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Increasing Penetrations of Low Carbon Technologies   

Wangwei Kong 1, Kang Ma 1*, and Furong Li 1 

1 Electronic & Electrical Engineering Department, University of Bath, Bath, UK 

* K.Ma@bath.ac.uk 

Abstract: Phase imbalances cause a range of network issue, from day-to-day energy losses 

to long-run capacity wastes that increase investment costs. The impact on low voltage (LV) 

network from phase imbalance has been investigated independently for losses and 

investment. However, no research was carried out on the total imbalance-induced cost (TIC) 

that includes both day-to-day energy losses and long-run capacity wastes, and how the 

relationship between the two may change with the increasing penetrations of single-phase 

low carbon technologies (LCTs). Analysing the TIC is important for distribution network 

operators (DNOs) as the day-to-day energy loss cost cannot be ignored as it may exceed the 

long-run network investment cost. This paper develops a new probabilistic framework to 

investigate the impact of increasing LCT penetration on TIC in the UK's LV distribution 

networks. Monte Carlo simulations are performed to account for the uncertainties in LCT 

sizes, connection locations and connection time. Case studies show that the additional energy 

loss cost exceeds the additional reinforcement cost in urban networks when the LCT 

penetration level reaches 70%. The key findings will help the DNOs understand the range 

of TIC and the relationship between imbalance-induced energy losses and capacity wastes 

under increasing LCT penetrations. 
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1. Nomenclature 

𝝅 Energy price 

𝑨𝑬𝑳𝑪 Additional energy loss cost 

𝑨𝑹𝑪 Additional reinforcement cost 

𝑨𝒔𝒔𝒆𝒕𝒇, 𝑨𝒔𝒔𝒆𝒕𝒕 Reinforcement cost for main feeders and LV 

transformers, respectively 

𝒅 Discount rate 

𝑫𝑷𝑰𝑩𝒇, 𝑫𝑷𝑰𝑩𝒕 Degree of phase imbalance for main feeders and LV 

transformers, respectively 

𝑬𝒍𝒐𝒔𝒔 Energy loss caused by phase residual current 

𝑬𝒕_𝒊 Energy loss caused by the additional transformer 

copper loss 

𝑰∅(𝒕) where ∅ ∈ {𝑨, 𝑩, 𝑪} Current values for the phases ∅ at time 𝒕 

𝑰(𝒕) Balanced phase current at time 𝒕 

𝑰𝒑𝒓𝒄(𝒕) Phase residual current at time 𝒕 

𝑵𝒕 Total number of time points 

𝑷∅ where ∅ ∈ {𝑨, 𝑩, 𝑪} Power on phase ∅ 

𝑷𝑵 Neutral line power 

𝑷𝒕 Total power of three phases when the maximum 

phase power occurs 

𝒓 Load growth rate 

𝑹𝒏 Neutral wire resistance 

𝑹𝒘 Resistance of the transformer winding 

𝑻𝑰𝑪 Total imbalance-induced cost 

𝑼𝑵 Asset utilization rate 

2. Introduction 

Phase imbalance means either the magnitudes of the three phases are not the same, 

or their phase angles are not 120° apart from each other. Phase imbalance is a widespread 

problem in the UK. More than 70% of LV networks [1] suffer severe phase power 

imbalances, mainly caused by uneven load allocation [2], [3] and random load behaviours 

[3], [4]. Phase imbalance causes two consequences to distribution networks: energy losses 

[2], [3] and capacity wastes (that are translated into additional investment costs [4], [5]). 

The phase imbalance problem is further complicated by growing uptake of low carbon 
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technologies (LCTs), including photovoltaic (PV) systems and electric vehicles (EVs) in 

the distribution system [6], [7]. The National Grid estimates that the UK's number of EVs 

on the road could reach 36m by 2040 and the capacity of PV units could reach 38GW by 

2050 [8]. The increasing LCTs cause phase power imbalance to change randomly and 

therefore change the relationship between the above two imbalance-induced 

consequences. As a result, it is important to quantify the consequences of phase power 

imbalance under increasing penetration of LCTs. This is the focus of the paper. 

