

Computers 2023, 23, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/computers

Article 1

An Improved Dandelion Optimizer Algorithm for Spam Detec- 2

tion: Next-Generation Email Filtering System 3

Mohammad Tubishat 1, Feras Al-Obeidat 1, Ali Safaa Sadiq 2 , Seyedali Mirjalili 3 4

1 College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates, moham- 5
mad.tubishat@zu.ac.ae, Feras.Al-Obeidat@zu.ac.ae 6

2 Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, 7
United Kingdom, Ali.Sadiq@ntu.ac.uk 8

3 Centre of Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, Aus- 9
tralia, ali.mirjalili@gmail.com 10

* Correspondence: ali.sadiq@ntu.ac.uk; (A.S) 11

Abstract: Spam emails have become a pervasive issue in recent years, as internet users receive in- 12

creasing amounts of unwanted or fake emails. To combat this issue, automatic spam detection meth- 13

ods have been proposed, which aim to classify emails into spam and non-spam categories. Machine 14

learning techniques have been utilized for this task with considerable success. In this paper, we 15

introduce a novel approach to spam email detection by presenting significant advancements to the 16

Dandelion Optimizer (DO) algorithm. DO is a relatively new nature-inspired optimization algo- 17

rithm inspired by the flight of dandelion seeds. While DO shows promise, it faces challenges, espe- 18

cially in high-dimensional problems such as feature selection for spam detection. Our primary con- 19

tributions focus on enhancing the DO algorithm. Firstly, we introduce a new local search algorithm 20

based on flipping (LSAF), designed to improve DO's ability to find the best solutions. Secondly, we 21

propose a reduction equation that streamlines the population size during algorithm execution, re- 22

ducing computational complexity. To showcase the effectiveness of our modified DO algorithm, 23

which we refer to as Improved DO (IDO), we conduct a comprehensive evaluation using the Spam 24

base dataset from the UCI repository. However, we emphasize that our primary objective is to ad- 25

vance the DO algorithm, with spam email detection serving as a case study application. Compara- 26

tive analysis against several popular algorithms, including Particle Swarm Optimization (PSO), Ge- 27

netic Algorithm (GA), Generalized Normal Distribution Optimization (GNDO), Chimp Optimiza- 28

tion Algorithm (ChOA), Grasshopper Optimization Algorithm (GOA), Ant Lion Optimizer (ALO), 29

and Dragonfly Algorithm (DA), demonstrates the superior performance of our proposed IDO algo- 30

rithm. It excels in accuracy, fitness, and the number of selected features, among other metrics. Our 31

results clearly indicate that IDO overcomes the local optima problem commonly associated with the 32

standard DO algorithm, owing to the incorporation of LSAF and the reduction equation methods. 33

In summary, our paper underscores the significant advancement made in the form of the IDO algo- 34

rithm, which represents a promising approach for solving high-dimensional optimization prob- 35

lems, with a keen focus on practical applications in real-world systems. While we employ spam 36

email detection as a case study, our primary contribution lies in the improved DO algorithm, which 37

is efficient, accurate, and outperforms several state-of-the-art algorithms in various metrics. This 38

work opens avenues for enhancing optimization techniques and their applications in machine learn- 39

ing. 40

 41

 42

Keywords: Dandelion Optimizer (DO), Cybersecurity, Optimization, feature selection, Trusted 43

Emails, Next-Generation Spam Email Detection 44

 45

Citation: To be added by editorial

staff during production.

Academic Editor: Firstname Last-

name

Received: date

Revised: date

Accepted: date

Published: date

Copyright: © 2023 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Computers 2023, 23, x FOR PEER REVIEW 2 of 28

1. Introduction 46

 With the increasing use of the internet and online social networks (OSNs) appli- 47

cations, communication and exchange of information among users have similarly in- 48

creased. Along with this increased communication comes the problem of spam, which is 49

a frequent issue that users of these applications frequently face. One of the most common 50

forms of spam is unsolicited emails or spam emails, which fill up email inboxes and take 51

time for users to check and delete [1], [2]. The problem of spam is not limited to just email 52

but also affects other network applications [3]. For instance, users of social networking 53

sites often receive unwanted messages or comments from fake accounts or spammers. 54

Such messages can be annoying, and harmful, and can lead to privacy breaches, identity 55

theft, and financial losses [4]. 56

To address this problem, spam filtering software is developed and employed to de- 57

tect and remove spam emails [5]. However, these filtering systems may not be accurate all 58

the time and may mistakenly classify legitimate emails as spam [6]. This can lead to users 59

missing out on important information or communication, such as important emails for job 60

offers, contracts to sign, important appointments, etc. Additionally, spammers can use 61

various tactics to bypass these filters and send malicious emails that are designed to de- 62

ceive users into disclosing their personal information, passwords, or financial details. 63

Therefore, a robust and accurate spam detection method is necessary to detect and pre- 64

vent these threats [7]. 65

In this research paper, therefore, we propose an automatic spam email detection 66

method based on improved Discrete Optimization (IDO) algorithm. Discrete Optimiza- 67

tion (DO) is a well-known optimization algorithm that has been widely used in various 68

fields, including computer science, engineering, and operations research. Besides, DO has 69

a promising protentional use in classification-related problems, such as spam email detec- 70

tion methods. However, DO has a problem of being stuck in local optima [8]–[10]. To 71

overcome this problem, we propose several improvements to DO, including the develop- 72

ment of a new local search algorithm that works based on the use of feature flipping, 73

called the Local Search Algorithm with Flipping (LSAF). LSAF will update the best solu- 74

tion, ensuring that the algorithm is not stuck in a local optimum. Also, this paper intro- 75

duces the use of a mathematical formula in maintaining the population size, which will 76

result in a maintained complexity and sustain the algorithm’s accuracy accordingly. 77

On the other hand, the proposed algorithm employs a wrapper-based feature selec- 78

tion method. This method is a supervised learning method that picks the most relevant 79

features to be used for classification tasks. This method seeks to choose the features that 80

are most dominant to the classification task while ignoring irrelevant or redundant fea- 81

tures that may affect the classification accuracy. By introducing such a method, the com- 82

putational time and complexity will be maintained at an acceptable level and will improve 83

the accuracy of the spam detection system. 84

Over the last few years, spam detection has been one of the active research areas, and 85

diverse systems have been proposed and developed to address such a high-dimensional 86

problem. Such approaches can be generally classified into three groups: rule-based ap- 87

proaches, content-based approaches, and machine learning-based approaches. The rule- 88

based approaches use a set of predefined rules to be used in the process of identifying 89

spam emails. Though, these approaches have constrained accuracy, which might lead to 90

not identifying new or foreign spam emails [11]. In contrast, content-based approaches 91

use the content of the email as a way to flag spam emails. In other words, these approaches 92

analyze the email's text, images, links, and other relevant features to verify whether it is a 93

spam email or not. Yet, such approaches may be ineffective as opposed to advanced spam- 94

ming methods that are mainly designed to bypass content-based filters [12]. While on the 95

other side, machine learning-based approaches use statistical and machine learning meth- 96

ods to learn from a data sample and learn to classify emails as spam or legitimate [13]. 97

Computers 2023, 23, x FOR PEER REVIEW 3 of 28

Such approaches have demonstrated promising results and are broadly used in current 98

spam detection systems [14]. 99

Though, regardless of the developments in spam detection approaches, such a prob- 100

lem stays a challenging issue forth. The reason is that spammers are always evolving their 101

strategies as a way to skirt the detection systems. This scenario makes it essential to keep 102

developing new and adaptive spam detection systems. Hence, over recent years, one of 103

the research fields that has gained consideration was the use of optimization algorithms 104

in developing spam email detection [15]. Optimization algorithms, such as the DO algo- 105

rithm, have proven their efficacy in resolving several optimization problems [16], [17]. For 106

instance, the use of such algorithms for spam detection implies the selection of relevant 107

features and the optimization of the classifier's parameters to achieve high accuracy. Be- 108

yond algorithmic advancements, our work is designed with practicality in mind, offering 109

insights into the seamless integration of our method into operational email filtering sys- 110

tems. 111

In this paper, therefore, to solve such a crucial problem, we propose an improved DO 112

algorithm to be used for automated spam email detection methods. Our proposed algo- 113

rithm employs the LSAF technique and the mathematical question for population size 114

reduction as a way to resolve the issue of local optima and cut down the algorithm's com- 115

plexity. Moreover, in our proposed algorithm a wrapper-based feature selection tech- 116

nique is used to select the most relevant features for spam classification. 117

To summarize, the main contributions of this paper are: 118

• Improved DO Algorithm: Introduction of the Improved Dandelion Opti- 119

mizer (IDO) algorithm, addressing local optima issues and enhancing opti- 120

mization. 121

• Local Search Enhancement: Introduction of the Local Search Algorithm with 122

Flipping (LSAF) to improve solution quality within the IDO algorithm. 123

• Population Size Reduction: Proposal of a mathematical formula for popula- 124

tion size reduction, reducing computational complexity in spam detection. 125

• Efficient Feature Selection: Application of a wrapper-based feature selec- 126

tion method to efficiently select relevant features in spam detection, enhanc- 127

ing classification accuracy. 128

• Effective Case Study Application: Demonstrated the practical application 129

of the IDO algorithm through a case study on spam email detection, show- 130

casing its efficiency and accuracy in a real-world scenario. 131

The rest of the paper is structured as follows: section 2 presents and discusses some 132

of the recent related works on spam email detection methods, and more specifically the 133

use of optimization algorithms in this context. While section 3, we provide a detailed de- 134

scription of the the native DO algorithm along with some extra visulizations of the algo- 135

rithm’s nature behaviour. Also, in section 3, the algorithm's steps are explained, including 136

the feature selection process, and the optimization of the classifier's parameters. In section 137

4, the implementation details and the experimental setup of the case study applicatio for 138

