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Abstract—Multimodal time series classification is an important
aspect of human gesture recognition, in which limitations of indi-
vidual sensors can be overcome by combining data from multiple
modalities. In a deep learning pipeline, the attention mechanism
further allows for a selective, contextual concentration on relevant
features. However, while the standard attention mechanism is an
effective tool when working with Natural Language Processing
(NLP), it is not ideal when working with temporally- or spatially-
sparse multi-modal data. In this paper, we present a novel attention
mechanism, Multi-Modal Attention Preconditioning (MMAP). We
first demonstrate that MMAP outperforms regular attention for the
task of classification of modalities involving temporal and spatial
sparsity and secondly investigate the impact of attention in the fusion
of radar and optical data for gesture recognition via three specific
modalities: dense spatiotemporal optical data, spatially sparse/tem-
porally dense kinematic data, and sparse spatiotemporal radar data.
We explore the effect of attention on early, intermediate, and late
fusion architectures and compare eight different pipelines in terms
of accuracy and their ability to preserve detection accuracy when
modalities are missing. Results highlight fundamental differences
between late and intermediate attention mechanisms in respect to
the fusion of radar and optical data.

Index Terms—Gesture recognition, deep learning, attention mech-
anism, multi-modality, radar combination.

I. INTRODUCTION

AMultitude of applications have been found and refined over
the years for gesture recognition including computer inter-

actions, forensic identification, virtual environments, monitoring
automobile drivers’ alertness, medically monitoring patients and
lie detection. To overcome the limitations of traditional recog-
nition systems [1]–[3], researchers have turned to multimodal
approaches that combine data from multiple sensors, thereby
leveraging the strengths of multiple modalities to improve overall
recognition performance.

Gesture recognition systems can be classified into two types,
optical-based systems and non-optical-based systems. Recently
there has been a lot of work done on both types. Optical-
based gesture recognition studies mainly attempt to address the
many challenges associated with using the camera which include
illumination inconsistencies, motion blur and background clutter.
A solution to this illumination problem has been proposed by
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[4] which is insensitive to environmental illumination and back-
ground variation by using a biologically inspired neuromorphic
optical sensor that have microsecond temporal resolution, high
dynamic range, and low latency. However, it is debatable if this
technology will be widely available soon.

Recently the attention mechanism has emerged as a powerful
tool for selectively focusing on relevant features and enabling
more efficient and effective learning [5]. For selective attention,
[6] used global visual descriptors and Common Spatial Patterns
(CSP) to cleverly categorise videos taken by a humanoid robot.
As for non-optical-based approaches such as radar or Wireless Fi-
delity (Wi-Fi) systems which do not suffer from the illumination
problem, studies mainly focus on the accurate identification of
gestures by recognising and profiling the details of hand gestures
in different environments. [7] adopted the multisensor approach
and presented a dual Doppler radar-based system which can
capture subtle arm gestures with less positioning or environmental
dependence. [8] proposed WiGRUNT, a WiFi-enabled gesture
recognition system using a dual-attention network, to mimic
how a keen human being intercepts a gesture regardless of
the environment variations. While both approaches are making
substantial progress, there remain several limitations, such as
strict environmental requirements and low stability.

Radar is now a cheaper modality and a combination of optical
and radar data by multimodal fusion has been seeing rapid
development and integration [9]. This approach has the potential
of combining the best of both modalities resulting in a system
that is resistant to environmental changes while also performing
adequately with low illumination. While fusion can solve many
of the problems of gesture recognition, knowing when and how to
fuse becomes an important consideration. Our approach focuses
on finding the best fusion point for radar with optical and
kinematic data and looking at the effects of having attention
layers at different positions in fusion. We look at several metrics
such as training time, accuracy and the ability of the system to
retain active discriminant information while removing redundant
information for different configurations of early, intermediate and
late fusion. While we are cautious to generalise our results, we
believe we obtained useful findings about the fusion of radar with
optical and kinematic data in particular.

The main contributions of our work are as follows:
1) We present a new type of attention better suited for multi-

modal sparse data applicable in both temporal and spatial
dimensions. We show that this novel Multi-Modal Attention
Preconditioning (MMAP) mechanism outperforms regular
attention in accuracy, recall and f1-score when applied on
sparse data, which could also offers broad potential beyond
the specific application of gesture recognition investigated
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in this paper. Its utility is anchored in its specific han-
dling of sparse data representations, a particular challenge
when distributed across various modalities and domains.
The mechanism’s adaptive learning of cross-modal feature
importances specific to the task at hand can effectively
tackle data sparsity by focusing on informative signals
amidst potential noise or null data points. This property
has the potential to significantly improve performance in
tasks involving varied sparse sensor readings, time-series
analysis with missing data, natural language processing
with sparse semantic embeddings, or any domain where
data representations involve inherent intermittent modal
sparsity.

2) Our approach leverages the potential of deep learning
to unite multimodal features at an arbitrary level of ab-
straction, which we evaluate relative to early, intermediate
and late fusion pipelines for 3 different modalities: radar,
kinematic (skeleton) and optical data. We find that the
multimodal fusion of different inputs in this context results
in a clear improvement over unimodal approaches due to
the complementary nature of the various input modalities.
From the eight different architectures presented, it is noted
that late fusion with late attention has the potential of
outperforming early and intermediate fusion with all modal-
ities present and also in circumstances where one of the
modalities is masked.]

3) We present a comparative evaluation of early, intermediate
and late fusion and indicate the point at which one partic-
ular modality can fail outright and another one can recover
for the discrimination of classes. We also show that one
modality can carry the discriminating information while
other modalities fail. From our findings, end-to-end late
fusion with pre-trained unimodal models can dynamically
switch between different modalities based on their reliabil-
ity.

4) We show that late fusion with late attention can recover
information that is hidden in the fused decision softmax
space. We found that late fusion using the attention mecha-
nism can dynamically adapt the fusion strategy based on
the context and highlight the most relevant information
from each modality softmax output. From our findings,
late attention recovered fully all information lost in the
prediction of gesture classes. We found a jump in detection
confidence of 40% with a Jaccard score of going from 0.53
to above 0.9.

II. RELATED WORKS

This section reviews in details the relevant work undertaken
by other researchers that used radar, skeleton and optical data.

