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Abstract: Spam emails have become a pervasive issue in recent years, as internet users receive in- 12 

creasing amounts of unwanted or fake emails. To combat this issue, automatic spam detection meth- 13 

ods have been proposed, which aim to classify emails into spam and non-spam categories. Machine 14 

learning techniques have been utilized for this task with considerable success. In this paper, we 15 

introduce a novel approach to spam email detection by presenting significant advancements to the 16 

Dandelion Optimizer (DO) algorithm. DO is a relatively new nature-inspired optimization algo- 17 

rithm inspired by the flight of dandelion seeds. While DO shows promise, it faces challenges, espe- 18 

cially in high-dimensional problems such as feature selection for spam detection. Our primary con- 19 

tributions focus on enhancing the DO algorithm. Firstly, we introduce a new local search algorithm 20 

based on flipping (LSAF), designed to improve DO's ability to find the best solutions. Secondly, we 21 

propose a reduction equation that streamlines the population size during algorithm execution, re- 22 

ducing computational complexity. To showcase the effectiveness of our modified DO algorithm, 23 

which we refer to as Improved DO (IDO), we conduct a comprehensive evaluation using the Spam 24 

base dataset from the UCI repository. However, we emphasize that our primary objective is to ad- 25 

vance the DO algorithm, with spam email detection serving as a case study application. Compara- 26 

tive analysis against several popular algorithms, including Particle Swarm Optimization (PSO), Ge- 27 

netic Algorithm (GA), Generalized Normal Distribution Optimization (GNDO), Chimp Optimiza- 28 

tion Algorithm (ChOA), Grasshopper Optimization Algorithm (GOA), Ant Lion Optimizer (ALO), 29 

and Dragonfly Algorithm (DA), demonstrates the superior performance of our proposed IDO algo- 30 

rithm. It excels in accuracy, fitness, and the number of selected features, among other metrics. Our 31 

results clearly indicate that IDO overcomes the local optima problem commonly associated with the 32 

standard DO algorithm, owing to the incorporation of LSAF and the reduction equation methods. 33 

In summary, our paper underscores the significant advancement made in the form of the IDO algo- 34 

rithm, which represents a promising approach for solving high-dimensional optimization prob- 35 

lems, with a keen focus on practical applications in real-world systems. While we employ spam 36 

email detection as a case study, our primary contribution lies in the improved DO algorithm, which 37 

is efficient, accurate, and outperforms several state-of-the-art algorithms in various metrics. This 38 

work opens avenues for enhancing optimization techniques and their applications in machine learn- 39 

ing. 40 
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1. Introduction 46 

     With the increasing use of the internet and online social networks (OSNs) appli- 47 

cations, communication and exchange of information among users have similarly in- 48 

creased. Along with this increased communication comes the problem of spam, which is 49 

a frequent issue that users of these applications frequently face. One of the most common 50 

forms of spam is unsolicited emails or spam emails, which fill up email inboxes and take 51 

time for users to check and delete [1], [2]. The problem of spam is not limited to just email 52 

but also affects other network applications [3]. For instance, users of social networking 53 

sites often receive unwanted messages or comments from fake accounts or spammers. 54 

Such messages can be annoying, and harmful, and can lead to privacy breaches, identity 55 

theft, and financial losses [4]. 56 

To address this problem, spam filtering software is developed and employed to de- 57 

tect and remove spam emails [5]. However, these filtering systems may not be accurate all 58 

the time and may mistakenly classify legitimate emails as spam [6]. This can lead to users 59 

missing out on important information or communication, such as important emails for job 60 

offers, contracts to sign, important appointments, etc. Additionally, spammers can use 61 

various tactics to bypass these filters and send malicious emails that are designed to de- 62 

ceive users into disclosing their personal information, passwords, or financial details. 63 

Therefore, a robust and accurate spam detection method is necessary to detect and pre- 64 

vent these threats [7]. 65 

In this research paper, therefore, we propose an automatic spam email detection 66 

method based on improved Discrete Optimization (IDO) algorithm. Discrete Optimiza- 67 

tion (DO) is a well-known optimization algorithm that has been widely used in various 68 

fields, including computer science, engineering, and operations research. Besides, DO has 69 

a promising protentional use in classification-related problems, such as spam email detec- 70 

tion methods. However, DO has a problem of being stuck in local optima [8]–[10]. To 71 

overcome this problem, we propose several improvements to DO, including the develop- 72 

ment of a new local search algorithm that works based on the use of feature flipping, 73 

called the Local Search Algorithm with Flipping (LSAF). LSAF will update the best solu- 74 

tion, ensuring that the algorithm is not stuck in a local optimum. Also, this paper intro- 75 

duces the use of a mathematical formula in maintaining the population size, which will 76 

result in a maintained complexity and sustain the algorithm’s accuracy accordingly. 77 

On the other hand, the proposed algorithm employs a wrapper-based feature selec- 78 

tion method. This method is a supervised learning method that picks the most relevant 79 

features to be used for classification tasks. This method seeks to choose the features that 80 

are most dominant to the classification task while ignoring irrelevant or redundant fea- 81 

tures that may affect the classification accuracy. By introducing such a method, the com- 82 

putational time and complexity will be maintained at an acceptable level and will improve 83 

the accuracy of the spam detection system. 84 

Over the last few years, spam detection has been one of the active research areas, and 85 

diverse systems have been proposed and developed to address such a high-dimensional 86 

problem. Such approaches can be generally classified into three groups: rule-based ap- 87 

proaches, content-based approaches, and machine learning-based approaches. The rule- 88 

based approaches use a set of predefined rules to be used in the process of identifying 89 

spam emails. Though, these approaches have constrained accuracy, which might lead to 90 

not identifying new or foreign spam emails [11]. In contrast, content-based approaches 91 

use the content of the email as a way to flag spam emails. In other words, these approaches 92 

analyze the email's text, images, links, and other relevant features to verify whether it is a 93 

spam email or not. Yet, such approaches may be ineffective as opposed to advanced spam- 94 

ming methods that are mainly designed to bypass content-based filters [12]. While on the 95 

other side, machine learning-based approaches use statistical and machine learning meth- 96 

ods to learn from a data sample and learn to classify emails as spam or legitimate [13]. 97 
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Such approaches have demonstrated promising results and are broadly used in current 98 

spam detection systems [14]. 99 

Though, regardless of the developments in spam detection approaches, such a prob- 100 

lem stays a challenging issue forth. The reason is that spammers are always evolving their 101 

strategies as a way to skirt the detection systems. This scenario makes it essential to keep 102 

developing new and adaptive spam detection systems. Hence, over recent years, one of 103 

the research fields that has gained consideration was the use of optimization algorithms 104 

in developing spam email detection [15]. Optimization algorithms, such as the DO algo- 105 

rithm, have proven their efficacy in resolving several optimization problems [16], [17]. For 106 

instance, the use of such algorithms for spam detection implies the selection of relevant 107 

features and the optimization of the classifier's parameters to achieve high accuracy. Be- 108 

yond algorithmic advancements, our work is designed with practicality in mind, offering 109 

insights into the seamless integration of our method into operational email filtering sys- 110 

tems. 111 

In this paper, therefore, to solve such a crucial problem, we propose an improved DO 112 

algorithm to be used for automated spam email detection methods. Our proposed algo- 113 

rithm employs the LSAF technique and the mathematical question for population size 114 

reduction as a way to resolve the issue of local optima and cut down the algorithm's com- 115 

plexity. Moreover, in our proposed algorithm a wrapper-based feature selection tech- 116 

nique is used to select the most relevant features for spam classification. 117 

To summarize, the main contributions of this paper are: 118 

• Improved DO Algorithm: Introduction of the Improved Dandelion Opti- 119 

mizer (IDO) algorithm, addressing local optima issues and enhancing opti- 120 

mization. 121 

• Local Search Enhancement: Introduction of the Local Search Algorithm with 122 

Flipping (LSAF) to improve solution quality within the IDO algorithm. 123 

• Population Size Reduction: Proposal of a mathematical formula for popula- 124 

tion size reduction, reducing computational complexity in spam detection. 125 

• Efficient Feature Selection: Application of a wrapper-based feature selec- 126 

tion method to efficiently select relevant features in spam detection, enhanc- 127 

ing classification accuracy. 128 

• Effective Case Study Application: Demonstrated the practical application 129 

of the IDO algorithm through a case study on spam email detection, show- 130 

casing its efficiency and accuracy in a real-world scenario. 131 

The rest of the paper is structured as follows: section 2 presents and discusses some 132 

of the recent related works on spam email detection methods, and more specifically the 133 

use of optimization algorithms in this context. While section 3, we provide a detailed de- 134 

scription of the the native DO algorithm along with some extra visulizations of the algo- 135 

rithm’s nature behaviour. Also, in section 3, the algorithm's steps are explained, including 136 

the feature selection process, and the optimization of the classifier's parameters. In section 137 

