
The Barrier Tree Benchmark: Many Basins and Double Funnels
Tim Blackwell

t.blackwell@gold.ac.uk
Department of Computing, Goldsmiths, University of London

New Cross, London, SE14 6NW, UK

ABSTRACT
The Barrier Tree Benchmark (BTB) is a principled generator of
continuous real-valued landscapes: problems of known topogra-
phy/critical point structure can be systematically designed and
deployed in algorithm comparison studies. A previous BTB study
focused on a single funnel and a double basin. This work demon-
strates algorithm performance on BTB instances with many basins,
and on double funnels. A methodology for principled algorithm
comparison on families of problems of similar complexity and struc-
ture is proposed. It is hoped that the BTB will address a parameter
tuning pathology of current problem benchmarks, namely, that
common optimisation algorithms require widely different control
parameter settings for optimal performance on differing problem
classes. This pathology is traced to the irregular and arbitrary com-
position of standard benchmarks.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
optimisation, algorithm benchmarking, swarm intelligence

ACM Reference Format:
Tim Blackwell. 2023. The Barrier Tree Benchmark: Many Basins and Double
Funnels. In Genetic and Evolutionary Computation Conference (GECCO ’23),
July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3583131.3590478

1 INTRODUCTION
Benchmarking, or the assessment of algorithm relative performance
by application of a suite of test functions, is an integral part of
evolutionary algorithm (EA) research. In the absence of theoret-
ical analysis, the aim of benchmarking is a putative matching of
algorithm to problem. The outcome is important for real-world
application, and as a means of characterising algorithm behaviour
[16, 20, 30].

The two main benchmarks available to the EA community are
those provided by the Congress on Evolutionary Computation
(CEC) [14] and the Comparing Continuous Optimiser suite (COCO)
[9]. Although widely used, these benchmarks suffer numerous
pathologies.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0119-1/23/07.
https://doi.org/10.1145/3583131.3590478

First, they are comprised of a hetereogeneous collection of prob-
lems. Since algorithms typically need careful control parameter
tuning in order to deliver the best result on a particular problem,
relative comparison across the benchmark based on a single control
parameter setting, even if optimised on a smaller training set, is
of dubious value. Even though the test functions in the CEC and
COCO benchmarks can be grouped (unimodal, multi-modal, com-
position etc.), the classifications are broad and there is no guarantee
that an algorithm will deliver good performance on a novel prob-
lem of a broad class given that it has some proven success on a
representative of that class from the benchmark.

The second issue with existing benchmarks is that functions are
specified by combinations of mathematical functions. This speci-
fication, although helpful for evaluating test positions, produces
landscapes with only partial topographical information. For exam-
ple, number of critical points and the number, depth and widths of
its constituent basins are in not in general known, if not actually
disputed [22]. This partial knowledge hinders relating algorithm to
function property and prohibits the necessary narrower classifica-
tion of function types.

The Barrier Tree Benchmark (BTB) [27] was initiated in order
to address the above deficiencies. The underlying design principle
is the assembly of a landscape from basis functions (funnel and
basin). The construction procedure, by default, generates landscapes
whose properties are known rather than calculated, inferred or
guessed. The pay-off is a principled construction of test functions
and an opportunity to relate algorithm performance to function
topography.

This paper continues BTB development: a correction is made
to the previous funnel function definition; bi-funnel and highly
multi-modal Barrier Tree Functions (BTFs) are constructed; the
performance of four established algorithms are compared on these
BTFs; a population generalisation of a downhill walker algorithm
is proposed and trialled.

Section 2 provides further background on benchmarks, function
generators and particle swarm optimisation (PSO) performance in
various scenarios. The paper continues with an overview of the
Barrier Tree Benchmark (BTB) and an explanation of Barrier Tree
Function (BTF) construction (Secs 3 and 4). A correction to the
funnel function proposed in [27] is made in Sec. 4.

A high-level account of the BTF generator used for the experi-
ments reported in this paper follows (Sec. 5). These experiments,
which were not exhaustive, were designed to illustrate the deploy-
ment of the BTB in algorithm comparison. Methodology and results
are reported in Secs 6 and 7 wherein a new swarm algorithm, the
Swarm Walker (SW) is proposed, tested and (favourably) compared
to PSO and differential evolution (DE). The paper closes with a
proposal for the use of the BTB in algorithm control parameter
tuning, Sec. 8, and overall conclusions, Sec. 9.

13

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

https://doi.org/10.1145/3583131.3590478
https://doi.org/10.1145/3583131.3590478
https://doi.org/10.1145/3583131.3590478
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590478&domain=pdf&date_stamp=2023-07-12

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Trovato and Tobin, et al.

2 BACKGROUND
A number of benchmarking problem suites have been developed
for the ongoing series of CEC conference optimisation challenges.
Garcia provides a ten-year report up to 2017 [8]. The challenges
have continued since that report; the 2023 CEC presentation will
run nine competitions1.

The original 2005 CEC continuous valued benchmark comprised
twenty-five single-objective test functions: five unimodal functions,
seven multimodal functions, two ‘complex’ multimodal functions,
and eleven ‘hybrid’ functions, which were the weighted sums of ten
basic test problems [25]. CEC2005 became a standard benchmark
for several years until the 2013 competition test suite improved and
supplemented the original function definitions [14] and became a
new reference point. CEC2013, a suite of twenty-eight functions,
includes five unimodal functions, fifteen basicmultimodal functions,
and eight composition functions.