A. Visual features for gesture recognition

Before the advent of network-based approaches, gesture recog-
nition was primarily based on computer vision techniques and
handcrafted features. This involved identifying and extracting
relevant features from images or videos of gestures, such as
the shape, size, and movement of the hands, and then using
classical machine learning algorithms, such as decision trees
and support vector machines to classify the gestures based on
these features. These systems were limited in their accuracy and

ability to generalise to new and unseen gestures. For example,
in [10] a global optimisation framework was made based on
binary quadratic programming, [11] proposed a spatio-temporal
feature named Mixed Features around Sparse key points, [12]
proposed a scheme of aggregating the low-level polynormals into
the super normal vector. However, due to the nature of these
features, there is a risk that they fail to capture the relevant
information from the input. Now, attention has shifted to network-
based approaches where task-specific features can be obtained
automatically. Most of the recent gesture recognition methods
made use of deep learning such as [13]–[15] which boast superior
results to isolated gesture recognition with handmade features.
[16] proposed a system for dynamic hand gesture recognition
using multiple deep learning architectures for hand segmentation,
local and global feature representations, and sequence feature
globalisation and the authors in [17] proposed two convolutional
neural networks (CNNs) with partial and full weight sharing,
for multimodal data where they employ both partial weight
sharing and full weight sharing in such a way that modality-
specific characteristics, as well as common characteristics across
modalities, are learned from multimodal (or multi-sensor) data
and are eventually aggregated in upper layers.

B. Other modalities for gesture recognition
As compared to wearable sensors, radar sensors are not affected

by illumination and because of radar signal transmissivity, have
the advantage of being robust even in the presence of occlusion.
The works in [18]–[22] presented different systems which use
radar for hand/body gesture detection where deep learning was
proven to be excellent on analysing radar signatures for smart
detection. In [23] 14 different hand gestures were studied and
represented with signatures as a 3-dimensional tensor consisting
of range-Doppler frame sequence. These signatures were then
passed to a CNN to extract the unique features of each gesture.
For the study, a low-power Ultra-wideband (UWB) impulse radar
which transmits sharp temporal pulses was used. Recently, the
research of gesture recognition on radar has opened a range
of new possibilities in intelligent sensing. The radar sensor can
instantaneously capture the range and speed of the gesture in each
frame signal calculated by a fast Fourier transform (FFT). Radar
technologies can be classified into two main categories: i) Pulsed
radar [24], [25] and ii) Continuous-wave radar (CW) [18], [26],
[27]. CW radars can further be classified as Frequency-Modulated
CW (FMCW) radars and single-frequency CW (SFCW) radars.
Several studies also denote SFCW radars as Doppler as they
operate mostly on the Doppler effect. For classification, [19] used
a two-antenna Doppler Radar to train a CNN to classify hand
gestures where the beat signals from the two receiving antennas
were used to generate feature arrays representing 14 different
hand gestures. In the study 250 recorded samples for each of
the 14 different gestures were used. This set was divided into
80% for the DCNN training with 5-fold validation and 20% for
the testing. The training was repeated 5 times by rotating the
testing set and the training set such that the average classification
accuracy of training, validation and testing could be calculated.
The testing results showed that the proposed two-antenna method
outperformed previously used single-antenna approaches by 10%
at a similar CNN level of complexity. In another study, [20]
proposed a real-time gesture recognition system using a short-
range radar, Soli, developed by Google. It was built from the
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bottom up including signal processing, machine learning and
communication. In the signal processing, 2D FFT was performed
to generate the Range-Doppler Map (RDM) sequences in real
time and clutters were removed using an adaptive background
model based on Gaussian mixture model (GMM). The gesture
was detected by the constant false alarm rate (CFAR) algorithm
and then recognised by the long short-term memory (LSTM
) encoder. The LSTM encoder extracted the global temporal
features of the motion sequences. The study reported that the pro-
posed system achieved high accuracy under various conditions.
[28] proposed a novel two-step pipeline classification solution
for surface-electromyography-based gesture (sEMG) recognition,
which has been evaluated on 7 sparse multichannel and 4 high-
density sEMG benchmark databases. The study also presented
a cross-modal association model with adversarial learning to
capture the intrinsic relationship between sEMG signals and
hand poses. Experimental results indicated that compared with
a crossmodal association model constructed without adversarial
learning, the proposed model enables improved gesture recogni-
tion accuracy based on both sparse multichannel and high-density
sEMG signals, although, the improvements achieved on sparse
multichannel sEMG databases are stated to be higher than those
achieved on high-density sEMG databases. In the framework
analysis of [29], movement primitive, ie segmentation of a long
sequence of human movement observation data is reviewed for its
use to facilitate the identification of movement (this can also be
applied to fingertip motions). The study proposed a framework to
provide a structure and a systematic approach for designing and
comparing different segmentation and identification algorithms.
As can be seen from the variety and scope of the more recent
papers, unimodal radar and optical studies are thriving through
clever ways to compensate for the shortcomings of their respec-
tive modalities.

C. Multimodal fusion

Deep multimodal learning has achieved remarkable progress in
recent years in multiple research areas [30], [31]. These methods
fall under early, intermediate, or late multi-modal fusion. [30]
presented a method for gesture detection and localisation based
on multi-scale and multi-modal deep learning. In their method,
spatial information was captured at a particular spatial scale (such
as the motion of the upper body or a hand), and the whole system
operated at two temporal scales. [31] described a novel method
called Deep Dynamic Neural Networks (DDNN) for multimodal
gesture recognition where a semi-supervised hierarchical dynamic
framework based on a Hidden Markov Model (HMM) is proposed
for simultaneous gesture segmentation and recognition where
skeleton joint information, depth, and RGB images, are the multi-
modal input observations. Unlike most traditional approaches that
rely on the construction of complex handcrafted features, their
approach learns high-level spatiotemporal representations using
deep neural networks suited to the input modality: a Gaussian-
Bernouilli Deep Belief Network (DBN) to handle skeletal dynam-
ics, and a 3D Convolutional Neural Network (3DCNN) to manage
and fuse batches of depth and RGB images. [32] introduced a
single-stage continuous gesture recognition framework, a Tem-
poral Multi-Modal Fusion (TMMF), that can detect and classify
multiple gestures in a video via a single model. This approach
learns the natural transitions between gestures and non-gestures

without the need for a pre-processing segmentation step to detect
individual gestures. To achieve this, the authors introduced a
multi-modal fusion mechanism to support the integration of
important information that flows from multi-modal inputs, and
which was scalable to any number of modes. Additionally, they
propose Unimodal Feature Mapping (UFM) and Multi-modal
Feature Mapping (MFM) models to map uni-modal features
and the fused multi-modal features respectively. [33] proposed
a method which first learns short-term spatiotemporal features
of gestures through the 3-D convolutional neural network, and
then learns long-term spatiotemporal features by convolutional
LSTM networks based on the extracted short-term spatiotemporal
features. In order to take full use of the advantages of 3DCNN and
the attention mechanism, a combination of the two networks are
utilised in the proposed deep architecture to learn spatiotemporal
features.

