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Abstract 
 

Over a lifetime, human cells continually acquire mutations, some of which may alter 

cell division's complex homeostasis and lead to the subsequent expansion of somatic 

clones. Such expansions are frequent in the haematopoietic system and become 

detectable as we age. 

Haematopoiesis is a complex and hierarchical system that generates millions of 

functionally diverse cells daily. This multi-tiered system allows for the rapid 

regeneration of our blood system in response to stress whilst protecting the pool of 

long-lived haematopoietic stem and progenitor cells (HSPCs) from excessive 

replicative stress. Haematopoiesis can function with high fidelity for many decades but 

is inevitably challenged by ageing and the time-dependent accumulation of somatic 

variation. 

Clonal Haematopoiesis of Indeterminate Potential (CHIP) is defined as the expansion 

of HSPCs in healthy-aged individuals that results from genetic alterations. Although 

mostly inconsequential, the constant rate of the acquisition of mutations in HSPCs (17 

mutations/year) leads to an increasing probability, with respect to age, of a variant 

occurring in a gene that dysregulates the tightly maintained mechanism of 

haematopoiesis. In healthy individuals, the differentiated cells that comprise our blood 

are the progeny of equally contributing stem cells that produce a genetically diverse, 

polyclonal population. CHIP, however, is marked by the population of blood cells 

becoming increasingly dominated by single (or multiple) genetic clone(s) that are 

genotypically identical. 

In 2014, several independent studies [1, 2] confirmed that CHIP is a condition that 

increases with age: more than 10% of the population over 65 years are affected, with 

a prevalence that increases dramatically over subsequent decades. It has been 

associated with all-cause mortality, cardiovascular disease and haematological 

malignancies – a risk that scales with clone size [3]. 

Observing the relationship between CHIP and age-related pathologies, we sought to 

test the relationship between clonal haematopoiesis and ageing using a range of 
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published epigenetic clocks (which use DNA methylation states to predict biological 

age) to assess any association with biological ageing. In Robertson et al. [4], we 

characterised the landscape of somatic mutations in a range of core haematopoietic 

marker genes in the Lothian Birth Cohorts (LBCs). The LBCs are two parallel studies 

of ageing that consist of individuals over 70 and 79 years, in LBC36 and LBC21, 

respectively. We observed a significant association with biological ageing in several 

published cell-intrinsic clocks in participants that harboured a mutation in one of the 

six most prevalent CHIP genes versus our control group. CHIP status was associated 

with a significant increase in Horvath age acceleration: with an increase of 4.5 (SE 

0.9) years in LBC1936 and 3.7 (SE 1.2) years in LBC1921 (p = 2.3 x 10-6 and 2.5 x 

10-3, respectively). In addition, we note significant epigenetic age accelerations in both 

DNMT3A and TET2 in isolation – the most commonly affected genes in clonal 

haematopoiesis. This result might indicate that CHIP is either driven or a driver of 

systemic ageing, explaining its links to non-haematological age-dependent 

pathologies.  

A triptych of fundamental forces shape evolution: mutation, drift and selection. Whilst 

the first two are essentially stochastic processes, the third is the driving force: aiming 

to maximize fitness within an environment. Currently, it’s not understood whether 

mutations in differing CHIP genes lead to distinct fitness advantages that would lead 

to patient stratification. Since mutations in HSPCs often instigate leukaemia, we 

hypothesize that HSC fitness substantially contributes to the transformation to disease 

states. We again leverage the LBCs, using a particularly unique aspect of their 

curation - the collection of peripheral blood over 12 years of later life - to develop a 

longitudinal assay for HSPC fitness using error-corrected sequencing. We then create 

a novel method we call the likelihood-based filter for time series data (LiFT) to 

determine fitness effects across our longitudinal data, quantifying the growth potential 

of somatic mutations within each participant. This approach discriminates naturally 

drifting populations of cells that typically harbour synonymous or non-functional 

variants and those that harbour driver mutations that give rise to rapidly growing 

clones. We characterise the fitness effects of mutations in many known CHIP driver 

genes and observe that differences in gene-specific fitness effects outweigh inter-
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individual variation, which could constitute a new method of personalised clinical 

management [5]. 

This work has shown that CHIP confers a strong association with biological ageing 

through the prism of epigenetic clocks. Furthermore, we have begun characterising 

the fitness effects of genes that characterise CHIP whilst beginning to understand the 

molecular mechanisms behind their distinct fitness effects. We hope this should aid in 

a greater understanding of the pathogenesis of CHIP and assist in the improved 

stratification of patients. 
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Lay Summary 

Clonal haematopoiesis is a condition that occurs when a single damaged blood stem 

cell starts to produce many identical copies of itself – known as a clone – that leads to 

an increase in the number of blood cells that carry the same mutation. This condition 

is relatively common in older individuals and can potentially increase the chances of 

developing blood cancers or other illnesses in later life. As we age, our blood system 

will acquire mutations, though only a handful will cause a cell to expand into a clone 

and produce a larger proportion of our blood.  

We currently cannot predict which patients will develop blood cancers and when and 

how they develop them, meaning we cannot provide treatment because we lack a 

clear picture of which damaged clones grow fastest and pose the most significant risk. 

This thesis aims to understand which mutations grow faster than others, thereby 

increasing our potential to manage patients with large clone sizes in their blood.  
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Chapter 1: Literature Review 
 

1.1 The Haematopoietic System 
 

Haematopoiesis is the process that creates the cellular components of our blood. For 

perspective, over one trillion blood cells develop every day from the haematopoietic 

stem cells in our bone marrow, generating a functionally diverse range of mature cells 

[6]. In achieving this complexity, haematopoiesis requires a “hierarchy of progenitors” 

whose fates become increasingly limited within their lineages [7]. Haematopoietic stem 

cells (HSCs) reside at the root of this heterogenous system and serve two key roles: 

1) to replenishing the HSC pool through repeated cycles of self-renewal (where a 

dividing HSC produces two identical HSCs), and; 2) generating pluripotent myeloid or 

lymphoid cells through asymmetrical division [8]. This complex hierarchy provides a 

pool of progenitor cells to be called upon under a varied range of stressors – such as 

infection or blood loss - while protecting against excessive replication at the top of the 

lineage [7]. 

 

Figure 1.1: Haematopoietic hierarchy in normal conditions. Depicting the 

conventional hierarchical structure of haematopoiesis. Haematopoietic stem cells (HSCs) 
commit to their lineage through a process of differentiation driven by a myriad of cell-type 

specific internal and external stimuli.  
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It has been noted that our blood system emerges from a single cell at gastrulation [9]. 

Thereafter, early haematopoietic function begins in the yolk sack, then the spleen and 

liver at around 80 days after conception before appearing in the bone marrow as we 

get closer to birth [10]. We are born with an estimated 50,000 to 200,000 HSCs that 

are responsible for constituting the blood system across our lifespan – a remarkably 

small number given the level of productivity and output required over this period [9]. 

From the perspective of somatic evolution, this demarks the origin, period and 

boundaries of which a single germline genotype can create the haematopoietic system 

and of which somatic variation can feasibly affect this system. 

Haematopoiesis allows HSCs to differentiate into a landscape of progenitor cell types 

and can be best thought of as the cascading reduction of multilineage potential into 

greater functional specification [11, 12]. The gradual identification of cell surface 

markers has illuminated our understanding of the relative populations and lineage 

potentials of haematopoietic cells. Protein markers that typically denote this 

specification have been labelled as “clusters of differentiation” (CD) and include CD34, 

CD38, CD4 and CD8 amongst others. HSCs typically express CD34 without lineage 

(Lin) markers and are classed as Lin-/CD34+/CD38- and as they commit to 

differentiation, they begin to express CD38 in early progenitor cells (as Lin-

/CD34+/CD38+). Thereafter, they can present a complex landscape of lineage specific 

(Lin+) cell-surface markers as they gradually commit to lineage specificity [12].  