4, the implementation details and the experimental setup of the case study applicatio for 138 

Spam Email Detection are also discussed. The results and performance evaluation of the 139 

proposed IDO algorithm in contrast with the other benchmarked methods are presented 140 

and discussed in section 5. Finally, section 6 concludes the paper and suggests future work 141 

and directions for improvement. 142 

 143 

2. Related Works 144 

Over the last few years, optimization algorithms have been used widely for feature 145 

selection in spam email detection methods. Numerous search studies have proposed sev- 146 

eral optimization-based spam detection approaches, and their efficiency and powers have 147 

been widely analyzed. For example, in Sokhangoee and [18], a spam detection method 148 

based on association-rule mining and a genetic algorithm is proposed. The method 149 
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achieved high accuracy in detecting spam emails, though it was suffering from high com- 150 

putational complexity. In contrast, [19] proposed a spam detection method based on the 151 

combination of the Harris Hawks Optimizer (HHO) and the KNN classifier. The method 152 

has demonstrated promising results in terms of accuracy and processing time. Though, 153 

the HHO algorithm by its nature is heavily dependent on the random initialization of its 154 

parameters, which may impact its stability and reproducibility. 155 

On the other hand [20] introduced a spam detection method based on the Horse Herd 156 

Optimization Algorithm (HOA) with a KNN classifier. Their method gained high accu- 157 

racy in detecting spam emails, nonetheless, its performance could be heavily impacted by 158 

the sensitivity of the HOA algorithm, which comes from the nature of its parameter set- 159 

tings. 160 

Another attempt [21] proposed the use of the Symbiotic Organisms Search (SOS) al- 161 

gorithm in the spam email detection mechanism. Their proposed approach has demon- 162 

strated high accuracy in detecting spam emails and performed well in contrast with other 163 

optimization-based approaches. Yet, the introduced computational cost could be rela- 164 

tively high, which bounds its feasibility with a large-scale spam detection problem. 165 

On the other hand, the authors in [22] suggested the use of the sine–cosine algorithm 166 

(SCA) in detecting spam emails. The proposed approach has performed well in terms of 167 

accuracy and processing time. Though the performance could be limited by the nature of 168 

the SCA algorithm's sensitivity, due to the way its parameter settings. Hence, such a 169 

method will not be a reliable option, especially when it comes to the highly sensitive na- 170 

ture of the detection process of spam email filtering mechanisms. 171 

The authors in [23] introduced the Water Cycle Optimization (WCO) algorithm in 172 

conjunction with Simulated Annealing (SA) to be used in detecting spam emails. Though 173 

their proposed method has demonstrated high accuracy in detecting spam emails, its com- 174 

putational complexity was relatively high. 175 

From the presented methods and approaches, we can find out the potential use of 176 

optimization algorithms in spam email detection. Though, their performance varies de- 177 

pending on specific algorithmic features, parameter settings, and computational complex- 178 

ity. Additional research is therefore needed as a way to develop more efficient and effec- 179 

tive optimization-based spam detection methods. 180 

Table 1. Comparison of the Nature-Inspired Metaheuristic Algorithms. 181 

Nature-Inspired Metaheuristics 

  

Evolutionary 

Algorithms 

Swarm-Based 

Algorithms 

Physical-Based 

Algorithms Other Metaheuristics 

Population 

Genetic Algo-

rithms 

Particle Swarm 

Algorithms 

Simulated An-

nealing 

Grey Wolf Optimiza-

tion 

Individual 

Differential 

Evaluation 

Strategies 

Firefly Algo-

rithms 

Harmony 

Search 

Artificial Bee Colony 

Algorithm 

Optimization 

Strategy 

Evolutionary 

Programming 

Ant Colony 

Optimization 

Algorithm 

Memetic Algo-

rithms 

Imperialist Competi-

tive Algorithm 

 182 

In Table 1 a comparison of some of the common nature-inspired metaheuristic algo- 183 

rithms based on their population, individual, and optimization strategies are listed. The 184 

evolutionary types of algorithms, such as genetic algorithms and differential evaluation 185 

strategies, generally depend on the concept of natural selection to optimize solutions over 186 

a population of individuals. While, swarm-based algorithms, such as particle swarm 187 
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optimization and firefly algorithms, mimic the collective behaviour of social swarms to 188 

optimize the given solutions. Physical-based algorithms, such as simulated annealing and 189 

harmony search, are inspired by physical phenomena like thermal energy and musical 190 

harmony to optimize solutions. Other metaheuristic algorithms, such as grey wolf opti- 191 

mization [24], artificial bee colony algorithm, and imperialist competitive algorithm, draw 192 

inspiration from various sources to optimize solutions. 193 

It's important to note that the choice of metaheuristic algorithm is heavily dependent 194 

on the specific optimization problem at hand. For instance, swarm-based algorithms are 195 

often used for optimization problems that require the exploration of a large search space, 196 

while physical-based algorithms are often used for optimization problems that require the 197 

optimization of a continuous function. In addition, hybrid metaheuristic algorithms that 198 

combine different techniques from different categories have been proposed to achieve bet- 199 

ter performance in optimization problems. 200 

In order to demonstrate some of the key analysis aspects that could be used in com- 201 

paring optimization techniques, below are some analysis points that could be used to 202 

highlight the competency of the related works: 203 

Performance comparison: In addition to listing the strengths and weaknesses of each 204 

algorithm. This comparison can be done based on various metrics such as accuracy, pre- 205 

cision, recall, F1 score, etc. The comparison can also be done on different datasets to eval- 206 

uate the generalizability of the algorithms. 207 

Impact of feature selection: Many of the algorithms mentioned in the related works 208 

section use feature selection techniques to improve the accuracy of spam detection. This 209 

analysis could demonstrate the impact of feature selection on the performance of the al- 210 

gorithms. This analysis could also include comparing the performance of algorithms with 211 

and without feature selection and also comparing different feature selection techniques. 212 

• Analysis of false positives and false negatives: False positives and false negatives 213 

are common errors in spam detection. An analysis of the false positives and false neg- 214 

atives generated by each algorithm could be used on each of these algorithms to com- 215 

pare and contrast them. This analysis could help identify the specific types of emails 216 

that are misclassified by each algorithm and suggest improvements to reduce these 217 

errors. 218 

• Robustness analysis: The robustness of the algorithms could be analyzed by testing 219 

their performance under different scenarios such as varying spam densities, different 220 

types of spam, and changes in the email dataset. This analysis could help evaluate the 221 

generalizability of the algorithms and identify scenarios where they may not perform 222 

well. 223 

• Comparison with traditional spam detection methods: Such comparison could com- 224 

pare the performance of the optimization algorithms with traditional rule-based and 225 

content-based spam detection methods. This comparison could help evaluate the ef- 226 

fectiveness of optimization algorithms in improving the accuracy of spam detection. 227 

• Analysis of computational efficiency: Optimization algorithms can be computation- 228 

ally expensive, especially when dealing with large datasets. The computational effi- 229 

ciency of each algorithm could be analyzed and compared with their run times on 230 

different datasets. This analysis could help identify the most efficient algorithms and 231 

suggest improvements to reduce their computational cost. 232 

• On the other hand, DO is a relatively new optimization algorithm that has been ap- 233 

plied to various optimization problems, including feature selection and classification 234 

tasks, which has the potential to be used for spam detection. As with any other opti- 235 

mization algorithm, DO has some limitations, which are listed as follows: 236 

• Premature Convergence: DO tends to converge prematurely to local optima, which can 237 

result in suboptimal solutions [8]. This is a common problem in many optimization algorithms 238 
and the DO algorithm is no exception. 239 
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• Sensitivity to Initialization: DO's performance can be sensitive to the initial population's 240 
quality and diversity [25]. Poor initialization can lead to premature convergence, while good 241 
initialization can improve the algorithm's performance. 242 

• Lack of Diversity: DO does not have mechanisms to maintain population diversity, which can 243 
cause premature convergence and limit the algorithm's exploration capabilities [26]. 244 

• Limited Search Space Exploration: DO's search capabilities are limited, as it only explores 245 
a small portion of the search space at each iteration. This can result in suboptimal solutions 246 

and can make it difficult to find the global optimum [27]. 247 
• Computational Complexity: DO's computational complexity can be high, particularly for 248 

large-scale problems. The algorithm involves evaluating fitness functions, which can be com- 249 
putationally expensive, and the algorithm's complexity can increase with the problem's dimen- 250 
sionality [28]. 251 