III. RADAR DATA CAPTURE

In this work, we investigate the fusion of radar with other
modalities where radar data capture dictates the type and density
of radar frames. The experiment in this study uses the evaluation
version of AWR1642 which consists of a waveform generator,
an antenna array with two transmitters and four receivers, a
signal de-modulator and an analogue-to-digital converter (ADC)
converter. The waveform generator transmits the chirp signal
through the transmit antenna. Then an intermediate frequency
(IF) signal is obtained using a low-frequency filter (LPF). The
radar model consists of x-y positions, intensity and range data.
1D FFT processing is performed for range while 2D (velocity)
FFT processing produces the velocity. CFAR detection in range
direction uses the mmWave library.

A. Range measurement

In a radar system, the transmitter emits a high-frequency
electromagnetic signal that is directed towards the object. As the
signal reflects off the object, it returns to the receiver. The receiver
then analyses the reflected signal and measures the Doppler shift
to determine the object’s distance. The time delay (τ ) can be
obtained from the distance d to the detected object, τ = 2d/c,
where c is the speed of light.

B. Velocity measurement

To measure the velocity of multiple points of the hand/arm
a radar system must transmit multiple chirps. This can be a set
of N equally spaced chirps. For the case of two point, we first
compute the range-FFT of the reflected set of chirps, and get a
set of N identically located peaks but with different phases which
incorporate the individual contributions from each of the points.
To this, a second FFT, called Doppler-FFT, can be performed on
the N phasors to resolve the points. The velocity measurement
is carried out as

v =
λω

4πTc
(1)

where ω is the discrete frequency corresponding to the phase
difference between consecutive chirps, λ is the wavelength and
Tc is the chirp period.
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C. Angle estimation

Angle estimation exploits a similar concept. Angle estimation
requires at least 2 RX antennas. What is exploited here is the
differential distance of the object to each of these antennas. So
the transmit antenna transmits a signal that is a chirp. It is
reflected off the object, and one ray goes from the object to
the first RX antenna and another ray goes from the object to
the second RX antenna. This results in a phase change in the
peak of the range-FFT or Doppler-FFT. This result is used to
perform angular estimation, using at least two RX antennas. The
differential distance from the object to each of the antennas results
in a phase change in the FFT peak. The phase change enables the
estimation of the angle of arrival (AoA). Under the assumption
of a planar wavefront basic geometry shows that ∆d = I sin(θ),
where I is the distance between the antennas. Thus the angle of
arrival (θ), can be computed from the measured phase change
∆Φ:

θ = sin−1

(
λ∆Φ

2πI

)
(2)

Note that ∆Φ depends on sin(θ). This is called a nonlinear
dependency; sin(θ) is approximated with a linear function only
when θ has a small value: sin(θ) ∼ θ.

Fig. 1: Shows the data captured by radar, ranges(r), x-positions,
y-positions and velocities(v).

The relationship between radar and vision is such that radar
data can be viewed as a sparsely populated, low-resolution image
that contains valuable depth and velocity information (as shown in
Fig. 1). This is in contrast to high-resolution optical data or con-
tinuous kinematic data. As a result, when fusing radar data with
other modalities, the complementary nature of the information it
provides must be considered to avoid introducing noise into the
system. To effectively utilise the different modalities and create
a universal decision maker, contextualised attention is needed.
This approach takes into account the context of the data and
their interrelationships, allowing for more effective integration
and decision-making. By carefully weighing the strengths and
weaknesses of each modality, contextualised attention can help
to identify the most appropriate use of the data to achieve the

desired outcomes. Ultimately, the goal is to develop a system
that can leverage the strengths of all modalities to make informed
decisions and improve overall performance.

IV. MULTIMODAL GESTURE RECOGNITION WITH ATTENTION

In this section, we present architectures for learning multimodal
time series data (optical, skeletal and radar) for class prediction.
First, we introduce the attention mechanism for multimodal time
series data and subsequently describe early, intermediate and late
fusion architectures as shown in Fig. 2, Fig. 3 and Fig. 4.

A. Attention

The attention function can be described as mapping a query
and a set of key-value pairs to an output, where the query,
key, value and output are all vectors [5]. The keys and queries
are dotted and multiplied to obtain the corresponding attention
weights, and finally, the obtained weights and values are dotted
to obtain the final output. For self-attention, the three matrices Q
(Query), K (Key), and V (Value) are all from the same input.
We first compute the dot product between Q and K and then
divide the result by a scale

√
dk to prevent the result from being

too large, where dk is the dimensionality of a query and key
vector. The result is then normalised using the Softmax operation
and then multiplied by the matrix V to obtain the representation
of the weight summation. This computational procedure can be
expressed as follows.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3)

B. Proposed Multi-Modal Attention Preconditioning

This proposed MMAP function, whilst also seeking to map
a query and a set of key-value pairs to an output, however,
incorporates an additional trainable attention weight matrix and
a dropout mechanism which are not present in regular attention
mechanism. This helps to emphasise relevant features and min-
imise the effect of non-informative or noisy features, which is
especially beneficial for handling sparse multi-modal data such
as radar readings. This can be represented as follows: given a
set of queries Q, keys K, and values V , MMAP first applies the
learned linear transformations:

Q′ = Wq ·Q

K ′ = Wk ·K

V ′ = Wv · V, (4)

where Wq , Wk and Wv are the learned weight matrices of the
corresponding transformation functions. We then compute the dot
product between the transformed queries and keys divided by a
scale factor

√
dk to prevent divergence, with dk the dimensional-

ity of a query and key vector. This result is then passed through
a softmax function to normalise the scores, creating the attention
weights A, which are also subjected to dropout mechanism:

A = dropout

(
softmax

(
Q′K ′T
√
dk

))
. (5)
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The output of the function is then the weighted sum of the values,
passed through a final learned linear transformation:

AttentionPreconditioning(Q,K, V ) = Wo · (A · V ′) (6)

where Wo is the learned weight matrix of the output transfor-
mation. A pseudocode description of this process is given in
Algorithm 1.

