
ENFORCING C++ TYPE INTEGRITY
WITH FAST DYNAMIC CASTING, MEMBER FUNCTION PROTECTIONS

AND AN EXPLORATION OF C++ BENEATH THE SURFACE

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of doctor of philosophy.

By

Sadie J. Macintyre-Randall

December 2021

Abstract

The C++ type system provides a programmer with modular class features and

inheritance capabilities. Upholding the integrity of all class types, known as type-

safety, is paramount in preventing type vulnerabilities and exploitation. However,

type confusion vulnerabilities are all too common in C++ programs. The lack

of low-level type-awareness creates an environment where advanced exploits, like

counterfeit object-orientated programming (COOP), can flourish. Although type

confusion and COOP exist in different research fields, they both take advantage

of inadequate enforcement of type-safety. Most type confusion defence research

has focused on type inclusion testing, with varying degrees of coverage and per-

formance overheads. COOP defences, on the other hand, have predominantly

featured control flow integrity (CFI) defence measures, which until very recently,

were thought to be sound. We investigate both of these topics and challenge pre-

vailing wisdom, arguing that: 1. optimised dynamic casting is better suited to

preventing type confusion and 2. enforcing type integrity may be the only defence

against COOP.

Type confusion vulnerabilities are often the result of substituting dynamic

casting with an inappropriate static casting method. Dynamic casting is often

avoided due to memory consumption and run-time overheads, with some develop-

ers turning off run-time type information (RTTI) altogether. However, without

RTTI, developers lose not only secure casting but virtual inheritance as well. We

argue that improving the performance of dynamic casting can make it a viable

ii

option for preventing type confusion vulnerabilities. In this thesis, we present

MemCast, a memoising wrapper for the dynamic cast operator that increases its

speed to that of a dynamic dispatch.

A new variant of the COOP exploit (COOPLUS) has identified a weakness in

almost all modern, C++-semantic-aware CFI defences. The weakness is that they

allow derived class functions to be invoked using corrupted base class instances,

specifically where an attacker replaces the object’s virtual pointer with one from a

derived type object. A CFI defence overestimates the set of target functions at a

dispatch site to cover all possible control-flow paths of a polymorphic object. Thus

COOPLUS takes advantage of the lack of type integrity between related types at

dispatch sites. In this thesis, we argue that CFI is an unsuitable defence against

COOPLUS, and type integrity must be applied. Hence we propose a type integrity

defence called Member Function Integrity (MFI) that brings type awareness to

member functions and prevents any member function from operating on an invalid

object type.

To understand the low-level techniques deployed in MemCast and our MFI

defence policy, one has to appreciate the memory layout of the objects themselves

and the conventions used by member functions that operate on them. However, in

our research, we did not find adequate introductory literature specific to modern

compilers. For this reason, we supplied our own self-contained introduction to

low-level object-orientation.

This thesis has three contributions: a primer on C++ object layouts, an opti-

mised dynamic casting technique that reduces the casting cost to that of a dynamic

dispatch, and a new defence policy proposal (MFI) to mitigate all known COOP

exploits.

iii

Acknowledgements

Completing a PhD amid a global pandemic has been a challenging task. So I must

express my deepest thanks to all who have supported and aided me.

First and foremost, I’d like to thank my wife, Beth, who has unconditionally

supported me throughout this PhD, despite the sleep-disturbing late-night sessions

and the mountain of paperwork accumulating in the spare room. Thank you for

being my biggest support, greatest encouragement, and loudest cheerleader.

I would also like to express my deepest thanks to my supervisor, Andy King,

for allowing me the opportunity to independently pursue my own interests, for

supporting me in my scientific writing (perhaps the biggest hurdle of this entire

PhD), and for his continued effort and commitment to see my PhD through to

the end.

Thanks also to my family for your support, belief and encouragement. But

most of all, for distilling in me a level of stubbornness and personal drive to always

see things through to the end.

Finally, thanks should also go to a truly dedicated friend, Kelda, who took on

the gruelling task of proofreading this thesis, despite it being entirely outside her

expertise.

iv

Contents

Abstract ii

Acknowledgements iv

Contents v

List of Tables xi

List of Figures xiii

0 Introduction 1

I Behind Object Abstraction 7

1 The Standards Behind the Language 8

1.1 Introduction . 9

1.2 The C++ Language - A Brief History 9

1.3 C++ Standard . 10

1.3.1 The C++ Standard Specification 10

1.3.2 The Standard Library . 11

1.4 Compiler Interoperability . 11

1.5 Application Binary Interfaces . 12

1.5.1 The Generic ABI . 13

v

1.5.2 The Processor Specific ABI 13

1.5.3 The C++-ABI . 20

1.6 Object Layouts in Other Compilers 21

1.7 Concluding Discussion . 21

2 Binary Representation of Objects 24

2.1 Introduction . 24

2.2 Representing Inheritance . 25

2.2.1 Primary Class . 26

2.2.2 Single Inheritance . 26

2.2.3 Multiple Inheritance . 28

2.2.4 Virtual Inheritance . 28

2.2.5 Other Class Keywords and Templates 30

2.3 Polymorphism and the Type Systems 32

2.3.1 Types . 32

2.3.2 Polymorphic Variables and Object Address-Points 33

2.3.3 Type Checking . 35

2.3.4 Casting . 36

2.3.5 Member Functions . 38

2.4 Dynamic Objects and Supporting Data 41

2.4.1 Object Layouts with Virtual Pointers 41

2.4.2 Virtual Table Layout . 44

2.4.3 Virtual Member Functions 50

2.4.4 Run-Time Type Information 52

2.5 MSVC Object Comparison . 58

2.6 Concluding Discussion . 61

3 Assembly-Level Object Operations 62

3.1 Introduction . 62

vi

3.2 Member Functions . 63

3.2.1 Function Bodies . 63

3.2.2 Non-Virtual Member Functions Calls 63

3.2.3 Virtual Member Function Calls 64

3.3 Object Construction . 66

3.3.1 Primary Class Construction 66

3.3.2 Derived Class Construction 67

3.3.3 Virtual Inheritance Class Construction 68

3.4 Cast Operations . 70

3.4.1 C-style Cast . 71

3.4.2 static cast<target>(variable) 72

3.4.3 reinterpret cast<target>(variable) 74

3.4.4 dynamic cast<target>(variable) 74

3.4.5 Compiler Casting Optimisations 79

3.4.6 Custom RTTI Solutions 82

3.5 Concluding Discussion . 83

II Object Vulnerability and Exploitation 84

4 Type Confusion Vulnerabilities 85

4.1 Introduction . 85

4.2 Type Confusion Defense Strategies 88

4.3 Type Inclusion Testing . 92

4.4 What about Dynamic Casting? 94

4.5 Concluding Discussion . 100

5 Memoised Casting 101

5.1 Introduction . 101

5.2 Cast Stability and Deal.II Analysis 105

vii

5.2.1 Cast Stability . 106

5.2.2 Deal.II Experiments . 107

5.2.3 Deal.II Results . 109

5.3 Design and Implementation . 111

5.3.1 MemCache Objects . 112

5.3.2 Dynamic Cast Wrapper 116

5.4 Experimental Results . 124

5.4.1 The True Cost of Casting 124

5.4.2 Evaluation of MemCast’s Capabilities 130

5.4.3 Deal.II Revised . 139

5.4.4 OMNet++ . 143

5.4.5 Antlr4 . 146

5.5 Related Work . 150

5.6 Future Work . 152

5.7 Concluding Discussion . 155

6 Object-Oriented Code-Reuse 158

6.1 Introduction . 158

6.2 Counterfeit Object-Orientated Programming 164

6.2.1 The COOP Exploit . 164

6.2.2 COOP Defenses . 167

6.2.3 COOPLUS . 169

6.3 CFIXX Under the Microscope . 172

6.3.1 Object Type-Integrity . 172

6.3.2 CFIXX Implementation 172

6.3.3 CFIXX Vulnerabilities . 174

6.4 Member Function Integrity . 182

6.4.1 Defence Policy . 183

6.4.2 Implementation Proposal 184

viii

6.4.3 Converting Bitype’s Encoding Scheme 184

6.4.4 Benefits of MFI . 194

6.4.5 Scalability . 197

6.5 MFI Proof of Concept . 201

6.5.1 Example Program Design and Vulnerability 201

6.5.2 Exploit 1: COOPLUS vptr Overwrite 204

6.5.3 Exploit 2: Adjacent Vtable Access 206

6.5.4 Exploit 3: Unprotected Library 207

6.5.5 MFI - Source-Base Implementation 210

6.5.6 Defence Comparison . 213

6.6 Future Work . 216

6.7 Concluding Discussion . 219

III Reflection 221

7 Concluding Discussion and Future Work 222

7.1 Conclusion . 222

7.1.1 Low-level C++ Implementation 222

7.1.2 MemCast . 223

7.1.3 MFI . 224

7.2 Future Work . 225

7.2.1 MemCast . 225

7.2.2 MFI . 226

Bibliography 229

A Behind Object Abstraction 249

A.1 RTTI Hierarchy . 249

A.2 Full Virtual Inheritance Constructor Call 250

ix

B Deall.II Full Results 251

B.1 Dynamic Down-Cast Locations 251

B.2 Stability of Each Dynamic Down-Cast Site 254

C OMNet++ Full Results 259

C.1 Dynamic Down-Cast Locations 259

C.2 Stability of Each Dynamic Down-Cast Site 261

D Antlr4 Full Results 264

D.1 Dynamic Down-Cast Locations 264

D.2 Stability of Each Dynamic Down-Cast Site 266

x

List of Tables

1 Data Sizes and Alignment Requirements for AMD64 Platforms . . 14

2 Calling Convention Requirements for AMD64 Platforms 17

3 Vtable Entries Explained . 44

4 RTTI Classes and Attribute Uses 54

5 Exploit Mitigation vs Sanitisers 89

6 Stability Calculation Example . 107

7 Cast Sites Stability . 109

8 Deal.II Cast Site Stability Results 110

9 Type Specifications of the Dynamic Cast Operator 116

10 Virtual Pointer Flag Meanings . 120

11 Cost of Casting Results . 127

12 Minimum Stability and Executions for MemCast 138

13 Deal.II with MemCast . 142

14 OMNet++ with MemCast . 144

15 Antlr4 with MemCast . 148

16 Vtable Interleaving Example Data 169

17 Adapted Bitype Encoding Scheme for MFI 186

18 MFI Type Inclusion Test Example 1 192

19 MFI Type Inclusion Test Example 2 194

20 MFI Type Inclusion Test Example 1 200

xi

21 MFI, CFIXX, and Clang CFI comparison against three different

exploits . 214

22 Deal.II Dynamic Down-Casts Locations and Visits 251

23 Stability Results for Deal.II Step-x Programs 254

24 OMNet++ Dynamic Down-Casts 260

25 Stability Results for OMNet++ Programs 261

26 Antlr4 Dynamic Down-Casts . 265

27 Stability Results for Antlr4 Programs 266

xii

List of Figures

1 The Effects of Padding in Data Structures 16

2 Instruction-level Examples of Calling Conventions 18

3 Different Compiler Layouts . 22

4 Primary Class Object . 26

5 Single Inheritance Objects . 27

6 Multiple Inheritance . 28

7 Diamond Problem . 29

8 Virtual Inheritance . 29

9 Template Expansion . 31

10 Class Template Object . 32

11 Assigning Objects to Variables . 34

12 Object Address-Points . 34

13 Sub-object Address-Points . 35

14 Access Rights to Functions . 40

15 Dynamic Object Layouts and Source Code 42

16 Dynamic Object Layouts . 43

17 Vtable Layout . 44

18 Vtable Layout Single Inheritance 45

19 Vtable Layout Multiple Inheritance 47

20 Vtable Layout Virtual Inheritance 1 48

21 Vtable Layout Virtual Inheritance 2 49

xiii

22 Access Rights to Virtual Functions 51

23 RTTI Object Layout . 53

24 RTTI Data Member . 55

25 RTTI Objects and Relationships 57

26 MSVC Object Layout . 59

27 MSVC vs g++ . 60

28 Member Function Call . 63

29 The Dynamic Dispatch Mechanism 65

30 Basic Constructor Call . 66

31 Nested Constructor Call . 68

32 Virtual Inheritance Constructor Call 69

33 Cast Example . 70

34 C-style Casting . 71

35 Static Cast Operation . 72

36 Static Cast Type Confusion & Virtual Base Casting 73

37 Reinterpret Casting . 74

38 Dynamic Cast Operation . 75

39 The Global Dynamic Cast Functions 76

40 Types of Casting . 81

41 Type confusion listing and depiction 87

42 CVE Type Confusion Vulnerabilities 88

43 Fast Dynamic Cast Example . 97

44 Dynamic Cast Hot Path with Depiction 103

45 Virtual pointers vs RTTI pointers 114

46 MemCache Objects . 116

47 MemCast Resolver . 118

48 Virtual Pointer Bit Flags . 120

49 MemCast Function for Pointer Targets 122

xiv

50 MemCast’s default Dynamic Cast Wrapper 123

51 MemCast Function for lvalue References Targets 123

52 Hierarchy used for Cast Testing 126

53 Stability and The Estimate Cost of MemCasting 133

54 Minimum MemCast Visits . 135

55 Run-time Savings With MemCast 136

57 COOP Example 1 . 165

58 COOP Example 2 . 166

59 CFI Targets . 167

60 Interleaved Vtable Layout in Clang CFI 168

61 COOPLUS Exploit . 170

62 A COOPLUS Attack . 171

63 CFIXX MetaData Table . 173

64 CFIXX MDT Over Population . 175

65 Over Population MDT and Ghost Objects 176

66 Forced Type Confusion Under CFIXX 177

67 Dynamic Casting used in a COOP-Style Dispatch 179

68 Adjacent Vtable Calls . 181

69 Mapping Techniques in COOP Defences 183

70 Bitype Example Hierarchy . 185

71 Adapted Bitype Object Tracking for MFI 188

72 Object Tracking for MFI . 190

73 MFI Example . 194

74 MFI Proction for Partial Coverage 195

75 Scalable MFI Encoding Scheme 198

76 MFI Proof of Concept 1 . 202

77 Example Main Menus . 203

78 MFI Proof of Concept 2 . 203

xv

79 Exploit 1 COOPLUS . 205

80 Exploit 2 Adjacent Vtable . 206

81 Unprotected Dispatch in Unprotected Library 208

82 Exploit 3 Unprotected Library . 209

83 MFI Code Implementation . 211

84 MFI Safe Set Implementation . 212

85 RTTI Inheritance Hierarchy . 249

86 Virtual Inheritance Constructor Call 250

xvi

Chapter 0

Introduction

C++ is an object-oriented (OO) language that provides multiple orthogonal layers

of abstraction. The rationale behind abstraction is to reduce the cognitive load

on the programmer by freeing them from consideration of the low-level machine.

The most fundamental of abstraction is the concept of class. This construct allows

a programmer to define their own data types (realised as objects) and specify

functions that operate on them. This coupling of data and functions enables a

programmer to encapsulate different program components into distinct modules,

known as types, and then use these types to organise the program into hierarchies.

Enforcing segregation of these modules, that is, only allowing an object to be

accessed by its member functions, is known as type-safety and is critical to securing

OO programs from fault or exploitation. With this emphasis on abstraction, it is

unsurprising that most developers do not give low-level implementation a second

thought. However, to guard against common C++-specific bugs and exploits, low-

level understanding is vital. Despite this, the seminal text [74] on low-level object

implementation is over 25 years old and focuses on the (now discontinued) Cfront

compiler. Online blogs [2, 19, 48, 97, 108, 109, 115, 121] offering commentary

on modern C++ compilers are, at best, partial. In this thesis, we dive beneath

all layers of abstraction and provide an in-depth explanation of how objects are

1

CHAPTER 0. INTRODUCTION 2

realised in memory, specifically for the GNU C++ compiler. We also disassemble

well-known operations, like casts, constructors, and member function calls and

explain how these operations interact with objects at the assembly level.

A compiler will enforce type-safety by identifying any illegal type operations

and reporting them to the programmer for correction. However, due to inheritance

and polymorphism, a compiler’s ability to sanitise code for type vulnerabilities is

limited, as a single textual object reference can refer to different object types at

run-time. After compilation, all high-level abstractions are lost, objects become

nothing more than a collection of bits in an allocated memory area, and functions

can indiscriminately execute on data passed to them. Conceptually, however, these

memory regions and functions still have defined types, but enforcing type-safety at

this level becomes more difficult. In fact, the lack of type-awareness at the binary

level provides an environment for some security vulnerabilities and exploitation

techniques unique to OO. This thesis examines one of each, a security vulnerability

called type confusion and an exploitation technique known as Counterfeit Object-

Orientated Programming [112].

Type confusion is a common and dangerous vulnerability found in many C++

programs. It occurs when a program incorrectly interprets an object’s type at

run-time and then accesses data and functions that would have been previously

inaccessible. Access to illegal data and functions can lead to memory corrup-

tion and control-flow hijacking attacks when abused by an attacker. One way to

avoid this is to use the dynamic cast operator to securely and correctly cast an

object before interaction. However, this technique is deemed (for some) to have

unacceptable performance overheads and is often omitted (like in Google Chrome

[22]). There has been plenty of research into defensive strategies to combat type

confusion vulnerabilities, almost all of which design a new method of testing type

correctness, but very few seek to optimise dynamic casting itself. In this thesis, we

introduce MemCast, a memoising wrapper function for the dynamic cast operator,

CHAPTER 0. INTRODUCTION 3

which reduces the cost of dynamic casting to that of dynamic dispatch.

Counterfeit object-orientated programming or COOP [112], is an exploitation

technique that injects counterfeit objects (designed by an attacker) into memory

and uses these objects to call illegal functions that interact with the attacker’s

counterfeit data. This is known as a control-flow hijack attack, as the attacker’s

goal is to take control of a program’s control-flow by invoking a chain of functions

that the attacker has carefully selected. The most prominent defensive technique

against COOP is control-flow integrity (CFI), a defence policy that guarantees

the control-flow of a program falls within a set of predetermined control-flow

paths. However, a recent variant of the COOP exploit (called COOPLUS [21]) has

bypassed almost all modern CFI defences. In this thesis, we break away from these

popular CFI defences and introduce a novel defence policy called Member Function

Integrity (MFI). MFI is a type-integrity defence that brings type-awareness to all

member functions, meaning that functions can verify the objects they receive are

valid types. We present a thorough and detailed proposal of how MFI could be

implemented and demonstrate its capabilities against COOP and COOPLUS with

a proof of concept.

Thesis Structure We have taken an unusual approach to structuring this thesis

and have separated it into parts. The first two parts present the main body of the

work, each with its own goals and contributions, and the final part draws these

themes together. A common theme throughout is object types, and despite the

segregation of parts, each chapter builds on its predecessor (if there is one).

Part 1 Behind Object Abstraction is a deep dive into the low-level im-

plementation of C++ objects. It is both an introduction to the topic and a con-

tribution. Descriptions of modern-day object layouts are scattered across white

papers, scientific papers, books, forums, blogs, and even patents, and most do not

adequately explain variations between compilers and machines. As we could not

CHAPTER 0. INTRODUCTION 4

find adequate introductory literature, we provided it instead.

Chapter 1 discusses compilers, their implementation of formal standards and

platform specifications, and how they impact object layout and member

function interactions.

Chapter 2 discusses the object representation of inheritance, how polymorphism

is represented and implemented, and explains the role and layout of the

supporting auxiliary data structures such as virtual tables and run-time

type information.

Chapter 3 explains how various operations are realised, namely member func-

tions, constructor functions, and cast operations.

Part 1 provides a body of knowledge helpful in accessing Part 2.

Part 2 Object Vulnerability and Exploitation explains the impact of

type confusion vulnerabilities and reviews the defences and mitigation strategies

developed to protect against them. Dynamic casting is an inbuilt mechanism

that can prevent type confusion at cast sites, but it is often omitted from a

program because it is considered prohibitively slow. Despite its reliability, few

have attempted to counter this problem by optimising its performance. So we did

just that! We designed a memoising cast that optimises for speed. The technique

is realised as a wrapper function called MemCast, which can reduce the cost of a

dynamic cast to that of dynamic dispatch. This drastic reduction in performance

cost will hopefully break the stigma of expensive dynamic casting and compel

more developers to use it, albeit in the form of MemCasting.

Beyond the discussion of type confusion vulnerabilities, we also discuss COOP

and a new variant COOPLUS that threatens all CFI defences posed thus far. In

light of this, we propose a new security defence, MFI, to prevent such exploits.

Chapter 4 provides an overview of type confusion mitigations, sanitisers, and

the wide use of type inclusion testing as a solution.

CHAPTER 0. INTRODUCTION 5

Chapter 5 provides a detailed explanation of the design of MemCast, an evalu-

ation of its performance against dynamic casting, and an assessment of its

overall performance benefits when applied to several real-world libraries.

Chapter 6 introduces the Member Function Integrity (MFI) policy, provides a

detailed implementation proposal, and demonstrates its capabilities against

COOP-style exploits in a proof of concept.

Part 3 Reflection contains a single chapter finalising this thesis with a

concluding discussion. The chapter discusses opportunities for future work and

reflects on the main contributions of the thesis.

Supporting Figures The topics discussed in the thesis bridge the gap between

high-level code and low-level memory, which can be particularly difficult to artic-

ulate with discussion alone. For this reason, almost all low-level discussions are

supplemented with visual depictions and examples. Many of these supplementary

figures took longer to design and create than the text itself. We let the reader

draw their own conclusion as to whether this investment was worthwhile.

Contributions This thesis makes the following contributions:

• We present a modern and thorough insight into low-level object-oriented

implementation without abstraction. This includes: how objects, virtual

tables, and run-time type information are realised in memory; how and

why different compilers and platforms can apply different variations of these

structures; and how common operations, such as member functions, casts,

and constructors, interact with these data-structures at the assembly level.

• We introduce a novel optimisation technique for dynamic casting called

MemCast. We demonstrate that MemCast can outperform dynamic casting,

reducing its cost to that of dynamic dispatch, and show that replacing dy-

namic casting with MemCast can improve the overall performance of large

CHAPTER 0. INTRODUCTION 6

programs.

• We present a new and novel defence policy, Member Function Integrity

(MFI), that brings type-awareness to member functions. We give an im-

plementation proposal with this policy, detailing the mechanisms and type

testing methods required for its deployment. From this proposal, we demon-

strate how MFI can mitigate all known COOP and COOPLUS attacks and

back up this claim with a proof of concept.

Part I

Behind Object Abstraction

7

Chapter 1

The Standards Behind the

Language

In object-oriented (OO) programming, one might ask, what does an object actu-

ally look like in memory? How are the positions of each data member determined?

Furthermore, what auxiliary data members support run-time operations? Part 1

answers these questions while providing a body of knowledge that supports the

rest of the thesis. In this chapter, we answer the question, why? Specifically,

why do different compilers (on different platforms) produce different object lay-

outs and binary instructions, even when compiling identical C++ source code?

The answer depends on many factors, many of which sit within the broad topics

of language specification and compilation. The pertinent go-to documents are

language specifications and technical interface protocols, nearly all of which are

large and dry. To maintain a rapid pace of delivery, we focus on object layout and

function calling conventions, as this serves as a filter for distilling the essence from

these documents. The narrative given in this chapter presents only the essential

(and, dare we say, intriguing) information and provides insight into how C++ is

realised at the lowest level.

8

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 9

1.1 Introduction

Why? Why do object layouts differ for different C++ compilers? For different

machines? For different operating systems (OS)? Unfortunately, these questions

have no simple answers because each machine and OS determine how the compiler,

linker, libraries and the run-time system function as a whole. To operate as a

consistent whole, the processor, OS, and language itself, must agree on how data

is realised and organised in memory but also exchanged between components.

Compiler vendors are then responsible for bringing these agreements together to

produce binary code compatible with the underlying platform and library modules

it may be linked against. If these vendors want to produce code compatible with

others, then further agreements must be made between them. Each agreement has

a particular impact on object layout. Exactly which combination of agreements is

brought together by a compiler will determine the final object layout used within

a binary.

1.2 The C++ Language - A Brief History

The first known language to implement OO constructs was Simula 67 [26], which

later inspired Bjarne Stroustrup [126] in his initial design of the C++ language,

back in 1979 [127]. The original version of C++, known as “C with Classes” [127],

added Simula-like facilities to the C language [126]. C with Classes, first publicised

in 1982 [124, 125], required a preprocessor (called Cpre [127]) to translate OO code

into C code before passing the source to a C compiler.

By 1983, C with Classes had been renamed to C++ [127] and developed into its

own separate language with it own standalone compiler. The first C++ compiler

front-end, developed by Stroustrup himself, called Cfront, was released in 1985

[6]; but standardisation was not achieved until 1990, by which point, multiple

vendors had developed their own C++ compilers [127]. Each vendor had their

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 10

own interpretation of the language, often using Cfront as a defacto standard.

A standardisation came with the publication of the annotated C++ reference

manual [36]. The International Organization for Standardization (ISO) later used

this manual as the basis for the C++ ISO standard, which was published in 1998

[122]. Since then, this standard has received six major revisions to date and a

seventh currently under development. C++ is now over 40 years old and one of

the most popular languages worldwide.

1.3 C++ Standard

The ISO C++ Standard [57], specifies the semantics of the C++ language with the

use of code snippets and technical commentary. It has two parts: a specification

for all C++ facilities and functionalities, explaining how the language should

function; and the C++ Application Programming Interface (API), known as the

Standard Library.

1.3.1 The C++ Standard Specification

The C++ standard specification provides all formal definitions of the semantics

and facilities within the C++ language. In terms of objects, it describes how

they exist in memory; how they are created, destroyed, referenced, accessed, and

manipulated. It defines terms such as sub-objects, complete objects, and most-

derived objects. It also defines the rules and properties for C++ classes, including

such facilities as types, class members, inheritance, and polymorphism. We discuss

all of these concepts in Chapter 2, but what is important to note is that the

standard does not dictate how they are realised at the binary-level; the compiler

implementation and platform specifications govern this.

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 11

1.3.2 The Standard Library

The Standard Library is a collection of generic classes, functions, and facilities

(including all keywords such as new, delete, dynamic cast) used to support the

C++ language and developers with their everyday programming tasks. Within

this API are highly technical expectations of the functionality of each component,

but again, no details of low-level implementations. Low-level implementation is

not included in the Standard Library because many facilities require interaction

with an OS’s system calls. As each OS provides its own system calls, no universal

standardisation can be applied.

The C++ standard library has many different implementations by many dif-

ferent developers. Some implementations are provided with a given platform;

others are downloaded as an additional component to a compiler. In either case,

to a programmer, all standard library implementations should be functionally

homogeneous but may differ at the instruction level.

1.4 Compiler Interoperability

Before the standardisation of C++, compiler vendors relied on their own inter-

pretations of the C++ language to produce executables. With different interpre-

tations came different implementations, conventions, and, most notably, different

object data layout structures. This variety made many executables, compiled with

different compiler vendors, utterly incompatible with one another. Compatibility

(better known as interoperability) of binaries, generated from multiple compilers,

is crucial to today’s software development and the fundamental premise behind

library packages. To achieve full interoperability, compiler vendors must con-

form to a family of strict binary interfaces known as application binary interfaces

(ABIs). An ABI family (expanded on in Section 1.5) specifies the binary expec-

tations for the OS, for the architecture, and the realisation of language semantics.

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 12

If a compiler vendor conforms to an ABI family, its binaries will be fully interop-

erable with any other conforming compilers’ binaries. One of the results of this

interoperability is that their methods of realising data, including object layouts,

will be identical. However, aspects unspecified by the ABI (i.e. not required

for communication) are left to the vendor’s interpretation, which again leads to

instruction-level variations, despite ABI conformance. Compiler vendors with dif-

ferent ABI conformance or no formal ABI specification will likely have different

conventions and data layout structures.

1.5 Application Binary Interfaces

In the most general sense, an ABI is a boundary in which two or more sepa-

rate binary components exchange information. How this exchange is achieved

is platform-specific. Some platforms publish formal documented ABIs, allowing

multiple compilers to adopt and conform to that exact specification. Other plat-

forms deploy their own compilers to act as the standard for that platform rather

than publishing their own ABIs. An ABI specifies how a program should inter-

act with the OS, the processor, or libraries and separate source files. For many

platforms, each of these three aspects is defined in its own separate (documented)

ABI; collectively, they come together to define a family of ABIs, to which a pro-

gram must conform as a whole. Compilers enforce conformance of a compiled

program against the ABI family, which in turn ensures compatibility with the

underlying platform and code it is linked against. A given platform is composed

of the OS and architecture (the processor). A platform-specific ABI is, therefore,

a composition of two ABI specifications: a generic ABI (gABI), specific to the OS,

and a processor-specific ABI (psABI) supplement, specific to the processor and

the OS. Although these two parts are orthogonal, the psABI is typically presented

as sub-chapters of different chapters within the gABI document. Together, these

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 13

documents specify the C components of C++. As C++, by its very design, is an

extension to the C language, the psABI also requires an extension in the form of a

C++-specific ABI. The C++-specific ABI ensures compatibility against the OO

constructs of C++ code.

Many Unix-based systems, such as Linux, BSD and Mac OS X conform, at

least in part, to the System V ABI. The System V ABI consists of the gABI

[7] and supporting psABI, which again is processor-specific. There is a psABI

for every popular micro-architecture family: the Itanium psABI [54], the AMD64

psABI [79], the PowerPC psABI [129] and the ARM psABI [4]. On the other

hand, the Microsoft Windows OS does not have a single unified ABI publication,

as Microsoft opts to deploy their own compiler (MSVC) to act as the standard

for Windows OS platforms. Some aspects of the Microsoft Windows ABI require-

ments are published on their online library system, Microsoft Docs [86], which

continues to grow. However, without complete transparency, other compiler ven-

dors (outside of Microsoft) may be forced to reverse-engineer ABI information to

achieve interoperability, as was the case (historically) for calling conventions [42].

1.5.1 The Generic ABI

The gABI defines the binary requirements of a compiled program to be compatible

with the target OS. These requirements include file formats and file headers, which

provide the prerequisite information for program execution, linking and relocation.

The gABI also describes the linking mechanisms, alongside a list of libraries that

any conforming system must support. Of all the ABIs, the gABI has the most

negligible impact on OO facilities, conventions, and object layout.

1.5.2 The Processor Specific ABI

A psABI is a supplementary set of requirements used in conjunction with a gABI.

The psABI plays a significant role in object layout, as it governs both size and

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 14

Type Data Type Microsoft Windows System V
Size Alignment Size Alignment

Integral

bool 1 1 1 1
char (signed & unsigned) 1 1 1 1
short (signed & unsigned) 2 2 2 2
int (signed & unsigned) 4 4 4 4
long (signed & unsigned) 4 4 8 8
long long (signed & unsigned) 8 8 8 8

Pointer any-type * 8 8 8 8

Floating-Point
float 4 4 4 4
double 8 8 8 8
long double 8 8 16 16

Table 1: A comparison of data type sizes and alignment requirements for the
AMD64 architecture hosting different OS.

alignment requirements of all primitive data types. The size determines the num-

ber of bytes a primitive data type can occupy, whereas the alignment determines

the possible positions in memory that data can take. As well as this, the psABI

defines the function calling conventions (or function calling sequence) for that pro-

cessor. Standardised function calling conventions ensure interoperability between

two code modules, as it standardises the way parameters are passed between func-

tion calls. Many System V supplementary psABIs are available online1, but for

the remainder of this chapter, we will focus on the AMD64 psABI.

1.5.2.1 Data Size

A psABI standardises all primitive data types, such as ints, booleans, pointers,

etc., for a given platform. Table 1 compares data type sizes specified in the

Microsoft Windows AMD64 psABI [81] verses the System V (UNIX based OS)

AMD64 psABI [79].
1https://www.uclibc.org/docs/

<https://www.uclibc.org/docs/>

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 15

1.5.2.2 Data Alignment

Data is transferred in fixed-sized blocks between caches at consecutive levels in the

memory hierarchy. Transfers between different consecutive levels employ different

fixed-sized blocks. These blocks are indivisible units of data transfer, so when a

datum straddles two blocks at one or more levels of the hierarchy, more memory

accesses are required. This motivates aligning data items to block boundaries and

is fulfilled using data alignment values.

Alignment requirements dictate that the address of any data type must be

divisible by its alignment value. The alignment value is specified within the psABI,

typically 1, 2, 4 or 8 bytes, as illustrated in Table 1. Objects will often contain

padding to ensure their data members are correctly aligned. Padding is simply

memory deliberately left empty or unassigned between consecutive data members.

Objects themselves also have an alignment value equal to the greatest alignment

value of all the data members. An object’s size must be divisible by its alignment

value, which is often achieved by adding more padding. This requirement ensures

that the object and all its data members are always correctly aligned, even when

objects are contiguously allocated in a data structure, such as an array.

Figure 1 reflects the effects of padding and data member ordering within an

object. The data member order within an object is not ad hoc but reflects the

order of declaration within the source code. Figure 1 compares the declaration

order of four data variables: two booleans of size and alignment (1), an integer (4)

and a long (8) while demonstrating the effect of alignment on memory consump-

tion. Figure 1a illustrates the smallest possible object constructed from these

variables whilst adhering to the alignment requirements. Figure 1b, on the other

hand, demonstrates a possible increase in memory consumption, which can occur

accidentally when a programmer neglects consideration of alignment values and

declaration order. Figure 1c, depicts the result of an alternative technique used

to reduce memory consumption by using a #pragma pack(n) in-code instruction.

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 16

(a) (b) (c)

Figure 1: A visual representation of padding and packing techniques. Each square
represents one byte of data.

The #pragma pack(n) instruction is used to “pack” data together by aligning

them at n bytes (or lower) intervals.

Pragma instructions are not part of any language standard but instead are

macro operations supplied by some (not all) compiler vendors. Pragmas allow de-

velopers more flexibility in how their code is compiled as they override the default

setting of the compiler. The #pragma pack(n) instruction, for example, overrides

the default alignment requirements, and although this can optimise for memory

space, it also breaks ABI conformance. Programs that break ABI conformance

are not compatible with those that conform, which could be problematic when

linking to dynamic libraries.

The #pragma pack(n) instruction is not the only technique available for over-

riding alignment requirements; there are several packing techniques, all compiler

dependant, that could affect object layout; these include in-line code instructions,

whole file instructions, and compiler optimisation flags. Although packing often

improves memory space, it can also incur a performance hit due to increased

cache misses. The hardware designed to aid cache memory is most efficient when

data is correctly aligned. When a datum is unaligned and straddles two memory

blocks of size 2 n (like with long x in Figure 1c), it may straddle across two cache

lines as well, making unaligned memory reads more expensive than aligned ones.

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 17

Usage Microsoft Windows System V
1 st argument to functions RCX RDI
2 nd argument to functions RDX RSI
3 nd argument to functions R8 RDX
4 th argument to functions R9 RCX
5 th argument to functions

passed via the stack
R8

6 th argument to functions R9
≥ 7 th argument to functions passed via the stack

return value register RAX RAX

Table 2: A comparison of calling conventions for the AMD64 architecture hosting
different OS.

Programmers rightly tread cautiously before employing such techniques.

1.5.2.3 Function Calling Convention

A function calling convention is a standardised procedure for calling functions.

At the lowest level, the psABI will describe the conventions for passing data

parameters to and from subroutines. Data parameters are passed either via the

stack or via registers. In the case of registers, each register has an assigned role

and calling sequence defined within the psABI. Which registers are used, the order

they are used in, or whether they are used at all depends upon the parameter list

of that subroutine.

Registers in the AMD64 machine have different purposes, which we will gen-

eralise here. General-purpose registers are used to calculate data and store ad-

dresses, control registers monitor programs and store status flags, and AVX (ad-

vanced vector extension) registers are used for vector and floating-point data. The

intricate usages and register roles can be explored outside of this thesis [67], but

for now, our focus is how registers are used within the context of OO function

calls. To ensure examples are easy to follow, we will use only integer and pointer

parameters, which require general-purpose registers only.

Table 2 presents some of the general-purpose registers and their usage as part

of a function calling sequence, as defined within the AMD64 psABI for Microsoft

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 18

Figure 2: Instruction-level example of calling convention for the AMD64 architec-
ture hosting different OS.

Windows [81] and System V platforms [79]. These general-purpose registers are

used to pass integer and pointer values to or from a function call2. Some general-

purpose registers have important roles to play in program execution, most notably:

RSP, the stack pointer; RBP, often used as a frame pointer (points to the base of

a stack frame); and RIP, the instruction pointer. Other general-purpose registers

may be used as temporary registers or callee-preserved registers. RBX is also a

notable register, as it will appear in many later examples; this register is often used

as a callee-preserve register, which means it is assigned data prior to a function

call and is guaranteed to store that same data upon the return of that function.

Conformance with a platform’s calling conventions enables abiding compilers

to produce interoperable subroutines. These subroutines are interoperable because

their parameters are passed in identical ways via the stack and registers. Figure 2

presents some examples of the calling conventions produced by different compilers

on both a Windows OS and System V OS. Firstly, notice that the use of registers

follows the conventions outlined in Table 2 for each OS. Secondly, notice that the

GNU g++ compiler produces different calling conventions based on the platform
2Other data types, like floats and doubles, are assigned to specialist register sets, all of which

are outlined in the psABI

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 19

it is compiling for; the GNU g++ compiler is a cross-platform compiler, meaning it

can adapt its psABI implementation based on its target platform. Thirdly, notice

that the LLVM Clang compiler (which adheres to the same family of ABIs as

g++ on the System V OS) produces the same calling conventions as g++, albeit

slightly differently. This is an excellent example of two compilers that produce

interoperable code but still differ at the instruction level.

We note that the functions presented in Figure 2 examine one of the most

straightforward cases; three int parameters. Things can get more complex when

different primitive data types are passed or if full structs are passed by value.

In the case of passing structs by value, Microsoft will always pass them via the

stack, whereas for System V (using the g++ compiler), the size of the struct

matters. Large structs will be passed entirely via the stack, whereas small structs

(one that contains two ints, for example) will be passed via registers. Additional

optimisations are made when passing structs via registers; for example, on a 64-

bit System V machine, our struct of two ints is passed via one register (RDI).

This is possible because the ints in the struct are aligned and are four bytes each;

therefore can be efficiently passed via one eight-byte register.

We further note that the Microsoft Windows ABI calling conventions listed

in Table 2 are the default convention for the AMD64 system. This conven-

tion is known as the fastcall calling convention and will always try to pass

the first four parameters via registers [81]. For x86 (a 32-bit system), the Mi-

crosoft Windows ABI has several different calling conventions, each managing

function parameters and the stack in various ways [82]. These conventions all

come with a keyword (cdecl, clrcall, stdcall, fastcall, thiscall

and vectorcall), enabling the programmer (if they wish) to override the default

convention. These keywords are compatible with other versions of the Microsoft

compiler, but if they are not supported by that version, the default convention

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 20

will override the requested convention. For now, we will focus only on the de-

fault conventions for the AMD64 system and, for simplicity, stick with examples

that pass only integer and pointer values as parameters. To experiment with

other function parameters and their calling conventions on various compilers, we

recommend using Compiler Explorer [46] for easy code-to-assembly comparisons.

1.5.3 The C++-ABI

A C++-ABI specification details many of the low-level implementations of the

OO constructs outlined in the C++ standard. It is targeted at compiler de-

signers, presenting conventions that stipulate the transformation of a high-level

C++ program to a binary executable. The generated executable satisfies both the

functionalities defined in the C++ standard and the low-level requirements of the

platform (gABI and psABI). If a compiler follows a formally documented C++-

ABI, then this document provides the low-level implementation of data member

ordering within an object, but not their data sizes or alignments, which falls to

the psABI. The document will also provide details on supporting run-time mech-

anisms for OO constructs such as polymorphism and dynamic dispatch, which

require additional auxiliary data structure and object data members to determine

object types at run-time. These auxiliary data structures, which includes virtual

tables and run-time type information, also have a strict layout requirement defined

in the C++-ABI.

The Itanium C++-ABI [23] is the most widely used C++-specific ABI; initially

designed for the Itanium architecture, it is now a non-processor specific specifi-

cation for the System V OS. The data structures and conventions defined in this

specification align themselves with the requirements of the ISO C++ standard

and the System V gABI. Where processor specifics are required, the target archi-

tecture’s psABI acts as a supplement document, making the Itanium C++-ABI

applicable to any System V platform.

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 21

For Microsoft Windows platforms, there is no single unified ABI publication,

but parts of Microsoft’s C++-ABI can be found in their online documentation [86]

alongside platform-specific specifications. Without a complete ABI publication,

other compiler vendors (who wish to produce for a Windows platform) try to

produce code compatible with the MSVC compiler instead, making the MSVC

compiler, at least in part, a de facto standard for the Windows platform. Many

aspects of the MSVC ABI is purposely unpublished, as Microsoft wish to leave

latitude for changes [84] and even have a history of breaking binary compatibility

between major updates of their compiler [83].

1.6 Object Layouts in Other Compilers

Figure 3 displays the different object layouts that can occur when using different

compilers. Although the contents of these objects might not be clear yet, we invite

the reader to return to this section after completing Part 1 of this thesis, once

the different components of objects have been fully explained. For now, these

five objects demonstrate the variety of object layouts, strategies for representing

inheritance relationships, and the auxiliary data members (vptrs and vbptrs), that

can occur when compiling identical source code with different compilers.

1.7 Concluding Discussion

The object layouts and calling conventions realised by a compiler are predictable

if that compiler conforms to the C++ standard while adhering to a platform’s

strict ABI family. At the centre of an ABI family is the OS and its gABI. Al-

though the gABI does not directly influence object layouts, it does dictate which

supplementary psABI and C++-ABI is supported. The psABI, supplied by the

architecture, defines the data sizes and alignment requirements, impacting object

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 22

1 class Mortal {
2 int age, lifespan;
3 virtual void die() {...}
4 ... };
5 class Humanoid : public Mortal {
6 int language;
7 virtual void speak() {...}
8 ... };
9 class Human : virtual public Humanoid {

10 int humanDNA;

11 virtual void getHumanDNA() {...}
12 ... };
13 class Navi : virtual public Humanoid {
14 int naviGenetics;
15 virtual void getNaviGenetics() { ... }
16 ... };
17 class Avatar : public Navi, public Human {
18 int hybridGenetics;
19 virtual void remotelyControl() { ... }
20 ... };

Figure 3: Object layouts produced from identical source code on five different
compilers

sizes, data members sizes and padding. It also supplies the calling conventions,

dictating how member functions interact with their object instances. The C++-

ABI defines the layouts of objects and their supporting auxiliary data structures,

meaning the arrangement of the data they store, not their size or alignment. The

auxiliary data structures used to aid run-time mechanisms are linked to run-time

objects using pointers. How many pointers are required and what positions they

take within an object are outlined in the C++-ABI. However, this is only helpful if

a compiler follows a well-documented ABI, like GNU g++ and LLVM Clang. The

MSVC compiler acts as a defacto standard for any Microsoft Windows platform,

and although their online documentation is growing, historically, many aspects of

Microsoft’s interfaces were not openly available. So, to understand the C++-ABI

for Microsoft Windows, reverse engineering may still be required to bridge the

gaps in their documentation.

CHAPTER 1. THE STANDARDS BEHIND THE LANGUAGE 23

Finally, if a compiler vendor wants to create code that is interoperable with

other vendors and pre compiled libraries, it is essential they conform to the C++

standard and all ABI specifications for the platform. However, it is important

to note that compiler vendors are not compelled to conform. Some vendors may

have different goals other than interoperability, like performance or low memory

consumption, which may be better achieved by breaking the standardised ABI. In

fact, beyond the major compiler vendors, many are not up to date with the C++

standard, which evolves over time. Furthermore, even those committed to adher-

ing to strict specifications often offer overriding features that allow programmers

to break that conformance. So if one requires knowledge of exact object lay-

out and data member positioning, especially for a program they did not compile

themselves, reverse engineering is essential.

Chapter 2

Binary Representation of Objects

We now know why different compiler vendors on different platforms can produce

different object layouts. However, we also know that the major compiler vendors

often conform to a family of ABI specifications and therefore produce identical

object layouts for interoperability. So, let us look at one of these major compiler

vendors on a specific platform and talk through its object representation.

2.1 Introduction

Finding modern introductory literature on the low-level C++ object model layout

and the mechanism used to support it was surprisingly difficult. While researching

all topics within this thesis, we looked at many scientific papers that discuss low-

level C++ implementation. Most of these papers [13, 16, 21, 24, 37, 38, 101, 104,

112, 138, 141, 144] explain a particular aspect of OO implementation relevant to

their work but do not include any reference to further reading (outside of ABI

documentation). The few papers that did [35, 140] pointed to a standard reference

book on C++ object layout [74], which is now over 25 years old. The book reflects

on early compilers, in particular, Cfront [6] (released in 1985), discussing topics

which were then of debate in the C++ compiler community. However, Cfront

24

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 25

was abandoned sometime after its final release in 1993 [80], and since the book’s

release, object layout representation has stabilised, thanks to standardisation and

formal ABIs specifications. The lack of modern references in this space suggests

a need to revisit the topic of low-level C++ within a modern-day compiler.

In this chapter, we will provide a modern look into the C++ object model

layout, looking specifically at the GNU C++ Compiler (g++) on an AMD64

System V platform. We do not assume any prior knowledge of low-level C++

concepts. Concepts will be broken down from start to finish, starting with basic

inheritance, moving towards the management of polymorphism and ending with

a discussion of the layouts and mechanisms that support polymorphism, run-time

type information, virtual inheritance and the dynamic dispatch mechanism. By

discussing the specifics of the g++ compiler on an AMD64 System V platform, we,

by default, are discussing the requirements of the Itanium ABI and all the relevant

supplementary psABIs. So, although we are specifically looking at g++, thanks to

strict ABIs, the same object layouts will be seen in any Itanium ABI conforming

compiler (on an AMD64 System V platform). Before the chapter concludes, we

will briefly compare object layouts found in the MSVC ABI to those we have seen

in the Itanium ABI. This comparison serves as an example of the different layouts

one might find in the wild, depending on the systems they use.

2.2 Representing Inheritance

This section demonstrates precisely how the g++ compiler realises each type of

object for each hierarchical circumstance. Each hierarchical circumstance will be

introduced gradually, with commentary and a small source code snippet. Each

source code snippet will add a new class or attribute to the class hierarchy and

is presented alongside a new object representation, demonstrating how the new

aspect to the class hierarchy is represented at the binary-level.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 26

1 class Mortal {
2 int age;
3 int lifespan;
4 };

(a) Primary Class Mortal (b) Mortal class instance

Figure 4: Primary class object

2.2.1 Primary Class

A primary class does not inherit from any other class. Figure 4a introduces the

source code of a primary class called Mortal alongside its object representation in

Figure 4b. The Mortal object contains two integer attributes, age and lifespan,

known as that object’s data members. These data members reflect the exact

ordering of the attributes defined within the class. As both members are integers,

they occupy 4 bytes of data and are aligned to 4-byte offsets due to the integer

size requirements defined in the AMD64 psABI (Table 1). Notice that the total

size of a Mortal object is 8-bytes, so no padding was added to the object. The

largest alignment value of the object’s data members is 4 bytes, so the object itself

must be aligned to 4 bytes as well. This means that Mortal objects will always

exist at a memory location divisible by 4 (any location ending in 0x0, 0x4, 0x8, or

0xc) as long as no overriding compiler commands (like pragmas) have been used

during compilation.

2.2.2 Single Inheritance

Inheritance allows for a parent-child relationship between classes, where the child

class (known as the derived class) inherits all attributes (and functions) of its

parent class (known as its base class).

Figure 5a introduces the source code of two classes called Humanoid and Human.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 27

5 class Humanoid : public Mortal {
6 int language;
7 };
8 class Human : public Humanoid {
9 int humanDNA;

10 };

(a) Single inheritance classes Humanoid and
Human (b) Humanoid and Human class instances

Figure 5: Single inheritance objects

Along with the mortal class in Figure 4a, these classes make up a single inheri-

tance hierarchy. We can describe the relationships between these classes in mul-

tiple ways: the Mortal class is a base class of both the Humanoid and Human

classes, but is also a direct-base class of Humanoid; the Humanoid class is both a

base class and direct-base class of Human, and both a derived class and direct-

derived class of Mortal; the Human class is a derived class of both the Mortal

and Humanoid classes but is also a direct-derived class of Humanoid. The Human

class can also be described as the most-derived class of the hierarchy, meaning

no other classes inherit from it. With these descriptions, we can define single

inheritance as a hierarchy in which every class has a maximum of one direct-base

class.

Derived classes inherit all the attributes of their base classes. In memory, this

inheritance relationship between base and derived classes is represented using sub-

objects. A sub-object is the complete object representation of a base class inside

the memory region of a derived class object. Sub-objects mirror the inheritance

hierarchy within the source code, where direct-base classes are represented as

direct-sub-objects. Figure 5b demonstrates how the base classes Mortal and

Humanoid are represented as sub-objects within their derived class instances, but

more specifically, it shows how Mortal is a direct-sub-object of Humanoid and

an indirect-sub-object of Human.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 28

11 class Navi : public Humanoid {
12 int naviGenetics;
13 };
14 class Avatar : public Navi, public Human {
15 int hybridGenetics;
16 };

(a) Multiple inheritance in class Avatar (b) Navi and Avatar class instances

Figure 6: Multiple inheritance

2.2.3 Multiple Inheritance

In a multiple inheritance hierarchy, at least one class has two or more direct-

base classes. Figure 6a introduces an example of multiple inheritance with the

Avatar class. The Avatar class inherits from a newly introduced Navi class

and the previously discussed Human class from Figure 5a. These two classes are

presented in an inheritance list within the Avatar class declaration; this list is

known as a class’s base-specifier-list. The order direct-base classes appear in

a base-specifier-list is reflected in the order their sub-objects appear within the

inheriting class instance. Figure 6b depicts both a Navi and Avatar instances,

demonstrating how classes with multiple direct-bases contain multiple direct-sub-

objects.

2.2.4 Virtual Inheritance

The hierarchy built so far is a classic example of the notorious diamond problem

[78], where one or more base classes are inherited multiple times by a derived

class (see Figure 7). In the Avatar class example, the Humanoid class is indirectly

inherited twice via the Navi and Human classes, resulting in an Avatar object with

duplicate sub-objects (Humanoid and Mortal appear twice in the complete Avatar

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 29

Figure 7: UML diagram of current hierarchy demonstrating the diamond problem

17 class Navi:
18 virtual public Humanoid {
19 int naviGenetics;
20 };
21 class Human:
22 virtual public Humanoid {
23 int humanDNA;
24 };
25 class Avatar:
26 public Navi,
27 public Human {
28 int hybridGenetics;
29 };

(a) Virtual inheritance
variation (b) Virtual inheritance layout

Figure 8: Virtual inheritance

object depicted in Figure 6b). This duplication can cause ambiguities when at-

tempting to access data members with multiple instantiations. For example, if we

want to increment an Avatar’s age, which age attribute is incremented? With-

out due care, duplication of data members can often result in compile-time errors

because a compiler cannot decipher which data member to access.

Virtual inheritance prevents the ambiguities found in the classic diamond prob-

lem. Any virtually inherited class is guaranteed to appear once, and only once,

as a sub-object in any derived class instance. Figure 8a provides a revised version

of our multiple inheritance hierarchy, where the Navi and Human classes virtually

inherit from Humanoid. Because Humanoid is virtually inherited, its sub-object

representation is no longer constructed inline (at the top) with their inheriting

class instances but instead resides at the bottom of the most-derived class in-

stance, as seen in Figure 8b.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 30

Virtual inheritance requires additional run-time mechanisms for data mem-

ber access, which is not required in other types of inheritance hierarchies. Why

this is required is covered in a later section (Section 2.4), but for now, just know

that additional mechanisms are needed. The g++ compiler supports these addi-

tional mechanisms using an auxiliary data structure called a virtual table (Sec-

tion 2.4.2). The virtual table (vtable) is addressed from the object itself, using

a virtual pointer (vptr). The vptr is an implicit1 data member positioned at

the top of any complete object or sub-object that virtually inherits from another.

The vptr is a pointer data type and, due to psABI requirements (Table 1), is both

8-bytes in size and alignment. The addition of an implicit 8-byte data member

increases both the size and the alignment of the Navi, Human, and Avatar class

instances (Figure 8b). All these objects now have an alignment of 8 and a size that

must be divisible by that alignment value (Section 1.5.2.2). To satisfy these size

and alignment requirements, padding is used within the Avatar object to align

vptr data members and expand the object’s overall size.

2.2.5 Other Class Keywords and Templates

One might find other keywords within their class definitions, such as const,

public, private, and protected. These terms tell the compiler how to deal

with specific data and facilitate compile-time safety checks. For example, the

compiler will flag an error if an attempt was made to alter a const variable at

compile-time. The same is true for illegal access to private and protected class

members. However, when these keywords are used to define class attributes, they

do not affect how data is realised at the binary-level and therefore do not affect

object layout.
1meaning automatically generated by the compiler.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 31

1 template <typename T>
2 class Point2 {
3 public:
4 T x, y;
5 Point2(T _x, T _y): x(_x), y(_y) {}
6 };
7 Point2<short> *p1 = new Point2<short>(1,2);
8 Point2<int> *p2 = new Point2<int>(1,2);
9 Point2<float> *p3 = new Point2<float>(1,2);

10 Point2<long> *p4 = new Point2<long>(1,2);

11 template <typename T>
12 class Point3 : Point2<T> {
13 public:
14 T z;
15 Point3(T _x, T _y, T _z) :
16 Point2<T>(_x,_y), z(_z) {}
17 };
18 Point3<short> *v1 = new Point3<short>(1,2,3);
19 Point3<int> *v2 = new Point3<int>(1,2,3);
20 Point3<float> *v3 = new Point3<float>(1,2,3);
21 Point3<long> *v4 = new Point3<long>(1,2,3);

22 class Point2_short {
23 short x, y; ... };
24 class Point2_int {
25 int x, y; ... };
26 class Point2_float {
27 float x, y; ... };
28 class Point2_long {
29 long x, y; ... };

30 class Point3_short : Point2_short {
31 short z; ... };
32 class Point3_int : Point2_int {
33 int z; ... };
34 class Point3_float : Point2_float {
35 float z; ... };
36 class Point3_long : Point2_long {
37 long z; ... };

Figure 9: Template expansion

Static When a class attribute is declared as static, it means that the attribute

should be common to all instances of that class, i.e., a single copy should be shared

between all instances of that class at run-time. Because a static attribute is shared

between all instances, it cannot appear in all instances. Instead, the compiler will

place this attribute elsewhere in memory and address it directly during execution.

So, class attributes declared as static will never appear in object instances.

Templates The ABI will treat template classes the same as non-template classes.

The reason is that template classes are ultimately expanded into non-templated

code by the compiler. For example, in Figure 9 (lines 1-21), we have declared two

class templates, Point2 and Point3, that are part of a single inheritance hierar-

chy. Both of these class templates are instantiated using four different template

parameters: short, int, float, and long. These instantiations will be expanded

at compile-time, creating eight class specialisations similar to those listed in lines

22-37. After expansion, there is no longer any templated code, and therefore no

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 32

Figure 10: Objects generated from class templates

need to treat these classes differently. Figure 10 depicts the object layouts gener-

ated from each class specialisation. Notice that the lengths of the data members

of each instance reflect the lengths outlined in the Itanium ABI (Table 1).

2.3 Polymorphism and the Type Systems

Polymorphism, in the general sense, refers to something that can take several

different forms. In the context of OO, polymorphism refers to variables, ob-

jects and functions that can take several different run-time forms from within

one inheritance hierarchy. This section will explain both high-level and low-level

polymorphism in C++.