A parallel suite of benchmark problems emerged in 2009 for the
Black-box Optimization Benchmarking (BBOB) workshop series
[10]. The sophisticated COCO platform, developed for the BBOB
workshops, allows for considerable automation in running and
testing optimisation algorithms. The current COCO benchmark
comprises forty-eight single objective test functions, split evenly
between noisy and noiseless.

Generators of random problems have been proposed. A polyno-
mial test problem generator (NGLI) with known basins and saddle
points allows for only partial control on modality since there is a
strong coupling between dimensionality and modality of [17]. A
max set of Gaussians (MSG) controlling the number of basins [7]
and a general framework for generating Gaussian test functions
with controllable properties have also been proposed [15]. A contin-
uing interest in Gaussian basis functions is apparent in a modified
Gaussian fitness landscape generator [13], and a non-separable test
problem generator (N-Peaks) with randomly distributed basins [28].

The danger of benchmarking on these diverse problem sets lies
in overfitting algorithm control parameters - particularly those in
the whatever novel algorithm is being proposed (the comparison
algorithms, which inevitably fare worse, do not enjoy the benefit
of such careful tuning). The procedure, which relies on a relatively
small number of test functions of wide heterogeneity, limits, gener-
alisation to other problems [18].

The problem lies on the reliance of a function definition in a
single expression which encompasses the entire search space. The
number and variety of such functions is limited by human ingenuity
and it is very hard to find expressions which generate a more
homogeneous function set.

The complexity of benchmarks such as CEC and COCO may
indeed limit the understanding of the strengths and weaknesses
of these algorithms [20]. This paper points to the desirability of a
simple generator of test landscapes of entirely known properties in
order to understand the behaviour of the optimisation algorithms
and their matching preferred function classes.

The BTB benchmark enables arbitrary funnel and basin struc-
tures. Particle swarm optimisation (PSO) performance, for example,
in multi-funnel landscapes has been investigated by several authors
[26] [6], [21] with the outcome that PSO struggles in multi-funnel

1https://2023.ieee-cec.org/competitions/

scenarios. It has been suggested that basin size and configuration is
more pertinent to PSO performance than modality and the presence
of any funnel [31]. These studies are sporadic and inconclusive. A
simple and principled investigation of PSO behaviour on numerous
examples of functions of similar property is needed; this prerequi-
site is fulfilled by the Barrier Tree Benchmark.

Despite numerous studies, to the best of our knowledge, no re-
search has achieved a comprehensive understanding of the relation-
ship between optimiser performance and geometric quantities such
as basin size, landscape topography and barrier tree complexity.
The BTB is offered as a means of filling that gap.

3 BARRIER TREE BENCHMARK: OVERVIEW
A barrier tree is a hierarchical representation of a fitness landscape
[24]. The tree is drawn vertically against a depth axis and nodes
correspond to saddle points and basin optima. Apart from its use in
evolutionary biology, barrier trees have been rediscovered as ‘dis-
connectivity graphs’ in chemical physics. For example, the highly
complex pattern of local energy minima of the Lennard-Jones atom
is illustrated in [5].

Although a barrier tree relates to optimisation difficulty, it ig-
nores important topographic information such as basin size. An
exceedingly narrow optimum basin will be harder to discover than
a broad one, even if the respective trees are identical. The BTB
supplies this missing information.

The basic concept is to flesh-out a bare barrier tree with fun-
nel and basin functions which provide the detailed landscape that
interpolates between critical points. These functions, which are de-
scribed in the following section, must be constructed so that basin
and saddle regions do not contain any maxima, and so that the
function value at the boundaries of touching regions (i.e. basins and
funnels) must equate (and in fact be equal to the saddle point value
at the touching point). A further desideratum is for the pattern of
level sets to follow the shape of region boundaries since otherwise
smaller regions might be optimised in preference to larger ones.
These requirements are not easily met, and not by a continuous
landscape: Barrier Tree Functions (BTFs) are in general discontin-
uous at region boundaries. This restriction is not a hindrance to
evolutionary algorithms, particle swarm optimisers or other non-
gradient algorithms.

The construction is not complete with the choice of region func-
tion. Centres, dimensions and distributions of the regions must
be specified. There are two possibilities: a regular placement, for
example at points on a hypercubic lattice, or a random arrange-
ment as in the aggregation of bubbles in a raft. This latter choice
leads to instances of random BTFs i.e. to particular aggregations.
The instances will typically be generated afresh at each run of an
algorithm so that performance is measured across the spectrum of
possibilities for a particular random BTF. This procedure is already
followed in the random and noisy members of the CEC and COCO
benchmarks.

4 BARRIER TREE FUNCTIONS
Consider a continuous search space 𝑋 that can be divided into con-
tinuous, contiguous, non-overlapping regions, comprising basins
B𝑖 and funnels F𝑗 , and isolated saddle points 𝑥𝑘 :𝑋 = {B𝑖 }∪{F𝑗 }∪

14

https://2023.ieee-cec.org/competitions/

The Barrier Tree Benchmark: Many Basins and Double Funnels GECCO ’23, July 15–19, 2023, Lisbon, Portugal

{𝑥𝑘 }. An objective function 𝑓 (𝑋), which need not be continuous, is
defined on 𝑋 ; the optimisation problem is the discovery of a mem-
ber of the optimal set 𝑋𝑜𝑝𝑡 that (globally) minimises 𝑓 . Frequently,
optimisation algorithms can only find approximate solutions, or
solutions that satisfy certain criteria.