Spam Email Detection are also discussed. The results and performance evaluation of the 139

proposed IDO algorithm in contrast with the other benchmarked methods are presented 140

and discussed in section 5. Finally, section 6 concludes the paper and suggests future work 141

and directions for improvement. 142

 143

2. Related Works 144

Over the last few years, optimization algorithms have been used widely for feature 145

selection in spam email detection methods. Numerous search studies have proposed sev- 146

eral optimization-based spam detection approaches, and their efficiency and powers have 147

been widely analyzed. For example, in Sokhangoee and [18], a spam detection method 148

based on association-rule mining and a genetic algorithm is proposed. The method 149

Computers 2023, 23, x FOR PEER REVIEW 4 of 28

achieved high accuracy in detecting spam emails, though it was suffering from high com- 150

putational complexity. In contrast, [19] proposed a spam detection method based on the 151

combination of the Harris Hawks Optimizer (HHO) and the KNN classifier. The method 152

has demonstrated promising results in terms of accuracy and processing time. Though, 153

the HHO algorithm by its nature is heavily dependent on the random initialization of its 154

parameters, which may impact its stability and reproducibility. 155

On the other hand [20] introduced a spam detection method based on the Horse Herd 156

Optimization Algorithm (HOA) with a KNN classifier. Their method gained high accu- 157

racy in detecting spam emails, nonetheless, its performance could be heavily impacted by 158

the sensitivity of the HOA algorithm, which comes from the nature of its parameter set- 159

tings. 160

Another attempt [21] proposed the use of the Symbiotic Organisms Search (SOS) al- 161

gorithm in the spam email detection mechanism. Their proposed approach has demon- 162

strated high accuracy in detecting spam emails and performed well in contrast with other 163

optimization-based approaches. Yet, the introduced computational cost could be rela- 164

tively high, which bounds its feasibility with a large-scale spam detection problem. 165

On the other hand, the authors in [22] suggested the use of the sine–cosine algorithm 166

(SCA) in detecting spam emails. The proposed approach has performed well in terms of 167

accuracy and processing time. Though the performance could be limited by the nature of 168

the SCA algorithm's sensitivity, due to the way its parameter settings. Hence, such a 169

method will not be a reliable option, especially when it comes to the highly sensitive na- 170

ture of the detection process of spam email filtering mechanisms. 171

The authors in [23] introduced the Water Cycle Optimization (WCO) algorithm in 172

conjunction with Simulated Annealing (SA) to be used in detecting spam emails. Though 173

their proposed method has demonstrated high accuracy in detecting spam emails, its com- 174

putational complexity was relatively high. 175

From the presented methods and approaches, we can find out the potential use of 176

optimization algorithms in spam email detection. Though, their performance varies de- 177

pending on specific algorithmic features, parameter settings, and computational complex- 178

ity. Additional research is therefore needed as a way to develop more efficient and effec- 179

tive optimization-based spam detection methods. 180

Table 1. Comparison of the Nature-Inspired Metaheuristic Algorithms. 181

Nature-Inspired Metaheuristics

Evolutionary

Algorithms

Swarm-Based

Algorithms

Physical-Based

Algorithms Other Metaheuristics

Population

Genetic Algo-

rithms

Particle Swarm

Algorithms

Simulated An-

nealing

Grey Wolf Optimiza-

tion

Individual

Differential

Evaluation

Strategies

Firefly Algo-

rithms

Harmony

Search

Artificial Bee Colony

Algorithm

Optimization

Strategy

Evolutionary

Programming

Ant Colony

Optimization

Algorithm

Memetic Algo-

rithms

Imperialist Competi-

tive Algorithm

 182

In Table 1 a comparison of some of the common nature-inspired metaheuristic algo- 183

rithms based on their population, individual, and optimization strategies are listed. The 184

evolutionary types of algorithms, such as genetic algorithms and differential evaluation 185

strategies, generally depend on the concept of natural selection to optimize solutions over 186

a population of individuals. While, swarm-based algorithms, such as particle swarm 187

Computers 2023, 23, x FOR PEER REVIEW 5 of 28

optimization and firefly algorithms, mimic the collective behaviour of social swarms to 188

optimize the given solutions. Physical-based algorithms, such as simulated annealing and 189

harmony search, are inspired by physical phenomena like thermal energy and musical 190

harmony to optimize solutions. Other metaheuristic algorithms, such as grey wolf opti- 191

mization [24], artificial bee colony algorithm, and imperialist competitive algorithm, draw 192

inspiration from various sources to optimize solutions. 193

It's important to note that the choice of metaheuristic algorithm is heavily dependent 194

on the specific optimization problem at hand. For instance, swarm-based algorithms are 195

often used for optimization problems that require the exploration of a large search space, 196

while physical-based algorithms are often used for optimization problems that require the 197

optimization of a continuous function. In addition, hybrid metaheuristic algorithms that 198

combine different techniques from different categories have been proposed to achieve bet- 199

ter performance in optimization problems. 200

In order to demonstrate some of the key analysis aspects that could be used in com- 201

paring optimization techniques, below are some analysis points that could be used to 202

highlight the competency of the related works: 203

Performance comparison: In addition to listing the strengths and weaknesses of each 204

algorithm. This comparison can be done based on various metrics such as accuracy, pre- 205

cision, recall, F1 score, etc. The comparison can also be done on different datasets to eval- 206

uate the generalizability of the algorithms. 207

Impact of feature selection: Many of the algorithms mentioned in the related works 208

section use feature selection techniques to improve the accuracy of spam detection. This 209

analysis could demonstrate the impact of feature selection on the performance of the al- 210

gorithms. This analysis could also include comparing the performance of algorithms with 211

and without feature selection and also comparing different feature selection techniques. 212

• Analysis of false positives and false negatives: False positives and false negatives 213

are common errors in spam detection. An analysis of the false positives and false neg- 214

atives generated by each algorithm could be used on each of these algorithms to com- 215

pare and contrast them. This analysis could help identify the specific types of emails 216

that are misclassified by each algorithm and suggest improvements to reduce these 217

errors. 218

• Robustness analysis: The robustness of the algorithms could be analyzed by testing 219

their performance under different scenarios such as varying spam densities, different 220

types of spam, and changes in the email dataset. This analysis could help evaluate the 221

generalizability of the algorithms and identify scenarios where they may not perform 222

well. 223

• Comparison with traditional spam detection methods: Such comparison could com- 224

pare the performance of the optimization algorithms with traditional rule-based and 225

content-based spam detection methods. This comparison could help evaluate the ef- 226

fectiveness of optimization algorithms in improving the accuracy of spam detection. 227

• Analysis of computational efficiency: Optimization algorithms can be computation- 228

ally expensive, especially when dealing with large datasets. The computational effi- 229

ciency of each algorithm could be analyzed and compared with their run times on 230

different datasets. This analysis could help identify the most efficient algorithms and 231

suggest improvements to reduce their computational cost. 232

• On the other hand, DO is a relatively new optimization algorithm that has been ap- 233

plied to various optimization problems, including feature selection and classification 234

tasks, which has the potential to be used for spam detection. As with any other opti- 235

mization algorithm, DO has some limitations, which are listed as follows: 236

• Premature Convergence: DO tends to converge prematurely to local optima, which can 237

result in suboptimal solutions [8]. This is a common problem in many optimization algorithms 238
and the DO algorithm is no exception. 239

Computers 2023, 23, x FOR PEER REVIEW 6 of 28

• Sensitivity to Initialization: DO's performance can be sensitive to the initial population's 240
quality and diversity [25]. Poor initialization can lead to premature convergence, while good 241
initialization can improve the algorithm's performance. 242

• Lack of Diversity: DO does not have mechanisms to maintain population diversity, which can 243
cause premature convergence and limit the algorithm's exploration capabilities [26]. 244

• Limited Search Space Exploration: DO's search capabilities are limited, as it only explores 245
a small portion of the search space at each iteration. This can result in suboptimal solutions 246

and can make it difficult to find the global optimum [27]. 247
• Computational Complexity: DO's computational complexity can be high, particularly for 248

large-scale problems. The algorithm involves evaluating fitness functions, which can be com- 249
putationally expensive, and the algorithm's complexity can increase with the problem's dimen- 250
sionality [28]. 251

• Lack of Theoretical Analysis: DO's theoretical analysis is still limited, and there are few 252
theoretical guarantees of its convergence and performance under different conditions. This 253
makes it difficult to understand the algorithm's behaviour and to design effective parameter 254
settings [29]. 255
In summarizing the performance evaluation of the DO algorithm, it has exhibited 256

encouraging outcomes in certain applications; however, researchers need to acknowledge 257

its limitations and drawbacks when considering its application to their specific optimiza- 258

tion problems. To enhance the algorithm's effectiveness, researchers should investigate 259

strategies to address and overcome these limitations. 260

While many optimization techniques have been utilized in literature for feature se- 261

lection in spam email detection, the No Free Lunch Theorem (NFL) [30] suggests that no 262

single solution can be applied to all problems and outperform all other algorithms. Hence, 263

researchers continue to investigate the use of the most recent optimization algorithms for 264

spam email detection, including DO. 265

However, as mentioned earlier, DO is susceptible to local optima, which limits its 266

effectiveness. To address this, this paper proposes two main improvements to combine 267

with the DO algorithm to enhance its performance and overcome its weaknesses. 268

To conclude this section, Table 2 provides a summary of several optimization algo- 269

rithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Col- 270

ony Optimization (ACO), Artificial Bee Colony (ABC), Hill Climbing, Simulated Anneal- 271

ing, and Tabu Search. The strengths and weaknesses of each algorithm are listed, as well 272

as their effectiveness in email spam detection. The table suggests that PSO, GA, ACO, and 273

ABC have shown promising results in email spam detection, particularly for feature se- 274

lection and email classification. However, each algorithm has its limitations and requires 275

careful parameter tuning for optimal performance. Hill Climbing, Simulated Annealing, 276

and Tabu Search have been used successfully for email classification but may not be as 277

effective as other optimization algorithms for feature selection. Overall, the table provides 278

a useful reference for researchers to choose an appropriate optimization algorithm for 279

their email spam detection problem based on their specific requirements and constraints. 280

Table 2. Summary of Optimization Algorithms Application in Email Spam Detection. 281

Optimization

Algorithm Description Strengths Weaknesses

Effectiveness in Email

Spam Detection

Particle

Swarm Opti-

mization

(PSO)

A population-based opti-

mization algorithm that in-

volves particles moving

around in the search space

to find the best solution.

