% of the reads (according to the 

simulations I undertook). A second reason was that as part of the presented method, each read in 

the raw data was split into an individual file and Porechop would make extra files, the running of 

the method presented here would become more technically challenging. This research indicates 

that if it is imperative to find chimeric sequences with minimal false positives then reference 

guided adapter exclusion performs well. Repeating the work proposed here with Nanopore’s new 

flowcells (R10), which promise improved errors rates, may make direct chimera detection more 

reliable. Preliminary research of the R10 sequencing chemistry on the Oxford Nanopore 

sequencing platform shows that it is possible to reduce the raw error rate of reads to 5-10% 

(269).  

 

 

4.4.2.5. Examining Nanopore ‘squiggles’ to find chimeras 

 

https://github.com/rrwick/Porechop
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An avenue of future research into the identification of chimeras is to investigate other hallmark 

signals of chimeric reads. During Nanopore sequencing, the final DNA sequence of each read 

has been interpreted from the raw electronic signal the DNA molecule made as it passed through 

a nanopore (colloquially known as a ‘squiggle’ signal). This signal is constantly being read and 

the signal between an empty pore and a pore with a DNA fragment in are quite different. When a 

read enters and exits the pore, this characteristic change in signal can often be easily interpreted 

by basecallers. This process sometimes does go wrong, however, leading to the in-silico 

formation of chimeric reads. Other studies have demonstrated that these chimeras can be 

manually diagnosed by re-examination of this squiggle (260,261). This appears to be true for 

both in silico chimeras (two reads passing through the pore in quick succession) and true 

chimeras (two DNA molecules attached by adapter sequences) where the specific signal of an 

adapter sequence can be recognised. Whilst this is impractical for hundreds of reads, as the 

number of reads is so low in these analyses, this method is entirely feasible for 1-100 reads.  

 

Turning electronic signals into DNA base calls is a highly complex task which is achieved with 

high accuracy and efficiency by many well used bioinformatics tools. It is a rare event when 

these tools create chimeras from two reads passing through a pore consecutively. A lack of 

homology between the junction of these two reads to the species being sequenced may a useful 

way to recognise chimeras. This should be a focus of future work so that an automated `chimera 

polishing' tool can be established.  

 

4.4.2.6. Computational inefficiency results in inconclusive data 

 

Using BLAST to find reads with juxtaposed DNA sequences is resource intensive and therefore 

only two sequence datasets were investigated. The most compute intensive task is the BLAST 

search itself which compares each read to the consensus sequence. This step takes roughly 24 

hours to run whilst the rest of the analysis can be carried out in approximately 6 hours. 

Therefore, there is scope to drastically improve the efficiency of this method. 

 

One method to speed up this process would be to rely on pre-existing mapping pipelines which 

are well designed for the task of homology searching (270,271). Most of these tools will mark 
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reads which do not fully align to the consensus sequence by either noting a ‘not primary 

alignment’ or ‘supplementary alignment’ value in the FLAG field of the SAM file format. Any 

read that does not wholly and uniquely map to the reference sequence would be noted with these 

warnings. Whilst all the SVs noted here would be highlighted in this way, many false positives 

would be flagged too. For example, an additional source of supplementary alignments from a 

mapping pipeline would be Nanopore sequence glitches. Glitches are stretches of DNA that have 

been sequenced poorly on the Nanopore. It is likely that many reads highlighted as divergent by 

mapping pipelines would be due to the high repeat content of B. pertussis. By using the mapping 

pipeline to find reads which don’t map uniquely to the consensus sequence, the number of reads 

which are analysed could be reduced but it could not be assumed that all (or the majority) of 

reads that map with a supplementary/not primary alignment would be true SVs. This means that 

these reads must still be analysed using a BLAST-like approach. 

 

Whilst two Circos analyses were presented here, they gave distinctly different results (Figures 

4.17 and 4.18). The analysis of UK76 showed that there was considerable heterogeneity of CNV 

content and low levels of de-novo CNV generation whilst UK54 showed only low-moderate 

levels of denovo CNV generation. Following an improvement in efficiency of the Circos 

analysis, more sequencing samples should be undertaken to investigate a number of trends that 

could exist in the data. For example, it is unclear if all CNVs are as equally unstable as the UK76 

CNV. 

 

4.4.2.7. Circos analysis can be undertaken using reads <=7kb 

 

Both samples analysed with Circos analysis (UK54 and UK76) were generated by ultra-long 

Nanopore sequencing, however, these reads need only to span a repeat element to be used in this 

way. This means that reads that are 7kb long will span all junction sequences in B. pertussis, 

taking into consideration insertion sequences (~1kb), rRNA operons (6kb) and a two-copy 3 

gene CNV that is found in some isolates (3kb) (23). This is far shorter than was generated here 

on the Nanopore platform and is possible to achieve on the PacBio platform too. 
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This means the method presented here is generic and can be used to analyse the back catalogue 

of over 500 PacBio sequenced B. pertussis isolates. Future work could include analysing this 

dataset and merging the results to gain a better understanding of which genomic loci experience 

de-novo SVs in B. pertussis. 

 

4.4.2.8. Have mutations occurring by other mechanisms been captured? 

 

In this data I studied only SVs that were bounded by large (>=1kb) repeats. Whilst this is the 

type of SV that has been observed previously in B. pertussis, recombination between non-

homologous regions or recombination between small repeats is possible. There would have been 

many reads that were highlighted in this analysis that were SVs that occurred by these 

mechanisms but were discarded. Future work could include analysis of these reads to investigate 

how alternative forms of SVs form and if these have remained undetected in the analysis of 

CNVs in the large cohort analysis in Chapter 3. 