The distinction between basins and funnels is made with refer-
ence to downhill paths i.e. to continuous, directed paths 𝑝 , param-
eterised by 𝑡 ∈ [0, 1], that start at 𝑝 (0), end at 𝑝 (1) and such that
𝑡 ′ > 𝑡 =⇒ 𝑓 (𝑡 ′) ≤ 𝑓 (𝑡).

A basin B comprises a single isolated minimum point 𝑥∗ and a
surrounding continuous set of points B \ 𝑥∗ such that all downhill
paths originating at 𝑥 ∈ B \ 𝑥∗ terminate at 𝑥∗. On the other
hand, downhill paths commencing on a funnel position will leave
the funnel and enter one of two or more regions. Neutral regions
(funnels or basins), for explanatory convenience, are not considered.

The underlying idea for the construction of a BTF is to begin
with a barrier tree and to proceed by specifying region topography.
Nodes of a barrier tree correspond to critical points (local minima
and saddles) and the tree is aligned against a vertical axis of depths
i.e. of critical function values.

The upper part of Fig. 1 depicts a barrier tree of four minima and
three saddle points (horizontal nodes). This tree has two funnels
with two basins in each funnel. The whole structure sits inside
the entire search space i.e. is surrounded by a larger enclosing
funnel. A simple nomenclature for the tree in Fig. 1, deriving from
pre-order traversal, is fbbfbb. The lower part of the figure shows a
possible topography. In this two-dimensional representation, basins
are discs and funnel boundaries are circles. The topography (choice
of region function) of the interior of a region is arbitrary but must
be such that funnels have no critical points and basins have a single
minimum and no other critical point. Furthermore, all saddle points
within a funnel have the same depth, and since saddle points lie on
the surface of the inner sub-regions, all points on the inner surface
also have equal depth.

Region formation, the arrangement of regions within regions,
whether random or regular, is another arbitrary choice. The BTB
generator allows for a random formation of sub-regions (bubble for-
mation, in analogy to a raft of bubbles) and three regular formations
(hypercube, orthoplex and simplex). These latter formations corre-
spond to the three regular polytopes that exist in all dimensions
[3].

A convenient choice of basin function is

𝑓𝑖 (𝑥) =𝑚𝑖 |𝑥 − 𝑥𝑖 | + 𝑑𝑖 (1)

where the basin is centred on the minimum point 𝑥𝑖 and𝑚𝑖 > 0 is
an arbitrary multiplier chosen so that no interior point has depth
greater than a boundary point. The depth, 𝑑𝑖 is specified by the
underlying barrier tree.

Suppose that all basins are 𝑛-balls and all funnels are 𝑛-balls
minus their inner regions. Then a suitable definition for the funnel
function can be based on the distance to the nearest surface of
the contained regions. The aim is that funnel topography should
consist of iso-surfaces that follow the shape of the inner region
boundary at close distances and become more and more spherical
at at larger separations. Fig. 2 shows iso-surfaces surrounding two

 d1

 d2

 d12

r1

r12

1
2

Figure 1: An fbbfbb barrier tree. Funnel and basin geometry
are indicated below the tree.

contained regions. This aim is realised by the expression

𝑓𝑗 (𝑥) = min
R𝑖
{𝑚 𝑗 (|𝑥 − 𝑥𝑖 | − 𝑟𝑖) + 𝑑 𝑗 } (2)

where 𝑟 {𝑖 } are the centres and radiuses of regions R{𝑖 } contained
within funnel F𝑗 . |𝑥−𝑥𝑖 |−𝑟𝑖 is the nearest separation between inner
region R𝑖 and funnel point 𝑥 and𝑚 𝑗 and 𝑑 𝑗 are the gradient and
depth of the funnel (the saddle value) respectively. The gradient
is a suitable multiplier that ensures that no interior point has a
value higher than a point on the funnel boundary. This definition
replaces an earlier funnel function definition that led to distorted iso-
surfaces with the effect that more numerous downhill paths could
flow into small regions than larger regions in some circumstances
[27]. The advantage of the new funnel function definition is that
smaller regions are the destinations of fewer downhill paths so that,
intuitively, the probability of a downhill path flowing into inner
region R𝑖 is determined by the surface area of R𝑖 .

A point 𝑥 is evaluated by determining the containing region and
applying either Eq. 1 or Eq. 2, depending on whether the region is
a basin or a funnel, or, if 𝑥 is a saddle point, by direct look-up on
the underlying barrier tree.

5 A BTF GENERATOR
The barrier tree, in the BTF generator employed in this paper, is built
from a list of depths in pre-order form. For example, the fbbfbb tree
of Figure 1 is constructed from the string 𝐿,𝑑12, , 𝑑1, , 𝑑2, 𝑑34, , 𝑑3, 𝑑4

15

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Trovato and Tobin, et al.

ℛ1 ℛ2

ℱj

Figure 2: A funnel, F𝑗 with two inner regions. The dotted
lines are iso-surfaces of constant function value.

where the search space, 𝑋 , is a box, 𝑋 = [−𝐿2 ,
𝐿
2]

𝑛 , 𝑑12 and 𝑑34 are
the depths of the funnels and 𝑑1,2,3,4 are the basin depths. Region
level is indicated by the number of preceding commas. Level 0
corresponds to 𝑋 , level 1 to the funnels and level 2 to the basins.