Algorithm 1 Multi-Modal Attention Preconditioning (MMAP)

1: procedure ATTENTIONPRECONDITION-
ING(Q,K, V,H,N, S,D)

2: Initialise transformation matrices Wq,Wk,Wv,Wo ∈
RH×H

3: Q′ = Q×Wq , K ′ = K ×Wk, V ′ = V ×Wv

4: Reshape Q′,K ′, V ′ into Q′′,K ′′, V ′′ with N heads
5: Compute attention scores S = Q′′×(K′′)T√

S
6: Compute attention weights A = softmax(S), apply

dropout A = dropout(A,D)
7: Compute attended output O′ = A× V ′′

8: Reshape O′ and apply final linear transformation O =
reshape(O′)×Wo

9: return O
10: end procedure

In multimodal fusion, intermediate attention can be used to
selectively attend to the most informative parts of the intermediate
feature representations, before they are combined using a fusion
method such as concatenation or averaging. This can help recover
any “hidden” information that may have been lost during the
individual processing of each modality. Attention can also be
used to selectively attend to the most informative parts of the
decision softmax layer in the fusion process and in such cases is
called late attention.

C. Architectures

Multimodal fusion is a method that integrates different modal-
ities with different properties. The fusion of information from
different modalities is a common approach to improving perfor-
mance. The essence is to combine heterogeneous sensor data
to enable the implementation of complementary information
processes. The networks in this work contain several elements,
which are described as follows:

• Input: Time series data are appended one after another
to make a sequence. Input blocks made are in the form
of (a, s, f) where a are the actions performed s are the
sequences and f are the features.

• Convolution layer: This layer creates a convolution kernel
that is convolved with the layer input to produce a tensor of
outputs.

• Concatenation layer: It takes input as a list of tensors, all
of the same shape except for the concatenation axis, and
returns a single tensor that is the concatenation of all inputs.

• Addition layer: It takes as input a list of tensors, all of the
same shape, and returns a single tensor that is the addition
of all tensors (also of the same shape).

1) Early fusion (EF): Fig. 2 shows our architecture for early
fusion with and without attention. Early fusion consists of inte-
grating the separate raw data modalities into a unified represen-
tation before proceeding through the learning/feature extraction
process.

2) Intermediate fusion (IF): Fig. 3 shows our architecture
for intermediate fusion with and without attention. Intermediate
fusion combines the features that distinguish each type of data
to produce a new representation that is more expressive than the
separate representations from which it arose. For example, the
fusion of features extracted from images and those extracted from
skeletal sequences, allows us to take advantage of the strengths
of both representations simultaneously (such as resolution from
optical data and depth information from radar data). We denote
the single model as h(·). The final prediction can be written as

p = h ([v1, . . . ,vm]) (7)

where vi, i ∈ {1, 2, · · · ,m} is the ith element of m modalities.
3) End-to-end late fusion (LF): Fig. 4 shows our architecture

for end-to-end late fusion with attention where the score of
merging is computed by a deep neural network. In particular,
for m considered modalities, we used pre-trained architectures to
generate score vectors from each modality individually. Each such
architecture performs both feature extraction and classification
and provides a vector of the potential membership scores to
each of the considered classes. After being pre-processed, these
vectors are used as inputs to our network for training. Such an
operation allows us to learn more consistent joint decisions than
conventional merging rules.

D. Sparsity

Spatial sparsity is used in our work to describe the number
of pixels of an image or elements in a vector that are not
populated. Highly populated images/vectors have low sparsity
while images/vectors with low pixels/elements are highly sparse.
Temporal sparsity in this work refers to temporal population of
images/vectors.

V. EXPERIMENT, RESULTS AND DISCUSSION

In this section, we present the data capture method and
experimental settings used in our experiments.

A. Experimental settings

All models are implemented on Tesla a P100 16GB GPU under
Linux environment. The deep learning models are optimised by
mini-batch gradient descent with the Adam [35] optimiser and a
maximum number of epochs of 200. We select the hyperparam-
eters which have obtained a minimum loss on the validation set.
To the best of our knowledge, there is no existing dataset with
optical, radar and kinematic data for gesture recognition. For the
purpose of testing our early, intermediate and late pipelines, data
was collected for 12 gestures. This data is in the format of 30
frames per sample for 20 samples per action for 12 actions. This
was collected for optical and radar data. The entire dataset has
been made available at [36] in a NumPy format. We also want
to take advantage of skeletal information and there exists a very
effective framework for the extraction of kinematic skeleton data
for gestures, Google’s MediaPipe framework. MediaPipe [37] is
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Fig. 2: Modular pipeline combination: (A/B) early fusion, (A/C) early fusion with intermediate attention. [34]

Fig. 3: Modular pipeline combination: (D/F) intermediate fusion, (E/F) intermediate fusion with intermediate attention, (D/G)
intermediate fusion with late attention.

Fig. 4: Modular pipeline combination : (H/J) late fusion, (I/J) end-to-end late fusion with intermediate attention (pre-trained unimodal
models), (H/K) late fusion with late attention.
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an open-source framework, used for media processing. It is a
framework for building machine learning pipelines for processing
time-series data. This hand-tracking solution utilises a machine-
learning pipeline consisting of two models working together. A
palm detector that operates on a full input image and locates
palms via an oriented hand bounding box and a hand landmark
model that operates on the cropped hand bounding box provided
by the palm detector and returns high-fidelity 2.5D landmarks.
The MediaPipe pipeline returns 63 points corresponding to 21
joints for each hand. We compared the performance of different
models with the following metrics derived from the confusion
matrices.

1) Overall Accuracy (OA): This metric represents the propor-
tion of correctly classified samples in all tested samples, and
is computed by dividing the number of correctly classified
samples by the total number of test samples.

2) Loss: This is a value that represents the summation of errors
made by the model during the learning process.

3) Recall: Also known as sensitivity or true positive rate
(TPR), this metric represents the proportion of actual pos-
itives that are correctly identified.

4) F1 Score: The F1 score is the harmonic mean of precision
and recall, taking both metrics into account. It is particu-
larly useful in the case of uneven class distribution, as the
F1 score values the balance between precision and recall.

To measure performance we use the Jaccard index. This relies
on frame-by-frame prediction accuracy. More precisely, if GTi

denotes the sequence of ground truth labels in video i, and Ri the
algorithm output, the Jaccard index score of the video is defined
as:

JSi (GTi, Ri, g) =
Ns (GTi, Ri, g)

Nu (GTi, Ri, g)
, (8)

and JSi =
1

| Gi |
∑
g∈Gi

JSi (GTi, Ri, g) , (9)

where Ns (GTi, Ri, g) denotes the number of frames where
the ground truth and the prediction agree on the gesture class
g. The quantity Nu (GTi, Ri, g) reflects the number of frames
labelled as a gesture g by either the ground truth or the prediction,
and Gi denotes the set of gestures either in the ground truth or
detected by the algorithm in the sequence i. The average of the
JSi over all test videos is reported as the final performance
measure. We have conducted the experiments and drawn some
interesting observations from the results, which we summarise in
the remarks followed up by explanations.