• Lack of Theoretical Analysis: DO's theoretical analysis is still limited, and there are few 252 
theoretical guarantees of its convergence and performance under different conditions. This 253 
makes it difficult to understand the algorithm's behaviour and to design effective parameter 254 
settings  [29]. 255 
In summarizing the performance evaluation of the DO algorithm, it has exhibited 256 

encouraging outcomes in certain applications; however, researchers need to acknowledge 257 

its limitations and drawbacks when considering its application to their specific optimiza- 258 

tion problems. To enhance the algorithm's effectiveness, researchers should investigate 259 

strategies to address and overcome these limitations. 260 

While many optimization techniques have been utilized in literature for feature se- 261 

lection in spam email detection, the No Free Lunch Theorem (NFL) [30] suggests that no 262 

single solution can be applied to all problems and outperform all other algorithms. Hence, 263 

researchers continue to investigate the use of the most recent optimization algorithms for 264 

spam email detection, including DO. 265 

However, as mentioned earlier, DO is susceptible to local optima, which limits its 266 

effectiveness. To address this, this paper proposes two main improvements to combine 267 

with the DO algorithm to enhance its performance and overcome its weaknesses. 268 

To conclude this section, Table 2 provides a summary of several optimization algo- 269 

rithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Col- 270 

ony Optimization (ACO), Artificial Bee Colony (ABC), Hill Climbing, Simulated Anneal- 271 

ing, and Tabu Search. The strengths and weaknesses of each algorithm are listed, as well 272 

as their effectiveness in email spam detection. The table suggests that PSO, GA, ACO, and 273 

ABC have shown promising results in email spam detection, particularly for feature se- 274 

lection and email classification. However, each algorithm has its limitations and requires 275 

careful parameter tuning for optimal performance. Hill Climbing, Simulated Annealing, 276 

and Tabu Search have been used successfully for email classification but may not be as 277 

effective as other optimization algorithms for feature selection. Overall, the table provides 278 

a useful reference for researchers to choose an appropriate optimization algorithm for 279 

their email spam detection problem based on their specific requirements and constraints. 280 

Table 2. Summary of Optimization Algorithms Application in Email Spam Detection. 281 

Optimization 

Algorithm Description Strengths Weaknesses 

Effectiveness in Email 

Spam Detection 

Particle 

Swarm Opti-

mization 

(PSO) 

A population-based opti-

mization algorithm that in-

volves particles moving 

around in the search space 

to find the best solution. 

Good for feature 

selection, can 

handle high-di-

mensional data, 

easy to imple-

ment. 

Can get stuck in 

local optima, 

sensitive to pa-

rameter settings. 

Has shown promising 

results in email spam de-

tection, particularly for 

feature selection and 

email classification. 
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Optimization 

Algorithm Description Strengths Weaknesses 

Effectiveness in Email 

Spam Detection 

Genetic Algo-

rithm (GA) 

A population-based opti-

mization algorithm that in-

volves creating a popula-

tion of potential solutions 

and then applying selec-

tion, crossover, and muta-

tion operations to evolve 

the population over gener-

ations. 

Can handle non-

linear and non-

convex problems 

and can find 

multiple optimal 

solutions. 

Can be slow, re-

quires careful pa-

rameter tuning, 

and may suffer 

from premature 

convergence. 

Has been used success-

fully for email spam de-

tection, particularly for 

email classification. 

Ant Colony 

Optimization 

(ACO) 

An optimization algorithm 

that uses pheromone trails 

to guide the search process. 

Good for feature 

selection, can 

handle high-di-

mensional data, 

and can find 

global optima. 

Can be slow, sen-

sitive to parame-

ter settings, and 

may suffer from 

premature con-

vergence. 

Has shown promising 

results in email spam de-

tection, particularly for 

feature selection and 

email classification. 

Artificial Bee 

Colony (ABC) 

An optimization algorithm 

that involves employed 

bees, onlooker bees, and 

scout bees to explore the 

search space. 

Good for finding 

global optima, 

easy to imple-

ment. 

Can be slow, sen-

sitive to parame-

ter settings, and 

could suffer from 

premature con-

vergence. 

Has been used success-

fully for email spam de-

tection, particularly for 

email classification. 

Hill Climbing 

A local search algorithm 

that iteratively improves 

the current solution by 

making small changes to it. 

Simple and fast, 

can handle large 

datasets. 

Can get stuck in 

local optima and 

could not find 

global optima. 

Has been used success-

fully for email classifica-

tion but may not be as ef-

fective as other optimiza-

tion algorithms for fea-

ture selection. 

Simulated An-

nealing 

An optimization algorithm 

that starts with a high "tem-

perature" and then gradu-

ally decreases it to find the 

best solution. 

Able to find 

global optima, 

and manage 

noisy data. 

Can be slow, and 

sensitive to pa-

rameter settings. 

Has been used success-

fully for email classifica-

tion but may not be as ef-

fective as other optimiza-

tion algorithms for fea-

ture selection. 

Tabu Search 

A metaheuristic algorithm 

that is based on the concept 

of intensification and diver-

sification. 

Able to solve 

non-linear and 

non-convex 

problems, also 

finding global 

optima. 

Can be slow and 

requires careful 

parameter tun-

ing. 

Has been used success-

fully for email classifica-

tion but may not be as ef-

fective as other optimiza-

tion algorithms for fea-

ture selection. 
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 282 

3. Dandelion Optimizer 283 

The DO algorithm is inspired by the flight of dandelion seeds, as they grow and 284 

travel through the air [31]. This optimization algorithm utilizes mathematical models of 285 

the three stages of dandelion seed flight: rising, descending, and landing. 286 

• The rising phase: During the rising phase, dandelion seeds are influenced by a pulling force 287 
in the weather that is both sunny and windy. A vortex forms above the seed, causing it to 288 
ascend into the air. 289 

• The descending phase: Once the seed reaches a certain height, it enters the descending 290 
phase, where it falls steadily towards the ground. 291 

• The landing phase: During the landing phase, dandelion seeds fall randomly due to the in- 292 
fluence of wind and weather, ultimately landing in one location to sprout new dandelions. 293 

By modelling these stages, the DO algorithm attempts to replicate the behaviour of 294 

dandelion seeds in order to optimize various functions. Nevertheless, it is noteworthy to 295 

highlight that the DO algorithm holds some limitations, such as its likelihood to be 296 

trapped in the local optima solutions. Therefore, it is important to explore some of the 297 

potential ways for boosting the algorithm's performance when applying such an algo- 298 

rithm in solving some of the complex optimization problems. 299 

As a way to demonstrate the movement patterns of dandelion seeds, a simulated 300 

movement trajectory is presented in Figure 1. We have implemented a flight path simula- 301 

tion for a dandelion seed, considering the prevailing wind speed and direction. We started 302 

by identifying the seed’s initial position, the wind speed and direction. Besides, in the 303 

developed simulation, we specified the number of iterations to 50 and the step size as 0.1, 304 

which can be adjusted according to the simulated scenario. The visualized seed’s flight 305 

trajectory is generated with a little circle marker that indicates the starting position of the 306 

dandelion seed as the x and y-axis equal zero. 307 

Subsequently, the simulation iterates over the specified number of 50 iterations. At 308 

each iteration, the new position of the seed is calculated based on factors such as wind 309 

speed, direction, and step size. A line is then plotted to depict the trajectory of the dande- 310 

lion seed from its previous position to its current location. The simulation continues until 311 

the predetermined number of iterations is reached. 312 

This example effectively demonstrates how mathematical models can be utilized to 313 

simulate the flight path of dandelion seeds under varying wind conditions. It provides a 314 

tangible illustration of the application of mathematical simulations in understanding and 315 

analyzing the behaviour of dandelion seeds in response to different wind parameters. 316 
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Figure 1. Simulated Trajectory of Flight Path of a Dandelion Seed out of 50 iterations. 318 