2.3.1 Types

All run-time objects have a type, where the type of an object is defined by its

class. Classes can have derived classes, and similarly, types can have derived-

types (also known as sub-types). For example, the type of an object created

from the Mortal class is Mortal. The Mortal class has a derived class called

Human, where any Human class instance is a Human type but is also a derived-type

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 33

of Mortal.

It is common to describe a run-time object as “type X” rather than “an instance

of class X”. These two phrases mean the same thing, but there is a difference

between types and classes. Classes are a method of creating new data types, and

these types are a property assigned not just to the objects those classes create but

also to the variables that store those objects.

2.3.2 Polymorphic Variables and Object Address-Points

Static Types At the source level, objects are assigned to variables and variables

are declared with a given type. The expression

Mortal obj = Mortal();

creates a variable called obj of Mortal type that stores a Mortal object at the

point of construction. The type a variable is declared (at the source-level) is

called that variable’s static type and is known at compile-time. The static type

of a variable can also be defined as a pointer type (Mortal*) or reference type

(Mortal&).

Dynamic Type A variable can address an object that matches its static type

or any derived-types of its static type. For example, the expression:

Mortal* objPtr = new Human();

creates a variable called objPtr of Mortal* type that, at the point of construction,

will address a Human object. Variables, therefore, have both a static and dynamic

type, where the dynamic type is the type of the object a variable addresses at a

given moment in run-time execution. We say a given moment because the dynamic

type of a variable can change throughout program execution. This is the nature

of polymorphism and polymorphic variables.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 34

Figure 11: Different object assignments Figure 12: Object address-points

Variables at the Binary-Level A source-level variable is realised as a stack

placeholder at run-time. That variable might be a placeholder for a complete ob-

ject instance (Mortal obj1) or a placeholder for an address to lookup the object

instance in memory (Mortal* obj2). Figure 11 demonstrates these types of vari-

ables as well as reference types (Mortal& refi). Reference types are semantically

different at the source-level but are realised in the same way as pointer variables at

the binary-level. Examples throughout this section will focus on heap objects, as

the heap allows for dynamic memory, which permits all polymorphic capabilities.

Object Address-Points A variable that addresses an object will address a

specific location within that object, which we will call an object’s address-point.

In single inheritance, objects have a single address-point at the zero offset of any

complete object, as seen in Figure 12 (address-points depicted with black arrows).

In multiple and virtual inheritance, objects have multiple address-points, one at a

zero offset to the complete object and others at zero offsets from its sub-objects.

The static type of a variable will dictate the address-point of an object at

run-time, as the variable must always address an object of its declared

type. This means multiple and virtual inheritance objects may be addressed by

a sub-object instead of the complete object.

Figure 13 shows several instances of the Avatar object, demonstrating it has

two address-points, one at the zero offset and another at offset 16 (or zero offset

of the Human sub-object). The figure also shows all seven possible static types a

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 35

Figure 13: Derived-type assignment and corresponding sub-object address-points

variable can be assigned (objPtr1-7) when addressing an Avatar object and the

resulting address-points in each case.

2.3.3 Type Checking

During compilation, the compiler performs a static type check that verifies a

program’s type-safety at the source level. Static type-checking is applied to all

variables. Object variables, when referenced in the source code, are often interact-

ing with either a data member or member function (Section 2.3.5). Data members

and member functions (or just members) are declared within a specific class and,

therefore, have an associated class type at compile-time. When interacting with

these members through a variable, the compiler has a set of expected static types

that the variable can be (i.e. any class type that declared or inherited those mem-

bers). Static type-checking, therefore, verifies that the static type of a variable

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 36

matches one of the expected types associated with the members it is interacting

with. In other words, we can say that an object variable has access rights only

to the data members and member functions of its static type at compile-time due

to the type-safety mechanisms employed by the compiler.

For example, consider the pointer variable objPtr5, which was defined as

Human* objPtr5 = new Avatar() in Figure 13. This variable has access rights

to the data members of the Human object and its sub-objects. However, any at-

tempt to access data members outside of the Human sub-object (i.e. objPtr5->

hybridGenetics an Avatar attribute) will result in a compilation error, even

though that member exists within the complete Avatar object. This happens

because of the static type-checking employed by the compiler, which sees objPtr5
as a Human object (its static type) and not an Avatar object (its run-time type).

Figure 13 highlights all the accessible data members for each static variable type

and fades those inaccessible at compile-time due to static type-checking.

2.3.4 Casting

When a variable’s static and dynamic types differ, access to members of the dy-

namic type (without compilation error) can only be achieved through explicit

casting. Casting is the act of changing a variable’s perceived type (the source

type) to another type in the class hierarchy (the target type). Although casting

does not alter the data or type the variable addresses, it does change the compiler’s

perception of that variable. After casting a variable, the compiler will associate it

with the target type of the cast and, in turn, grant that variable access to target

type data members and functions.

For example, consider both variables objPtr2 and objPtr5 from Figure 13.

Both variables will address a run-time Avatar type but statically appear as base

types Navi and Human. Suppose a programmer attempts to access the Avatar

attribute hybridGenetics directly (i.e. objPtr2/5->hybridGenetics); then the

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 37

programmer will receive a compile-time error in both cases, thanks to static type-

checking. This is because the compiler can only associate those variables with their

declared static types, and those types do not have a hybridGenetics attribute.

To fix this, the programmer must explicitly cast these variables before accessing

Avatar data (i.e. (Avatar*)objPtr2/5->hybridGenetics). This action changes

the compiler’s perception of the objPtr2 and objPtr5 variables, granting them

access to Avatar’s data members and functions.

Things are different at the binary-level, because we are handling physical

memory. Casting will take a variable’s assigned address-point and offset it to

the address-point associated with the target type. For example, the expression

((Avatar*)objPtr5)->hybridGenetics will first perform the cast ((Avatar*)

objPtr5), which adds -16 to the address stored in objPtr5, returning a pointer

that addresses the complete Avatar object. With this new address-point, Avatar’s

data members become accessible. Casting must be performed because the com-

piler only stores limited information about where attributes exist in memory.

In fact, the compiler only knows the location of class attributes relative to the

address-point of their own class instances. So the compiler knows that the data

member, hybridGenetics, exists at a +32 offset from an Avatar* address-point

but will never know its location from a sub-object address-point. Put simply,

the compiler cannot resolve the (objPtr5)->hybridGenetics data access without

casting because it cannot deduce the offset required to access the hybridGenetics

attribute from a Human* address-point.

We note that casts between source and target types that share the same

address-point (i.e. ((Avatar*)objPtr2)) are treated no differently. In this case,

the offset adjustment made to objPtr2 is +0. However, the compiler optimises

such adjustments out of the final assembly. Thus these casts will not appear at

the binary level.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 38

1 class Mortal {
2 int age, lifespan;
3 void incrementAge() {...}
4 void die() {...}
5 };
6 class Humanoid : public Mortal {
7 int language;
8 void speak() {...}
9 void move() {...}

10 };
11 class Human : public Humanoid {
12 int naviGenetics;
13 void speak() {...}
14 void getHumanDNA() {...}
15 };

Listing 2.1: Member functions

16 int main() {
17 Mortal *m = new Mortal();
18 Humanoid *h = new Humanoid();
19 Human *p = new Human();
20 Humanoid *hp = new Human();
21
22 m->move(); //compile error
23 h->move(); // fine
24 p->move(); // fine
25
26 m->speak(); //compile error
27 h->speak(); //Humanoid::speak()
28 p->speak(); //Human::speak()
29 hp->speak(); //Humanoid::speak()
30 }

Listing 2.2: Calling member functions

2.3.5 Member Functions

A member function is declared and defined within a class; it is described as a

member of that class and any object created from that class. Like data members,

member functions are inherited and are members of both the inheriting classes

and their instances. Member functions are invoked using an object variable and

only pass compile-time static type-checking if that function is a member of the

variable’s static type. For example, Listing 2.1 introduces several new functions to

our hierarchy; the Humanoid::move() function is a member of the Humanoid class

and the Human class by inheritance. This function can be invoked by instances of

the Humanoid and Human classes (lines 23 and 24 of Listing 2.2), but not by an

instance of the Mortal class (lines 22 of Listing 2.2) of which it is not a member.

How Member Functions Interact with Objects At the source level, we

define a member functions with zero to n parameters:

ClassType::funcName(Type1 p1,..., Typen pn){...}

and call that function using an object variable

obj->funcName(p1,...,pn){...}.

At the binary-level, the compiler realises a function call by passing the invoking

object to the function as its first parameter:

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 39

funcName(obj,p1,...,pn){...}

and is known as a member function’s implicit object parameter. Member

function definitions can therefore be thought of as having n + 1 parameters after

compilation, taking the form:

ClassType::funcName(ClassType* obj, Type1 p1,..., Typen pn){...}

where the implicit object parameter (obj) can be of type ClassType or any of its

derived-types. This object parameter can be referenced within the body of the

function definition using the this keyword. For this reason, it is common to refer

to a function’s implicit object parameter as its this-pointer.

Implicit Casts The body of a member function is realised solely to interact with

the object layouts of its own type. So when a member function is invoked using a

variable of a derived-type, an implicit cast must be performed. An implicit cast

is a cast performed by the compiler, which in this case, ensures the implicit object

passed to the function is of the same type as the function’s this-pointer. For ex-

ample, if a variable of Human type is used to invoke the Mortal::incrementAge()

function, then the Human variable will first be implicitly cast to a Mortal ob-

ject before the function is called. In this particular case, we know that Mortal

and Human share the same address-point (Figure 12) due to single inheritance;

the implicit cast will therefore add a zero offset to the Human variable. At the

binary-level, this operation would be redundant, so the g++ compiler omits such

adjustments. For multiple and virtual inheritance, on the other hand, an implicit

cast may result in an address-point adjustment at the binary-level, if the source

and target types have different address-points.

Function Overriding Inherited member functions can be redefined as part of

an inheriting class. Redefining functions in derived classes is called function

overriding. When a member function is overridden, multiple implementations

of that function will exist, which to the programmer appear to share the same

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 40

Figure 14: Static variable access rights at compile-time

function signature. However, to the compiler, each has its own implicit object

parameter, so which function implementation is executed when called will depend

on the static type of the object used to invoke it. In Listing 2.1, line 8 defines a new

function, speak(), within the Humanoid class. This function is then overridden in

Line 13 of the Human class. Lines 27-29 of Listing 2.2 demonstrate which instance

of the speak() function is invoked based on the static type of the variable used to

call it. Of course, as the function is not a member of the Mortal type, calling this

function using a Mortal object (line 26 of Listing 2.2) produces a compile-time

error. Figure 14 provides a visual example of the compile-time access rights (to

both data members and member functions) of each possible static variable type

used to store a Human object2.

Virtual Functions To invoke a function based on the dynamic type of the

invoking object variable, the function needs to be declared as virtual. Non-virtual

functions, like those seen so far, are realised as direct function calls, as they

are resolved at compile-time, based on the static type of the variables used. A

virtual function is realised as an indirect function call, using a mechanism called

dynamic dispatch. Dynamic dispatch determines which version of a function is

called during run-time execution, based on the dynamic type of the variable used.

Like virtual inheritance, virtual functions use the same vtables to aid the
2It is still possible for a Human objects to call the Humanoid::speak() function, but it must

be called directly, i.e. humPtr1->Humanoid::speak(). This is why the function is underlined in
the figure.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 41

dynamic dispatch mechanism. Therefore, the use of virtual functions will add the

same virtual pointer (vptr) found in objects with virtual inheritance. These vptrs

are added to all object types with virtual member functions, which alters the

layout of these objects. Any object that has a virtual pointer is called a dynamic

object.

2.4 Dynamic Objects and Supporting Data

A dynamic object is simply an object that contains a vptr. Classes that produce

objects with a vptr are also known as dynamic classes. A class is dynamic if

it declares a virtual function, inherits a virtual function, or is part of a virtual

inheritance hierarchy. This section will discuss dynamic classes, the layout of

their dynamic objects, the vtables associated with these classes, and the dynamic

dispatch mechanism.

2.4.1 Object Layouts with Virtual Pointers

Every dynamic class will have its own unique vtable. Vtables support several

run-time mechanisms associated with that class and its instances. To access this

support at run-time, every instance of a dynamic class will store an implicit virtual

pointer (vptr) that addresses that class’s unique vtable. In cases of inheritance,

objects will store the vptr(s) of the most-derived object’s class, giving them ac-

cess to run-time mechanisms specific to the run-time type of the object. These

mechanisms will be discussed in Sections 2.4.3 and 3.4.4.

Figure 15a alters our hierarchy so that every class now contains a virtual

function, making every class dynamic. Note that we have placed the virtual

inheritance keyword in parentheses to avoid repetitive code listings. Assume that

this virtual keyword is only present in the case of virtual inheritance. Figure 15b

depicts the object structures of the new hierarchy listed in Figure 15a. As every

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 42

1 class Mortal {
2 int age, lifespan;
3 void incrementAge() {...}
4 virtual void die() {...}
5 };
6 class Humanoid : public Mortal {
7 int language;
8 virtual void speak() {...}
9 void move() {...}

10 };
11 class Human : (virtual) public Humanoid {
12 int naviGenetics;
13 virtual void speak() {...}
14 virtual void getHumanDNA() {...}
15 };
16 class Navi : (virtual) public Humanoid {
17 int naviGenetics;
18 virtual void speak() { ... }
19 virtual void getNaviGenetics() { ... }
20 };
21 class Avatar : public Navi, public Human {
22 int hybridGenetics;
23 void getHybridGenetics() { ... }
24 virtual void speak() { ... }
25 virtual void remotelyControl() { ... }
26 };

(a) Virtual functions (b) Dynamic Object Layouts

Figure 15: Dynamic object layouts with corresponding source code

class in this hierarchy is dynamic, every instance of these classes (complete or

sub) has an implicit vptr data member associated with the complete object’s

type. Vptrs reside at the top of an object or sub-object structure, i.e. at a zero

offset from a (sub-)object’s address-point. Where (sub-)objects share an address-

point, they also share a vptr (discussed further in Section 2.4.2). Remember that

vptrs have a size and alignment of 8 (Table 1), so for some class instances, padding

is needed to meet the size and alignment requirements of the object and its data

members.

A Mix of Dynamic and Non-Dynamic Classes We previously stated that

the order direct-base classes appear in a base-specifier-list is reflected in the order

that their sub-objects appear within their inheriting class instance. When classes

inherit from both dynamic and non-dynamic base classes, this is no longer guar-

anteed. Figure 16 depicts three object layouts (and their address-points) of class

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 43

Figure 16: Dynamic object layouts and dependencies

D, where D inherits from three other classes A, B, and C, in that order. Each version

of D is dynamic (through virtual function declaration or by inheriting a dynamic

class), but the dynamic status of its base classes change with each depiction. For

quick reference, any class highlighted in green is dynamic, and those highlighted

in red are non-dynamic. The first D object (from left to right) is generated when

all base classes are dynamic, which is no different from the objects we have seen

thus far. The second D object is generated when D is the only dynamic class in

the hierarchy, inheriting solely non-dynamic base classes. In this case, none of

the sub-object require a vptr, so they are positioned after D’s vptr. The final D

object is generated when classes B, C and D are dynamic, but A is non-dynamic.

To achieve better run-time efficiency in the compiled code, the g++ compiler will

position the first dynamic base class (from the base-specifier-list) as the first sub-

object within the complete object. This means, for the final D object, the compiler

deviates from the declared order of the base-specifier-list and forces B and D to

share a vptr. Vptr sharing reduces the number of address-points an object has,

which in turn reduces the number of possible address-point adjustments that can

occur during execution. By forcing B and D to share a vptr, the (non-dynamic)

sub-object A is shifted down and appears as D’s second sub-object after B.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 44

Figure 17: (Sub-)vtable layout as defined in the Itanium C++ ABI [23].

Vtable
Entry Description Use

A Array of
displacements

This entry is only in the sub-vtables of a virtually inherited sub-object.
It is an array of displacements used to perform an implicit cast to a
derived object as part of an overridden virtual function call.

B Array of
displacements

This entry is only in vtables of classes with virtual inheritance. It is an
array of displacements to each virtually inherited sub-object from
the location of the specific vptr used to address the vtable.

C Complete object
displacement

This entry stores a single displacement value to the complete object
(offset zero) from the location of the specific vptr used to address
the vtable.

D Pointer to
RTTI

This entry stores the address of the class’s run-time type information
object (Section 2.4.4). This entry is always the first negative entry from
the vptr address-point.

E Array of virtual
function pointers

This entry is an array of virtual function pointers, storing only the
functions appropriate to the associated class type. This array is used
to determine which version of an overridden virtual function is
invoked at run-time. Function pointers appear consecutively and
in the order they were declared.

Table 3: Vtable Entries Explained

2.4.2 Virtual Table Layout

Every dynamic class has a unique vtable. A vtable stores data that aids run-time

mechanisms, such as dynamic dispatch and dynamic casting. To gain run-time

access to a class vtable, every instance of that class stores a vptr addressing that

vtable. A class’s vtable, like its objects, has specific address-points (pointed to

by a vptr). In cases of multiple and virtual inheritances, a complete vtable may

consist of multiple sub-vtables.

Figure 17 depicts the layout of all (sub-)vtables. Unlike objects, a (sub-)

vtable’s address-point (pictured here as vptrc+N0) is not the lowest address of the

data set but is positioned at a specific offset (N0) so that certain data is accessible

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 45

Figure 18: Vtable layout for single inheritance

at both positive and negative offsets from that location. We have labelled each

vtable data entry A-E for ease of reference, and Table 3 further explains the use of

each vtable entry. As these uses are not intuitive, the following examples should

clarify further. All examples of vtable layouts were produced by compiling the

source code listed in (Figure 15a).

Single Inheritance Example Figure 18 depicts the vtables for all our single

inheritance objects. Notice that the first entry of each vtable (labelled C) is

zero. This is the displacement value to the complete object’s address-point, i.e.

the offset adjustment required to get to the complete object’s address-point from

the position of the vptr used to access the vtable. In all cases, these objects have a

single vptr positioned at the zero offset of the complete object, so no adjustment is

needed; hence all entries are zero. The displacement value to the complete object

is always present within a vtable at a negative offset from the vptr. Think of

the vptr as a pointer to an array of 8-byte data chunks (containing integers and

pointers); then, the displacement value will always exist at vptr[-2]. We have

labelled the vtables in our example with array offsets as well as address offsets for

ease of understanding.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 46

Each of our vtables also contains an RTTI pointer (labelled D). This is

a pointer to run-time type information, which will be discussed in full in Sec-

tion 2.4.4. An RTTI pointer will always exist at the vptr[-1] entry of a vtable.

We note that it is possible to exclude RTTI from compilation; in such cases, the

RTTI pointer is set to null (0).

Each vtable pictured in Figure 18 has an array of virtual functions (labelled

E). Notice that all derived class vtables contain a subset of inherited virtual func-

tion pointers within their own arrays. For example, the function &Mortal::die(),

which was defined in the Mortal class, exists in every derived vtable due to in-

heritance. Virtual functions are given a specific entry within the virtual func-

tion pointer array, which is consistent across all derived class vtables. For the

&Mortal::die() function, this entry is vptr[0]. When a derived class overrides

a function, the function pointer in the derived vtable is also overridden. This can

be seen with the speak() function that occupies the second array entry (vptr[1]).

This function was declared within the Humanoid class but overridden by the Human

and Navi classes. The different versions of the speak() function can be seen in

each of the vtables, except for Mortal’s vtable, as the speak() function is not a

member of that class.

Multiple Inheritance Example Figure 19 depicts an example of a multi-

ple inheritance vtable. In this case the object contains two vptrs (vptrA+16 and

vptrA+62) addressing two distinct sub-vtables, at offsets 16 and 62, within the

complete Avatar vtable. Notice here that the displacement value (labelled C)

addressable from the second vptr (vptrA+62[-2]) is -24. This is the displace-

ment from the location of vptrA+62 (within the object instance) to the zero offset.

Also, notice that virtual function pointers accessible to each vptr are the virtual

functions associated with the (sub-)objects that share that vptr. For example,

the &Human::getHumanDNA() function is only accessible from the vptr within the

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 47

Figure 19: Vtable layout for multiple inheritance

Human sub-object. The same is true for the &Navi::getNaviGenetics() function,

which is only accessible from the vptr within the Navi sub-object.

The speak() function is one that was defined in the Humanoid class and has

been overridden by Human, Navi, and Avatar. This means that the speak()

function should be accessible from both vptrs and exist in both sub-vtables, which

it does at vptrA+16[1] and vptrA+62[1]. Notice that this function pointer exists at

the second entry of the function array in both cases; even in sub-vtables, virtual

functions still have the same position in the virtual function array. Also notice

that the speak() function at vptrA+62[1] is different to the one accessible at

vptrA+16[1]. In the first instance, &Avatar::speak() is a direct address to the

Avatar::speak() function, whereas the second instance, listed as & nv thunk

to Avatar::speak() is an address to a ‘non-virtual thunk’. A thunk [52] (also

known as a trampoline) is a small snippet of instruction code that performs an

operation before jumping to another set of instructions. In this case, the code

snippet is an implicit cast to the complete Avatar object before a direct jump to

the Avatar::speak() function. This is because the Avatar::speak() function

expects to receive an Avatar object, so we must cast to an Avatar address-point

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 48

Figure 20: Vtable layout for virtual inheritance with virtual functions

before executing the function. In this case, the thunk is defined as ‘non-virtual’,

which means that the offset adjustment performed during the implicit cast was

known at compile time.

Virtual Inheritance with Virtual Functions Example Figure 20 depicts

an example of several virtual inheritance vtables. In these vtables, we again have

displacement values to the complete objects (labelled C) but also the displacement

values to the virtually inherited sub-object (labelled B). For example, using the

Navi vptr (vptrN+24), we can access the displacement value to the virtual base

at vptrN+24[-3]. This displacement value is +16, which is the offset from the

complete Navi object address-point to the virtually inherited Humanoid address-

point. Notice that in the Avatar vtable, both the Navi and Human sub-objects can

access a displacement to the Humanoid sub-object at the same vptr array entry

[-3], i.e. vptrA+24[-3] = +32 and vptrA+80[-3] = +16, but the offsets stored

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 49

Figure 21: Vtable layout for virtual inheritance without virtual functions

are relative to the vptr used to access it.

Notice we again have an address to a thunk rather than a direct address

to the speak() function in several vtables. In this case, these thunks are all

virtual thunks, which means that the offset adjustment needed as part of the

implicit cast is not known at compile time because it is object dependent. This is

where the displacement values to derived (sub-)objects are utilised from the vtable

(labelled A). This array stores offset values specific to the virtual functions of

virtually inherited classes. So if the thunk is called from the Avatar vtable, then

the implicit cast will use the -32 offset at vptrA+128[-4], whereas if the thunk

is called from the Navi vtable, then the implicit cast will use the -16 offset at

vptrN+80[-4]. We drew extra arrows on these tables to show which functions map

to which offsets. We will discuss the low-level execution of these types of function

calls in Section 2.4.3.

Virtual Inheritance Finally, Figure 21 depicts the same virtual inheritance

objects as Figure 20 but demonstrates what these vtables would look like if no

virtual functions existed in the hierarchy. Notice that the virtually inherited class

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 50

1 class Humanoid : Mortal {
2 ...
3 virtual void speak() {...}
4 ... };
5 class Human : Humanoid {
6 ...
7 virtual void speak() {...}
8 ... };
9 class Avatar: Navi, Human {

10 ...
11 virtual void speak() {...}
12 ... };

Listing 2.3: Virtual member
functions

13 int main() {
14 Humanoid *h1 = new Humanoid();
15 Humanoid *h3 = new Human();
16 Humanoid *h3 = new Avatar();
17
18 h1->speak(); //Humanoid::speak()
19 h2->speak(); //Human::speak()
20 h3->speak(); //Avatar::speak()
21
22 Mortal *m = new Humanoid();
23 m->speak(); //compiler error
24 ... }

Listing 2.4: Calling virtual member
functions

Humanoid has no vptr or sub-vtable in this case because, without virtual functions,

this class (and its object instance) is no longer dynamic.

2.4.3 Virtual Member Functions

Virtual member functions, unlike non-virtual functions, are resolved at run-time,

where the exact implementation of the function executed is determined by the

dynamic type of the invoking object. For example, Listing 2.3 highlights three

implementations of the virtual function speak() in three different classes in the

hierarchy. In Listing 2.4, three different objects are constructed (lines 14-16),

each with a static type of Humanoid, but a different run-time type in each case.

Each object is then used to invoke the speak() function (lines 18-20), where each

invocation results in the execution of three different speak() function implemen-

tations, each determined by the dynamic types of the objects used. Of course,

this is only possible if the source code passes all static type-checking performed

by the compiler. In line 23 of Listing 2.4, a compile-time error occurs as we

have tried to invoke the speak() function using a variable with a static type of

Mortal. As Mortal does not have a member function called speak() (introduced

in Humanoid), this invocation does not pass compiler static type-checking and

causes a compile-time error.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 51

Figure 22: Access rights of dynamic objects

Dynamic Access Rights Figure 22 expands on the concepts of compile-time

variable access rights (discussed in Section 2.3.5) of dynamic class instances. The

figure depicts the access rights of each variable type used to address a run-time

Human object. Since each run-time object is of Human type, their vptrs addresses

the Human vtable, but it is the object’s static type that determines the access

rights to that vtable at compile-time. Object pointers with a base class type, such

as Humanoid* and Mortal*, have access rights to a subgroup of virtual function

pointers from the Human vtable; this subgroup reflects the functions available to

the static type of the variable. For example, the Humanoid vtable, depicted in

Figure 18, has two function pointer entries that address the die() and speak()

functions. Similarly, the Humanoid* pointer, depicted in Figure 22, also has ac-

cess to these same functions through the Human vtable, meaning that the pointer

has access to the dynamic class versions of these virtual functions (if they were

overridden).

Virtual Functions and Implicit Casts At the binary level, the implementa-

tion of a virtual function is no different to a non-virtual function; they are just

called by different methods; non-virtual functions are called directly, whereas vir-

tual functions are called indirectly via a vtable. So, Section 2.3.5’s rules regarding

member functions also hold true for virtual member functions. In particular, vir-

tual member functions still receive an implicit object parameter, which must be

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 52

the same type as the function’s defining class. However, thanks to how vtables are

set up, only vtable entries linked to thunks perform implicit casts. For example,

consider the Avatar object and vtable in Figure 20 again. The first set of virtual

functions in the vtable (&Avatar::speak(), &Navi::getNaviGenetics(), and

&Avatar::remotelyControl()) can only be invoked using the vptr (vptrA+24),

which, in turn, can only be used if we are addressing the object from the zero

offset. The zero offset address-point can be one of two types, an Avatar* or a

Navi*, matching the types that those three functions can use. Therefore, there is

no need to perform an implicit cast. Now consider the other address-points, each

with its own vptr and virtual function array. The functions called directly from

the vtable do not require an implicit cast, as the address-point used to access

them is already of the correct type. However, notice that the functions called via

a thunk are not the same type as the address-point used to access them, hence

the need to invoke a thunk and perform the implicit cast.

2.4.4 Run-Time Type Information

Run-time type information (RTTI) is a feature of the C++ language; it is an

auxiliary data structure that encapsulates the type information of a class and is

accessible to that class’s instances during run-time execution. RTTI is defined

within the C++ standard library and is simply another inheritance hierarchy

structure. This hierarchy is used solely by the compiler, producing a unique RTTI

object for every complete class (a class with a complete definition) that requires

a vtable. The unique RTTI object is accessible from a class’s vtable and stores

information about that class, including its name, hierarchy type (single, multiple,

or virtual), and a list of pointers to base class RTTI objects with accompanying

offset information to relevant sub-object positions. The RTTI object itself is used

as a type identification key, i.e. the physical address of an RTTI object is often

used to identify an object’s type at run-time, particularly in operations such as

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 53

1 class type info { ...
2 const char *__name;
3 ...
4 };
5 class __class_type_info: type info { ...
6 virtual bool __do_dyncast(...) const;
7 ...
8 };
9 class __si_class_type_info: __class_type_info {

10 const __class_type_info* __base_type;
11 ...
12 virtual bool __do_dyncast(...) const;
13 ...
14 };
15 class __vmi_class_type_info: __class_type_info {
16 unsigned int __flags;
17 unsigned int __base_count;
18 __base_class_type_info __base_info[];
19 ...
20 virtual bool __do_dyncast(...) const;
21 ...
22 };
23 class __base_class_type_info {
24 const __class_type_info* __base_type;
25 long long __offset_flags;
26 ...
27 };

(a) Partial RTTI hierarchy (b) RTTI layouts

Figure 23: RTTI hierarchy and object layouts in libstdc++

dynamic cast (Section 3.4.4), which only operates on complete class instances.

Different Implementations of RTTI The RTTI hierarchy and data fields are

specified in the Itanium C++ ABI [23]; however, the ABI does not specify the

virtual functions of RTTI classes, except for the destructor function. Therefore,

it is essential to note that the RTTI classes discussed in this section are specific

to GNU’s C++ standard library implementation [44], which is called libstdc++.

Other implementations, such as LLVM’s libcxxabi [75], contain different virtual

function signatures and definitions within its implementation of the RTTI hierar-

chy.

The Run-Time Type Information Hierarchy Figure 23a lists (partially) the

source code of the RTTI hierarchy in libstdc++ [44] and each class’s corresponding

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 54

Class Size
(bytes) Class Use Attributes Attribute Use

type info 16 Primary base class for
all RTTI instances name char* pointer to the mangled

name of the type
class

type info 16 Linked to objects with
no base classes - -

si class
type info 24

Linked to objects with
only a single, public,
non-virtual base class

base type

A pointer to a (polymorphic)
class type info instance. It

stores the address of another
RTTI object, representing that
class’s base type

vmi
class

type info

24 + (16
for every

base class)

Linked to objects with
any other base class
scenario.

flags

Described the class structure
using the flags masks enumer-
ation. 0x01: class has non-
diamond repeated inheritance
0x02: class is diamond-shaped

base count Number of direct base classes

base info[]
Array of base class type info ob-
jects, once for every direct base
class.

base
class

type info
16

Supporting class for
vmi class type info,

used to store base
class information

base
type

A pointer to a base class RTTI ob-
ject

offset
flags

Stores offset to base class sub-
object or offsets to vtable entries.
Uses two lowest bits as flag infor-
mation about base class. 0x1 Base
class is virtual 0x2 Base class is
public

Table 4: RTTI classes and attribute uses

object layout in Figure 23b. In this partial hierarchy we have included only class

attributes and a single virtual function definition called do dyncast, which is

relevant to a later Chapter.

The primary class of this RTTI hierarchy (listed in Figure 23a) is called

type info, and every RTTI class inherits from it. As defined in the Itanium C++

ABI [23], the type info class has ten derived classes (eight direct), which are used

to represent all C++ data types for any ABI conforming program (full inheritance

hierarchy in Figure 85 in Appendix A.1). One direct derived class from type info

is class type info, which is an RTTI type that represents all programmer de-

fined class types. From the class type info class, there are two further directly

derived classes, si class type info and vmi class type info, each used to

represent classes with specific hierarchical scenarios, as described in Table 4. We

will focus on these three RTTI classes as their instances represent all dynamic

class types at run-time. An explanation of each RTTI class and the attributes

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 55

Figure 24: RTTI data members explained. See Figure 23 for data member names
and Table 4 for uses.

they introduce (listed in Figure 23) is presented in Table 4.

The final class listed in Figure 23a is the base class type info class. The

base class type info class is another primary class with no descendants but

is used within an array attribute of the vmi class type info class. As an

attribute, at least one complete instance of the base class type info class

exists inside the complete vmi class type info object instance. This is known

as a compound object, an object instance that exists within another but is not

inherited. As it is not inherited, it is not a sub-object but a compound object.

Before providing the RTTI object examples for our Avatar hierarchy, we will

first look at a generic vmi class type info object instance to provide a clear

picture of the purposes of each data member. Figure 24 displays a multiple

inheritance object Z which inherits from classes V and W, as well as virtually

inheriting from classes X and Y. This object has four address-points, each la-

belled as zptr+Oi where zptr is the address-point of the complete Z object, and

+Oi is the offset displacement to the i sub-object. The vmi class type info

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 56

RTTI object generated for Z has four compound base class type info ob-

jects, one for each inherited class, storing a pointer to that class’s RTTI object.

Each data member of the vmi class type infoz object is labelled3 in the figure,

but note that offset information for virtually inherited objects (X and Y) is not

stored in their respective compound base class type info objects. Instead,

the base class type info object stores an offset (-24 or -32) to the object

displacement values (Ox or Oy) within the vtable. This is because the offset lo-

cations to virtually inherited sub-objects, unlike non-virtual sub-objects, are not

consistent in all derived-class instances. By placing offset data in the vtable, the

vmi class type infoz object can represent the Z class in all derived class RTTI

data structures, which keeps it unique to the Z class. If virtually inherited offsets

were stored in RTTI objects, a new vmi class type infoz object would have to

be generated for every derived class of Z to compensate for the new offset locations

of the virtually inherited sub-objects X and Y.

Figure 25 now presents the tree structure of linked RTTI objects that represent

the Avatar hierarchy for both the virtual and non-virtual inheritance examples.

Each object in this data structure is addressed from the vtables depicted in Fig-

ures 18, 19, 20, and 21.

Memory Overheads RTTI can add significant memory overheads to a pro-

gram. A technical report on C++ performance [47] estimated that a typical

RTTI object adds 40 bytes of data per class. For our Avatar hierarchy, RTTI

representation adds a total of 272 bytes for the virtual inheritance hierarchy

in Figure 25b (176 for the RTTI objects, plus 96 for mangled class names and

alignment padding) and 240 bytes for the non-virtual hierarchy in Figure 25a
3Note that the flag and offsets values stored in the base class type info objects is actually

a single data member, not two. The data member, called offset flags (Figure 23), uses the
last two bits of the number stored as a flag and masks and shifts these bits to retrieve the offset
value.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 57

(a) Without virtual inheritance

(b) With virtual inheritance

Figure 25: All RTTI objects create the Avatar hierarchy

(144 for the RTTI objects, plus 96 bytes for mangled class names and align-

ment padding), averaging 51 bytes per class overall. Of course, the number

of bytes occupied by RTTI depends on the hierarchy itself. In our example,

the Avatar hierarchy has either multiple or virtual inheritance, which is repre-

sented using the vmi class type info class instances, the largest of all RTTI

objects (see Table 4). Simple single inheritance hierarchies represented using

si class type info objects will occupy less space. Additionally, mangled class

names are stored as part of RTTI, which incurs some alignment padding in some

cases, increasing the overall memory overheads of RTTI support.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 58

Modern machines have plenty of memory, so an average cost of 51 bytes per

class for RTTI data may appear reasonable; after all, most classes and their hier-

archies will not be that complicated. However, one must consider class templates;

as we saw in Section 2.2.5, template instantiation can easily multiply the number

of classes after compilation. Where a program leans heavily on class templates,

template instantiation could result in a significantly large number of class speciali-

sations after compilation. This could be problematic, especially for small systems

like embedded systems and mobile devices that have significant restrictions on

their memory capacity. For these reasons, it is not uncommon for developers to

turn off RTTI generation during compilation to avoid this cost. The repercussion

of removing RTTI is that programmers lose RTTI-dependent C++ features, like

dynamic casting, which we will discuss in Section 3.4.4.

2.5 MSVC Object Comparison

We will now take a brief look at the objects produced by the MSVC compiler on an

AMD64 Windows OS platform. The MSVC compiler has several different strate-

gies for object layouts and their supporting auxiliary data structures compared to

the g++ compiler on a System V OS. We can demonstrate these differences using

the same virtual inheritance hierarchy from earlier examples. Figure 26 depicts

two Avatar objects produced by the MSVC compiler. The first is from a virtual

inheritance hierarchy with no virtual functions, and the second is from a virtual

inheritance hierarchy with a virtual function present in every class. The following

list describes the key differences between MSVC (using using the Microsoft C++

ABI) and g++ (using the Itanium C++ ABI) objects and virtual tables:

More padding: MSVC has stricter alignment requirements than g++ resulting

in larger objects from multiple and virtual inheritance hierarchies.

Virtual base table pointers: Objects contain virtual base table pointers (vbptr)

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 59

Figure 26: Virtual inheritance object layout for MSVC

used to address virtual base displacement tables.

Virtual base displacement table: MSVC does not store displacement infor-

mation to virtual base sub-objects in its vtables. These values are instead

stored in a separate table, called a virtual base displacement table. The vir-

tual base displacement table contains a displacement value to the address-

point of the current (sub-)object (use to address the table) and an array of

virtual base displacements (offsets to virtual base sub-objects).

Different vtable layout: The RTTI pointer and displacement value to the com-

plete object appear in a different order than seen in g++ vtables.

Only one RTTI pointer: Sub-vtables addressed by sub-objects do not have an

RTTI pointer. Instead, only one RTTI pointer exists in a complete vtable,

and it is addressable only from the complete object’s vptr.

Virtual function pointer array: Sub-vtables only store virtual function point-

ers declared within the object types that address them. For example, the

function speak() was declared in the Humanoid class, so it exists only in

the sub-vtable address by the Humanoid sub-object. The version of this

function still correlates with the most derived-type and hence addresses the

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 60

(a) Inheriting both dynamic and non-
dynamic classes (b) Multiple virtually inherited classes

Figure 27: Differences in sub-object ordering

Avatar::speak() implementation.

New vtordisp data member: Sub-vtables addressed by virtually inherited sub-

objects (like Humanoid) do not contain displacement information for their

virtual functions. Instead, MSVC uses a data member called vtordisp to aid

in implicit casting for these virtual functions. The vtordisp data member is

stored just above the relevant virtual sub-object.

MSVC also applies different methods for sub-object ordering, which can be

seen in Figure 27. In Figure 27a the D class inherits from A, B, and C in that order,

where B and C are dynamic. As seen earlier, g++ will place the first dynamic class

within the base-specifier-list as the first sub-object. MSVC, on the other hand,

place all dynamic sub-objects first, then follows with non-dynamic sub-objects.

Figure 27b presents an example of multiple virtually inherited classes. In this

case, we use the same Avatar hierarchy but virtually inherit both the Mortal

and Humanoid classes. If the hierarchy is thought of as a tree graph, g++ has a

bottom-up approach to virtually inherited sub-object placement, whereas MSVC

has a top-down approach.

CHAPTER 2. BINARY REPRESENTATION OF OBJECTS 61

2.6 Concluding Discussion

This chapter looked closely at the object layouts produced from the Itanium C++

ABI on an AMD64 System V platform. This overview saw object layouts from

single, multiple, and virtual inheritance hierarchies. We also looked at dynamic

classes and saw virtual function pointers’ impact on the layouts of dynamic ob-

jects. We also discussed the layouts of vtables and RTTI structures and briefly

touched on some mechanisms that interact with these data structures.

To complete this chapter, we briefly discussed the object layouts produced

by the MSVC compiler on an AMD64 Windows platform. This section provided

a more rounded picture of the different strategies employed by major compiler

vendors and how two compilers that conform to the C++ standard can produce

different object layouts in memory.

Understanding these concepts will be beneficial for discussing more advanced

topics in Part 2 of this thesis.

Chapter 3

Assembly-Level Object

Operations

We now know the fundamental ideas behind object layout, vtable layout and

RTTI data structures. But, what about the member functions and operations

that interact with them? We will now look at how member functions, constructors

and cast operations interact with different object instances at the assembly level.

3.1 Introduction

This chapter continues from the last, expanding the examples of object mem-

ory layouts to the low-level operations that construct and interact with them. We

will explore how member functions, constructor functions, and cast operations are

realised in assembly and how they interact with object instances and their sup-

porting auxiliary data structures. We follow the same method in explaining these

concepts as previous chapters, using examples. All examples were produced by

the GNU C++ Compiler (g++) using libstdc++ (GNU’s Standard C++ library

implementation [44]).

62

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 63

Figure 28: Mortal::incrementAge() member function call

3.2 Member Functions

How member functions interact with objects has already been discussed in Sections

2.3.5 and 2.4.3, but we will now look at what is happening at the assembly level.

3.2.1 Function Bodies

Any function defined in a class is a member function; this includes constructors

and destructors. At the assembly-level, member functions are realised in three

parts, a prologue, a function body, and an epilogue. The prologue allocates and

initialises the stack frame, the function body reflects the function definition in the

source code, and the epilogue releases the stack frame and returns control flow

to the call site. An example of these three parts can be seen in Figure 28, which

shows the assembly of the Mortal::incrementAge() function.

3.2.2 Non-Virtual Member Functions Calls

Non-virtual functions are realised as direct function calls. Figure 28, lists the

non-virtual call of the Mortal::incrementAge() function in line 2. This call is

realised in the assembly in lines 3-5. We know from Section 2.3.5 that all member

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 64

functions receive an object address as their first parameter; this can be seen in

lines 3 and 4 of our function call example. Specifically, in line 3, an address

is copied from the stack before being placed into the first parameter register in

line 4. As the Mortal::incrementAge() function has no other parameters (other

than the object itself), no more parameters are staged, and the function is called

directly in line 5.

The function body of Mortal::incrementAge() is simple, containing only

one line of source code (age++) that increments the Mortal attribute age (the

first data member in a Mortal object). Line 6-16 lists the assembly code of this

function. The function’s prologue resides in lines 6-8 and assigns a stack frame

before placing the object’s address in that frame in line 8. The body of the

function exists between lines 9-13. The body goes through a process of retrieving

the object address from the stack (line 9), accessing the first data member (line 10),

incrementing its value (line 11), then writing it back to the object (lines 12 and

13). The function concludes with an epilogue (lines 14-16) which resets the stack

(line 15) before returning control to the call location (line 16).

3.2.3 Virtual Member Function Calls

Virtual functions are realised as indirect function calls, which are performed using

a mechanism called dynamic dispatch. Dynamic dispatch is a low-level mech-

anism that will call a virtual function based on the run-time type of the invoking

object. This mechanism is supported by the vtables, which house the virtual func-

tion pointers of a variable’s dynamic type and is accessible through the invoking

object’s vptr.

Dynamic Dispatch Mechanism Figure 29 provides a visual example of the

dynamic dispatch mechanism, where Figure 29a presents the source code, Fig-

ure 29b the object layout in memory, and Figure 29c the assembly output. In

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 65

1 Humanoid *objPtr; //dynamic type could be Humanoid, Human, Navi, or Avatar
2 ...
3 objPtr->speak();

(a) Dynamic dispatch as the source level

(b) Memory representation (c) Dynamic dispatch in assembly

Figure 29: The dynamic dispatch mechanism

line 1 of the assembly, the object address-point is retrieved from the stack (Fig-

ure 29b). Using this address, the vptr is accessed (line 2) and adjusted by +8

(line 3). The adjusted vptr now points to the second virtual function pointer in

the vtable. This pointer is retrieved (line 4) and called (line 7) with the object

variable (objPtr) passed as a first parameter (lines 5-6).

The dynamic dispatch listed in Figure 29 will always call the virtual function

in the second entry of the vtable. So, which function is invoked depends on which

vtable is accessed. Which vtable is accessed depends on the run-time type of

the object used. In this example, the object is either a Humanoid, Human, Navi,

or Avatar type and will invoke either Humanoid::speak(), Human::speak(),

Navi::speak() or Avatar::speak() respectively (see their vtables in Figures 18,

19, 20, and 21).

If the run-time object is part of a multiple or virtual inheritance hierarchy,

then the second vtable entry from the vptr may not directly address the speak()

function but instead address a thunk [52] (as seen in Figure 19 and 20). Recall

that a thunk (also known as a trampoline) is a small snippet of instruction code

that performs an operation before jumping to another set of instructions. In

this case, it performs an implicit cast to the complete object before invoking the

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 66

Figure 30: Mortal constructor call

appropriate version of the speak() function. This operation uses a displacement

value also stored in the vtable to find the complete object address-point. These

displacement values can be seen in Figure 20.

3.3 Object Construction

Objects are initialised using a class constructor. A constructor function is re-

sponsible for initialising all data members, including all vptrs if the objects are

dynamic. Constructors from primary classes, derived classes, and virtual inher-

itance classes, are realised slightly differently in each case. So this section will

explore each case separately.

3.3.1 Primary Class Construction

The most straightforward constructor functions are generated from primary classes,

as they need only initialise their own data members. For example, the following

expression:

Mortal *obj = new Mortal();

invokes the constructor of the primary class Mortal, which generates the assem-

bly in Figure 30. The Mortal class has a predetermined size requirement for its

instances, 16 bytes in this case. The value, 16, is stored in the first parameter reg-

ister (rdi in line 1), before calling the new operator in line 2. Given a class’s size

requirements, the new operator is responsible for finding and allocating a region

of memory of that size. The address of the assigned memory region is returned

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 67

via the rax register in line 3. The returned address is then passed to the first

parameter register in line 4, ready for the invocation of the Mortal constructor in

line 5. The address passed between the new operator and the Mortal constructor

is the address-point of the Mortal object and will eventually be stored in the obj

variable. The obj variable itself is simply a stack location that stores the pointer

to the constructed object.

The Mortal constructor, like all constructors, is a member function, so it

contains a prologue and an epilogue (Figure 30 lines 6-8 and 13-15). After the

constructor’s prologue, the vtable address is stored in register edx (line 9) and

then assigned as the first data member of the object (line 11), initialising the

vptr. The vptr is the first data member initialised in any dynamic object. After

the vptr is initialised, the body of the Mortal constructor is executed. From this

point onwards, all function prologue and epilogue will be omitted from assembly

code listings, to simplify examples.

3.3.2 Derived Class Construction

A derived class constructor is responsible for initialising not only its own data

members but also its immediate sub-objects. To do this, the derived class con-

structor will invoke the constructors of its immediate base classes, which in turn

will do the same, until a primary class constructor is reached; this creates a set of

nested constructor calls. For example, the following expression:

Human *obj = new Human();

will generate the assembly in Figure 31. Like in the previous example, the new

operator is called (line 2), but this time has a memory size request of 24 bytes

(line 1). Upon its return (line 3), the memory address retrieved from the new

operator is passed to the Human constructor (line 4-5).

The first action a derived class constructor will perform is to invoke its base

class constructors. We can see this in line 10 of the Human constructor and line 20

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 68

Figure 31: Human nested constructor call

of the Humanoid constructor. Once all base class sub-object instances are con-

structed, vptrs are assigned (lines 11-13, 21-23, and 28-30). Note that each base

class constructor will assign its own vptr, which will be immediately overwritten

upon return of the constructor call. Following vptr assignment is the constructor

body, reflecting the programmer’s implementation at the source level (lines 14, 24,

and 31). Once the constructor body has been executed, control flow is returned to

the callee: here, lines 32 and 25 return control flow to derived class constructors

(line 32→21 and line 25→11), whereas line 15, the last return of the nested call,

completes the construction of the Human object.

3.3.3 Virtual Inheritance Class Construction

Any virtually inherited class is guaranteed to appear once, and only once, as a

sub-object in any inheriting class instance. This guarantee is achieved with a slight

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 69

Figure 32: Avatar nested constructor call with virtual inheritance (full assembly
in Figure 86 Appendix A.2)

change to the nested constructor calls seen so far. When constructing an object

from a virtual inheritance hierarchy, the responsibility of calling the virtually

inherited class constructor no longer falls to the class that directly inherited it

but instead the most-derived class. By passing this responsibility, the virtually

inherited class constructor will be invoked directly within the most-derived class

constructor but not repeated in any nested calls; resulting in a single sub-object

instance within the complete object.

Figure 32 depicts the construction of a complete Avatar and Human object.

Each class virtually inherits from Humanoid, where Human inherits directly and

Avatar indirectly. As Humanoid is virtually inherited, it is the responsibility of

both the complete object constructors (Human() and Avatar()) to invoke the

Humanoid constructor (lines 8 and 61). The Avatar object contains an instance

of the Human class as a sub-object. When Human appears as a sub-object, it

does not contain the virtually inherited Humanoid base class instance. However,

when Human appears as a complete-object (most-derived), it does contain a virtu-

ally inherited Humanoid sub-object. To accommodate both scenarios, the Human

class generates two constructor1 functions, one for complete object construction
1This is Itanium ABI specific. MSVC produces a single constructor with an internal

‘most-derived class’ check to determine which constructors will invoke the virtually inherited
constructor(s).

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 70

1 class Unrelated {
2 int unrelatedData;
3 ... };
4 ...
5 Human* obj = new Avatar();

(a) Code example

(b) Human* obj = new Avatar()

Figure 33: Cast Example

(lines 59-71), which includes virtual sub-objects, and one for sub-object construc-

tion (lines 33-53), which omits virtual sub-objects.

3.4 Cast Operations

We briefly discussed explicit casting in Section 2.3.4 and implicit casting in Sec-

tion 2.3.5. In this section we discuss the four types of explicit cast operators -

C-style cast, static cast, reinterpret cast, and dynamic cast, and how they

are realised in assembly.

For all cast examples, we will use an Avatar object addressed by a Human*

variable, called obj (Figure 33a line 5). This obj variable stores the address-

point at offset +24 within the complete Avatar object, as seen in Figure 33b. In

all examples, two casts will be performed on the obj, followed by a data member

assignment. The first cast will be to an Avatar* type, which should adjust the

pointer stored in obj by -24, to retrieve the complete object address-point. The

second will be an illegal cast to an Unrelated type (Figure 33a line 1) to help

demonstrate the vulnerabilities of different cast operations.

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 71

1 ((Avatar*)obj)->hybridGenetics = 0;

2 mov rax, QWORD PTR [rbp-24]
3 sub rax, 24
4 mov DWORD PTR [rax+48], 0

(a) Cast to Avatar*

5 ((Unrelated*)obj)->unrelatedData = -1;

6 mov rax, QWORD PTR [rbp-24]
7 mov DWORD PTR [rax], -1

(b) Cast to Unrelated*

Figure 34: C-style Casting

3.4.1 C-style Cast

The C-style cast was inherited from the C language; it is a compile-time operation

with the following expression:

(target)variable

A C-style cast is performed statically, meaning the compiler can infer the result of

a cast at compile-time. If the result of a cast is known at compile-time, it means

that the pointer adjustment for the cast is fixed and known and can therefore be

realised directly in the assembly. This can be seen in the following example.

A C-style cast is performed in Figure 34a line 1. At the source level, the

obj variable is temporarily cast to an Avatar* type, granting it access to the

Avatar::hybridGenetics data member before setting it to 0. Lines 2-4 is the

assembly generated from that cast and data member assignment. Line 2 retrieves

the obj pointer from the stack (positioned at rbp-24) and moves it to the rax

register. Line 3 subtracts 24 (the known adjustment) from the pointer stored in

rax, creating a new pointer that addresses the zero offset of the Avatar object;

this line completes the temporary cast. Line 4 adjusts the pointer in rax, to

address the hybridGenetic data member at offset +48 and moves the zero value

into that location, setting that data member to zero. After the assignment, the

cast pointer is dropped, and the original object pointer stored on the stack goes

unchanged. This is why we describe this as a temporary cast, as it does not alter

the address stored in the variable obj itself but uses it to return the address-point

of the cast’s target.

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 72

1 static cast<Avatar*>(obj)->hybridGenetics = 0;

2 mov rax, QWORD PTR [rbp-24]
3 sub rax, 24
4 mov DWORD PTR [rax+48], 0

(a) Cast to Avatar*

5 static cast<Unrelated*>(obj)->unrelatedData =
-1; // compile time error

(b) Cast to Unrelated*

Figure 35: static cast

Figure 34b line 5 attempts a similar cast but targets an Unrelated type. The

C-style cast allows such code to be compiled, resulting in the assembly in lines 6

and 7. As these types are unrelated, the compiler has no hierarchical information

and applies no adjustments to the pointer stored in obj. Instead, the pointer

is assumed to be the Unrelated type, and execution continues as if that is the

case. This is known as a type confusion vulnerability (discussed further in

Section 5.1). Type confusion vulnerabilities are problematic, as we can see in

line 7 of our assembly. At the assembly level, the object address is assumed to

be an UnrelatedData object and therefore allows the first data member of this

object to be overwritten and assigned the value -1. However, what has actually

happened in this type confusion is that the vptr of the Human sub-object (within

the complete Avatar object) has been overwritten to -1, which would likely result

in a segmentation fault if a virtual function is invoked.

3.4.2 static cast<target>(variable)

The static cast operator, like C-style, is a compile-time operation, but unlike

C-style, it benefits from static type-checking. When using this type of cast, the

compiler will ensure that the source and target types are part of the same hierarchy

before generating the assembly code.

Figure 35a shows that the binaries generated from the static cast operator

is identical to the C-style cast in Figure 34a. However, in Figure 35b, when a

cast is attempted with an unrelated target type, the static cast operator will

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 73

1 Navi* naviObj = new Navi();
2 static cast<Avatar*>(naviObj)->

hybridGenetics = 0;

3 mov rax, QWORD PTR [rbp-32]
4 mov DWORD PTR [rax+48], 0

(a) Cast from complete Navi to
Avatar

5 class Navi : virtual public Humanoid
6 ...
7 static cast<Humanoid*>(naviObj)->language = 0;

8 mov rax, QWORD PTR [rbp-32] ; rax<-naviObj
9 mov rax, QWORD PTR [rax] ; rax<-vptr

10 sub rax, 24 ; rax<-vptr-24 (displacement (disp))
11 mov rax, QWORD PTR [rax] ; rax<-disp
12 mov rdx, rax ; rdx<-disp to virtual base
13 mov rax, QWORD PTR [rbp-32] ; rax<-naviObj
14 add rax, rdx ; rax<-naviObj + disp
15 mov DWORD PTR [rax+16], 0

(b) Cast from Navi object to virtual Humanoid

Figure 36: Type confusion using static cast & casting to virtual base

prompt a static type relationship check, resulting in a compile-time error.

Despite static type-checking, static cast can still suffer from type confusion

vulnerabilities. In Figure 36a line 1, we create a complete Navi object stored in

the variable naviObj, before casting it to an Avatar object in line 2. As static

casting only ensures these types are related at compile-time (which they are), the

dynamic type of naviObj is not considered, and the cast is allowed, resulting in a

type confusion vulnerability. In this scenario, the compiler assumes that naviObj

addresses a Navi sub-object within an Avatar object; as the Navi sub-object exists

at a zero offset in a complete Avatar object, the generated assembly makes no

alterations to the pointer stored in naviObj. The following instruction (line 4)

reassigns a data member at offset +48 from the pointer in naviObj. As the Navi

object layout is only 24 bytes in size, the cast actually allows data to be altered

outside of the object’s boundaries, potentially causing a data corruption error.

In Figure 36b line 5, we have temporarily altered the Navi class to virtually

inherit from Humanoid, then performed a static cast to that Humanoid type from

the complete Navi object (line 7). This is the only type of static cast that is

performed dynamically, as it is encoded to access the object’s vtable to retrieve

the displacement offset to the Humanoid sub-object (line 10 & 14). This displace-

ment offset is positioned at -24 from the vptr, as seen in line 10 and the Navi

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 74

1 reinterpret cast<Avatar*>(obj)->
hybridGenetics = 0;

2 mov rax, QWORD PTR [rbp-24]
3 mov DWORD PTR [rax+48], 0

(a) Cast to Avatar*

4 reinterpret cast<Unrelated*>(obj)->
unrelatedData = -1;

5 mov rax, QWORD PTR [rbp-24]
6 mov DWORD PTR [rax], -1

(b) Cast to Unrelated*

Figure 37: reinterpret cast

vtables depicted in Figure 20 and 21. We should note that this cast is performed

dynamically but does not perform any type checks, so it can still cause a type

confusion vulnerability.

3.4.3 reinterpret cast<target>(variable)

The reinterpret cast operator returns a copy of a variable with a reassigned type,

which occurs without any type-checking or offset adjustments. It is a direct

transformation of types irrespective of hierarchical information and is ignored by

all compiler static type-checking mechanisms. Figure 37 demonstrates that the

reinterpret cast operator generates no additional assembly instructions but

simply reinterprets a pointer as the target type.