Much effort is made to analyse the voltage imbalance caused by LCT penetrations, 

such as uncoordinated EV charging [9-14], PV inverters [14-20] and heat pumps (HPs) 

[11, 21] in the distribution networks. However, none of the research discussed the impacts 

of increasing LCT penetration on the phase power imbalance. The phase power imbalance 

is a direct consequence of voltage and current imbalances [22]. It incurs additional long-

run network investment and day-to-day energy loss costs to the distribution networks. 

These imbalance-induced costs had also been investigated previously in [23], [24]. 

Reference [23] presented a way to estimate the additional reinforcement cost (ARC) for 

both LV transformers and main feeders using the degree of power imbalance. Our 

previous work [24] proposed a method to estimate the ARC and the additional energy 

loss cost (AELC) for data-scarce LV networks. The AELC includes the transformer 

copper loss cost and the costs caused by the phase residual current [24]. Nonetheless, 

these research works only focus on the LV networks with traditional passive loads, rather 

considering the increasing penetrations of LCTs.  

Therefore, there is a gap in assessing the total imbalance-induced cost (TIC), which 

includes both day-to-day energy loss cost and long-run network investment cost (the latter 

is caused by imbalance-induced capacity wastes), under increasing penetrations of LCTs. 
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This paper addresses a different problem from [11]: Reference [11] analysed the 

impacts of four type of LCTs on customer voltage violations and feeder loading levels to 

help DNOs estimate the LCT hosting capacities for LV distribution feeders. However, 

this paper focuses on the impacts of LCTs on phase power imbalance and the 

corresponding TIC. Furthermore, this paper helps DNO find the balance between the day-

to-day and long-run costs under increasing penetrations LCTs. The LCTs considered in 

this paper are EV and PV units because they are expected to rapidly increase in the near 

future [8]. However, this framework can also be extended to other LCTs. 

This paper develops a new framework to quantify the impacts of LCTs on phase 

power imbalance, including how LCTs affect the TIC, considering both the day-to-day 

energy losses and long-term investment costs induced by phase imbalance. Monte-Carlo 

simulation is widely adopted in the existing literature. The reason is that it is a powerful 

technique in capturing uncertainties associated with LCTs in the power systems. Besides, 

the Monte-Carlo simulation technique is intuitive and straight forward. Therefore, in this 

framework, Monte-Carlo simulations are adopted to account for the LCT uncertainties 

within sizes, connection locations and connection time. 

Analysing the TIC helps distribution network operators (DNOs) understand how 

the relationship between the two consequences may change with the increasing 

penetrations of single-phase LCTs. The methodology considers three scenarios: EV only 

scenario, PV only scenario and both EV and PV scenario, given the fact that both PV and 

EV grow rapidly in the foreseeable future.  

The developed framework has practical values: 1) the probabilistic impact 

assessment helps the DNOs understand the possible impacts of LCTs on power 

imbalances in the LV distribution networks; 2) the estimated TIC help DNOs understand 
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the relationship between imbalance-induced energy losses and capacity wastes as well as 

when the TIC reaches the minimum, under increasing LCT penetrations. 

The remainder of this paper is organized as follows: Section II presents the 

overview of the developed methodology; Section III shows the network, LCTs profiles 

and the calculation of the imbalance-induced costs; Section IV performs the case studies 

of the probabilistic impact assessment, Section V discuss the results, and Section VI 

concludes the paper. 

3. Overview of methodology 

To perform an accurate impact assessment, full time-series of phase voltage and 

current data and LCT generation/ consumption data are required as the input data. 

However, the majority of UK's LV networks are unmonitored and there are significant 

uncertainties of the LCT's consumption or generation. Full data from 800 representative 

LV networks throughout a year are used in this paper. Details of the LV networks are 

explained in Section III-A. 

Fig 1 shows the developed approach. The key to this approach is using Monte Carlo 

simulations to represent the uncertainties of LCTs and calculate the imbalance-induced 

costs (including ARC and AELC) for all the LV networks with changing LCT 

penetrations. The approach consists of three stages:  
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Fig. 1.  Overview of the methodology 

Stage I: Applying k-means clustering method to group the 800 data-rich networks 

into three clusters, i.e., urban, suburban and rural.  