 

4.4.3. The enigmatic genome of UK76 

 

Having thoroughly investigated the ‘Circos’ method in UK54 clone 4, a second sample was 

analysed.UK76 had a large CNV that in its tandem configuration is predicted to be over 600kb in 

addition to having a copy number estimate of 1.2. As the prediction was an intermediate copy 

number it indicates that some cells contained the CNV and some did not, although this was not 

confirmed. Nanopore sequencing this sample and analysing the breakpoints found provided an 

extraordinary discovery: on top of the predicted variation in CNV copy number there were 

multiple different variants of the predicted CNV detected in the sample. It was confirmed by 

plotting a number of the highlighted reads that there were at least 6 different CNV breakpoints 

confirmed in the dataset (Figures 4.19-4.22 and 4.24). This meant, therefore, that there were 

likely two different mechanisms by which genetic diversity was generated in this sample: copy 

number and CNV composition. These results were not investigated in UK54 as the current 

methodology only analyses reads which have putative SVs longer than 30kb and UK54 had a 

16kb CNV. 
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The data does not, however, shed any light on the series of events that generated this diversity, 

although it can be speculated on. It is important to note that this sample was likely not clonally 

derived and therefore it is unclear how many passages this had undergone and if the diversity 

represented the diversity in the host or had been generated in vitro. There are two scenarios for 

how this diversity was generated: a single CNV with subsequent recombination or multiple 

independent duplication events. It is known that CNVs can undergo subsequent SVs as part of 

the inherent instability generated by tandem homologous sequences. For example, it was found 

that in the lac system that while clones were amplifying the lac operon, these CNVs they were 

also undergoing further SVs to reduce the fitness cost of the amplification (124,161). It is 

possible therefore than the observed CNV diversity in UK76 was observed from a single SV 

mutation and had subsequently segregated into multiple novel forms through further 

recombination. Further work could include passage of the UK76 clones to establish the CNV 

dynamics in-vitro. 

 

 

4.4.4. Ultra-long Nanopore reads allows analysis that outperforms other strategies 

 

Ultra-long read generation was undertaken here to successfully resolve a CNV in its tandem 

configuration. This is a highly revolutionary technique that has the potential to replace multiple 

traditional methodologies to describe and elucidate CNVs. In both Chapter 3 and here in Chapter 

4 qPCR was used to amplify DNA inside the hypothesised CNV and compare to a single copy 

region elsewhere on the genome. Whilst qPCR is a ‘tried and true’ methodology which is 

relatively cheap to undertake, it was found to consistently agree with depth of coverage estimates 

generated by the Nanopore platform, qPCR is therefore a good screen for further analysis but 

only answers a very specific question in comparison to sequencing. 

 

In order to achieve sufficiently high read depth to capture putative denovo CNVs or to achieve 

ultra-long reads, a whole Minion flowcell was used to sequence a single strain. As these 

flowcells cost approximately (at a minimum) £500, these sequencing experiments were 

expensive. If Nanopore sequencing was used to merely find the difference in read depth between 

two regions of the genome (as was used in Chapter 3 with Illumina data) then runs could be 
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barcoded and 12 samples could be sequenced on the same flow cell. This considerably reduces 

the cost of Nanopore sequencing and brings it to near parity with qPCR, depending on how many 

primer/probe concentrations are used. In addition, to use qPCR you must know the sequence of 

the CNV region, whereas the same is not true for Nanopore sequencing.  

 

A second novel application of long reads was proposed here: analysing single reads for SVs not 

present in the consensus sequence. For example, both Nanopore and Pacbio platforms can 

produce reads which can span the junction of an SV. It was demonstrated here that long read 

sequencing on the Nanopore platform can elucidate sub-populations in a mixed population 

without prior knowledge of their existence. In UK76 it could be shown that in this single sample 

there were at least 6 different CNV start and end points detected. 

 

This is a unique type of analysis that is hard to achieve using other methods without considerably 

more resources. The same results could be achieved by isolating hundreds of clones of UK76 and 

sequencing them on a long-read platform. This would result in the same junctions being 

recovered but at a consensus level in each sequenced clone. Alternatively, there are several 

classic molecular assays that are similarly cumbersome to undertake compared to the proposed 

Circos analysis here. Transduction or linear transduction assays aim to establish if a CNV is pre-

existing in the population. The process involves identifying a metabolic gene within the 

duplicated locus and inserting a selectable marker, once per cell. If the metabolic gene was 

present in two copies then it will be both prototropic and resistant as it would have one intact 

metabolic locus and one resistant locus. This however requires knowledge of the predicted 

duplication and a known metabolic gene in the CNV. This method is therefore only suitable in a 

narrow range of applications in well studied organisms. 

 

4.4.5. Evidence that B. pertussis is genetically diverse  

 

B. pertussis is widely described as an organism that has low genetic diversity (42,112). This is 

normally in reference to single nucleotide variants but can often include the loss of genes via 

deletions, both of which are mutations that are easy to study with short read data (42,120,212). 

Reviewing the results generated in Chapter 3, Chapter 4 and in a number of studies by Weigand 
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et al., the view that B. pertussis is an organism with low genetic diversity is beginning to be 

revised (130,131). These three lines of evidence can be used in conjunction to show that B. 

pertussis has previously undescribed genetic diversity. Here it was demonstrated that B. pertussis 

can readily generate de-novo genetic diversity by both inversions and deletions/CNVs (Figures 

4.17 and 4.18). This is directly related to the results found in Chapter 3 where it was found that 

in >2700 B. pertussis isolates >200 CNVs were found and the work by Weigand et al which 

found many genomic rearrangements present in the population. It was found that novel SVs are 

created over short time scales and that CNVs/rearrangements were found in a global cohort of 

isolates. These three lines of evidence can be used to conclude that B. pertussis readily creates 

genetic diversity in ways previously under-appreciated. 