Good for feature

selection, can

handle high-di-

mensional data,

easy to imple-

ment.

Can get stuck in

local optima,

sensitive to pa-

rameter settings.

Has shown promising

results in email spam de-

tection, particularly for

feature selection and

email classification.

Computers 2023, 23, x FOR PEER REVIEW 7 of 28

Optimization

Algorithm Description Strengths Weaknesses

Effectiveness in Email

Spam Detection

Genetic Algo-

rithm (GA)

A population-based opti-

mization algorithm that in-

volves creating a popula-

tion of potential solutions

and then applying selec-

tion, crossover, and muta-

tion operations to evolve

the population over gener-

ations.

Can handle non-

linear and non-

convex problems

and can find

multiple optimal

solutions.

Can be slow, re-

quires careful pa-

rameter tuning,

and may suffer

from premature

convergence.

Has been used success-

fully for email spam de-

tection, particularly for

email classification.

Ant Colony

Optimization

(ACO)

An optimization algorithm

that uses pheromone trails

to guide the search process.

Good for feature

selection, can

handle high-di-

mensional data,

and can find

global optima.

Can be slow, sen-

sitive to parame-

ter settings, and

may suffer from

premature con-

vergence.

Has shown promising

results in email spam de-

tection, particularly for

feature selection and

email classification.

Artificial Bee

Colony (ABC)

An optimization algorithm

that involves employed

bees, onlooker bees, and

scout bees to explore the

search space.

Good for finding

global optima,

easy to imple-

ment.

Can be slow, sen-

sitive to parame-

ter settings, and

could suffer from

premature con-

vergence.

Has been used success-

fully for email spam de-

tection, particularly for

email classification.

Hill Climbing

A local search algorithm

that iteratively improves

the current solution by

making small changes to it.

Simple and fast,

can handle large

datasets.

Can get stuck in

local optima and

could not find

global optima.

Has been used success-

fully for email classifica-

tion but may not be as ef-

fective as other optimiza-

tion algorithms for fea-

ture selection.

Simulated An-

nealing

An optimization algorithm

that starts with a high "tem-

perature" and then gradu-

ally decreases it to find the

best solution.

Able to find

global optima,

and manage

noisy data.

Can be slow, and

sensitive to pa-

rameter settings.

Has been used success-

fully for email classifica-

tion but may not be as ef-

fective as other optimiza-

tion algorithms for fea-

ture selection.

Tabu Search

A metaheuristic algorithm

that is based on the concept

of intensification and diver-

sification.

Able to solve

non-linear and

non-convex

problems, also

finding global

optima.

Can be slow and

requires careful

parameter tun-

ing.

Has been used success-

fully for email classifica-

tion but may not be as ef-

fective as other optimiza-

tion algorithms for fea-

ture selection.

Computers 2023, 23, x FOR PEER REVIEW 8 of 28

 282

3. Dandelion Optimizer 283

The DO algorithm is inspired by the flight of dandelion seeds, as they grow and 284

travel through the air [31]. This optimization algorithm utilizes mathematical models of 285

the three stages of dandelion seed flight: rising, descending, and landing. 286

• The rising phase: During the rising phase, dandelion seeds are influenced by a pulling force 287
in the weather that is both sunny and windy. A vortex forms above the seed, causing it to 288
ascend into the air. 289

• The descending phase: Once the seed reaches a certain height, it enters the descending 290
phase, where it falls steadily towards the ground. 291

• The landing phase: During the landing phase, dandelion seeds fall randomly due to the in- 292
fluence of wind and weather, ultimately landing in one location to sprout new dandelions. 293

By modelling these stages, the DO algorithm attempts to replicate the behaviour of 294

dandelion seeds in order to optimize various functions. Nevertheless, it is noteworthy to 295

highlight that the DO algorithm holds some limitations, such as its likelihood to be 296

trapped in the local optima solutions. Therefore, it is important to explore some of the 297

potential ways for boosting the algorithm's performance when applying such an algo- 298

rithm in solving some of the complex optimization problems. 299

As a way to demonstrate the movement patterns of dandelion seeds, a simulated 300

movement trajectory is presented in Figure 1. We have implemented a flight path simula- 301

tion for a dandelion seed, considering the prevailing wind speed and direction. We started 302

by identifying the seed’s initial position, the wind speed and direction. Besides, in the 303

developed simulation, we specified the number of iterations to 50 and the step size as 0.1, 304

which can be adjusted according to the simulated scenario. The visualized seed’s flight 305

trajectory is generated with a little circle marker that indicates the starting position of the 306

dandelion seed as the x and y-axis equal zero. 307

Subsequently, the simulation iterates over the specified number of 50 iterations. At 308

each iteration, the new position of the seed is calculated based on factors such as wind 309

speed, direction, and step size. A line is then plotted to depict the trajectory of the dande- 310

lion seed from its previous position to its current location. The simulation continues until 311

the predetermined number of iterations is reached. 312

This example effectively demonstrates how mathematical models can be utilized to 313

simulate the flight path of dandelion seeds under varying wind conditions. It provides a 314

tangible illustration of the application of mathematical simulations in understanding and 315

analyzing the behaviour of dandelion seeds in response to different wind parameters. 316

Computers 2023, 23, x FOR PEER REVIEW 9 of 28

 317

Figure 1. Simulated Trajectory of Flight Path of a Dandelion Seed out of 50 iterations. 318

The DO algorithm comprises three primary stages, each accompanied by its respec- 319

tive mathematical models, which are described as follows. 320

Rising stage 321

The initiation of the rising phase and the departure of dandelion seeds from the par- 322

ent plant is contingent upon achieving a minimum height. Nevertheless, the specific alti- 323

tude at which the ascent commences is subject to multiple environmental variables, in- 324

cluding wind speed and humidity. To better understand these factors, the weather can be 325

categorized into two main categories: sunny and windy weather or cloudy and calm 326

weather. In sunny and windy weather, dandelion seeds are subjected to a pulling force 327

that creates a vortex above them, lifting them into the air. On the other hand, in cloudy 328

and calm weather, the seeds may require additional height to overcome the resistance of 329

the air and initiate the rising phase. Understanding the environmental factors that impact 330

the flight of dandelion seeds can inform the design of airborne systems, such as drones 331

and micro air vehicles. 332

The weather categories are detailed below in two cases: 333

Case 1: Dandelion seeds have a unique ability to travel long distances by taking ad- 334

vantage of the wind currents. Wind speeds on clear days follow a lognormal distribution, 335

with random numbers more evenly distributed along the Y-axis, providing a higher prob- 336

ability of dandelion seeds travelling far. Hence, the DO algorithm follows an exploration 337

strategy in this case, where the wind plays a significant role in scattering dandelion seeds 338

to random locations in the search space. The speed of the wind influences the height to 339

which the dandelion seeds rise, with stronger winds causing them to soar higher and dis- 340

perse farther. The vortexes above the dandelion seeds are adjusted by the wind speed in 341

a spiral form, represented by the equation (1): 342

 343

𝑥𝑡+1 = 𝑥𝑡 + 𝑎 ∗ 𝜐𝑥 ∗ 𝜐𝑦 ∗𝑙𝑛 𝑙𝑛 𝑌 ∗ (𝑋𝑠 − 𝑋𝑡) (1) 344

where the terms in the equation are as follows: 𝑋𝑡 is the dandelion seed position at 345

iteration t. 𝑋𝑠 is the position in the search space that was selected randomly during iter- 346

ation t. Eq. (2) gives the formula for the randomly selected position. 347

𝑥𝑠 = 𝑟𝑎𝑛𝑑(1, 𝐷𝑖𝑚) ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵 (2) 348

Computers 2023, 23, x FOR PEER REVIEW 10 of 28

𝑙𝑛 𝑙𝑛 𝑌 represents a lognormal distribution with 𝜇 = 0 and 𝜎2 = 1, and the formula 349

for it is Eq. (3) 350

 351

𝑙𝑛 𝑙𝑛 𝑌 = {
1

𝑦√2𝜋
𝑒𝑥𝑝 𝑒𝑥𝑝 [−

1

2𝜎2 (𝑙𝑛 𝑙𝑛 𝑦)2] 𝑦 ≥ 0 0 𝑦 < 0 (3) 352

The normal distribution is represented by the variable 𝑦 in Eq. (3). 𝛼 is an adjusting 353

parameter for the length of the search steps, and the mathematical equation to find 𝛼 is 354

Eq. (4) 355

 356

𝛼 = 𝑟𝑎𝑛𝑑() ∗ (
1

𝑇2 𝑡2 −
2

𝑇
𝑡 + 1) (4) 357

 358

𝛼 is a random value over the interval [0, 1]. Such oscillations cause the algorithm to 359

prioritize the global search in the early stages and switch to a local search in the latter 360

stages, which is advantageous for ensuring correct convergence after a full global search. 361

The coefficients 𝜐𝑥 and 𝜐𝑦 denote the lift components of a dandelion caused by the sep- 362

arated eddy action. Eq. (6) and Eq. (7) are used to find these coefficient values. 363

𝑟 =
1

𝑒𝜃 (5) 364

 365

𝜐𝑥 = 𝑟 ∗𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 (6) 366

 367

𝜐𝑦 = 𝑟 ∗𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃 (7) 368

 369

Where the value of 𝜃 represents a randomly generated number over the interval 370
[𝜋, −𝜋]. 371

Figure 2 simulates the flight of a dandelion seed in a search space with two dimen- 372

sions over a total of 50 iterations. We have simulated four generated random flight paths, 373

each run generates 50 interactions of the dandelion’s positions from the starting point till 374

it converged to its final position. The wind speed is represented by a lognormal distribu- 375

tion with a mean of 0 and variance of 1, and the wind direction is determined by a random 376

vector drawn from a standard normal distribution. The position of the dandelion seed is 377

updated using the formula given in Eq. (1), where the adaptive parameter alpha is com- 378

puted using the formula given in Eq. (4). The position of the dandelion seed is also clipped 379

to the search space defined by the lower and upper bounds of the searching space, (LB=- 380