3.4.4 dynamic cast<target>(variable)

The dynamic cast operator is a run-time mechanism that can verify the dynamic

type of a variable before casting. This additional check makes dynamic cast

the most secure casting technique and will avoid any potential type confusion

vulnerabilities.

Figure 38a depicts how the dynamic cast operator is realised in assembly.

Unlike earlier casting techniques that are composed of a straightforward offset

adjustment to an object’s pointer, dynamic casting is resolved using a separate

(global) function called dynamic cast (line 7). The dynamic cast function

takes the object address (lines 2 and 6) and the type information (RTTI objects)

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 75

1 dynamic cast<Avatar*>(obj)->hybridGenetics
= 0;

2 mov rax, QWORD PTR [rbp-24]
3 mov ecx, 24 ; static hint
4 mov edx, typeinfo for Avatar
5 mov esi, typeinfo for Human
6 mov rdi, rax
7 call __dynamic_cast
8 mov DWORD PTR [rax+48], 0

(a) Cast to Avatar*

9 dynamic cast<Unrelated*>(obj)->unrelatedData
= -1; // run-time error

10 dynamic cast<Avatar*>(naviObj)->
hybridGenetics = 0; // run-time error

(b) Run-time errors for illegal casts

Figure 38: dynamic cast

of the target type (line 4), and the object’s static type (line 5), as parameters. The

dynamic cast function will check the object’s type using its RTTI information,

and the appropriate cast will be performed. The mechanics of the dynamic cast

function are discussed in the following section.

Figure 38b attempts a cast using an Unrelated type (line 9) or a complete

base class type (line 10). In both cases, these casts will fail, resulting in either a

null pointer return or throwing a bad cast exception.

The dynamic cast function The global dynamic cast function is listed in

Figure 39a. It takes four parameters: the source object address (src ptr), the

source’s type information (src type an RTTI pointer), the target type informa-

tion (dst type another RTTI pointer), and a number representing a static hint

(src2dst). This function signature is defined within the Itanium C++ ABI [23],

but the function body implementation is not. Different implementations of the

standard C++ library will have different implementations of the dynamic cast

function, handling dynamic casting slightly differently in each case. Here we ex-

amine the GNU’s Standard C++ library implementation [44] (libstdc++).

In its most expensive form, dynamic casting is a recursive traversal through an

entire object’s RTTI data structure. As this can be expensive, the g++ compiler

will attempt to bypass this traversal by providing the dynamic cast function

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 76

1 extern "C" void * __dynamic_cast (
2 const void *src_ptr, // object address-point
3 const __class_type_info *src_type, // source RTTI object
4 const __class_type_info *dst_type, // target RTTI Object
5 ptrdiff_t src2dst) // static hint
6 {
7 ... // gather data from src_ptr vtable
8 if (src2dst >= 0 && src2dest == -whole_disp // test for faster cast to avoid __do_dyncast
9 && *whole_type == *dst_type) // if complete object is the target type

10 { return whole_ptr } // return complete-object address-point
11 whole_type->__do_dyncast (...); // whole_type = RTTI object from src vtable
12 ... // Check __do_dyncast return and complete cast
13 }

(a) Global dynamic cast function
14 bool __class_type_info::__do_dyncast (...) const { ...
15 /* no recursive call */ ... }
16 bool __si_class_type_info::__do_dyncast (...) const { ...
17 __base_type->__do_dyncast(...); ... }
18 bool __vmi_class_type_info::__do_dyncast (...) const { ...
19 __base_info[i].__base_type->__do_dyncast(...); ... }

(b) The overridden do dyncast function

Figure 39: The global dynamic cast function and its recursive call of the RTTI
virtual function do dyncast

with a static hint (src2dst) parameter. The src2dst parameter can take several

different values: anything greater or equal to zero is a predicted displacement from

the source address-point to the target address-point; whereas anything less than

zero is a special case used to describe the static relationship between the source

and target types. These special cases are as follows (as determined by the GNU

library implementation [44]; other implementations may differ):

-1: no hint

-2: source type is not a public base of the target type

-3: source type is a multiple public base type but never a virtual base type

These values can help to speed up the dynamic cast mechanism in certain cir-

cumstances by traversing shorter control-flow paths within the dynamic cast

function call.

The global dynamic cast function is listed in Figure 39a. This function be-

gins (line 7) by gathering data about the source object from its vtable (Figure 17).

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 77

In particular, the data collected includes the pointer to RTTI information (stored

in whole type), the displacement to the complete object (stored in whole disp),

and from this, the address-point to the complete object is calculated and stored in

whole ptr. In lines 8-10, the dynamic cast has a conditional if statement that,

if true, will avoid the costly recursive call in line 11 (the do dyncast function).

The conditional if statement is testing for a simple cast case, where the most

derived-type of the source object is the target type of the cast. It does this with

three conditional statements:

1. Checks if src2dst is greater or equal to zero. When true, it means that the

src2dst stores a predicted displacement from the source’s address-point to

the target address-point.

2. Checks if src2dst is equal to the negation of whole disp. If true, then

the displacement hint matches the displacement to the complete object de-

scribed in the vtable.

3. Checks if *whole type is equal to *dst type. If true, then the target type

is the same as the source object’s dynamic type.

When all three conditions are true, then the cast is attempting to cast the source

object to its most derived-type. This type of cast is straightforward and does

not need RTTI recursion, so instead, the calculated whole ptr is returned in line

10. However, if just one condition is false, that RTTI will be traversed, which is

achieved using the recursive do dyncast function.

The do dyncast function is invoked in line 11 of Figure 39a using the source

object’s RTTI pointer (stored in whole type). This function is a virtual function,

and has a different implementation depending on the dynamic type of the RTTI

object being used. Figure 39b lists all three implementations of this function for

each class type info specialisation. We have redacted the majority of the func-

tions’ code as we are only focused on the recursive nature of each implementation.

The implementation used at run-time depends on the dynamic type of the RTTI

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 78

object addressed by whole type. If this RTTI object is a si class type info

type (representing single inheritance) or vmi class type info type (represent-

ing multiple or virtual inheritance), then the do dyncast implementation will

be recursive. Each call to the do dyncast function checks its this-pointer

(the current RTTI object in the traversal) against the target RTTI pointer. If a

match is found, then a cast is performed. If no match is found, do dyncast will

continue its traversal until a match is found or it has exhausted all RTTI objects.

Notice that in the case of vmi class type info, the recursive do dyncast

function is performed on an array of base class type info structures, which

represent multiple/virtual inheritance (see RTTI data layouts in Section 2.4.4).

Different Implementations We reiterate that the dynamic cast function is

entirely implementation dependent. For example, in LLVM’s libcxxabi standard

C++ library [75], the dynamic cast function traverses the RTTI data struc-

tures using two functions (called search below dst and search above dst see

‘private typeinfo.cpp’ in [75]), compared to GNUs one function (do dyncast).

Another significant difference in implementations is that LLVM’s dynamic cast

function does not (at the time of writing) utilise the src2dst parameter for op-

timisation. So it is essential to acknowledge that the dynamic casting cost will

differ in different implementations of the C++ standard library.

Overheads Because of the recursive nature of RTTI, the executional cost of per-

forming a dynamic cast will be significantly more expensive than a static cast.

A static cast, at most, is a simple pointer adjustment embedded in the as-

sembly. In contrast, a dynamic cast can be multiple indirect function calls and

comparisons before making a pointer adjustment. In the technical report on C++

performance [47], dynamic casting was estimated to be between 60 and 200 times

more expensive than static casting, depending on the compiler and optimisation

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 79

level used. We, however, performed our own analysis of the dynamic cast opera-

tor (Section 5.4.1) using the GNU C++ standard library and found that dynamic

casting is at least 18 times more expensive than static casting, with no measurable

upper bound.

The expense of RTTI, both in performance and memory space, makes it un-

desirable to many developers. To avoid this, some developers omit RTTI from

their final binaries, which can be achieved with a single compiler flag. However,

when RTTI is omitted, dynamic casting is unavailable, so developers are forced

to use less secure casting methods, like static or C-style casting. When deployed

without due diligence, insecure casting methods can result in type confusion vul-

nerabilities, which could pose a significant security threat.

3.4.5 Compiler Casting Optimisations

Given the recursive traversal of RTTI, dynamic casting is undoubtedly more ex-

pensive than any other cast operation. So, compiler vendors will optimise a dy-

namic cast when they can, converting it to a static cast instead. However, com-

pilers must not impede the security of a dynamic cast with their optimisations.

This is achieved by categorising casts (within a hierarchy) as one of three types:

up-cast, down-cast, or cross-cast:

Up-cast is a cast from a derived-type to a base type,

meaning a cast that travels ‘up’ the hierarchy.

Down-Cast is a cast from a base type to a derived-

type, meaning a cast that travels ‘down’ the hierar-

chy.

Cross-cast is a cast performed on two class types

that do not inherit from one another but are related

through a shared derived class. It is a cast that

travels ‘across’ the hierarchy.

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 80

For non-virtual hierarchies, an up-cast can always be simplified to a static cast.

As seen in Chapter 2, derived class instances always have a base class sub-object

instance within their memory region at a specific offset location. Therefore a cast

to a base class sub-object is guaranteed to be safe and can be optimised to a

static cast. However, this is not true for virtually inherited base classes. The

exact offset of a virtually inherited sub-object instance is known only at run-time;

therefore, an up-cast to a virtually inherited type must be performed dynamically.

Down-casts and cross-casts, on the other hand, are considered unsafe casts.

This is because, unlike an up-cast, there is no guarantee that the cast’s target

(a derived-type) exists within the source object. Therefore, these types of casts

cannot be optimised to a static cast and must be performed dynamically.

Example Consider the code listed in Figure 40; here, we have created two object

variables and performed three different casts on each, two down-casts (lines 4-8),

two up-casts (lines 10-14) and two cross-casts (lines 16-20), where the result of

each cast is stored in a new variable. The first variable, h1, is a Human pointer that

addresses a Human object at run-time. The second variable, h2, is a Human pointer

that addresses an Avatar object at run-time. We have also depicted these objects

in Figure 40, highlighting all the address-points used and by which variables.

Notice that this depiction includes the variables created through successful casts,

demonstrating the results of each cast.

A notable result from these casts is the m2 variable defined in line 13. It

is noteworthy because this cast is not affected by the ambiguity of having two

possible Mortal targets from that dynamic cast. The reason is that this cast is an

up-cast, and up-casts are optimised to a static cast. Statically this cast believes

it is executing solely on a Human object (the static type of h2). As a result, its

dynamic type Avatar (and, in turn, its other Mortal member) is never considered.

So the cast is treated identically to the h1 up-cast in line 11.

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 81

1 Human *h1 = new Human();
2 Human *h2 = new Avatar();
3
4 /* down-cast */
5 Avatar* a1 = dynamic cast<Avatar*>(h1);
6 // failed cast
7 Avatar* a2 = dynamic cast<Avatar*>(h2);
8 // successful cast
9

10 /* up-cast */
11 Mortal* m1 = dynamic cast<Mortal*>(h1);
12 // optimised to static
13 Mortal* m2 = dynamic cast<Mortal*>(h2);
14 // optimised to static
15
16 /* cross-cast */
17 Navi* n1 = dynamic cast<Navi*>(h1);
18 // failed cast
19 Navi* n2 = dynamic cast<Navi*>(h2);
20 // successful cast

Figure 40: Types of casting example

Other noteworthy casts are the cross-casts performed in lines 17 and 19, as we

have not seen these types of casts before. Cross-casts are considered unsafe, so

no cast optimisation is considered here, and they must utilise the dynamic cast

mechanism at run-time. The dynamic cast mechanism, in both cases, will tra-

verse the RTTI data structures for both run-time objects. As h2 addresses an

Avatar object at run-time, the dynamic cast mechanism (performed in line 19)

will find a Navi RTTI object in Avatar’s RTTI data structure and will there-

fore result in a successful cast. The opposite is true for the cast in line 17. As

h1 addresses a Human object at run-time, its RTTI structure will not contain

a Navi RTTI object, so will rightly fail. We note that such cross-casts would

never pass compiler type-safety checks if they were defined using static cast

(i.e. static cast<Navi*>(h1)). This is because, on their own, the Human class is

unrelated to the Navi class; they are connected only through a shared derived class

(Avatar). So, to bypass type-safety checks, an intermediate cast to Avatar* would

be required (i.e. static cast<Navi*>(static cast<Avatar*>(h1))). However,

this would not only result in a type confusion vulnerability but is exceptionally

bad coding practice.

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 82

3.4.6 Custom RTTI Solutions

Due to the expense of performing RTTI checks, some developers create their own

custom run-time type-checking techniques [72]; this includes LLVM, the devel-

opers behind the Clang compiler, who designed their own source-based RTTI

mechanism coined LLVM-style RTTI [76]. The LLVM-style RTTI can be divided

into two parts: an enumeration-based solution supporting type-checking in dy-

namic and non-dynamic classes and an extensible RTTI framework that supports

open hierarchies with a custom dynamic casting function called dyn cast.

LLVM-style RTTI Enumeration Solution This style of RTTI relies heavily

on the programmer to ensure type definitions are accurately defined and instan-

tiated. Each primary class will declare its own enumeration, and every base class

will have a value defined in that enumeration. The primary class stores one of the

enumeration values as a data member. All base classes will inherit this data mem-

ber and store the enumeration value associated with the object’s dynamic type at

run-time. With this, every object, whether dynamic (has a vptr) or not, will store

an integer value (enumeration value) linked to its dynamic type. It is this value

that is used in LLVM’s custom RTTI functions, such as their isa<C>(obj), which

will check if the run-time object obj is an instance of C, and C::classof(obj),

which will check if the run-time object obj is a derived-type of C. This technique

allows for fast type checks and extends type-checking to non-dynamic classes but

does not support virtual inheritance.

Extensible RTTI This style of RTTI uses class templates to realise RTTI data

and establish relationships. In this scenario, all classes in a hierarchy will inherit

from a class template called RTTIExtends. This template takes two parameters,

the type of the inheriting class and the type of the direct base class, creating a link

between direct parent and child classes. Every class that inherits from RTTIExtend

CHAPTER 3. ASSEMBLY-LEVEL OBJECT OPERATIONS 83

must define a static char ID value, as the address of the static member is used

to identify each individual type. For the primary class, the parent type is defined

as RTTIRoot, an LLVM-defined class whose member functions are responsible for

resolving ID checks and are used within LLVM’s custom dynamic casting call

dyna cast. Although LLVM’s Extensible RTTI can perform type-checking much

faster than traditional RTTI, it is restricted solely to single inheritance hierarchies.

The Downside to Custom RTTI Although custom RTTI solutions benefit

from faster type-checking, they often suffer incomplete coverage by ignoring virtual

inheritance hierarchies or being restricted to single inheritance (further discussed

in Section 4). In addition, like with LLVM-style RTTI, custom RTTI solutions

tend to require heavy manual code modifications [72] and, as a result, may be

susceptible to human error.

3.5 Concluding Discussion

This chapter looked closely at the assembly produced by the g++ compiler when

realising member functions, constructor functions, and cast operations. This

overview discussed the different outcomes of invoking virtual and non-virtual

member functions, demonstrating how virtual functions can be dispatched with-

out knowing a variable’s dynamic type. We also covered constructor functions and

their order of initialisation; specifically, base class constructors are invoked first

(creating a nested constructor call), then vptrs are assigned, followed by the exe-

cution of the constructor body. Finally, the chapter ended by exploring how cast

operations are realised in assembly. Within these explanations, the disadvantages

of each cast were explored, be it the performance overheads incurred by dynamic

casting or the potential type confusion vulnerabilities of non-dynamic casting.

This concludes Part 1 of this thesis, which provides the prerequisite knowledge

required for all later chapters in part 2.

Part II

Object Vulnerability and

Exploitation

84

Chapter 4

Type Confusion Vulnerabilities

In this chapter, we review in greater depth, type confusion vulnerabilities and the

security threat they pose. Type confusion can be prevented, either with run-time

type testing (added to every cast), or with type confusion detectors (pre-release

static/dynamic analysers that flag possible vulnerabilities to developers). We

will critically review the strengths and limitations of both the detector and type

testing approaches. Many of these approaches are built on top of type inclusion

testing. Type inclusion testing is a field of research that develops a hierarchical

encoding scheme and accompanying fast type-checking technique; where the type

check will ascertain whether or not an inheritance relationship exists between two

class types. We will provide an overview of this field, before finally discussing

dynamic cast optimisation, a topic that has been largely overlooked within the

field of type inclusion testing.

4.1 Introduction

C++ is a large and complex language, with vast capabilities ranging from low-level

programming (due to its ties with the C language) to high-level object-orientated

(OO) abstraction. Having this range of capabilities (in particular the low-level

85

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 86

access), combined with human error, makes C++ prone to a variety of memory

and type-safety vulnerabilities. One such vulnerability (as previously touched

upon in Section 3.4) is type confusion.

Type confusion vulnerabilities are typically (but not exclusively [64]) intro-

duced by programming errors. In this thesis we look only at type confusion vul-

nerabilities caused by casting errors introduced by the programmer; but note that

in 2021, a paper was published discussing speculative type confusion attacks [64],

a type confusion attack enabled through branch misprediction, within the Linux

kernel. Such vulnerabilities are out of scope for this thesis, as they are caused by

compiler optimisation techniques and are extremely difficult for a programmer to

mitigate against; unlike type confusion vulnerabilities caused by casting errors.

Type Confusion Type confusion vulnerabilities occur when a section of code

receives an unexpected object type and, without any type-checking, proceeds to

execute that code on the data members of the unexpected object. Such vulnera-

bilities occur through unsafe down-casting (Section 3.4.5). Down-casting is unsafe

when it is performed statically (i.e. at compile-time), relying on the diligence of a

programmer to ensure type-safety without the use of run-time type information.

Simple Type Confusion Example Figure 41 illustrates a type confusion vul-

nerability. Lines 5 and 6 of Figure 41a initialise a Base and a Derived object

to the respective variables b and d (depicted in Figure 41b). Line 7 performs a

static down-cast from the Base object, stored in variable b, to a Derived type.

This cast adjusts the pointer stored in b, by -8 (the offset adjustment from a

Base sub-object to a complete Derived object), and stores the result in the new

pointer variable tc (depicted in Figure 41c). The tc variable is a Derived* type

and is perceived to address a Derived object at run-time. This means the vari-

able has access rights (Sections 2.3.3, 2.3.5, and 2.4.3) to a Derived object at

that location, making it a confused variable. As the static cast operator has

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 87

1 class Base { double x; }
2 class Derived : Base {
3 double y;
4 virtual void f(); }
5 Base *b = new Base();
6 Derived *d = new Derived();
7 Derived *tc = static cast<Derived*>(b); //

type confusion
8 tc->y = 0.123456; // memory violation
9 tc->f(); // control flow high-jack

(a) Simple type confusion example (b) Object depiction (c) Type confusion

Figure 41: Type confusion listing and depiction

no run-time type-checking (Section 3.4.2), this cast goes ahead unhindered and

execution continues to the next line. Lines 8 and 9 of Figure 41a are executed

using the confused variable tc, both accessing extraneous data that exists outside

the bounds of the original Base object. This illegal data access causes both a

memory violation and a control flow high-jack, which could potentially execute

silently without detection or exception.

Security Threat Type confusion vulnerabilities that involve dynamic objects

are particularly dangerous as they grant a confused variable (like tc in the above

example) access to a foreign vptr data member. The data stored in this foreign

vptr can range from a carefully constructed pointer created as part of a malicious

attack (discussed further in Chapter 6), to a completely random assortment of

bits reinterpreted as a pointer. In either case, the foreign vptr grants the program

access to an unforeseen (from the perspective of the programmer) vtable and

virtual functions. As virtual functions are dynamically dispatched via the vptr

(Section 2.4.3), using a mechanism with no type-safety checks, this could result

in an illicit function call or, perhaps at best, a program fault. Without a program

fault, the program may continue, silently executing alien functions on foreign data.

For these reasons, type confusion vulnerabilities, when utilised by an attacker, can

be the catalyst for much greater security threats.

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 88

Figure 42: CVE reported type vulnerabilities in the last 10 years

Real World Vulnerabilities Research into type confusion vulnerabilities has

gained traction in the last decade, with more than 400 vulnerabilities reported to

the CVE (Common Vulnerabilities and Exposures) [25]. Figure 42 shows that the

majority of these reports were made between 2015 and 2020, peaking in 2018 with

over 100 reports in that year alone. Although there has been a modest dip in CVE

reports since then, numbers still remain high (when compared to reports prior to

2015) and vulnerabilities are being uncovered in widely used applications: Google

Chrome (22 cases), Firefox (10 cases), and several Adobe software products (25

cases) [25]. With mainstream software being greatly affected, the need to defend

and/or mitigate such vulnerabilities is still hugely relevant.

4.2 Type Confusion Defense Strategies

There have been many attempts to try and curb the problem of type confusion,

with researchers working hard on analysis tools, bug detection tools (known as

sanitisers1) and exploit mitigation defences [34, 49, 60, 72, 90, 101, 131, 132, 144].
1The 2019 survey paper on C++ sanitisers [120], is a great source for direct comparisons of

many sanitiser tools, some of which are discussed in this section.

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 89

Exploit Mitigation Sanitisers
The goal is to ... Mitigate attacks Find vulnerabilities
Used in ... Production Pre-release
Performance budget ... Very limit Much higher
Policy violations lead to ... Program termination Problem diagnosis
Violations triggered at location of bug ... Sometimes Always
Tolerance for false positives is ... Zero Somewhat higher

Table 5: Exploit Mitigation vs Sanitisers (taken from [120] © 2019 IEEE)

Exploit Mitigation or Analysis Tool? Type confusion defences typically

come in one of two forms, a pre-release analysis tool or a run-time exploit miti-

gation. Each approach has different expectations regarding its functionality and

purpose (as summarised in Table 5). Mitigations are run-time mechanisms embed-

ded within a program during production; their goal is to identify an exploit during

execution and, once identified using its various safety checks, mitigate that ex-

ploit by terminating the program. Their run-time checking techniques must have

low-performance overheads with zero capacity for false-positive triggers. How-

ever, upon termination, there is no expectation for a mitigation to produce debug

diagnostics. Analysis tools, on the other hand, are intended for pre-release bug

detection. They aim to identify possible vulnerabilities and produce precise debug

diagnostics for developers. As a pre-release tool, high-performance overheads are

more accepted (to a degree), and false-positive results are accepted but at a low

rate. A higher level of coverage is expected from a static analyser compared to

a dynamic analyser (known as a sanitiser) because dynamic analysis is naturally

restricted to the control flow paths performed during execution.

Static Analysis and Sanitisers Purely static type confusion analysis is still in

its infancy. The only offering in this space, TCD [144], applies a type-aware pointer

analysis technique that allows for improved path coverage compared to a purely

dynamic approach that considers only a single run. Although pointer analysis can

be formulated as an instance of abstract interpretation, pointer analysis rarely

comes with a rigorous soundness argument [10, 41] for anything other than a

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 90

limited subset of C++. This puts doubts on any purely static type confusion

detectors that are realised on an underlying pointer analysis.

Static type confusion analysis can potentially discover new vulnerabilities, as

TCD demonstrates with the Qt library [107]. Yet the analysis times are prohibitive

(exceeding 7 hours for Qt), and false-positive rates are high (28% on Qt). Consider

now the developers using TCD as an analysis tool. They will not only suffer the

excessive time of the analyser to evaluate their code, but they must also inspect

every warning it generates, filtering for actual errors amongst the false positives.

This will inevitably impact development times.

The dynamic type confusion analyser (or Sanitiser), UBSan [132], maps vp-

trs to types within a hash table and uses that table to check type consistency,

thereby identifying possible type confusion errors. However, as others [49, 60, 72,

101, 120, 144] have pointed out, this solution does not support non-polymorphic

objects (i.e. objects without a virtual pointer), limiting the applicability of UB-

San. Other dynamic approaches (Caver [72], TypeSan [49], HexType [60], Bitype

[101]) create their own hierarchical encoding schemes, which are essentially cus-

tomised type information data/structures (featuring less type information than

the standardised RTTI2), and accompanying type relationship check mechanism.

In these approaches, the customised type information is mapped to a run-time ob-

ject and stored in a disjoint metadata table. This metadata table is used as part

of the custom run-time type relationship checking mechanism. For both Caver

and HexType, their type-checking mechanisms incur significant performance over-

heads on the Firefox browser benchmarks, averaging 64.6% [72] and 60.9% [60]

respectively. These high overheads are acceptable for sanitisers, but being dy-

namic means complete path coverage is not guaranteed.
2Encoding schemes will often focus solely on a fast relationship test to determine if two

classes are related, so their hierarchical information is limited to these relationships and will
therefore often exclude other type information such as: the type of inheritance relationship
(virtual/multiple/single), the number of base classes, the name of the type, offset to base classes,
etc...

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 91

EffectiveScan [34], is perhaps the most comprehensive sanitiser available, of-

fering checks on types, casts, implicit casts, bound checks (for both complete-

and sub-object overflows), as well as use-after-free detection. Their prototype

attempts to provide an all-in-one sanitiser, detecting a larger variety of possible

vulnerabilities and removing the task of running multiple tools. These vulnera-

bilities are detected using type metadata assigned to every object using low-fat

pointers [68]. A fat pointer simply refers to a pointer that stores some metadata

on top of an object’s address. The metadata makes the pointer larger in size,

greater than one word, hence the word ‘fat’. A low-fat pointer is, therefore, a fat

pointer, with some additional encoding scheme, which limits the amount of ‘fat’

used around the object address; i.e. utilising any unused bits, like those guaran-

teed to be zero. Low-fat pointers allow quick and easy access to the metadata and

in the case of EffectiveScan, provides all the metadata required for their checking

and detection schemes. With such comprehensive checks, it is unsurprising that

EffectiveScan has high overheads (even for a sanitiser), averaging 422% [34] on

the Firefox browser benchmarks.

Always-On Sanitisers TypeSan [49], Bitype [101], and CastSan [90] market

themselves as ‘always-on sanitisers’ rather than as mitigations. Always-on sani-

tisers blur the lines between the distinct expectations of both mitigations and

sanitisers, as they often both mitigate attacks at run-time, but also find vulnera-

bilities and produce debug diagnostics. Their expected performance overheads are

more lenient than that of true mitigations, which must demonstrate less than 10%

performance overheads (considered to be the acceptable slowdown) before even

being considered for real-world adoption [120]. These more lenient expectations of

performance overheads can be seen in TypeSan’s and Bitype’s results, respectively

achieving on average a 34% and 16% performance increase for the Firefox browser

benchmarks. These tools use hierarchical encoding schemes alongside disjoint

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 92

metadata tables to perform their type-checking techniques and, although these

techniques produce significantly less slowdown compared to other sanitiser works,

they are still considered (when viewed as a mitigation) too slow for real-world

adoption.

Mitigations Clang CFI [131] is a real world mitigation, offered within the Clang

compiler. The Clang Team has not reported on the run-time performance of its

CFI mitigation, but it was analysed against the dynamic sanitiser CastSan [90].

According to the CastSan paper [90], Clang CFI applies an average of only 2.04%

performance overhead on SPEC CPU2006 benchmarks [50, 123], and CastSan it-

self reported 1% overhead. Unfortunately, the CastSan paper did not evaluate

itself or Clang CFI against the Firefox benchmarks, likely due to the discontin-

uation of the Octane benchmarks in 2017 [134]. In all other papers discussed,

the Firefox benchmarks induced much higher overhead costs compared to SPEC

CPU2006 (for example, Bitype’s overhead was 1.8% on SPEC CPU2006 com-

pared to 16% on Firefox benchmarks). The SPEC CPU2006 consists of seven

C++ benchmark programs, three of which contain no cast operations [49], and

out of the four that do, only two (Deal.II and omnetpp) utilise dynamic casting.

This brings into question how representative an average run-time overhead is,

when it is generated from the SPEC CPU2006 benchmarks.

4.3 Type Inclusion Testing

Many of the encoding schemes used in the above sanitisers and mitigation ap-

proaches were influenced by the field of type inclusion testing. Type inclusion

testing is the act of checking a type is related to another in a hierarchy, with

most work focusing on developing a technique of constant time, linear space, and

(particularly for work in later years [18, 35, 66, 143]) a compatibility with both

multiple and virtual inheritance. In all cases, each of the techniques introduce

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 93

their own type encoding scheme to represent type information, alongside a sub-

type testing function.

Adding a type encoding facility to determine object types in C++ was first

posed by Dmitry Lenkov in 1991 [73]. Lenkov then went on to work alongside

Bjarne Stroustrup to design the mechanisms for run-time type identification in

C++ [128], which was accepted by the ANSI/ISO committee by March 1993

[127]. But the concept of type inclusion testing preceded C++ and other OO

languages. One of the earliest works by Schubert at el. [111], tests type inclusion

using range checks. Classes are assigned an interval [l, u], where each number

within this range represents a derived class. If one class’s interval exists within

another, then they are related. This technique is cost-effective but limited only to

single inheritance. Later work by Zibin and Gil [143], was able to apply this same

range check to their encoding scheme called PQ-Encoding [143]. PQ-Encoding

uses PQ-trees [12], a tree based data structure used to represent permutations

of a set. The encoded data set, used in the PQ-Encoding scheme, is generated

from a PQ-tree, which holds values representing the intervals assigned to each

class. Intervals are generated using the PQ-Encoding algorithm, which finds the

best permutation of the PQ-tree using some prescribed hierarchical constraints

for each resulting interval. These intervals are assigned in such a way that simple

type inclusion range tests can be performed not just for single inheritance, but

for multiple inheritance as well.

Wirth [139] presented a linked list solution to represent the class hierarchy and

a sub-type test that traversed this structure, looking for an equality match. The

technique required little additional memory, but only worked for single inheritance.

It could be extended with backtracking for multiple inheritance, however, back-

tracking added considerable run-time overheads to an already expensive type test-

ing technique, as the cost of testing was directly impacted by the distance of the

two types within the hierarchy. A faster technique, and one adopted in some early

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 94

compilers [65, 29], was encoding type information in binary matrices. Type inclu-

sion testing, therefore, becomes a simple element check at Matrix(Target, Source).

Inclusion testing was fast and efficient, but has quadratic memory space require-

ments. Techniques to compress the matrix can reduce the amount of required

space, but often results in slower verification testing. As seen with Vitek et al.

Packed Encoding and Compacted Encoding schemes [137], any form of matrix

compression creates a trade-off between space and time.

Cohen was the first practical solution for constant time sub-type testing [24].

It assigned every class a unique type ID and inheritance array. The array stores

the type IDs for each class it inherited from, positioned at the index equiva-

lent to their own unique ID. This results in a simple array bounds check and

comparison, but was only applicable to single inheritance. After Cohen’s paper,

attempts were made to reduce the memory capacity of hierarchical encoding, us-

ing bit-vectors (also known as bit arrays). Caseau describes a top-down hierarchy

encoding scheme [18] that maps the hierarchy to an upper semi-lattice structure

(transforming where necessary) and assigns each node a bit-vector, representing

each class and its inheritance relationships. Each bit-vector (within that hierar-

chy) is unique, but is also guaranteed to contain the union of all its base class

bit-vectors. Type inclusion testing is fast, requiring only a few bit-wise opera-

tions. Krall et al [66] and Vitek et al. [137] expand on Caseau’s work, creating

two different encoding schemes without the requirement of a lattice-based hierar-

chy mapping.

4.4 What about Dynamic Casting?

Dynamic casting (introduced in Section 3.4.4) can be used to securely perform

a down-cast. If line 7 of our type confusion example (Figure 41) was replaced

with a dynamic cast, then no memory violation or control flow high-jack could

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 95

occur. Unfortunately, the dynamic cast mechanism and its use of RTTI has

memory and executional overheads, which are often regarded as prohibitively high

[49, 72, 60, 101]. In our own experiments we have shown dynamic down-casting

to be a minimum of one order of magnitude slower than that of static casting.

Others, such as Lee at al., reported dynamic casting to be two orders of magnitude

slower than static casting on average [72], but as we will see in Section 5.4.1, this

estimate is questionable due to the type dependencies of dynamic casting. Either

way, dynamic casting incurs an obvious expense, which is why it is often avoided.

Surprisingly, despite all the work done in type inclusion testing, none of

the published work [18, 24, 66, 111, 137, 139, 143] discusses how their encod-

ing schemes can be applied to dynamic casting, one of the fundamental type-

checking facilities included in C++. Without this discussion, it is unclear how

these schemes could be incorporated as part of the dynamic cast operation, specif-

ically in the case of multiple and/or virtual inheritance. Integrating any of these

encoding schemes for single inheritance is easy; objects have only one address-

point, meaning no pointer adjustment is needed, and therefore, dynamic casting

is just a type inclusion check. However, a dynamic cast may perform a pointer ad-

justment for objects with multiple address-points, like those from multiple and/or

virtual inheritance hierarchies. To perform an object pointer adjustment, access

to run-time offset information is required through a mapping between types and

offset data. As none of these schemes (most notably those that target multiple

inheritance [18, 66, 143]) consider dynamic casting, this mapping between types

and offset information is also overlooked. Without this consideration, their en-

coding schemes are limited in their practical use and could never outright replace

RTTI. We will now discuss work that specifically targets dynamic casting, not

just type inclusion testing.

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 96

Fast Dynamic Casting The most notable work in dynamic cast optimisation

is that of Gibbs and Stroustrup and their fast dynamic casting technique [45]. In

their work, every class is assigned a prime multiplier, a type ID, and an offset

value, adding three integers to that class’s vtable. A class’s prime multiplier must

be unique from its base class prime multipliers, but can be the same as other

classes in the hierarchy, provided that they do not share a common descendant.

A class’s type ID is equal to the product of its own prime multiplier and all of its

base class prime multipliers (note that every prime in this calculation is unique).

As a class’s type ID is simply a multiple of unique prime numbers, then any base

class can be quickly verified using a check for divisibility. That is, class X is a

base of class Y if and only if

type ID(X) mod type ID(Y) = 0

Figure 43 provides an example of the fast dynamic casting encoding scheme.

Figure 43b presents a new virtual inheritance hierarchy and accompanying object

of the most-derived class B. Figure 43a presents an offset table, created as part

of the encoding scheme, which stores the three offset values to each address-point

in the complete B object. Lastly, Figure 43c presents the result of the encoding,

listing the prime multiplier, type ID, and offset value assigned to each class in

that hierarchy.

Offset values are used to retrieve offset information from the offset table, pro-

viding a way to determine the offset location of a sub-object at run-time. The

calculation is as follows,

i = offset value(Y) mod prime multiplier(X)

where X is the sub-object type (base class), Y is the complete object type, and i

is the index entry of the offset table, which provides the offset adjustment to X

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 97

1 class A { ... };
2 class V { ... };
3 class B: A, virtual V { ... };

Index 0 1 2
Offset 0 8 24

(a)

(b)

A B V
Prime Identifier 2 3 5

Type ID 2 30 5
Offset Value 0 27 0

(c)

Figure 43: Fast Dynamic Cast Example

in Y . Each class’s offset value is calculated so that the above equation is satisfied

for all unambiguous base classes X in Y . In our example, offset value(B) = 27 ,

as this was the lowest integer satisfying

offset value(B) mod 2 = 1

offset value(B) mod 3 = 0

offset value(B) mod 5 = 2 .

This technique performs a fast, constant time type inclusion test and offset re-

trieval for dynamic cast operations, but it also has hierarchical limitations. These

limitations come from the capacity of the type ID variable, which restricts the

depth of the hierarchies this scheme can represent. The type ID variable stores

the product of a set of unique prime numbers and can overflow if too many prime

multipliers are used. For example, the capacity of a 32-bit (or 64-bit) word is

surpassed when calculating the product of the first 10 (or 16) prime numbers.

Although Gibbs and Stroustrup’s design [45] allows for repeated prime identifiers

across the hierarchy, repeats must not share a common descendant. This means,

the greater the depth of a hierarchy, the larger the type ID variable needs to be,

which overall restricts fast dynamic casting to shallow hierarchies. For this reason,

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 98

Gibbs and Stroustrup’s technique is primarily aimed at smaller applications, with

smaller hierarchies, like those in embedded systems [45].

Dechev et al. [32] evaluated the applicability of Gibbs and Stroustrup’s fast

dynamic casting technique within a Data Management Service, which is part of

a Mission Data System application. This application is part of a mission critical

system for remote autonomous spacecrafts and was developed by the Jet Propul-

sion Laboratory [91] (a NASA funded research facility). Through this evaluation,

they found an improved heuristic method of Gibbs and Stroustrup’s type ID as-

signment scheme, which better assigns prime multipliers to reduce the size of

type ID values in non-virtual hierarchies. This, in some cases, can increase the

overall size of hierarchies that can be encoded using this improved scheme, but

the scheme is still restricted to shallow hierarchies. The fast dynamic casting

technique was later implemented within a library called EVL (Extended Virtual

function Library) [71]. Their library supports multi-methods, an extension to

the classic virtual function, where the run-time implementation of the function

(through dynamic dispatch) is dependent on the run-time type of two or more

objects.

Perfect Hashing Ducournau [35] presented a new encoding scheme and type

inclusion test using perfect hashing. In this scheme, additional type informa-

tion is added to the vtable along with a pointer to a hash-table, storing offset

information. Their paper trials a few different hash functions, using mod and

bitwise AND operations for speedy type inclusion testing. However, there is no

performance comparison with Gibbs and Stroustrup’s fast dynamic casting [45],

but an inspection of the code snippets available in each paper would suggest fast

dynamic casting outperforms Ducournau’s perfect hashing. In addition, perfect

hashing only works for virtual inheritance, requiring further adaptation for full

compatibility with all types of hierarchies.

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 99

Fail-Fast Dynamic Sub-type Checking Padhye and Sen [100] presented an

encoding scheme called Fail-Fast, that optimises for failed dynamic casts, i.e.

casts that result in a null return. As discussed in Section 3.4.4, dynamic casts

will recursively traverse an RTTI data structure, searching for an RTTI pointer

that matches the cast’s target type. When source and target types are unrelated

at run-time, these calls are often the most expensive, as every RTTI object must

be checked before a null result is returned. Padhye and Sen observed in their

own experiments that 74-93% of dynamic casts result in a null return. With

this observation, they optimised only for failed dynamic casting to avoid complete

RTTI traversal. Although targeting failed dynamic casts appeared fruitful in their

own experiments (achieving 1.44x-2.74x speedup), we found that only 1.02% of

run-time dynamic casts resulted in a null return in our own investigations of the

Deal.II library [5] (discussed in Chapter 5). Thus the effectiveness of Fail-Fast

is subjective to the code it optimises and cannot be recommended as a universal

optimisation technique.

HexType HexType [60], as previously mentioned, is a sanitiser tool that verifies

cast safety using its own hierarchical encoding scheme. It targets all forms of

casting and instruments a run-time type check at each cast location. The HexType

sanitiser introduces an optimised dynamic casting mechanism that utilises its own

hierarchical encoding scheme. However, the introduction of the optimised dynamic

casting mechanism was solely to reduce the overheads introduced by the sanitiser

itself. So although HexType optimises dynamic casting, it is, first and foremost, a

sanitiser tool, so it does not evaluate the performance of dynamic casting outside of

the overheads introduced by the sanitiser as a whole. Thus it is hard to determine

the performance benefits of their optimised dynamic casting technique.

CHAPTER 4. TYPE CONFUSION VULNERABILITIES 100

4.5 Concluding Discussion

It is clear that there is an abundance of work in type inclusion testing and en-

coding schemes, each attempting to find the best trade-offs between time, space,

and hierarchical coverage. Dynamic casting, which is known to be an expensive

operation, has a notable use for such schemes, as a type inclusion check must

be performed before any cast adjustment. Despite the obvious applicability of

type inclusion testing techniques in dynamic cast operations and the possible per-

formance improvements they could achieve, we found only three type inclusion

works that explicitly target dynamic cast optimisation. These works were Gibbs

and Stroustrup’s fast dynamic casting, Ducournau’s perfect hashing, and Padhye

and Sen’s Fail-Fast checking. Fast dynamic casting achieved high performance,

with a constant-time checking mechanism, but limits the size of the hierarchy.

Perfect hashing could encode any size hierarchy but has slower performance and

cannot handle non-virtual inheritance. Fail-Fast checking can improve the perfor-

mance of programs with high occurrences of failed dynamic cast operations, but

make no improvements to successful cast operations and therefore cannot be a

universal solution. We thus conclude that there are still opportunities to optimise

dynamic casting, both in speed and hierarchical coverage.

Chapter 5

Memoised Casting

We have looked at past research on type confusion, type inclusion testing, and

dynamic cast optimisation, concluding that there are more research opportunities

to be had in optimising the dynamic cast operation. This chapter presents our

optimisation technique.

5.1 Introduction

In the previous chapter, we discussed the prevalence of type confusion vulnerabil-

ities in mainstream software and the security threat they pose. We also discussed

various prevention methods and observed that safer casting techniques could pre-

vent most type confusion vulnerabilities. Dynamic casting is a facility offered by

the C++ language, which can safely and correctly perform a down-cast operation,

the most dangerous form of casting. However, despite its availability, dynamic

casting is often omitted due to performance overheads, which are regarded as pro-

hibitively high [49, 72, 60, 101]. Whenever dynamic casting is deployed, it comes

at a cost; that cost comes from type-checking, as this requires a recursive traversal

of an object’s RTTI data-structure (Section 3.4.4). The traversal depth is deter-

mined by the distance (within the hierarchy) between the source and target types

101

CHAPTER 5. MEMOISED CASTING 102

supplied to the dynamic cast. The greater the distance, the greater the cost.

Research has primarily neglected optimisation techniques of the dynamic cast

mechanism, favouring complex encoding schemes focused on fast type inclusion

testing. However, RTTI provides the most robust and complete type information

system and conforms to both language standards and ABI specifications. For this

reason, we chose to design an effective and easy to deploy optimisation technique

called MemCast. MemCast is a memoising wrapper function for the dynamic cast

mechanism, which removes much of the expense of RTTI checks and improves its

overall performance. With this improved performance, there is no reason why a

programmer should shy away from deploying dynamic casts through the MemCast

wrapper.

Hot-Paths From our experimental work (Section 5.2), we made two critical

observations:

1. The cost of a single, one-off dynamic cast call is almost negligible in the

context of an entire program, but when it occurs on a hot-path (i.e. fre-

quently called), its expense multiplies, magnifying the overhead.

2. Every dynamic cast call has a fixed target type but a variable source type.

To provide an example of these two observations, consider a simulation program

that attempts to track the population of foxes and rabbits within a given region

[8]. Figure 44a lists some of the code for this example. On line 10, there is a

dynamic cast with a fixed Herbivore target type, which exists within the for

loop defined on line 8. The iterations of this loop are dictated by the simulation

vector’s size, which determines the number of dynamic cast calls during execu-

tion, creating a possible hot-path. This particular cast can arise in one of two

ways (as seen in Figure 44b):

1. When anPtr addresses a Fox object, the cast fails, and hPtr* is set to NULL.

With a result of NULL, the if statement in line 10 also fails, and line 11 is

CHAPTER 5. MEMOISED CASTING 103

1 class Animal { virtual void action() = 0; };
2 class Herbivore { void nonVirtualFunction() {...} };
3 class Rabbit:Animal, Herbivore { virtual void action() {...}};
4 class Fox:Animal { virtual void action() {} };
5 ...
6 vector<Animal*> simulation;
7 ...
8 for(Animal *anPtr : simulation) {
9 anPtr->action();

10 if(Herbivore *hPtr=dynamic cast<Herbivore*>(anPtr))
11 hPtr->nonVirtualFunction();

(a) Dynamic cast hot-path (b) Object depiction

Figure 44: Dynamic Cast Hot Path with Depiction

never executed.

2. When anPtr addresses a Rabbit object, the cast is successful, and hPtr* is

assigned a new address equal to *anPtr + x. The adjustment of x, which

will have been retrieved from Rabbit’s RTTI object, is the offset to the

Herbivore sub-object.

One might expect an abundance of rabbits but relatively few foxes in the

simulation, as it attempts to represent a real-world scenario. With multiple

Rabbit objects, the code in Figure 44a will repeatedly cast the Rabbit objects

to the Herbivore sub-object. This means that the dynamic cast mechanism

repeatedly traverses the Rabbit RTTI data-structure and returns the same offset

displacement result. This repeated checking and lookup is inefficient.

Stability We found that many hot-path dynamic cast sites will perform the

same cast successively (i.e. cast the same source type as its previous execution).

We describe this successive recurrence of source types, for a given cast site, as

that cast’s stability. Section 5.2, expands on this concept and introduces a

calculation that, when used in part of a dynamic analysis investigation, can assign

a percentage value to each cast site representing its stability. Cast sites with

high stability (100%) receive the same source type with each execution, whereas

unstable sites (0%) receive a different source type with each visit.

CHAPTER 5. MEMOISED CASTING 104

MemCast This chapter investigates cast stability within a real-world library

application (Deal.II [5]), exposing the cost of repeated type-checking on dynamic

cast hot-paths. Motivated by this study, we built and designed MemCast, a

source-based memoising wrapper operation for the dynamic cast operator that

removes the repetitive RTTI traversal for successive casts. MemCast works by

reserving two words in global memory for each cast location. This pair of words is

used to store a unique ID for the last source type passed to the dynamic cast, a flag

indicating a successful cast or null pointer return, and (for the successful case) an

offset adjustment. By caching this data, MemCast can invoke the dynamic cast

mechanism once and avoid repetitive type-checking and RTTI traversal for suc-

cessive casts of the same source type.

The MemCast technique does incur a cost each time the cast site receives a

type different from the last; this cost is equal to the cost of a dynamic cast, plus

MemCast’s constant time type-checking technique and data caching mechanism.

However, the amortised run-time becomes vanishingly small over time for high-

stability casts, as the dynamic cast is not repeated for stable cast locations. When

repeated dynamic casts are removed, the cost of a MemCast is typically equivalent

to a virtual function call, which is approximately 6 times faster than the cheapest

form of dynamic casting. A MemCast can be marginally more expensive for

unstable casts, but we show through our experiments that only a small minority

of cases are unstable. Additionally, we can mathematically estimate the minimum

stability a cast site requires to outperform dynamic casting, indicating that most

cast locations benefit from our MemCast technique.

To demonstrate the benefits of MemCasting, we tested the technique on three

different C++ libraries. The libraries used in these tests were the Deal.II library

[5] (wich was the focus of our stability investigation), the OMNet++ library [98],

and the Antlr4 C++ run-time library [102]. In each case, we found an average

performance speedup between 1.63-1.68%, 1.11-1.97%, and 2.75-2.82% for each

CHAPTER 5. MEMOISED CASTING 105

library, respectively.

Contributions This chapter makes the following contributions:

• We introduce the concept of cast stability and how it can quantify the suc-

cessive recurrence of source type in down-cast locations as a percentage

through profiling.

• We investigate the stability of dynamic down-cast locations and perform a

systematic analysis to show where MemCasts are most beneficial for various

stability values.

• We introduce MemCast, an easy-to-deploy, memoising wrapper for the

dynamic cast operator that, when successful, is equivalent in cost to a vir-

tual function call.

• We evaluate MemCasting when applied to three different C++ libraries and

demonstrate an overall run-time performance improvement between 1.11%

and 2.82%.

Chapter Structure In Section 5.2 we introduce and investigate cast stability

within the Deal.II library. Our findings prompted the design and construction of

MemCast, which is discussed in Section 5.3, and a performance evaluation is dis-

cussed in Section 5.4. Beyond this, we briefly discuss related work in Section 5.5,

future work in Section 5.6, and finalise with a concluding discussion in Section 5.7.

5.2 Cast Stability and Deal.II Analysis

As mentioned previously, a key observation of the dynamic dispatch mechanism

is that the cast sites themselves (i.e. the individual casts located in the source

code) have fixed target types but variable source types that seldom vary, if at all.

In this section, we want to investigate the variation of source types for a typical

down-cast site. To do this, we introduce the concept of cast stability.

CHAPTER 5. MEMOISED CASTING 106

5.2.1 Cast Stability

Cast stability is used to describe the successive recurrence of source types for a

particular cast site location, which we quantify as a percentage:

Definition 5.2.1 (Cast Stability Formula). Let t1 , ..., tn be a sequence of source

types that a single cast site location receives after n visits. From this sequence of

types, the stability (S) of a cast site is

S = 1− C

P
. where P = n− 1 and C =

P∑
i=1

ti 6= ti+1 1

ti = ti+1 0.
(1)

Observe that P > 0 . The intuition is that C is the total number of times a source

type (tk), passed to the cast site, changes when compared to the previous source

type (tk−1) in the sequence; and P is the total number possible source type changes

that could occur (n − 1) excluding the first visit of the cast, as the initial source

type (t1) is not considered a change in the cast’s source type sequence. Finally,

observe that S ∈ R where 0 ≤ S ≤ 1 .

Example 5.2.1. Table 6 provides an example of calculating stability values for

five different cast sites, each executed n = 5 times, receiving a source type of either

A or B. The first execution of all five casts is ignored when counting source type

changes; as it is the initial value, it is not considered a change. The total number

of possible source changes is, therefore, P = n − 1 = 4 . For all successive source

types in the sequence, we count the number of times the source type changes (C)

from its previous type, which varies for each observed cast. From this, we can

calculate each cast site’s stability. Stability is presented as a percentage; the higher

that percentage, the more stable a cast site is.

CHAPTER 5. MEMOISED CASTING 107

Source type sequence
of each cast site

Total
Changes (C)

Calculation
S = 1 − C

P

Stability
(S)

A A A A A 0 1 − 0
4 100%

A A B B B 1 1 − 1
4 75%

A A B B A 2 1 − 2
4 50%

A B A A B 3 1 − 3
4 25%

A B A B A 4 1 − 4
4 0%

Table 6: Stability Calculation Example

5.2.2 Deal.II Experiments

We wanted to investigate cast stability in a real-world program. For this, we chose

the Deal.II library [5], a finite element library that was used as part of the SPEC

CPU 2006 benchmarks [123]. We chose this library partly because it illustrates

how dynamic casts are deployed in simulation and partly because it is open source.

We note that dynamic down-casts and cross casts are treated identically in our

analysis and within the MemCast mechanism, so there is no need to distinguish

between the two in this setting. For this reason, assume from this point forward

that any discussion of dynamic down-casting (the most common form of dynamic

casting) also encompasses dynamic cross-casting unless expressly stated.

Method We first needed to identify each dynamic down-cast within the source

to estimate cast stability within the Deal.II library (233,463 lines of C++ code,

over 594 separate files). It is not sufficient to use simple tools such as grep because

it is necessary to use type information to distinguish between dynamic up-casts

and dynamic down-casts. Dynamic up-casts are rewritten to static casts by the

compiler (Section 3.4.5), so their stability outcomes are irrelevant to our work as

they are already optimised by default. The compiler does not optimise dynamic

down-casts, so it is these casts we want to investigate. To identify each dynamic

down-cast, we built a Clang tool [130], which allowed us to leverage the Clang com-

piler’s front-end and static type inference engine to analyse the Deal.II library’s

CHAPTER 5. MEMOISED CASTING 108

abstract syntax tree (AST). Our tool extensively used the RecursiveASTVisitor

class, allowing us to visit each cast expression within the AST. The cast types

were then inspected to determine whether the cast was a dynamic down-cast, and

if so, the cast location was recorded in a separate text file. This tool identified a

total of 545 dynamic down-cast sites within the Deal.II library.

We wrote a Python script that would use the results of our Clang tool to

transform every dynamic cast site (identified in the separate text file) to generate

a new source version. The Python script replaced each dynamic cast call with

a macro that took the source and target types of the cast as arguments. The

rationale behind using a macro is that different instantiations of this macro, which

performed different forms of profiling, could be trialled without rerunning the

Clang tool and Python script. This macro was designed as a wrapper for the

dynamic cast operator, which profiled every cast location’s input and output

types. For our analysis, we used the example programs that came with the library,

each called step-x, where x is an integer. The run-time of each step-x program

varies from several minutes to a fraction of a second, reflecting the complexity

of the simulations (see [5] for further details). From the 59 programs provided,

49 compiled successfully, executed without run-time error and did not require

any fixed input. After transformation with our Python script, we found that 33 of

these programs performed at least one of the identified dynamic down-casts during

execution. After running all 33 programs, we found that only 82 of the 545 cast

sites we identified were exercised. Our analysis results are therefore based on these

82 sites. Note that each cast site exists within a Deal.II library function, where

the library itself is shared across all step-x programs. Therefore, each cast site

can be featured within the execution of multiple step-x programs1, namely those

programs that contain a control-flow path leading to the same library function.
1See Table 22, Appendix B for cast numbers, source locations, and featured steps.

CHAPTER 5. MEMOISED CASTING 109

Cast
Number Step-x

Total Casts
Performed −1

(P)

Total Source
Type Changes

(C)

Stability
(S = 1 − C

P)

49

10 13 0 100.00%
11 143 0 100.00%
24 105,119 0 100.00%
38 3 0 100.00%
47 51 0 100.00%

143 12b 29 12 58.62%
16b 79 32 59.49%

Table 7: Stability of Cast Site 49 and 143. Full results in Table 22 of Appendix B

5.2.3 Deal.II Results

After executing all 33 step-x programs, a total of 459 results were recorded. Each

recording focused on a particular cast, the step-x program it featured in, the

values of P and C (as defined in the stability equation in Definition 5.2.1), and

the stability calculated from those values. To present all 459 results here would

be excessive, so the full results are featured in Appendix B (Table 23). Table 7

presents a snippet of the full results, featuring two casts, cast number 49 and 1432.

Cast 49 featured in a total of five step-x example programs (steps 10, 11, 24, 38,

47), whereas cast 143 featured only in two (steps 12b and 16b). For each step-x

execution, the table lists the values for P, C and S . The results of these two

cast sites and all others recorded in the full results table (Appendix B, Table 23),

were consolidated into a single table (Table 8a). Table 8a shows how each cast

performed across all programs collectively, listing the cast number, the number

of step-x programs it featured in, the total values for P and C , and the overall

stability value (S), which was calculated from the total number of visits recorded

across all step-x programs S (rounded down).

Table 8b counts the number of cast sites that had an overall stability within a

given percentage range from Table 8a. This table shows that a majority, 60/82, of
2Note that casts were labeled numerically in the order they were found by the Clang Tool.

Some casts were not featured in the 33 step-x programs, which is why gaps appear in the cast
numbering within result tables.