 

One of the key results in Chapter 5 and the work by Weigand et al was that whilst there is a 

sizeable quantity of SVs in the global B. pertussis population, they were found at common 

regions (130,131). In the CNV analysis the mutations were found at 11 hotspots and a similar 

conservative pattern of genome rearrangements was found by Weigand et al. Naively examining 

these results and the results in Chapter 4 in conjunction presents a confusing scenario: how is it 

possible that there is promiscuous generation of SVs (as evidenced in Figure 4.17) but conserved 

patterns detected in the global population? I hypothesise that this is because such patterns are 

influenced by the forces of selection. The power of selection in comparison to other forces such 

as mutagenesis chance is unknown, however. 

 

4.4.6. De-novo assembly can indirectly identify CNVs 

 

 

4.4.6.1. Graph based genome assemblies 

 

The human genome project was a monumental effort to create a representative human haploid 

genome sequence (272). However, it was not representative of the human population. Similarly 

(although on a different scale), the research outlined in this chapter highlights that consensus 

assemblies of bacterial populations are not representative of the true population of bacteria from 

which they are derived. Whilst understanding global human genetic variation is highly important 
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so too is a similar appreciation of diversity in bacterial and viral populations, both on intra-

sample and global scales. For bacterial isolates, a body of work exists that antibiotic resistance 

heterogeneity is a powerful force in antimicrobial resistance (208) whilst for viruses there have 

been multiple studies that indicate understanding the composition of viral quasispecies can aid in 

understanding their epidemiology (273,274). I therefore propose that the methods presented here 

can aid in the understanding of the makeup of a population of cells (or viruses). 

 

The Circos analysis presented in this chapter represents the structural variations that had been 

found in the population. The use of this analysis can be greatly improved however, by formally 

describing these results in a graph-based genome assembly. This is a much more holistic solution 

to representing diversity in populations as graphs can contain SNPs and indels whereas the 

Circos analysis cannot. Representing all types of mutations in a single structure can be achieved 

by using genome graphs which replace genome consensus sequences. The aim of these is to 

create a graph of the observed DNA diversity but collapse only sequencing errors into a 

consensus sequence. For example, a graph-based genome representation of UK76 would be 

composed mainly of the consensus sequence, but at the CNV loci (of which at least 6 were 

detected) there would be alternative ‘bubbles’ or ‘arcs’ that represented the alternative gene 

order contained in these reads. This would be a true representation of the sequenced DNA rather 

than just an average sequence. This methodology, however, does require each variant to be have 

good coverage, which was achieved in the UK76 Circos analysis but not in UK54. 

 

Most importantly, once a graph-based genome representation has been created, reads from other 

datasets can be mapped to it in order to find if they contain similar genotypes. Mapping to a 

graph-based genome would be a highly attractive extension of the current work and answer 

crucial questions that arose during my research. For example, one of the most exciting questions 

arising is whether the 11 CNV hotspots described in Chapter 3 arise because of selection or 

because they are more frequently occurring. This can be answered using graph genomes by 

comparing the CNVs found in the global cohort of isolates to de novo generated CNVs in all 

available long-read data. A graph containing the B1917 sequence with the unique junctions 

found in the 274 CNVs found in the global cohort of isolates in Chapter 3 could be created and 

all long-read data on the SRA (500 samples generated mostly on the PacBio platform) can be 
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mapped to the graph. This graph can be explored by analysing the reads that map to CNV 

junctions. If the junctions had relatively high coverage and came from a diverse set of 

sequencing samples it may indicate that these loci are predisposed to becoming multi-copy 

regions whereas if these junctions are equally as likely to occur in in-vitro culture it is likely that 

these CNVs were formed primarily by selective forces. 

 

4.4.7. Linking genotypes to phenotypes: an initial step 

 

The data presented here demonstrates and echoes one of the key findings of Chapter 3: B. 

pertussis is adept at generating genetic diversity via structural variant mutations. Little is known 

about the functions of many genes in the B. pertussis genome outside of the vaccine antigen 

genes. The full impact of the main CNV studied here, a 16kb CNV in UK54, is unknown. To 

elucidate more about this CNV an RT-qPCR experiment was conducted to investigate the 

expression changes associated with copy number changes-a vital first step in elucidating 

genotype-phenotype links. It was found that additional gene copies led to increased transcript 

level. This is as expected and has been found in many other studies. 

 

In this experiment, only one gene within the CNV had its expression assayed. It is possible that 

the other genes will have different relationships between copy number and expression. Further 

work should investigate these genes which would lead to further descriptions of the dynamics of 

CNVs in B. pertussis and also assist with finding genotype-phenotype links. This may be 

achieved simply by designing new primer/probe pairs to study the other genes in the CNV or, in 

a much more sophisticated way, an RNA-seq experiment could be devised. 