B. Training results

1) Unimodal models: For reference, we trained six unimodal
models: optical, radar and skeletal data with and without the
attention mechanism.

Remark 1: Attention is an effective mechanism to address the
sparse and resolution-poor nature of the millimeter wave radar
modality. Our experiments show an increase of around 6% in
overall accuracy and a decrease in training time of 8%.

For radar, the convolution layer retains relative position and
thus attention followed by application of softmax per feature map
attenuates the Doppler component attributable to interference and
amplifies the Doppler component dattributable to valid gestures.

The attention mechanism learns to distinguish valid Doppler
components from invalid ones effectively via the intrinsic pattern
of the Doppler signal. As for skeletal data and optical data, an
architecture with the attention mechanism UM-O-IA and UM-
M-IA outperformed their basic variants in training time, with a
decrease of 8% (Table I). We also note lower loss values for the
optical data.

TABLE I: Performance metrics of unimodal model (UM) for
optical/mediapipe(skeletal)/radar data (O/M/R) with or without
intermediate attention (IA)

Architecture Val. Accuracy Val. Loss Val. Recall
UM-O 1.0 0.033 1.0

UM-O-IA 1.0 0.013 1.0
UM-M 0.958 0.105 0.958

UM-M-IA 0.972 0.086 0.972
UM-R 0.889 0.404 0.875

UM-R-IA 0.944 0.344 0.931

From the results of validation accuracy, loss and recall (Table
I), we can draw the following insight:

Remark 2: Radar data gives the worst performance considered
in isolation.

While architectural biases can be at play for small variations
in accuracy, we suggest that this large discrepancy for radar is
a direct consequence of the sparse and resolution-poor nature of
the radar modality. Also, the original echo of the hand gesture
may contain some random interferences, which may mislead the
training of the neural network classifier and reduce the speed of
convergence and recognition rate.

2) MMAP performance on dense and sparse data: When com-
paring MMAP with regular MHA, implemented in the context
of a transformer model for high sparsity tasks, our goal was to
investigate the impacts of these attention mechanisms on model
performance in terms of accuracy, F1 score and recall. These
experiments were conducted in a cross-validation setting to ensure
robust and unbiased comparisons.

Remark 3: Attention mechanism efficacy is data-dependent.
As shown in the results (Table II), standard MHA worked best

for optical (average validation accuracy of 1), an inherently dense
data type. In contrast, MMAP performed better on the intrinsi-
cally sparse data types: Skeletal (average validation accuracy of
1) and Radar (average validation accuracy of 0.92).

Remark 4: Specialised attention mechanisms can surpass more
general ones.

MMAP consistently performed better on sparse data types.
Skeletal (S) and Radar (R) models using MMAP outperformed
their MHA counterparts, validating the use of specialised mecha-
nisms, such as MMAP with its additional attention weight matrix
and dropout mechanism, for specific modality data types.

Remark 5: Temporal density can compensate for spatial spar-
sity and MMAP can capitalise on this feature.

Models trained on Skeletal (S), which is temporally dense but
spatially sparse, achieved high performance (validation accuracy
of 1 for MMAP and 0.98 for MHA), suggesting the relative
importance of temporal density. This result shows that MMAP
can effectively utilise temporal information to make accurate
predictions.

Remark 6: MMAP demonstrates substantial performance im-
provement for radar data

The significant performance increase for Radar (R) data with
MMAP (validation accuracy increase from 0.81 to 0.92) empha-
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sises the promise of MMAP in handling sparse data types. This
is likely because MMAP’s specialised mechanism, designed to
minimise the effect of non-informative features, suits well for
sparse data types like radar.

TABLE II: Comparison of validation metrics between Multi-
modal Attention Preconditioning (MMAP) and Multi-head At-
tention (MHA) for different modalities

Modality Attention Val Loss Val Accuracy Val Recall Val F1
S MMAP 0.000442 1 1 1
S MHA 0.114136 0.979167 0.984375 0.984375
O MMAP 0.047544 0.979167 0.984375 0.984375
O MHA 0.022415 1 1 1
R MMAP 0.372836 0.916667 0.90625 0.90625
R MHA 0.905177 0.8125 0.854167 0.854167

3) Fusion models: The resulting training characteristics of
radar fusion with optical and skeletal using different configura-
tions for EF (Fig. 2), IF (Fig. 3 and Fig. 4) are shown in 8 different
architecture in Table III. They are early fusion (EF), early fusion
with attention (EF-IA), intermediate fusion (IF), intermediate
fusion with intermediate attention (IF-IA), intermediate fusion
with late attention (IF-LA), late fusion (LF), end-to-end late
fusion with intermediate attention (LF-IA) (pre-trained unimodal
models), end-to-end late fusion with late attention (LF-LA) (pre-
trained unimodal models). From Table III, late attention produced

TABLE III: Performance of 8 different architectures.

Architecture Val. Accuracy Val. Loss Val. Recall
EF 1.0 0.0012 1.0

EF-IA 0.986 0.1045 1.0
IF 1.0 0.0006 1.0
LF 1.0 0.5548 0.875

IF-IA 1.0 0.001 1.0
LF-IA 0.986 0.9197 0.375
IF-LA 1.0 0.0003 1.0
LF-LA 1.0 0.0005 1.0

the best results for intermediate and late fusion with validation
loss for LF-LA being 0.0005 and 0.0003 for IF-LA being the
lowest loss recorded.