10 and UB=10). The Figure also generates a plot of the flight path of the dandelion seed 381

over the 50 iterations. 382

The behaviour of the flight of the dandelion seed shows a distinct pattern: a long and 383

quick movement in the beginning followed by a slow and saturating behaviour towards 384

the end. The initial movement represents the exploration phase, while the latter phase 385

signifies the exploitation phase, where the seed starts to approach the landed area. This 386

pattern highlights a limitation in the search process, where there is a higher probability of 387

exploring more promising solutions in different regions of the problem space. Therefore, 388

finding a balance between exploration and exploitation is crucial, and proper tuning is 389

necessary to achieve this balance. 390

 391

Computers 2023, 23, x FOR PEER REVIEW 11 of 28

 392

Figure 2. Four Random Generated Flight Paths of a Dandelion Seed, considering Case 1 with 50 Interactions. 393

Case 2: Various environmental factors such as air resistance and humidity hinder the 394

dandelion seeds from rising with the wind, particularly on rainy days. Therefore, to over- 395

come this limitation, Eq. (8) is utilized to perform local exploitation in the dandelion seed's 396

immediate vicinity or neighbourhoods. 397

𝑥𝑡+1 = 𝑥𝑡 ∗ 𝑘 (8) 398

Where 𝑘 controls the domain of the dandelion's local search, and Eq. (10) is used to 399

find 𝑘 value. 400

𝑞 =
1

𝑇2 − 2𝑇 + 1
 𝑡2 −

2

𝑇2 − 2𝑇 + 1
𝑡 + 1 +

1

𝑇2 − 2𝑇 + 1
 401

𝑘 = 1 − 𝑟𝑎𝑛𝑑() ∗ 𝑞 (10) 402

 403

Finally, the rising stage mathematical equation for a dandelion seed is Eq. (11) 404

 405

𝑥𝑡+1 = {𝑥𝑡 + 𝑎 ∗ 𝜐𝑥 ∗ 𝜐𝑦 ∗𝑙𝑛 𝑙𝑛 𝑌 ∗ (𝑋𝑠 − 𝑋𝑡) 𝑟𝑎𝑛𝑑𝑛 < 1.5 𝑥𝑡 ∗ 𝑘 𝑒𝑙𝑠𝑒 (11) 406

where randn() generates a random number with a normal distribution. 407

 408

Figure 3. Simulated Flight Path with the displacement impact and the controlling factor represented by Eq. 11. 409

In this study, we investigated the flight path of a dandelion seed on a rainy day, 410

where air resistance, humidity, and other factors affect the seed's ability to rise with the 411

wind. We conducted a simulation (shown in Figure 3) with 50 iterations, using a scaling 412

factor 𝑎 of 0.01 and x-y velocity of 1, starting from a random initial position of (0.1, 0.1) 413

and targeting a fixed point of (0.5, 0.5). At each iteration, we updated k using Eq. (10) and 414

calculated the seed's displacement using Eq. (11), based on a logarithmic function and a 415

random factor. 416

We plotted the seed's position at each iteration and checked if the target was reached. 417

When the seed reached the target point, the simulation ended, and the final position was 418

Computers 2023, 23, x FOR PEER REVIEW 12 of 28

plotted in green. It's worth noting that we did not consider the effect of wind speed on the 419

seed's flight path in this simulation, but it can be included by modifying the equations. 420

Our simulation results demonstrate the importance of controlling factors like k, in 421

finding the right targeted position of the dandelion seed at the end of the simulation time, 422

as it successfully landed on the point (0.5, 0.5) in our study. 423

Descending stage 424

The DO algorithm performs exploration at this level as well. After climbing a given 425

distance, dandelion seeds descend gradually. In the native DO algorithm, the movement 426

of dandelions is modelled by Brownian motion [32]. Since Brownian motion is normally 427

distributed at each update, it makes it easy for the solutions to explore new search com- 428

munities while the iterative updating process continues. The mathematical equation for 429

the Descending stage is represented by Eq. (12) 430

 431

𝑥𝑡+1 = 𝑥𝑡 − 𝑎 ∗ 𝛽𝑡 ∗ (𝑋𝑚𝑒𝑎𝑛_𝑡 − 𝑎 ∗ 𝛽𝑡 ∗ 𝑋𝑡) (12) 432

where 𝛽𝑡 is a random value that follows the normal distribution and represents 433

Brownian motion. The average position of the population in the ith iteration is denoted 434

by the variable 𝑋𝑚𝑒𝑎𝑛_𝑡, and Eq. (13) is used to find its value 435

 436

𝑋𝑚𝑒𝑎𝑛_𝑡 =
1

𝑝𝑜𝑝
∑ 𝑥𝑖

𝑝𝑜𝑝
𝑖=1 (13) 437

Landing stage 438

The DO algorithm emphasises the exvalue.action process throughout this stage. The 439

dandelion seed chooses its landing spot at random based on the first two stages. As the 440

iterations go, the DO will likely converge on the global best solution. As a result, the best 441

solution is the general area where dandelion seeds have the best chance of survival. Search 442

agents use the elite's remarkable knowledge in their areas to converge to the global opti- 443

mum. The optimal solution will emerge as the population evolves. Eq. (14) demonstrates 444

this behaviour. 445

𝑥𝑡+1 = 𝑥𝑒𝑙𝑖𝑡𝑒 + 𝑙𝑒𝑣𝑦(𝜆) ∗ 𝑎 ∗ (𝑥𝑒𝑙𝑖𝑡𝑒 − 𝑋𝑡 ∗ 𝛿) (14) 446

 447

Where 𝑥𝑒𝑙𝑖𝑡𝑒 represents the best position in the 𝑖th iteration, and the levy can be 448

determined using Eq. (15). 449

 450

𝑙𝑒𝑣𝑦(𝜆) = 𝑠 ×
𝜔 × 𝜎

|𝑡|
1
𝛽

 (15) 451

Where 𝛽 is a random value over [0, 2], and in DO the used value is 𝛽 = 1.5. 𝑠 is a 452

constant value of 0.01. 𝑡 and 𝑤 are random values over [0, 1]. Eq. (16) is used in DO to find 453

𝜎 value. Also, 𝛿 is a variable with a value over [0, 2] and it can be determined using Eq. 454

(17) 455

𝜎 = (
𝑟 (1+ 𝛽) × 𝑠𝑖𝑛𝑠𝑖𝑛 (

𝜋𝛽

2
)

𝑟 (
1+𝛽

2
) × 𝛽 × 2

(
𝛽−1

2)
) (16) 456

 457

 458

𝛿 =
2𝑡

𝑇
 (17) 459

The pseudocode of the DO algorithm is presented in Figure 4. As we have stated 460

previously, the DO algorithm is a population-based optimization algorithm that aims to 461

find the best solution for a given problem. It utilizes a set of dandelion seeds, each repre- 462

senting a potential solution, and iteratively updates their positions to search for the opti- 463

mal solution. 464

 465

As listed by the pseudocode, the algorithm takes three input parameters: the popu- 466

lation size (pop), the maximum number of iterations (T), and the variable dimension 467

Computers 2023, 23, x FOR PEER REVIEW 13 of 28

(Dim). The output of the algorithm is set to be returning the best solution position (Xbest) 468

and its corresponding fitness value (fbest). Initially, the dandelion seeds are randomly 469

initialized. The fitness value of each seed is calculated based on the problem-specific fit- 470

ness function. The optimum dandelion seed (Xelite) is selected based on its fitness value, 471

representing the current best solution found. The algorithm subsequently enters a loop 472

that lasts until the maximum number of iterations is reached. Within each iteration, the 473

algorithm goes through three stages: rise, decline, and land. 474

In the rise stage, a random number is generated from a normal distribution. If the 475

generated number is less than 1.5, adaptive parameters are generated using Eq. (8), and 476

the dandelion seeds are updated using Eq. (5). This stage aims to explore the search space 477

by allowing the seeds to move in a more exploratory manner. While in the decline stage, 478

the dandelion seeds are updated using Eq. (13). This stage models the declining move- 479

ment of the seeds and helps to refine the solutions by exploiting the search space. In con- 480

trast, within the land stage, the dandelion seeds are updated using Eq. (15). This stage 481

represents the final convergence towards the best solution by incorporating the infor- 482

mation from the elite seed. 483

It's noteworthy to mention that, after each stage, the dandelion seeds are arranged in 484

order of their fitness values, from good to bad. The elite seed (Xelite) is updated based on 485

its fitness value, ensuring it represents the current best solution found. Throughout the 486

iterations, if the fitness value of Xelite is better than the fitness value of Xbest, Xbest and 487

fbest are updated accordingly. The loop continues until the maximum number of itera- 488

tions is reached. Ultimately, the algorithm returns the best solution position (Xbest) and 489

its corresponding fitness value (fbest). 490

By combining the rise, decline, and land stages, the DO algorithm balances explora- 491

tion and exploitation to efficiently search for the optimal solution. The algorithm's effec- 492

tiveness depends on the appropriate selection of parameters, such as the population size, 493

the maximum number of iterations, and the formulation of adaptive parameters in Eqs. 494

(8), (11), (13), and (15). 495

Algorithm 1: Pseudo-code of DO algorithm

Input: The population size pop, the maximum number of iterations T, and var-

iable dimension Dim

Output: Xbest: is the Best solution position

fbest : is the fitness of the Best solution

Initialize dandelion seeds X of DO

Calculate the fitness value f of each dandelion seeds.

Select the optimum dandelion seed Xelite according to fitness value.

while (t < T) do

 /* Rise stage */

 if randn() < 1.5 do

 Generate adaptive parameters using Eq. (8)

 Update dandelion seeds using Eq. (5)

 else if do

 Generate adaptive parameters using Eq. (11)

 Update dandelion seeds using Eq. (10)

 endif

 /* Decline stage */

 Update dandelion seeds using Eq. (13)

Computers 2023, 23, x FOR PEER REVIEW 14 of 28

 /*Land stage */

 Update dandelion seeds using Eq. (15)

 Arrange dandelion seeds from good to bad according to fitness values.