Region radiuses are specified in pre-order and the radiuses and
centres of 𝑛-ball regions are added. Bubble formations are con-
structed as follows. Suppose a region has 𝑛𝑐ℎ𝑖𝑙𝑑 inner regions: child
regions are added in random order to the parent. The centre of the
first randomly chosen child region is positioned at the centre of
the parent ball. Further child regions are added by selecting one
of the existing child regions at random. A random position on the
child boundary is found and the new child region is centred so it
touches at this random position. The bubble ‘raft’ is then offset
from the centre of the parent funnel by a random amount so that
no child region contains the parent centre, and the entire structure
of 𝑛-ball children is further rotated in 𝑛 dimensions by application
of a random rotation matrix. This procedure guards against any
unintentional central tendency of the optimisation algorithm, and
the random order of attachment and random touching points safe-
guards systematic prejudices which might otherwise occur if, for
example, the final region of the depth string is optimal amongst the
children and this final region would otherwise always occur at the
edge of the bubble raft.

Since the procedure outlined above depends on pseudo-random
numbers, the BTF generator produces an instance of the BTF ran-
dom function specified by the depth and radius strings, and the
choice of formation.

A particular barrier tree topology, for example fbbfbb (a function
with two funnels of two basins), therefore requires further speci-
fication, and a huge range of problem difficulties is available. The
optimal basin could be much deeper than the sub-optimal basin,
or much narrower, or all basins might have equal depth. These
differences are expected to be more or less challenging.

The depths and radiuses of bubble-BTFs with only a few regions
can be specified by hand, but these parameters are better speci-
fied, for multi-region BTFs, by a formula. For example, 𝑏1𝑏2 . . . 𝑏100
denotes a multi-modal problem of 100 optima. BTF F5 in table 1
illustrates how depths might vary throughout the bubble structure
(all basins having equal radius).

BTFs of arbitrary complexity (or, indeed, formal simplicity) can
be built from the above procedure. The BTB replaces function def-
inition by a single formula which defines the entire landscape,
by formulas (or short list of constants) which specify region size
and depth. The result is that function topography is chosen in ad-
vance rather than calculated or guessed from a prior definition. The
underlying philosophy is that the salient landscape features for
non-gradient optimisers (critical points, basin and funnel sizes and
relative positions) are pre-determined. Optimiser performance can
be calibrated by function class rather than averaged over a suite of
highly heterogeneous objective functions.

6 METHODS
By means of illustration of BTB employment, a small suite of five
BTFs was chosen (F1-5 in table 1).

F1 and F2 are two-funnel functions with the minimum number
(2) of basins in each. F1, fbbfbb∗, comprises two identical funnels;
three basins of equal depth and size inhabit these basins and a
fourth, optimal basin, has a slightly lower depth (-10.1 compared
to -10.0). F2, fbbf∗bb∗ investigates the situation when the optimal
basin has a slightly smaller size (radius 1.0 compared to 1.1).

F3-5 comprise around 100minima in different scenarios. F3 has 99
identical basins and an optimal basin of slightly lower depth; basin
depths of F4 are a given by a formula that specifies a sequence of
linearly decreasing depths to an optimum followed by a sequence
of increasing depths. The random bubble construction will not
necessarily place these basins in any particular order, but when
averaged over a large number of instances, optimisers might be able
to utilise fragments of large scale structure. F5 uses a similar depth
formula to F4 but partitions the basins in two funnels. Basins in the
optimal funnel have a slightly lower depth than the corresponding
basins in the sub-optimal funnel. An optimiser would have both
chose the optimal funnel and furthermore optimise a multi-modal
problem within that funnel.

Five optimisers were chosen for the purposes of comparison:
a simple non-population non-gradient algorithm, two forms of
particle swarm optimisation (PSO), differential evolution and a
novel optimsiser, Swarm Walker (SW).

The downhill walker algorithm (DHW), Algorithm 1, is a finite-
step size implementation of a theoretical downhill path follower.
The walker trials a random point on the hypersphere 𝑆 of radius
equal to the current steplength and moves if the function value at
this point is not greater than the current position. 𝑆 is centred on
the current walker position, 𝑥 . The walker has tries attempts to
move; otherwise the step length is reduced under the assumption
that finer detail exploration is required.

16

The Barrier Tree Benchmark: Many Basins and Double Funnels GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 1: BTF specification. Ordered pairs specify depth and region radius of funnels (f) and basins (b). For example f = (-1.0, 1.0)
denotes a funnel of depth -1.0 and radius 1.0.

F1 fbbfbb∗ f = (-1.0, 1.0), b = (-10.0, 0.01), b∗ = (-10.1, 0.01)
F2 fbbf∗bb∗ f = (-1.0, 1.1), f∗ = (-1.0, 1.0), b = (-10.0, 0.01), b∗ = (-10.1, 0.01)
F3 b99b∗ b = (-1.0, 0.1), b∗ = (-1.01, 0.1)
F4 b1b2 . . .b101 b𝑖 = (−1.0 + 0.01 × |𝑖 − 51|, 0.1), b∗ = b51
F5 fb1b2. . . b51fb∗1b

∗
2. . . b

∗
51 f = (-1.0, 1.0), b𝑖 =(-10.0 + 0.01 * |i - 26|, 0.001), b∗

𝑖
= (-10.01 + 0.01 * |i - 26|, 0.001)

Algorithm 1 DHW
𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 0
initialise x
do

𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 + +
if 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 > 𝑡𝑟𝑖𝑒𝑠 then

𝑠𝑡𝑒𝑝_𝑙𝑒𝑛𝑔𝑡ℎ ∗ = 𝑠𝑐𝑎𝑙𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟
𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 0

end if
𝑦 ← random point on hypersphere 𝑆 (𝑥, 𝑠𝑡𝑒𝑝_𝑙𝑒𝑛𝑔𝑡ℎ)
if 𝑓 (𝑦) ≤ 𝑓 (𝑥) then

𝑥 ← 𝑦

𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 0
end if

while not terminated

The DHW algorithm tests the topology of the BTF implementa-
tion. Since the DHW has no mechanism to skip between funnels2
it will optimise the first funnel it chances upon so that, for example,
in fbbffb∗, the probability of finding the optimum at the centre of
𝑏∗ should approximate 0.25. The DHW also provides a baseline
algorithm that the population algorithms should surely beat.