C. Real-time ablation tests

To find the characteristics of different fusion strategies we
set up two pipelines (shown in Fig. 3 and 4). The intermediate
and late pipelines are trained using the rectified Adam optimiser
with a learning rate of 0.005 for 200 epochs with an early
stopping of 20 patience by using mini-batches of 64 samples.
We choose the final optimal models based on the performance
on the validation set. The end-to-end late fusion pipelines were
constructed with pre-trained unimodal models concatenated at the
decision layer followed by dense and softmax layers. The models
were then trained on the OMR dataset [36] and achieved their
best performance for multi-label classification at self-attention
block with sixteen heads with dk = dv = 128, where dk, dv are
the dimension of the key and value respectively, in all the self-
attention blocks. To compare the effectiveness of fusion methods
with spatiotemporally sparse data (radar), spatially sparse and
temporally dense data (skeleton), and dense spatiotemporal data
(optical), experiments with real-time data streams were set up
where the effects of each modality are investigated separately
in different test runs. The experiment tests both pipelines on
the 12 gestures with a video feed producing optical/MediaPipe

(skeleton) streams of data with the shape (-,48,64,3) and (-,1,126)
respectively per second stacked into 30 frames arrays. Radar
data was collected in a data stream of shape (-,1,1000) and then
converted to radar frames. To best show the results from our
real-time test we used the Pearson-moment correlation (PPM) to
compare test cases. Fig. 6 represent the detection confidence for
each of the 12 gestures with all modalities. The models return
real-time detection of the most recent 30 frames window.

Remark 7: The point at which fusion occurs dictates the
characteristics of the resulting model.

Remark 7 is supported by Fig. 6 which shows that even though
all test architectures scored close to 100% (table III) on testing
with fully featured 30 frames pre-recorded data there is a wide
variety of profiles produced when a real-time 30 frames window
is used with the current lastest frame for detection confidence.

Remark 8: Late attention can significantly improve detection
accuracy for late fusion

Remark 8 is supported by the difference between LF-LA, LF-
IA and LF in Fig. 6 (and respective Jaccard index in table IV)
where an LF-LA produced a Jaccard index of 0.916 which is
better than either LF-IA with 0.380 and LF with 0.533. This test
shows higher confidence level of late fusion with late attention.

Remark 9: LF-LA produced high confidence from the first
frame of detection, which is much faster than any IF pipelines.

Remark 9 is supported by Fig. 6 which shows LF-LA detection
“snapping” from the detection of one gesture to another within
1-2 frames. The IF counterparts are noted to do this within 4-
5 frames. When all modalities are present, LF-LA outperforms
the IF variants on detection speed. We note that from the
correlation matrices, the IF models produced fewer instances
of false positives. LF and LF-IA performed the worst when all
modalities are present on detection confidence.

TABLE IV: Jaccard index with all modalities (G: Gesture)

G LF-IA EF IF-LA LF LF-LA IF-IA IF EF-IA

1 0.274 1.0 1.0 0.558 1.0 1.0 1.0 1.0
2 0.247 0.944 0.929 0.456 0.964 0.931 0.988 0.954
3 0.218 0.8 0.759 0.454 0.899 0.766 0.928 0.865
4 0.479 0.973 0.751 0.579 0.921 0.964 0.922 0.966
5 0.428 0.95 0.957 0.622 0.932 0.929 0.949 0.721
6 0.46 0.89 0.809 0.537 0.866 0.948 0.932 0.785
7 0.598 0.888 0.694 0.507 0.879 0.556 0.843 0.898
8 0.511 0.912 0.619 0.635 0.85 0.965 0.897 0.832
9 0.313 0.861 0.915 0.568 0.883 0.652 0.838 0.791

10 0.385 0.903 0.925 0.424 0.944 0.619 0.787 0.817
11 0.354 0.94 0.893 0.487 0.893 0.921 0.86 0.876
12 0.298 0.702 0.951 0.563 0.956 0.931 0.906 0.91

From Table IV, the architecture with the highest Jaccard index
across all 12 gestures is EF, with values ranging from 0.702 to
1.0. The architecture with the lowest Jaccard index is LF-IA,
with values ranging from 0.247 to 0.598. The other architectures
have Jaccard indices ranging from 0.313 to 0.635, indicating
moderate to high similarity between the predicted and ground
truth segmentations.

The data in Table V shows that different architectures have
varying performances, with some architectures performing better
than others. The highest overall Jaccard index is 0.916, which is
achieved by the LF-LA architecture. The lowest overall Jaccard
index is 0.38, which is achieved by the LF-IA architecture. The
other architectures have Jaccard indices between 0.533 and 0.904.
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Fig. 5: Shows bias to optical, skeletal and radar data

Fig. 6: Performances of the 8 different architectures, EF: early fusion, EF-IA: early fusion with attention IF: intermediate fusion, IF-
IA: intermediate fusion with intermediate attention, IF-LA: intermediate fusion with late attention, LF: late fusion, LF-IA: end-to-end
late fusion with intermediate attention (pre-trained unimodal models), LF-LA: end-to-end late fusion with late attention (pre-trained
unimodal models). (b) Pearson-moment correlation (PPM) to compare test cases.

TABLE V: Overall Jaccard index all modalities

Jaccard index Architecture Jaccard index Architecture

0.38 LF-IA 0.916 LF-LA
0.897 EF 0.848 IF-IA
0.85 IF-LA 0.904 IF

0.533 LF 0.868 EF-IA

1) Data masking: In co-learning, all the modalities are present
at training time and some are missing at test time. The modalities
which are not present at test time can be supported by other
modalities during training. To investigate the effects of full
modality removal, tests were performed with a setup having
the optical, skeletal, and radar components completely removed

successively. The presented PPM diagrams (Fig. 7,8,9) consist
of a PPM of our reference all modality results (lower triangle)
juxtaposed with the relevant PPM under investigation (upper
triangle).

a) Optical data masking: With the optical modality masked,
we can observe a substantial deterioration of IF with a Jaccard
index going from 0.904 to 0.662 (profile shown in the PPM in Fig.
7). LF shows significant deterioration with a Jaccard index going
from 0.533 to 0.242. This points to IF and LF performing poorly
when the optical modality is absent. LF-LA on the other hand
suffered degradation going from 0.916 to 0.692 but retained clear
and distinct classes. This points to better preservation of both the
complementarity and redundancy of the different modalities.

Remark 10: IF-IA and IF-LA (Fig. 7) produced a lower Jaccard
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Fig. 7: PPM diagrams consist of a PPM of our reference all modality results (lower triangle) juxtaposed with the relevant PPM under
investigation (upper triangle) for optical data missing

index score than the variants with no attention.
This is an interesting behaviour as it points to the attention

mechanism at an intermediate stage introducing noise and thus
making the models more susceptible to changes from the input.
This shows that attention is not always desirable and can produce
worst results than its basic variant when modalities are masked
for intermediate fusion. To note the distribution (Fig. 5) shows
that 30% of the neurons in the network were found to carry
skeletal and radar information.