The DO algorithm comprises three primary stages, each accompanied by its respec- 319 

tive mathematical models, which are described as follows. 320 

Rising stage 321 

The initiation of the rising phase and the departure of dandelion seeds from the par- 322 

ent plant is contingent upon achieving a minimum height. Nevertheless, the specific alti- 323 

tude at which the ascent commences is subject to multiple environmental variables, in- 324 

cluding wind speed and humidity. To better understand these factors, the weather can be 325 

categorized into two main categories: sunny and windy weather or cloudy and calm 326 

weather. In sunny and windy weather, dandelion seeds are subjected to a pulling force 327 

that creates a vortex above them, lifting them into the air. On the other hand, in cloudy 328 

and calm weather, the seeds may require additional height to overcome the resistance of 329 

the air and initiate the rising phase. Understanding the environmental factors that impact 330 

the flight of dandelion seeds can inform the design of airborne systems, such as drones 331 

and micro air vehicles.  332 

The weather categories are detailed below in two cases: 333 

Case 1: Dandelion seeds have a unique ability to travel long distances by taking ad- 334 

vantage of the wind currents. Wind speeds on clear days follow a lognormal distribution, 335 

with random numbers more evenly distributed along the Y-axis, providing a higher prob- 336 

ability of dandelion seeds travelling far. Hence, the DO algorithm follows an exploration 337 

strategy in this case, where the wind plays a significant role in scattering dandelion seeds 338 

to random locations in the search space. The speed of the wind influences the height to 339 

which the dandelion seeds rise, with stronger winds causing them to soar higher and dis- 340 

perse farther. The vortexes above the dandelion seeds are adjusted by the wind speed in 341 

a spiral form, represented by the equation (1): 342 

 343 

𝑥𝑡+1 = 𝑥𝑡 + 𝑎 ∗  𝜐𝑥 ∗  𝜐𝑦 ∗𝑙𝑛 𝑙𝑛 𝑌 ∗ (𝑋𝑠 −  𝑋𝑡)            (1) 344 

where the terms in the equation are as follows: 𝑋𝑡 is the dandelion seed position at 345 

iteration t.  𝑋𝑠 is the position in the search space that was selected randomly during iter- 346 

ation t. Eq. (2) gives the formula for the randomly selected position. 347 

𝑥𝑠 = 𝑟𝑎𝑛𝑑(1, 𝐷𝑖𝑚) ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵          (2) 348 
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𝑙𝑛 𝑙𝑛 𝑌  represents a lognormal distribution with 𝜇 = 0 and 𝜎2 = 1, and the formula 349 

for it is Eq. (3) 350 

 351 

𝑙𝑛 𝑙𝑛 𝑌 = {
1

𝑦√2𝜋
𝑒𝑥𝑝 𝑒𝑥𝑝  [ − 

1

2𝜎2  (𝑙𝑛 𝑙𝑛 𝑦 )2]   𝑦 ≥ 0 0         𝑦 < 0              (3)  352 

The normal distribution is represented by the variable 𝑦 in Eq. (3). 𝛼 is an adjusting 353 

parameter for the length of the search steps, and the mathematical equation to find  𝛼 is 354 

Eq. (4) 355 

 356 

𝛼 = 𝑟𝑎𝑛𝑑() ∗   (
1

𝑇2 𝑡2 −  
2

𝑇
𝑡 + 1)                      (4) 357 

 358 

𝛼 is a random value over the interval [0, 1]. Such oscillations cause the algorithm to 359 

prioritize the global search in the early stages and switch to a local search in the latter 360 

stages, which is advantageous for ensuring correct convergence after a full global search. 361 

The coefficients 𝜐𝑥 and 𝜐𝑦 denote the lift components of a dandelion caused by the sep- 362 

arated eddy action. Eq. (6) and Eq. (7) are used to find these coefficient values. 363 

𝑟 =  
1

𝑒𝜃        (5) 364 

 365 

𝜐𝑥 = 𝑟 ∗𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃      (6) 366 

 367 

𝜐𝑦 = 𝑟 ∗𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃        (7) 368 

 369 

Where the value of 𝜃 represents a randomly generated number over the interval 370 
[𝜋, −𝜋]. 371 

Figure 2 simulates the flight of a dandelion seed in a search space with two dimen- 372 

sions over a total of 50 iterations. We have simulated four generated random flight paths, 373 

each run generates 50 interactions of the dandelion’s positions from the starting point till 374 

it converged to its final position. The wind speed is represented by a lognormal distribu- 375 

tion with a mean of 0 and variance of 1, and the wind direction is determined by a random 376 

vector drawn from a standard normal distribution. The position of the dandelion seed is 377 

updated using the formula given in Eq. (1), where the adaptive parameter alpha is com- 378 

puted using the formula given in Eq. (4). The position of the dandelion seed is also clipped 379 

to the search space defined by the lower and upper bounds of the searching space, (LB=- 380 

10 and UB=10). The Figure also generates a plot of the flight path of the dandelion seed 381 

over the 50 iterations. 382 

The behaviour of the flight of the dandelion seed shows a distinct pattern: a long and 383 

quick movement in the beginning followed by a slow and saturating behaviour towards 384 

the end. The initial movement represents the exploration phase, while the latter phase 385 

signifies the exploitation phase, where the seed starts to approach the landed area. This 386 

pattern highlights a limitation in the search process, where there is a higher probability of 387 

exploring more promising solutions in different regions of the problem space. Therefore, 388 

finding a balance between exploration and exploitation is crucial, and proper tuning is 389 

necessary to achieve this balance. 390 

   391 



Computers 2023, 23, x FOR PEER REVIEW 11 of 28 
 

 

  392 

Figure 2. Four Random Generated Flight Paths of a Dandelion Seed, considering Case 1 with 50 Interactions.  393 

Case 2: Various environmental factors such as air resistance and humidity hinder the 394 

dandelion seeds from rising with the wind, particularly on rainy days. Therefore, to over- 395 

come this limitation, Eq. (8) is utilized to perform local exploitation in the dandelion seed's 396 

immediate vicinity or neighbourhoods. 397 

𝑥𝑡+1 = 𝑥𝑡 ∗ 𝑘     (8) 398 

Where 𝑘 controls the domain of the dandelion's local search, and Eq. (10) is used to 399 

find 𝑘 value. 400 

𝑞 =
1

𝑇2 − 2𝑇 + 1
 𝑡2 − 

2

𝑇2 − 2𝑇 + 1
𝑡 + 1 +  

1

𝑇2 − 2𝑇 + 1
  401 

𝑘 = 1 − 𝑟𝑎𝑛𝑑() ∗ 𝑞        (10) 402 

 403 

Finally, the rising stage mathematical equation for a dandelion seed is Eq. (11) 404 

 405 

𝑥𝑡+1 = {𝑥𝑡 + 𝑎 ∗ 𝜐𝑥 ∗  𝜐𝑦 ∗𝑙𝑛 𝑙𝑛 𝑌 ∗ (𝑋𝑠 −  𝑋𝑡)   𝑟𝑎𝑛𝑑𝑛 < 1.5 𝑥𝑡 ∗ 𝑘         𝑒𝑙𝑠𝑒        (11) 406 

where randn() generates a random number with a normal distribution. 407 

 408 

Figure 3. Simulated Flight Path with the displacement impact and the controlling factor represented by Eq. 11. 409 

In this study, we investigated the flight path of a dandelion seed on a rainy day, 410 

where air resistance, humidity, and other factors affect the seed's ability to rise with the 411 

wind. We conducted a simulation (shown in Figure 3) with 50 iterations, using a scaling 412 

factor 𝑎 of 0.01 and x-y velocity of 1, starting from a random initial position of (0.1, 0.1) 413 

and targeting a fixed point of (0.5, 0.5). At each iteration, we updated k using Eq. (10) and 414 

calculated the seed's displacement using Eq. (11), based on a logarithmic function and a 415 

random factor. 416 

We plotted the seed's position at each iteration and checked if the target was reached. 417 

When the seed reached the target point, the simulation ended, and the final position was 418 
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plotted in green. It's worth noting that we did not consider the effect of wind speed on the 419 

seed's flight path in this simulation, but it can be included by modifying the equations. 420 

Our simulation results demonstrate the importance of controlling factors like k, in 421 

finding the right targeted position of the dandelion seed at the end of the simulation time, 422 

as it successfully landed on the point (0.5, 0.5) in our study. 423 

Descending stage 424 

The DO algorithm performs exploration at this level as well. After climbing a given 425 

distance, dandelion seeds descend gradually. In the native DO algorithm, the movement 426 

of dandelions is modelled by Brownian motion [32]. Since Brownian motion is normally 427 

distributed at each update, it makes it easy for the solutions to explore new search com- 428 

munities while the iterative updating process continues. The mathematical equation for 429 

the Descending stage is represented by Eq. (12) 430 

 431 

𝑥𝑡+1 = 𝑥𝑡 − 𝑎 ∗  𝛽𝑡 ∗  (𝑋𝑚𝑒𝑎𝑛_𝑡 − 𝑎 ∗ 𝛽𝑡 ∗  𝑋𝑡)    (12) 432 

where 𝛽𝑡  is a random value that follows the normal distribution and represents 433 

