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Abstract—Modern-day life is driven by electronic devices
connected to the internet. The emerging research field of the
Internet-of-Things (IoT) has become popular, just as there has
been a steady increase in the number of connected devices.
Although these devices are utilised to perform Computer Vision
(CV) tasks, it is essential to understand their power consumption
against performance. We report the power consumption profile
and analysis of the NVIDIA Jetson Nano board while performing
object classification. The authors present an extensive analysis
regarding power consumption per frame and the output in frames
per second using YOLOv5 models. The results show that the
YOLOv5n outperforms other YOLOV5 variants in terms of
throughput (i.e. 12.34 fps) and low power consumption (i.e. 0.154
mWh/frame).

Index Terms—Internet of things, edge computing, NVIDIA
Jetson Nano, Power consumption, Deep learning inference

I. INTRODUCTION

The rise of Artificial Intelligence (AI) and the continuous
generation of Big Data are creating computational challenges.
Central Processor Unitss (CPUs) are not enough to effi-
ciently run state-of-the-art AI algorithms or process all the
data generated by a wide range of sensors. World-leading
processing technology companies (such as NVIDIA, AMD,
Intel, ARM and Xilinx) have been looking closely into the
new requirements. They have been pushing the boundaries
of technology for delivering efficient and flexible processing
solutions.

Heterogeneous computing refers to the use of different
types of processor systems in a given scientific computing
challenge. Heterogeneous platforms are composed of different
types of computational units and technologies. Such media
can be composed of multi-core CPUs, Graphics Processor
Unitss (GPUs) and Field Programmable Gate Arrays (FPGAs)
acting as computational units and offering flexibility and
adaptability demanded by a wide range of application domains
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[1]. These computational units can significantly increase the
overall system performance and reduce power consumption
by parallelising concurrent operations that require substantial
CPU resources over long periods.

Accelerators like GPUs and FPGAs are massive parallel
processing systems that enable accelerating portions of code
that are parallelisable. Combining CPUs with GPUs and
FPGAs helps improve the performance by assigning different
computational tasks to specialised processing systems. GPUs
are optimised to perform matrix multiplications in parallel,
which is the major bottleneck in video processing and com-
puter graphics. Normally, images are captured by cameras and
the image stream is sent back to the cloud for processing using
AI algorithms. This process consists of visual data to a remote
endpoint on the internet and obtaining the response, in which
inference results are included. Generally, due to the initial
hardware cost of obtaining the appropriate equipment and
associated energy costs of running inference equipment, it is
cost-effective to employ cloud-based CV services than hosting
them locally, provided there is internet access. Moreover, many
cloud providers, including Amazon Web Services (AWS),
Azure, and Google Cloud offer free tier CV services, lowering
the initial costs, while allowing users to run their experiments
and optimise their applications.

For some small-scale projects, free tier service might be
sufficient. The goal of this work is to improve the quality of
service for the existing and new embedded devices that require
the use of embedded CV capabilities, which are normally
provided by the cloud. Bridging the gap between edge de-
ployed Internet of Things (IoT) devices and their cloud-based
processing endpoint, has the following advantages: 1) through-
put maximisation due to lower latency. Since the processing
endpoint is placed much closer to the execution device, the
latency is significantly lower; 2) providing CV capabilities in
places with no internet access. Since the endpoint devices are
internet independent; and 3) reduces the power consumption
and data storage needs because the data is processed locally
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and the volume of post-processed data to be transmitted to
the cloud is substantially less than raw data that is streamed
directly from cameras.

The NVIDIA Jetson Nano (NJN)1 was selected over other
heterogeneous Single Board Cumputers (SBCs) because it was
available in the laboratory where the experiences were per-
formed. The research aimed at evaluating the NJN in terms of
power consumption and CV throughput. The remainder of this
paper includes the literature review in Section II review, the
description of the CV hardware and software used in this work
in Section III, the description of the measurement procedure
in Section IV, the presentation of the results obtained and their
evaluation in Section V, and finally the conclusions that and
future work in Section VI

II. LITERATURE REVIEW

The number of internet-connected devices being used for
customised applications worldwide is rapidly increasing as
technology becomes more accessible and simple to use. Al-
though the estimate of 50 billion internet-connected devices by
2020 was contested back in 2016, it must be acknowledged
that 46 billion linked devices by the end of 2021 represent a
remarkably sizable quantity [2].