TABLE VI: Jaccard index with optical mask

G LF-IA EF IF-LA LF LF-LA IF-IA IF EF-IA

1 0.274 0.95 0.0 0.0 0.997 0.0 0.442 0.0
2 0.137 0.748 0.0 0.079 0.952 0.303 0.57 0.0
3 0.0 0.541 0.0 0.152 0.716 0.726 0.87 0.0
4 0.092 0.727 0.209 0.262 0.881 0.537 0.883 0.302
5 0.078 0.406 0.262 0.291 0.723 0.157 0.491 0.291
6 0.139 0.0 0.499 0.187 0.242 0.0 0.161 0.0
7 0.316 0.417 0.5 0.202 0.19 0.03 0.535 0.0
8 0.188 0.791 0.0 0.279 0.523 0.36 0.945 0.0
9 0.115 0.707 0.0 0.364 0.85 0.0 0.734 0.397
10 0.097 0.914 0.0 0.33 0.514 0.015 0.627 0.5
11 0.119 0.852 0.391 0.39 0.861 0.323 0.814 0.0
12 0.138 0.656 0.399 0.373 0.852 0.821 0.867 0.024

Table VI shows the Jaccard index values when the optical
modality is removed. The removal of the optical modality has

a significant impact on the performance of the different architec-
tures, with several of them showing Jaccard index values close
to 0.0. On the other hand, some architectures still show relatively
good performance even when the optical modality is removed,
such as LF-LA (0.997) and IF (0.945).

TABLE VII: Overall Jaccard index optical mask

Jaccard index Architecture Jaccard index Architecture

0.141 LF-IA 0.273 IF-IA
0.642 EF 0.662 IF
0.188 IF-LA 0.126 EF-IA
0.242 LF 0.692 LF-LA

Table VII shows the overall Jaccard index for different archi-
tectures with the optical modality removed. The highest score is
for the architecture ”LF-LA” with a Jaccard index of 0.692. The
lowest score is for the architecture ”EF-IA” with a Jaccard index
of 0.126. The other architectures have scores in between these
two extremes.

b) Skeletal data masking: When the skeletal modality was
masked, LF-LA produced the highest Jaccard index of 0.745, the
closest second was the degraded EF with 0.686. We note that
in this circumstance the architectures that performed the worst
are IF-LA with 0.180 and LF-IA with 0.170. LF-IA produced a
higher number of false positives as compared to IF architectures
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Fig. 8: PPM diagrams consist of a PPM of our reference all modality results (lower triangle) juxtaposed with the relevant PPM under
investigation (upper triangle) for skeletal data missing

which resulted in the architecture having the lowest score of all
tested architectures.

TABLE VIII: Jaccard index with skeletal mask

G LF-IA EF IF-LA LF LF-LA IF-IA IF EF-IA

1 0.0 0.96 0.0 0.276 0.991 0.0 0.911 0.017
2 0.154 0.756 0.083 0.219 0.844 0.493 0.777 0.431
3 0.191 0.677 0.08 0.246 0.817 0.487 0.624 0.498
4 0.195 0.779 0.5 0.323 0.887 0.191 0.538 0.017
5 0.157 0.79 0.5 0.322 0.844 0.235 0.51 0.012
6 0.148 0.208 0.0 0.113 0.253 0.344 0.328 0.115
7 0.242 0.367 0.0 0.093 0.463 0.0 0.365 0.47
8 0.197 0.89 0.0 0.361 0.674 0.0 0.703 0.613
9 0.161 0.719 0.0 0.312 0.786 0.0 0.634 0.5
10 0.0 0.672 0.0 0.118 0.546 0.0 0.494 0.0
11 0.269 0.908 0.5 0.222 0.89 0.493 0.832 0.425
12 0.326 0.507 0.5 0.401 0.941 0.807 0.758 0.817

From Table VIII, we can see that the architecture with the
highest Jaccard index when masking the skeletal modality is LF-
LA with values ranging from 0.253 to 0.991. On the other hand,
the architecture with the lowest Jaccard indices is IF-LA with
most values close to or at 0.0.

According to Table IX, the highest Jaccard index is achieved by
the architecture LF-LA with a value of 0.745. The architecture
EF has a Jaccard index of 0.686, which is the second-highest

TABLE IX: Overall Jaccard index skeletal mask

Jaccard index Architecture Jaccard index Architecture

0.17 LF-IA 0.745 LF-LA
0.686 EF 0.254 IF-IA
0.18 IF-LA 0.623 IF

0.251 LF 0.326 EF-IA

value in the table. The lowest Jaccard index value is 0.17 for the
architecture LF-IA.

Remark 11: In the circumstance where the sparse spatiotempo-
ral modality was removed, intermediate fusion highly degrades.

With the removal of the sparse spatiotemporal data Fig. 9 (for
instance the radar modality which provides depth information),
intermediate fusion experienced difficulties in its assessment
and in our case confused most gestures as compared to the
all-modality baseline. Late fusion with late attention detection
confidence was degraded but maintained a high Jaccard index of
0.802 and was still able to distinguish all 12 gestures as shown in
the PPM for LF-LA. LF-IA and EF produced the lowest Jaccard
index score with 0.151 and 0.178 respectively. We note that
the two architectures performed worst in all test with modality
masked. The best score was achieved by LF-LA with 0.802.

From Table X, LF-LA architecture has a Jaccard index of
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Fig. 9: PPM diagrams consist of a PPM of our reference all modality results (lower triangle) juxtaposed with the relevant PPM under
investigation (upper triangle) for missing radar data

TABLE X: Jaccard index with radar mask

G LF-IA EF IF-LA LF LF-LA IF-IA IF EF-IA

1 0.0 0.0 0.0 0.224 0.988 0.0 0.0 0.0
2 0.0 0.108 0.116 0.229 0.85 0.33 0.418 0.05
3 0.0 0.197 0.161 0.157 0.708 0.645 0.895 0.037
4 0.341 0.5 0.5 0.348 0.961 0.8 0.914 0.5
5 0.34 0.5 0.5 0.44 0.949 0.5 0.685 0.5
6 0.213 0.139 0.322 0.234 0.62 0.261 0.579 0.116
7 0.349 0.408 0.55 0.209 0.611 0.496 0.853 0.303
8 0.157 0.054 0.25 0.27 0.932 0.399 0.723 0.0
9 0.0 0.116 0.0 0.262 0.831 0.477 0.578 0.0
10 0.119 0.117 0.0 0.236 0.719 0.489 0.705 0.0
11 0.165 0.0 0.32 0.253 0.779 0.0 0.613 0.0
12 0.128 0.0 0.493 0.296 0.679 0.0 0.78 0.0

0.988, which indicates that there is a high level of overlap
between the two sets. The EF-IA architecture has the lowest
Jaccard indices with the radar mask, with a value close to or
at 0.0, indicating the least amount of overlap between the two
sets.