Brownian motion. The average position of the population in the ith iteration is denoted 434 

by the variable 𝑋𝑚𝑒𝑎𝑛_𝑡, and Eq. (13) is used to find its value 435 

 436 

𝑋𝑚𝑒𝑎𝑛_𝑡 =  
1

𝑝𝑜𝑝
∑ 𝑥𝑖

𝑝𝑜𝑝
𝑖=1     (13) 437 

Landing stage 438 

The DO algorithm emphasises the exvalue.action process throughout this stage. The 439 

dandelion seed chooses its landing spot at random based on the first two stages. As the 440 

iterations go, the DO will likely converge on the global best solution. As a result, the best 441 

solution is the general area where dandelion seeds have the best chance of survival. Search 442 

agents use the elite's remarkable knowledge in their areas to converge to the global opti- 443 

mum. The optimal solution will emerge as the population evolves. Eq. (14) demonstrates 444 

this behaviour. 445 

𝑥𝑡+1 = 𝑥𝑒𝑙𝑖𝑡𝑒 + 𝑙𝑒𝑣𝑦(𝜆) ∗  𝑎 ∗  (𝑥𝑒𝑙𝑖𝑡𝑒 −  𝑋𝑡 ∗  𝛿)      (14)        446 

 447 

Where  𝑥𝑒𝑙𝑖𝑡𝑒  represents the best position in the 𝑖th iteration, and the levy can be 448 

determined using Eq. (15). 449 

 450 

𝑙𝑒𝑣𝑦(𝜆) = 𝑠 ×  
𝜔 × 𝜎

|𝑡|
1
𝛽

    (15) 451 

Where 𝛽 is a random value over [0, 2], and in DO the used value is 𝛽 = 1.5. 𝑠 is a 452 

constant value of 0.01. 𝑡 and 𝑤 are random values over [0, 1]. Eq. (16) is used in DO to find 453 

𝜎 value. Also, 𝛿 is a variable with a value over [0, 2] and it can be determined using Eq. 454 

(17) 455 

𝜎 = (
𝑟 (1+ 𝛽) × 𝑠𝑖𝑛𝑠𝑖𝑛 (

𝜋𝛽

2
) 

𝑟  (
1+𝛽

2
) × 𝛽 × 2

(
𝛽−1

2 )
)        (16) 456 

 457 

 458 

𝛿 =  
2𝑡

𝑇
      (17) 459 

The pseudocode of the DO algorithm is presented in Figure 4. As we have stated 460 

previously, the DO algorithm is a population-based optimization algorithm that aims to 461 

find the best solution for a given problem. It utilizes a set of dandelion seeds, each repre- 462 

senting a potential solution, and iteratively updates their positions to search for the opti- 463 

mal solution. 464 

 465 

As listed by the pseudocode, the algorithm takes three input parameters: the popu- 466 

lation size (pop), the maximum number of iterations (T), and the variable dimension 467 
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(Dim). The output of the algorithm is set to be returning the best solution position (Xbest) 468 

and its corresponding fitness value (fbest). Initially, the dandelion seeds are randomly 469 

initialized. The fitness value of each seed is calculated based on the problem-specific fit- 470 

ness function. The optimum dandelion seed (Xelite) is selected based on its fitness value, 471 

representing the current best solution found. The algorithm subsequently enters a loop 472 

that lasts until the maximum number of iterations is reached. Within each iteration, the 473 

algorithm goes through three stages: rise, decline, and land. 474 

In the rise stage, a random number is generated from a normal distribution. If the 475 

generated number is less than 1.5, adaptive parameters are generated using Eq. (8), and 476 

the dandelion seeds are updated using Eq. (5). This stage aims to explore the search space 477 

by allowing the seeds to move in a more exploratory manner. While in the decline stage, 478 

the dandelion seeds are updated using Eq. (13). This stage models the declining move- 479 

ment of the seeds and helps to refine the solutions by exploiting the search space. In con- 480 

trast, within the land stage, the dandelion seeds are updated using Eq. (15). This stage 481 

represents the final convergence towards the best solution by incorporating the infor- 482 

mation from the elite seed. 483 

It's noteworthy to mention that, after each stage, the dandelion seeds are arranged in 484 

order of their fitness values, from good to bad. The elite seed (Xelite) is updated based on 485 

its fitness value, ensuring it represents the current best solution found. Throughout the 486 

iterations, if the fitness value of Xelite is better than the fitness value of Xbest, Xbest and 487 

fbest are updated accordingly. The loop continues until the maximum number of itera- 488 

tions is reached. Ultimately, the algorithm returns the best solution position (Xbest) and 489 

its corresponding fitness value (fbest). 490 

By combining the rise, decline, and land stages, the DO algorithm balances explora- 491 

tion and exploitation to efficiently search for the optimal solution. The algorithm's effec- 492 

tiveness depends on the appropriate selection of parameters, such as the population size, 493 

the maximum number of iterations, and the formulation of adaptive parameters in Eqs. 494 

(8), (11), (13), and (15). 495 

Algorithm 1: Pseudo-code of DO algorithm 

Input: The population size pop, the maximum number of iterations T, and var-

iable dimension Dim 

Output: Xbest: is the Best solution position 

fbest : is the fitness of the Best solution 

Initialize dandelion seeds X of DO 

Calculate the fitness value f of each dandelion seeds. 

Select the optimum dandelion seed Xelite according to fitness value. 

while (t < T) do 

       /* Rise stage */ 

      if randn() < 1.5 do 

        Generate adaptive parameters using Eq. (8) 

        Update dandelion seeds using Eq. (5) 

       else if do 

         Generate adaptive parameters using Eq. (11) 

        Update dandelion seeds using Eq. (10) 

       endif 

     /* Decline stage */ 

        Update dandelion seeds using Eq. (13) 
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    /*Land stage */ 

       Update dandelion seeds using Eq. (15) 

       Arrange dandelion seeds from good to bad according to fitness values. 

       Update Xelite 

       if  f(Xelite) < f(Xbest) 

          Xbest = Xelite ,  fbest = f(Xelite) 

       end if 

    t = t +1. 

  end while 

Return Xbest and fbest 

 

Figure 4. Pseudocode of the Native DO Algorithm. 496 

4. Case Study: Applying the Proposed IDO Algorithm for Spam Email Detection 497 

In this section, the proposed IDO algorithm will be explained in detail and highlight- 498 

ing the key improvement to the native DO algorithm that has helped in advancing the 499 

performance of the new version of the proposed IDO algorithm. Afterwards, as a way to 500 

prove the robustness of the algorithm, an application for spam email detection is used in 501 

testing the performance.  502 

In order to improve the performance of the DO algorithm, the LSAF algorithm is 503 

used in optimizing the process of finding the best solution. The LSAF algorithm is a local 504 

search algorithm that aims to improve the quality of the best solution found by iteratively 505 

exploring the search space through the adaptive flipping of selected features. As pre- 506 

sented in Figure 5, the algorithm starts with an initial best solution position (Xbest) and 507 

its corresponding fitness value (fbest). 508 

The algorithm utilizes two variables: Lt, which stores the current iteration of the 509 

LSAF algorithm, and LSAMaxItr, which represents the maximum number of iterations for 510 

the LSAF algorithm. Initially, a temporary solution (Temp) is set to the current best solu- 511 

tion (Xbest). The algorithm enters a loop that continues until Lt reaches the LSAMaxItr. 512 

Within each iteration, a variable SWOneZero is calculated as Lt divided by LSAMaxItr. If 513 

SWOneZero is greater than 0.7, it indicates that the algorithm is in a stage where unse- 514 

lected features need to be flipped to 0. In this case, three random features from Temp are 515 

selected, and all of them are flipped to 0 (unselected). 516 

While on the other hand, If SWOneZero is less than or equal to 0.7, it indicates that 517 

the algorithm is in a stage where selected features need to be flipped to 1. Again, three 518 

random features from Temp are selected, and all of them are flipped to 1 (selected). After 519 

the feature flipping, the fitness of the updated Temp solution is calculated as newfitness. 520 

If the newfitness is better than the current fbest, Xbest and fbest are updated to the values 521 

of Temp and newfitness, respectively. 522 

Additionally, if the newfitness is equal to fbest and the number of selected features 523 

in Temp (NUMF(Temp)) is less than the number of selected features in Xbest 524 

(NUMF(Xbest)), Xbest and fbest are updated to the values of Temp and newfitness, re- 525 

spectively. This step ensures that the algorithm selects solutions with a lower number of 526 

selected features if their fitness values are the same. It is noteworthy to mention that after 527 

each iteration, Lt is incremented by 1, and when the maximum number of iterations is 528 

reached, the algorithm returns the final best solution (Best). 529 

The LSAF algorithm combines local search and adaptive feature flipping to enhance 530 

the quality of the best solution. By iteratively exploring the search space and adjusting the 531 

selected features, the algorithm aims to converge towards an improved solution. The 532 
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effectiveness of the algorithm depends on the appropriate set of parameters such as LSA- 533 

MaxItr and the selection of features for flipping. Overall, the LSAF algorithm provides a 534 

practical approach to improve the performance of optimization algorithms by focusing on 535 

local search and adaptive feature selection. It has been used successfully in various opti- 536 

mization problems and can be customized based on specific requirements and problem 537 

characteristics, which will be one of the key features of our proposed IOD algorithm. 538 

Algorithm 2: Pseudo-code of LSAF algorithm 

Xbest: is the Best solution position 

fbest : is the fitness of Best solution 

Lt = 1 (Lt is variable to store the current iteration of the LSAF algorithm)  

LSAMaxItr= 10 (LSAMaxItr is the maximum number of iteration of LSAF algo-

rithm) 

   Temp = Xbest 

  while Lt <= LSAMaxItr 

        SWOneZero=t/T; 

       if SWOneZero > 0.7 

             select 3 random features from temp and flip all to 0 (unselected fea-

tures) 

      else 

            select 3 random features from temp and flip all to 1 (selected features) 

     endif 

           newfitness= fit(temp) 

           if newfitness < fbest 

                Xbest = temp. 

               fbest = newfitness; 

          endif 

          if  newfitness = fbest  AND NUMF(temp) < NUMF(Xbest) 

                Xbest = temp. 

               fbest = newfitness; 

 

         endif 

    Lt = Lt +1. 