The DHW converges very quickly on a basin [27] but, due to its
single individual, it has no diversity. The Swarm Walker (SW, Algo-
rithm 2) is a population generalisation that couples the fast DHW
convergence properties with individual communication amongst
individuals. Walkers in the swarm simply move towards their best
neighbour in a preset communication topology (identical to PSO
topologies), produce a trial step, and then retreat or remain, de-
pending on the outcome. The factor 𝑁𝐼 ∈ [0, 1] is Algorithm 2
determines how far the updating individual might move towards
its best neighbour. SW with its simple and random distribution
dynamics has a more transparent individual update rule than either
PSO or DE and therefore provides a cleaner test of the influence of
a swarm.

Two forms of PSO were trialled. Global particle topology (GPSO)
and local, ring topology (LPSO). These are popular forms in appli-
cations and comparison studies [1].

The update rule for L/GPSO is [12, 19, 23]

𝑣𝑖 (𝑡 + 1) = 𝑤𝑣𝑖 (𝑡) + 𝑐𝑢1 ◦ (𝑛𝑖 (𝑡 + 1) − 𝑥𝑖 (𝑡))
+ 𝑐𝑢2 ◦ (𝑝𝑖 (𝑡 + 1) − 𝑥𝑖 (𝑡))

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝑣𝑖 (𝑡 + 1) (3)

2A jump between funnels would be possible if the walker were situated near the
boundary a funnel and the step length was large enough to reach across to the second
funnel.

Algorithm 2 SW
𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 0
initialise a population of downhill walkers
do

𝑤 ← next walker in swarm
𝑤.𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 + +
if 𝑤.𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 > 𝑡𝑟𝑖𝑒𝑠 then

𝑤.𝑠𝑡𝑒𝑝_𝑙𝑒𝑛𝑔𝑡ℎ ∗ = 𝑤.𝑠𝑐𝑎𝑙𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟
𝑤 .𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 0

end if
𝑝 ← position of w’s best ring neighbour
𝛿𝑥 = 𝑁𝐼 ∗ (𝑝 − 𝑥)
𝑦 ← random point on hypersphere 𝑆 (𝑥 + 𝛿𝑥, 𝑠𝑡𝑒𝑝_𝑙𝑒𝑛𝑔𝑡ℎ)
if 𝑓 (𝑦) ≤ 𝑓 (𝑥) then

𝑥 ← 𝑦

𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 0
end if

while not terminated

was chosen where 𝑥𝑖 , 𝑣𝑖 , 𝑝𝑖 are particle position, velocity and histor-
ical best position of particle 𝑖 , 𝑢1,2 ∼ 𝑈 (0, 1) are uniform random
variables in [0, 1]𝐷 and ◦ is the Hadamard (entry-wise) product,
𝑛𝑖 is the historical best position of the best neighbour in 𝑖’s social
network (an arbitrary choice is made in the case of a tie). The neigh-
bourhood is fully connected in GPSO i.e. 𝑛𝑖 = 𝑔, the swarm’s best
ever position. LPSO neighbourhoods are localised: we ran exper-
iments with the ring neighbourhood in which each particle has
access to two other particles.

Finally, DE was included in the mix because of its formal simi-
larity to PSO. The DE/best/1 version DE variant was selected for
these trials because of its competitive and robust performance [4].
The DE particle update rule for particle 𝑖 at 𝑥𝑖 is

if 𝑢 ∼ 𝑈 (0, 1) < 𝐶𝑅 or 𝑑 == 𝑟

𝑦𝑑 = 𝑔𝑑 + 𝐹 (𝑥 𝑗𝑑 − 𝑥𝑘𝑑)
else
𝑦𝑑 = 𝑥𝑖𝑑 (4)

where 𝑔 is the best particle, 𝑗, 𝑘 are random particle indices such
that 𝑖 ≠ 𝑗 ≠ 𝑘 and 𝑟 = 𝑈 ({1, 2, . . . 𝐷}) is a random component. 𝑦
replaces 𝑥 if 𝑓 (𝑦) ≤ 𝑓 (𝑥𝑖).

6.1 Experiment procedure
1001 runs were executed on different instances of each 30D BTF
F1-F5. The search space was [−𝐿2 ,

𝐿
2]

𝑛 with 𝐿 = 100 and 𝑛 = 30.
Runs were terminated at 150000 function evaluations or when the

17

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Trovato and Tobin, et al.

error fell below 1e-10, whichever was sooner. A ceiling of 300000
trials per run was enforced in order to terminate runs in which trial
positions repeatedly landed outside the search space (such trials
were not evaluated).

The algorithms were initialised inside the top level funnel but
outside the lower level funnels and basins. The number of runs
for attainment of each basin was recorded, and from this figure, a
success probability was calculated.