 

Studying genome-wide gene expression using RNA-seq would elucidate the impact of CNVs on 

gene regulatory networks in addition to describing the expression of all genes in the CNV. By 

understanding the regulatory networks these genes are in, the role of these genes in the cell can 

be discovered. For example, if increased copy numbers of these genes are linked to increased 

expression of genes in a particular metabolic pathway, this may mean these genes are also 

involved in that pathway-in some way. Conducting an RNA-seq experiment would therefore be a 

logical next step in studying CNVs in B. pertussis. 
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The ‘Holy grail’ of genetics is to find genotype-phenotype links. This often is done by creating 

knockouts and observing phenotype changes which can be a lengthy process in non-model 

organisms like B. pertussis. CNVs may form a natural experimental system to investigate the 

role of genes in B. pertussis - increased copy numbers would lead to altered phenotypes and 

systematic disambiguation of exactly which genotype causes which phenotype can be conducted 

using a GWAS. This is the question that is explored in Chapter 3: Can structural variants be used 

as a genotype in GWAS? 
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5. Chapter 5- A preliminary investigation into Genome Wide Association 

Studies for B. pertussis 

5.1. Introduction 

 

The DNA sequence of a cell ultimately determines its phenotypes. Establishing the link between 

genotype and phenotype, however, is highly challenging. Genome Wide Association Studies 

(GWAS) provide a statistical method to associate the known genotypes of a population to a 

phenotype. One of the biggest hurdles GWAS aims to overcome is that the DNA sequences 

causing a specific phenotype are inherited with sequences which do not contribute to the 

phenotype. This is known as linkage. Because bacteria reproduce asexually, linkage is preserved 

through the replication process which leads to lineages having exceptionally similar genomes. 

This can be controlled for, to an extent, by employing different models which account for the 

underlying population structure that is being studied. The common sources of linkage 

disequilibrium (the disruption of linkage) are inter-molecular recombination, normally between 

two different cells, and the same mutation arising independently in two or more lineages. 

 

The job of statistically untangling a causal DNA sequence from a non-causal sequence cannot be 

achieved when causal and non-casual genotypes are in complete linkage. Because B. pertussis is 

highly clonal, does not undergo horizontal gene transfer and has a low SNP-rate, it has a genome 

with a very high degree of linkage. If many mutations are in complete linkage (e.g. always occur 

together) then this makes establishing specific genotype-phenotype links impossible. In this 

chapter I investigated how suitable CNVs and deletions would be for this kind of analysis, given 

the highly clonal nature of the species and having previously shown CNVs to be highly 

homoplasic in Chapter 3. 

 

5.1.1. The need for genotype-phenotype links in B. pertussis 
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There is a lack of knowledge of the impact on phenotype of all classes of mutation in B. 

pertussis, although of SNPs and deletions, the two most commonly studied mutation types, SNPs 

are better studied than deletions. This is despite deletions in B. pertussis being highly important 

to the genetic diversity of the species as B. pertussis does not participate in any ongoing 

horizontal gene transfer. Deletions are the only way the accessory genome of approximately 10% 

is generated.  

 

Four studies have previously looked at deletions in large (>50 isolates) cohorts of isolates and 

found some level of homoplasy for a limited number of deletions. It is likely that the level of 

homoplasy is under appreciated, however, as deletions have not been studied using WGS for 

large strains collections, with previous studies using DNA hybridisation arrays and PFGE 

profiles to establish phylogenetic relationships. These pre-WGS methods only provide coarse 

phylogenetic relationships and are not capable of detailing the finer grained relationships with 

confidence. In addition, they were undertaken on small datasets containing less than 200 isolates 

each. Only one of the four pangenome studies in B. pertussis used a SNP based phylogeny to 

find phylogenetic relationships between isolates with the same deletions and was therefore 

capable of determining fine grained phylogenetic relationships. This study, however, only used 

16 isolates. 

 

In order to inform on the viability of a future GWAS to establish genotype-phenotype links for 

deletions, I aimed to provide an updated WGS based description of deletions and analyse how 

homoplasic they were. I hypothesised that with updated methods, which can resolve 

phylogenetic relationships with high precision and with a larger set of isolates, that finer-grain 

phylogenetic analysis would reveal gene deletions to be more homoplasic than previously 

thought, leading to deletions having a high linkage disequilibrium and therefore being good 

candidates for GWAS in the species 

 

In Chapter 3 I detailed the 273 CNVs of a cohort of 2431 B. pertussis isolates. This was a large 

dataset of CNVs contained in the known population of B. pertussis. Mapping these isolates onto 

a phylogenetic tree showed that CNVs were highly homoplasic and occurred in multiple genetic 

backgrounds. These qualities mean that CNVs are excellent candidates to phenotype using 
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GWAS. GWAS has yet to be adapted to study CNVs as a mutation type in bacteria. This is likely 

in part because CNVs are not often described but it is also because the current GWAS methods 

cannot detect them.  

 

Current GWAS tools fail to account for CNVs as they either use K-mer presence/absence or 

SNPs and gene presence/absence as genotypes. State of the art GWAS analyse DNA in 

sequences of ‘k’ length: K-mers (e.g. 12-mers, 14-mers or 21-mers) (70) in order to simplify the 

calling of genotypes. The presence or absence of K-mers not only is a proxy for SNPs in the 

isolate, but also gene presence/absence (275). K-mer based tools for bacterial GWAS only 

interpret K-mer abundance as presence or absence and do not acknowledge copy number states 

beyond this, such as duplications or triplications. Tools which rely on a user-defined list of SNPs 

or presence/absence of genes also are not designed to use CNVs as genotypes as of yet. 

 

GWAS may not be effective for studying all mutation types in B. pertussis and in this chapter, I 

aimed to describe how different mutations could be used as input to GWAS. I aimed to define a 

method to represent CNVs suitably for this analysis (as CNVs were shown to be highly 

homoplasic in Chapter 3) and the degree to which deletions are homoplasic.  