HSCs form the foundation of the haematopoietic system and can differentiate into two 

distinct myeloid and lymphoid lineages (Figure 1.1). Simplistically, the lymphoid 

lineage comprises several progenitor subtypes that migrate to the thalamus, spleen or 

lymph nodes to complete their differentiation into T-, B- or natural killer (NK) cells, 

respectively. Myeloid progenitors are a morphologically diverse grouping that consists 

of basophils, eosinophils and neutrophils alongside a monocytic lineage that 

contributes macrophages and dendritic cells (DCs) and megakaryocytes – the 

precursor to platelets [13, 14]. Together, this complex complement of cell types allows 

our blood system to perform its key roles in innate and adaptive immunity, blood 

clotting and nutrient transport. 
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The continuous population of our blood system requires rigorous control of decisions 

regarding cell fate. The choice and timing of decisions that govern self-renewal or 

differentiation, or quiescence and proliferation, amongst others, requires input from a 

multitude of sources including varied transcription factor activity, epigenetic changes 

in regulatory regions (in particular transcription factor binding sites) and external 

stimulus from the niche [6, 7, 15]. These changes evoke patterns of gene expression 

that gradually changes cell identity as it progresses through a lineage and have been 

studied extensively using single-cell RNA-sequencing [16–20] and even probabilistic 

methods [21, 22]. Transcription factors guide their own lineage specification while 

acting to overrule others that favour different trajectories – the combination of positive 

and inimical roles in transcription factor function help to reinforce lineage commitment 

[23–25].  

The bone marrow (BM) microenvironment provides the environs for the sustained 

maintenance and function of HSCs. It plays an important role in the endogenous 

signalling controlling the mobilization, regulation and cell-fate decisions of HSCs [15, 

26]. HSCs are thought to exist of two main compartment types – the endosteal 

osteoblastic niche and the perivascular endothelial niche – that are functionally 

heterogeneous and are thought to contribute to distinct subsets of HSCs [15]. The BM 

niche comprises a varied array of cell-types; including but not exclusively, fat, 

endothelial, vascular and osteoblast derived cells; that are each thought to contribute 

differing extracellular cues. These external inputs can prompt a range of outcomes 

that promote heterogeneity in the self-renewing capacity of HSCs, or can trigger 

differentiation as a response to inflammation, infection or other systemic stimuli [27]. 

While time provides many intrinsic insults to HSCs through sustained DNA damage, 

changes in the bone marrow niche are an important factor affecting the haematopoietic 

system as we age. 

 

1.1.1 Ageing in the Haematopoietic System 
 

Ageing is a slow process and many of its associated phenotypes can appear 

ambiguous across this long timeframe. However, ageing inexorably leads to the 
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decline of physiological systems and is the most important risk factor in the 

development of many important pathologies, such as cancer, neurodegeneration and 

cardiovascular disease [28]. 

The role ageing plays in the haematopoietic system is multifaceted. Firstly, and 

somewhat counterintuitively, the number of HSCs increases with age in both humans 

and mice. However, this increase in population size does not translate with sustained 

or increased functionality [29, 30]. This enlarged HSC pool has increased self-renewal 

and reduced regenerative capacity leading to a net loss of function [31].  

 

Figure 1.2: The haematopoietic system with age. Accumulation of DNA damage, 

changes in the systemic and niche signalling profiles and the erosion of epigenetic marks 

leads to increased self-renewal, homogenisation of the stem-cell pool and myeloid lineage 

biases. 

The aged haematopoietic system exhibits skewed differentiation. Typically, this results 

in a marked reduction in the output of lymphoid and erythroid cells, with cells in the 

myeloid lineage displaying stable or even increased outputs [32, 33]. The reduction in 

lymphoid cells can result in immunodeficiencies and are thought to be driven by the 

homogenisation of the stem cell pool and through sustained extracellular signalling 
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that exhausts the immune/inflammation directed lymphoid biased HSC population [34, 

35].  

Changes in the relative concentrations of systemic factors and bone marrow niche 

signalling also contribute to HSC ageing [36]. The gradual loss of Insulin Growth 

Factor 1 (IGF1) signalling that begins in middle age has been shown to lead to many 

of the hallmarks of HSC ageing in mice, including mitochondrial disfunction and 

impaired differentiation potential [37]. While conventional inflammatory signalling plays 

an essential role in triggering proliferation and the immune-response, sustained age-

dependent inflammatory signalling eventually results in exhaustion of the stem cell 

pool [38].  

HSCs, like all cells, can become victims of typical age-related impairments like 

increased DNA damage, shortened telomeres and loss of epigenetic fidelity. The 

outcome of these lesions, coupled with the changes to extrinsic signalling profiles, lead 

to impairments in the haematopoietic system that typically resemble the beginnings of 

haematological malignancy (Figure 1.2) [36]. 
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1.2 Clonal Haematopoiesis  
 

Clonal haematopoiesis (CH) - or as it has hitherto been described within the clinic as 

clonal haematopoiesis of indeterminate potential (CHIP) – is defined as the clonal 

expansion of haematopoietic stem and progenitor cells (HSPCs) in healthy aged 

individuals. Although mostly inconsequential, the constant rate of acquisition of 

mutations in HSPCs (17 mutations/year [39]) leads to an increasing probability, with 

respect to age, of a somatic variant occurring that can destabilise the tightly regulated 

homeostasis of haematopoiesis (Figure 1.3). In healthy individuals, differentiated 

blood cells are the net progeny of an approximately balanced HSPC pool and together 

produce a well-mixed pool of differentiated cells without any single mutations reaching 

high variant allele frequencies (VAFs). Clonal haematopoiesis, however, is marked by 

the population of blood cells showing increasing oligoclonality through selection - 

becoming increasing dominated by single (or multiple) large genetic clones that are 

genotypically identical. 

 

Figure 1.3: Schematic describing the effects of CH driver mutations on the stem 

cell pool. With time, the effect of positive selection caused by mutations in specific gene 

drivers increases the oligoclonal burden of the haematopoietic system, with multiple occurring 
hits increasing the potential for malignant transformation. 

Here we will discuss the background and recent advances within the field and give 

and overview of the current perspective on the cause and consequences of clonal 

haematopoiesis.  
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1.2.1 Early Insights into Haematopoietic Oligoclonality 
 

Thirty years ago, the first observations of clonality in the haematopoietic system were 

made when a number of studies showed maternal to paternal biases in X-chromosome 

inactivation (XCI) [40–42]. While XCI is a normal developmental process that 

maintains an equilibrium of X-linked gene activity across XX females and XY males, 

early work by Gale and others uncovered an increase in XCI activity in healthy woman 

that appeared to correlate with age and changes in blood cell-type compositions, 

notably myeloid biases [42]. While the causal mechanisms remained unclear, the 

eventual confirmation of acquired non-random X-chromosome inactivation in females 

was considered to be early evidence of stochastic clonal skewing of haematopoietic 

output with respect to age [43]. Subsequent sequencing of individuals with XCI 

skewing (and their associated lineage biases) showed an enrichment for mutations in 

the TET2 gene, a known modulator of methylation states, suggesting a genetic basis 

for this phenomenon [44]. 

Following these early observations, a greater understanding of the somatic mutational 

landscape of common blood cancers allowed researchers a more comprehensive 

understanding of the genetic variants that drive these pathologies. The traditional 

multistep model of tumorigenesis predicts the step-wise loss of key tumour suppressor 

genes alongside the over-expression of oncogenes that will result in the eventual 

transformation to cancer. Such models, developed by Bert Vogelstein and others, 

were formulated by observing the over-representation of genetic alterations – in 

colorectal cancer, the APC gene is most commonly altered and is thus considered a 

foundational step in cancer formation [45]. It is through this prism that the genetic basis 

of clonal haematopoiesis was discovered. 

Analogous to many other cancers, AML develops in a time-dependent manner through 

the sequential accumulation of driver mutations [46]. If an early genetic lesion can 

drive a clonal expansion without developing to cancer, presumably it would be possible 

to isolate a premalignant stage where only the founding mutation is present [47]. 

These earliest studies involved genetic sequencing of AML sufferers and unravelled 
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several key aspects that confirmed clonal haematopoiesis as a generalisable origin of 

the pathology: firstly, several studies observed similar enrichments of the presumed 

founding mutations, including TET2 [48] and DNMT3A [49] with associated 

enrichments for particular pathways including methylome and chromatin modifiers. 