A run was deemed a success if the algorithm terminated with the
best-found position in the optimal basin. The motivation for this
performance metric is that all optimisers exhibit local convergence;
given that the optimiser population (or individual in the case of
the DHW) has found the optimum basin it will almost certainly
continue to plumb its depths). The essential criterion is therefore:
can an optimiser discover the optimal basin? This metric has the
advantage of being directly comparable across a range of functions
of varying scale where simple optimal value (or error, if the global
optimum is known) comparison is problematic. A further runtime
measurement was taken: the number of region jumps. This statistic,
optimisermobility, is defined as the ability to move between regions
[1].

Statistical significance testing at P=0.05 was conducted to check
if the null hypothesis (equal numbers of runs attain each basin)
could be rejected with 95% confidence.

The control parameters for the standard algorithms were set
at the optimal values for a bff function [27]. Otherwise, a step
reduction factor of 0.5 was chosen for DHW and SW; the initial
step length was 0.2L and tries set to 10. A swarm of 100 walkers was
chosen for the SW and a neighbour influence of 0.25. All control
values are available in Table 2.

7 RESULTS
Tables 3 and 4 provide experiment results. The first column of Table
3 lists the expected success probability under the assumption that
all basins are equally likely. This assumption constitutes the null
hypothesis.

DHW success probabilities do not significantly depart from the
null assumption probabilities except for 𝐹2 which has a smaller
optimal funnel; in fact the DHWsuccess rate is significantly lowered
for 𝐹2 and confirms the intuition that the probability that a downhill
walker algorithm will enter a particular funnel depends on relative
surface area. The DHW results for F1 and F3-5 confirm that the BTF
implementation is not prejudicial towards any basin. Table 4 shows
that DHW jumps are always equal to one less than the number
of funnels (the search space minus all bubble structure is itself a
funnel) which demonstrates zero algorithm mobility: a downhill
walker never jumps between regions.

The swarm of downhill walkers significantly performs better
than the baseline assumption in all cases. SW success rates on the
two-funnels-of-two-basin functions are high; success probabilities
fall in the highly multimodal cases (F3-5) but are always higher
than G/LPSO and DE. The SW is the most mobile of the any algo-
rithm (Table 4) and this feature could contribute to the winning
performance of this algorithm in this limited trial. SW seems ca-
pable of maintaining a high enough population diversity to allow

good funnel and basin mobility despite the lack of any explicit
mechanism.

LPSO delivers better success rates than GPSO and DE except for
DE/F4. The success probabilities are significant for all functions.
LPSO is the next most mobile algorithm after SW (Table 4). SW
and LPSO share the same ring-topology particle communication;
this strategy slows the communication of information through the
swarm and promotes diversity.

DE has significant success probabilities in three our of five func-
tions, and GPSO in two out of five. These optimisers perform
markedly less well on the double funnel functions than SW and
LPSO and struggle (in common with SW and LPSO) on the multi-
basin functions.

Themulti-optima BTFs presentmore challenges to the optimisers
than double-funnel-double-basin functions. SW seems to cope well
when the optima are divided between funnels (F5) whereas LPSO
performs less well and appears to be sensitive to funnel structure.
The GPSO results for F3-5 are not significant and are close to the
DHW result. The implication is that global information sharing
promotes faster convergence and diversity reduction. DE is able
to achieve statistical power in the case of a structured series of
differing basin depths within a single funnel (F4); the algorithm is
possibly exploiting any semblance of structure that remains after
bubble randomisation.

These results and ensuing analysis illustrate how the BTB, suc-
cess probability andmobilitymetrics can combine to provide insight
on algorithm behaviour.

8 ALGORITHM TUNING
Optimisation algorithms have inevitably control parameters, and
performance will depend, sometimes critically, on the settings of
these parameters (e.g. [29]). Although some theoretical bounds, of-
ten applicable in idealised situations (for example, the convergence
bounds for PSO parameters apply only when the particles do not
interact [2]) have been imposed on control settings of some algo-
rithms, almost invariably algorithms must be empirically tuned on
a set of problems. Automatic parameter tuners are being developed
to relieve the laborious task of manual tuning [11].

The effect of tuning, whether manual or automatic, will depend
on the selection of tuning problems. The task is to adjust control
parameters so that a pertinent statistic is optimised throughout the
tuning set. Often, mean error is minimised across the tuning set.

A major issue in the implementation of such a process is the
choice of tuning benchmark. If the tuning benchmark is broad, i.e.
consists of a wide variety of scenarios, tuning will impart only
average settings that are unlikely to deliver optimal performance
on any particular problem; alternatively, a very narrow benchmark
will produce algorithm settings that do not generalise. The choice
of a suitable tuning benchmark is hampered by the heterogeneous
collection of problems that comprise standard benchmarks such as
CEC and COCO. Even taking more homogeneous subsets of these
benchmarks is problematic because the functions, defined as they
are by mathematical formulae, remain unclassified except in the
broadest terms (unimodal, multimodal, composition, non-separable
etc.).

18

The Barrier Tree Benchmark: Many Basins and Double Funnels GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 2: Algorithm control parameters

DHW initial step length = 0.2𝐿, reduction factor = 0.5, tries = 10
SW N=100, initial step length = 0.2𝐿, reduction factor = 0.5, tries= 10, neighbour influence = 0.25

L/GPSO 𝑁 = 100,𝑤 = 0.729844, 𝑐1 = 𝑐2 = 1.49618
DE 𝑁 = 50, 𝐹 = 0.8,𝐶𝑅 = 0

Table 3: Success rate. Emboldened success probabilities are significant at 𝑃 = 0.05 i.e. cases in which a success probability of
= 1

𝑛𝐵𝑎𝑠𝑖𝑛𝑠
can be rejected with 95% confidence.