CHAPTER 5. MEMOISED CASTING 110

Cast
Num

Fea-
tured
in N
Steps

Total
Casts

Performed
-1 (P)

Total
Source
Type

Changes
(C)

Overall
Stability

(S)

Cast
Num

Fea-
tured
in N
Steps

Total
Casts

Performed
-1 (P)

Total
Source
Type

Changes
(C)

Overall
Stability

(S)

1 29 62,183,926 1 99.99% 128 2 51 0 100.00%
2 17 590,168 0 100.00% 130 2 51 0 100.00%
3 11 493,809 0 100.00% 141 2 108 46 57.40%
4 11 493,809 0 100.00% 142 2 108 44 59.25%
5 2 772,416 0 100.00% 143 2 108 44 59.25%
6 3 23,913 0 100.00% 161 1 299 121 59.53%
7 29 56,770 1 99.99% 162 1 299 120 59.86%
8 30 122,307 1 99.99% 163 1 299 120 59.86%
9 27 48,714 1 99.99% 224 2 23,568 0 100.00%
10 3 310 0 100.00% 227 2 12 0 100.00%
11 11 410 0 100.00% 228 1 7 0 100.00%
12 6 435 0 100.00% 234 2 0 N/A N/A
13 5 286 0 100.00% 235 2 0 N/A N/A
14 2 30,930 0 100.00% 241 2 18 0 100.00%
15 30 342 1 99.70% 324 1 17 0 100.00%
16 14 311 0 100.00% 330 1 3,717 0 100.00%
17 1 32 0 100.00% 346 1 1,467 0 100.00%
18 30 25 1 96.00% 347 1 1,467 0 100.00%
19 30 25 1 96.00% 349 1 39 0 100.00%
20 9 79 9 88.60% 351 1 13 0 100.00%
21 9 79 9 88.60% 359 1 30 0 100.00%
22 9 79 9 88.60% 361 1 27 0 100.00%
23 9 79 9 88.60% 403 2 12 0 100.00%
24 4 1 0 100.00% 410 1 13 0 100.00%
25 4 1 0 100.00% 412 1 5,295 0 100.00%
26 4 1 1 0.00% 455 4 89 0 100.00%
27 2 4 0 100.00% 456 4 35 0 100.00%
28 3 1 0 100.00% 457 1 15 0 100.00%
29 3 3 0 100.00% 461 3 203,289 0 100.00%
30 5 1 0 100.00% 465 1 49,031 0 100.00%
31 5 1 0 100.00% 468 2 1,580 0 100.00%
32 3 1 0 100.00% 469 2 152 0 100.00%
33 7 1,799 0 100.00% 470 2 48 0 100.00%
34 3 9,361 0 100.00% 479 5 81,028 0 100.00%
49 5 105,329 0 100.00% 511 1 11 0 100.00%
54 1 4,017 0 100.00% 513 1 5 0 100.00%
70 2 46,624 0 100.00% 514 1 0 N/A N/A
115 2 51 0 100.00% 515 1 0 N/A N/A
121 3 59 0 100.00% 516 1 11 0 100.00%
123 3 6,875 0 100.00% 522 3 25 0 100.00%
126 2 104 0 100.00% 525 3 25 0 100.00%

Total 65365856 539 -
Average Stability 94.89%

(a) Resulting stability (rounded down) of each cast site across all step-x programs
Stability (%) s = 100 100> s ≥99 99> s ≥95 95> s ≥80 80> s ≥55 55> s >0 s = 0 N/A
Total Cast

Sites 60 5 2 4 6 0 1 4

(b) Stability Ranges

Table 8: Cast site results across all test programs

the cast sites in Table 8a are 100% stable and a further 11 have over 80% stability.

Only one cast, cast 26, was unstable (0% stability). This particular cast featured

in four step-x programs (Appendix B, Table 23). In three of these programs it

was visited exactly once, hence S is undefined. In the remaining program it was

visited exactly twice, so would not be considered to be on a hot-path. Only four

cast sites (228, 234, 514, and 515) had no stability value; this is because these

sites were visited once and only once in their respective step-x programs. If we

were to remove these casts from our analysis, focusing only on sites invoked more

CHAPTER 5. MEMOISED CASTING 111

than once, then 83% of all Deal.II’s dynamic down-casts are at least 99% stable

and 91% of all cast sites are at least 80% stable.

We can also calculate an average overall stability for all Deal.II’s dynamic

down-cast sites (see Table 8a). As most cast sites have a high stability, the

average stability of all 82 sites is 94.89%. That is, 94.89% of all Deal.II’s dynamic

down-casts are performing a type check, with RTTI traversal, identical to the

check performed in the previous cast visit. Given that collectively (see total in

Table 8a), 65,365,856 casts are performed beyond the initial cast call, and only

539 source type changes are recorded in total, this means (65,365,856 - 539 =)

65,365,317 dynamic casts were performed unnecessarily throughout the execution

of all 33 programs. This is an extraordinary level of redundancy.

5.3 Design and Implementation

MemCast is an effective and efficient memoising wrapper function for the dynamic

cast mechanism. It is an optimised version of dynamic cast, which reduces its

overhead, making it a viable security mitigation against type confusion vulnerabil-

ities. It is a source-based tool, allowing programmers to employ MemCast as and

where they wish. This could be as a blanket conversion of all cast sites or a more

tactical deployment to the locations where it would be most beneficial. Mem-

Cast is simple to deploy, requiring only two lines of code per cast site. The first

line is the instantiation of a supporting MemCast object (called a MemCache).

The MemCache object’s sole purpose is to provide a cache for that particular

cast located in the source code. The second line of code is the MemCast itself,

where a dynamic cast operator would be deployed using a MemCast wrapper

instead. The MemCast wrapper receives the same source object and target type

as a dynamic cast but must also receive the MemCache object as an additional

parameter. The MemCache object is used for both type-checking and pointer

CHAPTER 5. MEMOISED CASTING 112

offset retrieval. During run-time execution, if the MemCast functions receive a

different source type than the type received in the previous visit, then the cast

will default to a dynamic cast. After a default dynamic cast is executed, new

type data will be cached in the MemCache object under the assumption that the

next cast visit will be stable.

5.3.1 MemCache Objects

To create a memoisation technique for the dynamic cast operator, we need a data

structure to cache the required data. The data structure used (and the data

itself) must be carefully chosen to limit overheads. A naive approach that we

attempted initially was to use splay trees [116]. A splay tree is a self-balancing

binary tree that will rearrange itself so that the most recently accessed element

will be the quickest to access again. Our initial idea was to link a splay tree to

each cast site so that MemCast could dynamically add each new source type to the

tree and easily access the most recently used. The thought was that splay trees

would benefit high-stability casts and speed up some low-stability casts, as the

self-balancing mechanism could aid fast access to other seen source types. This,

however, was not the case. We found that the cost of balancing the splay tree

after every use was on par with the cost of dynamic casting. From this, we deduce

that any search or management of a data structure must be kept to a minimum.

Thus came our final storage design, a single data set per cast site that stores its

last seen source type. This simple idea provides direct access to the cached data,

simplifies cache management to a straightforward overwrite, and removes the need

for an expensive search technique.

One MemCache Per Cast MemCast takes advantage of the fixed target types

used in dynamic casting by assigning each cast location its own MemCache ob-

ject, thus creating many light-weight cache objects. Each MemCache object is

CHAPTER 5. MEMOISED CASTING 113

used solely to store source-type information for its associated cast site. During

a casting operation, the MemCast function will receive its MemCache object as

a parameter, and as these objects will be declared as global, their address loca-

tion is known at compile-time and can be hard coded into the MemCast function

call. This combination essentially creates a hard-coded mapping between source

type information (within the MemCache object) and dynamic cast sites using the

MemCast wrapper.

MemCache Data-Structure We questioned how many entries a MemCache

object should store. Should it store the data of all the previous dynamic cast source

types? Or is it enough to store just a few? We trialled several options, starting

with splay trees [116] to store all seen source types (as previously discussed) and

finished with a single MemCache entry storing only the last seen source type. It

was the single MemCache entry that produced the best results. With a single

MemCache entry, we store only the data from the last dynamically cast object

and discard any previous data. Although there is an obvious cost to only caching

one cast result, as every new source type will default to a dynamic cast, in truth,

we found that the upkeep and search of any multi-entry data structure was more

expensive than an occasional default dynamic cast; this was because of the high

stability of our cast sites.

Two Words in Size To further optimise MemCast function calls, MemCache

objects were limited to two machine words to better fit the machine cache-lines

and reduce cache misses. The first word stores the vptr of the last source

object that defaulted to a dynamic cast, and the second word stores the offset

displacement, if an address-point displacement occurred.

Why Virtual Pointers? Recall from Section 2.4.4 that the physical addresses

of RTTI objects are used as type identification keys for run-time objects. That is

CHAPTER 5. MEMOISED CASTING 114

Figure 45: Virtual pointers vs RTTI pointers

to say, if two run-time objects address the same RTTI object from their vtables,

then those objects have the same type. One might wonder why RTTI addresses

are used rather than vtable addresses (i.e. vptrs)? Well, the reason for this can

be seen in Figure 45. In this example, we depict multiple instances of a class Z.

These Z objects display both multiple and virtual inheritances, as they contain

four sub-object instances from classes V, W, X, and Y. Each sub-object instance

contains its own vptr, which addresses the relevant sub-vtable within the complete

Z vtable. From these four vtable entry points, the same global RTTI address can

be accessed at an offset of -8. So no matter the address-point used to access

a Z object, the corresponding vptr has access to the same RTTI address for Z,

stored at the location vptr-8. This provides a constant-time mechanism for run-

time type-checking. Using a Z object’s vptr as its type identification key would

necessitate checking the key was drawn from a set of four valid vptrs, which would

entail a search. Alternatively, one might consider bounds checking, i.e. if vptrZ1
≤ vptr? ≤ vptrZ4, but this assumes that all sub-vtables appear consecutively in

memory, which is not guaranteed.

Although vptrs are not appropriate as a type identifier in the dynamic cast

CHAPTER 5. MEMOISED CASTING 115

mechanism, they happen to be perfectly suited for MemCast. A vptr is both

unique to a class type and unique to a sub-object within that type. For example,

we can see that each sub-object in Z (Figure 45) has its own unique vptr. Therefore

we can deploy a vptr as an address-point identifier. This is useful, as a cast

operation is merely an offset adjustment from one address-point to another. For

example, if we perform a cast to a Z* from any address-point in a complete Z

object, then the following displacements would occur from each sub-object:

From sub-object vptr Displacement

V vptrZ1 0

W vptrZ2 -oW

X vptrZ3 -oX

Y vptrZ4 -oY

Z (complete object) vptrZ1 0

Notice that we can create a mapping between vptrs and displacements: cast sites

have fixed target types, so the displacement from a vptr location to a fixed target

is always the same. This is the fundamental premise behind MemCast and its

MemCache objects.

MemCache object Structure for Optimal Execution Most modern proces-

sors are 64-bits and use 64-byte cache lines (at least for all current Intel processors

[59]). With this in mind, we designed the MemCache objects for optimum per-

formance on such machines. Figure 46a lists the source code for our MemCache

objects, which are defined by a struct called memCache. The struct is forcibly

aligned at 16-bytes (line 1) and contains two data members, vptr (line 5) and

offset (line 6), of types uintptr t and intptr t, respectively. These two types

are fixed-width integer types (one unsigned and one signed) capable of holding

CHAPTER 5. MEMOISED CASTING 116

1 struct __attribute__((align(16))) memCache {
2 public:
3 constexpr memCache() {}
4
5 uintptr t vptr = 0;
6 intptr t offset = 0;
7 }

(a) MemCache struct (b) MemCache object layout

Figure 46: MemCache structure and object layout

Target Type
(T)

Source Object
(s)

Successful
Cast Result

Failed
Cast Result

Pointer Pointer Pointer Pointer to Null
Reference Reference Reference Invoke (std::bad cast)

Table 9: Type specifications of the dynamic cast operator

an 8-byte pointer. As these are the only data members, memCache objects are 16-

bytes in size (as seen in Figure 46b). With a size and forced alignment of 16-bytes,

memCache objects are aligned with cache lines, which are also 16-byte aligned [53].

The force of this is that memCache objects never straddle two cache lines, which

reduces the number of cache misses (as we found during development).

Furthermore, we set the memCache constructor to a constexpr. The constexpr

keyword will force the construction and initialisation of memCache objects to oc-

cur prior to execution (if possible). Shifting construction to compilation improves

performance further.

5.3.2 Dynamic Cast Wrapper

The dynamic dispatch mechanism will accept pointer and reference types as a tar-

get, but each type of target is resolved differently. The C++ standard stipulates,

what the source type should be, based on the target type of a dynamic cast, and

the result from both a successful and unsuccessful cast. Table 9 summaries these

expectations for the expression dynamic cast<T>(s), where T is the target type

and s is the object.

CHAPTER 5. MEMOISED CASTING 117

5.3.2.1 Enforcing Pointer and Reference Cast Expectations

Suppose a variable is assigned to a reference or a pointer to an object. We will

refer to the pointer or reference types as pr-types to make a clear distinction

between them and the type of the object itself. As dynamic casts process pr-

types differently, our wrapper must do the same, which means it requires multiple

definitions. To create multiple definitions based on a target’s pr-type, we use mul-

tiple class templates, each containing a single member function template (listed

in Figure 47).

Figure 47 presents three template specialisations, one for each possible target

pr-type: a pointer (target*), an lvalue reference (target&), or an rvalue reference

(target&&). The two-layer template approach, using both a class and member

function template, is necessary to allow for pr-type manipulation within the func-

tion body. For example, if we call the following MemCast function:

memCast Resolver<V&>::memCast(c,a);

for a target V&, a source type A a, and a memCache object c, the second template

in Figure 47 will be instantiated. If we look at the class template signature:

template <class target> class memCast Resolver<target&>

the parameter in the class name memCast Resolver<V&> matches the pr-type of

the class signature name. However, the class template parameter, defined as

template <class target>, has no pr-type assigned to it. This allows us to use

the template parameter (target) in the function body with our own choice of pr-

type. This is especially useful for reference targets, as they must be converted from

a referenced pr-type to a pointer pr-tyre to perform pointer arithmetic (required

for successful casts).

The class template that wraps the memCast function is also necessary, because

if the function was defined without this class template:

template<class target, class source> static inline

target memCast(memCache& cache, source& objSrc)

CHAPTER 5. MEMOISED CASTING 118

1 template <class target> class memCast_Resolver<target*>{
2 template<class source > static inline target*
3 memCast(memCache &cache, source* objSrc) { ... }
4 };
5
6 template <class target> class memCast_Resolver<target&>{
7 template<class source > static inline target&
8 memCast(memCache &cache, source& objSrc) { ... }
9 };

10
11 template <class target> class memCast_Resolver<target&&>{
12 template<class source > static inline target&&
13 memCast(memCache &cache, source& objSrc) { ... }
14 };

Figure 47: Template Specialisations for MemCast Resolver

and called using:

memCast<V&>(c,a);

then the template parameter target is fixed with a reference pr-type, making it

impossible to convert to a pointer, and in turn, perform pointer arithmetic.

Whenever a MemCast function is called in the source code, the compiler will

only instantiate one of the template specialisations in Figure 47; but only if the

source and target pr-types passed to that function match one of the pr-types

outlined in template signatures. If pr-types do not match, a compile-time error

will occur. For example, the following MemCast expression:

A* a;

memCast Resolver<V&>::memCast(c,a);

throws a compile-time error, just like it would for a dynamic cast (dynamic

cast<V&>(a)), as it is trying to cast a reference type to a pointer, which is not

allowed by the standard.

Targeting References vs Pointers When targeting reference types, the Mem-

Cast function is straightforward; if the source object’s vptr matches the cached

vptr (in the assigned MemCache object), we can perform a fast pointer adjustment

using the data stored in the MemCache object. If the vptrs are unequal, then the

CHAPTER 5. MEMOISED CASTING 119

cast defaults to a dynamic cast. If the dynamic cast fails, then a std::bad cast

exception is invoked.

MemCast needs only apply one form of memoisation for reference targets, but

there are two opportunities for memoisation for pointer targets. The first, like for

references, should handle successful casts by performing fast pointer adjustments;

but the second should catch unsuccessful casts, where a null pointer is returned.

From our Deal.II analysis, we found that 94 cast sites (out of the 459 sites tested)

returned a null pointer during execution. Of these 94 cast sites, 85 showed 100%

stability, and 88 were at least 80% stable. We cache both behaviours, not only

motivated by our own work, but in dependant work that suggests a high null return

rate in other software [100]. Both path-ways require a vptr match; therefore,

MemCast’s checking technique (for pointer targets) needs to distinguish between

vptrs that result in pointer adjustments and vptrs that result in null pointers. To

do this, we introduce vptr flags.

Vptr Flags We can place flags within vptrs without introducing extra boolean

variables. A vptr addresses a vtable at a given address-point. The address-

point of a vtable is always the address immediately after the RTTI (pointer) data

member, which is also the address of the first virtual function pointer, if one

exists (Section 2.4.2). Pointers themselves are 8-byte aligned, hence, the address-

point used to access the vtable must be an 8-byte aligned address. This, in turn,

means the address stored in all vptrs are 8-byte aligned. When represented at the

binary-level, an 8-byte aligned address is guaranteed to end with 000. Therefore,

these three bits can be repurposed as flags (Figure 48) when caching vptrs in the

MemCache objects. By using these three bits, we can retain the minimal 16-byte

size (2 words) of the MemCache objects (Section 5.3.1).

The vptr flags are used within the memCache objects as part of their cached

vptr. When a MemCast function defaults to a dynamic cast, the result of the

CHAPTER 5. MEMOISED CASTING 120

Figure 48: Vptr bit flags

Vptr flags Meaning
001 Pointer adjustment vptr
011 Null pointer vptr
000 No vptr assigned

Table 10: Vptr Flag Meanings

dynamic cast operator is checked to determine whether it is a null return or not.

In each case, the source object’s vptr is altered using a bit-wise OR operation, al-

tering the appropriate bits to distinguish which result was received. The modified

vptr is then cached in the memCache object, providing an unambiguous log of the

return result from the previous cast.

The meanings behind each set of vptr flags are described in Table 10. Bit 0

(the least significant bit) indicates whether the memCache::vptr data member is

zero. The vptr data member is initialised to zero and will remain zero until used

within a MemCast function call. Bit 1 indicates the result of the previous cast,

where 0 is a pointer adjustment, and 1 is a null return. Bit 2 goes unused.

5.3.2.2 MemCast Function Implementations

The MemCast Vptr Checking Algorithm Once a MemCast function is

called, the source object’s vptr must be checked against the MemCache vptr to

determine which optimised cast can be performed, if any. Algorithm 1 presents

the MemCast vptr checking algorithm, which receives both the source object vptr

(sovptr) and the MemCache vptr (mcvptr) as parameters. If mcvptr stores a non-

zero value, then the memCache object has been used in a previous MemCast call,

and the value stored in mcvptr will be a vtable address modified to end in either

a 001 or 011. Lines 3 and 5 of the algorithm perform bit-wise OR operations

followed by a vptr pointer comparisons. Only when the vtable addresses (stored

in the most significant parts of the vptr) AND the vptr flags match will either if

CHAPTER 5. MEMOISED CASTING 121

Algorithm 1: MemCast Vptr Check
1 mcvptr ← memCache vptr ;
2 sovptr ← source object vptr ;
3 if mcvptr == (sovptr |1) then /* sovptr ends in 001 */
4 pointer adjustment
5 else if mcvptr == (sovptr |3) then /* sovptr ends in 011 */
6 return NULL pointer ; /* Pointer targets only */
7 else
8 default to dynamic cast

statement be exercised. If there is no match, then the function will default to a

dynamic cast.

This checking technique also provides a level of security by enforcing a default

dynamic cast call with any new memCache object. When a memCache object is

initialised, its vptr is set to zero and will stay as zero until it is updated by a

default dynamic cast. Initialising a vptr to zero ensures that neither if-branch is

selected on an unvisited MemCache object. To see this, suppose that our MemCast

function does not safeguard against unvisited MemCache objects. Also, suppose

that an object had been deliberately mutated to contain a zero value where a

vptr would usually be stored. Then, if such an object were passed to an unvisited

MemCast site, the zero in the MemCache object would match the zero in the

perturbed object. This would result in a successful MemCast result, providing

an opportunity for a type confusion attack, as it would circumvent the default

dynamic cast.

MemCast Function For Pointers Figure 49 provides the implementation

of the memCast function (within the memCast Resolver template) for a target*

type. The function itself (line 12) receives two parameters; the first is the memCache

object (called cache) associated with the cast location, and the second is the

source object (called objSrc). The function body (lines 13-18) performs the vptr

check described in Algorithm 1. To simplify access to the source object’s vptr,

CHAPTER 5. MEMOISED CASTING 122

1 enum VPTR_RESULT_FLAG {
2 VPTR = 1, // 001
3 NULL_PTR = 3 // 011
4 };
5 ...
6 class obj {
7 uintptr t vptr;
8 }
9 ...

10 template <class target> class memCast_Resolver<target*> {
11 template<class source > static inline target*
12 memCast(memCache &cache, source* objSrc) {
13 if(cache.vptr == ((((obj*)objSrc)->vptr) | VPTR)) {
14 return (target*)((char*)objSrc + cache.offset);
15 } else if(cache.vptr == ((((obj*)objSrc)->vptr) | NULL_PTR)) {
16 return NULL;
17 }
18 return memCast_dynamicCast<target*,source>(cache, objSrc);
19 }
20 };

Figure 49: MemCast Function for Pointer Targets

we cast this object to a dummy class called obj, which has a single data member

of type uinptr t. (The C++11 uinptr t data type is convenient in this setting

because it specifies an unsigned integer guaranteed to match the size of a pointer,

allowing conversion back and forth without truncation.) The cast operation is a

C-style cast, which incurs no type-checking or additional assembly instructions

once compiled (Section 3.4.1), therefore incurring no additional run-time cost. In

addition the vptr field resides at the zero offset, hence the data member access

does not require any pointer adjustment.

The purpose of the casts (in lines 13 and 15) is to bypass static type-safety

checks and assign the object’s vptr to the correct type needed for the bit-wise

operation and comparison. If a vptr match occurs from either comparison, the

function will return a new pointer derived from some simple pointer arithmetic

(line 14) or a null pointer (line 16). If the comparisons are unsuccessful, then the

call defaults to a dynamic cast. This default dynamic cast is another wrapper

function, called MemCast dynamicCast (line 18), which houses the standardised

dynamic cast call. This function is responsible for calling the dynamic cast

operator and updating the associated memCache object.

CHAPTER 5. MEMOISED CASTING 123

21 template< class target,class source >
22 target memCast_dynamicCast(memCache &cache, source* ptr) {
23 target tar = dynamic cast<target>(ptr);
24 if(tar) {
25 cache.vptr = (((obj*)ptr)->vptr) | VPTR;
26 cache.offset = (uintptr t)((char*)tar - (char*)ptr);
27 } else {
28 cache.vptr = (((obj*)ptr)->vptr) | NULL_PTR;
29 }
30 return tar;
31 }

Figure 50: MemCast’s default Dynamic Cast Wrapper

32 template <class target> class memCast_Resolver<target&> {
33 template<class source> static inline target&
34 memCast(memCache &cache, source& objSrc) {
35 if(cache.vptr == ((((obj*)&objSrc)->vptr) | VPTR)) {
36 return *((target*)((char*)&objSrc + cache.offset));
37 }
38 target* tar = memCast_dynamicCast<target*, source>(cache, &objSrc);
39 if(!tar)
40 throw std::bad cast();
41 return *tar;
42 }
43 };

Figure 51: MemCast function for lvalue references targets

Defaulting to a Dynamic Cast When MemCast defaults to a dynamic cast,

it must record the results and cache them for later use. Figure 50 provides the

source code for a MemCast dynamicCast wrapper function that caches data in the

memCache object provided. The first line of the function body (line 23) performs

a standard dynamic cast and stores the result in the variable tar. Following this,

an if statement is executed, determining what is cached in the memCache object.

Lines 25 and 26 are executed if the dynamic cast was successful, and line 28 if

unsuccessful (i.e. tar is a null pointer). In both outcomes, the object’s vptr has

its vptr flags set appropriately (enum VPTR = 1 or NULL PTR = 3) before being

cached in the memCache object. Line 26, which is only executed for successful casts,

calculates the offset displacement from the source address-point to the newly cast

target address-point and caches the result.

CHAPTER 5. MEMOISED CASTING 124

MemCast Function For References Figure 51 provides the implementation

of the memCast function (within the memCast Resolver template) for a target&

type. As casts to reference types produce a std::bad cast exception when

they fail, there is no value in caching null returns for reference types as an

exception needs to be thrown immediately anyway. Therefore the body of the

memCast Resolver does not handle a null return. Instead, if the vptr compari-

son (line 35) fails, a default dynamic cast is executed and returns the result as

a pointer type (line 38). If the result is null (line 39), the std::bad cast ex-

ception is executed (line 40); otherwise, the result is dereferenced and returned

(line 41). The MemCast Resolver function implementation for rvalues references

(Target&&) follows this same pattern.

5.4 Experimental Results

In this section, we evaluate the performance of MemCast compared to both static

and dynamic casting, providing insight into the actual cost of a dynamic cast,

demonstrating the superiority of MemCasting. Later, we demonstrate the impact

MemCast has on a real-world program by applying MemCast to the Deal.II library.

All experiments were performed on a 1.9GHz 64-bit Intel i7 UNIX-base machine

with 16GiB of DDR4 SDRAM, using code compiled by the Clang 11.0.0 compiler.

The Clang compiler conforms to the Itanium ABI [23] and C++ standard [57] and

uses the GNU’s libstdc++ standard library implementation [44], which provides

the dynamic cast implementation.

5.4.1 The True Cost of Casting

5.4.1.1 Straight-Line Fitting Method

The time it takes to execute a cast must be measured in nanoseconds, and it can

be challenging to accurately capture such timings due to naturally occurring noise.

CHAPTER 5. MEMOISED CASTING 125

To address this, we use Moreno and Fischmeister’s straight-line fitting technique

[89], which was explicitly designed to capture the time of small operations in the

context of noise.

Moreno and Fischmeister’s technique gathers a set of points (xi , ti), where ti

is the recorded execution time of an operation performed xi times consecutively.

From these points, the method estimates a line of best fit t = ax + b, where the

gradient of the line, a, is the estimated execution time for a single cast, and the

y-intercept, b, is the systematic (reproducible) error.

The accuracy of this technique comes from its ability to eradicate systematic

errors and minimise non-systematic errors. Systematic errors, like the cost of

calling time-management functions, are constant overheads across all tests. Non-

systematic errors, like the execution noise of the machine (the impact of other

processes, peaks and troughs in processor performance, etc.), are almost random

effects that change from run to run. By calculating the line of best fit, the system-

atic error is removed from the time estimate and shifted into the t-intercept of the

linear equation. Non-systematic errors are minimised by purging any data point

anomalies, i.e. removing any outliers that significantly deviate from the line of

best fit. Once removed the line of best fit is recalculated, ignoring the anomalies.

In our application of straight-line fitting, the operation performed is a single

cast at a fixed call site. We choose to record the execution time of that cast (static,

dynamic or MemCast) 200 times, where xi varies between 1 and 5, resulting in a set

of 1000 points: (1 , t1), . . . , (5 , t5); (1 , t6), . . . , (5 , t10); . . . ; (1 , t996), . . . , (5 , t1000).

From these points we calculate the line of best fit.

5.4.1.2 Testing Hierarchies

The dynamic cast operator is realised as a virtual member function in the RTTI

hierarchy. Each type of RTTI used to represent an object type (recall the types

si class type info and vmi class type info from Section 2.4.4) has its own

CHAPTER 5. MEMOISED CASTING 126

(a) G Instance

1 class X { int x; virtual void fx() {}};
2 class Y : X { int y; virtual void fy() {}};
3 class Z : Y { int z; virtual void fz() {}};
4 class A { int a; virtual void fa() {}};
5 class B { int b; virtual void fb() {}};
6 class C : A, B { int c; virtual void fc() {}};
7 class E : virtual C { int e; virtual void fe() {}};
8 class F : E { int f; virtual void ff() {}};
9 class G : F { int g; virtual void fg() {}};

(b) New Virtual Hierarchy

(c) C Instance (d) Y Instance (e) Z Instance

Figure 52: New Hierarchy and Object Examples with Address-Points

implementation of dynamic cast with a different performance profile. As we want

to quantify the cost of each type of casting technique, we introduce two hierarchies

to exercise a variety of casting scenarios and reproduce the two different RTTI

data types.

Figure 52 lists the source code of the two hierarchies we will use for cast

testing, alongside some complete object layouts. Classes X, Y, and Z are part of a

single inheritance hierarchy, so produce si class type info RTTI objects, and

classes A-G constitute a multiple virtual inheritance hierarchy, producing both

vmi class type info and si class type info RTTI objects. We aim to find

the minimum cost of dynamic down-casting, and to this end, each hierarchy is

deliberately small. We do not attempt to find the maximum cost of a dynamic

cast, as the cost of such casts is intrinsically linked to the distance between the

type of the target and the dynamic type of the source object within the RTTI

structure. As class hierarchies technically have no bounds, the same can be said

CHAPTER 5. MEMOISED CASTING 127

Casting Technique Times (ns)
RTTI Cast Decription Types Used Stability Static Dynamic MemCast

si
cl

as
s

ty
pe

in
fo

Up-Cast ZZ* → XZ* 100% 0.00 0.00 1.03

Down-Cast
(PTC) XZ* → ZZ* 100% 0.00 7.59 1.03
(STC) YZ* → ZZ* 100% 0.00 7.59 1.23
(PTS) XZ* → YZ* 100% 0.00 14.90 1.00

Unrelated
(Null return) XY* → ZZ* 100% - 14.80 1.49

vm
ic

la
ss

ty
pe

in
fo

Up-Cast (SL) CC* → AC* 100% 0.00 0.00 1.03
(DL) CC* → BC* 100% 0.37 0.32 1.01

Down-Cast (SL) AC* → CC* 100% 0.00 12.20 1.00
(DL) BC* → CC* 100% 0.54 9.96 1.17

Unrelated
(Null return) BC* → GG* 100% - 8.55 1.48

Virtual BG* → FG* 100% - 23.90 1.00
Alternating
(Two casts performed)

AC* → CC*
BC* → CC*

0% - 20.40
(avg. 10.20)

30.20
(avg. 15.10)

Average Successful MemCast (100% Stability) 1.060ns
Average Successful Null return MemCast (100% Stability) 1.485ns

Average MemCast Cache Time 4.675ns
Average Cost of a Virtual Function Call 1.200ns

Table 11: Average cost of casting per execution, for several casting scenarios

about their RTTI data-structures and, in turn, the cost of dynamic casting.

5.4.1.3 Results

Table 11 shows the results of each test performed. The first four columns describe

the casting scenario, where each row distinguishes its RTTI structure, target and

source types, and the stability of the cast. The last three columns give timings in

nanoseconds for three casting techniques: static, dynamic, and MemCast.

To succinctly describe the source and target types of each cast, we introduce

the abbreviation BC* → CC* to describe the following cast:

dynamic cast<C*>(b); //where B* b = new C();

This casts b, which points to the B sub-object within a complete C object, to a C*

pointer, resulting in a pointer to the complete C object. To amplify, observe that

the C instance given in Figure 52c has two address-points. The top arrow marks

the address-point of the complete object, which can be accessed using a pointer

of type A* or C*. The bottom arrow gives the address-point of the B sub-object,

which is addressed using a pointer of type B*. Notice how the address-point of the

CHAPTER 5. MEMOISED CASTING 128

B sub-object within the complete C object is expressed in the notation BC*. Put

another way, BC* can be read as B-in-C, that is, the address of the B sub-object

in the complete C object. The effect of the cast BC*→ CC*, therefore, is to adjust

the lower address-point (BC*) to the upper address-point (CC*). More specifically

it is casting to the complete C object (C-in-C), not the A sub-object (A-in-C).

All casts in Table 11 are executed on one or more of the objects depicted in

Figure 52, where the abbreviation of each cast tallies with the address-points given

in the figure.

Single Inheritance Results We performed five different casts for the single in-

heritance hierarchy (classes X-Z), which uses the si class type info RTTI data-

structure (top half of Table 11). As this is a single inheritance hierarchy, all objects

have a single address-point at their zero offset (Figure 52d and 52e). With only

one address-point, casts will not perform pointer adjustment, which is why static

casting has no overhead. The same can be said for the dynamic up-cast, which

the compiler optimises to a static cast, which again, incurs no pointer adjustment.

For down-casts, we performed three tests: (PTC) Primary to Complete, casting

from the primary class sub-object to the complete object; (STC) Secondary to

Complete, casting from a secondary sub-object (simply meaning not the primary

object) to the complete object; and (PTS) Primary to Secondary, casting from

the primary class to a secondary sub-object (not the complete object). The final

cast is to an unrelated object, forcing a null return. The fastest form of dynamic

casting (7.59ns) is any cast that targets the complete type: PTC or STC, which

correlates with our analysis of the dynamic cast function’s source code that is

optimised for such cases (using the static hint src2dst, see Section 3.4.4). Casts

that target a secondary derived class (PTS) or an unrelated class are slower be-

cause RTTI traversal (beyond the head of the RTTI data structure, at least) is

required.

CHAPTER 5. MEMOISED CASTING 129

Multiple Virtual Inheritance Results For the multiple virtual inheritance

hierarchy (classes A-G), which uses the vmi class type info RTTI data-structure,

we performed seven different cast tests (see the bottom half of Table 11). The

instances of classes C and G have multiple address-points (see Figure 52a and 52c),

so some casts will perform a pointer adjustment and a type check. The up and

down-casts in these tests will, respectively, change the address-point to either

a different location (DL) or retain the same location (SL). For casts performed

statically (for which the pointer adjustment is fixed and known at compile-time)

we can now observe the actual cost of a pointer adjustment (0.37ns and 0.54ns

for the DL casts).

As well as performing an unrelated dynamic cast in the setting of a single

inheritance hierarchy (si class type info), it was also timed for multiple in-

heritance (vmi class type info). Rather surprisingly, the latter is faster than

former: 8.55ns compared to 14.8ns. This not only reflects the different implemen-

tations of the virtual do dynCast() function (see Section 3.4.4) but also suggests

further optimisation techniques are used for unrelated source types within the

vmi class type info:: do dynCast() definition.

We also performed a virtual inheritance cast, where we chose the source and

target types to induce a particularly long traversal of the RTTI data structure,

which is reflected in its performance time (23.90ns).

Notice that the relationship scenarios of these casts, and all other casts dis-

cussed so far, have little to no effect on MemCast timings. MemCast timings

appear consistent for both related and unrelated casts. However, when we in-

troduce an alternating cast scenario, which alternates the source type it received

with every visit, MemCast’s performance overhead is high (averaging 15.10ns per

cast). Note that the alternating cast test captures the cost of performing two

casts back-to-back, so it is halved to get the average cost of a single cast. This

provides us with a 0% stability scenario, exercising the worst case for MemCast.

CHAPTER 5. MEMOISED CASTING 130

Dynamic Cast From the results in Table 11, we can estimate that dynamic

casting is at least 18 times slower than static casting. This value was calculated

using the only comparable casting results, the DL static and dynamic down-casts.

It is not possible to quantify this multiplier for other types of casting scenarios

because, in most cases, static casting costs nothing. We have, however, deter-

mined the minimum cost of dynamic down-casting to be 7.59ns, when casting

to complete objects, using a si class type info RTTI data-structure (used in

single inheritance).

MemCast The speed of MemCast depends on its outcomes: a successful Mem-

Cast that returns an object pointer without defaulting to a dynamic cast, averages

1.060ns; a successful MemCast that returns a null pointer without defaulting,

averages 1.485ns; and a failed MemCast that defaults to a dynamic cast, which

takes the time of the dynamic cast (which is variable) plus 4.675ns (the time for

vptr checking with caching, which is constant).

Though 4.675ns is not small, this overhead is acceptable because a default cast

is incurred infrequently. For context, the average run-time of a virtual function

call was found to be 1.200ns. Hence the performance of a successful MemCast

compares to that of a virtual function, which is regarded as an acceptable expense.

5.4.2 Evaluation of MemCast’s Capabilities

The experimental results in Table 11 show that significant savings can be made by

swapping stable dynamic casts with the MemCast wrapper function. However, it

also showed that unstable casts are costly, as they add a constant overhead to an

already expensive dynamic cast. So, the question is now, what degree of stability

is required for MemCast to outperform dynamic casting? Or more precisely, what

is the minimum stability that guarantees improved performance? To answer these

questions we will look specifically at successful MemCasts that result in an object

CHAPTER 5. MEMOISED CASTING 131

pointer (as this was the most prolific scenario on our Deal.II experiments) and

compare it with the fastest form of dynamic casting.

5.4.2.1 MemCast Definitions and Equations

To reason about the relative cost of MemCast and dynamic cast, we introduce

formulae that aid their modelling. The following formula decomposes the cost of

a unsuccessful MemCast into its constituent parts:

Definition 5.4.1 (Unsuccessful MemCast Formula). Let Tdyn be the time taken

for a dynamic cast and Tcache be the time taken for the MemCast function to

perform a vptr check and data cache. Then:

Mdefault = Tdyn + Tcache

is the estimated cost of a single default MemCast (a default to the dynamic cast

operator plus caching the result).

Building on this we can estimate the cost of using MemCast:

Definition 5.4.2 (MemCast Time Estimation Formula). Let the time of a suc-

cessful MemCast be Msuccess, let S denote the stability and x denote the number of

visits to a cast site. Then:

M (x , S) = Mdefault + S(Msuccess(x − 1)) + (1 − S)(Mdefault(x − 1))

is the estimated time for a run of x ≥ 1 MemCast calls, where 0 ≤ S ≤ 1 .

The above formula estimates the run-time of a MemCast based on its stability.

The leading Mdefault term reflects the default cast incurred in the initial visit to a

MemCast site. For completeness, we give the time for a run of dynamic casts:

CHAPTER 5. MEMOISED CASTING 132

Definition 5.4.3 (Dynamic Down-Cast Time Formula). Let Tdyn be the average

cost of a dynamic cast at a particular cast site. Then:

D(x) = Tdynx

is the estimated time for a run of x dynamic casts.

5.4.2.2 Minimum Stability

There is no value in applying MemCast to dynamic up-casts, as these are reduced

to static casts. Therefore our comparison focuses on dynamic down-casting only.

In particular we consider single inheritance down-casting (PTC and STC), since

these are the most competitive forms of dynamic down-casting. To make the

comparison, we instantiate Definition 5.4.3 using the timings from Table 11 to

give:

D(x) = 7.590x

since Tdyn = 7 .590 is the time of a PTC and STC single inheritance dynamic

cast. Likewise, instantiating Definition 5.4.1 with Tcache = 4 .675 gives:

Mdefault = 12.265

Finally, we instantiate Definition 5.4.2 with Msuccess = 1 .060 to give:

M(x, S) = 12.265 + S(1.06(x− 1)) + (1− S)(12.265(x− 1)). (2)

Figure 53 plots M (x , S) and D(x) against x for various S values. Observe

that for S = 0 , M (x , S) > D(x) for all x ≥ 1 (i.e. MemCast is always slower than

dynamic casting when the stability of that cast is 0%). Conversely, for S = 1 ,

CHAPTER 5. MEMOISED CASTING 133

Figure 53: How stability changes the estimated cost of MemCasting

M (x , S) < D(x) for all x ≥ 2 (i.e. MemCast is always faster than dynamic casting

when the cast site has 100% stability and is visited at least twice). Hence there

exists some critical S value, 0 < S∗ < 1 , such that for any S > S∗ there exists a

sufficiently large x > 1 for which M (x , S) < D(x). S∗ is critical in the sense that

there is no smaller value of S with this property, so we call this value minimum

stability.

To observe the impact of increasing S , we can calculate the difference between

M (x , S) and D(x) for two different values of S. To illustrate, consider S = 0 .6

and S = 0 .8 , and their corresponding graphs in Figure 53. Observe that for

x = 8 , D(x) > M (x , S) for both S = 0 .6 and S = 0 .8 . But, D(8)−M (8 , 0 .6) =

60 .72 − 51 .06 = 9 .66 and D(8)−M (8 , 0 .8) = 60 .72 − 35 .37 = 25 .35 , hence

D(8)−M (8 , 0 .6) < D(8)−M (8 , 0 .8). Therefore the difference between the

run-times of dynamic casting and MemCasting grows as S increases: the higher

the stability (S) the greater the speedup.

CHAPTER 5. MEMOISED CASTING 134

Calculating Minimum Stability Observe that when S = S∗, the gradient of

M (x , S∗) and D(x) are equal (i.e. their lines become parallel for some S close to

0 .4 , see Figure 53). This provides a tactic for calculating S∗. To this end, we

rearrange M (x , S∗) as:

M (x , S∗) = (Mdefault + S∗(Msuccess −Mdefault))x − S∗(Msuccess −Mdefault)

Equating the gradients of M (x , S∗) and D(x) and rearranging for S∗ gives

Tdyn = Mdefault + S∗(Msuccess −Mdefault) and S∗ = Mdefault − Tdyn

Mdefault −Msuccess

(3)

Therefore, we can infer for any

S > S∗ = Mdefault − Tdyn

Mdefault −Msuccess

(4)

M (x , S) < D(x) for some (x) number of visits to the cast site. That is, a cast site

with a stability S > S∗, is guaranteed to execute faster with MemCasting, given

enough visits.

Using equation (3), and our observed values (Tdyn = 7 .590 , Msuccess = 1 .060 ,

and Mdefault = 12 .265), we can calculate S∗ as:

S∗ = 12 .265 − 7 .590
12 .265 − 1 .060 = 0 .417

Thus the minimum stability (S∗) is 41.7%.

For context, 98.7% of all cast sites in Deal.II are at least 55% stable (which

exceeds 41.7%), suggesting that the run-time of almost all casts could be improved

with MemCasting. Furthermore, 91% of Deal.II’s cast sites are at least 80% stable,

and recall that the performance of MemCast increases with S .

CHAPTER 5. MEMOISED CASTING 135

Figure 54: Minimum MemCast visits for for any S∗ < S ≤ 1

5.4.2.3 Minimum Visits

We stated earlier that for any S∗ < S ≤ 1 there exists a sufficiently large x > 1

for which M (x , S) < D(x). Therefore for every S > S∗, there is a critical x value,

x∗ > 1 , such that M (x , S) < D(x) for all x > x∗. The value x∗ is critical be-

cause it reveals the minimum number of cast visits required for MemCast to

outperform dynamic casting. For any given S > S∗, x∗ can be found by solving

M (x∗, S) = D(x∗), which equates to calculating the intercept of the M (x , S) and

D(x). Rearranging for x∗ gives:

x∗ = S(Msuccess −Mdefault)
S(Msuccess −Mdefault) +Mdefault − Tdyn

(5)

Observe that x∗ is well-defined since S(Msuccess −Mdefault) + Mdefault − Tdyn 6= 0 ,

because S 6= S∗. To identify x∗ for our data set, we instantiate (5) with our ob-

served values Msuccess = 1 .060 , Mdefault = 12 .265 , and Tdyn = 7 .590 , which gives:

x∗ = 11 .205S
11 .205S − 4 .675

CHAPTER 5. MEMOISED CASTING 136

(a) Stability 50% (b) Stability 100%

Figure 55: Run-time savings with MemCast at different levels of Stability

Figure 54 plots3 x∗ against S , along with the line S∗ = 0 .417 , indicating min-

imum stability. For example, x∗ = 151 .32 , 6 .04 , and 1 .72 , for 42 %, 50 %, and

100 % stability, hence 152 , 7 , and 2 visits are needed for these stability values

respectively. Observe in particular, that only two visits are required at 100%

stability. Conversely, observe that x∗ increases as S approaches S∗ from above.

Hence cast sites with low stability (close to the minimum) require more cast visits

to outperform dynamic casting.

Previously we demonstrated that run-time savings accrue as S increases. Here

we show that further savings accrue as x increases. Figure 55a depicts the esti-

mated time of MemCasting for 50 % stability. At 50 % stability, x∗ = 6 .04 . Thus

the run-time saving at x = 7 , is D(7)−M (7 , 0 .5) = 53 .13 − 52 .24 = 0 .89ns.

Notice however, when x increases to, say x = 100 , so too does the run-time

savings: D(100)−M (100 , 0 .5) = 759 − 671 .86 = 87 .14ns. Figure 55b depicts

the estimated time of MemCasting for 100 % stability. At x = 100 , D(100)−

M (100 , 1) = 759 − 117 .21 = 641 .79ns, thus demonstrating an increase in the

accrued savings not just when x is large but also when S approaches 1 . The

magnitude of this increase is visually depicted in Figure 55 by the double-headed

arrows in both graphs.
3For consistency with earlier graphs, we plot x∗ along the horizontal axis.

CHAPTER 5. MEMOISED CASTING 137

5.4.2.4 More Complex Dynamic Casting

We have assessed MemCast when it replaces the fastest form of dynamic down-

casting (a single inheritance cast to the complete object). We showed that Mem-

Cast outperforms the fastest form of dynamic casting in as little as seven casts for

a site with 50% stability and two casts for 100% stability. Nevertheless, one more

question remains, how well does MemCast perform for more complex forms of

dynamic casting? That is, cast sites that target a sub-object rather than the com-

plete object or, which result in a null pointer; these sites incur a search through

the RTTI data-structure. Although hierarchy dependent, the run-time of a com-

plex dynamic down-cast is greater than the cost of the fastest dynamic cast we

have observed. With this in mind, we will now investigate the minimum stability

and executions required for MemCast when the run-time of dynamic casting is

higher than our observed minimum.

Substituting Mdefault = Tdyn + Tcache into (3) and (5) gives:

S∗ = Tcache

Tdyn + Tcache −Msuccess

, x∗ = S(Msuccess − Tdyn − Tcache)
S(Msuccess − Tdyn − Tcache) + Tcache

Then assigning Msuccess = 1 .06 and Tcache = 4 .675 results in:

S∗ = 4.675
Tdyn + 3.615 , x = S(Tdyn + 3.615)

S(Tdyn + 3.615)− 4.675

Table 12a evaluates these two equations, starting from the lowest observed

dynamic cast time and increasing it in every subsequent table entry. The second

column evaluates the minimum stability based on these hypothetical dynamic

casting costs. This exercise demonstrates that as the cost of dynamic casting

(Tdyn) increases, the minimum stability decreases. As the minimum stability

decreases, it extends the range of cast sites that would benefit from MemCasting.

The last five columns in Table 12a demonstrate how the number of visits re-

quired for MemCast to outperform dynamic casting also reduces as Tdyn increases.

CHAPTER 5. MEMOISED CASTING 138

Minimum Executions (x) for
Tdyn S∗ S = S∗ + 0 .1% S = S∗ + 1% S = S∗ + 5% S = 50% S = 100%
7.59 41.72% 419 43 10 7 2
10 34.34% 345 36 8 4 2
15 25.11% 253 27 7 3 2
20 19.80% 199 21 5 2 2
25 16.34% 165 18 5 2 2
30 13.91% 141 15 4 2 2
35 12.11% 123 14 4 2 2
40 10.72% 109 12 4 2 2
50 8.72% 89 10 3 2 2
75 5.95% 61 7 3 2 2
100 4.51% 47 6 2 2 2
500 0.93% 11 2 2 2 2

1,000 0.47% 6 2 2 2 2
10,000 0.05% 2 2 2 2 2

...
...

...
...

...
...

...

(a) Msuccess = 1 .06 (Object pointer return case)
Minimum Executions (x) for

Tdyn S∗ S = S∗ + 0 .1% S = S∗ + 1% S = S∗ + 5% S = 50% S = 100%
8.55 39.82% 400 41 9 5 2
10 35.44% 356 37 9 4 2
15 25.70% 259 27 7 3 2
20 20.16% 203 22 6 2 2
25 16.58% 167 18 5 2 2
30 14.09% 142 16 4 2 2
35 12.24% 124 14 4 2 2
40 10.82% 110 12 4 2 2
50 8.79% 89 10 3 2 2
75 5.98% 61 7 3 2 2
100 4.53% 47 6 2 2 2
500 0.93% 11 2 2 2 2

1,000 0.47% 6 2 2 2 2
10,000 0.05% 2 2 2 2 2

...
...

...
...

...
...

...

(b) Msuccess = 1 .485 (Null pointer return case)

Table 12: Minimum Stability and Executions for the MemCast function for
Msuccess = 1 .06 (Object return case)

This is shown with five different stability values. The first three columns take the

calculated minimum stability (S∗) and add a small increment (0.1%, 1%, 5%)

to ensure S > S∗. For the purposes of later comparison we also tabulate values

for 50% and 100% stability. In all cases, the minimum executions required tend

toward two as the cost of dynamic casting increases. Similarly, Table 12b shows

the same tendencies for the cost of a null return successful MemCast, which costs

Msuccess = 1 .485ns, slightly more expensive than a pointer return.

With these results, we can see that a cast site executed at least seven times,

CHAPTER 5. MEMOISED CASTING 139

with 50% or more stability, will benefit from using MemCast. The accrued run-

time benefits of MemCasting increases with the number of visits, with stability,

and with the run-time of complex casts. Where cast sites have stability values

greater than 50%, fewer cast visits are required to benefit from MemCasting; most

notably, 100% stable sites need only two visits to achieve a better run-time. With

this in mind we can now apply MemCast to the Deal.II library as all but one of

its dynamic casts satisfies the MemCast requirements.

5.4.3 Deal.II Revised

To investigate MemCasting in a real-world setting, we revisited the Deal.II library,

where this research began.

Static Analysis of Deal.II We already know that from the 33 step-x programs,

82 cast sites (out of 545) were featured, but what about the kind of hierarchies

that exist in Deal.II? Further analysis of the class hierarchies published in the

Deal.II 9.2.0 documentation [28] (generated using Doxygen [33]), we found that

Deal.II 9.2.0 contains approximately 2298 classes. We say ‘approximately’ because

Doxygen is not 100% accurate with its documentation, but it does give us a rough

idea of the hierarchies we are working within Deal.II. So, of the identified 2298

classes, 1362 were solely primary classes with no inheritance relationships, 895

singularly inherited from another class, and 41 inherited from multiple classes.

Using the Unix tool grep [30], we found six instances of virtual inheritance but

no evidence suggesting that any of the 82 featured dynamic casts used these

hierarchies. The deepest hierarchy we found had a depth of 5 classes, and more

than 1000 classes in the program were generated from templates.

Blanket Coverage From the class hierarchy analysis, we have a vague idea of

the types of hierarchical complexity our featured 82 cast sites are working with,

CHAPTER 5. MEMOISED CASTING 140

mainly single inheritance and some multiple inheritance. However, we found no

evidence of dynamic casting to virtually inherited bases. The exact complexity

of individual casts is unknown for our test cases, but this does not matter, as we

have already established each cast’s stability. From our analysis of Section 5.2,

we know that 77 (of the 82 cast sites) have a stability greater than 57%, which

exceeds the minimum stability of the cheapest form of dynamic casting (41.7%).

Moreover, the cast sites with a stability close to 57% were all visited more than

seven times, making all 77 cast sites suitable for MemCast, irrespective of their

dynamic casting costs. Four of the five remaining cast sites were visited only once,

and the last was visited twice with 0% stability. These casts are unsuitable for

MemCasting, as MemCast will make them slower. However, their overall impact is

negligible, given that they are visited so infrequently. For this reason, we decided

to go for blanket coverage of the Deal.II library by automatically replacing every

dynamic down-cast with a MemCast.

To achieve blanket coverage of MemCast, we adapted the Python script used

as part of the analysis phase in Section 5.2 to introduce supporting MemCache

objects (all 545) while replacing every dynamic down-cast with a macro. The

macro was automatically introduced as before; however, in this setting, it was

used to invoke a MemCast.

MemCast Macro Similar to the profiling technique introduced in Section 5.2,

we replaced every dynamic cast call with the macro:

MEM CAST(x,y,z)

which was defined in a separate header file as:

#define MEM CAST(x,y,z) memCast Resolver<y>::memCast(x,z)

where x is the memCache object, y is the target type, and z is the source object.

Although the very same macro was used in Section 5.4.1, it is only here that we

discuss the merit of using this approach. The purpose of the macro, particularly

CHAPTER 5. MEMOISED CASTING 141

during the implementation phase, was to simplify the process of fine-tuning the

MemCast function for performance. The macro enabled us to encapsulate Mem-

Cast into a distinct module, separate from the testing program and the Deal.II

library. This allowed us to make significant changes to the MemCast function

(including its signature) without changing our testing code or the Deal.II library.

To fine-tune the run-time performance of MemCast we trialled and tested a

series of small, incremental modifications to the MemCast code, which included:

applying recomputation to reduce memory pressure, removing all speculative com-

putation, reorganising the control flow so that the most frequently executed blocks

were reached in the least number of instructions, investigating how MemCache lay-

outs impact performance, and applying pragmas to force cache alignment. The

methodology for reducing the run-times of MemCast was to make a single change

to the function, decompile that function, and observe the number of instruc-

tions emitted. This provided a way of judging which optimisation and combi-

nations were worth pursuing. The resulting net speedup was threefold. (Any

attempt to streamline the syntax memCast Resolver<y>::memCast(x,z) to say

memCast<y>(x,z) introduced another level of templates, which ultimately de-

graded performance.)

Performance Testing In previous tests, recall that we used the straight-line

fitting technique [89] to capture the execution time of individual casts. This

method is purpose-built for small operations and, therefore, unsuitable for mea-

suring whole program execution times. Consequently, we decided to use a differ-

ent tool, specifically a Unix utility called multitime [31]. Multitime automatically

executes a program n times and outputs the observed mean, min, median and

maximum execution times. We used this utility, with n = 100 , to compare the

performance of each benchmark against a version that deployed MemCasting in

place of dynamic casting.

CHAPTER 5. MEMOISED CASTING 142

Step-x Mean Median

x # casts Overall
Stability

Benchmark
(s)

MemCast
(s) Speedup Benchmark

(s)
MemCast

(s) Speedup

52 519 100% 0.281 0.283 -0.71% 0.281 0.282 -0.36%
3 1032 100% 0.039 0.038 2.56% 0.037 0.038 -2.70%
20 3124 100% 0.105 0.105 0.00% 0.105 0.105 0.00%
10 3152 100% 0.092 0.094 -2.17% 0.090 0.094 -4.44%
4 4368 99.84% 0.114 0.113 0.88% 0.113 0.114 -0.88%
39 4664 92.23% 0.493 0.491 0.41% 0.493 0.490 0.61%
61 13381 100% 0.140 0.139 0.71% 0.140 0.139 0.71%
12b 14268 99.74% 0.172 0.169 1.74% 0.171 0.169 1.17%
12 26701 100% 0.159 0.153 3.77% 0.159 0.153 3.77%
38 26911 100% 0.095 0.091 4.21% 0.094 0.090 4.26%
16b 29590 99.67% 0.093 0.093 0.00% 0.093 0.092 1.08%
6 43056 100% 0.512 0.495 3.32% 0.511 0.493 3.52%
25 51032 99.99% 0.058 0.056 3.45% 0.057 0.056 1.75%
30 53806 100% 0.585 0.571 2.39% 0.582 0.567 2.58%
27 76669 100% 1.484 1.456 1.89% 1.466 1.440 1.77%
16 92848 100% 0.223 0.222 0.45% 0.223 0.222 0.45%
11 195807 100% 1.013 0.997 1.58% 1.010 0.994 1.58%
8 212026 100% 1.567 1.554 0.83% 1.545 1.540 0.32%
13 250362 100% 1.917 1.903 0.73% 1.899 1.884 0.79%
14 257290 100% 5.101 5.047 1.06% 5.089 5.030 1.16%
7 538396 100% 6.226 6.043 2.94% 6.186 6.015 2.76%
21 694337 100% 6.630 6.571 0.89% 6.613 6.553 0.91%
51 865996 100% 20.634 20.534 0.48% 20.619 20.521 0.48%
26 938781 100% 2.400 2.384 0.67% 2.328 2.299 1.25%
23 10521455 100% 13.792 13.687 0.76% 13.785 13.686 0.72%

Average All 1.31% Average All 0.93%
Average > 10,000 Cast 1.68% Average > 10,000 Cast 1.63%

Table 13: Time comparison of Deal.II with and without MemCast

Results Table 13 shows the execution time captured after running 25 of the

Deal.II step-x programs4 with and without MemCasting. The first column details

each step-x program, its number, the total number of casts it contains, and its

overall stability (calculated by weighting the stability of each cast by the number

of times it is visited). The following two columns show the mean and median

timings for each benchmark and MemCast version, and the speedup expressed as

a percentage.

We found that MemCast improved performance in all but a handful of tested

programs. For those that were negatively impacted, we observed that less than

5000 casts were executed during its run-time. The minimum cost of a dynamic

cast was shown to be around 7.59 nanoseconds and a MemCast to be 1.06 nanosec-

onds. Thus with such few visits any degradation in performance is bound to be

inconsequential.