 

5.2. Methods 

 

5.2.1. Representing CNVs with K-mers 

 

K-mers were generated using fsm-lite (available: https://github.com/nvalimak/fsm-lite) on the 

default settings to make all K-mers of length 21-100 of the input sequences. To test the 

suitability of K-mers to find deletions and CNVs, three isolates with closed genomes had K-mer 

counts generated from their assemblies: one with a CNV and two with the same locus at single 

copy. Only K-mers that occurred once in the genome without a CNV were used. If a K-mer was 

found once in the control genome but two or more times in the CNV genomes, its abundance was 

set as ‘1’ and it was found once it was set as ‘0’.  

 

https://github.com/nvalimak/fsm-lite
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5.2.2. Deletions 

 

The same dataset was used for deletions as CNVs in Chapter 3. Deletions were counted if the 

predicted copy number was <=0.1 as copy numbers between 0.1 and 1 are more likely to be 

formed from one of the weaknesses of read mapping: reads that map to more than one place get 

assigned to just one of their mapped regions. Multi-mapped reads become distributed in this way 

to avoid repeat regions having greatly enhanced coverage. If reads that mapped to multiple 

places were counted multiple times then repeat regions would have coverage proportional to 

their copy number.  

 

5.2.3. Phylogenetics 

Phylogenies were produced as previously using the core-genome SNPs dataset from Chapter 3. 

One clade of the tree was plotted here in order for the tips of the tree to be visible. This allows 

the scale of the tree to be apparent and the degree of homoplasy to be visible. 

 

 

5.3. Results 

 

5.3.1. Using K-mers derived from closed genomes as a signal of CNVs 

 

As the CNV predictions in Chapter 4 were based on the read depth of short read data, the same 

signal (increased coverage of CNV loci) can be exploited again to produce K-mer abundances 

instead of read-depth. Copy number states beyond presence and absence, such as duplication or 

triplication, are not considered in most GWAS. Therefore, this means that some isolates having 

twice the frequency of some K-mers is an invisible signal to the analysis and gets analysed 

merely as K-mer presence rather than a possible K-mer duplication. I modified K-mer abundance 

data to describe copy number states above 1. The dataset consisted of closed genomes sequences: 

one genome with a CNV and two genome sequences with the locus at single copy (contained in 

network 1 of the analysis in Chapter 3). K-mers that were uniquely mapping in the two genomes 

with single copies were kept and their abundance in the isolate with a CNV was plotted. To 

simplify visualisation, the median K-mer abundance was plotted in 10kb windows (Figure 5.1). 
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This experiment showed that a modified K-mer abundance highlighted only the CNV locus with 

no false positives or false negative K-mers being highlighted. This analysis is limited in its 

potential at the time of writing, however, as there are only 10 isolates with CNVs resolved at this 

locus (see Chapter 3) and other loci have even fewer CNVs resolved. Whilst it is possible a 

GWAS on this locus would be successful, the analysis would remain inflexible and limited in 

scope by the lack of resolved genome sequences- only 1 out of the 11 hotspots could effectively 

be studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 K-mers were generated for two closed genomes containing an CNV in its tandem 

array and compared to a genome without a CNV. The differences in the abundance of these K-

mers between the CNV and non-CNV group was expressed as a proportion (Y axis). K-mer 

location (X) was plotted against this proportion in 10kb windows. The entire tandem CNV locus 

(blue solid lines), including the junction sequence (blue dashed line) is noted and it can be seen 
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that the median K-mer proportion in this area is 2 and therefore K-mers can be used in this 

described way as a proxy for copy number variants. 

 

5.3.2. Using K-mers derived from sequence reads as a signal of CNVs 

 

Sequence read abundance was used to generate the CNV predictions in Chapter 3 and this can 

also be analysed using K-mers. This would circumvent having to fully resolve CNVs using long 

reads and genome maps, thus increasing the scope of this work. There are two major problems 

with this strategy. Firstly, read-depth based tools such as CNVnator (198) (in addition to my own 

modifications) have many complex normalisation and read-depth smoothing algorithms to 

process the read-depth data into predictions and any K-mer based approach would have to 

recreate these steps. Secondly, analysing raw reads may be computationally demanding- to the 

point of being prohibitive. Due to the high redundancy of sequence data (often being 100-1000x 

the size of the final assembly), analysing K-mer abundance in such data is challenging.  

 

I trialled an analysis of Pyseer on raw sequence data of 400 isolates. This analysis was not 

adapted for CNVs but instead the computationally simpler task of detecting SNPS and gene 

presence/absence. I found that whilst generating the K-mers was possible, Pyseer was not able to 

analyse the data with the 60Gb of RAM available on the server used. Analysing K-mers in raw 

sequence reads therefore is likely possible but is beyond the scope of the current study.  

 

5.3.3. Deletions are more homoplasic than previously thought 

 

There have been limited study of deletions in B. pertussis, with all studies relying on outdated 

methods such as SNP typing (to produce phylogenies) and/or comparative genome hybridisation 

(to establish gene presence/absence (120,181,184,187,212). The two studies which looked 

specifically for homoplasies found that a limited number of deleted loci were homoplasic 

(184,212). The dataset of 720 isolates with high quality Illumina data used in Chapter 3 was 

therefore a significant advancement over previous datasets and reflected recent technological 

advancements in sequencing. I therefore analysed these data to find homoplasic deletions. 
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Analysing the large cohort dataset in Chapter 3 identified 474 deletions which occurred in 50 

networks of which 22 had 3 or more nodes (deletions). The 10 most numerous networks are 

described in closer detail (Table 5.2).  Most of these networks had a core set of genes that were 

highly representative of the mean length of the network which indicates the networks did not 

have considerably variable gene content. In addition, most networks had high network density 

indicating that most of the deletions overlapped with each other. The deletion networks were less 

variable than the CNV networks found in Chapter 3. This matches previous research which 

found (with limited tools) high conservation of deletion start/end locations 

(120,181,184,187,212). 
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Table 5.2. The top 10 most frequently found deletion networks. All loci were found to have been 

deleted in at least one strain in the literature (‘previously known’ column). Only three networks 

had been found to contain homoplasies in the literature (‘Previously homo’) yet in the 7 

networks that homoplasies were searched for, 6 networks had at least one homoplasy.