Stage II: A pool of 1000 EV charging profiles and 1000 PV generating profiles are 

generated. For each penetration level, the LCT profiles are randomly selected from the 

pool and randomly allocated to the three phases using Monte Carlo simulation. Finally, 

the imbalance-induced costs are calculated for each LV network under every LCT 

penetration level. This process iterates for 100 times to perform Monte Carlo analysis.  

Stage III: The output from Stage II are ARC and AELC for each network. They 

work as input for Stage III. The TIC is calculated for each network and the probabilities 

of being beneficial from LCT penetration are analyzed. If one network benefits from LCT 

penetration, it means that this network has lower TIC with LCT penetration compared to 

that without LCT penetration. The TICs under each LCT penetration level are compared 

and the conclusions of which LCT penetration level has higher probabilities of being 

beneficial can be drawn. 
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4. LV networks and LCT profiles  

4.1. LV networks 

In this paper, 800 representative data-rich LV networks from the "Low Voltage 

Network Templates" project [25] are used. These networks are located within the business 

area of a UK DNO (Western Power Distribution) and cover various geographical areas 

with different customer types, i.e., domestic, commercial and industrial customers. For 

example, Cardiff is representative of urban areas that contain large amounts of 

commercial load; Monmouthshire is a representative for the rural area [25]. These 800 

networks cover various customer types and geographical areas (urban, suburban, and 

rural areas) [24]. 

4.2. LCT profiles 

A pool of 1000 slow charging residential EV profiles is created considering the 

battery and the probability distributions of connection times and energy requirements [26]. 

The highest probability of connecting time happens at 6.30 p.m. and 10.30 p.m. [26]. The 

highest probability of energy requirement is 8-9 kWh [26]. Slow charging (3kW) is a 

popular type of charging for UK residential customers. According to [27], 75% of total 

annual EV demand is charged at the residential side. Therefore, all the EV batteries are 

assumed to be a common type, i.e., Nissan Leaf (3kW and 24kWh) [11]. 

A pool of 1000 residential PV generating profiles is generated considering various 

installation sizes of PV systems and the sun irradiances. It is assumed that all the PV 

systems receive the same sun irradiances. According to [28], the residential PV systems 

have seven different sizes and the size of 4 kW is the most popular choice (37% of the 

total installation). Therefore, the probabilities of PV system sizes for the pool are shown 

in Table 1.  
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Table 1 Probabilities of PV system sizes [28] 

Size (kW) 1 1.5 2 2.5 3 3.5 4 

Probability 0.01 0.08 0.13 0.14 0.14 0.12 0.37 

Fig. 2 demonstrates the load and generation of substation 3503 with 20% LCT 

penetration for one day (24 hours). It shows the total traditional load, EV load and PV 

generation across the three phases. The PV generations are shown as negative. 

 

Fig. 2. Loads of substation 513503 with 20% LCT penetration 

4.3. The imbalance-induced costs 

3.3.1 The additional reinforcement cost (ARC):  

To measure the severity of phase power imbalances, a common index used among 

literature is the degree of power imbalances (DPIB). The DPIB index is used as a 

guidance for phase swapping [22] and it is a vital factor in the estimation of ARC. In [4], 

a linearised equation for estimation ARC is given as 

𝐴𝑅𝐶 ≈ 3𝑘𝑓𝐷𝑃𝐼𝐵𝑓 + 𝑘𝑡𝐷𝑃𝐼𝐵𝑡 

(1) 

where                       𝑘𝑓 = 𝐴𝑠𝑠𝑒𝑡𝑓 ∙ (1 + 𝑑)
𝑙𝑜𝑔𝑈𝑁

log (1+𝑟) ∙
log (1+𝑑)

log (1+𝑟)
  

𝑘𝑡 = 𝐴𝑠𝑠𝑒𝑡𝑡 ∙ (1 + 𝑑)
𝑙𝑜𝑔𝑈𝑁

𝑙𝑜𝑔 (1+𝑟) ∙
𝑙𝑜𝑔 (1 + 𝑑)

𝑙𝑜𝑔 (1 + 𝑟)
  

𝐷𝑃𝐼𝐵𝑓 =
𝑚𝑎𝑥{𝑃∅}−

𝑃𝑡
3

𝑃𝑡
      ∅ ∈ {𝐴, 𝐵, 𝐶},                𝐷𝑃𝐼𝐵𝑡 =

𝑃𝑁

𝑃𝑡
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3.3.2 The additional energy loss cost (AELC):  

The imbalanced-induced energy loss contains the energy loss caused by the phase 

residual current [29] and the additional transformer copper loss [30]. The energy loss 

caused by the phase residual current is calculated considering the TN-S earthing system 

[31] in this paper. The additional transformer copper loss is the difference between the 

transformer copper loss under balanced scenario and transformer copper loss under 

imbalanced scenario. 