   Endwhile 

return Best 

Figure 5. Pseudocode of LSAF algorithm 539 

Figure 6 demonstrates the improvement that is proposed in the IDO algorithm. The 540 

highlighted part of the presented pseudocode, where the LSAF algorithm begins after 5 541 

iterations. We have designed the algorithm with such an indicator to notify that the algo- 542 

rithm has reached a milestone or checkpoint after every five iterations to apply the LSAF 543 

algorithm in optimizing the best solution. This suggests that the LSAF algorithm is incor- 544 

porated into the larger algorithm as a means of enhancing the solution quality. Algorithm 545 

2 is executed specifically at these milestone points to provide an opportunity for local 546 
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search and adaptive feature flipping, which can potentially refine the current best solu- 547 

tion. 548 

Afterwards, the algorithm will execute another condition that checks if the popula- 549 

tion size (pop) is greater than a minimum value (popmin). This condition ensures that the 550 

population size is above a certain threshold to proceed with updating the population val- 551 

ues using Equation (18). The specific details of Equation (18) are not provided here, but it 552 

represents a mathematical formula or calculation used to determine the new population 553 

size based on the set criteria demonstrated in Equation (18). 554 

𝑝𝑜𝑝 = ⌊𝑝𝑜𝑝𝑚𝑎𝑥 − (((𝑝𝑜𝑝𝑚𝑎𝑥 −  𝑝𝑜𝑝𝑚𝑖𝑛) ∗
𝑡

𝑇
))⌋         (18) 555 

where                            𝑝𝑜𝑝𝑚𝑎𝑥 = 𝑝𝑜𝑝         556 

                                      𝑝𝑜𝑝𝑚𝑖𝑛 = ⌊
𝑝𝑜𝑝

2
⌋     557 

 558 

After updating the population size, the fittest solutions are selected according to the 559 

new population value. This implies that only the most promising individuals or solutions 560 

are retained, while others may be discarded or replaced. The specific method for selecting 561 

the fittest solutions is not specified in the given pseudocode snippet. Ultimately, the iter- 562 

ation counter (t) is incremented by 1, indicating the completion of one iteration of the 563 

larger algorithm. This ensures the progression of the algorithm towards its termination 564 

condition or the maximum number of iterations. 565 

In summary, the IDO algorithm has been hybridized with the LSAF algorithm as a 566 

way to enhance the current best solution at specific milestone points, update the popula- 567 

tion size based on the mathematical equation 18, and select the fittest solutions. These 568 

steps contribute to the overall optimization process and improvement of the algorithm's 569 

performance. 570 

5. Experimental Results and Discussions 571 

The experimental results were obtained using the spam base dataset [33], which con- 572 

sists of 4,601 instances with 57 features, as listed in Table 3. The dataset was used to eval- 573 

uate the performance of the proposed IOD algorithm along with the other state of arts as 574 

well as the native DO algorithm. 575 

The parameters used for all experiments were as follows: a population size of 10, 100 576 

iterations, and 30 runs refer to the details listed in Table 4. The K-Fold cross-validation 577 

technique with 10 folds was employed to ensure a robust evaluation of the algorithm's 578 

performance. Table 3 lists the main statistics of the dataset. 579 

These parameter settings were chosen to discover a balance between computational 580 

efficiency and obtaining reliable results. A population size of 10 was selected to maintain 581 

diversity within the population while keeping the computational overhead manageable. 582 

The number of iterations was set to 100 as a way to allow sufficient time for the algorithm 583 

to converge and explore the search space effectively. By conducting 30 runs, the study 584 

aimed to account for the inherent randomness of the algorithm and obtain statistically 585 

significant results. Table 4 lists the main parameter settings of the experimental setup that 586 

was used in testing our proposed IDO algorithm along with the benchmarked methods. 587 

Also, it is important to highlight that, in our experimental setup, we have taken spe- 588 

cific measures to address potential overfitting concerns and promote the generalization 589 

performance of the proposed IDO algorithm. One crucial aspect was the utilization of K- 590 

Fold cross-validation with 10 folds. This technique plays a pivotal role in mitigating over- 591 

fitting by systematically dividing the dataset into 10 subsets. During each iteration, nine 592 

of these subsets are utilized for training, while the remaining one serves as the test set. 593 

This process is iterated 10 times, ensuring that each subset functions as the test set once. 594 

By doing so, we obtain a more realistic estimation of the algorithm's ability to generalize 595 

beyond the training data, reducing the risk of overfitting. 596 
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Furthermore, our choice of parameter settings, such as a population size of 10, 100 597 

iterations, and 30 runs, was made with a keen focus on striking a balance between com- 598 

putational efficiency and obtaining reliable results. A population size of 10 was deliber- 599 

ately chosen to maintain diversity within the population while keeping computational 600 

overhead manageable. The 100 iterations allowed ample time for the algorithm to con- 601 

verge and explore the search space effectively, while conducting 30 runs accounted for 602 

the inherent randomness of the algorithm, leading to statistically significant results. These 603 

parameter settings and evaluation techniques were meticulously selected to ensure a com- 604 

prehensive and robust analysis of the proposed IDO algorithm's performance on the spam 605 

base dataset, all while addressing potential overfitting concerns. 606 

Overall, these parameter settings and evaluation techniques were carefully chosen to 607 

ensure a comprehensive and robust analysis of the proposed approach's performance on 608 

the spam base dataset. 609 

Table 3. Details of the used spam base dataset [33] 610 

Number of fea-

tures  

Number of in-

stances 

57 4601 

 611 

Table 4. Parameters setting of all experiments 612 

Parameter  Value 

Population size 10 

Number of itera-

tions 

100 

Number of runs  30 

KFOLD 10 

 613 

 614 

Algorithm 2: Pseudo-code of IDO algorithm 

Input: The population size pop, the maximum number of iterations T, and 

variable dimension Dim 

Output: Xbest: is the Best solution position 

fbest : is the fitness of the Best solution 

Initialize dandelion seeds X of DO 

Calculate the fitness value f of each dandelion seeds 

Select the optimum dandelion seed Xelite according to fitness value 

while (t < T) do 

       /* Rise stage */ 

      if randn() < 1.5 do 

        Generate adaptive parameters using Eq. (8) 

        Update dandelion seeds using Eq. (5) 

       else if do 

         Generate adaptive parameters using Eq. (11) 

        Update dandelion seeds using Eq. (10) 
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       endif 

     /* Decline stage */ 

        Update dandelion seeds using Eq. (13) 

    /*Land stage */ 

       Update dandelion seeds using Eq. (15) 

       Arrange dandelion seeds from good to bad according to fitness val-

ues 

       Update Xelite 

       if  f(Xelite) < f(Xbest) 

          Xbest = Xelite ,  fbest = f(Xelite) 

       end if 

         

        if mod(t,5)==0  

          Apply Algorithm 2 (LSAF) to improve Xbest solution. 

        end if    

                 

         If pop > popmin    

           Update pop value using Eq. (18) 

           Take the fittest solutions according to the new pop value. 

          end if 

    t = t +1. 

  end while 

Return Xbest and fbest 

 

Figure 6. Pseudocode of the Proposed IDO algorithm. 615 

 616 

Optimization algorithms in general rely on various parameters that control their be- 617 

havior and guide the search for optimal solutions. Table 5 outlines the parameter settings 618 

for each optimization algorithm considered in our study and to benchmark our proposed 619 

IDO algorithm. These parameters play a crucial role in determining the algorithm's con- 620 

vergence, exploration-exploitation balance, and overall performance. 621 

 622 

 623 

 624 

Table 5. Parameter Settings for Optimization Algorithms 625 

Algo-

rithm 

Parameter 

IDO K  [0, 1]   

𝛼  [0, 1]   

LSAMaxItr= 10 

DO K  [0, 1]   

𝛼  [0, 1]  As in [31] 
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GNDO 𝝱 random number over [0,1 [31] 

ChOA As [34] 

PSO Inertia Weights (W1 = 0.9, 

W2 = 0.4) 

Acceleration constants (C1 = 

2, C2 = 2) [35]–[37] 