What is most significant is that every program that performed more than

10,000 casts had an improved execution time (except for 16b, which exhibited no
4Only 25 of the original 33 programs are presented due to time restraints, as eight of the

programs were simply too long to execute 200 times in a reasonable time scale.

CHAPTER 5. MEMOISED CASTING 143

slowdown). Looking more closely, step-38 had an execution time similar to those

with less than 5000 casts; however, it had a speedup of 4.21% in its execution time

when using MemCast. The very fact that every program above 10,000 casts gave

an improvement (except 16b) provides substantial evidence that MemCast con-

fers a significant improvement on dynamic cast. To further evidence MemCast’s

capabilities, we will test its effect on two other large programs in Sections 5.4.4

and 5.4.5.

5.4.4 OMNet++

OMNet++ [98] is a C++ simulation library primarily used for building network

simulators [99]. From this library, countless open-source simulation models and

model frameworks have been written, such as internet protocols, media streaming,

mobile ad-hoc networks, queuing, resource modelling, and cloud computing, to

name but a few [99]. Like Deal.II, OMNet++ was also featured as part of the

SPEC CPU2006 bench-marking suite [123], providing a large collection of C++

source code for performance benchmark testing.

Static Analysis of OMNet++ Using a variety of tools, such as grep [30],

Doxygen [33], and our own bespoke Clang tool, we found that the OMNet++

library contained 292 classes and 521 dynamic down-casts. Of these 292 classes, 66

of them are solely primary classes with no inheritance relationships, 210 singularly

inherit from another class, and 16 inherit from multiple classes. The deepest

hierarchy found had a depth of 11 classes and no virtual inheritance was found.

Test Programs The OMNet++ library is supplied with several sample simu-

lation programs to facilitate learning. Collectively analysing the dynamic down-

casts within each sample program, we found a broad range of cast stability out-

comes (full results in Appendix C). From these findings, we chose seven of the

CHAPTER 5. MEMOISED CASTING 144

Simulations Mean Medium SimSec/Sec

Process #Casts Overall
Stability BM MC Up BM MC Up BM MC Inc

fifo1 17981035 32.64% 12.524 12.355 1.35% 12.511 12.346 1.32% 29590 35396 19.62%
routing 35294 46.45% 0.065 0.066 -1.54% 0.065 0.062 4.62% 9291 9476 1.99%
dyna 1301302 50.83% 0.994 0.987 0.70% 0.988 0.983 0.51% 51831 51985 0.30%
fifo2 1616289 59.30% 1.138 1.127 0.97% 1.135 1.126 0.79% 342565 346228 1.07%
aloha 24712316 74.59% 14.014 13.558 3.25% 14.02 13.603 2.97% 11996 12119 1.03%
cqn 299986 98.63% 0.177 0.174 1.69% 0.174 0.171 1.72% 98752 101157 2.44%

histograms 5000685 100.00% 3.253 3.209 1.35% 3.230 3.171 1.83% 309 313 1.40%
Average all 1.11% Average all 1.97% Average all 3.98%

BM - Benchmark, MC - MemCast, UP - Speedup, Inc - Increase

Table 14: Time comparison of OMNet++ with and without MemCast.

sample programs for MemCast benchmark testing, with stabilities ranging from

32% to 100% (see Table 14). We believe this range of stability values would pro-

vide an adequate contrast to the tests performed on the Deal.II library, which

predominantly featured programs of 100% stability.

Performance Testing To test the performance of MemCast when applied to

the OMNet++ library, we again use the unix multitime tool [31], like we did

with the Deal.II tests. This tool was set up to perform 50 runs of each of the 7

chosen programs, once with MemCasting and once without. From each set of 50

runs the multitime calculates the overall mean and median execution times, which

enables us to compare a standard run to a MemCast run. In addition to these

time values, OMNet++ produces its own performance measures and outputs them

to the terminal after each run. We have chosen to present the results of one of

these measurements, called SimSec/Sec, which measures the number of simulated

seconds performed per real-time second. We include this value to support our own

findings and as an interesting insight into the performance improvements made

using MemCast specifically in OMNet++ simulations.

Results Table 14 presents the performance results of running a variety of OM-

Net++ simulation programs with and without MemCasting. Seven simulation

programs were chosen; their process names, number of dynamic casts performed,

and the overall stability values are listed in the first column of Table 14. The

CHAPTER 5. MEMOISED CASTING 145

Mean and Medium columns present the outcomes of the multitime tool for each

simulation; where BM (Benchmark) reflects the captured times without the use of

MemCasting and MC (MemCast) reflects the captured times with MemCasting.

The ‘Up’ column presents the speedup incurred through the use of MemCasting

as a percentage. Finally, the last column presents the (unique to OMNet++)

SimSec/Sec measurement for the benchmark and MemCast simulations and the

percentage increase of these simulated seconds when using MemCasting.

The results in Table 14 show that in all but one case, the performance of

these OMNet++ simulations improved with MemCasting. On average, the mean

speedup was 1.11% and the medium speedup was 1.97%. Where an improvement

was not made, the difference in captured times was minor (0.001 seconds) and

when compared with median results, suggests an anomaly in the data set that is

skewing the mean calculation.

Perhaps the most interesting result is that of fifo1, which presented with a

low stability score of 32.64% (lower than the minimum stability described in Sec-

tion 5.4.2.2), and yet demonstrated a performance speedup greater than 1.3%.

With further analysis of this particular simulation, we found it had 32 down-casts

altogether, one of which was called a total of 14,384,516 times with only 15.802%

stability. However, further testing showed that using MemCast at this cast loca-

tion still significantly outperformed dynamic casting. Why is this? We identified

that the fifo1 simulation program creates several new classes, all of which inherit

from a library class called cSimpleModule. The cSimpleModule class happens to

be one of the most-derived classes within the largest (9 classes deep) hierarchy in

the library. The new classes defined in the fifo1 extends this hierarchy to a depth

of 11. The cast in question performs a cast from one of the new classes defined in

fifo1 to the cSimpleModule type defined in the library itself. Not only is this cast

performing a traversal over a large RTTI structure, but it is also pulling RTTI

CHAPTER 5. MEMOISED CASTING 146

data from two different areas of memory, the programs data region and the link li-

braries data region. In our case, these data locations exist at almost opposite ends

of memory, meaning that this cast does not have the advantage of locality like

other casts seen before. We believe the lack of locality between RTTI structures

and the large RTTI hierarchy itself contributes to the exceptionally slow dynamic

cast performance. Hence MemCast is still favourable despite the low stability.

5.4.5 Antlr4

Antlr4 [103] is an open-source parser generator tool. The tool takes a user-defined

grammar and automatically generates the source code for a parser that can inter-

pret the language defined within that grammar. As well as generating parsers, the

Antlr4 project also comes with a set of libraries that enable run-time support for

its parser-related tools for multiple different languages (including C++). Antlr

is a popular framework some big-name brands use, including Twitter for query

parsing, Oracle within their SQL Developer IDE, and Netbeans IDE for parsing

C++ code [102].

Building test programs Antlr4 comes with a C++ run-time library which we

will utilise for our MemCast testing. Before starting testing, we had to create our

own C++ programs that could parse specific languages. We created two programs,

one that could parse C++ code and the other HTML code. To generate the parser

toolkit, we had to use the Antlr generator tool and feed it a language-specific

grammar. Fortunately, Antlr4 provides a wide range of predefined grammars,

including one for C++ and one for HTML. In each case, the Antlr4 tool generated

a parser toolkit in C++ source code for each language. Within each tool kit are

several source files, two of which (‘Lexer.h’ and ‘Parser.h’) can be linked to our

main program (alongside the Antlr4 run-time library) and provide all the utilities

needed to parse their respective languages. We wrote both programs to have

CHAPTER 5. MEMOISED CASTING 147

identical main functions, so will parse the source input in identical ways; the only

difference between the two is the language-specific tool kits they use.

Static Analysis of Antlr4 Our test programs are built from the Antlr4 run-

time library and a specialised parser tool kit, where each tool kit extends the

hierarchies found in the run-time library. As each program has its own specialised

toolkit specific to the language they parse (either C++ or HTML), they each have

a different number of classes and dynamic casts within their source code.

The Antlr4 run-time library alone contains 152 classes and 155 dynamic down-

casts. Of the 152 classes, 68 are solely primary classes with no inheritance rela-

tionships, 83 singularly inherit from another class, and only 1 class inherits from

multiple classes. The deepest hierarchy found had a depth of 5 classes, the largest

hierarchy had 13 classes, and no virtual inheritance was found. The addition of

the C++ toolkit (to the run-time library) added another 197 classes (totalling

349) and 579 dynamic down-casts (totalling 734). All 197 classes inherited from

a class within the run-time library, extending one of the hierarchies to contain

200 classes in total. Despite this, the deepest hierarchy remained five deep. The

addition of the HTML toolkit (to the run-time library) added only 17 new classes

(totalling 169) and 33 dynamic down-casts (totalling 188). Again all of these

classes inherited from a library class; they did not affect the deepest hierarchy,

but the largest hierarchy now consists of 20 classes.

Test Program We analysed our two parsing programs with a wide range of

source file inputs and found high stability (97%+) in all cases (full results in

Appendix D). So we opted to base our tests on input size and see how MemCast

performed when processing different amounts of data. We chose three source files

for each parser to process, each increasing in size by more than double. Table 15

lists each file name, their size, the number of dynamic down-casts performed

during execution, and the overall stability found in that process. Using the Unix

CHAPTER 5. MEMOISED CASTING 148

Parser Tests Mean (s) Medium (s)

File Name Size
(kB) # Casts Overall

Stability
Bench-
mark

Mem-
Cast

Speed-
up

Bench-
mark

Mem-
Cast

Speed-
up

C
+

+ avrc api.cc 48.6 8133538 97.97% 1.345 1.299 3.42% 1.343 1.295 3.57%
function lib.cc 89.7 58100011 98.79% 12.089 11.619 3.89% 12.089 11.627 3.82%

data out base.cc 291.8 105596188 98.75% 19.859 18.980 4.43% 19.71 18.97 3.75%

H
T

M
L antlr.html 9.5 2926395 99.75% 0.947 0.935 1.27% 0.946 0.932 1.48%

gnu.html 20.5 9881926 99.90% 3.021 2.961 1.99% 3.018 2.959 1.95%
github.html 51.8 72311578 99.93% 25.889 25.397 1.90% 25.895 25.403 1.90%

C++ Parser: Mean Average 3.91% Medium Average 3.71%
HTML Parser: Mean Average 1.72% Medium Average 1.78%

Overall: Mean Average 2.82% Medium Average 2.75%

Table 15: Time comparison of Antlr4 with and without MemCast

multitime tool [31], we performed 100 runs of each of the three chosen input files

for both the C++ and HTML parser, once with MemCasting and once without.

Similarly to other tests, the multitime tool calculates the overall mean and median

execution times of each set of 100 runs. The results of these runs are also presented

in Table 15.

Results The results in Table 15 show an improvement in speed for all cases. The

average speedup for the C++ parser was between 3.71% and 3.91%, whereas the

average speedup for the HTML parser was between 1.72% and 1.78%. The overall

average speedup (i.e. across both the C++ and HTML parsers) was between

2.75% and 2.82%.

Our results show that the size of the input files made little difference to

MemCast’s performance, as the speedup of each parser program was relatively

consistent. The most interesting aspect of these results was the difference in

average speedup between the two parser programs. Both programs had identical

main functions but used specialised language-specific toolkits to parse their input.

These toolkits added additional classes to their overall code base. The majority of

these classes extend a run-time library class called ParserRuleContext, as seen

in Figures 56a and 56b. The C++ parser adds 193 classes to the ParseTree hi-

erarchy, whereas the HTML parser adds just 13. Although these hierarchies are

made larger (especially in the C++ parser case), they are both single inheritance

hierarchies that are only four classes deep. As a result, any RTTI structure rep-

resenting any one of the most-derived classes consists of only four linked objects,

CHAPTER 5. MEMOISED CASTING 149

(a) C++ toolkit adds 193 classes that in-
herit from ParserRuleContext

(b) HTML toolkit adds 13 classes that in-
herit from ParserRuleContext

(c) RTTI structure for any one class from either toolkit

Figure 56: ParseTree hierarchy and RTTI structure for C++ and HTML parser
programs

as seen in Figure 56c. So the RTTI structures generated from either hierarchy

(depicted in Figures 56a and 56b) are no more complicated than the other, so

why does the C++ program benefit more from MemCasting when compared to

the HTML parser? Our theory is that the C++ Parser suffers from low memory

locality.

Locality Theory Typically, the RTTI objects representing a specific hierarchy

will be realised in close proximity to each other in memory. The close proximity of

such objects allows the processor to take advantage of memory locality, enabling

faster access to linked RTTI objects and, in turn, faster traversal through the

whole structure. However, within the C++ parser program, we have 193 RTTI

objects linked to one base class RTTI object (ParserRuleContext). With so many

links to a single RTTI object, it is impossible for all RTTI links to reside nearby.

CHAPTER 5. MEMOISED CASTING 150

Thus, having such a bottom-heavy hierarchy within the C++ parser program

ultimately decreases memory locality for that hierarchy’s RTTI structures. Low

memory locality for well-used RTTI structures will result in more cache misses

during an RTTI traversal. This is likely true for the most-derived objects in the

ParseTree hierarchy in our C++ parser program. Now consider our HTML parser

program, which extends the ParserRuleContext class only 13 times (Figure 56b).

This means there will only be 13 RTTI objects that link to ParserRuleContext’s

RTTI object. With significantly fewer links, the ParseTree RTTI structures can

benefit more from memory locality. Therefore, the performance of the HTML

parser (without MemCasting) is likely superior to the C++ parser due to having

better memory locality for well-used RTTI objects. This, in turn, would mean

that the C++ parser had more to gain from using a dynamic cast optimiser, i.e.

MemCast.

MemCache objects do not benefit from memory locality as RTTI objects do.

This is because there is no data traversal in MemCast type-checking unless a

default dynamic cast is called. As each of the C++ parser program runs have

very high stability values (97.9%+), calls to the default dynamic cast are limited.

Thus we believe that MemCast generates far fewer cache misses in the C++ parser

program than the benchmark version. When this theory is extended to the HTML

parser, it suggests that the HTML benchmark parser has far fewer cache misses

compared to the C++ benchmark parser. Thus the HTML parser did not benefit

from MemCasting to the same degree as the C++ parser did.

5.5 Related Work

Section 4.4 discussed only three works that specifically attempt to optimise the

dynamic cast mechanisms; these were Gibbs and Stroustrup’s fast dynamic cast-

ing [45], Ducournau’s perfect hashing [35], and Padhye and Sen’s [100] Fail-Fast

CHAPTER 5. MEMOISED CASTING 151

checking. Although we believe a successful MemCast function would outperform

all three cast optimisation techniques, no open-source code could be found, making

direct time comparison impossible. However, we can predict their performances

against MemCast when applied to an entire program buy consideration of their

designs.

• Gibbs and Stroustrup’s fast dynamic casting would likely outperform

MemCast on embedded systems for which it was designed. Their type in-

clusion testing technique is fast and constant time. However, their type

encoding scheme is restricted to small hierarchies due to the restrictions of

storing large prime multiples. MemCast, however, has no such restrictions

on hierarchical size and would likely be the better choice for large programs.

• Ducournau’s Perfect Hashing can not optimise for every type of cast,

as it is restricted to virtual inheritance hierarchies. From our experiments,

we found only six instances of virtual inheritance across all test programs,

suggesting that virtual inheritance is rare. Given that MemCast has no

restrictions on hierarchical types, it would likely outperform Ducournau’s

Perfect Hashing based on having higher coverage, irrespective of the speed

of their type inclusion test.

• Padhye and Sen’s Fail-Fast checking has a similar coverage issue, as

they only optimise for dynamic casts with a null return. As MemCast opti-

mises for both, it is again likely that MemCast would outperform Fail-Fast

checking due to having higher coverage, even for programs with high rates

of null return dynamic cast sites.

One final work that has not been discussed yet, which contained a similar mem-

oising wrapper function (called memoized cast) for the dynamic cast operator,

was the Mach7 library [119]. The Mach7 library is foremost a pattern-matching

CHAPTER 5. MEMOISED CASTING 152

solution, providing C++ with faster code, better syntax and improved diagnos-

tics, but also allows for the use of open class hierarchies, programs that allow class

structure changes at run-time. Their memoized cast function captures the results

of each dynamic cast, mapping the results of each source type to a vector of valid

target types. Thus, unlike MemCast, Mach7 allows dynamic casting between a

source and target type to be performed once and only once, and any subsequent

cast is checked and performed using their source-to-target type mapping.

Mach7’s source code is openly available, allowing us to investigate the per-

formance of its memoized cast function, alongside dynamic casting and Mem-

Casting, using the straight-line fitting technique seen in Section 5.4.1. We found

Mach7’s memoized cast to be slightly more expensive than dynamic casting, a

surprising result which suggested some form of bug or porting problem. Sadly, we

could not find any published evaluation of their memoising wrapper and, there-

fore, could not find any evidence of its original performance and optimisation over

the dynamic cast operator.

5.6 Future Work

MemCast, in its current form, is a source-based tool that is easy to deploy. Like

other casting techniques (static and dynamic casting), its deployment and use are

at the programmer’s discretion, giving them the autonomy to decide where it is

best applied. Although simple to use, it is less convenient than other casting meth-

ods within the language, as the programmer is responsible for the instantiation of

MemCache objects for each cast site. Because of this, we argue that MemCasting

should ideally be introduced into C++ itself. This will simplify the cast from

the programmer’s perspective and allow additional optimisation possibilities and

safety measures.

CHAPTER 5. MEMOISED CASTING 153

Further Optimisations As previously discussed in Section 3.4.5, up-casting

(in non-virtual inheritance hierarchies) is considered to be a safe form of casting

that can be performed statically at compile-time. Many compilers apply strength-

reduction to convert a dynamic up-cast to a static cast. This type of optimisation

is not possible with MemCast in its current form, as MemCast has no way of

deducing whether a cast is an up-cast or not. If dynamic up-casts were accidentally

transformed to MemCasts, then the default conversion to static casts would not be

performed, impeding performance. If MemCasting was incorporated into C++,

the MemCast function could be optimised in the same way as dynamic casting.

RTTI Locality The results of testing the OMNet++ and Antlr4 libraries with

MemCast suggested that the locality of RTTI structures can significantly impact

the performance of dynamic casting. The evaluation of dynamic casting that we

performed in Section 5.4.1 only considers small hierarchies, with the focus being

on the different implementations of the virtual dynamic cast functions executed

by different RTTI objects. We did not consider the impact of memory locality

of linked RTTI structures. Both sets of results when testing MemCasting in the

OMNet++ and Antlr4 libraries suggested that the locality of RTTI structures

impacts the performance of dynamic casting. In both cases, we had unexpected

results. In OMNet++ it was that MemCast appeared to outperform dynamic

casting for a cast site of only 15.8% stability. In Antlr4 it was that one program

had much better speedup outcomes than the other, despite having RTTI structures

of identical depths. Through further analysis, the common trait between these

unanticipated results was that their programs both featured low memory locality

for particular RTTI objects, whether it be through a linked library or through a

bottom-heavy class hierarchy. More experimental work is required to understand

the impacts of the low locality of RTTI objects in dynamic casting and how

MemCasting can improve performance in such cases.

CHAPTER 5. MEMOISED CASTING 154

MemCache Locality Further work into MemCache locality is suggested to

increase the performance of MemCasting. In our experiments, MemCache objects

were generated from the output of our Clang tool (Section 5.2.2), but the order and

positioning of these MemCache objects were not considered. However, in future

work, suppose we consider the proximity of dynamic cast sites and reflect this

with the memory locality of their corresponding MemCache objects. In that case,

we believe MemCasting would output even better speedup results, but further

work is required to demonstrate this.

Further Safety Measures MemCast was designed to be compatible with the

LLVM Clang compiler’s CFI defences [131] but currently undermines its integrity.

When Clang CFI is applied to the MemCast wrapper, it will check the validity

of a vptr at the point of a default dynamic cast but not as part of a successful

MemCast. This absence in successful MemCasts is only problematic in the case

of vptr tampering by an adversary. It would entail changing both an object’s

vptr and the MemCache vptr to avoid the default dynamic cast. Unfortunately,

the CFI defence cannot be deployed at the source level, as it is a compile-time

mechanism. However, if MemCast were a language facility and the compiler knew

its functionality, Clang CFI could be incorporated into a successful MemCast

operation, like with dynamic casting. As part of a successful MemCast operation,

vptrs would be protected from adversaries, and the CFI defence integrity would

be intact.

The Clang CFI defence [131] adds just a few instructions to every vptr access

to check the validity of that vptr. If added to a MemCast call, which was written

to have as few instructions as possible, this will undoubtedly impact MemCast’s

performance. We cannot quantify the impact, but we estimate that MemCast

would be 2-3 times more expensive with CFI, which is still significantly cheaper

than dynamic casting. It would be interesting to see the performance overhead of

CHAPTER 5. MEMOISED CASTING 155

Clang CFI coupled with MemCast, as Clang CFI incurs an average overhead of

2.04% [90], whereas MemCast improves performance by 1.63-1.68%.

Multi-threaded Programs The MemCast prototype, in its current state, does

not support multi-threaded programs and therefore makes no provisions to pre-

vent type confusion under race conditions. One option to accommodate multi-

threading is to use the C+11 storage specifier thread local. The thread local

keyword, when applied to our MemCache objects, will assign them thread storage

duration; meaning that each thread will have its own instance of that memCache

object.

We applied thread storage duration to MemCast in our original speed tests

listed in Section 5.4.3. These preliminary tests suggested that thread-safe Mem-

Cast increased the average speed of MemCasting to 2.03ns, an increase of 0.097ns

(or 91.5%) compared to our original MemCast results. This increase in perfor-

mance cost spears several more questions. Can its performance be improved while

still ensuring thread safety? If not, is this an acceptable increase in cost per cast?

How does the cost increase impact the suitability of MemCast for low-stability

cast sites? Furthermore, does thread-safe MemCasting facilitate performance im-

provements when applied to a sizable multi-threaded software? Needless to say,

the performance of thread-safe MemCasting requires further research.

5.7 Concluding Discussion

We introduced the concept of cast stability and presented evidence from a real-

world library (Deal.II), that most of its dynamic down-casts have very high sta-

bility, averaging 94.89%. From this discovery, we introduced MemCast, a mem-

oisation wrapper function that takes advantage of highly stable down-casts to

improve casting speed. At the forefront of MemCast’s design was its speed, which

(at optimal stability) was at least seven times faster than dynamic casting. This

CHAPTER 5. MEMOISED CASTING 156

improvement was achieved in the context of the cheapest form of dynamic down-

casting (a cast to the complete object within a single inheritance hierarchy) and

achieved even better results for more complex casts. Beyond these performance

experiments, we used mathematical modeling to show that even at lower levels of

stability, MemCast could still outperform dynamic casting. This was achieved by

finding the minimum stability required of a cast to outperform the fastest form

of dynamic casting, which for our machine, turned out to be 41.7%. All but one

of the cast sites we analysed within our real-world library has stability greater

than this minimum, meaning all but one cast would benefit from MemCasting.

Minimum stability was calculated on the assumption that the cheapest form of

dynamic casting was applied, but in truth, we had no idea what types of casting

were being performed; so we presented evidence that showed the more expensive

dynamic casting is, the more beneficial MemCasting becomes.

With the majority of Deal.II test programs experiencing improved performance

with MemCasting, we opted to test its abilities in two other C++ libraries, OM-

Net++ and Antlr4. In both cases, MemCasting was found to improve performance

across all test cases; even in the case of a stability value of 32.64%, which is lower

than the estimated minimum (41.7%). This surprising result not only brought into

question the impact of low memory locality of RTTI objects when performing a

dynamic cast; but also demonstrated that MemCasting has more performance

benefits than we initially thought.

We discussed how MemCast could be inappropriate for some cast sites, mainly

when stability is significantly low. Such sites will consistently incur the penalty

of defaulting to a dynamic cast, and in turn, execution times could worsen as

a result. However, in all the programs we tested, only a tiny minority of casts

were found to have low stability (less than the estimated minimum), and, even

in cases where it was low (like in the test case found OMNet++), MemCast can

still improve performance for complex casts sites and in cases of low memory

CHAPTER 5. MEMOISED CASTING 157

locality. Nevertheless, MemCast is presented as a source-based tool, allowing

programmer discretion over its use to avoid those rare unstable yet fast-performing

cast locations (if they choose to). Even though the choice is there, we believe

MemCast can be implemented as a blanket solution for all dynamic down-casts

and still improve performance (as long as most cast sites benefit). If enough

casts execute faster, those impeding this will quickly become insignificant, as was

shown in all of our MemCast tests. All test programs were rewritten with this

blanket solution to convert all dynamic down-casts (whether appropriate or not)

to a MemCast. Even with the blanket solution, MemCast gained an average

performance improvement between 1.11-3.91% across all test cases.

Finally, we concluded with a solid argument for introducing MemCasting as a

C++ language feature. As a language feature, MemCast would be amenable to

additional optimisations and security defences.

Chapter 6

Object-Oriented Code-Reuse

6.1 Introduction

Code Injection Attacks There was once a time when a hacker could exploit

a simple buffer overflow vulnerability, directly injecting code instructions onto

the stack and redirecting control to this code [96]. Simple attacks like this have

since been thwarted with data execution protection [85], a mitigation that marks

memory pages (like stack and heap memory) as non-executable, rendering code

injection attacks futile. Nevertheless, attackers evolved their techniques; instead

of injecting their own code, they reuse the code already present in the program,

a tactic known as a code-reuse attack [77].

Code-Reuse Attacks A code-reuse attack is a run-time exploit in which control-

flow is hijacked (by an adversary), and a series of code snippets (gadgets) are sys-

tematically executed (within a gadget chain) to perform some desired malicious

behaviour. To perform such an attack, an adversary must find a vulnerability

that allows them to inject a carefully constructed data set (known as a payload),

which would result in the invocation of the desired gadget chain. Return-to-libc

[92, 118] was the first attack of this kind.

158

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 159

Return-to-libc Return-to-libc [92, 118] worked by overwriting a stack return

address (usually via a buffer overflow) to point to an attacker-chosen subroutine.

Upon return, the attacker’s chosen subroutine, typically a system routine within

libc, would execute granting privileged access to the machine. If such a subroutine

required arguments, then the attacker would carefully position each required ar-

gument on the stack as part of the original payload. This attack vector motivated

the (now widely used) address space layout randomisation (ASLR) defence [105].

This randomises the address space where data and executables are stored, thus

hiding the locations of subroutines. Today, ASLR is a widely-deployed defence for

protecting the locations of data and subroutines, but its protection capabilities

are limited as it is vulnerable to information leak attacks [39, 114].

Return-Orientated Programming Return-orientated programming (ROP)

[113] is a Turing-complete exploit that can also circumvent data execution protec-

tion. A ROP gadget is a small sequence of code, usually just a few instructions,

which end with a return (ret). Individually each gadget performs a small task,

such as moving data to a register or executing a mathematical operation, but col-

lectively (as a gadget chain), they perform some desired malicious behaviour. To

perform a successful ROP exploit, an attacker must identify useful gadgets within

the binaries and find a vulnerability that allows them to inject their payload onto

the stack. An ROP payload consists of gadget addresses interleaved with data

parameters, which each gadget will use. Once a gadget has been invoked, it will

perform some small operation before its return instruction is used to invoke the

next gadget in the chain. This continues until the attack’s desired behaviour has

been achieved.

ROP Variants ROP became a popular area of research, and many variants

of the original attack emerged, such as Jump-Orientated Programming (JOP)

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 160

[11, 20], Pure-call orientated programming (PCOP) [110] and Just-in time code-

reuse (JIT-ROP) [117].

Similarly to ROP, JOP uses small gadgets containing just a few instructions,

but each gadget ends in an indirect jump rather than a return. To maintain

control over a program’s execution, Bletsch et al.[11] introduced a new method of

chaining gadgets using a so-called dispatcher gadget. A dispatcher gadget governs

the control-flow of the gadget chain; invoking the first gadget of the gadget chain,

ensuring that gadget returns to the dispatcher upon completion, and repeats this

action until the desired behaviour is realised. Similarly to JOP, PCOP presented

a code-reuse attack based solely on gadgets ending with a call instruction and

JIT-ROP presented a dynamic technique for discovering and deploying gadget

chains on the fly.

As well as new variants, further advances have come with automation, with sev-

eral researchers developing techniques to automate gadget search, chain building

and full exploit deployment [136]. Of course, the expansion of the ROP paradigm

has not gone unchallenged, and various code-reuse defences have been explored,

particularly in the field of control-flow integrity (CFI).

Control-Flow Integrity The central premise behind a Control-Flow Integrity

(CFI) defence [1] is to check the correctness of each control-flow path (be it an indi-

rect jump, call, or return), against a pre-defined set of valid destination addresses.

This is achieved by employing a control-flow graph (CFG). A CFG represents a

superset of all possible control paths an application can traverse during execution.

Any deviation from this control-flow indicates an illegal operation and will induce

termination. CFI defences, in principle, are sound and will prevent any form of

control-flow hijacking. However, tracking every possible control-flow, within an

extensive and comprehensive CFG, comes with crippling performance overheads

[15]. Thus, numerous research papers have tried to produce a CFI solution with

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 161

low overheads but high accuracy, as only those with less the 10% overheads [120]

will likely be considered for real-world deployment.

Each CFI defence operates at different levels of granularity, which are often

described as being either fine-grained or coarse-grained. A fine-grained CFI solu-

tion will produce a strict control-flow graph with a limited number of valid target

destinations and control-flow paths. A coarse-grained CFI, on the other hand,

produces CFGs with more relaxed sets of valid targets and control-flow paths;

making it less accurate than fine-grained CFI, but often offers better performance

overheads [15].

Advanced Code-Reuse With the advancements in CFI and other defences

came further attack techniques [51, 69, 112, 138]. One such technique, and the

focus of this chapter, is counterfeit object-orientated programming (COOP) [112].

COOP is a code-reuse attack that uses counterfeit objects (containing attacker-

chosen vptrs) to form a payload; and uses virtual functions as gadgets.

COOP This chapter explores the COOP exploit [112] and a variant known

as COOPLUS [21]. COOP, at the time of publication (2015), was able to by-

pass a wide range of CFI defences [1, 27, 88, 133, 142], including more ad-

vanced techniques explicitly targeting C++ [43, 106, 140]. Schuster et al. [112]

discussed the importance of a CFI defence to consider C++-semantics, specifi-

cally class hierarchies, as those that did not were susceptible to COOP attacks.

This, of course, sparked more research into C++-semantic-aware CFI defences

[14, 37, 40, 43, 58, 87, 106, 133, 135, 140, 141], many of which were capable of

thwarting COOP. However, in August 2021, Chen et al. [21] developed COOPLUS,

a new variant of the COOP exploit that can go undetected in almost all CFI de-

fences posed so far.

Naturally, a dynamic dispatch site will have multiple possible control-flow

paths, one for each valid object type it can receive. Therefore a CFI defence will

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 162

include each path as a valid target for that dispatch site. Of course, there is

only one correct path at run-time, determined by the dynamic type the dispatch

receives. If CFI does not dynamically track object types, then there will always

be the weakness of over-approximation. If it could infer the absolute path, then

the call should be devirtualised and the function called directly. The failure of

not being able to statically determine the absolute correct path, therefore, fun-

damentally weakens CFI. COOPLUS takes advantage of this weakness and can

execute, without detection, within the scope of a CFI over-approximation. This is

achieved by manipulating a base class instance to address a derived class vtable,

where a derived class function can be successfully invoked in a CFI defence. If

that function interacts with derived class attributes, then the function will result

in a memory violation, as it will access data members outside the bounds of the

manipulated base class instance.

One defence COOPLUS could not bypass was CFIXX [16]. CFIXX is not

a CFI defence but was designed to complement CFI with object type-integrity

verification. CFIXX protects the integrity of the object’s type by guaranteeing

the integrity of an object’s vptr during dynamic dispatch. It does not, however,

monitor the control-flow of a program; this falls to an accompanying CFI defence.

CFIXX is considered a sound defence against COOP [3, 17, 38, 63, 104]; however,

the defence breaks ABI conformance [21], which makes it unattractive for real-

world deployment. We analysed the implementation of CFIXX and identified

several vulnerabilities in the defence when deployed without CFI support. In

light of the recent COOPLUS variant and its ability to bypass CFI, we believe that

these vulnerabilities pose a threat to CFIXX’s integrity guarantees.

From our analysis of CFIXX and the new COOPLUS variant, we argue that CFI

is an unsuitable defence against COOPLUS, as it does not consider type-awareness.

Hence we propose a new type-integrity defence called Member Function Integrity

(MFI).

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 163

MFI This chapter presents Member Function Integrity (MFI) a novel defence

policy that guarantees the type-integrity of member functions. Type-integrity is

guaranteed by making member functions type-aware at run-time, allowing them

to verify the objects they receive are of a valid type before executing their func-

tion body. If functions only receive the correct object types, then there are no

opportunities to supply counterfeit objects (or otherwise) to these functions, thus

mitigating member function reuse attacks, like COOP.

Contributions This chapter presents:

• A discussion of three flaws in the current CFIXX implementation and the

impact they could have on the overall integrity of this defence.

• A new defence policy, Member Function Integrity (MFI), which mitigates

all known COOP and COOPLUS attacks.

• An MFI implementation proposal detailing the mechanisms and type inclu-

sion testing methods required for deployment.

• A proof of concept that demonstrates the advantages of MFI over other

defences such as CFIXX and Clang CFI.

Chapter Structure This chapter illustrates the COOP exploit, demonstrating

how it works, the proposed defences, and its most recent advancement (COOPLUS)

in Section 6.2. Section 6.3 discusses CFIXX (one of the few defences to prevent

COOPLUS) and illustrates three known flaws in the defence. Section 6.4 intro-

duces our new defence policy, MFI, and provides an implementation proposal

for its deployment. To complement the design, we present a proof of concept

in Section 6.5, demonstrating how MFI can defend against attacks that CFIXX

and Clang CFI cannot. We provide additional future work suggestions beyond

its implementation in Section 6.6 before the chapter finalises with a concluding

discussion in Section 6.7.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 164

6.2 Counterfeit Object-Orientated Programming

Schuster et al. [112] developed a novel code-reuse attack specific to C++, called

Counterfeit Object-Orientated Programming (COOP). COOP uses virtual func-

tions as gadgets and requires a payload of counterfeit objects with attacker-chosen

vptrs. These counterfeit objects are used to drive a series of attacker-chosen dy-

namic dispatches, which are leveraged to invoke a chain of carefully selected virtual

function gadgets. When first published, COOP preyed on the lack of considera-

tion for object-orientated semantics in coarse-grained CFI defences, which allowed

it to execute without detection.

6.2.1 The COOP Exploit

To perform a successful COOP exploit, an attacker must identify a set of useful

virtual function gadgets (called vfgadgets). These vfgadgets will perform specific

individual tasks but, when chained together, manifest some desired behaviour. A

vfgadget chain is manufactured around a main-loop gadget. A main-loop gadget

(a type of dispatcher gadget) is a virtual function that contains a loop. This

loop must iterate over a container of object pointers, invoking a virtual function

with each iteration. Once all components of an attack have been identified, an

attacker can populate the object container (used within the main-loop gadget)

with counterfeit objects. The counterfeit objects are made up of attacker-chosen

vptrs and data members. The vptrs are used as part of the main-loop gadget,

invoking an attacker-chosen virtual function with each iteration. These virtual

functions will operate on the attacker-chosen data members within the counterfeit

objects. The counterfeit objects may even overlap one another, meaning that

multiple objects can share data members. Shared data members allow data to be

transferred between one invoked vfgadget and the next, enabling an attacker to

create useful gadget chains.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 165

1 class Student {
2 public:
3 virtual void incCourseCount() = 0;
4 virtual void decCourseCount() = 0;
5 };
6
7 class Course {
8 private:
9 Student **students;

10 size_t nStudents;
11 public: /* ... */
12 virtual ˜Course() {
13 for (size_t i = 0; i < nStudents; i++)
14 students[i]->decCourseCount();
15 delete students;
16 }
17 };
18
19 class SimpleString {
20 char* buffer; size_t len;
21 /* ... */
22 virtual void set(char* s) {
23 strncpy(buffer, s, len);
24 }

(a) Source code example (b) Memory layout example

Figure 57: COOP gadget chain example (taken from [112] © 2015 IEEE)

Main Loop and Gadget Chain Example Figure 57 provides an example of

a COOP exploit (taken from the original COOP paper [112]). The source code

listed in Figure 57a contains a potential main loop gadget in the virtual destructor

function Course::∼Course(). This destructor function iterates over a container

of Students, calling a virtual function with each iteration. This virtual function

(decCourseCount()) is the second virtual function of the Student vtable; hence,

when dynamically dispatched, it is realised as a call using the second virtual

function entry from the vptr address-point that, importantly, is one machine word

away. Figure 57b depicts an attacker payload, which is used to populate the

Student container. Notice that each counterfeit object has an attacker-chosen

vptr. The counterfeit vptrs are carefully selected to address a vtable entry, which

is one machine word behind the target vfgadget. When the Course::∼Course()

destructor is invoked, it will iterate over the manipulated Students container and

dispatch a virtual function using the counterfeit objects (via their corrupt vptrs),

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 166

25 class Exam {
26 private:
27 size_t scoreA, scoreB, scoreC;
28 public:
29 /* ... */
30 char *topic;
31 size_t score;
32 virtual void updateAbsoluteScore() {
33 score = scoreA + scoreB + scoreC;
34 }
35 virtual float getWeightedScore() {
36 return (float)(scoreA*5 + scoreB*3 +

scoreC*2) / 10;
37 }

(a) Source code example (b) Memory layout example

Figure 58: COOP overlapping object example (taken from [112] © 2015 IEEE)

thus creating a gadget chain.

Overlapping Objects and Data Sharing There are two additional classes

(Exam and SimpleString) within the code listed in Figures 57a and 58a, contain-

ing two virtual functions of interest. The first, Exam::updateAbsoluteScore()

(line 32), performs an arithmetic operation on three Exam data members and stores

the result in a fourth called score. The second, SimpleString::set() (line 22),

uses the SimpleString::buffer field as a destination of a write operation. Fig-

ure 58b depicts an attacker payload, where a counterfeit Exam object overlaps a

counterfeit SimpleString object. These objects overlap so that the Exam::score

data member shares the exact memory location of the SimpleString::buffer

data member. When the Exam::updateAbsoluteScore vfgadgets is executed, the

attacker-chosen data stored in the data members scoreA, scoreB, and scoreC,

will overwrite the value in the score/buffer data member. The following vf-

gadget in the gadget chain, SimpleString::set(), uses that overwritten data

member as the target address of the write operation. This combination of vfgad-

gets enables an attacker to write to a dynamically calculated memory address, i.e.

it enables arbitrary writes.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 167

Figure 59: CFI maps function call sites to a set of valid targets

6.2.2 COOP Defenses

Since COOP’s publication, there have been many proposed defences, the major-

ity of which are C++-semantic-aware CFI solutions [14, 37, 40, 43, 58, 87, 106,

133, 135, 140, 141]. All of these defences protect dynamic dispatch call sites, by

verifying their control-flow path before the target virtual function is called. Some

specifically protect vtables with vptr checking [14, 37, 40, 43, 133, 140], others

protect virtual function pointers [58, 87, 106, 135, 141]. In either case, these CFI

defences create a mapping between a call site and a set of valid targets (Figure 59),

be it vptrs or virtual function addresses. However, many of these defences have

since been bypassed by COOPLUS [21], a recent variant of COOP (discussed in

Section 6.2.3). One defence that could prevent the COOPLUS variant was CFIXX

[16]. CFIXX is not a CFI defence, but a complementary defence to CFI, that en-

forces type-integrity at dispatch sites. CFIXX’s implementation will be discussed

further in Section 6.3.

Before we can explain how COOPLUS actually works, and most particularly,

how it can bypass CFI defences, we first introduce and examine the implementa-

tion of a CFI defence. For this we chose Clang CFI [131], as it is a real-world CFI

defence, which can safeguard against COOP exploits.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 168

1 class A {
2 virtual void f1();
3 };
4 class B : A {
5 virtual void f1();
6 virtual void f2();
7 };
8 class C : A {
9 virtual void f1();

10 virtual void f3();
11 };
12 class D : B {
13 virtual void f1();
14 virtual void f2();
15 virtual void f4();
16 };

(a) Class Hierarchy (b) Original vtable layout (c) Interleave vtable layout

Figure 60: Interleaved vtable layout in Clang CFI

6.2.2.1 Clang CFI

Clang CFI [131] is available in the Clang compiler and provides control-flow pro-

tections on dynamic dispatch sites through vptr checking. The Clang CFI defence

uses an altered version of vtable interleaving [14]. Vtable interleaving is a method

of combining all vtables from one hierarchy into one large vtable. As a single

vtable, all its address-points can be arranged in such a way that verifying a vptr

can be performed as a straightforward (constant-time) range and alignment check.

Figure 60 depicts two vtable layouts. One is the standard layout produced

by the Clang compiler (Figure 60b), the other by Clang CFI (Figure 60c). The

method of vtable interleaving, used by Clang CFI, ensures two properties of the

Itanium ABI [23] are upheld:

1. The displacement to the complete object and RTTI field (labelled C and D,

respectively) exist at a constant negative offset from a vptr address-point.

2. Virtual function pointers exist at the same offset entry from a vptr for all

derived-class types.

Table 16 demonstrates how both properties are satisfied, listing the constant offset

of all vtable entries before and after interleaving. These offsets hold true for all

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 169

Vtable Entry Original
Offset

Interleaved
Offset

Displacement
to complete -16 -16

RTTI -8 -8
f1() 0 +48
f2() +8 +40
f3() +8 +40
f4() +16 +72

(a) Offset of each vtable entry

Class Run-time Type Start End
A A, B, C, D 16 64
B B, D 32 48
C C 64 64
D D 48 48

(b) Valid address-point ranges for each
static type

Table 16: Metadata for vtable interleaving example

vptr address-points, given that the vptr has access rights to a particular function.

Clang CFI performs vptr checks in two stages. First is a range check based

on the static type of the object. Table 16b lists the valid ranges for each class

type from our example in Figure 60c. The second stage is an address-point check,

ensuring a valid address-point is used within the specified range. The address-

point check is supported using a bit-vector, where each bit represents an aligned

offset location (within a valid range), and a set bit corresponds to a legal address-

point.

Clang CFI provides a fine-grained CFI defence against vtable hijacking attacks.

It enforces accurate vptr targets at dynamic dispatch sites by verifying that the

vptr used is one from a set of valid vptrs expected at that location. For example,

Clang CFI will map the virtual function call obj->f1() (with static type A* obj)

to all four address-points in Figure 60c (i.e. map to all four class vptrs). This is

because, f1() is inherited by every derived class, so should be accessible to every

derived class object. Upon invocation, Clang CFI checks that the vptr stored in

obj points to a location between +16 and +64 of the interleave vtable and ensures

it addresses one of the four possible address-point locations.

6.2.3 COOPLUS

Chen et al. (2021) [21] proposed an advanced form of COOP (coined COOPLUS)

that can bypass advanced C++-semantic-aware CFI defences [58, 62, 63, 93, 94,

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 170

Figure 61: COOPLUS targets out-of-context but type-conforment CFI destinations

133]. C++-semantic-aware CFI defences generate a set of valid targets for a

dynamic dispatch site using static analysis. Static analysis will generate an over-

estimation of valid target vptrs (or virtual function pointers) to accommodate all

possible (valid) dynamic types the dispatch may use. COOPLUS exploits this over-

estimation by targeting derived class functions while using a base class instance

(see Figure 61), an illegal operation that appears valid under CFI.

To demonstrate a COOPLUS attack, we introduce the Module class in Fig-

ure 62a, alongside its object’s layout in Figure 62b. The Module class inherits

from Exam, overriding its virtual function updateAbsoluteScore() and declaring

several new data members. In Figure 62c, the function finaliseExam() receives

an Exam object and uses it to dynamically dispatch the updateAbsoluteScore()

function. Given an Exam object poised for this function call, an attacker may

overwrite the data fields of that object, including altering its vptr to address the

Module vtable. When this object is used in the dynamic dispatch, the Module

version of updateAbsoluteScore() will be invoked, which is a valid target under

many CFI defences. This particular function call will result in data outside the

bounds of the original Exam object being modified, affecting the object adjacent

to the Exam instance (see pre and post-attack in Figure 62c).

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 171

1 class Exam {
2 size_t scoreA, scoreB, scoreC;
3 char *topic;
4 size_t score;
5 virtual void updateAbsoluteScore() {
6 score = scoreA + scoreB + scoreC;
7 } ...
8 class Module : Exam {
9 size_t courseWork1, courseWork2, maxScore;

10 float grade;
11 virtual void updateAbsoluteScore() {
12 grade = (score+courseWork1+courseWork2)/

maxScore;
13 } ...

(a) New Module class source code (b) Module object layout

(c) COOPLUS attack, using an overridden function in a derived class vtable to manip-
ulate data members in an adjacent object

Figure 62: Example of a COOPLUS attack

COOPLUS has demonstrated that a C++-semantic-aware CFI defence, which

limits valid function call destinations to polymorphic function implementations,

is still not enough to protect against COOP attacks. However, one defence that

can prevent COOPLUS is CFIXX [16].

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 172

6.3 CFIXX Under the Microscope

6.3.1 Object Type-Integrity

Burow et al. [16] proposed a novel defence policy called object type-integrity

(OTI). OTI is different to CFI, as CFI protects a program’s control-flow, whereas

OTI protects an object’s type. If the integrity of all object types is upheld, then

an attacker cannot change or create counterfeit objects, making attacks such as

COOP, infeasible.

6.3.2 CFIXX Implementation

Burow et al. [16] developed a defence technique called CFIXX to enforce OTI.

CFIXX is realised as a series of patches to the LLVM Clang 3.9.1 compiler. These

patches enforce OTI by altering the constructor function and the dynamic dis-

patch mechanism in CFIXX-hardened binaries. The technique is built on the

premise that once a whole object is constructed, its vptr does not change. Thus

an object’s type can be protected by ensuring the correctness of its vptrs. This

protection is achieved by mapping each (eligible) object address-point to a single

valid vptr assigned to that location during construction. This mapping is then

stored within a metadata table (MDT) within a secure memory location. Thus

the CFIXX patches alter dynamic class constructors so that when a vptr is as-

signed, it is also mirrored within the MDT. If an attacker could corrupt or create

a fake vptr, that vptr would not exist in the MDT, as it would not have been

assigned through a constructor. Dynamic dispatch is also patched under CFIXX

so that the mechanism is performed using only vptrs from the secured MDT, as

these vptrs are known to be safe and valid. Therefore, CFIXX prevents corrupt or

counterfeit vptrs from being leveraged within the dynamic dispatch mechanism,

thus preventing COOP and COOPLUS exploits. However, one should note that by

altering the dynamic dispatch mechanism, CFIXX-hardened binaries break ABI

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 173

Figure 63: Two-level look-up metadata table

conformance [21].

Secure Metadata CFIXX stores all assigned vptrs within a metadata table

(MDT), which resides in a memory region secured by MPX (memory protection

extension) [55, 56]. Figure 63 illustrates the layout of the MDT and how entries in

the table are accessed using object address-point locations. The MDT is organised

as a two-level lookup table, which implements a mapping between an object’s

address-point and its vptr. To find an object’s corresponding MDT entry the

object’s address (stored in objPtr), which is conceptually just a sequence of bits,

is divided into high-order, middle-order, and low-order bits. The high-order and

middle-order bits index a two-level lookup table, whereas the lowest three bits are

ignored. The high-order bits index the first-level table and retrieve the address

for that object’s second-level table. The middle-order bits index this second-

level table, pinpointing where the object’s vptr MDT entry resides. The three

lowest-order bits are irrelevant because vptrs are word (8-byte) aligned on 64-bit

architectures. This technique of tracking an object’s vptr is similar to so-called

conservative pointer-finding, which is used in Boehm-Demers-Weiser conservative

garbage collector [61].

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 174

Compiler Patches In a COOP attack, an attacker will inject their own, care-

fully crafted, counterfeit objects with fake vptrs. As such objects are injected,

a constructor is never called to create them; only legitimate objects are created

through constructors (except for RTTI objects, which are constructed at compile

time). For this reason, CFIXX will add a new MDT entry every time an object is

constructed; this is achieved through patching the sub-routine CodeGenFunction::

InitializeVTablePointer, which is responsible for realising vptr assignment

within the binaries of a class constructor. The patch does not perturb the orig-

inal functionality of the routine, i.e. vptrs are still assigned within an object,

but additional instructions add an MDT entry as well. Another sub-routine

(CodeGenFunction::GetVTablePtr), which is responsible for realising the code

that retrieves an object’s vptr during dynamic dispatch, is also altered by CFIXX.

This routine would originally access a vptr through the object itself, but CFIXX

redirects this retrieval, accessing an object’s vptr only through the MDT. This

redirection ensures that the vptr used within any dynamic dispatch is valid and

the same vptr assigned to that object during construction.

6.3.3 CFIXX Vulnerabilities

CFIXX is a complementary defence to CFI and is widely considered sound against

COOP attacks [3, 17, 38, 63, 104], COOPLUS attacks [21], and even defines ground

truth for the VPS (VTable Pointer Separation) defence [104]. However, CFIXX is

not favoured for real-world deployment because it breaks ABI conformance [21].

Furthermore, CFIXX relies on MPX [55, 56], a now-discontinued data protection

mechanism [70, 95], to protect its metadata table. Due to the novelty of CFIXX,

we investigated its security capabilities particularly when deployed in isolation

(without an accompanying CFI), but we assumed a secured MDT. Under these

conditions, we identified three vulnerabilities within CFIXX that could result in

a COOP exploit.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 175

Figure 64: Overpopulated MDT over time as Heap memory is recycled. Objects
include an Exam, SimpleString, and other trivial class instances

We note that two of the three vulnerabilities we discuss were briefly addressed

in its original CFIXX paper [16]. However, we extend this discussion by provid-

ing examples of how CFIXX can be bypassed with these vulnerabilities. In some

of these cases, an accompanying CFI defence would safeguard these vulnerabili-

ties; however, in light of COOPLUS, we believe even a CFI and CFIXX-hardened

program could be bypassed if these vulnerabilities were not resolved.

6.3.3.1 Overpopulated MDT

In CFIXX, class constructors are responsible for adding new vptr entries to the

MDT. This creates a mapping between a live object and its (safe and valid) vptr.

However, in the current implementation of CFIXX, vptrs are not zeroed once

their objects have been deallocated. Without careful deallocation management,

ghost vptrs (dead vptrs left behind by deallocated objects) will continue to reside

in the MDT until another constructor function overwrites them. If a particular

memory segment has a high recycle rate of dynamic objects, more and more

entries will be added to its corresponding MDT segment. This would result in an

MDT populated with both dead and live vptrs, creating a unique use-after-free

vulnerability, specific to vptr pointers.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 176

Figure 65: Possible ghost objects an attacker could exploit given the ghost vptrs
available in the MDT

Figure 64 depicts a segment of heap memory and its corresponding MDT

entries. Over time, this heap segment is recycled, new objects replace the old, and

within the MDT, live vptrs become interleaved with ghost vptrs. Among these

ghost vptrs are vptrExam and vptrSS, which address the Exam and SimpleString

vtables, respectively. The position of these two MDT entries creates the illusion

that an Exam and SimpleString object still reside in heap memory (as depicted

in Figure 65). We call these objects ghosts, as they once lived in memory but

have since been deallocated. Under CFIXX’s current implementation, a dynamic

dispatch using a ghost object is valid and will leverage the dispatch using a ghost

vptr from the MDT. In this particular example, an attacker could launch the same

exploit, with the same payload, as the example detailed in Section 6.2.1.

Ghost vptrs and ghost objects could be used to leverage a full-scale COOP at-

tack within a CFIXX-hardened program (although harder to achieve). Figure 65

demonstrates that, given enough vptr entries in the MDT, a useful payload could

be constructed that aligned with both live and ghost vptrs and enabled the ex-

ecution of a useful gadget chain. This demonstrates the importance of carefully

managing the integrity of the MDT; without which the defence is impaired.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 177

1 class Animal { virtual void action() = 0; };
2 class Herbivore { void nonVirtualFunction() {...} };
3 class Rabbit:Animal, Herbivore { virtual void action()

{...}};
4 class Fox:Animal { virtual void action() {} };
5 ...
6 vector<Animal*> simulation;
7 ...
8 for(Animal *anPtr : simulation) {
9 anPtr->action();

10 if(Herbivore *hPtr=dynamic cast<Herbivore*>(anPtr))
11 hPtr->nonVirtualFunction();

(a) Dynamic cast in animal simulator program (b) Payload layout

Figure 66: Forced type confusion under CFIXX and calls to non-virtual member
functions

6.3.3.2 Dynamic Cast

As previously discussed in Section 3.4.4, the dynamic cast operator generates a

call to the global dynamic cast function. The dynamic cast function takes

an object, retrieves its RTTI via its vptr, and uses the RTTI object to invoke the

virtual do dyncast function. However, we found that the process of retrieving

RTTI within the dynamic cast function is unprotected by CFIXX. Thus, within

dynamic casting, there exists a vptr access that is not redirected through the

secure MDT. As a result, a dynamic cast can be performed on a counterfeit object

without CFIXX detection.

Non-Virtual Calls We revisit our simulator example of foxes and rabbits in

listing Figure 66a. This example performs a dynamic cast to a Herbivore* type

(line 10) before calling a non-virtual function from the Herbivore class (line 11).

Suppose an attacker constructed a counterfeit object using a Rabbit or Herbivore

vptr (see Figure 66b) and passed this object to the dynamic cast. Under CFIXX

protection, this dynamic cast would be successful. Once the cast is complete, the

non-virtual function is invoked using the counterfeit object.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 178

Missed Dispatch CFIXX protects only the binaries compiled using a CFIXX-

enhanced compiler; this makes sense, as it is not just about incorporating the

MDT, but every constructor function and dynamic dispatch site must be rewritten

to incorporate the defence. Therefore, to ensure complete coverage, all libraries

linked to the program must also be compiled with CFIXX. This is problematic

because CFIXX is an ABI-breaking defence [21]. Any dynamically linked libraries

recompiled with CFIXX may be incompatible with other programs; thus, devel-

opers must compile these libraries statically or maintain two versions, one that

is CFIXX hardened and the other that is ABI-conformant. The most prolific li-

brary this applies to is the Standard C++ Library. The Standard C++ Library is

dynamically linked to almost all C++ programs and is done so automatically by

the compiler without a developer needing to specify this with compilation flags.

For this reason, we believe this library could easily be overlooked when applying

this defence. In fact, if any dynamically linked library is overlooked during com-

pilation, it poses a significant risk to the integrity of CFIXX, which we will now

demonstrate with the Standard C++ Library.

The Standard C++ Library is responsible for RTTI, and part of RTTI is

dynamic casting (see Section 3.4.4). For example, in the GNU Standard C++

Library [44], the dynamic cast mechanism uses RTTI objects and the do dyncast

function to determine an object’s run-time type. The do dyncast function is a

virtual function and is therefore called using the dynamic dispatch mechanism. If

the standard library is overlooked during CFIXX compilation, this dispatch will go

without CFIXX protection. Figure 67a depicts how data members are accessed as

part of a dynamic cast. The global dynamic cast function retrieves the RTTI

object and uses it to dynamically dispatch the do dyncast function. When

do dyncast is unprotected, it is possible to dispatch an attacker-chosen function

within a dynamic cast call. Figure 67b depicts such a case with an elaborate

attacker payload. This payload consists of a counterfeit object, a counterfeit

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 179

(a) Normal dynamic cast that dispatches the do dyncast function.