Therefore, the AELC is given by the sum of these two terms: 

𝐴𝐸𝐿𝐶 = (𝐸𝑙𝑜𝑠𝑠 + 𝐸𝑡_𝑖) × 𝜋 (2) 

where                              𝐸𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑝𝑟𝑐
2(𝑡) ∙ 𝑅𝑛 ∙ ∆𝑡

𝑁𝑡
𝑡=1   

𝐸𝑡_𝑖 = 𝐸𝑖 − 𝐸𝑡𝑟𝑎𝑛𝑠  

𝐸𝑖 = ∑(𝐼𝐴
2(𝑡) + 𝐼𝐵

2(𝑡) + 𝐼𝐶
2(𝑡)) ∙ 𝑅𝑤 ∙ ∆𝑡

𝑁𝑡

𝑡=1

  

𝐸𝑡𝑟𝑎𝑛𝑠 = 3 ∑ 𝐼2(𝑡) ∙ 𝑅𝑤 ∙ ∆𝑡

𝑁𝑡

𝑡=1

  

𝐼𝑝𝑟𝑐(𝑡) = [𝐼𝐴
2(𝑡) + 𝐼𝐵

2(𝑡) + 𝐼𝐶
2(𝑡) − 𝐼𝐴(𝑡)𝐼𝐵(𝑡) − 𝐼𝐵(𝑡)𝐼𝐶(𝑡) − 𝐼𝐴(𝑡)𝐼𝐶(𝑡)]1/2  

 

3.3.3 The total imbalance-induced cost (TIC):  

The TIC is a summation of the ARC and AELC:  

𝑇𝐼𝐶 = 𝐴𝑅𝐶 + 𝐴𝐸𝐿𝐶 (3) 

where ARC and AELC are explained in (1) and (2), respectively. 
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The ARC is a present value for the long-term network investment while the AELC 

is the sum of day-to-day energy loss cost for a year. Considering TIC instead of ARC 

only helps DNOs avoid excessive energy losses caused by LCTs effectively. 

5. Probabilistic impact assessment 

5.1. Methodology 

The developed methodology, as shown in Fig. 3, analyses the probabilistic impacts 

of LCT penetration on imbalance-induced costs. It considers the uncertainties of EV 

charging energy requirement, PV system size, connection time and connection location 

through Monte Carlo simulations under different LCT penetration levels.  

It is worthy to note that the substation monitors the total output from the transformer, 

which is the accumulated load consumption of the whole LV network. The imbalance-

induced costs are calculated from the voltage and current data monitored by the substation. 

The network topology and load distribution are not necessary for this analysis. Therefore, 

the LCT penetration for a network is considered as the accumulated generation or 

consumption patterns of all the LCTs in the network. The main steps are: 
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Fig. 3. Overview of the methodology 

1) Input data from 800 LV networks and cluster them into three groups, i.e., urban, 

suburban and rural. K-means clustering is used to group the networks by their annual 

peak current. This clustering process is done as the same LCT penetration may have 

different impacts on different clusters. The physical nature of the networks is 

different. For example, the urban networks have shorter feeders and heavier load 

compared to rural and suburban networks. As a result, the phase powers in urban 

networks could change rapidly because of LCT penetrations. 

2) Generate a pool of 1000 EV charging profiles and 1000 PV generating profiles. The 

pool of EV charging profiles follows the probability distributions of connection times 

and energy requirements [26]. The pool of PV generation profiles considers the 
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installed sized and sun irradiances [28]. The detailed process of generating the pools 

for LCT profiles is explained in Section IV-B. 