Secondly, on the timing and order of mutation acquisition: groups began to compare 

the mutational burden between AML and skin controls which showed similar counts of 

passenger variants between the two tissues suggesting the stochastic time-

dependence of their acquisition. Then, that in HSPCs, the “number of additional 

passengers added with progression events is typically much smaller than the number 

of passengers captured with the initiating event (which accumulated over the lifetime 

of the founding cell)” [46] suggesting that lesions that induce a clonal expansion also 

carry the genetic history of the clone and can be ordered accordingly. Alongside this, 

others noted the size of the clonal population carrying a given progression event may 

correspond to increased self-renewal against a background of mutations that confer 

no advantage and are gradually lost to drift [50].  

These experiments highlighted the ability of genomic sequencing to capture both the 

targets, history and temporal ordering of mutations and identified an initiating state of 

increased HSPC self-renewal that occurs years before pathological relevance. 

Despite this, a full understanding of the mutational spectrum, aetiology and the 

outcomes associated with clonal haematopoiesis in the general population remained 

unknown. 

 

1.2.2 Clonal Haematopoiesis in the Next Generation Sequencing Age 
 

Beginning around 2014, several teams began to independently investigate exome 

sequencing data from several cohorts comprising over 30,000 individuals for somatic 

variants that might be associated with haematological disease [1, 2, 51, 52]. These 

studies can be considered to be at a “population level” as they comprised participants 

from a range of age-groupings – generally from early adulthood to late life – and 

covered what can be considered the normal burden of disease in a population without 

selecting for specific haematological phenotypes. Most importantly, the source of the 
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studied genomic data was peripheral blood – allowing them to study the mutational 

spectrum of clonal haematopoiesis to an extent that had previously been impossible. 

Some have described these studies as an experiment in “saturation mutagenesis” [53]: 

in a population of sufficient size, all possible mutations that can occur will occur in 

HSPCs; ergo, mutations that are damaging or neutral (that carry no discernible or 

negative fitness advantages) will not result in clonal growth that will lead to their 

detection in the blood and will be lost to genetic drift. Any mutation that can be detected 

can be presumed to be a driver of clonal haematopoiesis and will point to biological 

pathways that increase the fitness of HSPC growth. 

Despite participants in each study coming from several distinct populations and 

cohorts it was initially counterintuitive to find that clonal haematopoiesis is driven by 

variants in a small subset of genes [54–56]. While mutations in canonical tumour 

suppressors and oncogenes regularly observed in cancer were present - such as 

those associated with DNA damage response, growth and survival signalling – nearly 

two thirds came from just two genes involved in the maintenance of DNA methylation, 

DNMT3A and TET2. Behind this, ASXL1, a chromatin modifier was the third most 

heavily affected, alongside a range of splicing factors (SRSF2, U2AF, SF3B1). Why 

simple loss of function (LOF) mutations in these genes induces the clonal expansion 

of HSPCs remains an open area of research. 

Another notable finding from these early cohort studies suggested that the incidence 

of clonal haematopoiesis is age-dependent and increases in frequency across a 

lifespan. In individuals under 40 years of age, the burden of clonal haematopoiesis is 

less than 1%. However, this burden escalates to around 10-20% of individuals above 

the age of 70 years and can even achieve a prevalence of nearly 70% by the age of 

90 years depending on the sensitivity of the sequencing method employed [53, 54, 

57]. Indeed, if we assume that circulating PBMCs are a representation of the somatic 

mutational burden of the HSPC population, our potential to detect CH within an 

individual is likely most readily affected by the accuracy and sampling potential of the 

sequencing platform. In these initial cross-sectional studies, the size of the detectable 

clones was large; a median of 18% of cumulative PBMCs carried mutations [1]. 

Through the use of exome-sequencing, we can derive a solid understanding of the 
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age-dependence and scale of the oligoclonal burden, however, a lack of sensitivity 

limits our ability to detect small clones (particularly at earlier age points) and highlights 

the importance of improved sequencing methods to accurately estimate the growth 

and origin of low frequency variants. 

Mutational signature analysis – which attempts to classify the forms of intrinsic and 

extrinsic mutagenic processes that give rise to a specific pattern of genome-wide 

nucleotide switching due to somatic variation [58, 59] - identifies two specific patterns 

in clonal haematopoiesis: predominantly signature 6 (C>T), an age-associated 

signature; and signature 4 (C>A), commonly associated with exposure to smoking [1]. 

The enrichment of signature 2 (~60% or all classified mutations in the Jaiswal cohort) 

is purported to be driven by the endogenous and spontaneous deamination of 

methylcytosine and indicates that the mutational processes that drive clonal 

haematopoiesis likely arise through an age-dependent, although not necessarily 

linear, acquisition of somatic variation over a lifespan [60]. 

Many of the cases of CH describe mutations in genes that are known drivers of 

haematological disease (DNMT3A, TET2, ASXL1, JAK2, P53), yet despite the high 

burden of somatic clones in the elderly, the risk of progression to cancer was limited 

(1% per year) despite over 42% of blood cancers within the cohort displaying some 

form of CH driven clonality [2]. Clonal haematopoiesis was also shown to be 

associated with both cardiovascular disease and other distal pathologies of ageing [1, 

39, 61]. However, these associations are still a matter of some debate [62, 63] and are 

potentially confounded by covariates linked to the over-arching processes of ageing 

where the incidence of CH is most abundant. Greater clarity on the complex 

associations with CH and secondary pathologies will likely become increasingly 

clarified by the next generation of population level cohort studies, like the UK Biobank, 

and will be discussed in more detail in later sections. 

 

1.2.3 The Genes and Genetics of Clonal Haematopoiesis 
 

Clonal haematopoiesis is the consequences of the outgrowth of high fitness clones 

that are generally driven by somatic mutations in a small set of functionally diverse 
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genes. Although captured under this nomenclature due to their capacity to permit 

progenitor and stem cell expansion in the haematopoietic niche, their diverse roles 

lead to a variety of differing mechanisms that permit this expansion with corresponding 

divergencies in their aetiology, pathophysiological outcomes and associated disease 

risk [63]. This thesis examines clonal haematopoiesis through the prism of a set of well 

described drivers of clonal haematopoiesis (Figure 1.4). Here, I attempt to provide 

short summaries and a discussion of their roles in positive selection and their 

downstream consequences. I refer to gene names in the italic format and proteins as 

unitalicized text (i.e., DNMT3A encodes for the protein, DNMT3A). 

 

Figure 1.4: The pan-cohort prevalence of gene driver mutations. The average 

proportions of the top 12 most prevalent genes harbouring known driver mutations in CH [1, 

2, 52, 54, 64]. The “Others” category comprises 19 additional rarely observed genes. Cohorts 
were chosen due to lack of prior therapeutic or pathological selection criteria. As it is difficult 

to accurately correct for the variety of sequencing methods, age distributions or cohort 

selection methods, this plot is mainly illustrative of the canonical enrichment patterns of the 
genetic drivers in CH. 

The types of genes regularly mutated in CH tend to fall into several ontological classes: 

epigenetic and methylation regulators, splicing factors and genes involved in the DNA 

damage response; with less frequent numbers in developmental transcription factors, 

cohesion complex components and mitogenic regulators. Clonal haematopoiesis has 
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a complex and diverse genetic background and even minor changes to the genetic 

architecture of HSPCs can create conditions that can lead to significant effects when 

exhibited over many decades. In the section below, I attempt to devote time to the key 

genes that play the greatest contribution to CH and are of particular interest to this 

thesis, with an attempt to focus on the mechanisms that give rise to their expansion. 

 
1.2.3.1 Regulation of DNA Methylation 
 

DNA (cytosine-5)-methyltransferase 3A (DNMT3A) 

DNMT3A encodes for one of the two key de novo methyltransferases, DNMT3A 

(alongside DNMT3B) whose role is to establish DNA methylation patterns across the 

genome [65]. DNA methylation is a major epigenetic regulator that has a vital role in 

X-chromosome inactivation, genomic stability [66], regulating gene expression [67] 

and cell differentiation [68]. DNA methylation is the addition of a methyl group (CH3) 

to position C-5 in cytosine within the symmetric 5'—C—phosphate—G—3' (CpG) 

dinucleotide creating a methylated cytosine (5mC). More discussion will be made on 

the role of DNA methylation in later sections when I discuss its use in epigenetic 

estimates of age.  