(b) Payload used to exploit dynamic cast and target a specific vfgadget

Figure 67: Normal and exploited version of the dynamic cast mechanism.

vtable, and a counterfeit RTTI object. Here the counterfeit RTTI object has

an attacker-chosen vptr that addresses a real vtable with a virtual function of

interest. If this particular counterfeit object were passed to a dynamic cast site,

the attacker’s chosen function would be invoked.

Rightly so, one would argue that the above scenario is unlikely and would be

exceptionally difficult to manufacture an attack through this particular dispatch

site. After all, the most basic of CFI vtable protections would prevent vtable

injection. However, we argue that it demonstrates a more significant issue within

CFIXX: it takes only one exploitable and unprotected dynamic dispatch site to

break the integrity of the defence. OTI requires a fine-grained approach, which in

this case means that all dispatch sites need hardening, and all live dynamic objects

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 180

need tracking. If one dispatch site is exploitable and unprotected (through

a missed library or otherwise), all virtual functions become available to an

attacker, a dyer consequence for a small human error. In cases where CFIXX and

CFI are applied together, security would fall to the accompanying CFI defence,

which would limit the number of vfgadgets available to an attacker but would not

avoid COOPLUS. Note that if a library was overlooked when applying a CFIXX

defence, it may have also been overlooked when applying the accompanying CFI

defence. We discuss such a scenario in Section 6.5.4.

6.3.3.3 Adjacent Vtables

The dynamic dispatch mechanism is critical in a COOP attack because it can

indiscriminately call a virtual function, given (whether valid or not) an object

address, a vptr, and a vtable offset. The CFIXX defence ensures the validity of

two aspects of this non-discriminatory execution, the object address and its vptr,

by forcing dynamic dispatch through the MDT. However, CFIXX contains no

mechanisms for checking valid vtable offsets, and by the author’s own admission

[16], there is no validation for checking that the correct object is used in a dispatch

(this falls to the accompanying CFI). In an isolated CFIXX defence, it is possible

to dispatch a function from an adjacent vtable; but only if the call site has a

sizeable offset adjustment and receives the wrong object type. This vulnerability

occurs because CFIXX does not apply type-awareness to dispatch sites.

Figure 68 presents an example of invoking a virtual function from an adjacent

vtable. Figure 68a lists a for loop, which iterates over a container of A objects,

dispatching the virtual function vfAx() with each iteration. This dispatch site is

realised as a call using the virtual function found at an x offset from the supplied

vptr (i.e. vptrA+x). If x is significantly large, then an attacker could supply the

dispatch site with an unrelated object. Suppose the attacker used a valid (live) B

object, which had few virtual function entries in its vtable. When the dispatch is

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 181

1 vector<A*> container;
2 ...
3 for(A *a : container) {
4 a->vfA_x();
5 ...
6 }

(a) Possible main-loop gadget (b) Dispatching vfgadgets from adjacent vatbles

Figure 68: Calling virtual functions in adjacent vtables

executed, the displacement +x will be applied to the B vptr (i.e. vptrB+x). For a

large enough x, this adjusted vptr will not only reside outside the bounds of the

B vtable but could address a virtual function entry within the adjacent vtable (in

this case, C, see Figure 68b). As B is live, its vptr (vptrB) has a valid entry in the

CFIXX’s MDT, so an adjacent vtable call like the one described would bypass

CFIXX’s defences.

6.3.3.4 Accompanying CFI

In its current implementation, we have shown that CFIXX has several vulnera-

bilities that could allow an attacker to bypass its defences. In principle, ghost

vptrs are an issue of MDT management, not an issue of the defence policy itself;

it is, therefore, a vulnerability that can be patched and rectified in future ver-

sions. However, the other vulnerabilities discussed expose a weakness in CFIXX’s

defence methodology: CFIXX not only complements CFI but is dependent on

it. We conclude, therefore, that an isolated CFIXX defence can only offer partial

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 182

protection, and when accompanied by CFI, its security level is only as good as

the CFI’s ability to protect these loopholes.

The most significant vulnerability is an unprotected dispatch site (through

linking or otherwise), which could open up all virtual functions to exploitation. An

accompanying CFI can safeguard this particular vulnerability, but what guarantee

is there that a CFI defence will identify the dispatch sites CFIXX could not? The

answer depends on which CFI defence it uses; thus, this raises further research

questions about which CFI defence would best accompany CFIXX.

6.4 Member Function Integrity

The majority of COOP defences discussed thus far explore the protection of virtual

tables or virtual pointers alongside dynamic dispatch call sites, placing all checking

mechanisms prior to a function dispatch. Only one other defence has broken this

mould, Bauer and Rossow [9], who explored the idea of dropping vtables altogether

and hence eliminating the threat of vtable hijacking1. We also wish to break

this mould with the exploration of post-dispatch member function protection, i.e.

performing type-checking as part of the prologue of a member function body after

a dispatch. We have called this defence Member Function Integrity (MFI).

Figure 69 depicts the differences in each defence. CFI generates a one-to-

many mapping between a specific virtual dispatch site and its valid targets, either

vptrs or virtual functions. This mapping generates an over-approximation of

targets, which can be bypassed with COOPLUS. CFIXX generates a one-to-one

mapping between objects and vptrs, and although it upholds the integrity of an

object’s vptr, it does not protect dispatch sites. Without this protection, unrelated

functions can be invoked from adjacent vtables; thus, CFIXX must lean on CFI

defences to block such loopholes. MFI will also generate a one-to-one mapping;
1Their technique replaces vtables with large switch statements. From our examination of

their paper, we believe their technique would not prevent COOPLUS attacks.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 183

Figure 69: Mappings produces in each defences technique

however, this mapping will be between a member function and its class type.

With this mapping, member functions can become type-aware, enabling them to

verify that the objects they receive are of a valid type. Like CFIXX, MFI does

not protect function call sites, but because type verification occurs post-dispatch

(within the functions themselves), adjacent vtable calls are impossible. Thus, call

sites do not need the same level of protection, and MFI can independently protect

against COOP and COOPLUS attacks.

6.4.1 Defence Policy

We present a new defence policy, member function integrity (MFI), which guaran-

tees that all member functions are invoked using an object of its own type, thereby

preventing code-reuse attacks containing member functions. Member functions

are defined within a class and therefore have an associated type. At the source

level, these functions are invoked using an object of its associated class type (or

a sub-type see Section 2.3.5). At the binary level, this is realised by passing the

address of the invoking object as a function’s first parameter (Section 3.2). The

address-point used in a member function call must address a (sub-)object match-

ing the function’s type (Section 2.3.5). In other words, every member function

should receive an address-point to a (sub-)object of the same type as the function

itself. However, member functions have no means of verifying they receive the

correct data type at run-time, which allows function reuse attacks like COOP.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 184

However, if member functions were made type-aware, object type compatibility

could be verified, and member function reuse exploits mitigated.

6.4.2 Implementation Proposal

We propose introducing a dynamic object type tracking technique and a type in-

clusion test strategy (first discussed in Section 4.3). In our type inclusion strategy,

classes will be assigned a unique class code and their instances an encoded key

that encapsulates hierarchical relationships. Functions defined within a protected

class will naturally have access to the class code, which will be stored as a const

static variable. As a const static variable, its value will be realised as a literal

within the instruction code (Section 2.2.5). Therefore when a function performs a

type inclusion test, the class code will be embedded within the function prologue,

making the function type-aware while preventing manipulation by an adversary.

The embedded class code will be compared with the encoded key linked to the

run-time object. If the object’s key is compatible with the function’s class code,

the function must be a member of the object’s type and execution is permitted to

continue; otherwise, an exception should be thrown. To achieve this, we propose

repurposing the type inclusion testing scheme used in Bitype [101] (a run-time

type confusion detector) and applying it to member functions.

6.4.3 Converting Bitype’s Encoding Scheme

Pang et al. (2018) [101] developed a novel compiler-based tool that identifies and

reports type confusion vulnerabilities. Their prototype tool (Bitype) is built on

top of the LLVM Clang compiler, using LLVM’s compiler toolchain technologies

to instrument a type inclusion testing technique that protects cast sites. The two

main components of Bitype are its object tracing technique, which uses the same

MDT set-up as CFIXX, and a novel, safe encoding scheme called safe sets.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 185

1 class A {... virtual void fa();};
2 class B : A {virtual void fb();};
3 class C : A {...virtual void fc();};
4 class D : B {...virtual void fd();};
5 class E : B, C {...virtual void fe();};
6 class F : C {...virtual void ff();};
7
8 class W {...virtual void fw();};
9 class X : W {...virtual void fx();};

10 class Y : X {...virtual void ft();};
11 class Z : X {...virtual void fz();};

(a) Example Hierachy

(b) Depiction of hierarchical families and
phantom class B

(c) Example E object with phantom B

Figure 70: Bitype example hierarchy

6.4.3.1 The Encoding Scheme

Bitype’s novel safe encoding scheme consists of a safe set code and a fast type

inclusion checking technique. A safe set code is assigned to every class and is used

to represent the inherited relationships of each class within its own hierarchy. Each

safe set code consists of a series of binary flags, where each flag represents a single

relationship. These encoded relationships are used to check the validity of a cast

at run-time. The checking technique is a series of fast bit-wise operations that

compare two safe set codes. This comparison verifies whether or not an object’s

source type and cast target type have a valid hierarchical relationship and if

the cast is safe to proceed. If a cast is deemed safe, the program will continue;

otherwise, a bug report is filed, and the type confusion location is identified.

Bitype’s Safe Sets Encoding We will demonstrate Bitype’s encoding scheme

using the example listed in Figure 70. Figure 70a introduces two distinct class

hierarchies, referred to as hierarchical families. Once Bitype has identified all

families (as depicted in Figure 70b), each class within a given family is assigned a

class index. Class indexes are just integer values assigned sequentially (starting

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 186

Class Class
Index

Class
Code

Safe Set
Code

A 1 00001 00001
B 1 00001 00001
C 2 00010 00011
D 3 00100 00101
E 4 01000 01011
F 5 10000 10011
W 1 00001 00001
X 2 00010 00011
Y 3 00100 00111
Z 4 01000 01011

(a) Bitype encoding scheme

Class Family
Index

Class
Index

Class
Code

Safe Set
Code

A 1 1 000001 000001
B 1 2 000010 000011
C 1 3 000100 000101
D 1 4 001000 001011
E 1 5 010000 010011
F 1 6 100000 100101
W 2 1 000001 000001
X 2 2 000010 000011
Y 2 3 000100 000111
Z 2 4 001000 001011

(b) MFI encoding scheme

Table 17: Adapted Bitype encoding scheme for MFI

with 1) in a top-down left-to-right manner through the hierarchy. In this exam-

ple, class B is considered a phantom class. A phantom class is a derived class

that does not introduce any new data member attributes, just member functions.

Without the introduction of new attributes, a phantom class’ object layout is

identical to its direct-base class layout (as seen with sub-objects A and B in Fig-

ure 70c). As there is no difference in layout, casting between the two is always

considered safe, so both classes receive the same class index. Table 17a lists the

class index assignments made for our hierarchical examples.

Class indexes are transformed into bit-vectors, called class codes, where the

nth bit (starting with the least significant bit) is set to 1 for a class indexed as

n. Using these class codes, a class’s safe set code can be generated. A safe

set code represents all hierarchical relationships for an individual class within a

single family, where each bit represents a particular class relationship. Formally,

a class’s safe set code is the logical (inclusive) disjunction of its class code and the

class codes of all its base classes. For example, if we denote a class’s safe set code

as SSCclass, then SSCF is the inclusive disjunction of class codes F, C, and A:

SSCF = 10000 ∨ 00010 ∨ 00001 = 10011

All class safe set codes are listed in Table 17a.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 187

MFI Encoding Scheme To apply Bitype’s safe set encoding scheme to an MFI

defence, some alterations are required:

1. Phantom classes will not share class codes. A cast between a phan-

tom class and its direct-base class is deemed safe under Bitype, allowing

both classes to share the same index and safe set codes. However, in MFI,

phantom classes may introduce new member functions, which should only be

accessible to phantom class instances and their derived-types. These func-

tions should never be accessible from a base class instance, and therefore the

distinction between base and a derived phantom classes must be explicit.

2. Family Indexes are assigned to every class. Bitype does not encode

family data into its safe set codes, as it can rely on static type-checking

to prevent any form of cross-family casting. MFI, on the other hand, has

no such luxury. A virtual function hijack attack could receive any object

from any hierarchy, so an MFI encoding scheme must distinguish between

hierarchical families. For this reason, class codes must be accompanied by a

(static const) family index value. This family index value also accompanies

MFI safe set codes.

3. Safe set codes represent a set of types positioned at an object’s

address-point In MFI, safe set codes will not represent all hierarchical

class relationships but only those that share the address-point of a class’s

complete object instance. A derived class’s (MFI) safe set code is evaluated

as the logical (inclusive) disjunction of its class code and all base class codes

that share the complete object address-point produced by that derived class.

For example, consider the complete E object (Figure 70c) that shares its

complete address-point with two sub-objects from classes A and B. E’s safe

set code is therefore the inclusive disjunction of E, B and A’s class codes, i.e.

SSCE = 10000 ∨ 00010 ∨ 00001 = 10011 , as seen in Table 17b.

Table 17b lists the results of MFI’s adapted encoding scheme for the hierarchies

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 188

(a) Bitype Object Tracking (b) MFI Object Tracking

Figure 71: Adapted Bitype object tracking for MFI

listed in Figure 70.

6.4.3.2 Object Tracking

Bitype uses the same object tracking technique as CFIXX [16], a two-level lookup

metadata table (MDT) that links an object’s address-point to its safe set data

(Figure 71a). MFI could apply the same object tracking technique (assuming

accurate MDT management is available), mapping live object address-points to

safe set data and its family index value (Figure 71b).

Bitype Table Management Although Bitype uses CFIXX’s MDT strategy,

it is not implemented in the same way. CFIXX is a defence mechanism that is

realised as a series of patches to the LLVM Clang compiler, where the compiler

itself has been adapted to produce CFIXX-hardened binaries. Bitype is built on

top of the Clang compiler and therefore does not interfere with the compiler’s

source code. Instead, Bitype protection is instrumented using a series of LLVM

passes.

Bitype adds an object’s safe set code to the MDT using an instrumented

trace obj() function, which is inserted immediately after every (detectable) new

object construction. However, this method cannot detect all object initialisations,

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 189

and object coverage is approximately 83%, suggesting limitations to this method.

For this reason, we believe a compiler altering method, like CFIXX, provides the

best coverage.

MFI Table Management Like CFIXX, we propose that our MFI defence

be implemented within the compiler. The compiler will then have the ability

to apply all necessary instrumentation to implement the MFI defence. These

instrumentations will ensure all member functions are realised with MFI-hardened

code: modifying virtual member functions to include type inclusion testing and

modifying constructors/destructors to include MDT management.

In Section 3.3, we discussed the process of object construction, and how (non-

primary class) objects are constructed through a series of nested constructor calls.

Each constructor generates an instance of its own class, first by invoking its base

class constructors and then initialising its own data members. Where a class has a

vtable, its constructor will assign a vptr. This often means the vptr is repeatedly

overwritten by a derived class constructor, with each unwinding of the nested

constructor call. The same should hold for MDT entries; each constructor should

assign its own MDT entry, which the callee constructor should overwrite if they

share the same address-point.

In MFI, every constructor will assign its own safe set data to the MDT, using

the address-point passed to the constructor function to determined the MDT

entry. If a derived class object shares that address-point with a base instance, then

the MDT entry will be overridden during construction. Once an object is wholly

constructed, each address-point will have an assigned safe set and family index,

which will correspond with the most-derived (sub-)object type at that address-

point location. For example, Figure 72 depicts a fully constructed E object from

the class hierarchy in Figure 70. The most derived-type located at address-point

p0 is E, therefore p0 will map to E’s safe set data in the MDT. On the other hand,

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 190

Figure 72: Object tracking data for MFI binaries

the most derived-type located at address-point p1 is C, so p1 will map to C’s safe

set data.

Destructors should be modified to perform the same actions as constructors,

but instead of initialising MDT entries, it should nullify them.

6.4.3.3 Type Inclusion Test Technique

Member functions have types. A member function’s type corresponds with the

class it was defined within. When a member function is invoked, the compiler will

perform an implicit cast on the invoking object to ensure that the object passed to

the function is of the same type. Thus once a function is called, the expectation

is that it will receive an object of the same type as the function itself. At the

binary level, this is realised by a function receiving an object address that points

to a (sub-)object instance of the function’s type. This is the fundamental premise

behind the MFI defence. MFI checks that the object address-point, passed to the

function, addresses an object type that matches the type of that function.

Type Testing Once control-flow enters the function’s body, the object’s address-

point, passed to the function, is used to access that object’s safe set and family

index from the MDT. The function itself is type-aware, as it has direct access to

both the const static family index and class code defined within its class. With

this information, a type inclusion test can be performed within the prologue of a

protected member function.

The type inclusion test takes the following form: given a function call (f) using

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 191

an object address-point p, the object’s family index (Fp) and safe set code (SSCp)

can be retrieved from the MDT. The function itself has direct access to its own

family index (Ff) and its class code (CCf). A type inclusion test is performed in

two parts: First, we check that the object and the function belong to the same

family using:

Fp == Ff

If true, a second test is performed that verifies whether the object address-point,

passed to the function, addresses a (sub-)object instance matching the function’s

type. This test performs an exclusive disjunction (⊕) and comparison, taking the

the following form:

SSCp ⊕ CCf < SSCp

If this test returns true, then the object used in the function call is valid. However,

if either test fails, an incompatible object type was passed to the function, and

execution should end.

Table 18 provides an example of MFI type inclusion testing, using an object

epi= new E(), where the variable e stores either the address-point p0 (ep0) or p1
(ep1) to the E object depicted in Figure 72. Each row of this table breaks down

the result of an MFI type inclusion test, using a function from a particular class.

The functions featured are from classes A to F (the same hierarchical family as

E), and a single function (X::fx(epi)) from class X, which is part of a different

family. We can see that, when using the complete object address-point, p0, only

functions defined in classes A, B, and E are permitted to execute. This reflects the

(sub-)objects available at that address location. Likewise, only functions defined

in classes A and C can execute using the p1 address-point, which also reflects the

sub-objects available at that location. Function calls outside of E’s hierarchical

family (for example, attempting X::fx(ep0)) do not go beyond the family testing

phase of this type inclusion test and as a result, will not be permitted to execute.

Collectively, this table shows that when using an E object, only functions defined

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 192

Function call Ff CCf Ff == Fe SSCepi ⊕ CCf SSCepi ⊕ CCf < SSCepi

p 0
A::fa(ep0) 1 000001 T 010010 T
B::fb(ep0) 1 000010 T 010001 T
C::fc(ep0) 1 000100 T 010111 F
D::fd(ep0) 1 001000 T 011011 F
E::fe(ep0) 1 010000 T 000011 T
F::ff(ep0) 1 100000 T 100011 F
X::fx(ep0) 2 000010 F - -

p 1

A::fa(ep1) 1 000001 T 000100 T
B::fb(ep1) 1 000010 T 000111 F
C::fc(ep1) 1 000100 T 000001 T
D::fd(ep1) 1 001000 T 001101 F
E::fe(ep1) 1 010000 T 010101 F
F::ff(ep1) 1 100000 T 100101 F
X::fx(ep1) 2 000010 F - -

Table 18: Example MFI type inclusion testing for Fe = 1 , SSCep0 = 010011 and
SSCep1 = 000101

in classes A, B, C, and E can execute, which reflect E’s inheritance relationships.

This logical testing method (SSCp ⊕ CCf < SSCp) is simply checking whether

a single bit, within an object’s safe set code (SSCp), is set. More specifically, a

function (f) from a class indexed n will check that the nth bit of an object’s safe

set code is set. The nth bit of SSCp signifies that a specific class instance (the

function’s class instance) resides at the address-point p. When this bit is set, then

the result of SSCp ⊕ CCf is guaranteed to be less than SSCp. For example, when

calling B::fb() using the ep0 address-point of an E object, then:

SSCep0 = 0100 1 1

CCB::fb = 0000 1 0

SSCep0 ⊕ CCC::fb = 0100 0 1 < 010011 = SSCep0

Alternatively, if the bit is not set, then the result is guaranteed to be greater. For

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 193

example calling C::fc() using the same address-point:

SSCep0 = 010 0 11

CCC::fc = 000 1 00

SSCep0 ⊕ CCC::fc = 010 1 11 > 010011 = SSCep0

The MFI testing method is very similar to Bitype’s method [101], except that

Bitype does not perform a family index comparison.

6.4.3.4 Non-Virtual Function Protection

It is possible to extend the MFI defence to non-virtual functions and non-dynamic

objects, if desired. However, if this defence were applied to non-dynamic objects,

compound inline objects would need to be considered. A compound object is an

object that resides inside another object, not through inheritance but as a data

member. Therefore, a compound inline object is a compound object that aligns

itself with an address-point of the encapsulating object, i.e. shares an address-

point with the object it is a member of.

Compound inline objects are problematic for MFI’s encoding scheme, as they

create shared address-points between objects of different families. Sharing an

address-point between unrelated classes means that safe set data cannot be ac-

curately stored for both instances. A simple solution to this is to add padding

to every class with a compound inline object. By adding padding, the compound

object will shift out of line with the address-point location, providing it with its

own unique address-point. This padding could be as simple as adding a dummy

class attribute or rearranging class attributes so that a compound object is not

the first data member of a class instance.

Furthermore, non-dynamic objects do not contain a vptr, so are not guaranteed

to be at least 8-byte aligned like dynamic objects are. The current implementation

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 194

1 class W {...
2 virtual void fw();};
3 class X : W {...
4 virtual void fw();};
5 class Y : X {...
6 virtual void fw();};
7 class Z : X {...
8 virtual void fw();};

(a) Class definitions (b) Hierarchy

Class Family
Index

Class
Code

Safe Set
Code

W 2 0001 0001
X 2 0010 0011
Y 2 0100 0111
Z 2 1000 1011

(c) Safe set data

Figure 73: MFI example hierarchy and safe set data

Function call Ff CCf Ff == Fp SSCp ⊕ CCf SSCp ⊕ CCf < SSCp
W::fw(p) 2 0001 T 0000 T
X::fw(p) 2 0010 T 0011 F
Y::fw(p) 2 0100 T 0101 F
Z::fw(p) 2 1000 T 1001 F

Table 19: Example MFI type inclusion testing for a W object with a single address-
point p mapping to a family index Fp = 2 and a safe set SSCp = 0001 .

of the MDT relies on objects being at least 8-byte aligned. Thus to protect non-

dynamic objects, either they must be forced into 8-byte alignment, or the MDT

needs to expand to tracking objects of all alignments.

6.4.4 Benefits of MFI

A COOPLUS Defence To show that MFI would successfully defend against a

COOPLUS attack, we look at the example hierarchy in Figure 73. Suppose that a

program constructs a W object with address-point p. In an MFI hardened binary,

the W object would generate an MDT entry, storing its family index Fp = 2 and its

safe set SSCp = 0001 . Now suppose an attacker attempted a COOPLUS attack on

this program by modifying the vptr of the W object, forcing it to address a derived-

type’s vtable in the hope to invoke the overridden fw() function. Table 19 lists

the results of a type inclusion test for each version of the fw() function, showing

that W::fw() is the only function version that would execute with a W object.

This example demonstrates that MFI can prevent COOPLUS attacks.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 195

(a) Unprotected base class (b) Unprotected derived class

Figure 74: MFI protect with partial coverage

Protects Against Untracked Objects Any function that is MFI hardened

will check the validity of the objects it receives, guaranteeing that it will only ever

execute using valid address-points. If a protected function is passed an untracked

object, the type-integrity check will fail, as untracked objects will not have a valid

MDT entry. MDT entries not mapped to live objects should contain a special null

entry pointing to a zero family index and a zero safe set.

Partial Protection The integrity of MFI will also hold in partially protected

hierarchies. Critically, this means that functions protected by MFI remain

protected irrespective of the other classes in the hierarchy. To clarify,

suppose we have an MFI-protected derived class (DerivedP) that inherits from

an unprotected base class (BaseU). The unprotected base class will contain un-

protected functions, and its instances will not be tracked through the MDT. On

the other hand, the protected derived class will contain protected functions and

its instances will be tracked. Consider an instance of both the base and derived

class (as seen in Figure 74a). The BaseU object can interact with its own func-

tions as normal (because no run-time type-checking occurs), but if it were used

to invoke any derived class functions (which are MFI-protected), this would fail,

as the address-point of BaseU (p0) maps to a null MDT entry. Now consider the

protected derived class instance DerivedP. Similarly, this object can invoke base

class functions, as no type-checking occurs, but it can also interact with its own

protected functions, as it would pass MFI type-safety checks.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 196

The same partial protection applies to MFI-protected base classes with un-

protected derived classes. Consider the objects in Figure 74b. The base class

Basep has MFI protections, which means its instances are tracked with MFI,

and functions are hardened with MFI protections. The derived class DerivedU

is unprotected, so its class instances are not tracked through MFI. However, as

the DerivedU class inherits from BaseP (which is MFI-protected), the BaseP sub-

object within DerivedU is tracked through MFI. The tracking still occurs due to

the nested constructor calls generated when initialising a DerivedU object. As

BaseP is MFI protected, its constructor, whether used to generate a complete or

sub-object instance, will still initialise an MDT entry. Thus when a DerivedU ob-

ject invokes an MFI-hardened BaseP function, it will still pass MFI checks thanks

to its sub-object (BaseP) being tracked.

Unprotected Classes from Linked Libraries As we have just discussed,

partial protection of hierarchies is possible under MFI. The same holds true for

unprotected link libraries. That is to say, functions protected by MFI remain

protected irrespective of other linked code bases. To clarify, suppose we

have an MFI-hardened program linked to an unprotected library. Further, suppose

that the attacker had found a vulnerable dispatch site and attempted to use that

site as part of a COOP exploit. Their payload of counterfeit objects will be

injected into memory, bypassing the use of constructor functions that typically

instantiate an object. Without using a constructor function, their objects will not

be given an entry into the MDT. This means that MFI-protected functions cannot

be used as part of their exploit, as without an MDT entry, type-safety checks will

fail. Thus, the only vulnerable and viable vfgadgets in this exploit attempt will

be the unprotected functions introduced by the library itself, severely limiting the

pool of functions available to the attacker to construct a viable gadget chain.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 197

ABI Compatible Although the MFI defence should be deployed similarly to

CFIXX, it should not impede ABI conformance. CFIXX breaks ABI conformance

[21] by altering the vptr access of a dynamic dispatch mechanism defined in the

ABI itself [23]. MFI, on the other hand, extends a function’s prologue to in-

corporate type testing or MDT modification. Because it is incorporated into a

function’s body, just like a programmer’s code is, there is no reason for it to break

ABI conformance.

6.4.5 Scalability

One obvious drawback to the method described so far is that the size of the safe

set code will limit the number of hierarchical relationships represented. This,

however, can be fixed by storing safe set codes as byte arrays (rather than large

data types) and altering type testing to a one-byte bit-wise operation.

We discussed in Section 6.4.3.3 that safe set tests check for a single bit flag,

meaning all other bits in the test are irrelevant. If all other bits are irrelevant, then

they do not need to be present in testing. Therefore, why not reduce these bit-

wise operations to a single byte (the byte containing the bit we are interested in)

rather than the whole safe set code (which could be 32, 64, or even 128-bits long)?

The Bitype paper [101] provides an algorithm for single-byte type-checking, which

they use to simplify type checks; we, however, want to use the same technique for

scaling up our hierarchical encoding scheme.

Scalable MFI Encoding To allow for single-byte type-checking and, in turn,

represent much larger hierarchical relationships, we must alter the MFI encoding

scheme seen so far. To do this, we return to our previous example (Figure 70),

which we reprinted in Figure 75 for convenience. Table 75d presents the new scal-

able encoding scheme, which can be compared to the previous one in Table 75b. In

our scalable scheme, we switch the single data safe set code into a byte array. Safe

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 198

(a) Example E object

Class Family
Index

Class
Index

Class
Code

Safe Set
Code

A 1 1 0000 0001 0000 0001
B 1 2 0000 0010 0000 0011
C 1 3 0000 0100 0000 0101
D 1 4 0000 1000 0000 1011
E 1 5 0001 0000 0001 0011
F 1 6 1000 0000 0010 0101

(b) Limited MFI encoding scheme

(c) Class Hierarchy

Safe Set
Code Array

Class Family
Index

Class
Index

Safe Set
Entry

Class
Code [0] [1] ...

A 1 1 0 0001 0001 - -
B 1 2 0 0010 0011 - -
C 1 3 0 0100 0101 - -
D 1 4 0 1000 1011 - -
E 1 5 1 0001 0011 0001 -
F 1 6 1 0010 0101 0010 -

(d) Scalable MFI encoding scheme

Figure 75: Scalable encoding scheme example

set codes are calculated in the same way as previously described (Section 6.4.3.1)

but are then separated into single bytes and assigned to an array. We also add a

new data entry to the encoding scheme as a whole, called Safe Set Entry, which

lists the index of the safe set array where the class code flag exists. Due to the

way hierarchies are categorised and safe set codes are generated, the safe set entry

will also define the maximum length of the array. Run-time objects will still be

mapped to the MDT, but the MDT entry will point to a whole Safe Set structure.

This structure must contain the Family Index, the Safe Set Entry, and the Safe

Set array.

Scalable MFI Type Inclusion Testing To accommodate the scalable safe

code array, the type inclusion test must also be altered to take the following form:

given a function call (f) using an object address-point p, the object’s family index

(Fp), safe set entry (SSEp), and safe set code (SSCp[SSEp]) can be retrieved from

the MDT. The function itself has direct access to its own family index (Ff), safe

set entry (SSEf), and its class code (CCf). A type inclusion test is performed in

three parts:

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 199

1. Check that the object and the function belong to the same family

Fp == Ff

2. Check that there exists an entry for comparison in the object’s safe set code

array:

SSEf <= SSEp

This check prevents out-of-bounds access from the safe set array, as the ob-

ject’s safe set entry is also the array length.

3. Check for a relationship between object and function using the relevant byte

from the object’s safe set code array:

SSCp[SSEf]⊕ CCf < SSCp[SSEf]

If any test fails, then the object used in the function call is invalid, and execution

should end.

Scalable Example To demonstrate that the addition of safe set code arrays

can still function as part of the MFI encoding scheme, we repeat the example

from Table 18 in Table 20. Again we use the object epi= new E() (depicted in

Figure 75a), where the variable e stores either the address-point p0 (ep0) or p1

(ep1) to an E object. Each table column breaks down the result of the scalable MFI

type-inclusion testing scheme. We will discuss each phase of the type inclusion

test and the functions it deems incompatible with the object address-point used.

1. Family index check (Fp == Ff): The comparison of family index values

returns false for the X::fx function in both cases, correctly identifying this

function as being from an unrelated hierarchy.

2. Check for safe set code entry (SSEf <= SSEp): The function’s safe set

entry (SSEf) is compared against the safe set entry for the relevant object

address-point (SSEepi). As the object’s safe set entry specifies the length

of its safe set code array, this check ensures no out-of-bounds reads in the

following test. It also correctly eliminates functions E::fe and F::ff from

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 200

Function call Ff CCf

Ff
==
Fe

SSEf

SSEf
<=

SSEepi

SSCepi [SSEf]
SSCepi [SSEf]

⊕
CCf

SSCepi [SSEf]
⊕CCf

< SSCepi [SSEf]
p 0

A::fa(ep0) 1 0001 T 0 T 0011 0010 T
B::fb(ep0) 1 0010 T 0 T 0011 0001 T
C::fc(ep0) 1 0100 T 0 T 0011 0111 F
D::fd(ep0) 1 1000 T 0 T 0011 1011 F
E::fe(ep0) 1 0001 T 1 T 0001 0000 T
F::ff(ep0) 1 0010 T 1 T 0001 0011 F
X::fx(ep0) 2 0010 F - - - - -

p 1

A::fa(ep1) 1 0001 T 0 T 0101 0100 T
B::fb(ep1) 1 0010 T 0 T 0101 0111 F
C::fc(ep1) 1 0100 T 0 T 0101 0001 T
D::fd(ep1) 1 1000 T 0 T 0101 1101 F
E::fe(ep1) 1 0001 T 1 F - - -
F::ff(ep1) 1 0010 T 1 F - - -
X::fx(ep1) 2 0010 F - - - - -

Table 20: Example MFI type inclusion testing for Fe = 1 , SSEep0 = 1 ,
SSCep0 = {0011 , 0001}, SSEep1 = 0 , and SSCep1 = {0101}

executing on the ep1 address-point, as the class code flags for these functions

exist outside the bound of the ep1 safe set code array.

3. Relationship check SSCp[SSEf]⊕ CCf < SSCp[SSEf]: The XOR compar-

ison is performed using the function’s class code (CCf) and the relevant

entry from the object pointer’s safe set array (SSCepi[SSEf]). This last test

correctly eliminates all remaining unrelated functions, returning the same

results as the previous example in Table 18.

This example demonstrates that a scalable MFI defence is possible and capable

of removing the restrictions on relationship encoding seen in our first scheme. In

our scalable scheme, hierarchies are now restricted by the size of the family index

and the safe set entry. These values are represented with integers, so even using

short ints (2 bytes in size) would allow for 65536 families and, within those families,

65536 safe set code entries. As a safe set code entry has four bits, it can store four

different relationships; thus, each individual family can have as many as 65536*4

= 262144 classes, and if all family indexes were used, the encoding scheme could

store up to 262144*65536 = 17,179,869,184 classes. This is more than enough for

any large and complex program, but even if it was not (for family indexes, safe set

entries, or both), the short data type could be increased to 4, 8 or even 16 bytes.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 201

6.5 MFI Proof of Concept

To back up the theory of MFI protection and demonstrate its benefits compared

to other defences, we opted to provide a proof of concept. To prove this concept,

we built a contrived stock management program with a single buffer overflow

vulnerability that would enable us to perform three different dynamic dispatch

exploitation techniques. These techniques are as follows:

1. A vptr overwrite with derived vptr type (COOPLUS)

2. A dynamic dispatch which invokes a function from an adjacent vtable

3. The use of an unprotected dynamic dispatch from a linked library

We will present the stock management program and each exploitation tech-

nique. After explaining each exploit, we will discuss their effectiveness when

attacking three different versions of the stock management program, each with a

different defence deployed (CFIXX, Clang CFI, or MFI). The third exploit ex-

ample relies on an unprotected dynamic dispatch. To provide such a dispatch,

the program dynamically links to a separate library (containing dynamic dispatch

code) that is compiled separately without any defensive protections.

6.5.1 Example Program Design and Vulnerability

Our example program is a stock management system that could exist in a retail

store setting. It is a simple command line-based program that stores details of

stock items as well as staff and store data. The system is designed to have four

different user types, each with a different level of privilege and data access. The

lowest privileged user, a Guest user, can access the system without authentication

and has the ability to query stock and leave reviews. The remaining three user

types: Staff, Manager, or Admin, have increasing privilege levels but are only

accessible through password authentication. An Admin user has the highest priv-

ilege level and can access and modify all system data. The goal of each exploit

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 202

Figure 76: Stock management example program for MFI proof of Concept

will be to access the system as a Guest user, bypass the authentication process,

and acquire Admin level privileges.

Software Design The stock management system relies on inheritance to deter-

mine the authority of a user. This inheritance hierarchy can be seen in Figure 76,

consisting of the classes Guest, Staff, Manager, and Admin. These classes all have

their own implementation of a virtual function called mainMenu. The mainMenu

function displays a list of menu options to a system user, which ultimately dic-

tates what they can and cannot access during a session. Figure 77 depicts two of

these main menus, one for a guest user (the output of Guest::mainMenu) and the

other for an admin user (the output of Admin::mainMenu). The guest main menu

provides a user with limited options and limited access to the system, whereas

the admin main menu provides complete access to the whole system. Each of the

main menu versions is managed in the same way; the menu items are printed to

the terminal, and a unique switch statement processes the user input.

Figure 78 lists the source code for the main function and the User class in the

management system. Upon starting the program, the main function creates a new

User object (line 2). A User object stores two pointer variables, log and userType

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 203

(a) Guest::mainMenu() (b) Admin::mainMenu()

Figure 77: Differences in main menus for Guest and Admin users

1 int main() {
2 user = new User();
3 stockSystem = new StockSystem();
4
5 while (true) {
6 user->userType->mainMenu();
7 };
8 }

(a) main function

9 class User {
10 public:
11 User() {
12 log = new CommentSystem();
13 userType = new Guest();
14 }
15 CommentSystem *log;
16 Guest* userType;
17 };

(b) User class and constructor

Figure 78: Source code from sock management system

(lines 15 and 16), where userType is initialised to a Guest object (line 13). After

all objects are constructed, the main function will enter an infinite loop (line 5).

This infinite loop will call the mainMenu function, dictating which menu the user

will see and, in turn, their privilege level. Initially, as user->userType is assigned

a Guest object, this function call will bring up the main menu associated with a

Guest user (Figure 77a). A Guest user can opt to log in from this main menu,

and upon success, the user->userType field will be overwritten to a derived-type

(Staff, Manager, or Admin), depending on the credentials used. After login, the

control flow returns to the main function’s infinite loop. As the type stored in

user->userType has changed, so will the mainMenu function dispatched at this

location. This is the intended control flow path for users to escalate their privilege

level.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 204

Exploitation Goal The Admin::mainMenu() function will be the target mem-

ber function of each exploit example. This function is prized, as once invoked, an

attacker will have full access to the system without any further authentication.

Therefore, our goal for each example exploit will be to invoke Admin::mainMenu(),

as a Guest user, without authentication.

Vulnerability The vulnerability in this program is a single buffer overflow inside

the CommentSystem class (see Figure 76 and lines 12 and 15 in Figure 78b). The

CommentSystem class inherits from a Log class that contains a char buffer of 128

characters. Inside the CommentSystem class is a function called comment(), which

reads user input, and stores it in the inherited buffer but performs no length

checks on the user’s input string. This contrived scenario represents an easy

error in coding, where one programmer makes assumptions about the security of

another’s code. In this case, the former programmer failed to check the length of

user input within their code because they assumed that the Log class protected

its own char buffer, thus creating a buffer overflow vulnerability.

6.5.2 Exploit 1: COOPLUS vptr Overwrite

Recall from Section 6.2.3 that a CFI defence overestimates the set of target func-

tions at a dispatch site to cover all possible control-flow paths of a polymorphic

object. A COOPLUS exploit takes advantage of this overestimation by targeting

derived class functions while using a base class instance, an illegal operation that

appears valid under CFI. Our first exploit example does precisely this.

Memory Layout The partial memory layout of the stock management system

is depicted in Figure 79a. Here we can see that the User object constructed

within the main function (Figure 78a line 2) exists at offset 0 and addresses both

a CommentSystem object and a Guest object (its data members). The Guest

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 205

(a) Memory layout (b) Payload

Figure 79: COOPLUS exploit example

object (Figure 79a offset +176) has a vptr (vptrGuest) that addresses the Guest

vtable. It is this vptr that is used as part of the dynamic dispatch within the

infinite loop in the main function (line 6, Figure 78a). During the initial run

of this loop, the Guest::mainMenu() function is invoked, providing guest-level

privilege (Figure 77a).

Payload Figure 79b depicts the payload we used to perform the COOPLUS ex-

ploit. The CommentSystem buffer (at offset +32) has a buffer overflow vulnera-

bility, which we, as a Guest user, can exploit. To exploit this vulnerability, we

write a comment to the buffer that exceeds its maximum length and overwrites

the vptr of the adjacent Guest object to vptrAdmin (at offset +176). As our Guest

object now addresses the Admin vtable, the Admin::mainMenu() function is in-

voked upon return to the main function, granting access to the admin main menu

(Figure 77b). Thus as a Guest user, we have achieved the highest privilege access

(Admin) without authentication.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 206

(a) Memory layout (b) Payload

Figure 80: Vtable out-of-bounds access exploit

6.5.3 Exploit 2: Adjacent Vtable Access

In Section 6.3.3.3, we described an issue within the CFIXX defence that would

allow an incorrect virtual function call from an adjacent vtable. An adjacent

vtable call happens when a dispatch site accesses a smaller vtable than expected,

calling a function entry outside the bounds of that vtable but part of an adjacent

vtable instead. This exploit example will demonstrate this scenario.

Memory Layout The main function (Figure 78a) initialises a User object and

a StockSystem object (line 3). The StockSystem object appears in memory after

the User object and its fields (Figure 80a offset +256) and stores a single pointer

to a Stock object. As the Stock class contains many virtual functions, the Stock

object addresses a large vtable. A guest user has access to some of these virtual

functions, particularly (in this example) the QuickQuery function that resides in

the x entry of the stock vtable (see Figure 80a).

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 207

Payload Figure 80b depicts the payload used in this exploit example. In this

scenario, our payload will overflow the buffer, assign vptrGuest back to itself (at

offset +176) and continue to overflow until we reach the StockSystem object (at

offset +256). As this object only stores a pointer to another object, we overwrite

this pointer to address our Guest object instead (situated at offset +176).

Invoking the QuickQuery Function When a guest user attempts to query

the stock in the stock system, the QuickQuery function should be dynamically

dispatched. The following table outlines what happens during this dispatch, both

before and post-payload. The table lists the outcome of each step within the

dynamic dispatch process for both scenarios.

Outcome
Performing the QuickQuery dy-
namic dispatch in four steps

Normal Dispatch
(Figure 80a)

Dispatch post pay-
load (Figure 80b)

1 Take the object pointer stored within the
StockSystem object at offset +256

Stock* Guest*.

2 Access the vptr of the retrieved object vptrStock vptrGuest
3 Add a +x offset to the vptr vptrStock + x vptrGuest + x

4 Call the virtual function addressed by
the offset vptr

Stock::

QuickQery()

Admin::

mainMenu()

As demonstrated, the result of querying the stock after implementing the pay-

load results in calling the Admin::mainMenu function. Once again, we have esca-

lated our privilege level, as a guest user, without authentication.

6.5.4 Exploit 3: Unprotected Library

In Section 6.3.3.2, we discussed the issues around unprotected dynamic dispatch

sites, stating that it only takes one unprotected dispatch to undermine CFIXX

and CFI defences. We will demonstrate this using an unprotected dispatch within

a linked library in this example exploit.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 208

Figure 81: Unprotected dispatch in unprotected library

Dynamic Link Library and Vulnerable Dispatch This example targets a

dynamic dispatch within a dynamically linked library. The dispatch is targeted

because the library is not compiled with the same protections as the main pro-

gram. Our example library defines two classes used within the stock management

system: Stock and Item. Both classes have virtual functions, but one in partic-

ular, Stock::PrintItems(), calls another virtual function (Item::getDesc())

within its function body. It is this embedded function call to getDesc() that is

unprotected. To clarify this, consider Figure 81, which depicts a control flow graph

of the dynamic dispatch of the PrintItems() function. The call to PrintItems()

was made within the protected source code; hence, CFIXX and Clang CFI will

protect this dispatch site. However, the embedded call to getDesc() will not be

protected because this call was made within the unprotected library code. Because

this function is unprotected, it will be the target of our example exploit.

Memory Layout The Stock class stores an array of Item pointers, which is

reflected in the memory layout depicted in Figure 82a (offset +296). When a user

invokes the Stock::PrintItems() function, it will iterate through the array of

Item pointers and dynamically dispatch the virtual function getDesc() on each

instance. Note that the getDesc() function happens to be the first entry of the

Item vtable.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 209

(a) Memory layout (b) Payload

Figure 82: COOP through unprotected library exploit example

Payload Figure 82b depicts the payload used to perform the third and final

exploit. In this case, we perform a more typical COOP exploit by inserting a fake

Admin object into memory with an Admin vptr (as seen at offset +272). We also

overwrite one of the Item pointers (within the Stock array) to address our fake

Admin object.

Calling PrintItems Post Payload After inserting the payload (Figure 82b),

we can invoke the Stock::PrintItems() function. Like before, this function will

iterate through the array of Item pointers calling the first virtual function entry

of the Item vtable. However, because we have redirected the first Item object to

point to our fake Admin object, the first virtual function within the Admin vtable

is called instead (Admin::mainMenu). By achieving the Admin::mainMenu call, we

have again elevated to the highest privilege level without authentication.

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 210

6.5.5 MFI - Source-Base Implementation

The MFI proof of concept was implemented as an additional code file within the

project. This code file contains the functions that manage the MDT and the

SafeSet structure. Safe set data was derived by hand, and all MDT function calls

were added to the source manually.

SafeSet structure Figure 83a lists the SafeSet struct, containing the familyIndex

(16-bits), SafeSetEntry (16-bits), classCode (8-bits), and safeSetCodeArray[]

(8-bit array). Figure 84a depicts the memory layout of the SafeSet struct; these

structures will be addressed by run-time objects (via the MDT) and by the mem-

ber functions (as a hard-coded address).

Safe Set Data Safe set data for the stock management system was derived by

hand, using the class hierarchy depicted in Figure 84b, and can be referenced in

Figure 84c. The class hierarchy depicts four class families, the largest (derived

from Guest) is a single inheritance hierarchy made up of 4 classes. Because the

maximum number of classes in a family is four, the largest safe set code will flag

four relationships, meaning all safe set code arrays will have a maximum of one

element2. As there is only one element in all safe set code arrays, all safe set

entries are set to zero. Note that classes Stock and Item are not listed with safe

set data as these classes are part of an external library, so we do not have access

to its code base and, in turn, the ability to protect their member functions with

MFI.

Once safe set data was gathered, it was manually added to the source code.

Figure 83b lists the source code for the Admin class. In line 14, a new SafeSet

ss data member is added. This data member is declared as both static and

const, meaning the values it stores will never change and will be accessible from
2This is reflected in the source code of the SafeSet struct with safeSetCodeArray[1] defined

with one element

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 211

1 typedef struct SafeSet {
2 const uint16_t familyIndex;
3 const uint16_t SafeSetEntry;
4 const uint8_t classCode;
5 const uint8_t safeSetCodeArray[1];
6 constexpr SafeSet(uint16_t fi,
7 uint16_t sse, uint8_t cc, uint8_t ssc) :
8 familyIndex(fi), SafeSetEntry(sse),

classCode(cc), safeSetCodeArray {ssc} {}
9 } SafeSet;

10
11 void MFIInitialization();

(a) SafeSet source code

12 class Admin: public Manager {
13 public:
14 static const SafeSet ss;
15
16 Admin():Manager() {
17 MFI_AddToMDT(this, ss); ... }
18
19 virtual void Admin::mainMenu() {
20 MFI_verify_call(this,ss); ... }
21 ...
22 };
23 const struct SafeSet Admin::ss = {4,0,8,15};

(b) Admin source with MFI alterations
24 __attribute__((always_inline))
25 inline static void MFI_verify_call(void *thisPtr, const SafeSet& ss_func) {
26 // Look up MDT Entry
27 unsigned long idx1 = (unsigned long)thisPtr >> L2_NUM & L1_MASK;
28 void **level2 = MFILookupStart[idx1];
29 if(level2 == NULL) { // Check level 2 entry exists
30 printf("MFI ERROR: No level 2 pointer found. Exit.");
31 exit(-1);
32 }
33
34 // Grab safe set structure from MDT
35 unsigned idx2 = (unsigned long)thisPtr >> 3 & L2_MASK;
36 idx2 = idx2 << 1;
37 SafeSet *ss_MDT = (SafeSet *)level2[idx2];
38 if(ss_MDT == NULL) { // Check safeset structure is not null
39 printf("MFI ERROR: No level 2 SafeSet entry found. Exit.");
40 exit(-1);
41 }
42
43 if(ss_MDT == &ss_func) // Check if the function and object are the same type. (fast check)
44 return;
45
46 if(ss_MDT->familyIndex != ss_func.familyIndex) { // check family index
47 printf("MFI ERROR: TypeConfusion. Wrong Family Index");
48 exit(-1);
49 }
50
51 uint16_t func_SS_index = ss_func.SafeSetEntry;
52 if(func_SS_index > ss_MDT->SafeSetEntry) { // Check safe set entry exists
53 printf("MFI ERROR: TypeConfusion. Unrelated Function, may belong to a base class");
54 exit(-1);
55 }
56
57 // Check the function class code exists in the object safe set
58 uint8_t MDT_SSC = ss_MDT->safeSetCodeArray[func_SS_index];
59 uint8_t func_cc = ss_func.classCode;
60 if((MDT_SSC ˆ func_cc) > MDT_SSC) {
61 printf("MFI ERROR: TypeConfusion. Unrelated function, may belong to a base class");
62 exit(-1);
63 }
64 }

(c) MFI verify call source code, adapted from Bitype [101]

Figure 83: MFI source code implementation for stock management example

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 212

(a) SafeSet memory lay-
out (b) Class hierarchy

Class familyIndex safeSetEnrty classCode safeSetCodeArray[0]
LogSystem 1 0 0001 0001

CommentSystem 1 0 0010 0011

StockSystem 2 0 0001 0001

User 3 0 0001 0001

Guest 4 0 0001 0001

Staff 4 0 0010 0011

Manager 4 0 0100 0111

Admin 4 0 1000 1111

(c) Safe set data

Figure 84: MFI SafeSet implementation for stock management example

all class instances through member functions. If a member function uses the ss

attribute, it will be realised by the compiler as a hard-coded pointer. As safe

set codes provide type information, their hard-coded pointers can be viewed as

hard-coded type identification, ultimately making any member function that uses

them type-aware.

MDT Management For MDT management, we modified the code published

as part of the Bitype paper [101] to work with SafeSet objects and perform MFI

type testing. The majority of this code remained untouched except for two func-

tions. The first was responsible for adding entries to the MDT; we renamed this

function to MFI AddToMDT(void *thisPtr, const SafeSet& ss) and adapted

it to store SafeSet structures. The second function was responsible for type in-

clusion testing; this was renamed to MFI verify call(void *thisPtr, const

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 213

SafeSet& ss) and altered to perform the MFI type inclusion tested outlined in

Section 6.4.5. Both of these functions were integrated into the Admin class (Fig-

ure 83b). MFI AddToMDT was added as the first line of the constructor (line 17),

and MFI verify call was added as the first line of every member function (line

20). Noticed that both these functions are passed the this keyword (i.e. the

object’s address-point) and the static const safe set attribute (ss) as parameters.

The MFI verify call function is listed in Figure 83c. Again, this function

takes two parameters: the object’s address-point (thisPtr), and the function’s

safe set attribute (ss func). Using the thisPtr in lines 26-41, another pointer to

a SafeSet structure is copied from the MDT and stored in the variable ss MDT

(safe set from MDT). The function will then proceed to perform the type inclusion

test. First, to save time, line 43 checks whether ss MDT and ss func address the

same safe set object. If they do, then the object and the function are from the

same class, and execution can continue. If they are not the same class type, then

a full type inclusion test is performed. First, the family indexes are compared

in line 46, followed by the safe set entries on line 52, and finally, a relationship

check between function and object in line 60. Only if all three tests pass will the

function be allowed to continue to execute.

6.5.6 Defence Comparison

We tested all three exploits against CFIXX, Clang CFI, and our MFI prototype;

the results are in Table 21.

CFIXX Recall that any object construction under CFIXX protection will store

its vptr in a secure metadata table and redirect any dynamic dispatch site through

that table. This combination protects the integrity of an object’s type and does

not allow valid vptrs to be altered. As a result, CFIXX can protect against the

first exploit type that altered an object’s vptr. However, CFIXX cannot protect

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 214

Successful prevention?
CFIXX Clang CFI MFI

Exploit 1 COOPLUS 3 7 3

Exploit 2 Adjacent Vtable 7 3 3

Exploit 3 Unprotected Library 7 7 3

Table 21: MFI, CFIXX, and Clang CFI comparison against three different exploits

against the second exploit because it does not protect the control flow of a dynamic

dispatch, i.e. a dispatch site can receive an incorrect object type and invoke a

different function to the expected control flow.

Clang CFI In contrast to the CFIXX defence, Clang CFI protects the control

flow of a dynamic dispatch site but not the integrity of the object types. Clang

CFI will ensure that the vptr used in a dynamic dispatch site will be from a set of

expected vptrs. This set consists of the vptr associated with the function’s type

and vptrs from all derived class types (to accommodate for polymorphism).

This means that Clang CFI can protect against our second exploit, as vptrGuest
is not one of the expected vptrs when trying to dispatch the QuickQuery function.

On the other hand, Clang CFI cannot protect against the first exploit, as a base

class vptr (vptrAdmin) is one of the expected vptr types that could be used to

invoke the mainMenu() function.

Exploit 3 CFIXX and Clang CFI could not protect against the third exploit

as both defences can only accommodate libraries compiled with the respective

defence strategies. This exploit again highlights the most significant flaw of these

defences: it only takes one unprotected dispatch site to allow an attacker to invoke

any member function within the program.

MFI MFI has been designed to perform type-checking after a dynamic dispatch.

Ideally, this type check would be performed within the prologue of a function being

called, but as our proof of concept is source based, we insert our type-checking

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 215

function as the first line of code in each member function. Because the type checks

exist within the function, dynamic dispatch sites have no control-flow protection;

thus, anything goes at the point of dispatch. However, the moment a member

function begins execution, the function will ensure that the object it is interacting

with is of a valid type and will stop execution immediately if invalid.

Our MFI prototype was able to prevent all three types of exploits discussed.

Because MFI performs all type-safety checks post dynamic dispatch, it does

not have the same weaknesses as the other defences. In all three exploits, the

Admin::MainMenu() is successfully dispatched by the attacker, but this function

stopped execution the moment it realised it received an invalid object type. In

both the first and second exploit, MFI checks and determines that the Guest

objects used are from the same family, but would fail the legal relationship test

as they are not an instance of the derived class Admin, and in turn, the program

was stopped. In the third exploit, we attempted to inject a fake Admin object.

This object was not created using a constructor, so its type data will not exist in

the MFI metadata table. Thus, when the Admin::mainMenu() function is called,

the MFI verify call function will fail before any type of testing is performed,

because no MDT entry could be found.

Why MFI is Superior In our MFI-hardened stock management system, an

attacker can still exploit the vulnerable dynamic dispatch within the linked library

to invoke non-MFI-protected functions. However, this means they are restricted

to invoking only the member functions within the unprotected library (i.e. func-

tions from classes Stock and Item). This fact makes MFI significantly more secure

than CFIXX and Clang CFI. In CFIXX and Clang CFI programs, a single vulner-

able dispatch site could allow any member function in the program to be invoked.

However, in MFI, a single vulnerable dispatch can only exploit unprotected func-

tions, and unprotected functions do not undermine the security of other functions

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 216

with MFI protection. This makes MFI a better security strategy for protecting

member functions from code reuse attacks.

6.6 Future Work

This chapter presented the proposal and proof of concept for a defence technique

against member function reuse attacks such as COOP. As it is just a proposal, its

implementation and evaluation are obvious future work challenges.

Implementation We believe MFI is best suited to compiler-level implementa-

tion, which would facilitate automatic MDT management and insertion of type

inclusion tests. For the MDT, further work is required to evaluate its coverage

and management of stack-allocated objects. Also, further investigation is required

to determine whether a CFIXX-style metadata table is secure enough for this de-

fence, as MDT integrity will be paramount.

Evaluation This chapter outlines a fine-grained MFI defence. Fine-grained,

in this setting, means that every object is traced, and every member function

performs a type inclusion test. Tracking every object and performing a type test

within every function will undoubtedly incur overhead, but only experimentation

can determine whether its cost is acceptable. Of course, the Bitype [101] type

inclusion testing scheme is just one of many schemes that could be adapted and

adopted for MFI testing. Further research is needed to identify whether this is

the best scheme for the job and whether further optimisation could be applied.