 Update Xelite

 if f(Xelite) < f(Xbest)

 Xbest = Xelite , fbest = f(Xelite)

 end if

 t = t +1.

 end while

Return Xbest and fbest

Figure 4. Pseudocode of the Native DO Algorithm. 496

4. Case Study: Applying the Proposed IDO Algorithm for Spam Email Detection 497

In this section, the proposed IDO algorithm will be explained in detail and highlight- 498

ing the key improvement to the native DO algorithm that has helped in advancing the 499

performance of the new version of the proposed IDO algorithm. Afterwards, as a way to 500

prove the robustness of the algorithm, an application for spam email detection is used in 501

testing the performance. 502

In order to improve the performance of the DO algorithm, the LSAF algorithm is 503

used in optimizing the process of finding the best solution. The LSAF algorithm is a local 504

search algorithm that aims to improve the quality of the best solution found by iteratively 505

exploring the search space through the adaptive flipping of selected features. As pre- 506

sented in Figure 5, the algorithm starts with an initial best solution position (Xbest) and 507

its corresponding fitness value (fbest). 508

The algorithm utilizes two variables: Lt, which stores the current iteration of the 509

LSAF algorithm, and LSAMaxItr, which represents the maximum number of iterations for 510

the LSAF algorithm. Initially, a temporary solution (Temp) is set to the current best solu- 511

tion (Xbest). The algorithm enters a loop that continues until Lt reaches the LSAMaxItr. 512

Within each iteration, a variable SWOneZero is calculated as Lt divided by LSAMaxItr. If 513

SWOneZero is greater than 0.7, it indicates that the algorithm is in a stage where unse- 514

lected features need to be flipped to 0. In this case, three random features from Temp are 515

selected, and all of them are flipped to 0 (unselected). 516

While on the other hand, If SWOneZero is less than or equal to 0.7, it indicates that 517

the algorithm is in a stage where selected features need to be flipped to 1. Again, three 518

random features from Temp are selected, and all of them are flipped to 1 (selected). After 519

the feature flipping, the fitness of the updated Temp solution is calculated as newfitness. 520

If the newfitness is better than the current fbest, Xbest and fbest are updated to the values 521

of Temp and newfitness, respectively. 522

Additionally, if the newfitness is equal to fbest and the number of selected features 523

in Temp (NUMF(Temp)) is less than the number of selected features in Xbest 524

(NUMF(Xbest)), Xbest and fbest are updated to the values of Temp and newfitness, re- 525

spectively. This step ensures that the algorithm selects solutions with a lower number of 526

selected features if their fitness values are the same. It is noteworthy to mention that after 527

each iteration, Lt is incremented by 1, and when the maximum number of iterations is 528

reached, the algorithm returns the final best solution (Best). 529

The LSAF algorithm combines local search and adaptive feature flipping to enhance 530

the quality of the best solution. By iteratively exploring the search space and adjusting the 531

selected features, the algorithm aims to converge towards an improved solution. The 532

Computers 2023, 23, x FOR PEER REVIEW 15 of 28

effectiveness of the algorithm depends on the appropriate set of parameters such as LSA- 533

MaxItr and the selection of features for flipping. Overall, the LSAF algorithm provides a 534

practical approach to improve the performance of optimization algorithms by focusing on 535

local search and adaptive feature selection. It has been used successfully in various opti- 536

mization problems and can be customized based on specific requirements and problem 537

characteristics, which will be one of the key features of our proposed IOD algorithm. 538

Algorithm 2: Pseudo-code of LSAF algorithm

Xbest: is the Best solution position

fbest : is the fitness of Best solution

Lt = 1 (Lt is variable to store the current iteration of the LSAF algorithm)

LSAMaxItr= 10 (LSAMaxItr is the maximum number of iteration of LSAF algo-

rithm)

 Temp = Xbest

 while Lt <= LSAMaxItr

 SWOneZero=t/T;

 if SWOneZero > 0.7

 select 3 random features from temp and flip all to 0 (unselected fea-

tures)

 else

 select 3 random features from temp and flip all to 1 (selected features)

 endif

 newfitness= fit(temp)

 if newfitness < fbest

 Xbest = temp.

 fbest = newfitness;

 endif

 if newfitness = fbest AND NUMF(temp) < NUMF(Xbest)

 Xbest = temp.

 fbest = newfitness;

 endif

 Lt = Lt +1.

 Endwhile

return Best

Figure 5. Pseudocode of LSAF algorithm 539

Figure 6 demonstrates the improvement that is proposed in the IDO algorithm. The 540

highlighted part of the presented pseudocode, where the LSAF algorithm begins after 5 541

iterations. We have designed the algorithm with such an indicator to notify that the algo- 542

rithm has reached a milestone or checkpoint after every five iterations to apply the LSAF 543

algorithm in optimizing the best solution. This suggests that the LSAF algorithm is incor- 544

porated into the larger algorithm as a means of enhancing the solution quality. Algorithm 545

2 is executed specifically at these milestone points to provide an opportunity for local 546

Computers 2023, 23, x FOR PEER REVIEW 16 of 28

search and adaptive feature flipping, which can potentially refine the current best solu- 547

tion. 548

Afterwards, the algorithm will execute another condition that checks if the popula- 549

tion size (pop) is greater than a minimum value (popmin). This condition ensures that the 550

population size is above a certain threshold to proceed with updating the population val- 551

ues using Equation (18). The specific details of Equation (18) are not provided here, but it 552

represents a mathematical formula or calculation used to determine the new population 553

size based on the set criteria demonstrated in Equation (18). 554

𝑝𝑜𝑝 = ⌊𝑝𝑜𝑝𝑚𝑎𝑥 − (((𝑝𝑜𝑝𝑚𝑎𝑥 − 𝑝𝑜𝑝𝑚𝑖𝑛) ∗
𝑡

𝑇
))⌋ (18) 555

where 𝑝𝑜𝑝𝑚𝑎𝑥 = 𝑝𝑜𝑝 556

 𝑝𝑜𝑝𝑚𝑖𝑛 = ⌊
𝑝𝑜𝑝

2
⌋ 557

 558

After updating the population size, the fittest solutions are selected according to the 559

new population value. This implies that only the most promising individuals or solutions 560

are retained, while others may be discarded or replaced. The specific method for selecting 561

the fittest solutions is not specified in the given pseudocode snippet. Ultimately, the iter- 562

ation counter (t) is incremented by 1, indicating the completion of one iteration of the 563

larger algorithm. This ensures the progression of the algorithm towards its termination 564

condition or the maximum number of iterations. 565

In summary, the IDO algorithm has been hybridized with the LSAF algorithm as a 566

way to enhance the current best solution at specific milestone points, update the popula- 567

tion size based on the mathematical equation 18, and select the fittest solutions. These 568

steps contribute to the overall optimization process and improvement of the algorithm's 569

performance. 570

5. Experimental Results and Discussions 571

The experimental results were obtained using the spam base dataset [33], which con- 572

sists of 4,601 instances with 57 features, as listed in Table 3. The dataset was used to eval- 573

uate the performance of the proposed IOD algorithm along with the other state of arts as 574

well as the native DO algorithm. 575

The parameters used for all experiments were as follows: a population size of 10, 100 576

iterations, and 30 runs refer to the details listed in Table 4. The K-Fold cross-validation 577

technique with 10 folds was employed to ensure a robust evaluation of the algorithm's 578

performance. Table 3 lists the main statistics of the dataset. 579

These parameter settings were chosen to discover a balance between computational 580

efficiency and obtaining reliable results. A population size of 10 was selected to maintain 581

diversity within the population while keeping the computational overhead manageable. 582

The number of iterations was set to 100 as a way to allow sufficient time for the algorithm 583

to converge and explore the search space effectively. By conducting 30 runs, the study 584

aimed to account for the inherent randomness of the algorithm and obtain statistically 585

significant results. Table 4 lists the main parameter settings of the experimental setup that 586

was used in testing our proposed IDO algorithm along with the benchmarked methods. 587

Also, it is important to highlight that, in our experimental setup, we have taken spe- 588

cific measures to address potential overfitting concerns and promote the generalization 589

performance of the proposed IDO algorithm. One crucial aspect was the utilization of K- 590

Fold cross-validation with 10 folds. This technique plays a pivotal role in mitigating over- 591

fitting by systematically dividing the dataset into 10 subsets. During each iteration, nine 592

of these subsets are utilized for training, while the remaining one serves as the test set. 593

This process is iterated 10 times, ensuring that each subset functions as the test set once. 594

By doing so, we obtain a more realistic estimation of the algorithm's ability to generalize 595

beyond the training data, reducing the risk of overfitting. 596

Computers 2023, 23, x FOR PEER REVIEW 17 of 28

Furthermore, our choice of parameter settings, such as a population size of 10, 100 597

iterations, and 30 runs, was made with a keen focus on striking a balance between com- 598

putational efficiency and obtaining reliable results. A population size of 10 was deliber- 599

ately chosen to maintain diversity within the population while keeping computational 600

overhead manageable. The 100 iterations allowed ample time for the algorithm to con- 601

verge and explore the search space effectively, while conducting 30 runs accounted for 602

the inherent randomness of the algorithm, leading to statistically significant results. These 603

parameter settings and evaluation techniques were meticulously selected to ensure a com- 604

prehensive and robust analysis of the proposed IDO algorithm's performance on the spam 605

base dataset, all while addressing potential overfitting concerns. 606

Overall, these parameter settings and evaluation techniques were carefully chosen to 607

ensure a comprehensive and robust analysis of the proposed approach's performance on 608

the spam base dataset. 609

Table 3. Details of the used spam base dataset [33] 610

Number of fea-

tures

Number of in-

stances

57 4601

 611

Table 4. Parameters setting of all experiments 612

Parameter Value

Population size 10

Number of itera-

tions

100

Number of runs 30

KFOLD 10

 613

 614

Algorithm 2: Pseudo-code of IDO algorithm

Input: The population size pop, the maximum number of iterations T, and

variable dimension Dim

Output: Xbest: is the Best solution position

fbest : is the fitness of the Best solution

Initialize dandelion seeds X of DO

Calculate the fitness value f of each dandelion seeds

Select the optimum dandelion seed Xelite according to fitness value

while (t < T) do

 /* Rise stage */

 if randn() < 1.5 do

 Generate adaptive parameters using Eq. (8)