DNMT3A is highly expressed in haematopoietic stem and progenitor cells (HSPCs) 

[69] as well as during neurogenesis. Studies of DNMT family knock-outs in mouse 

models have shown these genes to be essential to development [68]. The role of 

DNMT3A in HSPCs is primarily to protect stem cells from excess multipotency - 

preserving the stem cell pool [70] – alongside orchestrating the complex and multi-

layered process of haematopoiesis by manipulating gene expression programs via a 

repatterning of DNA methylation at key regulatory loci [71]. 

In HSPCs, mutations in DNMT3A have been shown to inhibit differentiation programs, 

whilst promoting self-renewal [72, 73], thereby reducing (or obstructing) multilineage 

potential. This occurs via loss, or erosion, of DNA methylation profiles at genes that 

promote stem-ness over differentiation – becoming increasingly reinforced through 

each cycle of self-renewal [74]. Coupled with this, DNMT3A loss has been shown to 

immortalise HSPCs [75] leading to skewed division potential. Taken together, 
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mutations in DNMT3A can preserve stem-ness and replicative potential [75, 76], 

permitting DNMT3A mutant cells to expand in the haematopoietic niche through 

repeated cycles of self-renewal, allowing it to outcompete WT HSPC equivalents over 

long periods in a cell-intrinsic manner. 

Despite their apparently benign phenotype, high representation and assumed 

tolerance of DNMT3A mutant clones across numerous cohort studies [1, 2, 51, 52, 54, 

55], the evidence suggests that DNMT3A has an important role in pre-leukemic 

disease [77]. This initially appears counterintuitive, however, their progression towards 

leukemic states likely requires cooperation from additional oncogenic mutations that 

hijack their resilience and pervasiveness [78, 79]. Mutations in DNMT3A are strongly 

linked with Acute Myeloid Leukaemia and between 20-30% of all sufferers are carriers 

for LOF mutations in this gene [49, 80], while DNMT3A mutations can also be seen as 

a strong predictor of AML onset – particularly in the young – with a risk that scales with 

clone size [3]. DNMT3A is regularly altered with other oncogenes: almost 30% of AML 

sufferers with mutations in DNMT3A have additional mutations in FMS Related 

Receptor Tyrosine Kinase 3 (FLT3) and Nucleophosmin 1 (NPM1) [81, 82] alongside 

a host of mutations that are more common in solid tumours, such as NRAS (G12V) 

[74]. Indeed, the persistence of DNMT3A mutated clones, might be a key factor in the 

difficulties in treating many leukemic diseases, due to their capacity to maintain 

stemness and resistance to chemotherapies while enduring long into remission [78, 

79]. 

In the last few years, some studies have shown that chronic infection has been shown 

to increase the fitness of DNMT3A clones [83]. Chronic exposure to pathogens result 

in the long-term elevation of inflammation and immune responses and gradually 

exhaust the stem cell pool [84]. The subsequent selective pressure favours the 

expansion of pro-stemness mutant DNMT3A HSC clones against wild-type 

competitors [85] and highlights how cell intrinsic and extrinsic factors can interact to 

promote somatic mosaicism. 

 

Tet Methylcytosine dioxygenase (TET2) 
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The second most frequently mutated gene in CH, TET2, is one of the ten-eleven 

translocation (TET) family of enzymes primarily responsible for the regulation of gene 

expression through modulation of methylation patterns [86, 87]. Not so long ago, DNA 

methylation was thought to be an irreversible state, until the discovery of its sister 

protein TET1 in 2009 [88]. TET2 and its sister proteins act to remove methyl groups 

from CpG dinucleotides via the oxidation of 5-methylcytosine (5mC) to form 5-

hydroxymethylcytosine (5hmC), leading to a net hypomethylation effect across the 

methylome.  

The TET2 protein is a large (~200kDa) multidomain enzyme. Mutations in TET2 tend 

to be heterozygous and loss-of-function resulting in aberrant methylation patterns that 

alter gene expression programmes. This enzyme is frequently mutated across a range 

of haematopoietic and solid cancers [89, 90]. TET2 is widely transcribed in 

haematopoietic cell populations, from progenitors to mature lymphoid lineages [91]. 

Deletion of TET2 in murine models has been shown to increase Lin−Sca-1+c-Kit+ 

(LSK) cell population – boosting haematopoietic repopulation via increased self-

renewal potential, while biasing towards monocyte, macrophage and other myeloid 

lineages before progression to malignancy [92, 93]. TET2 also has a necessary role 

in the function of innate immunity and plays an important role in the regulation of IL6 

– Interleukin 6; a mediator of inflammation – through the recruitment of histone 

deacetylases (namely HDAC6) to this locus [94]. 

TET2 is the second most prevalent mutation in clonal haematopoiesis (Figure 1.4) with 

a mutational prevalence that is largely age-dependent [1]. Several studies have now 

explored the cell-intrinsic mechanisms that lead to malignant transformation that result 

from Tet2 knockouts in mice [93, 95, 96]. In each of these studies, an expansion of 

the HSC compartment was shown alongside increased self-renewal potential with loss 

of TET2. Some studies have shown that TET2 deficiency can result in increased 

mutagenicity: Pan et al., have shown that this can lead to the spontaneous 

development of a range of differing haematological malignancies [90] and targeted 

single-cell sequencing from the same group revealed an increased mutation rate in 

Tet2-/- HSPCs, particularly in sites with elevated levels of 5-hydroxymethylcytosine, 

indicating malignant transformation can be driven via cell-intrinsic mechanisms [92]. 
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Clonal haematopoiesis has well described links to inflammation and TET2 likely plays 

a key role in this axis. While associations with CH and atherosclerosis have been 

shown [39, 97], Jaiswal and colleagues have also shown an acceleration in the 

development of atherosclerosis in mice with Tet2 knockout bone marrow 

transplantations in the presence of a high-cholesterol, high-fat diet [1]. TET2 knockout 

macrophages, cultured with low-density lipoproteins have also shown marked 

increases in inflammatory transcriptional signatures compared to their wild-type (WT) 

comparators, suggesting a requirement for inflammatory signalling to progress 

atherosclerosis development in the TET2 mutant background [98]. Despite this, the 

complex role inflammation plays in the growth of mutant TET2 clones and subsequent 

pathologies remains unclear. 

To date, TET2 is the only gene shown to have any hereditary predisposition through 

the presence of a noncoding variant at an enhancer - a distal gene regulatory element 

- associated with expression of this enzyme [99]. 

 

TET2 and DNMT3A: Antagonistic Functions, Overlapping Phenotypes 

It is still a matter of some debate as to why these two genes with such dichotomy of 

function results in similar phenotypes that give rise to increased self-renewal patterns 

and subsequent clonal expansion. Part of the reasoning behind the similarities 

between mutant DNMT3A and TET2 clones are likely: a) they are biologically rather 

benign with limited pathological effects – their near ubiquitous presence in populations 

likely indicates low risk to cancer progression in isolation [100]; b) their rate of growth 

is slow with limited proliferative advantage, therefore, progression to a dominant 

position in the haematopoietic system likely takes decades and is rarely met in 

individuals [5, 101], and; c) despite their opposing nature in maintaining DNA 

methylation, the dynamic temporal mechanisms that underpin the role of DNA 

methylation are still poorly understood – clearly both genes are required to orchestrate 

the gene expression programs that are required to transition through the 

haematopoietic lineages, despite the poor correlation of DNA methylation patterns and 

gene expression between these enzymes [102, 103]. 
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1.2.3.2 Histone Regulation 
 

Additional Sex Combs-Like 1 (ASXL1) 

The ASXL1 gene encodes a protein that plays a role in epigenetic regulation and 

transcriptional repression through its interactions with chromatin modifiers and 

transcription factors through its involvement in the polycomb repressive complex 

(PCR) [104]. Mutations in this gene are frequently detected in both clonal 

haematopoiesis and many haematological cancers, such as myelodysplastic 

syndrome (MDS), chronic myeloproliferative neoplasms (MPN) and acute myeloid 

leukaemia (AML) [105]. Functionally, ASXL1 is responsible for mediating PRC2 

histone methylation (primarily of histone H3) and polycomb repressive complex 1 

(PRC1) as well as the deubiquitination of histone H2A [106, 107]. Mutations in ASXL1 

markedly deplete repressive mark H3K27me3 at PRC2 developmental genes that 

regulate stem cell homeostasis [108].  