The results from Table XI suggest that the architecture with
the highest overall Jaccard index for the skeletal mask is LF-
LA (0.802) while the architecture with the lowest overall Jaccard
index for the radar mask is EF-IA (0.125). Table XIII shows a
summary of our findings.

TABLE XI: Overall Jaccard index radar mask

Jaccard index Architecture Jaccard index Architecture

0.151 LF-IA 0.802 LF-LA
0.178 EF 0.366 IF-IA
0.268 IF-LA 0.645 IF
0.263 LF 0.125 EF-IA

Remark 12: There are configurations when the radar modality
produces complementary information and others where it pro-
duces noise.

The radar modality can produce complementary information
(e.g., depth) to improve the Jaccad index such as in LF-IA, EF
and EF-IA and can also produce noise such as in IF-LA, LF,
LF-LA and IF as shown in Table XII (OS→OR).

Remark 13: In our experiments, the merging of radar with
optical and skeletal data, following a late merging scheme with
late attention produced the best results.

Remark 13 is supported by Tables VII, IX, XI (summarised in
Table XIII) showing better performance for LF-LA with the low-
est Jaccard index drop from all modalities with 14.21%, 22.95%
and 32.37% for radar, skeletal and optical respectively, showing
that the architecture is the most resistant to modality removal. LF-
LA in this work consists of pre-trained unimodal models whose
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TABLE XII: Difference in Jaccard Index with OSR representing
optical, skeletal and radar data respectively

Arch RS→OR OS→OR SR→OS OSR→OS OSR→OR OSR→SR

LF-IA 17.06↑ 12.58↓ 6.62↑ 151.66↓ 123.53↓ 169.50↓
EF 6.41↑ 285.39↓ 260.67↓ 403.93↓ 30.76↓ 39.72↓

IF-LA 4.44↓ 32.84↑ 29.85↑ 217.16↓ 372.22↓ 352.13↓
LF 3.59↑ 4.56↑ 7.98↑ 102.66↓ 112.35↓ 120.25↓

LF-LA 7.11↑ 7.11↑ 13.72↑ 14.21↓ 22.95↓ 32.37↓
IF-IA 7.48↓ 30.60↑ 25.41↑ 131.69↓ 233.86↓ 210.62↓

IF 6.26↓ 3.41↑ 2.64↓ 40.16↓ 45.10↓ 36.56↓
EF-IA 61.35↑ 160.80↓ 0.80↓ 594.40↓ 166.26↓ 588.89↓

TABLE XIII: Summary of findings

Opt. Skel. Radar Fusion point Attention point
EF/IF/LF LA/IA

LF LA
LF LA
LF LA

outputs are concatenated and on which attention is applied. The
resulting model is trained end-to-end. Attention in this particular
configuration is applied to decisions and effectively is not looking
at features but relationships between models. Attention in the
configuration is used for decision switching and can be used to
dynamically switch between different modalities based on their
reliability. For example, the model may attend more to the radar
modality when the visual input is noisy, and switch back to the
visual modality when the radar input becomes noisy. In this way,
attention allows the model to dynamically adjust its behaviour,
leading to more robust decision-making. Our results align with
[38] who found that the late fusion approach with attention
mechanism outperforms other baselines in terms of accuracy on a
multimodal emotion recognition task. Our results strongly suggest
that the late fusion approach with attention mechanism can
effectively leverage the complementary information from multiple
modalities to improve the accuracy of gesture recognition, making
it a promising approach for multimodal fusion in this domain.

Remark 14: Late attention-based fusion can help recover
“hidden” information by selectively attending to the most relevant
parts of the fused decision space, which may not be captured by
the individual processing of each modality.

Remark 14 is supported by Fig. 6, 7, 8 and 9 with EF, LF and
LF-LA which shows that when early fusion was used, the optical,
skeletal and radar modalities were combined at an early stage,
which enabled the system to capture the relevant information
from the modalities. This resulted in a high Jaccard score.
However, when late fusion was used, discriminating information
was obscured during the processing stage. We know that this
information must be present as it reemerges when attention is
applied to the fused decision softmax layer is the final stage of
the fusion process.

VI. CONCLUSION AND FUTURE WORK

Category information, especially the conflict in category pre-
dictions, is difficult to handle in sensor fusion. In this work,
we present a novel attention mechanism specifically designed to
tackle sparse data. We show that this attention performs better
on spatially and temporally sparse data. We also show that where
we choose to merge and where we choose to put attention in
multimodal fusion with radar can significantly affect the resulting

model and subsequent real-time detection. First, we found that
multimodal fusion with the attention mechanism of different
inputs results in a clear improvement over unimodal approaches
due to the complementary nature of the radar modality. From
the eight different architectures tested, it was noted that late
fusion with late attention suffered the least degradation and
outperformed early and intermediate fusion in circumstances
where one of the modalities is masked. We also found that late
fusion with late attention can also recover “hidden” information
from individual softmax from different modalities. We think
there is much to be found on the effect of fusion and attention
positioning and that further research on the topic is warranted.Our
research findings have opened up numerous potential avenues
for future exploration and improvement. This work has merely
scratched the surface of what is possible in this field. We have
identified a few key areas to focus on in our future research
efforts. Firstly, we are interested in enhancing our fusion model
to manage a wider array of data sources. Our current work has
focused predominantly on a limited set of data types. We aim to
diversify this in our future research, aiming to include a variety of
different sources such as text, images, audio, time-series data, and
more complex forms of data such as graph data. By doing so, we
hope to construct a fusion model that is more flexible and robust
in diverse data scenarios. Secondly, we wish to delve into the
potential of emerging deep learning techniques for multimodal
fusion. As the field of artificial intelligence progresses, new
methodologies, algorithms, and techniques are being developed
at an impressive rate. We plan to explore novel techniques such
as transformer-based models, self-supervised learning, and neural
architecture search, among others. These novel approaches may
provide opportunities to improve the efficiency, accuracy, and
applicability of multimodal fusion models. Lastly, we aspire to
apply our fusion method in practical, real-world settings. In
particular, we see a massive potential for our fusion model in
the domains of autonomous driving and surveillance. These areas
demand robust, reliable models that can handle vast amounts of
diverse data in real-time. Applying and testing our model in these
high-stake environments will provide valuable insights into its
efficacy and practicality.
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