GA Crossover_ratio = 0.9 

Mutation_ratio = 0.1 [36], 

[38], [39] 

GOA c_Max = 1 

c_Min = 0.00004  [40] 

ALO I = 1  [41] 

DA As in [42] 

 626 

As the main use case that has been adopted in this paper to demonstrate a real-world 627 

application for measuring the performance of our proposed IDO algorithm, the spam 628 

email detection system’s architecture is presented in Figure 7. The figure demonstrates 629 

the potential use of the proposed algorithm by the email server in classifying authen- 630 

tic/spam emails in an automated fashion based on its mechanism of feature selection and 631 

its efficiency in finding the best fit in classifying the type of such emails. 632 

 633 

 634 

Figure 7. The proposed Spam Email Detection System Architecture is based on the IDO Algorithm. 635 

 636 

Figure 8 illustrates the convergence behaviour for each of the experimented algo- 637 

rithms along with our proposed IDO. It is very obvious that our proposed IDO algorithm 638 

was very efficient in quickly converging its fitness straight after 5 iterations from the start 639 

of the simulation’s run. It is worth noting that the reason behind that was the introduced 640 

feature of tuning with the help of the hybrid solution of LSAF, which takes place after 641 

every 5 iterations as described in pseudocode in Figure 6. 642 

 643 
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 644 

Figure 8. Convergence Analysis of the Obtained Fitness Throughout 100 Iterations. 645 

 646 

Table 6 presents a comparison of the IDO algorithm with several other optimization 647 

algorithms based on their average classification accuracy in 30 runs. Among the algo- 648 

rithms evaluated, our proposed IDO algorithm has achieved the highest average classifi- 649 

cation accuracy of 0.9468. This indicates that IDO performed exceptionally well in opti- 650 

mizing the classification of the spam emails task compared to the other algorithms. 651 

The second-best algorithm in terms of accuracy was the native DO algorithm, with 652 

an average classification accuracy of 0.9355. Although DO falls slightly behind IDO, it still 653 

demonstrates strong performance in optimizing the classification task. Hence, the effec- 654 

tiveness of the proposed improvement using the LSAF algorithm has been demonstrated, 655 

showcasing its ability to enhance the quality of the best final solution. By incorporating 656 

the LSAF algorithm into the optimization process, significant improvements in the overall 657 

optimization performance have been achieved. This highlights the importance of incor- 658 

porating advanced mechanisms, such as the LSAF algorithm, to enhance the accuracy and 659 

reliability of the final solution. 660 

Following DO, GNDO obtained an average classification accuracy of 0.9148, posi- 661 

tioning it as the third-best performing algorithm in this comparison. While, ChOA, PSO, 662 

and GA achieved average classification accuracies of 0.9020, 0.9137, and 0.9259, respec- 663 

tively, which are relatively close to each other. These algorithms demonstrate a moderate 664 

level of performance in comparison to the top-performing IDO and DO algorithms. 665 

GOA, ALO, and DA have obtained average classification accuracies of 0.8986, 0.8982, 666 

and 0.9148, respectively. While these algorithms achieved lower accuracy compared to the 667 

top-performing algorithms, they still show potential in optimizing the classification task. 668 

Overall, the results indicate that IDO outperformed the other optimization algo- 669 

rithms in terms of average classification accuracy. This suggests that IDO is a promising 670 

algorithm for tackling classification problems, specifically problems such as email spam 671 

detection. However, further analysis and experimentation may be required to validate the 672 

statistical significance of these results and to understand the strengths and weaknesses of 673 

each algorithm in more detail. 674 

Hence, the fitness performance of each algorithm has been measured and reported 675 

for each algorithm as presented in Table 7. Table 7 presents the comparison of IDO with 676 

other algorithms based on the average fitness value obtained from 30 runs. The lower the 677 

fitness value, the better the performance of the algorithm. 678 

From the results, it is evident that IDO achieves the lowest average fitness value of 679 

0.0565, indicating its superiority in optimizing the objective function compared to the 680 

other algorithms. This demonstrates the effectiveness of the proposed IDO algorithm in 681 

finding high-quality solutions that minimize the fitness value. 682 

Among the other algorithms, DO and GA exhibit relatively good performance with 683 

average fitness values of 0.0675 and 0.0784, respectively. This suggests that these 684 
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algorithms are capable of converging towards favourable solutions, although they are 685 

slightly less effective than IDO. 686 

On the other hand, algorithms such as GNDO, ChOA, PSO, GOA, ALO, and DA ex- 687 

hibit relatively higher average fitness values ranging from 0.0911 to 0.1058. These results 688 

indicate that these algorithms might struggle to converge to optimal solutions or might be 689 

more sensitive to the optimization problem at hand, this is what was also witnessed by 690 

the presented convergence behaviour in Figure 8. 691 

Overall, the comparison highlights the competitiveness of IDO in terms of achieving 692 

lower average fitness values, indicating its effectiveness in optimization tasks. These re- 693 

sults provide valuable insights into the performance of various algorithms and can guide 694 

researchers and practitioners in selecting the most suitable algorithm for their specific op- 695 

timization needs. 696 

 697 

Table 6. Comparison of IDO with other algorithms based on average classification accuracy in 30 Runs. 698 

Algorithm Accuracy 

IDO 0.9468 

DO 0.9355 

GNDO 0.9148 

ChOA 0.9020 

PSO 0.9137 

GA 0.9259 

GOA 0.8986 

ALO 0.8982 

DA 0.9148 

 699 

Table 7. Comparison of IDO with other algorithms based on average fitness value in 30 runs 700 

Algorithm Fitness 

IDO 0.0565 

DO 0.0675 

GNDO 0.0927 

ChOA 0.1026 

PSO 0.0926 

GA 0.0784 

GOA 0.1055 

ALO 0.1058 

DA 0.0911 

 701 

Table 8 provides a comparison of IDO with other algorithms based on the average 702 

number of selected features obtained from 30 runs out of the supplied dataset of email 703 

classification (Spam/Non-spam). The number of selected features is an important aspect 704 

of feature selection tasks, where a lower number indicates a more concise and relevant 705 

feature subset. 706 

From the results, it is evident that IDO achieves the lowest average number of se- 707 

lected features, with a value of 20.4. This indicates that IDO is capable of identifying a 708 

compact and informative subset of features that contribute significantly to the 709 
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optimization problem. The ability to select a smaller number of features can lead to im- 710 

proved efficiency, reduced complexity, and enhanced interpretability of the developing 711 

model. 712 

Among the other algorithms, DO and GA also demonstrate relatively good perfor- 713 

mance with average numbers of selected features of 22.7 and 28.7, respectively. This sug- 714 

gests that these algorithms are effective in identifying relevant features while maintaining 715 

a reasonably low feature subset size, but not as concise as our proposed IDO algorithm, 716 

especially with such a critical email spam detection application. 717 

On the other hand, algorithms such as GNDO, ChOA, PSO, GOA, ALO, and DA ex- 718 

hibit higher average numbers of selected features ranging from 29.5 to 48.2. These results 719 

indicate that these algorithms may tend to select a larger number of features, which can 720 

potentially lead to increased complexity and reduced interpretability of the resulting 721 

model. 722 

Generally speaking, the comparison highlights the superior performance of IDO in 723 

achieving a lower average number of selected features, indicating its effectiveness in fea- 724 

ture selection tasks. These results provide valuable insights into the capability of various 725 

algorithms in identifying relevant features and can assist researchers and practitioners in 726 

selecting the most appropriate algorithm for their specific feature selection needs. 727 

Table 8. Comparison of IDO with Other Algorithms Based on the Average Number of Selected Features in 728 

30 runs. 729 

Algorithm Number of selected 

features 

IDO 20.4 

DO 22.7 

GNDO 48.2 

ChOA 32.1 

PSO 41.1 

GA 28.7 

GOA 29.5 

ALO 28.9 

DA 38.9 

 730 

In another attempt to analyse the performance of our proposed IDO algorithm and 731 

the benchmarked algorithms, Table 9 shows a comparison of IDO with other algorithms 732 

based on the average execution time obtained from 30 runs. The duration of execution is 733 

a crucial aspect to consider when evaluating optimization algorithms as it reflects their 734 

computational efficiency and scalability. Hence, the obtained results demonstrate that 735 

IDO achieves the shortest average execution time, with a value of 30.36. This signifies that 736 