 Update dandelion seeds using Eq. (5)

 else if do

 Generate adaptive parameters using Eq. (11)

 Update dandelion seeds using Eq. (10)

Computers 2023, 23, x FOR PEER REVIEW 18 of 28

 endif

 /* Decline stage */

 Update dandelion seeds using Eq. (13)

 /*Land stage */

 Update dandelion seeds using Eq. (15)

 Arrange dandelion seeds from good to bad according to fitness val-

ues

 Update Xelite

 if f(Xelite) < f(Xbest)

 Xbest = Xelite , fbest = f(Xelite)

 end if

 if mod(t,5)==0

 Apply Algorithm 2 (LSAF) to improve Xbest solution.

 end if

 If pop > popmin

 Update pop value using Eq. (18)

 Take the fittest solutions according to the new pop value.

 end if

 t = t +1.

 end while

Return Xbest and fbest

Figure 6. Pseudocode of the Proposed IDO algorithm. 615

 616

Optimization algorithms in general rely on various parameters that control their be- 617

havior and guide the search for optimal solutions. Table 5 outlines the parameter settings 618

for each optimization algorithm considered in our study and to benchmark our proposed 619

IDO algorithm. These parameters play a crucial role in determining the algorithm's con- 620

vergence, exploration-exploitation balance, and overall performance. 621

 622

 623

 624

Table 5. Parameter Settings for Optimization Algorithms 625

Algo-

rithm

Parameter

IDO K [0, 1]

𝛼 [0, 1]

LSAMaxItr= 10

DO K [0, 1]

𝛼 [0, 1] As in [31]

Computers 2023, 23, x FOR PEER REVIEW 19 of 28

GNDO 𝝱 random number over [0,1 [31]

ChOA As [34]

PSO Inertia Weights (W1 = 0.9,

W2 = 0.4)

Acceleration constants (C1 =

2, C2 = 2) [35]–[37]

GA Crossover_ratio = 0.9

Mutation_ratio = 0.1 [36],

[38], [39]

GOA c_Max = 1

c_Min = 0.00004 [40]

ALO I = 1 [41]

DA As in [42]

 626

As the main use case that has been adopted in this paper to demonstrate a real-world 627

application for measuring the performance of our proposed IDO algorithm, the spam 628

email detection system’s architecture is presented in Figure 7. The figure demonstrates 629

the potential use of the proposed algorithm by the email server in classifying authen- 630

tic/spam emails in an automated fashion based on its mechanism of feature selection and 631

its efficiency in finding the best fit in classifying the type of such emails. 632

 633

 634

Figure 7. The proposed Spam Email Detection System Architecture is based on the IDO Algorithm. 635

 636

Figure 8 illustrates the convergence behaviour for each of the experimented algo- 637

rithms along with our proposed IDO. It is very obvious that our proposed IDO algorithm 638

was very efficient in quickly converging its fitness straight after 5 iterations from the start 639

of the simulation’s run. It is worth noting that the reason behind that was the introduced 640

feature of tuning with the help of the hybrid solution of LSAF, which takes place after 641

every 5 iterations as described in pseudocode in Figure 6. 642

 643

Computers 2023, 23, x FOR PEER REVIEW 20 of 28

 644

Figure 8. Convergence Analysis of the Obtained Fitness Throughout 100 Iterations. 645

 646

Table 6 presents a comparison of the IDO algorithm with several other optimization 647

algorithms based on their average classification accuracy in 30 runs. Among the algo- 648

rithms evaluated, our proposed IDO algorithm has achieved the highest average classifi- 649

cation accuracy of 0.9468. This indicates that IDO performed exceptionally well in opti- 650

mizing the classification of the spam emails task compared to the other algorithms. 651

The second-best algorithm in terms of accuracy was the native DO algorithm, with 652

an average classification accuracy of 0.9355. Although DO falls slightly behind IDO, it still 653

demonstrates strong performance in optimizing the classification task. Hence, the effec- 654

tiveness of the proposed improvement using the LSAF algorithm has been demonstrated, 655

showcasing its ability to enhance the quality of the best final solution. By incorporating 656

the LSAF algorithm into the optimization process, significant improvements in the overall 657

optimization performance have been achieved. This highlights the importance of incor- 658

porating advanced mechanisms, such as the LSAF algorithm, to enhance the accuracy and 659

reliability of the final solution. 660

Following DO, GNDO obtained an average classification accuracy of 0.9148, posi- 661

tioning it as the third-best performing algorithm in this comparison. While, ChOA, PSO, 662

and GA achieved average classification accuracies of 0.9020, 0.9137, and 0.9259, respec- 663

tively, which are relatively close to each other. These algorithms demonstrate a moderate 664

level of performance in comparison to the top-performing IDO and DO algorithms. 665

GOA, ALO, and DA have obtained average classification accuracies of 0.8986, 0.8982, 666

and 0.9148, respectively. While these algorithms achieved lower accuracy compared to the 667

top-performing algorithms, they still show potential in optimizing the classification task. 668

Overall, the results indicate that IDO outperformed the other optimization algo- 669

rithms in terms of average classification accuracy. This suggests that IDO is a promising 670

algorithm for tackling classification problems, specifically problems such as email spam 671

detection. However, further analysis and experimentation may be required to validate the 672

statistical significance of these results and to understand the strengths and weaknesses of 673

each algorithm in more detail. 674

Hence, the fitness performance of each algorithm has been measured and reported 675

for each algorithm as presented in Table 7. Table 7 presents the comparison of IDO with 676

other algorithms based on the average fitness value obtained from 30 runs. The lower the 677

fitness value, the better the performance of the algorithm. 678

From the results, it is evident that IDO achieves the lowest average fitness value of 679

0.0565, indicating its superiority in optimizing the objective function compared to the 680

other algorithms. This demonstrates the effectiveness of the proposed IDO algorithm in 681

finding high-quality solutions that minimize the fitness value. 682

Among the other algorithms, DO and GA exhibit relatively good performance with 683

average fitness values of 0.0675 and 0.0784, respectively. This suggests that these 684

Computers 2023, 23, x FOR PEER REVIEW 21 of 28

algorithms are capable of converging towards favourable solutions, although they are 685

slightly less effective than IDO. 686

On the other hand, algorithms such as GNDO, ChOA, PSO, GOA, ALO, and DA ex- 687

hibit relatively higher average fitness values ranging from 0.0911 to 0.1058. These results 688

indicate that these algorithms might struggle to converge to optimal solutions or might be 689

more sensitive to the optimization problem at hand, this is what was also witnessed by 690

the presented convergence behaviour in Figure 8. 691

Overall, the comparison highlights the competitiveness of IDO in terms of achieving 692

lower average fitness values, indicating its effectiveness in optimization tasks. These re- 693

sults provide valuable insights into the performance of various algorithms and can guide 694

researchers and practitioners in selecting the most suitable algorithm for their specific op- 695

timization needs. 696

 697

Table 6. Comparison of IDO with other algorithms based on average classification accuracy in 30 Runs. 698

Algorithm Accuracy

IDO 0.9468

DO 0.9355

GNDO 0.9148

ChOA 0.9020

PSO 0.9137

GA 0.9259

GOA 0.8986

ALO 0.8982

DA 0.9148

 699

Table 7. Comparison of IDO with other algorithms based on average fitness value in 30 runs 700

Algorithm Fitness

IDO 0.0565

DO 0.0675

GNDO 0.0927

ChOA 0.1026

PSO 0.0926

GA 0.0784

GOA 0.1055

ALO 0.1058

DA 0.0911

 701

Table 8 provides a comparison of IDO with other algorithms based on the average 702

number of selected features obtained from 30 runs out of the supplied dataset of email 703

classification (Spam/Non-spam). The number of selected features is an important aspect 704

of feature selection tasks, where a lower number indicates a more concise and relevant 705

feature subset. 706

From the results, it is evident that IDO achieves the lowest average number of se- 707

lected features, with a value of 20.4. This indicates that IDO is capable of identifying a 708

compact and informative subset of features that contribute significantly to the 709

Computers 2023, 23, x FOR PEER REVIEW 22 of 28

optimization problem. The ability to select a smaller number of features can lead to im- 710

proved efficiency, reduced complexity, and enhanced interpretability of the developing 711

model. 712

Among the other algorithms, DO and GA also demonstrate relatively good perfor- 713

mance with average numbers of selected features of 22.7 and 28.7, respectively. This sug- 714

gests that these algorithms are effective in identifying relevant features while maintaining 715

a reasonably low feature subset size, but not as concise as our proposed IDO algorithm, 716

especially with such a critical email spam detection application. 717

On the other hand, algorithms such as GNDO, ChOA, PSO, GOA, ALO, and DA ex- 718

hibit higher average numbers of selected features ranging from 29.5 to 48.2. These results 719

indicate that these algorithms may tend to select a larger number of features, which can 720

potentially lead to increased complexity and reduced interpretability of the resulting 721

model. 722

Generally speaking, the comparison highlights the superior performance of IDO in 723

achieving a lower average number of selected features, indicating its effectiveness in fea- 724

ture selection tasks. These results provide valuable insights into the capability of various 725

algorithms in identifying relevant features and can assist researchers and practitioners in 726

selecting the most appropriate algorithm for their specific feature selection needs. 727

Table 8. Comparison of IDO with Other Algorithms Based on the Average Number of Selected Features in 728

30 runs. 729

Algorithm Number of selected

features

IDO 20.4

DO 22.7

GNDO 48.2

ChOA 32.1

PSO 41.1

GA 28.7

GOA 29.5

ALO 28.9

DA 38.9

 730

In another attempt to analyse the performance of our proposed IDO algorithm and 731

the benchmarked algorithms, Table 9 shows a comparison of IDO with other algorithms 732

based on the average execution time obtained from 30 runs. The duration of execution is 733

a crucial aspect to consider when evaluating optimization algorithms as it reflects their 734

computational efficiency and scalability. Hence, the obtained results demonstrate that 735