I found that many studies had reported on deletions occurring at loci equivalent to 9 out of these 

10 deletion networks found here (‘Previously known’ in Table 5.2). This corroborated that the 

present analysis was of high quality as the same results had been found in other isolates. A direct 

comparison between the deletions found here and previous results was not possible, however, 

due to different sets of isolates used in addition to a different reference genome (B1917 was used 

Net

wor

k 

Freq

uenc

y 

Mean 

length 

Median 

start 

Median 

end 

Previousl

y known 

Demonstrated 

homoplasic 

Previously 

homoplasic 

Homoplasy 

reference 

1 196 20 

B1917_

RS13515 

B1917_

RS13610 Y Y 

Known 

homoplasy 

Van gent et 

al 2012 

2 75 9 

B1917_

RS03580 

B1917_

RS03625 Y       

3 49 20 

B1917_

RS07960 

B1917_

RS08060 Y Y 

Known 

homoplasy 

 Lam et al 

2014 

4 34 17 

B1917_

RS03115 

B1917_

RS03235 Y Y     

5 32 15 

B1917_

RS15835 

B1917_

RS15905 Y Y     

6 28 31 

B1917_

RS17200 

B1917_

RS17365 Y -     

7 27 11 

B1917_

RS19625 

B1917_

RS19455 Y N     

8 27 7 

B1917_

RS13865 

B1917_

RS13895 Y -     

9 27 10 

B1917_

RS02505 

B1917_

RS02555 Y Y 

Known 

homoplasy 

 Lam et al 

2014 

10 26 12 

B1917_

RS15305 

B1917_

RS15365 Y -     



180 
 

here and Tohama used previously). This meant that the false positive and false negative rates 

were not known. 

 

Previous research had shown that a number of deletions were homoplasic as they had occurred 

independently multiple times on a phylogenetic tree. I therefore wanted to investigate 

homoplasies in my dataset, given that it was larger than previous ones. A deletion is much more 

heritable than a CNV since a deleted gene cannot go back to single copy (as there is no 

appreciable level of horizontal gene transfer occurring in B. pertussis). This therefore meant that 

fine scale relationships between isolates would be important to accurately resolve or otherwise 

spurious homoplasy events may be predicted. I therefore sought to produce a bootstrapped tree 

which had high support. Bootstrapping provides a level of confidence in the phylogenetic 

placement of each isolate by removing one tree tip at random, remaking the tree and assessing if 

the topology changes.  

 

I ran HomoplasyFinder (207) which uses consistency index to find homoplasic traits or 

mutations (277,278). The consistency index aims to score patterns of traits (or nucleotides in a 

core-genome alignment) observed in the tips of the tree against their phylogenetic relationship. 

In my application here, the consistency index was used to find how consistent deletions were 

with the phylogenetic tree. Each trait is scored between 0 and 1, with 0 being a pattern which is 

completely inconsistent with the phylogenetic tree and 1 being completely consistent with the 

phylogenetic tree.  

 

Running homoplasyFinder resulted in 6 of the 7 studied deletion networks being predicted to 

contain at least 2 state switch events. In this example, a state switch from both 1 to 0 (a deletion) 

and 0 to 1 (a gene gain) were counted. Because a switch from 0 to 1 is improbable in B. 

pertussis, these may indicate poor quality parts of the tree and may inflate the results (Figure 

5.7).  Previous research had identified homoplasies in only three of these networks. The most 

comprehensive previous analysis of homoplasy (212) used SNP-typing to create a phylogenetic 

tree (which used 60 SNPs) and studied only 42 isolates with unique SNP profiles. These 

limitations may have caused the difference between those results the results presented here. 
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Most genes that were part of deletions that were not previously shown to be homoplasic were 

annotated as hypothetical and little was known about their function. There were some 

exceptions, however. Deletion network 5 was described as homoplasic by this analysis and also 

composed almost entirely of a prophage, D3. It is possible that this deletion is actually driven by 

excision of this phage, potentially under stress conditions. This would also give a plausible 

mechanism for the deletion to be complemented- the phage could jump back into the same 

position. Deletion network 6 contained multiple genes coding for pyruvate dehydrogenase 

(BP0628+BP0629) and other metabolic processes. It is possible that this deletion was under 

positive selection as these genes were superfluous to the metabolism of B. pertussis. 
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Figure 5.6: A portion of the full tree was plotted. Deletion networks 1,2,3,4,5,7 and 9 were 

annotated. Most deletion networks can be found in disparate clades of the tree. This shows that 

deletions are highly homoplasic, more than was previously known. Deletion networks 6 and 8 

were not present in these isolates and were not annotated on the tree. 
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Figure 5.7: Minimum number of copy number changes at internal nodes needed to explain the 

observed pattern of deletions at the tips of the phylogenetic tree (displayed in Figure 5.06). 
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Figure 5.10: A subtree from Figure 5.09 of 45 isolates shows a fine-grained view of homoplasic 

deletions in B. pertussis. Networks 9 and 2 can be seen to be homoplasic, having occurred in 

multiple independent clades. 
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Figure 5.11: A subtree from Figure 5.10 of 146 isolates shows a fine-grained view of homoplasic 

deletions in B. pertussis. Networks 1,2,3 and 5 can be seen to be homoplasic, having occurred in 

multiple separate clades. 