An analysis of the UK Bio Bank has suggested that carriers of ASXL1 mutations tend 

to have a significant association with smoking history, suggesting that the growth of 

ASXL1 mutant clones might have some dependence on increased inflammation or 

mutagenicity [109]. Indeed, mutant ASXL1 HSPC clones have been shown to express 

anti-inflammatory factors that confer resistance to the inflammatory environs produced 

by their own progeny – exemplifying the levels of somatic evolution that are sometimes 

required to promote clonal growth [110]. 

Alongside ASXL1, several other epigenetic regulators have been detected in enriched 

quantities in populations of CH carriers. Histone methyltransferases such as EZH2, 

KMT2A and KDM6A have been discovered in small numbers, alongside other proteins 

involved in regulating the polycomb repressive complex, such as BCOR and BCORL1, 

suggesting overlapping functionality in promoting the expansion of HSPC clones. 

 

1.2.3.3 Mitogenic Regulators 
 

Janus Kinase 2 (JAK2) 
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JAK2 is a non-receptor tyrosine kinase that plays a vital role in cytokine signalling and 

regulation of growth factors that include erythropoietin, thrombopoietin and interleukin-

3 (IL3) [111, 112]. The Janus Kinase family of proteins serve as the cytoplasmic 

signalling component mediating membrane to nuclear communication in cells - most 

notably through the JAK-STAT pathway [113, 114]. JAK-STAT signalling has a diverse 

array of functions, including; the orchestration of adaptive and innate immunity, cell-

death, inflammation and haematopoiesis [114]. 

JAKs are unusual in comparison to other tyrosine kinases through their possession of 

a psuedokinase domain upstream of their functional tyrosine kinase locus which 

serves to maintain a stable and low basal level of kinase activity [115]. The mutational 

spectrum of JAK2 in haematopoietic disorders is simple and relatively unique, with 

specific gain-of-function “hotspot” mutations targeting the psuedokinase domain that 

constitutively activates the signalling pathway, such as the JAK2 V617F mutation 

[116]. The JAK2 V617F mutation has been indicated as a key driver of clonal 

haematopoiesis and an array of haematological disease through its ability to generate 

a pro-proliferative phenotype through the downstream activation of JAK-STAT, 

RAS/RAF or P3K/AKT pathways [117]. 

Mutations in JAK2 have been found in significant proportions of patients with MPNs, 

including 95% of cases of polycythaemia vera (PV) linked to the overproduction of red 

blood cells (RBCs) and around 50% of the cases of essential thrombocythemia (ET) 

which is associated with platelet overproduction [118–120]. Haematological 

malignancies likely arise when a higher clonal burden of mutant JAK2 is attained which 

can account for changes is constituent blood count proportions – or cytopenia’s – in 

circulating blood [121]. Patients with JAK2 V617F that have a disease burden - 

including MPN subtypes, PV and ET - can be specifically differentiated from CHIP 

through measuring blood cell type proportions, such as haemoglobin, leukocyte and 

platelet counts, with sufferers frequently displaying higher mutational variant allele 

frequencies (VAFs) [122]. JAK2 V617F has also been shown to exacerbate 

cardiovascular disease through increased cytokine activity in mice [123]. 
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Aside from JAK2, a long tail of infrequently mutated mitogenic proteins includes JAK3, 

NRAS and KRAS genes, alongside NF1 and PTPN11 - frequently enriched oncogenes 

in many solid cancers. 

 
1.2.3.4 Spliceosomal Mutations 
 

Mutations in splicing factors emerge late in the pathogenesis of clonal haematopoiesis 

with genes such as Splicing Factor 3b Subunit (SF3B1), Serine and Arginine Rich 

Spicing Factor 2 (SRSF2) and U2 Small Nuclear RNA Auxiliary Factor 1 (USAF1) 

being commonly affected [124]. RNA splicing involves the post-translational regulation 

of gene expression via the cleavage of intronic DNA at conserved sequence motifs 

known as splice sites [125, 126] and in turn radically increases the functional 

proteomic repertoire by allowing variation in exon usage and occurs in over 90% of 

human genes [127, 128]. RNA splicing has been shown to be hugely adaptive: gene 

isoform ratios and splicing factor expression levels have been shown to change with 

age and have a transcriptional association with DNA damage repair factors in later life 

[129], while pan-cancer analyses have shown tumour cells to exhibit up to 30% more 

alternative splicing events than normal samples with a substantial portion unique to 

cancer subtypes [130]. 

In our blood, several studies have shown that specific repertoires of differential splicing 

are found in progenitor populations across haematopoietic lineages, suggesting that 

spliceosomal regulation of gene expression and associated proteomic changes may 

be required to define haematopoietic cell identity [131–133]. Mutations in splicing 

genes are common in many myeloproliferative disorders and occur in around 50% of 

patients with MDS [134], in particular the aforementioned SF3B1, SRSF2 and USAF1 

are thought to occur in the early stages of the disease [135]. Mutations in these genes 

tend to cluster within specific functional domains and amino acid positions suggesting 

a tendency towards gain-of-function events and occur with a high degree of mutual 

exclusivity; indicating that mutations in these genes may involve some redundancy or 

exhibit a low systemic tolerance [136, 137]. One might assume this could indicate a 

shared pathogenesis, however, different mutated spliceosomal genes exhibit distinct 



 38 

mechanistic characteristics as well as detectable changes in cellular morphology in 

MDS subtypes [138]. 

The precise workings of their role in driving clonal expansion remains elusive and can 

be assumed to be complex given their role regulating the transcriptome. Recent work 

has pointed to the cryptic splicing of differentiation and cell-cycle genes that provide a 

fitness advantage for SF3B1 mutant cells within the erythroid lineage [139]. Perhaps 

the most interesting facet of spliceosomal mutations in the context of CH is their 

extreme age-dependence. Across a range of key CH population studies, spliceosomal 

mutations were observed uniquely above the age of 70 in low numbers but with 

relatively high VAFs using exome-sequencing [1, 2, 51], with more sensitive 

sequencing methods finding greater numbers above 70 at lower VAFs [52]. This is 

concordant with the sharp rise in MDS incidence in late life that is driven by mutations 

in the spliceosome [140] and that, within MDS patient populations, carriers of splicing 

variants tend to be significantly older [141]. Due to the stochastic nature of mutagenic 

processes, it is unlikely that the origin of these mutations occurs exclusively in later 

life and more probable that cell-extrinsic age-dependent changes precipitate and 

accelerate their growth in old age. 

 

1.2.3.5 DNA Damage Response 
 

Tumour Protein 53 (TP53) 

Somatic variation in the TP53 gene is common in clonal haematopoiesis. TP53 is a 

potent tumour suppressor which responds to a host of cellular stressors and can 

facilitate a diverse array of effector pathways that protect genome stability and cell 

homeostasis [142]. The activation of TP53 is hugely context dependent and can 

transcriptionally regulate many hundreds of genes across several biological 

processes, including DNA damage repair (DDR) [143], senescence [144] and 

apoptosis [145]. 

In haematopoiesis, TP53 loss has been shown to provide a fitness advantage to both 

young [146] and old HSPCs [147] in a dose-dependent fashion. Mutations in DDR 
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genes (including PPM1D) are predominantly associated with patients who have 

undergone cancer treatment [55, 148] and now display clonal outgrowth, linking 

cytotoxic stress with clonal selection through increased resistance to apoptosis and a 

preference to cell-cycle activation [149]. Outside this context, DDR related mutations 

have been shown to be relatively common, including in young individuals without prior 

links to cancer therapies, suggesting that conferral of any fitness advantage might not 

only be linked to resistance to DNA damage or perhaps that cell-intrinsic levels of DNA 

damage can exert a positive fitness effect. 