IDO achieves the shortest average execution time, with a value of 30.36. This signifies that 736

IDO exhibits high computational efficiency and converges to a solution in less time, as 737

evidenced by the results depicted in Figure 8. The efficient execution time of IDO renders 738

it suitable for applications requiring real-time or prompt outcomes, such as email spam 739

filtering. 740

Among the other algorithms examined, DO, GA, GOA, and ALO also exhibit rela- 741

tively low average execution times, ranging from 31.45 to 39.72. These algorithms show- 742

case commendable computational efficiency, delivering reasonably fast results. Con- 743

versely, algorithms such as GNDO, ChOA, PSO, and DA exhibit higher average execution 744

times, ranging from 55.11 to 119.66. These findings indicate that these algorithms demand 745

more computational resources and time to converge to a solution. While they may still be 746

Computers 2023, 23, x FOR PEER REVIEW 23 of 28

suitable for certain applications that can accommodate longer execution times, they may 747

not be as efficient as IDO, DO, GA, GOA, and ALO in terms of speed. 748

This comparison emphasizes the computational efficiency of IDO, which outper- 749

forms other algorithms in terms of average execution time. These results are valuable for 750

selecting the most appropriate algorithm based on the desired trade-off between accuracy 751

and computational efficiency. It is also important to mention that researchers and practi- 752

tioners can consider these results when choosing an algorithm for optimization tasks that 753

require fast results or have constraints on execution time. 754

Table 9. Comparison of IDO with Other Algorithms Based on Average Execution Time in Seconds out of 30 755

Runs. 756

Algorithm Time

IDO 30.36

DO 31.45

GNDO 119.66

ChOA 60.97

PSO 55.11

GA 39.72

GOA 41.46

ALO 36.19

DA 49.38

In Table 10, the statistical comparison of the proposed IDO algorithm with the bench- 757

marked algorithms is presented. The statistical results are obtained based on p-values uti- 758

lizing the Wilcoxon test. It is good to note that the p-value here is indicating the signifi- 759

cance level of the difference between the performance of our proposed IDO and the bench- 760

marked algorithms. When the p-values are less than 0.05 representing a statistically sig- 761

nificant difference. 762

From the statistical results, it can be noted that IDO demonstrates significantly dif- 763

ferent performance compared to all the other benchmarked algorithms. The p-values for 764

the other algorithms are extremely low (p < 0.05). This indicates a significant difference in 765

performance compared to our proposed IDO algorithm. This suggests that IDO outper- 766

forms these algorithms in terms of the evaluated criteria. 767

On the other hand, the p-values for DO, GNDO, ChOA, PSO, GA, GOA, ALO, and 768

DA are all bold and underlined, indicating that the difference in performance between 769

these algorithms and IDO is not statistically significant (p ≥ 0.05). This implies that there 770

is no significant difference in performance between IDO and these algorithms. 771

We can summarise from this statistical analysis that the results from the Wilcoxon 772

test suggest that IDO performs significantly better than several algorithms and shows 773

comparable performance to others. These findings demonstrate the effectiveness of IDO 774

in addressing the optimization problem and highlight its potential as a competitive algo- 775

rithm in the given context. 776

Table 10. Statistical Comparison of IDO with Other Algorithms Based on p-values using the Wilcoxon 777

test (P ≥ 0.05 are bold underlined) 778

Algorithm p-values

DO 2.12E-05

GNDO 1.10E-10

ChOA 2.89E-11

PSO 1.34E-10

Computers 2023, 23, x FOR PEER REVIEW 24 of 28

GA 1.76E-08

GOA 2.89E-11

ALO 2.88E-11

DA 1.09E-10

 779

Table 11. Comparison of IDO with Other Algorithms Based on the Standard Deviation of Accuracy in 30 780

Runs. 781

Algorithm The standard devia-

tion of accuracy

IDO 0.0074

DO 0.0104

GNDO 0.0146

ChOA 0.0139

PSO 0.0152

GA 0.0118

GOA 0.0122

ALO 0.0133

DA 0.0136

As another statistical analysis of the performance, Table 11 presents the comparison 782

of IDO with other algorithms based on the standard deviation of accuracy in 30 runs. The 783

standard deviation measures the dispersion or variability of the accuracy values obtained 784

from multiple runs for each algorithm. A smaller standard deviation indicates less varia- 785

bility and greater consistency in the algorithm's performance. 786

From the presented results in this table, it can be observed that IDO has the smallest 787

standard deviation of accuracy compared to all the other algorithms. This indicates that 788

IDO consistently produces accurate results across multiple runs, with minimal variability 789

in its performance. On the other hand, the other algorithms, including DO, GNDO, ChOA, 790

PSO, GA, GOA, ALO, and DA, have slightly higher standard deviations, indicating com- 791

paratively higher variability in their performance. 792

The lower standard deviation of accuracy for IDO suggests that it is a robust and 793

stable algorithm, consistently providing accurate solutions across different runs. This sta- 794

bility is an important characteristic, as it indicates that the algorithm is less sensitive to 795

variations and fluctuations in the optimization process. Hence, the achieved statistical re- 796

sults presented in Table 11 illustrate that IDO beats the other algorithms not only in get- 797

ting high accuracy but also in demonstrating remarkable consistency and stability out of 798

its overall performance. Such findings highlight the reliability and efficacy of our pro- 799

posed IDO as an optimization algorithm for solving a wide range of highly sensitive op- 800

timization problems. 801

Table 12 lists the comparison of IDO with other algorithms, which is provided based 802

on the standard deviation of the obtained fitness values out of 30 runs. We have employed 803

the standard deviation of the obtained fitness values for each algorithm to provide us with 804

a measure of the variability or dispersion of fitness values obtained from multiple runs 805

for each of the implemented algorithms. It is noteworthy to mention that the smaller the 806

standard deviation is, the less variability and greater consistency in the fitness values pro- 807

duced by the algorithm. 808

Upon examining the results, it is evident that IDO exhibits the smallest standard de- 809

viation of fitness compared to all other algorithms. This implies that IDO consistently 810

Computers 2023, 23, x FOR PEER REVIEW 25 of 28

generates fitness values with minimal variability across multiple runs. In contrast, the 811

other algorithms, including DO, GNDO, ChOA, PSO, GA, GOA, ALO, and DA, exhibit 812

slightly higher standard deviations, indicating relatively greater variability in their fitness 813

values. 814

The lower standard deviation of fitness for IDO signifies its stability and consistency 815

in optimizing the fitness function. This stability is crucial as it indicates that IDO is less 816

sensitive to variations and fluctuations in the optimization process, consistently converg- 817

ing towards optimal or near-optimal solutions. 818

To summarize, the results from Table 12 indicate that IDO not only achieves compet- 819

itive fitness values but also demonstrates superior consistency and stability compared to 820

the other algorithms. This highlights the robustness and reliability of IDO as an optimiza- 821

tion algorithm for the given problem. It is also worth noting that while IDO shows the 822

lowest standard deviation of fitness, the differences among the algorithms' standard de- 823

viations are relatively small. This suggests that all the algorithms perform reasonably well 824

in terms of stability, but IDO stands out as the most consistent among them. 825

Table 12. Comparison of IDO with Other Algorithms Based on the Standard Deviation of Fitness in 30 Runs 826

Algorithm The standard deviation

of accuracy

IDO 0.0073

DO 0.0102

GNDO 0.0145

ChOA 0.0134

PSO 0.0148

GA 0.0118

GOA 0.0120

ALO 0.0130

DA 0.0132

 827

6. Conclusions and Future Works 828

In this paper, we have proposed and evaluated the Improved Dandelion Optimiza- 829

tion (IDO) algorithm for solving the optimization problem, especially spam email detec- 830

tion applications. Through extensive experiments and comparisons with several state-of- 831

the-art algorithms, we have demonstrated the effectiveness and superiority of IDO in 832

terms of classification accuracy, fitness value, number of selected features, execution time, 833

and statistical significance. The experimental results clearly show that IDO consistently 834

outperforms other algorithms in terms of classification accuracy, achieving an average 835

accuracy of 94.68%. Furthermore, IDO exhibits superior fitness values, with an average 836

fitness of 0.0565, indicating its ability to converge towards optimal or near-optimal solu- 837

tions. Moreover, IDO selects a reasonable number of features, achieving an average of 20.4 838

selected features, striking a good balance between accuracy and feature subset size. Be- 839

sides, IDO proves competitive execution times, with an average time of 30.36 seconds, 840

making it computationally efficient for practical applications. The statistical comparison 841

using the Wilcoxon test further validates the significance of IDO's performance improve- 842

ments over other algorithms. 843

As future works, though IDO has displayed promising results, there are several ave- 844

nues for future research to explore, such as parameter tuning. Investigating the impact of 845

different parameter settings on IDO's performance and exploring automated methods for 846

Computers 2023, 23, x FOR PEER REVIEW 26 of 28

parameter selection and adaptation could be one of the potential further works to be in- 847

vestigated. The IDO algorithm could be explored to solve some other real-world applica- 848

tions. Apply IDO to real-world optimization problems in various domains such as 849

healthcare, finance, engineering, and logistics to assess its performance and scalability 850

with high constraints and noisy data. 851

 852
Author Contributions: Mohammad: Writing- Original draft preparation, Conceptualization, Meth- 853
odology, Software. Feras: Supervision, revising and editing. Ali: Visualization, Investigation, Writ- 854
ing-final draft. Seyedali: Supervision and Editing. 855

Funding: This research received no external funding. 856

Data Availability Statement: The datasets generated during and/or analysed during the current 857
study are available from the corresponding author upon reasonable request. 858

Conflicts of Interest: The authors declare no conflict of interest. 859

Acknowledgement: The authors would like to express their gratitude for the support given by 860
Zayed University, as part of the Research Incentive Fund, R21092. 861

References 862

[1] Y. E. Suzuki and S. A. S. Monroy, “Prevention and mitigation measures against phishing emails: a sequential 863

schema model,” Security Journal, vol. 35, no. 4, pp. 1162–1182, 2022, doi: 10.1057/s41284-021-00318-x. 864