 

5.4. Discussion 

 

5.4.1.  Structural variations as an effective genotype for GWAS 

 

The results showed that K-mers were challenging to use at scale. It is therefore likely that using 

CNVs coded as genomic intervals, as was used in Chapter 3, was the most reliabile way to use 

these mutations in GWAS. This may have been prone to technical artefacts, however. Technical 

artefacts that split a predicted CNV into two fragments (discussed in Chapter 3) would have little 

effect on genotype-phenotype links, under the assumption that the single copy genes in between 

the two fragments (often just 1 gene) were not crucial to the phenotype. As was discussed in both 

Chapter 3 and 4, further verification of the predictions will increase the confidence in their exact 

coordinates and also will improve the GWAS analysis.  
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5.4.1.1. Genome plasticity as both a hurdle and feature of GWAS 

 

It was shown in Chapter 4 that clonally derived populations with CNVs are unstable during 

minimum passage in vitro which has also been shown previously (185). It was hypothesised that 

in the absence of selection and with sufficient amount of passages that the copy number would 

reduce, potentially back to single copy (208). This may be a considerable hurdle to defining the 

CNV genotype for GWAS as the copy number of a population will change during an assay. The 

impact of quickly segregating populations can be somewhat alleviated by using only single-use 

aliquots for assays. In particular, assays which do not involve direct measurements of growth 

(such as agglutination or complement killing) would benefit from such measures. Assays which 

directly measure growth (such as growth curve under various conditions or agar plate growth) 

would still benefit from using aliquots, but stochastic events may alter the spectrum of mutations 

between assays. The degree to which this will impact GWAS, however, is unclear and will need 

to be investigated in future work. 

 

Genome plasticity is not just a hurdle, the change in the average copy number of the sample 

during an assay could also be a measurable phenotype in itself and thus be a feature of this 

GWAS. Nicoloff et al have previously shown that some specific isolates of certain species have 

antibiotic resistance cassettes that will increase in copy number under selection, sometimes up to 

100 copies (208). Such an increase is a clear sign that the function of those genes is under 

selection and as such could be utilised as a binary or quantitative phenotype or as a confirmation 

that indeed the CNV is the causative mutation of the phenotype. 

 

 

5.4.2. Considerations for future work 

 

Using K-mers to analyse CNVs in B. pertussis was not pursued further although it remains 

attractive for further exploration. Advancements in long-read data generation and analytics or 

greater adoption of enzyme mapping (e.g Nabsys) may mean complex CNVs can be 

automatically assembled in the future (rather than manually resolved as in Chapter 3). In turn, 
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this would mean that CNV-resolved isolates could be used with a K-mer based analysis in the 

future. Alternatively, there may be ways to reduce the computational load of analysing K-mers in 

raw sequence data. As these problems caused a K-mer based approach to be difficult, however, 

this strategy was not pursued further. 

 

5.4.3. Homoplasious deletions 

 

It was surprising that the deletions found here were described as homoplasic for the first time, 

given that gene deletion is a well-known path of genetic variation in B. pertussis. It is likely that 

limited diversity and quantity of strains in previous analysis contributed to this. This may have 

been caused by the deletion threshold (<=0.1 predicted copy number) causing spurious 

homoplasies to be predicted. This may be because some isolates with predicted deletions may 

have just had low read coverage at that region (false positive) or that a real deletion was present 

but for some reason had reads mapped to it (false negative). This is unlikely to fully explain all 

state-switch predictions as many of the nodes which were predicted to be homoplasic were deep 

in the tree and therefore any inaccuracies in finding deletions would have to extend to hundreds 

of isolates. 

 

Mapping reads to a reference genome is not the most effective way to find gene deletions. This is 

because deletions containing repeat sequences can cause a systematic bias to occur due to the 

way reads mapping to repeats are distributed. This is another reason that deletions were only 

counted here if the region had a predicted copy number <=0.1. A more effective alternative is de-

novo assembly as if there is a region with 0 coverage, it would not be assembled. Deletions were 

studied using mapping, however, as this offers a unified methodology to predict both deletions 

and CNVs. In order to definitively show that deletions are homoplasic in B. pertussis, denovo 

assembly, pangenome analysis and PCR verification of these deletions is required. 

 

In this chapter I aimed to evaluate K-mers as a way to represent CNVs in GWAS and to 

investigate the degree of homoplasy found in deletions in B. pertussis . Evaluating these aims in 

relation to the results, I investigated K-mers as a way to represent CNVs but found that they 

could be used successfully only for assemblies but not easily for sequence reads and were 
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therefore of limited use in the scope of this context. I then successfully expanded the known 

repertoire of deletions in B. pertussis and found that they were more homoplasic than previously 

thought. In conclusion, therefore, I believe that more work must be undertaken to represent 

CNVs using K-mers and that future GWAS will have the statistical power to associate deletions 

with phenotypes, given their homoplasic nature. 
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6. Conclusions 

 

6.1. B. pertussis has an underappreciated repertoire of CNVs 

 

The genetic diversity of bacteria is often described solely using base pair changes and gene 

presence/absence. This is despite a wide variety of other mutation types likely being major 

contributors. In Chapter 3, I sought to investigate the prevalence of CNVs in the population 

given the repeat-rich B. pertussis genome and that 28 CNVs had been found previously.  