 
1.2.3.6 Additional Driver Event Classes 
 

While we have examined the backgrounds of some of the most frequently mutated 

genes and gene classes in CH, there is an additional (although not insignificant) 

number of variants that have been discovered in population studies that can be 

considered putative drivers of CH. 

Firstly, cohesin complex proteins, including RAD2, SMC3 and STAG2 and associated 

insulator CTCF have been implicated in both clonal haematopoiesis and AML [150, 

151] and together, form a multiprotein complex involved in maintaining and 

manipulating 3D genome organisation, regulating gene transcription [152]. This gene 

class has been shown to be essential in maintaining the HSC population and the 

genomic architecture linking regulatory loci, with mutations affecting lineage specific 

differentiation [153]. Mutations in developmental transcription factors, like RUNX1, 

CUX1, GATA2 and NOTCH1, likely act through similar mechanisms - disrupting the 

regulation of normal haematopoiesis [154].  

Recent work using a sophisticated colony barcoding technique to determine clonal 

phylogenies discovered many large clones without known driver mutations [155] and 

the future discovery of novel CH variants will likely require significantly larger cohorts 

[156]. Many of these putative CH drivers may exhibit relatively weak fitness 

advantages and may require some polygenic co-operation to achieve substantive 

growth effects. 
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The acquisition of large mosaic chromosomal alterations (mCAs) has emerged as a 

hugely prevalent form of clonal mosaicism. The haematopoietic loss of the Y 

chromosome in men (mLOY) has been associated with CHIP and has a similar age-

dependence – detectable in 40% of men by the age of 70 then rising to nearly 60% by 

the 10th decade of life – with correspondingly poor outcomes [157, 158]. Significant 

numbers of smaller mCAs have been observed in autosomal chromosomes and have 

been shown to have some interaction with haematological cancers [159] and a causal 

association with smoking [160]. 

 

1.2.3.7 Germline Determinants of CH 
 

With the arrival of nation level genomic studies, the inherited factors that shape the 

growth of clonal haematopoiesis are beginning to be untangled. Two independent 

analyses of the UK Bio Bank, totalling over 200,000 and 600,000 participants 

respectively, have identified several novel heritable loci that may impact the growth of 

CHIP [156, 161]. 

Interestingly, the strongest germline association across all CHIP subtypes was shown 

at the TERT locus, a catalytic subunit of the telomerase enzyme involved in the 

maintenance and elongation of telomeres [162]. Telomere length is inversely 

correlated with age across tissues due to the gradual attrition of telomeres over 

repeated cycles of cell replication and gene expression [163]. Inherited SNPs in this 

gene tend to associate with maintenance of longer telomeres which may contribute to 

an increased resistance to mutation (via reduced propensity to senescence and 

terminal cell-cycle exit) and likely allows for increased rates of cell cycling [164]. 

Many other inherited risk loci overlap with genes that involve cell-cycle regulation and 

DNA damage response – with several displaying overlapping functions within these 

axes [165]. Germline risk in CHIP typically allows for the extension of replicative limits 

or resistance to mutagenesis, which can then cooperate with acquired genetic lesions 

to facilitate somatic evolution in haematopoietic cells. 
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Some germline SNPs have been shown to substantially limit predisposition to CH. A 

SNP in the TCL1A gene promoter has been shown to significantly reduce the risk of 

TET2, ASXL1, SRSF2, SF3B1 and JAK2 driven clonal expansions (although not 

DNMT3A-mutant CH). TCL1A normally exhibits low levels of expression in wild-type 

HSCs, but becomes activated in the presence of TET2 or ASXL1 mutations via 

increased promoter accessibility - the rs2887399 SNP in the TCL1A promoter likely 

blocks this activation. Carriers of this variant show an 80% reduction in CHIP 

susceptibility, likely indicating that this gene plays an important role in clone growth 

and could provide a target for the development of therapies to treat/prevent CHIP in a 

diverse genetic background [166]. 

 

1.2.4 Environmental and Extrinsic Drivers of Clonal Haematopoiesis 
 

We have described how almost all individuals will harbour mutation driven HSC clones 

by late adulthood, however, only in a smaller proportion will the expansion of these 

clones be detectable, and ergo, potentially pathological. Alongside chance and time, 

exogenous factors play a significant contribution to clone growth as well as providing 

an explanation for the marked variation in prevalence and clone size seen amongst 

individuals [167]. With the arrival of a new set of environs, mutations that were once 

neutral now exhibit a fitness advantage, suggesting that some variants might only 

develop with a particular set of extrinsic signals (Figure 1.5). 

The spatial structure and cellular composition of the bone marrow niche exhibits 

marked changes as we age, with these multifaceted changes potentially facilitating 

clone growth. Several studies have identified changes that include changes in the 

stromal cell compositions, a decrease in the bone matrix, increases in vascular 

volumes and expansions of large adipocytes that compound to create a space and 

environment markedly different from young bone [168–170]. How HSCs localise to 

other cell types has been known to change with ageing [171], with the decline in growth 

factor concentrations - like age-dependent reductions in IGF1 signalling across middle 

and into old age – now thought to contribute to a loss of HSC health-span and function 

[37].  
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Some of the best evidence for the importance of cell-extrinsic factors comes from 

observations in allogenic transplantation procedures in siblings [172, 173]. Some 

studies have shown that clonal haematopoiesis originating in the donor has been 

identified in the patient receiving the transplant and, in several cases, donor clones 

have shown marked enlargement in the reciprocant [174]. This perhaps suggests that 

either the transplantation or novel interactions with reciprocant bone marrow milieu 

promotes increased clonal outgrowth in these individuals. While these initial studies 

were limited to handfuls of patient pairs, larger studies in recent years have now 

highlighted a range of clinical outcomes that result from donor-CH are dependent on 

the mutational context and might require additional screening in the future [175]. 

 

Figure 1.5: Is CHIP dependent on the environment or driven by cell-intrinsic 
factors? Top panel: CHIP is driven in a cell-intrinsic manner. Here, time to acquiring the 

CHIP mutation (Mut.) and the subsequent change in selective advantage conferred by the 

variant are the key factors in clonal expansion. Average time to the mutation is dependent on 
a number of factors, including sequence context of the mutation, mutation rate and genotoxic 

exposures, such as chemotherapy. Bottom Panel: Clonal expansions are potentiated by 
extrinsic factors. In this model, the time to CHIP mutant (Mut.) acquisition and subsequent 

fitness are enabled by extrinsic factors (yellow background), such as exposure to 
inflammation, infection or age-dependent changes in the bone marrow niche. 
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Chemotherapies and other cytotoxic treatments may provide a positive fitness 

advantage to mutant CH clones with rates of CH some 5-10 times above the levels 

observed in matched control groups [55, 176]. Patients who have undergone exposure 

to genotoxic agents display a particular enrichment for clones baring PPMD1, TP53 

and other DDR related genes. Genotoxic therapies effectively destroy cancerous cells 

via the induction of DNA damage or impairing DNA damage response: it’s likely that 

these variants in DDR genes enable cells to develop a growth advantage through 

resistance to this new mutagenic environment [149, 176]. 

Recent interest has surrounded the role of inflammation which - in many tissues - can 

become a chronic feature of old age. HSCs respond to a range of cytokine or 

chemokine triggers that can signal a requirement to replenish the blood system. The 

function of normal (wild-type) HSCs is detrimentally affected by the exposure and 

subsequent response to low-grade chronic inflammatory signalling that might 

gradually deplete or impair the HSC pool upon prolonged exposure [177]. Age-related 

exposure to chronic interleukin-1B (IL-1B), interleukin-6 (IL-6) or tumour necrosis 

factor alpha (TNF-α) can induce lineage biases, promote survival and exhaust stem 

cell function [178, 179]. TET2-mutant HSCs are refractory to inflammatory signalling 

and retain their functional integrity, thus providing a fitness advantage [180]. 