The first generation IoT devices can only send and collect
data for analysis for further processing. Advances in the later
generations of IoT are remarkable considering the hetero-
geneous Multi-Processor system-on-Chips (MPSoCs) [3] and
Adaptive Compute Acceleration Platforms (ACAPs) [4] which
enable users to perform more complex operations such as
running state-of-the-artAI algorithms at the edge [5].

The integration of AI with IoT, also known as Artificial
Intelligence of Things (AIoT), can have several advantages in
various domains and form ubiquitous ecosystems of intelligent
devices working together. Nevertheless, there are significant
challenges that must be overcome before the full realisation
of its potential. AIoTs help to improve our lives in a variety
of ways, from making daily jobs simpler to enhancing our
health and happiness [6]. Efforts are being made to develop
model compression and acceleration approaches to deploy
Deep Learning (DL) algorithms on mobile and embedded
devices to better satisfy the real-time application constraints
and user privacy protection [7]–[9].

IoT networks could experience failure as a result of in-
creased data traffic brought on by more IoT nodes [10]. The
biggest problem with IoT networks is that they might not have
enough memory to manage all the transaction data they need
to handle. The solution to this challenge is data compression, a
process that reduces the number of bits required to represent
data [11]. Data compression can reduce network bandwidth
requirements, increase speed file transfers, and conserve space
on storage systems [12]. With a minor accuracy loss, model
compression reduces the complexity and resources required
to compress those models. Model compression techniques

1Available online, https://developer.nvidia.com/embedded/
jetson-nano-developer-kit, last accessed 10/09/2023

include parameter reduction, encoding, encryption, and quan-
tisation [13], [14].

You Only Look Once (YOLO) [15] is a state-of-the-art
Convolutional Neural Network (CNN) that accurately detects
objects in real-time. This method processes the entire image
using a single neural network, then divides it into parts and
forecasts bounding boxes and probabilities for each compo-
nent. The predicted probability weighs these bounding boxes.
The technique ”only looks once” at the image, since it only
does one forward propagation loop through the neural network
before making predictions.

The classified objects are displayed after non-max suppres-
sion to ensure that each object is only identified once. Yang et
al. [16] propose a method based on YOLOv5 [17] to recognise
faces wearing masks. When people entered a store, they had
to stand in front of a camera, and if recognition succeeded,
they could enter through the gate. Additionally, the network
was able to classify even when a mask is worn but does not
cover the nose.

In general, computer tasks consume variable amounts of
energy, and the more processing, the more energy is con-
sumed. Yu et al. [18] proposes the use of the LynSyn Lite
Board (LSLB) for measuring power consumption and the
Power Measurement Utility Reinforcement Learning (PMU-
RL) algorithm to dynamically adjust the resource utilisation
of heterogeneous platforms in order to minimise power con-
sumption. The PMU-RL algorithm learns from the power
consumption patterns and measurements and controls the
programmable logic clock states. Each estimated state of the
clock is rewarded when the power consumption is decreased
without deteriorating the application performance.

The revised literature shows that it is important to better
understand the impact of running state-of-the-art AI algorithms
at the edge. Therefore, the authors benchmarked five variants
of YOLOv5 on the NJN and the LSLB for measuring power
consumption for each YOLOv5 variant and their outputs in
frames per second (fps).

III. METHODOLOGY

The utilised methods and hardware platform are discussed
in this section.

A. Hardware Platform

The NJN is a heterogeneous platform which was designed
to run efficient state-of-the-art AI applications. The NVIDIA
Jetpack Software Developer Kit (SDK) features a full set
of libraries for GPU-accelerated computing, Linux drivers,
and the Ubuntu operating system. The on-chip GPU can be
programmed using NVIDIA’s Compute Unified Device Ar-
chitecture (CUDA) for accelerating complex and parallelisable
algorithms. CUDA cores are Nvidia’s GPU equivalents of CPU
cores. They are built to handle several calculations at once,
which is an important feature for accelerating DL algorithms.