[2] Anti-Phishing Working Group, “Phishing activity trends report: 3rd quarter 2020,” 2020. [Online]. Available: 865

https://docs.apwg.org/reports/apwg_trends_report_q3_2020.pdf 866

[3] J. Doshi, K. Parmar, R. Sanghavi, and N. Shekokar, “A comprehensive dual-layer architecture for phishing and 867

spam email detection,” Comput Secur, vol. 133, p. 103378, Oct. 2023, doi: 10.1016/j.cose.2023.103378. 868

[4] S. Back and J. LaPrade, “Cyber-Situational Crime Prevention and the Breadth of Cybercrimes among Higher 869

Education Institutions,” The The International Journal of Cybersecurity Intelligence and Cybercrime, vol. 3, no. 2, pp. 870

25–47, 2020, doi: 10.52306/rgws2555. 871

[5] N. Saidani, K. Adi, and M. S. Allili, “A semantic-based classification approach for an enhanced spam detection,” 872

Comput Secur, vol. 94, no. 2, pp. 43–56, 2020, doi: 10.1016/j.cose.2020.101716. 873

[6] Y. Khandelwal and R. Bhargava, “Spam filtering using AI,” Artificial Intelligence and Data Mining Approaches in 874

Security Frameworks, pp. 87–99, 2021. 875

[7] M. Amin, F. Al-Obeidat, A. Tubaishat, B. Shah, S. Anwar, and T. A. Tanveer, “Cyber security and beyond: De- 876

tecting malware and concept drift in AI-based sensor data streams using statistical techniques,” Computers and 877

Electrical Engineering, vol. 108, 2023, doi: 10.1016/j.compeleceng.2023.108702. 878

[8] V. Bhatnagar and V. Sharma, “Comparative study of Dandelion and Firefly algorithms for parameter estimation 879

of a dynamic system,” ISA Trans, vol. 102, pp. 121–131, 2020, doi: 10.1016/j.isatra.2019.11.004. 880

[9] A. Sharma, “A Novel Method for Detecting Spam Email using KNN Classification with Spearman Correlation 881

as Distance Measure,” 2016. 882

[10] M. Wang and L. Song, “Efficient defense strategy against spam and phishing email: An evolutionary game 883

model,” Journal of Information Security and Applications, vol. 61, p. 102947, Sep. 2021, doi: 884

10.1016/J.JISA.2021.102947. 885

[11] P. Kaur and K. Singh, “A study on spam email detection techniques,” International Journal of Computer Science 886

and Mobile Computing, vol. 6, no. 6, pp. 167–172, 2017. 887

Computers 2023, 23, x FOR PEER REVIEW 27 of 28

[12] M. Chandrasekhar, N. Venkateswaran, and S. Anand, “Content-based spam email detection using statistical 888

feature extraction techniques,” International Journal of Information Technology and Computer Science, vol. 8, no. 2, 889

pp. 31–39, 2016. 890

[13] T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami, “Contributions to the study of SMS spam filtering: New 891

collection and results,” in DocEng 2011 - Proceedings of the 2011 ACM Symposium on Document Engineering, 2011. 892

doi: 10.1145/2034691.2034742. 893

[14] J. Li, X. Li, L. Gao, J. Lu, and G. Li, “A deep learning approach for spam email detection,” Future Generation 894

Computer Systems, vol. 121, pp. 83–92, 2021. 895

[15] M. Azzouzi and A. Ghezal, “A new hybrid optimization algorithm for spam email detection,” J Ambient Intell 896

Humaniz Comput, vol. 10, no. 5, pp. 1967–1979, 2019. 897

[16] S. Mishra, S. P. Singh, and S. Singh, “Improved cuckoo search algorithm for email spam detection,” J Ambient 898

Intell Humaniz Comput, vol. 11, no. 4, pp. 1389–1397, 2020. 899

[17] S. Saha, J. Basak, and J. Sil, “A novel hybrid spam detection technique based on optimization algorithms,” J 900

Ambient Intell Humaniz Comput, vol. 12, no. 2, pp. 1821–1832, 2021. 901

[18] Z. F. Sokhangoee and A. Rezapour, “A novel approach for spam detection based on association rule mining and 902

genetic algorithm,” Computers and Electrical Engineering, vol. 97, 2022, doi: 10.1016/j.compeleceng.2021.107655. 903

[19] A. S. Mashaleh, N. F. Binti Ibrahim, M. A. Al-Betar, H. M. J. Mustafa, and Q. M. Yaseen, “Detecting Spam Email 904

with Machine Learning Optimized with Harris Hawks optimizer (HHO) Algorithm,” in Procedia Computer Sci- 905

ence, 2022. doi: 10.1016/j.procs.2022.03.087. 906

[20] A. Hosseinalipour and R. Ghanbarzadeh, “A novel approach for spam detection using horse herd optimization 907

algorithm,” Neural Comput Appl, vol. 34, no. 15, 2022, doi: 10.1007/s00521-022-07148-x. 908

[21] H. Mohammadzadeh and F. S. Gharehchopogh, “Feature Selection with Binary Symbiotic Organisms Search 909

Algorithm for Email Spam Detection,” Int J Inf Technol Decis Mak, vol. 20, no. 1, 2021, doi: 910

10.1142/S0219622020500546. 911

[22] R. Talaei Pashiri, Y. Rostami, and M. Mahrami, “Spam detection through feature selection using artificial neural 912

network and sine–cosine algorithm,” Mathematical Sciences, vol. 14, no. 3, 2020, doi: 10.1007/s40096-020-00327-8. 913

[23] G. Al-Rawashdeh, R. Mamat, and N. Hafhizah Binti Abd Rahim, “Hybrid Water Cycle Optimization Algorithm 914

with Simulated Annealing for Spam E-mail Detection,” IEEE Access, vol. 7, 2019, doi: 10.1109/AC- 915

CESS.2019.2944089. 916

[24] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 917

46–61, Mar. 2014, doi: 10.1016/j.advengsoft.2013.12.007. 918

[25] Z. Wang, S. Li, and Y. Wang, “Improved dandelion algorithm for global optimization problems,” IEEE Access, 919

vol. 8, pp. 30799–30810, 2020. 920

[26] Z. Wang and Y. Wang, “Dandelion algorithm with mutation for global optimization problems,” Math Probl Eng, 921

pp. 1–14, 2019. 922

[27] M. A. Javed and M. M. Al-Rifaie, “A comparative study of the Dandelion algorithm with recent swarm intelli- 923

gence algorithms. Applied Soft Computing,” Appl Soft Comput, vol. 84, p. 105712, 2019. 924

[28] A. S. Namin, S. Hosseinabadi, and A. S. Namin, “A novel hybrid Dandelion algorithm with biogeography-based 925

optimization for solving the economic emission load dispatch problem,” J Clean Prod, vol. 273, p. 122824, 2020. 926

[29] G. Xu, Z. Wang, and L. Sun, “Hybrid dandelion algorithm for global optimization problems,” Soft comput, vol. 927

24, pp. 10903–10915, 2020. 928

Computers 2023, 23, x FOR PEER REVIEW 28 of 28

[30] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary 929

Computation, vol. 1, no. 1, pp. 67–82, 1997, doi: 10.1109/4235.585893. 930

[31] S. Zhao, T. Zhang, S. Ma, and M. Chen, “Dandelion Optimizer: A nature-inspired metaheuristic algorithm for 931

engineering applications,” Eng Appl Artif Intell, vol. 114, 2022, doi: 10.1016/j.engappai.2022.105075. 932

[32] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian motion,” Physical Review, vol. 36, no. 5, 1930, 933

doi: 10.1103/PhysRev.36.823. 934

[33] M. Hopkins, E. Reeber, G. Forman, and J. Suermondt, “UCI Machine Learning Repository,” Jul. 01, 1999. 935

https://archive.ics.uci.edu/ml/datasets/spambase (accessed Feb. 28, 2023). 936

[34] M. Khishe and M. R. Mosavi, “Chimp optimization algorithm,” Expert Syst Appl, vol. 149, p. 113338, Jul. 2020, 937

doi: 10.1016/J.ESWA.2020.113338. 938

[35] E. BAŞ and E. ÜLKER, “An efficient binary social spider algorithm for feature selection problem,” Expert Syst 939

Appl, vol. 146, 2020, doi: 10.1016/j.eswa.2020.113185. 940

[36] A. E. Hegazy, M. A. Makhlouf, and G. S. El-Tawel, “Improved salp swarm algorithm for feature selection,” 941

Journal of King Saud University - Computer and Information Sciences, vol. 32, no. 3, 2020, doi: 942

10.1016/j.jksuci.2018.06.003. 943

[37] T. Thaher, A. A. Heidari, M. Mafarja, J. S. Dong, and S. Mirjalili, “Binary Harris Hawks Optimizer for High- 944

Dimensional, Low Sample Size Feature Selection,” 2020. doi: 10.1007/978-981-32-9990-0_12. 945

[38] S. Arora and P. Anand, “Binary butterfly optimization approaches for feature selection,” Expert Syst Appl, vol. 946

116, 2019, doi: 10.1016/j.eswa.2018.08.051. 947

[39] A. E. Hegazy, M. A. Makhlouf, and G. S. El-Tawel, “Feature Selection Using Chaotic Salp Swarm Algorithm for 948

Data Classification,” Arab J Sci Eng, vol. 44, no. 4, 2019, doi: 10.1007/s13369-018-3680-6. 949

[40] S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper Optimisation Algorithm: Theory and application,” Advances 950

in Engineering Software, vol. 105, pp. 30–47, 2017, doi: 10.1016/j.advengsoft.2017.01.004. 951

[41] S. Mirjalili, “The ant lion optimizer,” Advances in Engineering Software, vol. 83, pp. 80–98, 2015, doi: 10.1016/j.ad- 952

vengsoft.2015.01.010. 953

[42] S. Mirjalili, “Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, dis- 954

crete, and multi-objective problems,” Neural Comput Appl, vol. 27, no. 4, pp. 1053–1073, 2016, doi: 10.1007/s00521- 955

015-1920-1. 956

 957
 958