Furthermore, TET2 is also known to down-regulate inflammation in myeloid cells 

through suppression of IL-6, further potentiating the fitness advantage of TET2-mutant 

clones through the creation of an inflammatory feedback loop [94] with carriers 

exhibiting increased levels of circulating cytokines [181]. Similarly, inflammation 

related to acute and chronic infection can drive the expansion of DNMT3A-mutant 

clones via induction of IFNγ [85, 182]. 

There’s an increasing body of evidence that suggests that there is an interplay 

between endogenous and exogenous drivers of ageing and clonal haematopoiesis, 

often in the form of inflammatory crosstalk between HSCs and their niche [183]. Ho et 

al., looked at a number of rejuvenation methods that are assumed to promote 

longevity, including parabiosis experiments. He found that while many of these 

methods can improve systemic function through the nutrient sensing axis, the blood 

system is refractory to these benefits, and interestingly, that young HSCs apparently 



 44 

display minimal phenotypic changes when exposed to systemic aged environments, 

suggesting that young HSCs possess some intrinsic tolerance to inflammation [184].  

 

1.2.5 Clonal Haematopoiesis and Disease Risk 
 

An important focus of research in clonal haematopoiesis has been its links with 

myeloproliferative disease as a result of the enrichment of somatic mutations in many 

key driver genes. Recent focus has also surrounded the association to many non-

haematological diseases that include many distal pathologies of ageing. 

 
1.2.5.1 Associations with Haematological Disease 
 

Most haematological cancers are characterised by the presence of cytopenia’s – a 

reduction in specific peripheral blood counts – which are absent in CH carriers and 

may never be acquired [185]. Haematological malignancies such as AML and MDS 

can be seen in a similar context to many solid tumour types, which require the step-

wise acquisition of several variants to achieve full oncogenic potential. Exactly how 

clonal haematopoiesis progresses through myelodysplastic syndromes, to AML and 

CML is poorly understood, however, it is thought that these “founder” mutations 

provide a fitness or proliferative advantage which increases clonal size and decreases 

clonal complexity, while impairing differentiation. Ensuing mutations hijack the fitness 

advantage of CH, then alter the function and output of the haematopoietic system 

terminally reducing the supply of mature blood cells which results in 

immunodeficiencies through decreasing lymphocytosis (CLL) or malignancies within 

the myeloid lineage (AML) [186]. 

The ordering of mutations is an important facet in most cancers and can be visualised 

as a form of branching evolution as the functional consequences of each variant may 

vary [187]. Second or third hits might be considered excessively deleterious in isolation 

and trigger senescence or apoptosis leading to the rapid demise of a potential clone 

– the founding mutation creates the intrinsic or extrinsic contexts that allow it to thrive 

[188]. Large studies of AML patients have indicated a substantial burden of DNMT3A 
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mutations that are typically associated with secondary hits in FLT3 (receptor tyrosine 

kinase) alongside mutations in NPM1 and RAS pathway kinases (NRAS, KRAS), 

suggesting that substantial cooperation is required to achieve pathogenicity [82]. 

Conversely, mutations in the spliceosome, in particular SF3B1, are thought to be the 

singular driver in over 30% of MDS cases [140]. JAK2-V617F mutations are observed 

in isolation in several MPN classifications, however the presence of cooperating 

mutations leads to substantially worse outcomes [189]. 

One might assume that due to the near ubiquitous nature of CH, cancer incidence 

would be low thus reflecting its high population prevalence. However, population 

studies have garnered that CH associates with an approximate 10-fold increase in risk 

for malignancy, depending on the sensitivity of the study [2, 190], with the mutational 

context [53] and the size of the driver clone a substantial contributor to this risk [3]. 

The prevalence of CH and risk of oncogenic transformation highlights the potential 

importance of population monitoring for this pre-malignant state. 

 

1.2.5.2 Associated Risk with Non-Haematological Disorders 
 

Clonal haematopoiesis is relatively unique in its capacity to cause chronic disfunction 

in other distal systems as HSCs and their progeny that are carriers CH driver 

mutations; a) lack the spatial constraints of solid tissues [191] and can expand more 

readily; b) constitute the main axis of adaptive immunity and function in every tissue 

with systemic outcomes, and; c) generally have higher inflammatory outputs [192]. 

CH is associated with increased mortality, not exclusively delineated through its links 

to blood cancers, but also via links to other distal pathologies [1]. When excluding the 

risk posed by haematological disease, CH (VAF > 2%; or 4% of circulating blood) can 

account for a 40% increase in excess mortality that has been shown to associate with 

cardiovascular disease (CVD) and ischaemic stroke [192] and has been recapitulated 

in a follow-up case-controlled cohort [97]. It has also been shown that increased clone 

size exacerbates these effects: patients with large clones (VAF > 10%) had a 12-fold 

heightened risk of coronary artery disease compared to non-CH participants [1] with 

the conferred risk posed by CH even comparing to well-known CVD risk factors, such 



 46 

as hypertension, smoking and high cholesterol levels. While the exact causal 

mechanisms remain to be elucidated, two groups have assessed the interaction 

between CVD and CH using a murine model of accelerated atherosclerosis 

development – with a complete knock out of the low density lipoprotein receptor (Ldlr-

/-) - and demonstrated that Tet2-mutant mice develop substantially larger plaques [97, 

98]. Gene expression analysis showed that loss of Tet2 upregulates a host of 

inflammatory outputs, including Il1b, Il6 and members of the Cxcl family of 

inflammatory chemokines in circulating macrophages that integrate at the site of the 

lesion [98]. Subsequent treatment with small molecule inhibitors for Il1b and Il6 greatly 

reduced sclerotic plaque size in Tet2-mutant mice over their wild-type counterparts, 

suggesting a causal link with CH driven inflammatory outputs [98].  

Furthermore, recent studies have suggested that clonal haematopoiesis is associated 

with congestive heart failure [193, 194], with Jak2, Tet2 and Dnmt3a mutant mouse 

models exacerbating cardiac failure through similar forms of inflammatory crosstalk 

[123, 195, 196]. Genetic studies in the UK Bio Bank have also begun to unravel the 

association between CH and atherosclerosis in humans. A well described loss-of-

function polymorphism in the IL6R gene has been shown to confer a resistance to 

inflammation in DNMT3A- and TET-mutated CHIP and exhibit reduced CVD and 

mortality risk in individuals with large clones [197, 198].  

Several relationships with CH and other pathologies have been described - including 

to COPD and diabetes – but these findings have proven difficult to replicate [199]. 

Perhaps the emergence of clonal haematopoiesis in late life allows it to lend itself as 

an able marker for biological ageing, and thus, provides a myriad of confounding 

features that are challenging to account for in association studies. An important 

question going forward will concern how CH mutations can affect distal tissues as 

carriers of complex phenotypes, driving pathology by perturbing the normal 

homeostasis of inflammation and function. It also highlights that, beyond the traditional 

risk of cancer progression, CH has broad effects on health and disease and that 

interventions to stabilise clone size or reduce their inflammatory output may eventually 

become a common therapeutic option depending on the age, medical context and 

preferences of the individuals involved [200]. 
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1.2.6 Deciphering the Growth Potential of Mutations 
 

The study of CH in large cross-sectional cohorts has provided a wealth of perspective 

on the genetic drivers, prevalence and associations with numerous clinical features. 

However, cross-sectional studies – providing a single snapshot in time across a 

population – leave numerous questions regarding how CH develops, the dynamics of 

clone growth and how it might interact with ageing. The earliest proxy used to 

understand these dynamics was a simple assessment of clone size, however such 

estimates erroneously assume similar points of origin and that the fitness effects 

conferred by mutations are similar. Therefore, new and more sensitive methods are 

required to determine accurate fitness estimates of clone growth. 

The first longitudinal study in CH was relatively limited, containing a handful of 

individuals and two time-points and noted only the apparent heterogeneity between 

the growth of clones between individuals [64]. The first true quantitative analysis was 

performed by van Zeventer and colleagues, using a highly sensitive error-corrected 

targeted sequencing assay. This group was the first to quantify the longitudinal 

differences in VAF between clones in the different mutational contexts and noted that 

in TP53, ASXL1 and TET2 genes, there were significant differences in the change in 

absolute VAF [201]. 