Coarse-grained MFI If a fine-grained MFI defence adds an unacceptable

overhead, then a coarse-grained MFI defence could provide an appropriate com-

promise. A coarse-grained MFI would limit its deployment to specific classes

and member functions. Which classes and member functions are protected will

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 217

require further research, but we have a possible solution based on how COOP

vfgadgets are categorised. Schuster et al. [112] categorise different vfgadgets into

types based on their operation. These types include but are not limited to main

loop gadgets, arithmetic operations, register load, register read, invocation of a

function via a field, etc. We theorise that every COOP exploit has a minimal

set of gadget types that must be executed before the attacker can gain complete

control. If this minimal set of gadget types could be identified, then only the

member functions that match those gadget types need protection (and their class

instances tracked). By protecting a strict subset of member functions, an attacker

would not be able to complete a full gadget chain required to gain full program

control.

Microsoft C++ ABI MFI, in its current conceptual form, will not be compat-

ible with the Microsoft ABI [86]. Most notably, it is incompatible with overridden

virtual functions dispatched from a virtually inherited sub-object. These virtual

functions receive an address that is offset from an object’s address-point. These

offset addresses do not correlate with those used during object construction and,

therefore, will not have their valid MDT entry. In the Itanium ABI, for which MFI

was designed, functions are guaranteed to receive an address-point pointing to an

object type that matches the function’s type; this is not guaranteed for programs

compiled under the Microsoft C++ ABI. Applying MFI to software compiled to

conform to the Microsoft ABI requires further consideration and possible alter-

ations to the design.

As we have already discussed, a course-grained MFI solution is possible, and

unprotected functions do not diminish the integrity of protected ones. As over-

ridden virtual functions in virtual hierarchies are the issue for MFI compatibility

in Microsoft’s ABI, one solution is not to apply MFI protection in those specific

cases. This solution is the easiest to implement, but further research is required to

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 218

identify how many functions this would likely leave vulnerable. During the course

of our research, virtual inheritance rarely appeared in the projects we analysed.

However, this is a tiny sample and may not be emblematic of all programs. A

more thorough survey of the popularity of virtual inheritance may be required

before a blanket omission of these functions is considered a viable solution.

Another solution, one that would require more research and ingenuity, is to

track these offset locations like we would for an object’s address-point. The diffi-

culty is that these offset locations are not used as part of the constructor function

(unlike actual object address-points) and must therefore be identified through

different mechanisms. Additionally, if such offsets were tracked, they could not

address the same safe sets as the object address-points. Recall that MFI safe sets

represent the class relationships shared by a common address-point, not the whole

hierarchy. As these offsets will solely be used by overridden virtual functions in

virtual hierarchies, they need their own unique safe sets, and in turn, so do the

virtual functions that use them to perform the type testing. An issue that could

arise from this is a clash between an offset location and a real address-point. In

such cases, safe sets would need to be merged to allow both types of function

calls, something that is not possible under the current design. Trying to deal with

these rogue functions dramatically increases the complexity of the MFI defence.

More research into the mechanics of these problematic function calls is needed to

design an appropriate solution for programs compiled under the Microsoft ABI.

Preventing Type Confusion Another branch of research is MFI’s capability

of preventing type confusion. Although MFI is not a type confusion detector,

the defence should be triggered when a confused object is used within a member

function. This delayed response will not pick up the original vulnerability (i.e. the

point in the program an object becomes confused) but, downstream, will prevent

a confused object from being used within a member function. Member functions

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 219

operating on object instances are the core of any OO program; thus, we believe

that MFI can go beyond just a COOP mitigation and protect the integrity of the

object types themselves.

Binary Rewriting A natural progression of research for source-based defences

is implementing it as a binary-level defence through a binary rewriting tool. A

significant benefit to defensive binary rewriting is that it allows modern defence

policies to be applied retrospectively to legacy code. However, most binary-level

defences fall short due to coverage issues. Pawlowski et al. [104] built a binary

rewriter capable of implementing CFIXX’s defence policy called VPS (VTable

Pointer Separation), reporting an average of 97-98% coverage for all dynamic

dispatch sites. As we have discussed, coverage issues can be a significant flaw in

defences such as CFIXX and Clang CFI, as a single vulnerable dispatch can open

up all member functions to a code reuse attack. However, this is not the case for

MFI, and as we have shown, the integrity of MFI-hardened functions is upheld,

even in partially protected code. This provides a unique opportunity for further

work into applying the MFI defence within a binary rewriting tool, as, unlike

other defences in this space, the inevitable partial coverage of binary rewriting

would not undermind the defensive policy.

6.7 Concluding Discussion

This chapter discussed COOPLUS, a new variant of the COOP exploit that can

bypass almost all modern C++-semantic-aware CFI defences. One of the few

defences that could prevent a COOPLUS attack was CFIXX, which we examined

to expose some vulnerabilities and shortcomings. In response to these findings, we

designed our own defence policy, MFI, proposed a method for its implementation

and demonstrated its capabilities with a proof of concept. As part of the proof of

concept, we compared our MFI defence with the CFIXX and Clang CFI defences,

CHAPTER 6. OBJECT-ORIENTED CODE-REUSE 220

providing examples of exploits that MFI can protect against, but could bypass

both CFIXX and Clang CFI. Thus we have demonstrated that MFI has a superior

security strategy for protecting member functions from code reuse attacks.

The MFI defence strategy is unique, as it is the only defence strategy (to

our knowledge) that protects member functions post-dispatch. What makes MFI

so powerful is that its integrity did not falter in the presents of vulnerable code

(within unprotected linked libraries), unlike other defences. Its ability to prevent

such threats is a direct consequence of moving type tests to member functions so

that they can be performed post-dispatch. This design choice not only provided

a powerful feature but a multitude of avenues for further research, which we hope

has inspired others to pursue.

Part III

Reflection

221

Chapter 7

Concluding Discussion and

Future Work

7.1 Conclusion

7.1.1 Low-level C++ Implementation

To guard against common C++-specific bugs and exploits, a low-level understand-

ing of C++ is vital. Despite this, research papers often briefly explain low-level

C++ features specific to their work, with no forward references for further read-

ing. Their limited explanations leave readers with an abstracted and incomplete

perception of low-level C++. Where papers did provide references, they all point

to a standard reference book, which is now over 25 years old and focuses on com-

pilers that have long been discontinued. It was clear that the topic of low-level

C++ within a modern-day compiler needed revisiting, and this was the premise

behind the first half of this thesis.

We presented a modern-day look at low-level C++ object orientation (OO)

on modern-day compilers. Discussions were limited to object layouts and stan-

dardised OO features to narrow our focus on this broad topic. Nevertheless, we

222

CHAPTER 7. CONCLUDING DISCUSSION AND FUTURE WORK 223

attempted to unveil each level of abstraction, from machine to source, for a more

well-rounded and in-depth understanding of C++ OO. We hope this contribu-

tion will aid in better low-level C++ understanding, better C++ code and better

security in the future.

7.1.2 MemCast

Securing the integrity of all object types of a C++ program is paramount in pre-

venting type confusion vulnerabilities and code reuse attacks, particularly COOP.

At the source level, compilers perform type checks to verify the correctness of

all static object types and their uses. However, protecting the dynamic types (of

polymorphic objects) is not supported, so it falls to the programmer to call type

verification functions explicitly. Standardised dynamic type verification in C++

relies on run-time type information (RTTI), where type checks incur a search

through the tree structure of RTTI objects. Dynamic casting incurs such costs

while verifying an object’s relationship with the cast’s target type. This cost, for

some developers, is deemed prohibitively high and therefore, dynamic casting is

avoided.

We presented a novel profiling measurement called cast stability that quantifies

the degree to which the source type changes from one dynamic dispatch call to

the next. We applied this analysis to the Deal.II library and, surprisingly, found

that most cast sites were 100% stable, and all but a few were at least 55% stable.

This was significant, as it reveals a gross redundancy in dynamic casting, as every

single cast incurs an RTTI search despite performing an identical type check in

its previous execution.

In light of our stability revelations, we designed and implemented MemCast,

an optimisation technique for the dynamic cast operator, which exploits highly

stable casts to reduce the costs of a validated cast to that of dynamic dispatch.

CHAPTER 7. CONCLUDING DISCUSSION AND FUTURE WORK 224

We also evaluated the true cost of dynamic casting and compared it with Mem-

Casting, presenting evidence that MemCasting would outperform dynamic casting

in as few as seven visits for a cast of 50% stability. This allowed us to apply a

blanket change to the Deal.II library (as all but one casts sites were at least

55% stable), swapping all dynamic down-casts with a MemCast call. With this

change, we achieved an average run-time speedup between 1.63-1.68%. To further

demonstrate MemCast’s capabilities, we applied the blanket change to two other

large C++ libraries, OMNet++ and Antlr4. The resulting performance speedup

in these cases was between 1.11-3.91%. Arguably the message of this speedup is

not their absolute values, but rather, the developer can apply validated casting

without undue consideration of the cost.

7.1.3 MFI

We discussed both Clang CFI [131], a C++-semantic-aware CFI defence, and

CFIXX [16]), a type integrity defence that protects virtual pointers, and their

ability to defend against member function reuse attacks. When these defences

are deployed together, they complement each other and protect the defects in the

other’s defences. Clang CFI can be bypassed using a COOPLUS (a COOP variant)

attack, which CFIXX can defend. CFIXX can be bypassed by dispatching virtual

functions from an outer bound vtable read, which Clang CFI can prevent. How-

ever, the most significant flaw featured in both defences is that they need complete

coverage, i.e. every single dispatch site must deploy the respective defences. If

an attacker finds a single vulnerable dispatch site (perhaps due to an unprotected

linked library), then every virtual function in the program is open to an attacker

for code reuse.

We presented a novel defence policy, Member Function Integrity (MFI), that

brings type-awareness to member functions and the ability to verify the object

types they receive. We provided a detailed implementation proposal, evidenced

CHAPTER 7. CONCLUDING DISCUSSION AND FUTURE WORK 225

how MFI can protect against the flaws discussed in Clang CFI and CFIXX, and

provided a scalable version of the defence for large hierarchies. We finished the

chapter with a proof of concept. We built a simple program with a vulnerability

that enabled three exploitation techniques, COOPLUS, out-of-bounds vtable call,

and using an unprotected library. This program was compiled separately with

each defence: Clang CFI, CFIXX, and MFI (as a source-based prototype) and

then compared the effectiveness of each defence against each exploit. The results

demonstrated that Clang CFI and CFIXX could prevent one of the three exploits,

whereas MFI could prevent all three, demonstrating that MFI has a superior

security strategy for protecting member functions from code reuse attacks.

7.2 Future Work

7.2.1 MemCast

MemCast Implementation We believe that the argument for MemCast is so

compelling that it is a candidate for inclusion in C++ itself. This would confer

several advantages:

1. MemCache management could be shifted from the programmer to the com-

piler itself, saving the programmer concerns about the setup and manage-

ment of MemCache objects.

2. Under compiler control, MemCast could profit from the optimisations that

benefit dynamic casting, such as devirtualising up-casts.

3. It would allow other defences, such as CFI, to be integrated with MemCast-

ing, strengthening its security and defending against code reuse attacks.

Gaining a Better Understanding of MemCast’s Capabilities Our exper-

imental testing revealed that large and bottom-heavy hierarchies generated RTTI

structures of low memory locality. Where dynamic casting interacted with these

CHAPTER 7. CONCLUDING DISCUSSION AND FUTURE WORK 226

cases of low locality, casting speeds appeared impeded. Thus we inferred a corre-

lation between the two, prompting future research opportunities on the impact of

low locality RTTI objects in dynamic casting. Many questions emerge from this

topic, such as: How prevalent is low RTTI locality in large code bases? At what

size and shape does a hierarchy impact RTTI locality? At what measurable local-

ity of RTTI objects is dynamic casting significantly affected, and by how much?

How does low locality dynamic casting compare to high locality casts with long

RTTI traversals? And what improvements can MemCast make to low locality cast

sites? The list goes on. By answering these questions, we can better understand

the capabilities of MemCast as a performance-enhancing tool in larger code bases.

Further Optimisations Another opportunity for study, again related to local-

ity, is MemCache locality. What difference does it make when locality is considered

when placing MemCache objects together? Is it best to place MemCache objects

based on the proximity of their dynamic cast sites? Or should dynamic cast sites

be ranked on their usage and their MemCache objects position so that the most

used are bundled together? Either way, additional research into optimal memory

locality could further improve the speedups seen with MemCasting.

7.2.2 MFI

MFI Implementation, Performance and Coverage Our MFI proposal pro-

vides the most opportunities for future work and research. The most pressing

research question, post-implementation of MFI, is its overhead and whether it is

acceptable for real-world deployment. After this, the question is how to extend

MFI to non-virtual functions and other ABI implementations, such as Microsoft’s

ABI.

CHAPTER 7. CONCLUDING DISCUSSION AND FUTURE WORK 227

Course-Grained MFI Beyond MFI implementation is the idea of a minimum

vfgadget set, a set of vfgadget types required in any successful COOP exploit.

If such a set exists, the question is, can a course-grained MFI defence, which

protects only vfgadgets types from this set, provide enough protection to mitigate

all COOP and COOPLUS exploits? The answer to this question would be most

interesting if fine-grained MFI is shown to have excessive performance overheads.

In such a case, course-grained MFI defence could reduce overheads sufficiently to

make the defence more viable.

MFI for Microsoft’s C++ ABI We designed MFI around the Itanium C++

ABI [23], which has different object layouts and function conventions from Mi-

crosoft’s ABI [86]. These differences in convention mean that Microsoft ABI pro-

grams will require more complex MDT management and more safe set structures.

If one wishes to expand MFI to Microsoft ABI programs, more work is necessary

to understand its calling conventions, particularly for virtual functions based in

virtually inherited classes. Such functions are different in Microsoft’s C++ ABI

because they are not guaranteed to receive an object’s address-point but could

receive an offset from it instead. At first glance, accommodating such functions

will require more safe set data to be generated and mapped to these specific offset

locations. But how we encode hierarchical relationship data for these addresses

and decide which functions will use them in their type-safety checks is yet to be

understood. Accommodating the Microsoft ABI will ultimately impact the sim-

plicity of MFI’s current implementation proposal; management of the MDT will

likely have to change, constructor functions will need to adapt, and safe set data

collection will need a new algorithm to identify all class address-point relationships

and the member functions they relate too.

Can MFI Protect Against Type Confusion Vulnerabilities? Finally, we

would like to see an evaluation of MFI’s ability to prevent memory corruption

CHAPTER 7. CONCLUDING DISCUSSION AND FUTURE WORK 228

brought on by type confusion. Under the MFI scheme, there are no preventa-

tive measures against type confusion vulnerabilities; an object’s type can become

confused without immediate detection. However, when a confused object is used

within a member function call, MFI will identify a problem and immediately stop

execution. Therefore, MFI has multiple uses for protecting type integrity. How-

ever, if utilised to prevent a type confusion vulnerability, all member functions

(virtual and non-virtual) would require protection (i.e. a fine-grained MFI de-

fence). Further investigation is required to determine the impact and overhead

such a scheme would achieve and, again, whether its performance is acceptable.

Final Comment We hope this MFI proposal can guide further research into

type integrity and contribute to the improvement of C++ security as a whole.

Bibliography

[1] Abadi, M., Budiu, M., Erlingsson, Ú., and Ligatti, J. L. Control-

flow integrity. In Proceedings of the 12th ACM Conference on Computer

and Communications Security, CCS (2005), V. Atluri, C. A. Meadows, and

A. Juels, Eds., ACM, pp. 340–353.

[2] Alex. The virtual table, February 2023. Learn C++ (Online Blog) https:

//www.learncpp.com/cpp-tutorial/the-virtual-table/ Accessed: 22-

04-2023.

[3] Almakhdhub, N. S., Clements, A. A., Bagchi, S., and Payer, M.

µRAI: Securing Embedded Systems with Return Address Integrity. In 27th

Annual Network and Distributed System Security Symposium, NDSS (2020),

The Internet Society.

[4] Arm Ltd. C++ ABI for the Arm 64-bit Architecture (AArch64), Sec-

ond quarter ed., 2020. https://developer.arm.com/documentation/

ihi0059/latest.

[5] Arndt, D., Bangerth, W., Blais, B., Clevenger, T. C., Fehling,

M., Grayver, A. V., Heister, T., Heltai, L., Kronbichler, M.,

Maier, M., Munch, P., Pelteret, J.-P., Rastak, R., Thomas, I.,

Turcksin, B., Wang, Z., and Wells, D. The deal.II Library, Version

9.2. Journal of Numerical Mathematics 28, 3 (2020), 131–146. https:

//dealii.org/deal92-preprint.pdf.

229

https://www.learncpp.com/cpp-tutorial/the-virtual-table/
https://www.learncpp.com/cpp-tutorial/the-virtual-table/
https://developer.arm.com/documentation/ihi0059/latest
https://developer.arm.com/documentation/ihi0059/latest
https://dealii.org/deal92-preprint.pdf
https://dealii.org/deal92-preprint.pdf

BIBLIOGRAPHY 230

[6] AT&T. UNIX System V AT&T C++ Translator Release Notes,

1985. http://www.softwarepreservation.org/projects/c_plus_plus/

cfront/release_1.0/doc/ReleaseNotes-Lifeboat.pdf.

[7] AT&T. System V Application Binary Interface, 4.1 ed., 1997. http://

www.sco.com/developers/devspecs/gabi41.pdf.

[8] Barnes, D. J., and Kölling, M. Objects First with Java - A Practical

Introduction Using BlueJ (5th Edition). Prentice Hall, 2012.

[9] Bauer, M., and Rossow, C. NoVT: Eliminating C++ Virtual Calls to

Mitigate Vtable Hijacking. In IEEE European Symposium on Security and

Privacy (2021), IEEE, pp. 650–666.

[10] Biallas, S., Olesen, M. C., Cassez, F., and Huuck, R. Ptrtracker:

Pragmatic pointer analysis. In IEEE 13th International Working Conference

on Source Code Analysis and Manipulation (SCAM) (2013), pp. 69–73.

[11] Bletsch, T., Jiang, X., Freeh, V. W., and Liang, Z. Jump-oriented

programming: a new class of code-reuse attack. In Proceedings of the 6th

ACM Symposium on Information, Computer and Communications Security,

ASIACCS (2011), ACM, pp. 30–40.

[12] Booth, K. S., and Lueker, G. S. Testing for the Consecutive Ones

Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms.

J. Comput. Syst. Sci. 13, 3 (1976), 335–379.

[13] Bounov, D., Kici, R. G., and Lerner, S. Protecting C++ Dynamic

Dispatch Through VTable Interleaving. In 23rd Annual Network and Dis-

tributed System Security Symposium (2016), The Internet Society.

http://www.softwarepreservation.org/projects/c_plus_plus/cfront/release_1.0/doc/ReleaseNotes-Lifeboat.pdf
http://www.softwarepreservation.org/projects/c_plus_plus/cfront/release_1.0/doc/ReleaseNotes-Lifeboat.pdf
http://www.sco.com/developers/devspecs/gabi41.pdf
http://www.sco.com/developers/devspecs/gabi41.pdf

BIBLIOGRAPHY 231

[14] Bounov, D., Kici, R. G., and Lerner, S. Protecting C++ Dynamic

Dispatch Through VTable Interleaving. In 23rd Annual Network and Dis-

tributed System Security Symposium, NDSS (2016), The Internet Society.

[15] Burow, N., Carr, S. A., Nash, J., Larsen, P., Franz, M., Brun-

thaler, S., and Payer, M. Control-Flow Integrity: Precision, Security,

and Performance. ACM Computing Surveys (CSUR) 50, 1 (2017), 16:1–

16:33.

[16] Burow, N., McKee, D., Carr, S. A., and Payer, M. CFIXX: Object

Type Integrity for C++. In 25th Annual Network and Distributed System

Security Symposium, NDSS (2018), The Internet Society.

[17] Burow, N., Zhang, X., and Payer, M. SoK: Shining Light on Shadow

Stacks. In Symposium on Security and Privacy (2019), IEEE, pp. 985–999.

[18] Caseau, Y. Efficient Handling of Multiple Inheritance Hierarchies. In

Conference on Object-Oriented Programming Systems, Languages, and Ap-

plications (OOPSLA), Eighth Annual Conference (1993), T. Babitsky and

J. Salmons, Eds., ACM, pp. 271–287.

[19] Cattiaux, C., and Szkudlapski, K. Visual C++ RTTI In-

spection, July 2013. (Online Blog) https://blog.quarkslab.com/

visual-c-rtti-inspection.html Accessed: 22-04-2023.

[20] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R.,

Shacham, H., and Winandy, M. Return-oriented programming with-

out returns. In Proceedings of the 17th ACM Conference on Computer

and Communications Security, CCS (2010), E. Al-Shaer, A. Al-Shaer, and

V. Shmatikov, Eds., ACM, pp. 559–572.

[21] Chen, K., Zhang, C., Yin, T., Chen, X., and Zhao, L. VScape:

Assessing and Escaping Virtual Call Protections. In 30th USENIX Security

https://blog.quarkslab.com/visual-c-rtti-inspection.html
https://blog.quarkslab.com/visual-c-rtti-inspection.html

BIBLIOGRAPHY 232

Symposium, USENIX (2021), M. Bailey and R. Greenstadt, Eds., USENIX

Association, pp. 1719–1736.

[22] Chrome infrastructure. Chromium Bugs - dynamic cast used.

https://bugs.chromium.org/p/chromium/issues/detail?id=9270 Ac-

cessed: 04-05-2023.

[23] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and

SGI;. Itanium C++ ABI (Draft), 2017. https://itanium-cxx-abi.

github.io/cxx-abi/.

[24] Cohen, N. H. Type-Extension Type Tests Can Be Performed In Constant

Time. ACM Transactions on Programming Languages and Systems 13, 4

(1991), 626–629.

[25] CVE. Common Vulnerabilities and Exposures, 2021. Online Resource.

https://cve.mitre.org/ Accessed: 09-04-2021.

[26] Dahl, O.-J. The Birth of Object Orientation: the Simula Language. In

From Object-Orientation to Formal Methods, vol. 2635 of Lecture Notes in

Computer Science. Springer, 2004, pp. 15–25.

[27] Davi, L., Koeberl, P., and Sadeghi, A.-R. Hardware-Assisted Fine-

Grained Control-Flow Integrity: Towards Efficient Protection of Embedded

Systems Against Software Exploitation. In The 51st Annual Design Au-

tomation Conference, DAC (2014), ACM, pp. 133:1–133:6.

[28] Deal.II Documentation. The deal.II Library: Class Hierarchy.

https://www.dealii.org/9.2.0/doxygen/deal.II/hierarchy.html Ac-

cessed: 07-02-2023.

[29] Dean, J., DeFouw, G., Grove, D., Litvinov, V., and Chambers,

C. Vortex: An Optimizing Compiler for Object-Oriented Languages. In

https://bugs.chromium.org/p/chromium/issues/detail?id=9270
https://itanium-cxx-abi.github.io/cxx-abi/
https://itanium-cxx-abi.github.io/cxx-abi/
https://cve.mitre.org/
https://www.dealii.org/9.2.0/doxygen/deal.II/hierarchy.html

BIBLIOGRAPHY 233

Proceedings of the 1996 ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages & Applications (OOPSLA (1996), L. An-

derson and J. Coplien, Eds., ACM, pp. 83–100.

[30] Debian Manpages. grep Unix Utility. https://manpages.debian.org/

testing/grep/grep.1.en.html Accessed: 02-03-2021.

[31] Debian Manpages. multitime Unix Utility. https://manpages.debian.

org/testing/multitime/multitime.1.en.html Accessed: 15-12-2021.

[32] Dechev, D., Mahapatra, R. N., and Stroustrup, B. Practical and

Verifiable C++ Dynamic Cast for Hard Real-Time Systems. J. Comput.

Sci. Eng. 2, 4 (2008), 375–393.

[33] Doxygen. Doxygen. https://www.doxygen.nl/ Accessed: 02-03-2023.

[34] Duck, G. J., and Yap, R. H. EffectiveSan: type and memory error de-

tection using dynamically typed C/C++. In Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design and Implementa-

tion (2018), J. S. Foster and D. Grossman, Eds., ACM, pp. 181–195.

[35] Ducournau, R. Perfect Hashing as an Almost Perfect Subtype Test. ACM

Transactions on Programming Languages and Systems 30, 6 (2008), 33:1–

33:56.

[36] Ellis, M. A., and Stroustrup, B. The Annotated C++ Reference

Manual. Addison-Wesley, 1990.

[37] Elsabagh, M., Fleck, D., and Stavrou, A. Strict Virtual Call In-

tegrity Checking for C++ Binaries. In Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security (2017), R. Karri,

O. Sinanoglu, A. Sadeghi, and X. Yi, Eds., ACM, pp. 140–154.

https://manpages.debian.org/testing/grep/grep.1.en.html
https://manpages.debian.org/testing/grep/grep.1.en.html
https://manpages.debian.org/testing/multitime/multitime.1.en.html
https://manpages.debian.org/testing/multitime/multitime.1.en.html
https://www.doxygen.nl/

BIBLIOGRAPHY 234

[38] Erinfolami, R. A., Quach, A. T., and Prakash, A. On Design

Inference from Binaries Compiled using Modern C++ Defenses. In 22nd

International Symposium on Research in Attacks, Intrusions and Defenses,

RAID (2019), USENIX Association, pp. 15–30.

[39] Evtyushkin, D., Ponomarev, D., and Abu-Ghazaleh, N. Jump

Over ASLR: Attacking Branch Predictors to Bypass ASLR. In 49th An-

nual IEEE/ACM International Symposium on Microarchitecture, MICRO

(2016), IEEE Computer Society, pp. 40:1–40:13.

[40] Fan, X., Sui, Y., Liao, X., and Xue, J. Boosting the precision of vir-

tual call integrity protection with partial pointer analysis for C++. In Pro-

ceedings of the 26th ACM SIGSOFT International Symposium on Software

Testing and Analysis (2017), T. Bultan and K. Sen, Eds., ACM, pp. 329–

340.

[41] Farkhani, R. M., Jafari, S., Arshad, S., Robertson, W., Kirda,

E., and Okhravi, H. On the Effectiveness of Type-Based Control Flow

Integrity. In Proceedings of the 34th Annual Computer Security Applica-

tions Conference (2018), ACSAC, Association for Computing Machinery,

p. 28–39.

[42] Fog, A. Calling Conventions for Different C++ Compilers and Operating

Systems. In Software Optimization Resources. Technical University of Den-

mark, 2014. https://www.agner.org/optimize/calling_conventions.

pdf.

[43] Gawlik, R., and Holz, T. Towards automated integrity protection of

C++ virtual function tables in binary programs. In Proceedings of the 30th

Annual Computer Security Applications Conference, ACSAC (2014), C. N.

Payne, A. Hahn, K. R. B. Butler, and M. Sherr, Eds., ACM, pp. 396–405.

https://www.agner.org/optimize/calling_conventions.pdf
https://www.agner.org/optimize/calling_conventions.pdf

BIBLIOGRAPHY 235

[44] GCC Project. GNU Compiler Collection (GCC). https://github.com/

gcc-mirror/gcc Accessed: 22-11-2021.

[45] Gibbs, M., and Stroustrup, B. Fast dynamic casting. Softw. Pract.

Exp. 36, 2 (2006), 139–156.

[46] Godbolt, M. Compiler Explorer. https://godbolt.org/ Accessed: 02-

03-2023.

[47] Goldthwaite, L. Technical Report on C++ Performance. Tech.

Rep. TR 18015:2004, International Organization for Standardization/In-

ternational Electrotechnical Commission (ISO/IEC), 2004. http://www.

speling.org/JTC1/SC22/WG21/docs/papers/2004/n1666.pdf.

[48] Gray, J. C++: Under the Hood, March 1994. (Archived Visual C++ Tech-

nical Article) http://www.openrce.org/articles/files/jangrayhood.

pdf Accessed: 22-04-2023.

[49] Haller, I., Jeon, Y., Peng, H., Payer, M., Giuffrida, C., Bos, H.,

and Van Der Kouwe, E. TypeSan: Practical type confusion detection. In

Conference on Computer and Communications Security (2016), Association

for Computing Machinery, pp. 517–528.

[50] Henning, J. L. SPEC CPU2006 benchmark descriptions. SIGARCH Com-

put. Archit. News 34, 4 (2006), 1–17.

[51] Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., and

Liang, Z. Data-Oriented Programming: On the Expressiveness of Non-

control Data Attacks. In IEEE Symposium on Security and Privacy (2016),

IEEE Computer Society, pp. 969–986.

https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://godbolt.org/
http://www.speling.org/JTC1/SC22/WG21/docs/papers/2004/n1666.pdf
http://www.speling.org/JTC1/SC22/WG21/docs/papers/2004/n1666.pdf
http://www.openrce.org/articles/files/jangrayhood.pdf
http://www.openrce.org/articles/files/jangrayhood.pdf

BIBLIOGRAPHY 236

[52] Ingerman, P. Z. Thunks: a way of compiling procedure statements with

some comments on procedure declarations. Commun. ACM 4, 1 (1961),

55–58.

[53] Intel Corporation. Align and Organize Data for Better Performance.

Intel Official Online Articles for Development Topics & Technologies.

https://software.intel.com/content/www/us/en/develop/articles/

align-and-organize-data-for-better-performance.html Accessed:

20-08-2021.

[54] Intel Corporation. Intel Itanium Processor-specific Application Binary

Interface (ABI), 2001. https://www.uclibc.org/docs/psABI-ia64.pdf.

[55] Intel Corporation. Introduction to Intel memory protection

extensions, 2013. Web Archive https://web.archive.org/web/

20190116155131/http://software.intel.com/en-us/articles/

introduction-to-intel-memory-protection-extensions Accessed:

11-11-2021.

[56] Intel Corporation. Intel Memory Protection Ex-

tensions Enabling Guide, 2016. https://www.intel.

com/content/www/us/en/developer/articles/guide/

intel-memory-protection-extensions-enabling-guide.html Ac-

cessed: 11-11-2021.

[57] ISO/IEC. Working Draft, Standard for Programming Language C++

(C++23). International Organization for Standardization/International

Electrotechnical Commission, 2020. https://github.com/cplusplus/

draft/releases/tag/n4868.

[58] Jang, D., Tatlock, Z., and Lerner, S. SafeDispatch: Securing C++

Virtual Calls from Memory Corruption Attacks. In 21st Annual Network

https://software.intel.com/content/www/us/en/develop/articles/align-and-organize-data-for-better-performance.html
https://software.intel.com/content/www/us/en/develop/articles/align-and-organize-data-for-better-performance.html
https://www.uclibc.org/docs/psABI-ia64.pdf
https://web.archive.org/web/20190116155131/http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://web.archive.org/web/20190116155131/http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://web.archive.org/web/20190116155131/http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-memory-protection-extensions-enabling-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-memory-protection-extensions-enabling-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-memory-protection-extensions-enabling-guide.html
https://github.com/cplusplus/draft/releases/tag/n4868
https://github.com/cplusplus/draft/releases/tag/n4868

BIBLIOGRAPHY 237

and Distributed System Security Symposium, NDSS (2014), The Internet

Society.

[59] Jeffers, J., Reinders, J., and Sodani, A. Chapter 4 - Knights Landing

architecture. In Intel Xeon Phi Processor High Performance Programming,

second ed. Morgan Kaufmann, 2016, pp. 63–84.

[60] Jeon, Y., Biswas, P., Carr, S., Lee, B., and Payer, M. HexType:

Efficient Detection of Type Confusion Errors for C++. In Conference on

Computer and Communications Security (2017), CCS ’17, Association for

Computing Machinery, p. 2373–2387.

[61] Jones, R., Hosking, A., and Moss, E. The Garbage Collection Hand-

book: The art of automatic memory management. Chapman and Hall /

CRC Applied Algorithms and Data Structures Series. CRC Press, 2011.

[62] Khandaker, M., Naser, A., Liu, W., Wang, Z., Zhou, Y., and

Cheng, Y. Adaptive Call-Site Sensitive Control Flow Integrity. In IEE

European Symposium on Security and Privacy, EuroS&P (2019), IEEE,

pp. 95–110.

[63] Khandaker, M. R., Liu, W., Naser, A., Wang, Z., and Yang, J.

Origin-sensitive Control Flow Integrity. In 28th USENIX Security Sympo-

sium, USENIX Security (2019), N. Heninger and P. Traynor, Eds., USENI

Association, pp. 195–211.

[64] Kirzner, O., and Morrison, A. An Analysis of Speculative Type Con-

fusion Vulnerabilities in the Wild. In 30th USENIX Security Symposium

(USENIX Security) (August 2021), USENIX Association, pp. 2399–2416.

[65] Krall, A., and Grafl, R. CACAO - A 64-bit JavaVM Just-in-Time

Compiler. Concurr. Pract. Exp. 9, 11 (1997), 1017–1030.

BIBLIOGRAPHY 238

[66] Krall, A., Vitek, J., and Horspool, R. N. Near Optimal Hierar-

chical Encoding of Types. In ECOOP’97 - Object-Oriented Programming,

11th European Conference, Jyväskylä, Finland, June 9-13, 1997, Proceed-

ings (1997), M. Aksit and S. Matsuoka, Eds., vol. 1241 of Lecture Notes in

Computer Science, Springer, pp. 128–145.

[67] Kusswurm, D. Modern X86 Assembly Language Programming: Covers

X86 64-bit, AVX, AVX2, and AVX-512. Apress, 2018.

[68] Kwon, A., Dhawan, U., Smith, J. M., Knight, T. F., and De-

Hon, A. Low-Fat Pointers: Compact Encoding and Efficient Gate-Level

Implementation of Fat Pointers for Spatial Safety and Capability-Based Se-

curity. In ACM SIGSAC Conference on Computer & Communications Se-

curity (2013), Association for Computing Machinery, p. 721–732.

[69] Lan, B., Li, Y., Sun, H., Su, C., Liu, Y., and Zeng, Q. Loop-Oriented

Programming: A New Code Reuse Attack to Bypass Modern Defenses. In

IEEE TrustCom/BigDataSE/ISPA (2015), IEEE, pp. 190–197.

[70] Larabel, M. Intel MPX Support Will Be Removed From

Linux - Memory Protection Extensions Appear Dead - Phoronix Me-

dia, 2018. https://www.phoronix.com/scan.php?page=news_item&px=

Intel-MPX-Kernel-Removal-Patch Accessed: 11-11-2021.

[71] Le Goc, Y., and Donzé, A. EVL: A framework for multi-methods in

C++. Sci. Comput. Program. 98 (2015), 531–550.

[72] Lee, B., Song, C., Kim, T., and Lee, W. Type Casting Verification:

Stopping an Emerging Attack Vector. In 24th USENIX Security Symposium

(Aug. 2015), USENIX Association, pp. 81–96.

https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Kernel-Removal-Patch
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Kernel-Removal-Patch

BIBLIOGRAPHY 239

[73] Lenkov, D., Mehta, M., and Unni, S. Type Identification in C++. In

Proceedings of the C++ Conference (1991), USENIX Association, pp. 103–

118.

[74] Lippman, S. B. Inside the C++ Object Model. Addison-Wesley, 1996.

[75] LLVM Developer Group. The LLVM Project. https://github.com/

llvm/llvm-project Accessed: 22-11-2021.

[76] LLVM Project. How to set up LLVM-style RTTI for your class hierarchy.

https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html Accessed: 03-

05-2023.

[77] Luo, B., Yang, Y., Zhang, C., Wang, Y., and Zhang, B. A survey

of code reuse attack and defense. In Advances in Intelligent, Interactive Sys-

tems and Applications (Cham, 2019), F. Xhafa, S. Patnaik, and M. Tavana,

Eds., Springer International Publishing, pp. 782–788.

[78] Martin, R. C. Java and C++ A critical comparison. Technical Note,

Object Mentor (March 1997).

[79] Matz, M., Hubička, J., Jaeger, A., and Mitchell, M. System

V Application Binary Interface AMD64 Architecture Processor Supplement

Draft Version 0.99.7. SUSE Software Solutions Germany and CodeSourcery,

2014. https://www.uclibc.org/docs/psABI-x86_64.pdf.

[80] Meyers, S. The most important c++ software...ever, 2006. https://

www.artima.com/articles/the-most-important-c-softwareemeverem

Accessed: 28-10-2021).

[81] Microsoft. x64 Software Conventions. Microsoft official online doc-

umentation, 2018. https://docs.microsoft.com/en-gb/cpp/build/

x64-software-conventions Accessed: 07-06-2021.

https://github.com/llvm/llvm-project
https://github.com/llvm/llvm-project
https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
https://www.uclibc.org/docs/psABI-x86_64.pdf
https://www.artima.com/articles/the-most-important-c-softwareemeverem
https://www.artima.com/articles/the-most-important-c-softwareemeverem
https://docs.microsoft.com/en-gb/cpp/build/x64-software-conventions
https://docs.microsoft.com/en-gb/cpp/build/x64-software-conventions

BIBLIOGRAPHY 240

[82] Microsoft. Calling Conventions. Microsoft official online doc-

umentation, 2019. https://learn.microsoft.com/en-us/cpp/cpp/

calling-conventions Accessed: 02-03-2023.

[83] Microsoft. Microsoft C/C++ Change History 2003-2015. Microsoft of-

ficial online documentation, 2019. https://docs.microsoft.com/en-gb/

cpp/porting/visual-cpp-change-history-2003-2015 Accessed: 08-06-

2021.

[84] Microsoft. Overview of Potential Upgrade Issues (Vi-

sual C++). Microsoft official online documentation,

2019. https://docs.microsoft.com/en-us/cpp/porting/

overview-of-potential-upgrade-issues-visual-cpp Accessed: 06-08-

2021.

[85] Microsoft. Data Execution Prevention. Microsoft official online docu-

mentation, 2021. https://docs.microsoft.com/en-us/windows/win32/

memory/data-execution-prevention Accessed: 10-20-2021.

[86] Microsoft. Microsoft C/C++ Documentation. Microsoft official on-

line documentation, 2021. https://docs.microsoft.com/en-gb/cpp/ Ac-

cessed: 06-07-2021.

[87] Miller, M. R., Johnson, K. D., and Burrell, T. W. Using virtual

table protections to prevent the exploitation of object corruption vulnera-

bilities, 2014. US Patent 8,683,583B2.

[88] Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K. W., and

Franz, M. Opaque Control-Flow Integrity. In 22nd Annual Network and

Distributed System Security Symposium, NDSS (2015), The Internet Soci-

ety.

https://learn.microsoft.com/en-us/cpp/cpp/calling-conventions
https://learn.microsoft.com/en-us/cpp/cpp/calling-conventions
https://docs.microsoft.com/en-gb/cpp/porting/visual-cpp-change-history-2003-2015
https://docs.microsoft.com/en-gb/cpp/porting/visual-cpp-change-history-2003-2015
https://docs.microsoft.com/en-us/cpp/porting/overview-of-potential-upgrade-issues-visual-cpp
https://docs.microsoft.com/en-us/cpp/porting/overview-of-potential-upgrade-issues-visual-cpp
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-gb/cpp/

BIBLIOGRAPHY 241

[89] Moreno, C., and Fischmeister, S. Accurate Measurement of Small

Execution Times — Getting Around Measurement Errors. IEEE Embedded

Systems Letters 9, 1 (2017), 17–20.

[90] Muntean, P., Wuerl, S., Grossklags, J., and Eckert, C. Cast-

San: Efficient Detection of Polymorphic C++ Object Type Confusions with

LLVM. In Computer Security - 23rd European Symposium on Research in

Computer Security, ESORICS Barcelona, Spain (2018), J. López, J. Zhou,

and M. Soriano, Eds., vol. 11098, Springer, pp. 3–25.

[91] NASA and Caltech. Jet Propulsion Laboratory (JPL) - California In-

stitute of Technology. https://www.jpl.nasa.gov/ Accessed: 10-12-202.

[92] Nergal. Advanced return-into-lib(c) exploits (PaX case study). Phrack

Magazine 11, 58 (2001), 4–14. http://phrack.org/issues/58/4.html Ac-

cessed: 10-20-2021.

[93] Niu, B., and Tan, G. Modular Control-Flow Integrity. In SIGPLAN

Conference on Programming Language Design and Implementation,PLDI

(2014), M. F. P. O’Boyle and K. Pingali, Eds., ACM, pp. 577–587.

[94] Niu, B., and Tan, G. Per-Input Control-Flow Integrity. In Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications

Security (2015), I. Ray, N. Li, and C. Kruegel, Eds., ACM, pp. 914–926.

[95] Oleksenko, O., Kuvaiskii, D., Bhatotia, P., Felber, P., and Fet-

zer, C. Intel MPX Explained: A Cross-layer Analysis of the Intel MPX

System Stack. Proc. ACM Meas. Anal. Comput. Syst. 2, 2 (2018), 28:1–

28:30.

[96] One, A. Smashing The Stack For Fun And Profit. Phrack Magazine 7, 49

(1996), 14–16. http://phrack.org/issues/49/14.html Accessed: 10-20-

2021.

https://www.jpl.nasa.gov/
http://phrack.org/issues/58/4.html
http://phrack.org/issues/49/14.html

BIBLIOGRAPHY 242

[97] Open RCE - Igotsk. Reversing Microsoft Visual C++ Part II: Classes,

Methods and RTTI, September 2006. (Online Blog) http://www.openrce.

org/articles/full_view/23 Accessed: 22-04-2023.

[98] OpenSim Ltd. OMNeT++ Discrete Event Simulator. https://omnetpp.

org/ Accessed: 02-03-2023.

[99] OpenSim Ltd. What is OMNeT++? https://omnetpp.org/intro Ac-

cessed: 02-03-2023.

[100] Padhye, R., and Sen, K. Efficient Fail-Fast Dynamic Subtype Checking.

In Proceedings of the 11th ACM SIGPLAN International Workshop on Vir-

tual Machines and Intermediate Languages (2019), D. Bonetta and Y. D.

Liu, Eds., ACM, pp. 32–37.

[101] Pang, C., Du, Y., Mao, B., and Guo, S. Mapping to Bits: Efficiently

Detecting Type Confusion Errors. In 34th Annual Computer Security Ap-

plications Conference (2018), ACSAC ’18, Association for Computing Ma-

chinery, p. 518–528.

[102] Parr, T. ANTLR. https://www.antlr.org/ Accessed: 28-04-2023.

[103] Parr, T. The definitive ANTLR 4 reference. The Pragmatic Bookshelf,

2013.

[104] Pawlowski, A., van der Veen, V., Andriesse, D., van der Kouwe,

E., Holz, T., Giuffrida, C., and Bos, H. VPS: excavating high-level

C++ constructs from low-level binaries to protect dynamic dispatching. In

Proceedings of the 35th Annual Computer Security Applications Conference,

ACSAC (2019), D. Balenson, Ed., ACM, pp. 97–112.

[105] PaX. Address space layout randomization, 2001. https://pax.

grsecurity.net/docs/aslr.txt Accessed: 11-18-2021.

http://www.openrce.org/articles/full_view/23
http://www.openrce.org/articles/full_view/23
https://omnetpp.org/
https://omnetpp.org/
https://omnetpp.org/intro
https://www.antlr.org/
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt

BIBLIOGRAPHY 243

[106] Prakash, A., Hu, X., and Yin, H. vfGuard: Strict Protection for

Virtual Function Calls in COTS C++ Binaries. In 22nd Annual Network

and Distributed System Security Symposium, NDSS (2015), The Internet

Society.

[107] Qt Group . Cross-platform Software Design and Development Tools.

https://www.qt.io/ Accessed: 22-04-2023.

[108] Raymond, E. S. The Lost Art of Structure Packing, January 2014. (Online

Blog) http://www.catb.org/esr/structure-packing/ Accessed: 22-04-

2023.

[109] Reeves, J. W. Multiple Inheritance Considered Useful,

February 2006. (Online Blog) https://www.drdobbs.com/cpp/

multiple-inheritance-considered-useful/184402074 Accessed:

22-04-2023.

[110] Sadeghi, A., Niksefat, S., and Rostamipour, M. Pure-Call Ori-

ented Programming (PCOP): chaining the gadgets using call instructions.

J. Comput. Virol. Hacking Tech. 14, 2 (2018), 139–156.

[111] Schubert, L. K., Papalaskaris, M. A., and Taugher, J. Determin-

ing Type, Part, Color and Time Relationships. Computer 16, 10 (1983),

53–60.

[112] Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.,

and Holz, T. Counterfeit Object-oriented Programming: On the Dif-

ficulty of Preventing Code Reuse Attacks in C++ Applications. In 2015

IEEE Symposium on Security and Privacy (2015), IEEE Computer Society,

pp. 745–762.

https://www.qt.io/
http://www.catb.org/esr/structure-packing/
https://www.drdobbs.com/cpp/multiple-inheritance-considered-useful/184402074
https://www.drdobbs.com/cpp/multiple-inheritance-considered-useful/184402074

BIBLIOGRAPHY 244

[113] Shacham, H. The geometry of innocent flesh on the bone: return-into-libc

without function calls (on the x86). In Proceedings of the 2007 ACM Con-

ference on Computer and Communications Security, CCS (2007), P. Ning,

S. D. C. di Vimercati, and P. F. Syverson, Eds., ACM, pp. 552–561.

[114] Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N.,

and Boneh, D. On the Effectiveness of Address-Space Randomization. In

Proceedings of the 11th ACM Conference on Computer and Communications

Security, CCS (2004), V. Atluri, B. Pfitzmann, and P. D. McDaniel, Eds.,

ACM, pp. 298–307.

[115] Skochinsky, I. Compiler Internals: Exceptions and RTTI, 2012.

(Online Blog) http://www.hexblog.com/wp-content/uploads/2012/06/

Recon-2012-Skochinsky-Compiler-Internals.pdf Accessed: 22-04-

2023.

[116] Sleator, D. D., and Tarjan, R. E. Self-Adjusting Binary Trees. In

Proceedings of the 15th Annual ACM Symposium on Theory of Computing,

25-27 April, 1983, Boston, Massachusetts, USA (1983), ACM, pp. 235–245.

[117] Snow, K. Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen,

C., and Sadeghi, A.-R. Just-In-Time Code Reuse: On the Effectiveness

of Fine-Grained Address Space Layout Randomization. In IEEE Symposium

on Security and Privacy, SP (2013), IEEE Computer Society, pp. 574–588.

[118] Solar Designer. Getting around non-executable stack (and fix). Bugtraq

mailing list archives, 1997. https://seclists.org/bugtraq/1997/Aug/63

Accessed: 10-20-2021.

[119] Solodkyy, Y., Reis, G. D., and Stroustrup, B. Mach7: Pattern

Matching for C++. https://github.com/solodon4/Mach7 Accessed: 10-

03-2021.

http://www.hexblog.com/wp-content/uploads/2012/06/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://www.hexblog.com/wp-content/uploads/2012/06/Recon-2012-Skochinsky-Compiler-Internals.pdf
https://seclists.org/bugtraq/1997/Aug/63
https://github.com/solodon4/Mach7

BIBLIOGRAPHY 245

[120] Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S.,

Larsen, P., and Franz, M. SoK: Sanitizing for Security. IEEE Sympo-

sium on Security and Privacy, San Francisco (2019), 1275–1295.

[121] Stack Overflow. MSVC Object Layout Quirk, February 2010.

(Online Forum) https://stackoverflow.com/questions/2250931/

msvc-object-layout-quirk Accessed: 22-04-2023.

[122] Standard C++ Foundation. Programming Languages–C++ (C++98).

Tech. Rep. 14882, International Organization for Standardization, Inter-

national Organization for Standardization/International Electrotechnical

Commission, 1998. https://www.iso.org/standard/25845.html.

[123] Standard Performance Evaluation Corporation. SPEC

CPU2006, 2018. https://www.spec.org/cpu2006/ Accessed: 09-09-2021.

[124] Stroustrup, B. Classes: An Abstract Data Type Facility for the C Lan-

guage. SIGPLAN Not. 17, 1 (Jan. 1982), 42–51.

[125] Stroustrup, B. Adding Classes to the C Language: An Exercise in Lan-

guage Evolution. Software: Practice and Experience 13, 2 (1983), 139–161.

[126] Stroustrup, B. A History of C++: 1979-1991. In Proceedings of History

of Programming Languages Conference (HOPL-II) (1993), J. A. N. Lee and

J. E. Sammet, Eds., Association for Computing Machinery, pp. 271–297.

[127] Stroustrup, B. The Design and Evolution of C++. Addison-Wesley, New

Jersey, 1994.

[128] Stroustrup, B., and Lenkov, D. Run Time Type Identification for

C++. In Proceedings of the C++ Conference (1992), USENIX Association,

pp. 313–340.

https://stackoverflow.com/questions/2250931/msvc-object-layout-quirk
https://stackoverflow.com/questions/2250931/msvc-object-layout-quirk
https://www.iso.org/standard/25845.html
https://www.spec.org/cpu2006/

BIBLIOGRAPHY 246

[129] Taylor, I. 64-bit PowerPC ELF Application Binary Interface Supple-

ment, 1.7.1 ed. Zembu Labs, 2004. https://www.uclibc.org/docs/

psABI-ppc64.pdf.

[130] The Clang Team. Clang 13 documentation. Official Online Documen-

tation for LLVM & Clang. https://clang.llvm.org/docs/ClangTools.

html Accessed: 13-08-2021.

[131] The Clang Team. Control Flow Integrity. Official Online Docu-

mentation for LLVM & Clang, 2021. https://clang.llvm.org/docs/

ControlFlowIntegrity.html Accessed: 04-01-2021.

[132] The Clang Team. Undefined Behavior Sanitizer. Official Online Doc-

umentation for LLVM & Clang, 2021. https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html Accessed 04-01-2021.

[133] Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Er-

lingsson, Ú., Lozano, L., and Pike, G. Enforcing Forward-Edge

Control-Flow Integrity in GCC & LLVM. In Proceedings of the 23rd

USENIX Security Symposium (2014), K. Fu and J. Jung, Eds., USENIX

Association, pp. 941–955.

[134] V8. Retiring octane, April 2017. Official V8 online blog archive: https:

//v8.dev/blog/retiring-octane Accessed: 10-08-2021.

[135] Van Der Veen, V., Göktas, E., Contag, M., Pawoloski, A., Chen,

X., Rawat, S., Bos, H., Holz, T., Athanasopoulos, E., and Giuf-

frida, C. A Tough Call: Mitigating Advanced Code-Reuse Attacks at the

Binary Level. In IEEE Symposium on Security and Privacy, SP (2016),

IEEE Computer Society, pp. 934–953.

https://www.uclibc.org/docs/psABI-ppc64.pdf
https://www.uclibc.org/docs/psABI-ppc64.pdf
https://clang.llvm.org/docs/ClangTools.html
https://clang.llvm.org/docs/ClangTools.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://v8.dev/blog/retiring-octane
https://v8.dev/blog/retiring-octane

BIBLIOGRAPHY 247

[136] Vishnyakov, A. V., and Nurmukhametov, A. R. Survey of methods

for automated code-reuse exploit generation. Program. Comput. Softw. 47,

4 (2021), 271–297.

[137] Vitek, J., Horspool, R. N., and Krall, A. Efficient Type Inclu-

sion Tests. In Proceedings of the 1997 ACM SIGPLAN Conference on

Object-Oriented Programming Systems, Languages & Applications (OOP-

SLA) (1997), M. E. S. Loomis, T. Bloom, and A. M. Berman, Eds., ACM,

pp. 142–157.

[138] Wang, C., Chen, B., Liu, Y., and Wu, H. Layered object-oriented

programming: Advanced vtable reuse attacks on binary-level defense. IEEE

Transactions on Information Forensics and Security 14, 3 (2019), 693–708.

[139] Wirth, N. 3. ACM Transactions on Programming Languages and Systems

10, 2 (1988), 204–214.

[140] Zhang, C., Song, C., Chen, K. Z., Chen, Z., and Song, D. VTint:

Protecting Virtual Function Tables’ Integrity. In 22nd Annual Network

and Distributed System Security Symposium, NDSS (2015), The Internet

Society.

[141] Zhang, C., Song, D., Carr, S. A., Payer, M., Li, T., Ding, Y.,

and Song, C. VTrust: Regaining Trust on Virtual Calls. In 23rd Annual

Network and Distributed System Security Symposium, NDSS (2016), The

Internet Society.

[142] Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant,

S., Song, D., and Zou, W. Practical Control Flow Integrity and Ran-

domization for Binary Executables. In IEEE Symposium on Security and

Privacy, SP (2013), IEEE Computer Society, pp. 559–573.

BIBLIOGRAPHY 248

[143] Zibin, Y., and Gil, J. Efficient Subtyping Tests with PQ-Encoding.

In Proceedings of the 2001 ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages and Applications, OOPSLA (2001), L. M.

Northrop and J. M. Vlissides, Eds., ACM, pp. 96–107.

[144] Zou, C., Sui, Y., Yan, H., and Xue, J. TCD: Statically Detecting Type

Confusion Errors in C++ Programs. In 30th IEEE International Symposium

on Software Reliability Engineering (2019), K. Wolter, I. Schieferdecker,

B. Gallina, M. Cukier, R. Natella, N. Ramezani Ivaki, and N. Laranjeiro,

Eds., IEEE, pp. 292–302.

Appendix A

Behind Object Abstraction

A.1 RTTI Hierarchy

Figure 85: Full Inheritance Hierarchy for RTTI in Itanium ABI [23]

249

APPENDIX A. BEHIND OBJECT ABSTRACTION 250

A.2 Full Virtual Inheritance Constructor Call

Figure 86: Avatar nested constructor call with virtual inheritance

Appendix B

Deall.II Full Results

Here we present the full results of our analysis of the Deal.II library and test

programs, detailing all the dynamic down-cast locations within the code and their

stability values in each test case.

B.1 Dynamic Down-Cast Locations

Table 22 displays the location of every dynamic down-cast found in the Deal.II

library (version 9.2.0 [5]), alongside each step-x example program the cast is fea-

tured in.