3) Increase the LCT penetration level from 0% to 100% with a step of 10%. The LCT 

penetration level is defined as the percentage of energy required or generated by LCT 

over the total traditional passive load consumption. Increasing the LCT penetration 

level from 0% to 100% aims to cover a wide range of possible situations for the future. 

Although the 100% LCT penetration is very unlikely for the near future, it can be 

used as an extreme scenario for DNOs to analyze the impacts on phase power 

imbalance.  

4) Select LCT profiles from the pool according to each penetration level and allocate 

them to the three phases. Both the selection and allocation processes use the Monte 

Carlo method to embed uncertainties of LCTs.  

5) Calculate ARC and AELC for each network and store the results. The AELC includes 

both energy loss cost caused by phase residual current and the energy loss cost caused 

by transformer copper loss. Note that the ARC is a long-run cost while the AELC is 

a day-to-day cost. Thus, the calculated ARC is a present value discounted from the 

future while the AELC represents the total energy loss cost for a year. Besides, the 

TIC is calculated from ARC and AELC and it is used to evaluate the probability of a 

network to benefit from LCT penetrations.  

6) Repeat the steps 100 times to account for uncertainties. Note that 10, 50, 200, 500 

and 1000 times of Monte Carlo simulations had been run. However, the 10 and 50 

times of simulation cannot cover the whole possible impacts. The rest of the 

simulation times have a very similar result. Thus, 100 times of simulation is chosen 

to show better results with shorter programming running time. 
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5.2. Probabilistic study 

The imbalance-induced costs are calculated for each LV network under different 

LCT penetration levels. The 800 LV networks consist of urban (11.2%), suburban 

(44.4%), and rural (44.4%) networks. The average imbalance-induced costs for each 

group of networks are shown in the case study. A 95% confidence interval is considered 

while estimating the average costs in this analysis. The probabilistic study considers three 

scenarios, i.e., EV only, PV only and both EV and PV. 

In this paper, the neutral wire resistance (𝑅𝑛) is set as 0.244 Ω/km [29]. The winding 

resistances (𝑅𝑤) are calculated from [32] and presented in Table 2.  

Table 2 Parameters for different areas  [32], [33] 

Assets                                                Area Urban Suburban Rural 

Transformer investment cost (k£) 26.4 16.1 5.8 

Main feeder investment cost (k£/km) 67.2 16.4 15.0 

Main feeder length (km) 0.2 0.3 0.4 

No. of feeders connected from transformers 5 3.5 1.5 

Winding resistance (Ω) 0.0163 0.0265 0.0413 

To derive the ARC, the investment costs of the feeder and transformer are given in 

Table II. The discount value (𝑑) is set as 5.0% [23] and [34]. The load growth rate (𝑟) is 

set as 0.82% [35]. 

4.2.1 EV only scenario 

Fig. 4 shows how the ARC and AELC change with increasing EV penetrations for 

urban, suburban and rural networks. It can be seen that without EV penetration (i.e., EV 

penetration level is 0%), the rural networks have the largest ARC but least AELC. The 

reason is that the ARC is proportional to the DPIB while the AELC is influenced by 
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loading level (as shown in equation (1) and (2)). The rural networks have the largest DPIB 

but the lowest loading levels compared to suburban and urban networks. 

Fig. 4 shows that the ARC decreases with EV penetration while the AELC increases 

with EV penetration. For urban and suburban networks, the ARC decreases gradually. 

The ARC for rural networks decreases rapidly compared to other networks. It shows that 

EV penetration reduces the DPIB for all the networks. The DPIB in rural networks has 

the largest drop compared to suburban and urban networks. 

 

Fig. 4. Variation of the average ARC and AELC of urban, suburban and rural networks with EV 

penetration 

It also shows that the AELC increases with EV penetration. The EV penetration 

level is defined as the percentage of energy required by EV over the total traditional 

passive load consumption. Therefore, the loading level is increased proportionally to the 

EV penetration. As discussed above, the AELC increases with loading level. The urban 

networks have the largest passive load consumption compared to rural and suburban 

networks. Thus, the urban networks have the most significant increase in loading level. 

Consequently, the AELC of urban networks increases dramatically while increasing EV 

penetration. 

When the EV penetration level exceeds 60%, the urban networks' AELC becomes 

higher than the ARC. When the EV penetration level reaches 100%, the suburban 
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networks' AELC catches up with the ARC and has the trend to keep increasing to exceed 

the ARC. 