Nowadays, AI frameworks such as PyTorch and TensorFlow
are already integrated with the high-performance NVIDIA
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libraries to abstract the AI developers from the GPU hard-
ware complexity. Therefore, the NJN was selected over other
hardware platforms to benchmark the different YOLOv5 ar-
chitectures. The LSLB was connected to the NJN power rails
for measuring the power consumption during the AI inference.
Finally, the LSLB profiling tool and the onboard power sensors
were used to measure the power consumption whilst running
each of the YOLOv5 variants.

B. Deep Learning Architecture

YOLOv5 was selected over other DL methods because
it is composed of five variants2, namely the nano, small,
medium, large, and extra-large corresponding to YOLOv5n,
YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x respectively.
The YOLOv5 was implemented using the Pytorch framework
3 for delivering a user-friendly environment and optimised to
leverage from the GPU when required. The different YOLOv5
variants were benchmarked using the COCO2017 dataset
and the performance of YOLOv5 was performed using the
Ultralytics4 which is the recommended AI and deployment
platform. The COCO2017 pre-trained weights were used be-
cause the objective of this work is to estimate the power
consumption per neural network variant.

C. LynSyn Lite Board

LSLB5 is a power-profiling tool that was designed for
monitoring the power consumption of SBCs. Moreover, the
LSLB can measure both voltages and current from the power
rails in the target device under test and is utilised to extract
the power profile for that device. The LSLB can be connected
to the NJN through the Joint Test Action Group (JTAG), but
the NJN currently lacks JTAG debug capabilities, and therefore
the measurement will be done by connecting the NJN General
Purpose Input/Output (GPIO) pins.

Although the LSLB also serves the purpose of a JTAG
programming tool, it was specifically developed for power-
profiling Application Response Measurement (ARM) on Xil-
inx FPGA devices.

IV. MEASUREMENTS PROCEDURE

The LSLB viewer application is used to capture the power
usage of the NJN board running the different variants of the
YOLOv5. Figure 1 shows the hardware setup where it can
be seen that the power supply powers NJN through the power
rails of the LSLB. The LSLB is also wired to the NJN through
the GPIO of both boards. A laptop is connected to the NJN
using the ethernet port and to the LSLB through the USB bus.

Additionally, a custom Performance Benchmark Program
(PBP) application was designed to benchmark the performance
of NJN and collect the power measurements from the LSLB
while each of the YOLOv5 variants runs on the NJN. Figure 2

2Available online, https://github.com/ultralytics/YOLOv5, last accessed
01/07/2022

3Available online, https://pytorch.org/, last accessed 01/07/2022
4Available online, https://ultralytics.com/, last accessed 01/07/2022
5Available online, https://store.sundance.com/product/lynsyn-lite/, last ac-

cessed 01/07/2022

depicts a representation of the different states of the PBP
algorithm.

The PBP was initialised on the NJN using ssh. The PBP
loads the COCO2017 test dataset and the target YOLOv5
variants. The test images were exposed to the target YOLOv5
variants while the PBP monitors the signal events exchanged
through GPIO circuit between the NJN and LSLB. The PBP
starts a thread alongside the target YOLOv5 variants while
the GPIO is asserted low. The power measures, frame count,
and time needed to process each frame are recorded while
the signal is asserted low. The performance data is displayed
on the screen and the measurements are stored once the
process is completed (i.e. once the signal is asserted high).
To minimise measurement errors, all measurements were syn-
chronised using GPIO and repeated for intervals of 20, 40 and
60 seconds. To provide more data for comparison between the
power consumption of different YOLOv5 variants, using the
COCO2017 test dataset and a simple 640x480 video were
utilised.

The power consumption was computed using both the LSLB
and the built-in power sensor data. The relative error Rerror

was computed as function of the instaneous power measure
pmeasured and the average powera for all the measurements
pmeasured using Equation 1 [19]:

Rerror[%] =

∣∣∣∣1− ∆(pmeaured − paverage)

paverage

∣∣∣∣ .100 (1)

V. RESULTS AND EVALUATIONS

The power measurement was performed using the procedure
described in the previous section using Equation 1. Multiple
measurements were taken per each YOLOv5 variant when
running the AI inference on the test images and video.
The measurements were carried out in the laboratory with
limited precision and therefore is not possible to determine
the absolute error.