Table 22: Deal.II dynamic down-cast locations and featured step-x programs

Cast

Number
Source Location : Line Number Features in Step-x

1 source/dofs/dof accessor get.cc:58
3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 20,

21, 23, 24, 25, 26, 27, 30, 38, 39, 47, 48,

51, 52, 61, 65, 67

2 include/deal.II/lac/affine constraints.templates.h:3695
6, 8, 9, 11, 12, 16, 21, 23, 24, 25, 26, 27,

47, 51, 52, 61, 65

3 source/fe/fe q.cc:189 6, 7, 8, 9, 13, 14, 15, 16, 26, 27, 48

4 source/fe/fe q.cc:198 6, 7, 8, 9, 13, 14, 15, 16, 26, 27, 48

5 source/dofs/dof accessor set.cc:55 15, 26

6 include/deal.II/fe/fe poly.templates.h:254 14, 39, 47

7 include/deal.II/fe/fe poly.h:258
3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 20,

21, 23, 24, 25, 26, 27, 30, 38, 39, 47, 48,

51, 52, 61, 65, 67

Continued on next page

251

APPENDIX B. DEALL.II FULL RESULTS 252

Table 22 – continued from previous page

Dynamic

cast

Number

Source Location : Line Number Features in Step-x

8 source/fe/mapping q generic.cc:2679
3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

20, 21, 23, 24, 25, 26, 27, 30, 38, 39, 47,

48, 51, 52, 61, 65, 67

9 source/fe/mapping q generic.cc:2695
3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

20, 21, 23, 24, 26, 27, 30, 38, 39, 47, 51,

52, 61, 65

10 include/deal.II/fe/fe poly tensor.h:252 20, 21, 61

11 source/fe/fe q base.cc:594 6, 7, 8, 9, 13, 14, 15, 16, 26, 27, 48

12 source/fe/fe system.cc:927 8, 20, 21, 51, 61, 67

13 source/fe/fe system.cc:990 8, 20, 21, 51, 61

14 include/deal.II/numerics/vector tools interpolate.templates.h:179 26, 48

15 source/dofs/dof handler.cc:1287
2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 20, 21, 23, 24, 25, 26, 30, 38, 39, 47,

48, 51, 52, 61, 65, 67

16 source/fe/mapping q generic.cc:2713
6, 7, 8, 12, 13, 14, 15, 16, 26, 27, 30, 39,

47, 51

17 source/fe/fe q base.cc:477 14

18 source/dofs/dof handler.cc:843
2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 20, 21, 23, 24, 25, 26, 30, 38, 39, 47,

48, 51, 52, 61, 65, 67

19 source/dofs/dof handler.cc:849
2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 20, 21, 23, 24, 25, 26, 30, 38, 39, 47,

48, 51, 52, 61, 65, 67

20 include/deal.II/matrix free/shape info.templates.h:140 10, 11, 23, 24, 25, 38, 48, 65, 67

21 include/deal.II/matrix free/shape info.templates.h:148 10, 11, 23, 24, 25, 38, 48, 65, 67

22 include/deal.II/matrix free/shape info.templates.h:154 10, 11, 23, 24, 25, 38, 48, 65, 67

23 include/deal.II/matrix free/shape info.templates.h:156 10, 11, 23, 24, 25, 38, 48, 65, 67

24 include/deal.II/numerics/vector tools project.templates.h:966 21, 23, 24, 25

25 include/deal.II/numerics/vector tools project.templates.h:968 21, 23, 24, 25

26 include/deal.II/numerics/vector tools project.templates.h:971 21, 23, 24, 25

27 source/fe/mapping cartesian.cc:99 20, 21

28 include/deal.II/lac/la parallel vector.templates.h:1312 23, 24, 25

29 include/deal.II/lac/la parallel vector.templates.h:1580 23, 24, 25

30 include/deal.II/matrix free/mapping info.templates.h:2510 23, 24, 25, 48, 67

31 include/deal.II/matrix free/mapping info.templates.h:359 23, 24, 25, 48, 67

32 include/deal.II/matrix free/matrix free.templates.h:558 23, 24, 25

33 include/deal.II/fe/fe poly.h:258 23, 24, 25, 48, 67, 12b, 16b

34 include/deal.II/fe/fe poly.templates.h:254 20, 21, 16b

49 include/deal.II/base/utilities.h:784 10, 11, 24, 38, 47

54 include/deal.II/lac/affine constraints.templates.h:3695 16b

70 include/deal.II/fe/fe poly face.h:116 51, 61

115 include/deal.II/lac/la parallel vector.templates.h:1379 24, 25

121 include/deal.II/lac/la parallel vector.templates.h:1489 24, 25, 67

123 include/deal.II/lac/la parallel vector.templates.h:1557 24, 25, 48

126 include/deal.II/lac/la parallel vector.templates.h:1631 24, 25

128 include/deal.II/lac/la parallel vector.templates.h:1841 24, 25

130 include/deal.II/lac/la parallel vector.templates.h:1844 24, 25

141 include/deal.II/meshworker/integration info.h:608 12b, 16b

142 include/deal.II/meshworker/integration info.h:610 12b, 16b

143 include/deal.II/meshworker/integration info.h:612 12b, 16b

161 include/deal.II/meshworker/integration info.h:608 39

162 include/deal.II/meshworker/integration info.h:610 39

163 include/deal.II/meshworker/integration info.h:612 39

Continued on next page

APPENDIX B. DEALL.II FULL RESULTS 253

Table 22 – continued from previous page

Dynamic

cast

Number

Source Location : Line Number Features in Step-x

224 source/dofs/dof accessor get.cc:58 12b, 16b

227 source/dofs/dof handler.cc:1287 12b, 16b

228 source/dofs/dof handler.cc:1319 16b

234 source/dofs/dof handler.cc:843 12b, 16b

235 source/dofs/dof handler.cc:849 12b, 16b

241 source/dofs/dof handler.cc:1319 16, 39

324 source/fe/fe face.cc:175 51

330 source/fe/fe face.cc:449 51

346 source/fe/fe q.cc:189 16b

347 source/fe/fe q.cc:198 16b

349 source/fe/fe nothing.cc:198 10

351 source/fe/fe q base.cc:594 16b

359 source/fe/fe q base.cc:695 27

361 source/fe/fe q base.cc:735 27

403 source/fe/fe system.cc:1053 8, 51

410 source/fe/fe system.cc:2007 8

412 source/fe/fe system.cc:2247 8

455 source/fe/mapping q.cc:156 10, 11, 38, 47

456 source/fe/mapping q.cc:188 10, 11, 38, 47

457 source/fe/mapping q.cc:221 47

461 source/fe/mapping q.cc:393 11, 38, 47

465 source/fe/mapping q.cc:442 47

468 source/fe/mapping q generic.cc:2679 12b, 16b

469 source/fe/mapping q generic.cc:2695 12b, 16b

470 source/fe/mapping q generic.cc:2713 12b, 16b

479 source/fe/mapping q generic.cc:4023 6, 10, 11, 65, 67

511 source/hp/dof handler.cc:1019 27

513 source/hp/dof handler.cc:1645 27

514 source/hp/dof handler.cc:1721 27

515 source/hp/dof handler.cc:1755 27

516 source/hp/dof handler.cc:980 27

522 source/multigrid/mg level global transfer.cc:87 16, 39, 16b

525 source/multigrid/mg transfer internal.cc:218 16, 39, 16b

APPENDIX B. DEALL.II FULL RESULTS 254

B.2 Stability of Each Dynamic Down-Cast Site

Table 23 displays the stability of every cast site found in the Deal.II library (listed

in Table 22) and which step-x example it features in.

Table 23: Stability of every casts site for each step-x program

Cast

Num
Step

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Steps

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

1 3 1023 0 100.00% 2 47 4199 0 100.00%

1 4 4351 1 99.98% 2 51 46471 0 100.00%

1 6 23111 0 100.00% 2 52 511 0 100.00%

1 7 492791 0 100.00% 2 61 1023 0 100.00%

1 8 148451 0 100.00% 2 65 13311 0 100.00%

1 9 212628 0 100.00% 3 6 5007 0 100.00%

1 11 40949 0 100.00% 3 7 22551 0 100.00%

1 12 14009 0 100.00% 3 8 5295 0 100.00%

1 13 226809 0 100.00% 3 9 32623 0 100.00%

1 14 187559 0 100.00% 3 13 11635 0 100.00%

1 15 10799477 0 100.00% 3 14 27419 0 100.00%

1 16 47101 0 100.00% 3 15 336289 0 100.00%

1 20 3071 0 100.00% 3 16 5419 0 100.00%

1 21 691967 0 100.00% 3 26 31465 0 100.00%

1 23 10485759 0 100.00% 3 27 15323 0 100.00%

1 24 35915999 0 100.00% 3 48 783 0 100.00%

1 25 49983 0 100.00% 4 6 5007 0 100.00%

1 26 668860 0 100.00% 4 7 22551 0 100.00%

1 27 37841 0 100.00% 4 8 5295 0 100.00%

1 30 42644 0 100.00% 4 9 32623 0 100.00%

1 38 3839 0 100.00% 4 13 11635 0 100.00%

1 39 1259 0 100.00% 4 14 27419 0 100.00%

1 47 5439 0 100.00% 4 15 336289 0 100.00%

1 48 1109663 0 100.00% 4 16 5419 0 100.00%

1 51 720771 0 100.00% 4 26 31465 0 100.00%

1 52 58879 0 100.00% 4 27 15323 0 100.00%

1 61 12287 0 100.00% 4 48 783 0 100.00%

1 65 132351 0 100.00% 5 15 709999 0 100.00%

1 67 45055 0 100.00% 5 26 62417 0 100.00%

2 6 7527 0 100.00% 6 14 14495 0 100.00%

2 8 47509 0 100.00% 6 39 1259 0 100.00%

2 9 57564 0 100.00% 6 47 8159 0 100.00%

2 11 20474 0 100.00% 7 3 2 0 100.00%

2 12 9468 0 100.00% 7 4 5 1 80.00%

2 16 34729 0 100.00% 7 6 43 0 100.00%

2 21 1023 0 100.00% 7 7 217 0 100.00%

2 23 32767 0 100.00% 7 8 43 0 100.00%

2 24 163839 0 100.00% 7 9 67 0 100.00%

2 25 127 0 100.00% 7 11 89 0 100.00%

2 26 142037 0 100.00% 7 12 1609 0 100.00%

2 27 7589 0 100.00% 7 13 126 0 100.00%

Continued on next page

APPENDIX B. DEALL.II FULL RESULTS 255

Table 23 – continued from previous page

Cast

Num
Step

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Steps

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

7 14 135 0 100.00% 9 4 1 1 0.00%

7 15 289 0 100.00% 9 6 21 0 100.00%

7 16 67 0 100.00% 9 7 87 0 100.00%

7 20 4 0 100.00% 9 8 21 0 100.00%

7 21 523 0 100.00% 9 9 19 0 100.00%

7 23 1603 0 100.00% 9 10 6 0 100.00%

7 24 35262 0 100.00% 9 11 29 0 100.00%

7 25 419 0 100.00% 9 12 23 0 100.00%

7 26 1259 0 100.00% 9 13 40 0 100.00%

7 27 215 0 100.00% 9 14 49 0 100.00%

7 30 5586 0 100.00% 9 15 109 0 100.00%

7 38 3 0 100.00% 9 16 21 0 100.00%

7 39 616 0 100.00% 9 20 0 0 N/A

7 47 59 0 100.00% 9 21 125 0 100.00%

7 48 73 0 100.00% 9 23 639 0 100.00%

7 51 951 0 100.00% 9 24 0 0 N/A

7 52 7475 0 100.00% 9 26 351 0 100.00%

7 61 7 0 100.00% 9 27 153 0 100.00%

7 65 13 0 100.00% 9 30 16 0 100.00%

7 67 10 0 100.00% 9 38 0 0 N/A

8 3 0 0 N/A 9 39 335 0 100.00%

8 4 1 1 0.00% 9 47 19 0 100.00%

8 6 7 0 100.00% 9 51 46639 0 100.00%

8 7 111 0 100.00% 9 52 0 0 N/A

8 8 7 0 100.00% 9 61 6 0 100.00%

8 9 37 0 100.00% 9 65 5 0 100.00%

8 10 6 0 100.00% 10 20 18 0 100.00%

8 11 113 0 100.00% 10 21 275 0 100.00%

8 12 1555 0 100.00% 10 61 17 0 100.00%

8 13 56 0 100.00% 11 6 13 0 100.00%

8 14 60 0 100.00% 11 7 31 0 100.00%

8 15 153 0 100.00% 11 8 27 0 100.00%

8 16 31 0 100.00% 11 9 17 0 100.00%

8 20 14 0 100.00% 11 13 21 0 100.00%

8 21 146 0 100.00% 11 14 75 0 100.00%

8 23 645 0 100.00% 11 15 25 0 100.00%

8 24 105123 0 100.00% 11 16 13 0 100.00%

8 25 367 0 100.00% 11 26 101 0 100.00%

8 26 605 0 100.00% 11 27 86 0 100.00%

8 27 20 0 100.00% 11 48 1 0 100.00%

8 30 5523 0 100.00% 12 8 15 0 100.00%

8 38 2 0 100.00% 12 20 3 0 100.00%

8 39 120 0 100.00% 12 21 135 0 100.00%

8 47 19 0 100.00% 12 51 269 0 100.00%

8 48 38 0 100.00% 12 61 3 0 100.00%

8 51 269 0 100.00% 12 67 10 0 100.00%

8 52 7244 0 100.00% 13 8 21 0 100.00%

8 61 17 0 100.00% 13 20 0 0 N/A

8 65 7 0 100.00% 13 21 125 0 100.00%

8 67 11 0 100.00% 13 51 137 0 100.00%

9 3 0 0 N/A 13 61 3 0 100.00%

Continued on next page

APPENDIX B. DEALL.II FULL RESULTS 256

Table 23 – continued from previous page

Cast

Num
Step

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Steps

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

14 26 107 0 100.00% 18 7 3 0 100.00%

14 48 30823 0 100.00% 18 8 0 0 N/A

15 2 0 0 N/A 18 9 0 0 N/A

15 3 0 0 N/A 18 10 7 0 100.00%

15 4 1 1 0.00% 18 11 2 0 100.00%

15 6 7 0 100.00% 18 12 0 0 N/A

15 7 27 0 100.00% 18 13 1 0 100.00%

15 8 7 0 100.00% 18 14 1 0 100.00%

15 9 9 0 100.00% 18 15 0 0 N/A

15 10 47 0 100.00% 18 16 0 0 N/A

15 11 17 0 100.00% 18 20 0 0 N/A

15 12 5 0 100.00% 18 21 0 0 N/A

15 13 18 0 100.00% 18 23 0 0 N/A

15 14 17 0 100.00% 18 24 0 0 N/A

15 15 13 0 100.00% 18 25 0 0 N/A

15 16 7 0 100.00% 18 26 0 0 N/A

15 20 0 0 N/A 18 30 1 0 100.00%

15 21 0 0 N/A 18 38 0 0 N/A

15 23 0 0 N/A 18 39 0 0 N/A

15 24 0 0 N/A 18 47 0 0 N/A

15 25 0 0 N/A 18 48 0 0 N/A

15 26 51 0 100.00% 18 51 8 0 100.00%

15 30 11 0 100.00% 18 52 0 0 N/A

15 38 0 0 N/A 18 61 1 0 100.00%

15 39 11 0 100.00% 18 65 0 0 N/A

15 47 3 0 100.00% 18 67 0 0 N/A

15 48 0 0 N/A 19 2 0 0 N/A

15 51 89 0 100.00% 19 3 0 0 N/A

15 52 0 0 N/A 19 4 1 1 0.00%

15 61 1 0 100.00% 19 6 0 0 N/A

15 65 1 0 100.00% 19 7 3 0 100.00%

15 67 0 0 N/A 19 8 0 0 N/A

16 6 5 0 100.00% 19 9 0 0 N/A

16 7 13 0 100.00% 19 10 7 0 100.00%

16 8 5 0 100.00% 19 11 2 0 100.00%

16 12 23 0 100.00% 19 12 0 0 N/A

16 13 9 0 100.00% 19 13 1 0 100.00%

16 14 15 0 100.00% 19 14 1 0 100.00%

16 15 11 0 100.00% 19 15 0 0 N/A

16 16 5 0 100.00% 19 16 0 0 N/A

16 26 49 0 100.00% 19 20 0 0 N/A

16 27 19 0 100.00% 19 21 0 0 N/A

16 30 16 0 100.00% 19 23 0 0 N/A

16 39 119 0 100.00% 19 24 0 0 N/A

16 47 15 0 100.00% 19 25 0 0 N/A

16 51 7 0 100.00% 19 26 0 0 N/A

17 14 32 0 100.00% 19 30 1 0 100.00%

18 2 0 0 N/A 19 38 0 0 N/A

18 3 0 0 N/A 19 39 0 0 N/A

18 4 1 1 0.00% 19 47 0 0 N/A

18 6 0 0 N/A 19 48 0 0 N/A

Continued on next page

APPENDIX B. DEALL.II FULL RESULTS 257

Table 23 – continued from previous page

Cast

Num
Step

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Steps

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

19 51 8 0 100.00% 26 24 0 0 N/A

19 52 0 0 N/A 26 25 0 0 N/A

19 61 1 0 100.00% 27 20 2 0 100.00%

19 65 0 0 N/A 27 21 2 0 100.00%

19 67 0 0 N/A 28 23 1 0 100.00%

20 10 2 0 100.00% 28 24 0 0 N/A

20 11 47 0 100.00% 28 25 0 0 N/A

20 23 3 3 0.00% 29 23 1 0 100.00%

20 24 1 1 0.00% 29 24 1 0 100.00%

20 25 1 1 0.00% 29 25 1 0 100.00%

20 38 2 0 100.00% 30 23 1 0 100.00%

20 48 1 1 0.00% 30 24 0 0 N/A

20 65 7 0 100.00% 30 25 0 0 N/A

20 67 15 3 80.00% 30 48 0 0 N/A

21 10 2 0 100.00% 30 67 0 0 N/A

21 11 47 0 100.00% 31 23 1 0 100.00%

21 23 3 3 0.00% 31 24 0 0 N/A

21 24 1 1 0.00% 31 25 0 0 N/A

21 25 1 1 0.00% 31 48 0 0 N/A

21 38 2 0 100.00% 31 67 0 0 N/A

21 48 1 1 0.00% 32 23 1 0 100.00%

21 65 7 0 100.00% 32 24 0 0 N/A

21 67 15 3 80.00% 32 25 0 0 N/A

22 10 2 0 100.00% 33 23 1 0 100.00%

22 11 47 0 100.00% 33 24 0 0 N/A

22 23 3 3 0.00% 33 25 0 0 N/A

22 24 1 1 0.00% 33 48 0 0 N/A

22 25 1 1 0.00% 33 67 0 0 N/A

22 38 2 0 100.00% 33 12b 1603 0 100.00%

22 48 1 1 0.00% 33 16b 195 0 100.00%

22 65 7 0 100.00% 34 20 0 0 N/A

22 67 15 3 80.00% 34 21 0 0 N/A

23 10 2 0 100.00% 34 16b 9361 0 100.00%

23 11 47 0 100.00% 49 10 13 0 100.00%

23 23 3 3 0.00% 49 11 143 0 100.00%

23 24 1 1 0.00% 49 24 105119 0 100.00%

23 25 1 1 0.00% 49 38 3 0 100.00%

23 38 2 0 100.00% 49 47 51 0 100.00%

23 48 1 1 0.00% 54 16b 4017 0 100.00%

23 65 7 0 100.00% 70 51 46621 0 100.00%

23 67 15 3 80.00% 70 61 3 0 100.00%

24 21 0 0 N/A 115 24 36 0 100.00%

24 23 1 0 100.00% 115 25 15 0 100.00%

24 24 0 0 N/A 121 24 35 0 100.00%

24 25 0 0 N/A 121 25 14 0 100.00%

25 21 0 0 N/A 121 67 10 0 100.00%

25 23 1 0 100.00% 123 24 36 0 100.00%

25 24 0 0 N/A 123 25 15 0 100.00%

25 25 0 0 N/A 123 48 6824 0 100.00%

26 21 0 0 N/A 126 24 73 0 100.00%

26 23 1 1 0.00% 126 25 31 0 100.00%

Continued on next page

APPENDIX B. DEALL.II FULL RESULTS 258

Table 23 – continued from previous page

Cast

Num
Step

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Steps

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

128 24 36 0 100.00% 469 12b 35 0 100.00%

128 25 15 0 100.00% 455 10 3 0 100.00%

130 24 36 0 100.00% 455 11 65 0 100.00%

130 25 15 0 100.00% 455 38 2 0 100.00%

141 12b 29 13 55.17% 455 47 19 0 100.00%

141 16b 79 33 58.23% 456 10 3 0 100.00%

142 12b 29 12 58.62% 456 11 17 0 100.00%

142 16b 79 32 59.49% 456 38 0 0 N/A

143 12b 29 12 58.62% 456 47 15 0 100.00%

143 16b 79 32 59.49% 457 47 15 0 100.00%

161 39 299 121 59.53% 461 11 131183 0 100.00%

162 39 299 120 59.87% 461 38 23039 0 100.00%

163 39 299 120 59.87% 461 47 49067 0 100.00%

224 12b 10967 0 100.00% 465 47 49031 0 100.00%

224 16b 12601 0 100.00% 468 12b 1549 0 100.00%

227 12b 5 0 100.00% 468 16b 31 0 100.00%

227 16b 7 0 100.00% 469 16b 117 0 100.00%

228 16b 7 0 100.00% 470 12b 11 0 100.00%

234 12b 0 0 N/A 470 16b 37 0 100.00%

234 16b 0 0 N/A 479 6 2295 0 100.00%

235 12b 0 0 N/A 479 10 2999 0 100.00%

235 16b 0 0 N/A 479 11 2519 0 100.00%

241 16 7 0 100.00% 479 65 60928 0 100.00%

241 39 11 0 100.00% 479 67 12287 0 100.00%

324 51 17 0 100.00% 511 27 11 0 100.00%

330 51 3717 0 100.00% 513 27 5 0 100.00%

346 16b 1467 0 100.00% 514 27 0 0 N/A

347 16b 1467 0 100.00% 515 27 0 0 N/A

349 10 39 0 100.00% 516 27 11 0 100.00%

351 16b 13 0 100.00% 522 16 7 0 100.00%

359 27 30 0 100.00% 522 39 11 0 100.00%

361 27 27 0 100.00% 522 16b 7 0 100.00%

403 8 5 0 100.00% 525 16 7 0 100.00%

403 51 7 0 100.00% 525 39 11 0 100.00%

410 8 13 0 100.00% 525 16b 7 0 100.00%

412 8 5295 0 100.00%

Appendix C

OMNet++ Full Results

Here we present the full results of our analysis of the OMNET++ library and test

programs, detailing all the dynamic down-cast locations within the code and their

stability values in each test case.

C.1 Dynamic Down-Cast Locations

Table 24 displays the location of every dynamic down-cast found in the OM-

NET++ library and test cases.

259

APPENDIX C. OMNET++ FULL RESULTS 260

Table 24: OMNet++ dynamic down-casts locations and featured programs
Cast
Number Source Location : Line Number Featured in

fifo1 routing dyna fifo2 aloha cqn histograms
2 include/omnetpp/ccanvas.h:559 3 3
36 src/sim/cboolparimpl.cc:208 3 3 3 3
37 src/sim/ccanvas.cc:1123 3 3
38 src/sim/ccanvas.cc:3960 3
42 src/sim/ccomponent.cc:128 3
43 src/sim/ccomponent.cc:248 3 3 3 3 3
48 src/sim/ccomponenttype.cc:359 3 3 3 3 3 3 3
49 src/sim/ccomponenttype.cc:365 3 3 3 3 3 3 3
50 src/sim/ccomponenttype.cc:388 3 3 3 3 3 3 3
51 src/sim/ccomponenttype.cc:414 3 3 3
53 src/sim/ccomponenttype.cc:94 3 3 3 3 3 3
57 src/sim/cdoubleparimpl.cc:213 3 3 3
64 src/sim/cgate.cc:249 3
68 src/sim/cintparimpl.cc:210 3 3
71 src/sim/cmessage.cc:339 3 3 3 3 3 3 3
73 src/sim/cmodule.cc:437 3 3 3 3 3 3 3
75 src/sim/cnedfunction.cc:242 3 3 3 3 3 3 3
77 src/sim/cnedmathfunction.cc:130 3
79 src/sim/cobjectfactory.cc:40 3 3 3 3 3 3 3
90 src/sim/cpar.cc:127 3 3 3 3 3 3 3
92 src/sim/cresultfilter.cc:284 3
93 src/sim/cresultlistener.cc:112 3
94 src/sim/cresultrecorder.cc:247 3 3 3 3 3
95 src/sim/csimplemodule.cc:173 3
98 src/sim/csimulation.cc:568 3
101 src/sim/csoftowner.cc:78 3 3 3
102 src/sim/cstatistic.cc:90 3
112 src/envir/envirbase.cc:1924 3 3 3 3 3 3 3
113 src/envir/envirbase.cc:1933 3 3 3 3 3 3 3
114 src/envir/envirbase.cc:199 3 3 3 3 3 3 3
115 src/envir/envirbase.cc:354 3 3 3 3 3 3 3
175 src/envir/eventlogfilemgr.cc:193 3 3 3 3 3 3 3
192 src/common/expression.cc:174 3 3 3 3 3 3 3
193 src/common/expression.cc:186 3 3 3 3 3 3 3
194 src/common/expression.cc:233 3 3 3 3 3 3 3
195 src/common/expression.cc:234 3 3 3 3 3 3 3
196 src/common/expression.cc:235 3 3 3 3 3 3 3
197 src/common/expression.cc:236 3 3 3 3 3 3 3
198 src/common/expression.cc:237 3 3 3 3 3 3 3
199 src/common/expression.cc:238 3 3 3 3 3 3 3
212 src/envir/filesnapshotmgr.cc:43 3 3 3 3 3 3 3
252 src/nedxml/nedresourcecache.cc:204 3 3 3 3 3 3 3
253 src/nedxml/nedresourcecache.cc:491 3 3 3 3 3 3
254 src/nedxml/nedresourcecache.cc:66 3 3 3 3 3 3 3
255 src/sim/nedsupport.cc:100 3 3 3 3 3 3 3
256 src/sim/nedsupport.cc:119 3 3 3
257 src/sim/nedsupport.cc:147 3 3
259 src/sim/nedsupport.cc:279 3 3 3
260 src/sim/nedsupport.cc:422 3 3 3
266 src/envir/omnetppoutscalarmgr.cc:161 3 3 3
267 src/envir/omnetppoutscalarmgr.cc:62 3 3 3 3 3 3 3
268 src/envir/omnetppoutvectormgr.cc:64 3 3 3 3 3 3 3
345 src/envir/resultfileutils.cc:74 3 3 3 3 3

APPENDIX C. OMNET++ FULL RESULTS 261

C.2 Stability of Each Dynamic Down-Cast Site

Table 25 displays the stability of every cast site (Listed in Table 24) found in the

OMNET++ library and test cases.

Table 25: Stability of every casts site within the OMNet++ tests

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

2 aloha 2 0 100.00% 53 fifo1 2 0 100.00%

2 histograms 10 5 50.00% 53 fifo2 3 0 100.00%

36 aloha 37 0 100.00% 53 routing 29 2 93.10%

36 cqn 315 0 100.00% 57 aloha 414 0 100.00%

36 dyna 33 0 100.00% 57 cqn 472 0 100.00%

36 routing 51 0 100.00% 57 routing 260 0 100.00%

37 aloha 0 0 N/A 64 aloha 1 0 100.00%

37 histograms 1 0 100.00% 68 cqn 5 0 100.00%

38 histograms 0 0 N/A 68 routing 47 0 100.00%

42 histograms 3 3 0.00% 71 aloha 16569886 6279546 62.10%

43 aloha 28 8 71.43% 71 cqn 194091 3822 98.03%

43 fifo1 9 9 0.00% 71 dyna 926437 639782 30.94%

43 fifo2 16 16 0.00% 71 fifo1 14384515 12111427 15.80%

43 histograms 3 3 0.00% 71 fifo2 1077243 657703 38.95%

43 routing 278 273 1.80% 71 histograms 1000000 0 100.00%

48 aloha 21 2 90.48% 71 routing 24468 18435 24.66%

48 cqn 156 6 96.15% 73 aloha 22 3 86.36%

48 dyna 24050 4 99.98% 73 cqn 152 5 96.71%

48 fifo1 3 3 0.00% 73 dyna 24050 4 99.98%

48 fifo2 4 3 25.00% 73 fifo1 3 3 0.00%

48 histograms 0 0 N/A 73 fifo2 4 3 25.00%

48 routing 29 15 48.28% 73 histograms 0 0 N/A

49 aloha 20 1 95.00% 73 routing 29 19 34.48%

49 cqn 152 5 96.71% 75 aloha 223 0 100.00%

49 dyna 24049 3 99.99% 75 cqn 43 0 100.00%

49 fifo1 2 2 0.00% 75 dyna 181 0 100.00%

49 fifo2 3 2 33.33% 75 fifo1 43 0 100.00%

49 histograms 0 0 N/A 75 fifo2 87 0 100.00%

49 routing 23 14 39.13% 75 histograms 261 2 99.23%

50 aloha 0 0 N/A 75 routing 209 0 100.00%

50 cqn 0 0 N/A 77 histograms 89 1 98.88%

50 dyna 1 0 100.00% 79 aloha 61 0 100.00%

50 fifo1 0 0 N/A 79 cqn 325 0 100.00%

50 fifo2 0 0 N/A 79 dyna 24076 0 100.00%

50 histograms 0 0 N/A 79 fifo1 21 0 100.00%

50 routing 0 0 N/A 79 fifo2 29 0 100.00%

51 cqn 158 0 100.00% 79 histograms 13 0 100.00%

51 dyna 17 0 100.00% 79 routing 330 0 100.00%

51 routing 13 0 100.00% 90 aloha 221 5 97.74%

53 aloha 1 0 100.00% 90 cqn 796 15 98.12%

53 cqn 165 7 95.76% 90 dyna 81 8 90.12%

53 dyna 20 1 95.00% 90 fifo1 3 3 0.00%

Continued on next page

APPENDIX C. OMNET++ FULL RESULTS 262

Table 25 – continued from previous page

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

90 fifo2 4 3 25.00% 192 aloha 16 6 62.50%

90 histograms 7 0 100.00% 192 cqn 25 14 44.00%

90 routing 140 19 86.43% 192 dyna 17 6 64.71%

92 aloha 5 0 100.00% 192 fifo1 1 1 0.00%

93 aloha 3139771 0 100.00% 192 fifo2 1 0 100.00%

94 aloha 28 0 100.00% 192 histograms 4 2 50.00%

94 fifo1 9 0 100.00% 192 routing 18 7 61.11%

94 fifo2 16 0 100.00% 193 aloha 616 20 96.75%

94 histograms 3 0 100.00% 193 cqn 2795 64 97.71%

94 routing 278 0 100.00% 193 dyna 24821 22 99.91%

95 dyna 24048 1 100.00% 193 fifo1 84 2 97.62%

98 dyna 24037 0 100.00% 193 fifo2 102 4 96.08%

101 aloha 80 60 25.00% 193 histograms 113 12 89.38%

101 dyna 48120 2 100.00% 193 routing 1014 22 97.83%

101 routing 9 9 0.00% 194 aloha 616 20 96.75%

102 histograms 8 0 100.00% 194 cqn 2783 51 98.17%

112 aloha 0 0 N/A 194 dyna 24817 18 99.93%

112 cqn 0 0 N/A 194 fifo1 84 2 97.62%

112 dyna 0 0 N/A 194 fifo2 102 4 96.08%

112 fifo1 0 0 N/A 194 histograms 106 4 96.23%

112 fifo2 0 0 N/A 194 routing 1013 20 98.03%

112 histograms 0 0 N/A 195 aloha 10 3 70.00%

112 routing 0 0 N/A 195 cqn 37 19 48.65%

113 aloha 0 0 N/A 195 dyna 9 4 55.56%

113 cqn 0 0 N/A 195 fifo1 0 0 N/A

113 dyna 0 0 N/A 195 fifo2 1 0 100.00%

113 fifo1 0 0 N/A 195 histograms 1 0 100.00%

113 fifo2 0 0 N/A 195 routing 17 7 58.82%

113 histograms 0 0 N/A 196 aloha 10 3 70.00%

113 routing 0 0 N/A 196 cqn 37 19 48.65%

114 aloha 7 6 14.29% 196 dyna 9 4 55.56%

114 cqn 9 6 33.33% 196 fifo1 0 0 N/A

114 dyna 7 6 14.29% 196 fifo2 1 0 100.00%

114 fifo1 7 6 14.29% 196 histograms 1 0 100.00%

114 fifo2 7 6 14.29% 196 routing 17 7 58.82%

114 histograms 7 6 14.29% 197 aloha 10 3 70.00%

114 routing 7 6 14.29% 197 cqn 37 19 48.65%

115 aloha 0 0 N/A 197 dyna 9 4 55.56%

115 cqn 0 0 N/A 197 fifo1 0 0 N/A

115 dyna 0 0 N/A 197 fifo2 1 0 100.00%

115 fifo1 0 0 N/A 197 histograms 1 0 100.00%

115 fifo2 0 0 N/A 197 routing 17 7 58.82%

115 histograms 0 0 N/A 198 aloha 10 3 70.00%

115 routing 0 0 N/A 198 cqn 37 19 48.65%

175 aloha 0 0 N/A 198 dyna 9 4 55.56%

175 cqn 0 0 N/A 198 fifo1 0 0 N/A

175 dyna 0 0 N/A 198 fifo2 1 0 100.00%

175 fifo1 0 0 N/A 198 histograms 1 0 100.00%

175 fifo2 0 0 N/A 198 routing 17 7 58.82%

175 histograms 0 0 N/A 199 aloha 10 3 70.00%

175 routing 0 0 N/A 199 cqn 37 19 48.65%

Continued on next page

APPENDIX C. OMNET++ FULL RESULTS 263

Table 25 – continued from previous page

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

199 dyna 9 4 55.56% 255 histograms 4000003 0 100.00%

199 fifo1 0 0 N/A 255 routing 6692 0 100.00%

199 fifo2 1 0 100.00% 256 aloha 40 0 100.00%

199 histograms 1 0 100.00% 256 cqn 370 0 100.00%

199 routing 17 7 58.82% 256 dyna 4 0 100.00%

212 aloha 0 0 N/A 256 routing 34 0 100.00%

212 cqn 0 0 N/A 257 cqn 164 12 92.68%

212 dyna 0 0 N/A 257 routing 24 0 100.00%

212 fifo1 0 0 N/A 259 aloha 40 0 100.00%

212 fifo2 0 0 N/A 259 cqn 205 0 100.00%

212 histograms 0 0 N/A 259 dyna 4 0 100.00%

212 routing 0 0 N/A 259 routing 9 0 100.00%

252 aloha 4 0 100.00% 260 cqn 377 0 100.00%

252 cqn 6 0 100.00% 260 dyna 15 0 100.00%

252 dyna 6 0 100.00% 260 routing 83 0 100.00%

252 fifo1 6 0 100.00% 266 aloha 1 0 100.00%

252 fifo2 6 0 100.00% 266 histograms 11 3 72.73%

252 histograms 2 0 100.00% 266 routing 32 0 100.00%

252 routing 16 0 100.00% 267 aloha 0 0 N/A

253 aloha 1 0 100.00% 267 cqn 0 0 N/A

253 cqn 6 0 100.00% 267 dyna 0 0 N/A

253 dyna 2 0 100.00% 267 fifo1 0 0 N/A

253 fifo1 2 0 100.00% 267 fifo2 0 0 N/A

253 fifo2 3 0 100.00% 267 histograms 0 0 N/A

253 routing 29 0 100.00% 267 routing 0 0 N/A

254 aloha 0 0 N/A 268 aloha 0 0 N/A

254 cqn 0 0 N/A 268 cqn 0 0 N/A

254 dyna 0 0 N/A 268 dyna 0 0 N/A

254 fifo1 0 0 N/A 268 fifo1 0 0 N/A

254 fifo2 0 0 N/A 268 fifo2 0 0 N/A

254 histograms 0 0 N/A 268 histograms 0 0 N/A

254 routing 0 0 N/A 268 routing 0 0 N/A

255 aloha 5000060 0 100.00% 345 aloha 1 0 100.00%

255 cqn 96192 0 100.00% 345 cqn 1 0 100.00%

255 dyna 132325 0 100.00% 345 dyna 1 0 100.00%

255 fifo1 3596208 0 100.00% 345 fifo1 1 0 100.00%

255 fifo2 538623 0 100.00% 345 routing 3 3 0.00%

Appendix D

Antlr4 Full Results

Here we present the full results of our analysis of the Antlr4 library and test

programs, detailing all the dynamic down-cast locations within the code and their

stability values in each test case.

D.1 Dynamic Down-Cast Locations

Table 26 displays the location of every dynamic down-cast found in the Antlr4

library and test cases.

264

APPENDIX D. ANTLR4 FULL RESULTS 265

Table 26: Antlr4 dynamic down-casts locations and input files. Key: cpp1:
avrc api.cc, cpp2: function lib.cc, cpp3: data out base.cc, html1: antlr.html,
html2: gnu.html, html3: github.html.

Cast
Number Source Location : Line Number Featured in

cpp1 ccp2 ccp3 html1 html2 html3
1492 runtime/src/DefaultErrorStrategy.cpp:312 3 3
1493 runtime/src/DefaultErrorStrategy.cpp:312 3 3
1494 runtime/src/DefaultErrorStrategy.cpp:312 3
1502 runtime/src/Parser.cpp:353 3 3 3 3 3 3
1503 runtime/src/Parser.cpp:381 3 3 3 3 3 3
1521 runtime/src/atn/ATNDeserializer.cpp:148 3 3 3 3 3 3
1522 runtime/src/atn/ATNDeserializer.cpp:292 3 3 3 3 3 3
1523 runtime/src/atn/ATNDeserializer.cpp:295 3 3 3 3 3 3
1524 runtime/src/atn/ATNDeserializer.cpp:306 3 3 3 3 3 3
1525 runtime/src/atn/ATNDeserializer.cpp:315 3 3 3 3 3 3
1526 runtime/src/atn/ATNDeserializer.cpp:321 3 3 3
1527 runtime/src/atn/ATNDeserializer.cpp:332 3 3 3 3 3 3
1528 runtime/src/atn/ATNDeserializer.cpp:346 3 3 3 3 3 3
1529 runtime/src/atn/ATNDeserializer.cpp:358 3 3 3 3 3 3
1530 runtime/src/atn/ATNDeserializer.cpp:395 3 3 3 3 3 3
1531 runtime/src/atn/ATNDeserializer.cpp:410 3 3 3 3 3 3
1532 runtime/src/atn/ATNDeserializer.cpp:422 3 3 3 3 3 3
1533 runtime/src/atn/ATNDeserializer.cpp:426 3 3 3 3 3 3
1534 runtime/src/atn/ATNDeserializer.cpp:430 3 3 3 3 3 3
1535 runtime/src/atn/ATNDeserializer.cpp:434 3 3 3 3 3 3
1536 runtime/src/atn/ATNDeserializer.cpp:438 3 3 3 3 3 3
1537 runtime/src/atn/ATNDeserializer.cpp:451 3 3 3 3 3 3
1538 runtime/src/atn/ATNDeserializer.cpp:581 3 3 3 3 3 3
1539 runtime/src/atn/ATNDeserializer.cpp:585 3 3 3 3 3 3
1540 runtime/src/atn/ATNDeserializer.cpp:590 3 3 3 3 3 3
1541 runtime/src/atn/ATNDeserializer.cpp:606 3 3 3 3 3 3
1542 runtime/src/atn/ATNDeserializer.cpp:610 3 3 3 3 3 3
1543 runtime/src/atn/ATNDeserializer.cpp:614 3 3 3 3 3 3
1544 runtime/src/atn/ATNDeserializer.cpp:618 3 3 3 3 3 3
1545 runtime/src/atn/ATNDeserializer.cpp:622 3 3 3 3 3 3
1546 runtime/src/atn/ATNDeserializer.cpp:96 3 3 3
1547 runtime/src/atn/ArrayPredictionContext.cpp:77 3 3 3 3 3 3
1548 runtime/src/atn/LexerATNConfig.cpp:66 3 3 3 3 3 3
1549 runtime/src/atn/LexerATNSimulator.cpp:244 3 3 3 3 3 3
1550 runtime/src/atn/LexerATNSimulator.cpp:250 3 3 3 3 3 3
1551 runtime/src/atn/LexerATNSimulator.cpp:543 3 3 3 3 3 3
1559 runtime/src/atn/ParserATNSimulator.cpp:918 3 3 3
1560 runtime/src/atn/PredictionContext.cpp:147 3 3 3 3 3 3
1561 runtime/src/atn/PredictionContext.cpp:148 3 3 3 3 3 3
1562 runtime/src/atn/PredictionContext.cpp:200 3 3 3 3 3
1563 runtime/src/atn/PredictionContext.cpp:206 3 3 3 3 3 3
1564 runtime/src/atn/PredictionContext.cpp:91 3 3 3 3 3 3
1574 runtime/src/atn/SemanticContext.cpp:62 3 3
1577 runtime/src/atn/SingletonPredictionContext.cpp:70 3 3 3 3 3 3
1579 runtime/src/dfa/DFA.cpp:27 3 3 3 3 3 3
1587 runtime/src/tree/Trees.cpp:101 3 3 3 3 3 3
1588 runtime/src/tree/Trees.cpp:101 3 3 3 3 3 3
1589 runtime/src/tree/Trees.cpp:101 3 3 3 3 3 3
1590 runtime/src/tree/Trees.cpp:103 3 3 3 3 3 3
1591 runtime/src/tree/Trees.cpp:111 3 3 3 3 3 3
1592 runtime/src/tree/Trees.cpp:111 3 3 3 3 3 3
1625 runtime/src/Recognizer.h:72 3 3 3 3 3 3
1628 runtime/src/BufferedTokenStream.cpp:98 3 3 3 3 3 3

APPENDIX D. ANTLR4 FULL RESULTS 266

D.2 Stability of Each Dynamic Down-Cast Site

Table 27 displays the stability of every cast site (listed in Table 26) found in the

Antlr4 library and test cases.

Table 27: Stability of every casts site within the Antlr4 tests program. Key:
cpp1: avrc api.cc, cpp2: function lib.cc, cpp3: data out base.cc, html1: antlr.html,
html2: gnu.html, html3: github.html.

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

1492 cpp2 7 0 100.00% 1524 html2 47 0 100.00%

1492 cpp3 449 0 100.00% 1524 html3 47 0 100.00%

1493 cpp2 1 0 100.00% 1525 cpp1 5 1 80.00%

1493 cpp3 14 8 42.86% 1525 cpp2 5 1 80.00%

1494 cpp3 4 0 100.00% 1525 cpp3 5 1 80.00%

1502 cpp1 28522 28225 1.04% 1525 html1 12 0 100.00%

1502 cpp2 100850 100099 0.74% 1525 html2 12 0 100.00%

1502 cpp3 208484 206419 0.99% 1525 html3 12 0 100.00%

1502 html1 677 298 55.98% 1526 cpp1 5 0 100.00%

1502 html2 1298 544 58.09% 1526 cpp2 5 0 100.00%

1502 html3 3899 1540 60.50% 1526 cpp3 5 0 100.00%

1503 cpp1 28523 28308 0.75% 1527 cpp1 361 0 100.00%

1503 cpp2 100851 100699 0.15% 1527 cpp2 361 0 100.00%

1503 cpp3 208485 206876 0.77% 1527 cpp3 361 0 100.00%

1503 html1 678 445 34.37% 1527 html1 43 0 100.00%

1503 html2 1299 816 37.18% 1527 html2 43 0 100.00%

1503 html3 3900 2558 34.41% 1527 html3 43 0 100.00%

1521 cpp1 550 0 100.00% 1528 cpp1 361 0 100.00%

1521 cpp2 550 0 100.00% 1528 cpp2 361 0 100.00%

1521 cpp3 550 0 100.00% 1528 cpp3 361 0 100.00%

1521 html1 26 0 100.00% 1528 html1 43 0 100.00%

1521 html2 26 0 100.00% 1528 html2 43 0 100.00%

1521 html3 26 0 100.00% 1528 html3 43 0 100.00%

1522 cpp1 66 0 100.00% 1529 cpp1 0 0 N/A

1522 cpp2 66 0 100.00% 1529 cpp2 0 0 N/A

1522 cpp3 66 0 100.00% 1529 cpp3 0 0 N/A

1522 html1 29 0 100.00% 1529 html1 4 0 100.00%

1522 html2 29 0 100.00% 1529 html2 4 0 100.00%

1522 html3 29 0 100.00% 1529 html3 4 0 100.00%

1523 cpp1 373 103 72.39% 1530 cpp1 550 0 100.00%

1523 cpp2 373 103 72.39% 1530 cpp2 550 0 100.00%

1523 cpp3 373 103 72.39% 1530 cpp3 550 0 100.00%

1523 html1 47 20 57.45% 1530 html1 26 0 100.00%

1523 html2 47 20 57.45% 1530 html2 26 0 100.00%

1523 html3 47 20 57.45% 1530 html3 26 0 100.00%

1524 cpp1 373 0 100.00% 1531 cpp1 373 103 72.39%

1524 cpp2 373 0 100.00% 1531 cpp2 373 103 72.39%

1524 cpp3 373 0 100.00% 1531 cpp3 373 103 72.39%

1524 html1 47 0 100.00% 1531 html1 47 20 57.45%

Continued on next page

APPENDIX D. ANTLR4 FULL RESULTS 267

Table 27 – continued from previous page

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

1531 html2 47 20 57.45% 1540 cpp2 41 0 100.00%

1531 html3 47 20 57.45% 1540 cpp3 41 0 100.00%

1532 cpp1 373 103 72.39% 1540 html1 11 0 100.00%

1532 cpp2 373 103 72.39% 1540 html2 11 0 100.00%

1532 cpp3 373 103 72.39% 1540 html3 11 0 100.00%

1532 html1 47 20 57.45% 1541 cpp1 66 0 100.00%

1532 html2 47 20 57.45% 1541 cpp2 66 0 100.00%

1532 html3 47 20 57.45% 1541 cpp3 66 0 100.00%

1533 cpp1 19 0 100.00% 1541 html1 29 0 100.00%

1533 cpp2 19 0 100.00% 1541 html2 29 0 100.00%

1533 cpp3 19 0 100.00% 1541 html3 29 0 100.00%

1533 html1 4 0 100.00% 1542 cpp1 361 0 100.00%

1533 html2 4 0 100.00% 1542 cpp2 361 0 100.00%

1533 html3 4 0 100.00% 1542 cpp3 361 0 100.00%

1534 cpp1 19 0 100.00% 1542 html1 43 0 100.00%

1534 cpp2 19 0 100.00% 1542 html2 43 0 100.00%

1534 cpp3 19 0 100.00% 1542 html3 43 0 100.00%

1534 html1 4 0 100.00% 1543 cpp1 373 103 72.39%

1534 html2 4 0 100.00% 1543 cpp2 373 103 72.39%

1534 html3 4 0 100.00% 1543 cpp3 373 103 72.39%

1535 cpp1 46 0 100.00% 1543 html1 47 20 57.45%

1535 cpp2 46 0 100.00% 1543 html2 47 20 57.45%

1535 cpp3 46 0 100.00% 1543 html3 47 20 57.45%

1535 html1 24 0 100.00% 1544 cpp1 373 0 100.00%

1535 html2 24 0 100.00% 1544 cpp2 373 0 100.00%

1535 html3 24 0 100.00% 1544 cpp3 373 0 100.00%

1536 cpp1 46 0 100.00% 1544 html1 47 0 100.00%

1536 cpp2 46 0 100.00% 1544 html2 47 0 100.00%

1536 cpp3 46 0 100.00% 1544 html3 47 0 100.00%

1536 html1 24 0 100.00% 1545 cpp1 441 186 57.82%

1536 html2 24 0 100.00% 1545 cpp2 441 186 57.82%

1536 html3 24 0 100.00% 1545 cpp3 441 186 57.82%

1537 cpp1 379 110 70.98% 1545 html1 82 69 15.85%

1537 cpp2 379 110 70.98% 1545 html2 82 69 15.85%

1537 cpp3 379 110 70.98% 1545 html3 82 69 15.85%

1537 html1 53 22 58.49% 1546 cpp1 5 0 100.00%

1537 html2 53 22 58.49% 1546 cpp2 5 0 100.00%

1537 html3 53 22 58.49% 1546 cpp3 5 0 100.00%

1538 cpp1 19 0 100.00% 1547 cpp1 877783 0 100.00%

1538 cpp2 19 0 100.00% 1547 cpp2 8882925 0 100.00%

1538 cpp3 19 0 100.00% 1547 cpp3 14767104 0 100.00%

1538 html1 4 0 100.00% 1547 html1 269773 0 100.00%

1538 html2 4 0 100.00% 1547 html2 859563 0 100.00%

1538 html3 4 0 100.00% 1547 html3 6890381 0 100.00%

1539 cpp1 46 0 100.00% 1548 cpp1 3119 1880 39.72%

1539 cpp2 46 0 100.00% 1548 cpp2 2490 1595 35.94%

1539 cpp3 46 0 100.00% 1548 cpp3 5781 3573 38.19%

1539 html1 24 0 100.00% 1548 html1 793 738 6.94%

1539 html2 24 0 100.00% 1548 html2 1029 979 4.86%

1539 html3 24 0 100.00% 1548 html3 1004 954 4.98%

1540 cpp1 41 0 100.00% 1549 cpp1 1164 0 100.00%

Continued on next page

APPENDIX D. ANTLR4 FULL RESULTS 268

Table 27 – continued from previous page

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

1549 cpp2 953 0 100.00% 1577 cpp1 6411091 0 100.00%

1549 cpp3 1968 0 100.00% 1577 cpp2 42544562 0 100.00%

1549 html1 798 0 100.00% 1577 cpp3 79362682 0 100.00%

1549 html2 1060 0 100.00% 1577 html1 2470218 0 100.00%

1549 html3 791 0 100.00% 1577 html2 8474368 0 100.00%

1550 cpp1 1164 0 100.00% 1577 html3 61567880 0 100.00%

1550 cpp2 953 0 100.00% 1579 cpp1 46 0 100.00%

1550 cpp3 1968 0 100.00% 1579 cpp2 46 0 100.00%

1550 html1 798 0 100.00% 1579 cpp3 46 0 100.00%

1550 html2 1060 0 100.00% 1579 html1 24 0 100.00%

1550 html3 791 0 100.00% 1579 html2 24 0 100.00%

1551 cpp1 338 0 100.00% 1579 html3 24 0 100.00%

1551 cpp2 393 0 100.00% 1587 cpp1 30613 30101 1.67%

1551 cpp3 724 0 100.00% 1587 cpp2 109718 107317 2.19%

1551 html1 193 0 100.00% 1587 cpp3 225845 221904 1.75%

1551 html2 247 0 100.00% 1587 html1 678 549 19.03%

1551 html3 224 0 100.00% 1587 html2 1299 1028 20.86%

1559 cpp1 385 0 100.00% 1587 html3 3900 2886 26.00%

1559 cpp2 12671 0 100.00% 1588 cpp1 35775 33198 7.20%

1559 cpp3 32711 0 100.00% 1588 cpp2 130715 118280 9.51%

1560 cpp1 12836 12829 0.05% 1588 cpp3 268878 245781 8.59%

1560 cpp2 168860 168772 0.05% 1588 html1 2263 1229 45.69%

1560 cpp3 211075 210981 0.04% 1588 html2 4444 2355 47.01%

1560 html1 3321 3321 0.00% 1588 html3 14108 7168 49.19%

1560 html2 3397 3397 0.00% 1589 cpp1 5161 0 100.00%

1560 html3 32011 32011 0.00% 1589 cpp2 20996 3 99.99%

1561 cpp1 12836 0 100.00% 1589 cpp3 43032 37 99.91%

1561 cpp2 168860 0 100.00% 1589 html1 1584 0 100.00%

1561 cpp3 211075 0 100.00% 1589 html2 3144 0 100.00%

1561 html1 3321 0 100.00% 1589 html3 10207 0 100.00%

1561 html2 3397 0 100.00% 1590 cpp1 30613 30101 1.67%

1561 html3 32011 0 100.00% 1590 cpp2 109718 107317 2.19%

1562 cpp2 12442 0 100.00% 1590 cpp3 225845 221904 1.75%

1562 cpp3 5016 0 100.00% 1590 html2 1299 1028 20.86%

1562 html1 8003 0 100.00% 1590 html3 3900 2886 26.00%

1562 html2 41307 0 100.00% 1591 cpp1 5161 0 100.00%

1562 html3 105141 0 100.00% 1591 cpp2 20994 0 100.00%

1563 cpp1 535882 0 100.00% 1591 cpp3 42976 0 100.00%

1563 cpp2 5304247 0 100.00% 1591 html2 3144 0 100.00%

1563 cpp3 8915228 0 100.00% 1591 html3 10207 0 100.00%

1563 html1 146206 0 100.00% 1592 cpp1 5161 0 100.00%

1563 html2 451764 0 100.00% 1592 cpp2 20994 0 100.00%

1563 html3 3535499 0 100.00% 1592 cpp3 42976 0 100.00%

1564 cpp1 2973 0 100.00% 1592 html2 3144 0 100.00%

1564 cpp2 17315 0 100.00% 1592 html3 10207 0 100.00%

1564 cpp3 36676 0 100.00% 1625 cpp1 93539 2 100.00%

1564 html1 2 0 100.00% 1625 cpp2 341759 2 100.00%

1564 html2 2 0 100.00% 1625 cpp3 728299 24 100.00%

1564 html3 2 0 100.00% 1625 html2 21339 2 99.99%

1574 cpp2 11 0 100.00% 1625 html3 72529 2 100.00%

1574 cpp3 11 0 100.00% 1628 cpp1 5181 0 100.00%

Continued on next page

APPENDIX D. ANTLR4 FULL RESULTS 269

Table 27 – continued from previous page

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

Cast

Num
Program

Total

Casts

Performed

-1 (P)

Total

Source

Type

Changes

(C)

Stability

(S)

1628 cpp2 21004 0 100.00% 1628 html2 3485 0 100.00%

1628 cpp3 43159 0 100.00% 1628 html3 12149 0 100.00%

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	I Behind Object Abstraction
	The Standards Behind the Language
	Introduction
	The C++ Language - A Brief History
	C++ Standard
	The C++ Standard Specification
	The Standard Library

	Compiler Interoperability
	Application Binary Interfaces
	The Generic ABI
	The Processor Specific ABI
	The C++-ABI

	Object Layouts in Other Compilers
	Concluding Discussion

	Binary Representation of Objects
	Introduction
	Representing Inheritance
	Primary Class
	Single Inheritance
	Multiple Inheritance
	Virtual Inheritance
	Other Class Keywords and Templates

	Polymorphism and the Type Systems
	Types
	Polymorphic Variables and Object Address-Points
	Type Checking
	Casting
	Member Functions

	Dynamic Objects and Supporting Data
	Object Layouts with Virtual Pointers
	Virtual Table Layout
	Virtual Member Functions
	Run-Time Type Information

	MSVC Object Comparison
	Concluding Discussion

	Assembly-Level Object Operations
	Introduction
	Member Functions
	Function Bodies
	Non-Virtual Member Functions Calls
	Virtual Member Function Calls

	Object Construction
	Primary Class Construction
	Derived Class Construction
	Virtual Inheritance Class Construction

	Cast Operations
	C-style Cast
	static_cast<target>(variable)
	reinterpret_cast<target>(variable)
	dynamic_cast<target>(variable)
	Compiler Casting Optimisations
	Custom RTTI Solutions

	Concluding Discussion

	II Object Vulnerability and Exploitation
	Type Confusion Vulnerabilities
	Introduction
	Type Confusion Defense Strategies
	Type Inclusion Testing
	What about Dynamic Casting?
	Concluding Discussion

	Memoised Casting
	Introduction
	Cast Stability and Deal.II Analysis
	Cast Stability
	Deal.II Experiments
	Deal.II Results

	Design and Implementation
	MemCache Objects
	Dynamic Cast Wrapper

	Experimental Results
	The True Cost of Casting
	Evaluation of MemCast's Capabilities
	Deal.II Revised
	OMNet++
	Antlr4

	Related Work
	Future Work
	Concluding Discussion

	Object-Oriented Code-Reuse
	Introduction
	Counterfeit Object-Orientated Programming
	The COOP Exploit
	COOP Defenses
	COOPLUS

	CFIXX Under the Microscope
	Object Type-Integrity
	CFIXX Implementation
	CFIXX Vulnerabilities

	Member Function Integrity
	Defence Policy
	Implementation Proposal
	Converting Bitype's Encoding Scheme
	Benefits of MFI
	Scalability

	MFI Proof of Concept
	Example Program Design and Vulnerability
	Exploit 1: COOPLUS vptr Overwrite
	Exploit 2: Adjacent Vtable Access
	Exploit 3: Unprotected Library
	MFI - Source-Base Implementation
	Defence Comparison

	Future Work
	Concluding Discussion

	III Reflection
	Concluding Discussion and Future Work
	Conclusion
	Low-level C++ Implementation
	MemCast
	MFI

	Future Work
	MemCast
	MFI

	Bibliography
	Behind Object Abstraction
	RTTI Hierarchy
	Full Virtual Inheritance Constructor Call

	Deall.II Full Results
	Dynamic Down-Cast Locations
	Stability of Each Dynamic Down-Cast Site

	OMNet++ Full Results
	Dynamic Down-Cast Locations
	Stability of Each Dynamic Down-Cast Site

	Antlr4 Full Results
	Dynamic Down-Cast Locations
	Stability of Each Dynamic Down-Cast Site