1
𝑛𝐵𝑎𝑠𝑖𝑛𝑠

DHW SW LPSO GPSO DE

F1 0.25 0.246 0.972 0.701 0.282 0.281
F2 0.25 0.189 0.839 0.443 0.181 0.0470
F3 0.01 5.00E-3 0.133 6.19E-2 7.99E-3 1.50E-2
F4 9.90E-3 9.99E-3 0.141 0.0659 9.99E-3 0.102
F5 9.80E-3 0.013 0.146 0.018 0.005 0.012

Table 4: Mobility. The table records the mean and, in parentheses, the standard deviation of the number of jumps between
regions.

DHW SW LPSO GPSO DE

F1 2 (0) 33 (18) 16 (14) 2 (0) 6 (4)
F2 2 (0) 31 (22) 16 (14) 2 (0) 5 (3)
F3 1 (0) 60 (38) 17 (15) 1 (0) 10(6)
F4 1 (0) 13 (9) 8 (6) 1 (0) 8 (5)
F5 2 (0) 44 (22) 19 (16) 2 (0) 8(5)

The adoption of a benchmark whose representatives are con-
structed within a desired classification scheme is a possible solution
to the above issue. BTB functions are by design already classified -
according to barrier tree and topographical features such as basin
and funnel width. This is not the only means of function classifi-
cation, of course, but the BTB is suggestive of a principled tuning
procedure.

Suppose that it is wished to tune an algorithm on a particular
function class. For example, PSO on double-funnel-double-basin
(bffbff) problems. A training set of bffbff functions would be pro-
duced by a BTB generator. Each member of the training set would
differ by funnel and basin size and depth (these characteristics
could be constrained, if desired, for example, by specifying basin
depths with a certain range). An automatic tuner would push the
algorithm through the training set and optimal parameter settings
would be determined. After tuning, the algorithm is applied to a
test set, generated just as for the training set, but consisting of dif-
ferent function class instances. The ability of the tuned algorithm
to generalise is then assessed by its performance on this unseen
test set.

This scheme is feasible in principle but its outcome is yet to be
trialled and evaluated. There are many interesting issues such as
the broadness of the function class and the appropriateness of the
BTB classification. Whatever the outcome, the deployment of a
benchmark such as the BTB can surely aid principled algorithm
tuning.

9 CONCLUSIONS
This paper has defined the Barrier Tree Benchmark and improved
a previous definition of the funnel basis function. Functions within
the benchmark (BTFs) are constructed from a predefined barrier tree
of minima depths, and basin and funnel dimensions. The operation
of a BTF generator has been described and a demonstration series
of trials of five algorithms on five BTB classes has been reported.

Performance, as gauged by the success probability of an opti-
miser to find the optimal basin, has been compared with algorithm
mobility with the conclusion that the more mobile algorithms tend
to perform better on the double funnel and highly multi-modal
functions.

A new algorithm, the Swarm Walker has been advanced. This
algorithm, as the name implies, is a swarm of downhill walkers
which are, in turn, individuals that proceed downhill by a random
and possibly reducing step length. The Swarm Walker has very
simple dynamics and outperforms the versions of global and local
PSO and differential evolution utilised in the trials. No algorithm
has been tuned to these functions however and further studies
are needed to understand the merits of each algorithm on these
function classes.

The paper closes with a proposal for deployment of the BTB in
algorithm parameter tuning. It is expected that use of a principled
tuning benchmark, such as the BTB, will lead to a more rigorous al-
gorithm tuning procedure and hence to more meaningful algorithm
comparison.

19

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Trovato and Tobin, et al.

REFERENCES
[1] Tim Blackwell and James Kennedy. 2018. Impact of communication topology in

particle swarm optimization. IEEE Transactions on Evolutionary Computation 23,
4 (2018), 689–702.

[2] Maurice Clerc and James Kennedy. 2002. The particle swarm-explosion, stability,
and convergence in a multidimensional complex space. IEEE transactions on
Evolutionary Computation 6, 1 (2002), 58–73.

[3] Harold Scott Macdonald Coxeter. 1973. Regular polytopes. Courier Corporation.
[4] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. 2011. Differential

Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary
Computation 15, 1 (2011), 4–31. https://doi.org/10.1109/TEVC.2010.2059031

[5] Jonathan PK Doye, Mark A Miller, and David J Wales. 1999. Evolution of the
potential energy surface with size for Lennard-Jones clusters. The Journal of
Chemical Physics 111, 18 (1999), 8417–8428.

[6] Ryan Forbes and T Nayeem Mohammad. [n. d.]. Particle swarm optimization on
multi-funnel functions. Computer Aided Optimum Design in Engineering XII 255
([n. d.]).

[7] Marcus Gallagher and Bo Yuan. 2006. A general-purpose tunable landscape
generator. IEEE transactions on evolutionary computation 10, 5 (2006), 590–603.

[8] Carlos García-Martínez, Pablo D Gutiérrez, Daniel Molina, Manuel Lozano, and
Francisco Herrera. 2017. Since CEC 2005 competition on real-parameter optimi-
sation: a decade of research, progress and comparative analysis’s weakness. Soft
Computing 21 (2017), 5573–5583.