A. Performance

Figure 3 shows the that the YOLOv5n has an average
throughput of 12 fps when running on the NJN.

The pre-existing trained weights were used as part of the
implementation of YOLOv5 variants to determine the accura-
cies. Figure 4 shows YOLOv5x has the best accuracy while
the YOLOv5n has the worst accuracy when tested against the
COCO2017 dataset.

The average inference speed is 1 fps for the YOLOv5x.
The performance of YOLOv5x on NJN is substantially lower
than the other 4 variants. Nevertheless, the YOLOv5x achieves
an accuracy of 70% when tested against the COCO2007
dataset. The goal of this work is to measure the power
consumption and not the issues related to the accuracy of the
YOLOv5 variants. YOLOv5x is a suitable variant to use when
considering high detection accuracies without the need for
real-time performance. The number of parametes per YOLOv5
varant is depicted in Figure 5.
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Fig. 1. Hardware setup. The power supply is wired to NJN through the power rails in the LSLB. The LSLB is connected to the NJN via the GPIO headers
of both boards. A laptop is used to collect the power measurements from the LSLB using the USB port and from NJN through the ethernet

B. Jetson Nano in CPU Only Mode

The NJN features a Quad-core ARM Cortex-A57 processor
onboard, so setting the YOLOv5 network to run inference on
the CPU allows the acquisition of the performance expected.
Figure 6 depicts the AI inference performance and that com-
bining the CPU and GPU devices (i.e. NJN has a throughput
of 12 fps for YOLOv5n) outperforming it by a factor of 30
CPU inference - NJN (CPU) has a throughput of 0.4 fps for
YOLOv5n.

C. Power Consumption

Milliwatt-hour per frame (mWh/frame) is the measurement
unit for power consumption per each processed image frame.
This value is calculated according to Equation 2, where
Pframe is the consumed power per image frame, ts the
sampling period in seconds, Pavg the average power during
measurement, nframes the number of frames and constant Kc

= 3600 . 1000 used to convert from mWs to Wh.

Pframe =
ts.Pavg

nframes.Kc
(2)

Lower mWh/frame values mean less power is required
to perform inference per image frame. The results show
that YOLOv5x required 2.5 mWh/frame while the smallest
YOLOv5n only required 0.15 mWh/frame to perform the same
tasks, meaning that YOLOv5n is approximately 16 times more
power efficient while running on the NJN (see Figure 7).

The inference using the gls*cpu vs. CPU and GPU re-
duced the power consumption from 2.18 mWh/frame to 0.15
mWh/frame which represents a reduction of 2.03 mWh/frame
for the YOLOv5n. This is the benefit of combining heteroge-
neous platforms at the edge (see Figure 8).

The power performance is a crucial factor that should be
taken into consideration if the system is to be powered by a
battery power source.

The overall results of the power consumption are listed in
Table I

TABLE I
OVERALL RESULTS

Model Dataset Measuring device Device(s) under test fps Average Power Consumption (APC)
[mWh/frame]

YOLOv5n COCO2017 LSLB CPU + GPU 11.9 159
YOLOv5n COCO2017 LSLB CPU only 0.4 2183
YOLOv5n COCO2017 NJN Power Sensors CPU + GPU 11.7 161
YOLOv5n Test video NJN Power Sensors CPU + GPU 13.5 143
YOLOv5s COCO2017 LSLB CPU + GPU 5.9 354
YOLOv5s COCO2017 LSLB CPU only 0.1 6610
YOLOv5s COCO2017 NJN Power Sensors CPU + GPU 5.8 363
YOLOv5s Test video NJN Power Sensors CPU + GPU 6.5 328
YOLOv5m COCO2017 LSLB CPU + GPU 2.7 804
YOLOv5m COCO2017 NJN Power Sensors CPU + GPU 2.7 822
YOLOv5m Test Video NJN Power Sensors CPU + GPU 2.9 754
YOLOv5l COCO2017 LSLB CPU + GPU 1.6 1474
YOLOv5l COCO2017 NJN Power Sensors CPU + GPU 1.5 1501
YOLOv5l Test Video NJN Power Sensors CPU + GPU 1.7 1364
YOLOv5x COCO2017 LSLB CPU + GPU 0.9 2562
YOLOv5x COCO2017 NJN Power Sensors CPU + GPU 0.9 2580
YOLOv5x Test Video NJN Power Sensors CPU + GPU 1.0 2452