 

I established a customised CNVnator based pipeline which included steps to normalise noise 

between samples. This pipeline had between 75% and 85% accuracy and could scale to analyse 

sequence samples of varying quality. Due to the inherent quality of mapped short reads, 

however, it could not resolve complex CNVs (CNVs made of multiple SVs) well. 

Using this pipeline, the number of CNVs identified in B. pertussis was expanded 10-fold, 

although future work should include verifying these predictions. Crucially, 93% of these CNVs 

were found at just 11 loci. This is in contrast to these mutations being randomly distributed 

around the genome, given that experiments in other species show that CNV frequency is related 

to proximity to repeat sequences and that B.pertussis has a high amount of relatively evenly 

spaced repeats (246). This data was analysed using network graphs which concluded that there 

was a diversity of different network topologies but generally most networks had a conserved core 

of genes around which they varied. These genes were implicated in motility, haemolysis and 

metabolism and likely affect these processes, given that it could be demonstrated (in Chapter 4) 

that the level of gene expression correlated with gene copy number for one CNV. 

 

It is highly likely that other bacteria contain CNVs, our absence of knowledge of this stems from 

a lack of systematic study of bacterial CNVs in general. Therefore, the pipelines and frameworks 

established in this thesis are a blueprint to apply to other bacterial species and discover similar 

undiscovered genetic diversity.  
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6.2. The genome of B. pertussis is highly unstable 

 

Whilst Chapter 3 focussed on observing CNVs in a global cohort of isolates, the work of Chapter 

4 details the genome diversity within single laboratory cultures of B. pertussis.  

It was demonstrated that UK54, which had a predicted CNV of copy number 4 (confirmed using 

qPCR) was composed of cells with a mixture of copy numbers. Ultra-long Nanopore reads were 

generated and each individual read captured a tandem array of the locus with reads ranging in 

copy number between 1 and 5. This bypassed the assembly process, which failed to resolve the 

CNV. Whilst Illumina sequencing can resolve cell-to-cell differences for small genomic loci 

(such as rapid changes within homopolymeric tracts) this application of Nanopore sequencing 

resolved such differences in very large genomic loci, up to 80kb long.  

 

Extending this work, I showed that sub-cultures of UK54 could give rise to novel copy numbers 

of the locus, including an isolate with a copy number of approximately 50. This was evidence 

that tandem arrays were unstable and demonstrates that the B. pertussis genome can rapidly 

change. I widened the search for SVs to the whole genome and found other sites around the 

genome were undergoing copy number variation. Furthermore, it could be seen that within one 

sample of UK76 there was >100 reads that indicated there were at least 6 versions of the same 

structural variant present, indicating either multiple CNV events or extensive remodelling of a 

single CNV. 

 

These results make it clear that a consensus sequence, even for a clonally derived population, 

does not adequately describe the true genetic diversity of the sample. This has far reaching 

consequences for the study of the bacterial kingdom: it is possible that heterogenous populations 

of bacterial pathogens exist within the host and that this has an impact on the disease. To 

investigate this, there must be a greater appreciation of within-sample diversity rather than 

generating a single consensus sequence for the sample. This can be achieved using genome 

graphs. A consensus can be thought of as just one of the possible genotypes present in the 

population whereas the construction of genome graphs takes into consideration all observed 

genotypes and their frequency within the population and includes the study of polymeric tracts. 
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6.3. Homoplasic structural variants as genotypes for GWAS 

 

Deletions, like CNVs, were found to also follow a network structure and had less variable gene 

content with denser connections. In Chapter 5, analysis of 2709 B. pertussis isolates for deletions 

showed that there were 474 deletions found at 50 loci represented by 50 network graphs. It was 

found that the majority of deletions were contained in 22 networks which contained 3 or more 

deletions. 

 

Mapping both CNVs and deletions to the phylogenetic tree suggested that these mutations were 

homoplasic. Deletions occasionally appeared in disparate parts of the tree whilst CNVs almost 

always did, reflecting their very limited heritability. This was confirmed using ancestral state 

reconstruction, which confirmed that deletions occurred multiple times. 

 

Which regions of the genome are deleted in B. pertussis is thought to be driven by both selection 

and genetic drift. The homoplasies described in Chapter 5, however, show that at least for the 

most frequent deletions, selection is an important driver of this process, given that isolates 

showed convergent evolution-a hallmark of selection. Further work to verify the balance of 

infrequent deletion events to homoplasic deletions will shed light on the selection pressures 

facing B. pertussis as high purifying selection would favour homoplasies and low purifying 

selection would favour infrequent mutation events. 

 

The impact that specific deletions or CNVs have on B. pertussis is unclear and as such, a 

systematic framework to investigate this is needed. GWAS is a promising framework to find 

genotype-phenotype links, but mainstream tools do not natively support this genotype and as 

such I trialled using K-mers to represent CNVs. I found that K-mer analysis was limited but that 

it could be performed easily for CNV resolved assemblies, which are rare at the time of writing. I 

found it was computationally infeasible to analyse K-mer abundance in raw reads at a usable 

scale. GWAS works best when the causal mutation of a phenotype is present in many genetic 

backgrounds but as B. pertussis does not undergo frequent HGT and is highly clonal, this may 

have posed a significant hurdle. The work outlined throughout this thesis, however, shows that 

deletions and CNVs are homoplasic and occur in multiple backgrounds. I therefore have shown 
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that these would be good material for GWAS and future work should include a GWAS to 

phenotype deletions and CNVs in B. pertussis. 
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