[9] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and
Dimo Brockhoff. 2021. COCO: A platform for comparing continuous optimizers
in a black-box setting. Optimization Methods and Software 36, 1 (2021), 114–144.

[10] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. 2009. Real-
parameter black-box optimization benchmarking 2009: Noiseless functions defini-
tions. Ph. D. Dissertation. INRIA.

[11] Changwu Huang, Yuanxiang Li, and Xin Yao. 2019. A survey of automatic
parameter tuning methods for metaheuristics. IEEE transactions on evolutionary
computation 24, 2 (2019), 201–216.

[12] J. Kennedy. 1999. Small worlds and mega-minds: effects of neighborhood topol-
ogy on particle swarm performance. In In: Proceedings of the 1999, Congress of
Evolutionary Computation, Vol. 3. IEEE Press, 1931–1938.

[13] Ho Min Lee, Donghwi Jung, Ali Sadollah, and Joong Hoon Kim. 2020. Perfor-
mance comparison of metaheuristic algorithms using a modified Gaussian fitness
landscape generator. Soft Computing 24, 10 (2020), 7383–7393.

[14] JJ Liang, BY Qu, PN Suganthan, and Alfredo G Hernández-Díaz. 2013. Prob-
lem definitions and evaluation criteria for the CEC 2013 special session on
real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou, China and Nanyang Technological University, Singapore,
Technical Report 201212, 34 (2013), 281–295.

[15] Jane-Jing Liang, Ponnuthurai Nagaratnam Suganthan, and Kalyanmoy Deb. 2005.
Novel composition test functions for numerical global optimization. In Proceed-
ings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005. IEEE, 68–75.

[16] Olaf Mersmann, Mike Preuss, Heike Trautmann, Bernd Bischl, and Claus Weihs.
2015. Analyzing the BBOB results by means of benchmarking concepts. Evolu-
tionary computation 23, 1 (2015), 161–185.

[17] Chi-Kong Ng and Duan Li. 2014. Test problem generator for unconstrained global
optimization. Computers & operations research 51 (2014), 338–349.

[18] Adam P Piotrowski. 2015. Regarding the rankings of optimization heuristics
based on artificially-constructed benchmark functions. Information Sciences 297
(2015), 191–201.

[19] R. Poli, J. Kennedy, and T. Blackwell. 2007. Particle Swarm Optimization: An
overview. Swarm Intellligence 1 (2007), 33–57.

[20] Ronald L Rardin and Reha Uzsoy. 2001. Experimental evaluation of heuristic
optimization algorithms: A tutorial. Journal of Heuristics 7, 3 (2001), 261–304.

[21] Maziar Salahi, Ali Jamalian, and Akram Taati. 2013. Global minimization of
multi-funnel functions using particle swarm optimization. Neural Computing
and Applications 23, 7 (2013), 2101–2106.

[22] Yun-Wei Shang and Yu-Huang Qiu. 2006. A note on the extended Rosenbrock
function. Evolutionary Computation 14, 1 (2006), 119–126.

[23] Y. Shi and R. Eberhart. 1998. A modified particle swarm optimizer. In Congress
on Evolutionary Computation. 69–73.

[24] Peter F Stadler. 2002. Fitness landscapes. In Biological evolution and statistical
physics. Springer, 183–204.

[25] Ponnuthurai N Suganthan, Nikolaus Hansen, Jing J Liang, Kalyanmoy Deb, Ying-
Ping Chen, Anne Auger, and Santosh Tiwari. 2005. Problem definitions and
evaluation criteria for the CEC 2005 special session on real-parameter optimiza-
tion. KanGAL report 2005005, 2005 (2005), 2005.

[26] Andrew M Sutton, Darrell Whitley, Monte Lunacek, and Adele Howe. 2006.
PSO and multi-funnel landscapes: how cooperation might limit exploration. In
Proceedings of the 8th annual conference on Genetic and evolutionary computation.
75–82.

[27] Itshak Tkach and Tim Blackwell. 2022. Measuring optimiser performance on a
conical barrier tree benchmark. In Proceedings of the Genetic and Evolutionary

Computation Conference. 22–30.
[28] Simon Wessing, Mike Preuss, and Günter Rudolph. 2013. Niching by multiob-

jectivization with neighbor information: Trade-offs and benefits. In 2013 IEEE
Congress on Evolutionary Computation. IEEE, 103–110.

[29] Dennis Weyland. 2008. Simulated annealing, its parameter settings and the
longest common subsequence problem. In Proceedings of the 10th annual confer-
ence on genetic and evolutionary computation. 803–810.

[30] Darrell Whitley, Soraya Rana, John Dzubera, and Keith E Mathias. 1996. Evaluat-
ing evolutionary algorithms. Artificial intelligence 85, 1-2 (1996), 245–276.

[31] Bin Xin, Jie Chen, and Feng Pan. 2009. Problem difficulty analysis for parti-
cle swarm optimization: deception and modality. In Proceedings of the first
ACM/SIGEVO Summit on Genetic and Evolutionary Computation. 623–630.

20

https://doi.org/10.1109/TEVC.2010.2059031

	Abstract
	1 Introduction
	2 Background
	3 Barrier Tree Benchmark: overview
	4 Barrier Tree Functions
	5 A BTF generator
	6 Methods
	6.1 Experiment procedure

	7 Results
	8 Algorithm tuning
	9 Conclusions
	References