IDO exhibits high computational efficiency and converges to a solution in less time, as 737 

evidenced by the results depicted in Figure 8. The efficient execution time of IDO renders 738 

it suitable for applications requiring real-time or prompt outcomes, such as email spam 739 

filtering. 740 

Among the other algorithms examined, DO, GA, GOA, and ALO also exhibit rela- 741 

tively low average execution times, ranging from 31.45 to 39.72. These algorithms show- 742 

case commendable computational efficiency, delivering reasonably fast results. Con- 743 

versely, algorithms such as GNDO, ChOA, PSO, and DA exhibit higher average execution 744 

times, ranging from 55.11 to 119.66. These findings indicate that these algorithms demand 745 

more computational resources and time to converge to a solution. While they may still be 746 
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suitable for certain applications that can accommodate longer execution times, they may 747 

not be as efficient as IDO, DO, GA, GOA, and ALO in terms of speed. 748 

This comparison emphasizes the computational efficiency of IDO, which outper- 749 

forms other algorithms in terms of average execution time. These results are valuable for 750 

selecting the most appropriate algorithm based on the desired trade-off between accuracy 751 

and computational efficiency. It is also important to mention that researchers and practi- 752 

tioners can consider these results when choosing an algorithm for optimization tasks that 753 

require fast results or have constraints on execution time. 754 

Table 9. Comparison of IDO with Other Algorithms Based on Average Execution Time in Seconds out of 30 755 

Runs. 756 

Algorithm Time 

IDO 30.36 

DO 31.45 

GNDO 119.66 

ChOA 60.97 

PSO 55.11 

GA 39.72 

GOA 41.46 

ALO 36.19 

DA 49.38 

In Table 10, the statistical comparison of the proposed IDO algorithm with the bench- 757 

marked algorithms is presented. The statistical results are obtained based on p-values uti- 758 

lizing the Wilcoxon test. It is good to note that the p-value here is indicating the signifi- 759 

cance level of the difference between the performance of our proposed IDO and the bench- 760 

marked algorithms. When the p-values are less than 0.05 representing a statistically sig- 761 

nificant difference. 762 

From the statistical results, it can be noted that IDO demonstrates significantly dif- 763 

ferent performance compared to all the other benchmarked algorithms. The p-values for 764 

the other algorithms are extremely low (p < 0.05). This indicates a significant difference in 765 

performance compared to our proposed IDO algorithm. This suggests that IDO outper- 766 

forms these algorithms in terms of the evaluated criteria. 767 

On the other hand, the p-values for DO, GNDO, ChOA, PSO, GA, GOA, ALO, and 768 

DA are all bold and underlined, indicating that the difference in performance between 769 

these algorithms and IDO is not statistically significant (p ≥ 0.05). This implies that there 770 

is no significant difference in performance between IDO and these algorithms. 771 

We can summarise from this statistical analysis that the results from the Wilcoxon 772 

test suggest that IDO performs significantly better than several algorithms and shows 773 

comparable performance to others. These findings demonstrate the effectiveness of IDO 774 

in addressing the optimization problem and highlight its potential as a competitive algo- 775 

rithm in the given context. 776 

Table 10. Statistical Comparison of IDO with Other Algorithms Based on p-values using the Wilcoxon 777 

test (P ≥ 0.05 are bold underlined) 778 

Algorithm p-values 

DO 2.12E-05 

GNDO 1.10E-10 

ChOA 2.89E-11 

PSO 1.34E-10 
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GA 1.76E-08 

GOA 2.89E-11 

ALO 2.88E-11 

DA 1.09E-10 

 779 

Table 11. Comparison of IDO with Other Algorithms Based on the Standard Deviation of Accuracy in 30 780 

Runs. 781 

Algorithm The standard devia-

tion of accuracy 

IDO 0.0074 

DO 0.0104 

GNDO 0.0146 

ChOA 0.0139 

PSO 0.0152 

GA 0.0118 

GOA 0.0122 

ALO 0.0133 

DA 0.0136 

As another statistical analysis of the performance, Table 11 presents the comparison 782 

of IDO with other algorithms based on the standard deviation of accuracy in 30 runs. The 783 

standard deviation measures the dispersion or variability of the accuracy values obtained 784 

from multiple runs for each algorithm. A smaller standard deviation indicates less varia- 785 

bility and greater consistency in the algorithm's performance. 786 

From the presented results in this table, it can be observed that IDO has the smallest 787 

standard deviation of accuracy compared to all the other algorithms. This indicates that 788 

IDO consistently produces accurate results across multiple runs, with minimal variability 789 

in its performance. On the other hand, the other algorithms, including DO, GNDO, ChOA, 790 

PSO, GA, GOA, ALO, and DA, have slightly higher standard deviations, indicating com- 791 

paratively higher variability in their performance. 792 

The lower standard deviation of accuracy for IDO suggests that it is a robust and 793 

stable algorithm, consistently providing accurate solutions across different runs. This sta- 794 

bility is an important characteristic, as it indicates that the algorithm is less sensitive to 795 

variations and fluctuations in the optimization process. Hence, the achieved statistical re- 796 

sults presented in Table 11 illustrate that IDO beats the other algorithms not only in get- 797 

ting high accuracy but also in demonstrating remarkable consistency and stability out of 798 

its overall performance. Such findings highlight the reliability and efficacy of our pro- 799 

posed IDO as an optimization algorithm for solving a wide range of highly sensitive op- 800 

timization problems. 801 

Table 12 lists the comparison of IDO with other algorithms, which is provided based 802 

on the standard deviation of the obtained fitness values out of 30 runs. We have employed 803 

the standard deviation of the obtained fitness values for each algorithm to provide us with 804 

a measure of the variability or dispersion of fitness values obtained from multiple runs 805 

for each of the implemented algorithms. It is noteworthy to mention that the smaller the 806 

standard deviation is, the less variability and greater consistency in the fitness values pro- 807 

duced by the algorithm. 808 

Upon examining the results, it is evident that IDO exhibits the smallest standard de- 809 

viation of fitness compared to all other algorithms. This implies that IDO consistently 810 
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generates fitness values with minimal variability across multiple runs. In contrast, the 811 

other algorithms, including DO, GNDO, ChOA, PSO, GA, GOA, ALO, and DA, exhibit 812 

slightly higher standard deviations, indicating relatively greater variability in their fitness 813 

values. 814 

The lower standard deviation of fitness for IDO signifies its stability and consistency 815 

in optimizing the fitness function. This stability is crucial as it indicates that IDO is less 816 

sensitive to variations and fluctuations in the optimization process, consistently converg- 817 

ing towards optimal or near-optimal solutions. 818 

To summarize, the results from Table 12 indicate that IDO not only achieves compet- 819 

itive fitness values but also demonstrates superior consistency and stability compared to 820 

the other algorithms. This highlights the robustness and reliability of IDO as an optimiza- 821 

tion algorithm for the given problem. It is also worth noting that while IDO shows the 822 

lowest standard deviation of fitness, the differences among the algorithms' standard de- 823 

viations are relatively small. This suggests that all the algorithms perform reasonably well 824 

in terms of stability, but IDO stands out as the most consistent among them. 825 

Table 12. Comparison of IDO with Other Algorithms Based on the Standard Deviation of Fitness in 30 Runs 826 

Algorithm The standard deviation 

of accuracy 

IDO 0.0073 

DO 0.0102 

GNDO 0.0145 

ChOA 0.0134 

PSO 0.0148 

GA 0.0118 

GOA 0.0120 

ALO 0.0130 

DA 0.0132 

 827 

6. Conclusions and Future Works 828 

In this paper, we have proposed and evaluated the Improved Dandelion Optimiza- 829 

tion (IDO) algorithm for solving the optimization problem, especially spam email detec- 830 

tion applications. Through extensive experiments and comparisons with several state-of- 831 

the-art algorithms, we have demonstrated the effectiveness and superiority of IDO in 832 

terms of classification accuracy, fitness value, number of selected features, execution time, 833 

and statistical significance. The experimental results clearly show that IDO consistently 834 

outperforms other algorithms in terms of classification accuracy, achieving an average 835 

accuracy of 94.68%. Furthermore, IDO exhibits superior fitness values, with an average 836 

fitness of 0.0565, indicating its ability to converge towards optimal or near-optimal solu- 837 

tions. Moreover, IDO selects a reasonable number of features, achieving an average of 20.4 838 

selected features, striking a good balance between accuracy and feature subset size. Be- 839 

sides, IDO proves competitive execution times, with an average time of 30.36 seconds, 840 

making it computationally efficient for practical applications. The statistical comparison 841 

using the Wilcoxon test further validates the significance of IDO's performance improve- 842 

ments over other algorithms. 843 

As future works, though IDO has displayed promising results, there are several ave- 844 

nues for future research to explore, such as parameter tuning. Investigating the impact of 845 

different parameter settings on IDO's performance and exploring automated methods for 846 
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parameter selection and adaptation could be one of the potential further works to be in- 847 

vestigated. The IDO algorithm could be explored to solve some other real-world applica- 848 

tions. Apply IDO to real-world optimization problems in various domains such as 849 

healthcare, finance, engineering, and logistics to assess its performance and scalability 850 

with high constraints and noisy data. 851 
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