Fig. 5 shows the average of the TIC for rural, suburban and urban networks. In rural 

networks, the TIC decreases as the EV penetration level increases. In suburban networks, 

the TIC reduces as EV penetration level increases up to 50% and stabilizes after 50%. In 

urban networks, the TIC decreases as EV penetration level increases up to 50% and 

increases after 50%.  

 

Fig. 5. Variation of average TIC of urban, suburban and rural networks with EV penetration 

It indicates that considering the full imbalance-induced cost, i.e., ARC and AELC, 

50% of EV penetration brings the maximum benefits for the urban networks. The 

suburban networks gain more benefit from EV penetration that is larger than 50%. The 

benefits for rural networks increase with the EV penetration level. 

4.2.2 PV only scenario 

Fig. 6 shows how the ARC and AELC change with increasing PV penetrations for 

urban, suburban and rural networks. As discussed above, the rural networks have the 

largest ARC because they have the largest DPIB compared to other networks. The loading 

level of rural networks is the lowest, which leads to the lowest AELC. The PV penetration 

has minor influences on both ARC and AELC as it can be seen that the values of ARC 

and AELC have only increased slightly with PV penetration.  
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The reason for this phenomenon is that PV generation mainly changes the DPIB in 

the noontime because of the nature of the solar system. However, the ARC is decided by 

the maximum DPIB throughout the whole year. Thus, the impacts of PV penetration on 

the ARC is insignificant. A detailed discussion of different impacts on DPIB is given in 

Section V. The increase of PV generation only reduces the loading level in the noontime. 

However, the AELC is an accumulated value of a whole year. Thus, the impacts of PV 

penetration on the AELC is insignificant. 

 

Fig. 6. Variation of the average ARC and AELC of urban, suburban and rural networks with PV 

penetration 

Because of the minor changes in both ARC and AELC, there are insignificant 

increases of TIC for all the networks (as shown in Fig. 7). However, such an increase of 

TIC is negligible comparing to other network operations. 

 

Fig. 7. Variation of average TIC of urban, suburban and rural networks with PV penetration 
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The third scenario considers both EV and PV penetrations at the same time. In the 

following content, 'EV and PV' are referred to as 'LCT' for simplicity. For this scenario, 

EV and PV are considering to have the same penetration level, i.e., if the LCT penetration 

level is 10%, it means that both the EV and PV have a penetration level of 10%. The 

LCTs are randomly selected from the pool using Monte Carlo and randomly allocated to 

the three phases using norm distribution.  

Fig. 8 shows that the ARC decreases with LCT penetration while the AELC 

increases with LCT penetration. For urban and suburban networks, the ARC decreases 

gradually. The ARC for rural networks decreases rapidly compared to other networks. It 

shows that EV penetration reduces the DPIB for all the networks. The DPIB in rural 

networks has the largest drop compared to suburban and urban networks.  

It also shows that the AELC increases with LCT penetration. Though the total 

amount of EV consumption equals the PV generation, PV generation mainly reduces the 

loading level in the noontime. In contrast, EV consumption has possibilities to increase 

the loading level at any time of the day. Therefore, the AELC has raised because of the 

increasing of LCT connections. Among all the networks, the urban networks have the 

largest increase in loading level. Consequently, the AELC of urban networks increases 

with increasing LCT penetration. 

 
Fig. 8. Variation of the average ARC and AELC of urban, suburban and rural networks with 

LCT penetration 
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When the EV penetration level exceeds 65%, the urban networks' AELC becomes 

higher than the ARC. When the LCT penetration level reaches 100%, the suburban 

networks' AELC catches up with the ARC and has the trend to keep increasing to exceed 

the ARC. 

Fig. 9 shows that, in urban networks, the TIC decreases as the LCT penetration 

level increases up to 50% and decreases after 60%. In suburban networks, the TIC reduces 

as LCT penetration level increases up to 60% and stabilizes after 60%. In rural networks, 

the TIC decreases as the LCT penetration level increases. 