D. Comparing edge Computing With a Cloud Solution
Motivated by the low performance of the NJN while running

bigger YOLOv5 variant networks sizes such as YOLOv5x
the Azure CV service was utilised to evaluate the potential
performance of the NJN sending the frames to the cloud
for processing. A batch of measurements used an Azure S1
cloud instance to ensure that there were no bottlenecks in
the cloud. The latter is capable of processing 10 frames
per second, and the chosen location in the geographically
closest region at the time of writing was the UK-SOUTH. The
cloud performance is limited mostly by network throughput,
achieving only roughly 2 fps. This performance is equivalent
to locally running YOLOv5m and YOLOv5l.

Similarly, the power consumption is also equivalent to that
of locally running YOLOv5m and YOLOv5l. The APC needed
for sending one frame and obtaining the inference results from
the cloud is around 2.5 mWh/frame.

VI. CONCLUSIONS AND FUTURE WORK

The subject covered in this paper has several impacts on
ethical intelligent decision-making. By analysing the power



Fig. 2. PBP flow diagram.

consumption and data throughput of the NJN when running
different variants of the YOLOv5 model, the authors provide
valuable insights into the energy efficiency and performance
trade-offs in AI inference at the edge. This information is
essential for making informed decisions regarding the de-
ployment of AI systems in resource-constrained environments.
Ethical decision-making in this context involves considering
the environmental impact and sustainability of AI systems, en-
suring they operate efficiently without unnecessarily depleting
resources.

Moreover, the study demonstrates that combining both CPU
and GPU resources on the NJN outperforms using the CPU
alone for YOLOv5 inference. This finding highlights the

Fig. 3. Performance of various sized YOLOv5 models running on the NJN

Fig. 4. Accuracies of the YOLOv5 variants

Fig. 5. Number of parameters per YOLOv5 variants

Fig. 6. YOLOv5 Inference Performance Comparison between CPU and GPU
mode on Jetson Nano



Fig. 7. Power consumption per processed frame in mWh/frame

Fig. 8. Power consumption per processed frame in mWh/frame (YOLOv5n
and YOLOv5s)

importance of heterogeneity in AI systems for achieving opti-
mal performance. Ethical intelligent decision-making involves
considering the most efficient allocation of computational
resources to minimising energy consumption and maximising
performance while adhering to any constraints or limitations.

From a business perspective, the project opens up future
exploitable application areas. The authors show that the NJN
offers lower power consumption and higher data throughput
compared to combining the CPU performance with cloud ser-
vices like Azure. This finding suggests that the NJN can be a
cost-effective solution for AI inference at the edge, where real-
time processing and low latency are crucial. Businesses can
leverage the NJN to develop AI applications that require on-
device processing, such as autonomous vehicles, surveillance
systems, industrial automation, and robotics.

Furthermore, the authors highlight the ease of use and
AI acceleration capabilities of the NJN and similar NVIDIA
boards, thanks to full CUDA support. This accessibility and
compatibility with popular frameworks and libraries like Ten-
sorFlow, Darknet, and PyTorch make it easier for businesses
to adopt and integrate AI technologies into their existing
workflows. It creates a thriving community with abundant
knowledge, tips, and advice, facilitating the development and
deployment of AI applications.

For future work, the authors will expand this research to
other DL algorithms suitable to be used in edge devices.
The authors will also explore the use of Machine Learning
(ML) for estimation of power consumption and reducing
power consumption in real-time. Finally, it is also intended
to extend this work by performing the same tests using the
same methodology on MPSoC, ACAP and other commercial-
off-the-shelf heterogeneous platforms.
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