 
Fig. 9. Variation of average TIC of urban, suburban and rural networks with LCT penetration 

Therefore, to balance the long-run investment cost and day-to-day energy loss cost, 

50% - 60% of LCT penetration brings the maximum benefits for the urban networks. The 
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calculated for each penetration level. This demonstrates the benefits from LCT 
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40% of rural networks, 43% of suburban networks and 40% of urban networks have more 

than 0.5 probability (50% chance) to benefit from EV penetration. It is also shown that 

60% of LCT penetrations have higher probabilities of bringing benefits for the majority 

of LV networks compared to that of 50% of LCT penetration. 

 
Fig. 10. The probability of being beneficial from LCT penetration for rural networks 

 
Fig. 11. The probability of being beneficial from LCT penetration for suburban networks 

 
Fig. 12. The probability of being beneficial from LCT penetration for urban networks 
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6. Discussion  

Fig 13 shows the changes of DPIB in different penetration scenarios for all the 

networks i.e., no LCT scenario, EV only scenario, PV only scenario and both EV and PV 

scenario. The penetration level is 100% for all the scenarios. Rural networks have the 

largest DPIB while urban networks have the smallest DPIB. Compared to the scenario of 

no LCT penetration, the EV penetration scenario and LCT penetration scenario both 

reduce DPIB significantly. In contrast, the PV penetration scenario has very insignificant 

changes to the DPIB. The DPIB in LCT penetration scenario is slightly smaller than that 

of the EV penetration scenario. 

 
Fig. 13. DPIB in different penetration scenarios 

The reason is that DPIB is defined as the ratio of the deviation of the maximum 
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Fig 14 shows the changes of the phase residual current ( 𝐼𝑝𝑟𝑐 )  in different 

penetration scenarios for all the networks. The penetration level is 100% for all the 

scenarios. Urban networks have the largest 𝐼𝑝𝑟𝑐 while rural networks have the smallest 

𝐼𝑝𝑟𝑐.  The EV penetration scenario increases 𝐼𝑝𝑟𝑐 relatively significantly compared to the 

PV and LCT penetration scenarios. The 𝐼𝑝𝑟𝑐 in EV penetration scenario is the largest 

among all the scenarios. 

 

Fig. 14. Phase residual current (𝐼𝑝𝑟𝑐) in different penetration scenarios 

Consequently, the EV penetration scenario has larger impacts on the AELC 

compared to other scenarios. Oppositely, PV and LCT penetration scenarios have minor 

impacts on the AELC. 

7. Conclusions 

A probabilistic impact assessment framework is developed to analyse the total 

imbalance-induced cost (TIC) in the low voltage (LV) networks with increasing 

penetrations of low carbon technologies (LCTs). The TIC includes both day-to-day 

energy loss cost and long-run network investment cost. The framework uses Monte Carlo 
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simulations to account for the uncertainties associated with the LCTs. Full time-series 

data from 800 LV substations are used for the case studies. 

The results show that the energy loss cost may exceed the network investment with 

penetration of single-phase LCTs. To balance the long-run investment cost and day-to-

day energy loss cost, the urban networks achieve the maximum benefits when the LCT 

penetration level is 50% - 60%. The suburban networks gain more benefits from LCT 

penetration that is larger than 50%. The rural networks will always benefit from the 

increase of LCT penetration. To further understand the impacts of LCT penetration on 

networks. A probability analysis is performed to identify the probability, with 95% 

confidence, of networks to have reduced TIC with LCT penetrations. Results indicate that 

60% of LCT penetration has the highest probability to bring the maximum benefits for 

the majority of the LV networks.  

The developed impact assessment framework help DNOs understand the potential 

of benefits that LV networks can obtain from LCTs penetrations. Moreover, the 

developed framework can be used as a tool to perform a cost-benefit analysis for phase 

balancing solutions. Therefore, it guides the DNOs in investing phase balancing solutions 

to cope with the increasing LCT penetrations.  
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- phase imbalance causes both day-to-day energy losses and long-run 
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- Analysing the total imbalance-induced cost is important for distribution 

network operators as the day-to-day energy loss cost may exceed the long-

run network investment cost 

- Monte Carlo simulation is adopted to account for the uncertainties associated 

with the low carbon technologies 

- 60% penetration of low carbon technologies has the highest probability to 

bring the maximum benefits for the majority of the LV networks 
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