The first truly systemic study into gene-specific fitness dynamics occurred in 2019. 

Watson et al. aggregated numerous large cohorts totalling over 50,000 blood samples 

from cancer-free participants. They leveraged the scale of this cohort, to calculate the 

fitness advantage of mutations by modelling the clone size distributions of the variant 

allele frequencies (VAFs). They combine several novel components in their algorithm: 

integrating mathematical models that concern the evolution of probability density 

functions under conditions of growth or drift with classic models of stochastic birth 

death processes to infer clone fitness at gene or even specific variant contexts 

provided there is sufficient mutational coverage [202]. Due to the cross-sectional 

nature of the data employed, the inferred fitness effects have relatively high error rates 

and it is difficult to untangle the possibility of competing or cooperating mutations. 
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However, this work provided the first comprehensive catalogue of fitness estimates 

and delineated the power of positive selection within the haematopoietic system.  

Watson et al. made another interesting observation concerning the fitness distributions 

of synonymous variants in their model. Synonymous mutations confer no changes to 

the translated protein sequence and would normally be assumed to have a neutral or 

negative fitness advantage. In their data, many of the detectable synonymous 

mutations exhibited growth rates beyond what’s expected of natural drift indicating that 

they must be passengers on clones with unknown driver mutations. A subsequent 

manuscript from this group has used the fitness effects of synonymous passengers 

and shown that genes with smaller fitness effects likely occur early, while rapidly 

growing high fitness variants tend to emerge in later life [203]. This would appear to 

have significant consequences for our understanding of CH, linking positive selection 

and cell extrinsic age-dependent effects. 

In the last year, a competing paper to the work I present below was published, looking 

at a large multi-timepoint longitudinal cohort of CH. While deploying a different 

methodology, they similarly quantify the fitness effects of observed genes and come 

to similar conclusions. They highlight the rapid growth of spliceosomal genes in late 

life alongside the lifelong slow growth of DNMT3A driven clones. While our cohort tiers 

towards late life thus capturing CH at its most prevalent, their cohort tilts younger, 

representing a greater breadth of human lifespan. From this, they observe that fitness 

estimates are not stable across the life-time of a clone: some slow growing clones 

might require increased rates of growth in early life to reach their observed sizes [101].  
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1.3 DNA Methylation and Epigenetic Clocks 
 

1.3.1 The Role of DNA Methylation with Age 
 

Across the length of the mammalian genome, there are around 28 million unevenly 

distributed CpG dinucleotides (5'—C—phosphate—G—3'). In most of the non-coding 

genome CpGs are depleted, however, they are often enriched in clusters around gene 

promoters in what are known as CpG islands. CpG dinucleotides are the focus of one 

of the most abundant epigenetic modifications: the addition of a methyl group (CH3) to 

create 5-methylcytosine (5mC) – also known as DNA methylation [204]. DNA 

methylation (DNAm) has a host of divergent functions that can include the 

maintenance of genomic stability through repression of transposable elements [205], 

regulation of transcriptional elongation and RNA splicing [206] and primarily the 

regulation of gene expression patterns [207].  

DNA methylation is a highly dynamic modification. 5mC patterns can be constituted 

and eliminated by the DNA methyltransferase (DNMT) and ten-eleven translocation 

(TET) families of enzymes, respectively [208]. DNA methylation states can persist 

across cell divisions through the function of DNMT1, which copies methylation patterns 

onto the newly synthesized complementary strand [208]. While de novo 

methyltransferases, DNMT3A, DNMT3B and DNMT3L, catalyse methylation in non-

replicating conditions important for differentiation and developmental programs [209]. 

TET enzymes passively remove 5mC via hydroxylation of 5mC to 5-

hydroxymethylcytosine (5hmC) [87], while 5mC can additionally be eliminated by 

ineffective copying of the hemimethylated strand in DNA replication. Within post-

differentiated tissues comprising many non-dividing cells such as the brain, liver and 

lung, DNAm is thought to be hugely dynamic. In such tissues, DNA methylation levels 

have been shown to actively oscillate at enhancers and promoters, altering 

transcription factor accessibility and effecting the dynamics of gene expression 

programs [210, 211]. 

Age-associated changes in DNA methylation have been described for many years and 

can occur through stochastic and active mechanisms [212]. Passive mechanisms 
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involve the ineffective maintenance of hemimethylated CpGs upon mitosis or poor 

provision of the metabolites that are needed to maintain consistent DNAm patterns 

[213]. These random and age-dependent increases (hypermethylation) or decreases 

(hypomethylation) in DNAm are known as epigenetic drift [214]. This drift creates its 

own form of somatic mosaicism within aged tissues, inexorably altering the fidelity of 

gene expression, reducing cellular plasticity and tissue function. Epigenetic drift has 

perhaps been best described through experiments that have focused on monozygotic 

twins. While DNAm levels track closely between the siblings through the early stages 

of life, old age leads to the development of substantial variance in DNAm levels – with 

particularly marked changes at CpG islands [215].  

Not all age-associated changes in DNAm appear to be stochastic. It has been shown 

that with age and across tissues, similar patterns of hypermethylation can occur at a 

subset of stem-like Polycomb group target genes with similar signatures seen in some 

cancer subtypes [216]. Additionally, studies in mice have shown that enhancer regions 

significantly hypomethylate with age and that these changes can be attenuated with 

interventions that are known to improve longevity, such as calorie restriction and 

rapamycin treatment [217, 218]. The overlap between time-dependent DNAm 

changes and specific functional loci suggests that epigenetic changes play an 

important role in the deterioration of cell function with age [219]. 

 

1.3.2 DNA Methylation as a Predictor of Age 
 

Ageing is the primary risk factor for numerous diseases, including cancer, 

cardiovascular disease and stroke. Therefore, it is imperative to understand the 

multitude of complex causal factors that inexorably lead to the physiological decline 

we see in old age. It is also clear that we do not all age at the same rates, and 

therefore, we need accurate biomarkers that allow us to accurate calculate the rate of 

biological ageing in individuals [204, 220].  

In recent years, DNAm has emerged as a highly effective biomarker for predicting 

biological age. In the last decade, numerous DNAm age predictors, also known as 

epigenetic clocks, have been developed which utilize age-dependent shifts in DNA 
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methylation at single CpG sites to estimate biological age [221, 222]. Penalized 

regression models such as LASSO or elastic net are commonly used to select CpGs 

that have linear relationships with age in a given training dataset [223]. These selected 

CpGs are weighted and used to create an equation to estimate chronological age 

based on the percentage DNAm at “clock” CpG sites. Epigenetic clocks can capture 

different aspects of the ageing process and their increasing diversity have enabled 

quantitative methods of studying ageing [204]. For instance, some composite 

epigenetic clocks can estimate not only chronological age but also time-to-death, 

which can help predict morbidity and mortality [222]. 

Epigenetic clocks have proven to be adept at predicting the age of an individual, 

sometimes described as their chronological age (chAge). However, in some of the 

earliest clocks it was observed that the predicted epigenetic age (eAge) substantially 

deviated from the chronological age in some individuals [224, 225]. This posed a 

fundamental question: is this difference between the measured and predicted ages 

driven by inaccuracies within the model, or is it caused by biological factors (for 

example: disease burden, lifestyle or genetics) and therefore a biological clock?  

While still relatively poorly defined, biological age intends to capture the functional 

decline of an organism through the prism of disease, morbidity and even mortality 

[221, 226]. Therefore, individuals who have identical chronological ages might have 

vastly different biological ages as a result of divergent health, lifestyle or disease 

profiles. Because of this, biological age is an important concept, as it provides a 

window with which we might be able to predict and assess disease risk and reflect 

both the qualitative and quantitative aspects of the ageing process [204].  

It has been proposed that epigenetic clocks capture, at least in part, some aspects of 

biological age [220, 222, 227–229] and there is a growing body of evidence to support 

this. Accelerated eAge has been significantly associated with numerous syndromes 

and pathologies that have substantial functional and mechanistic evidence of 

advanced biological ageing, including HIV [230], Down syndrome [231] and Werner’s 

syndrome [232]. Conversely, long-lived individuals such as super-centenarians have 

been shown to exhibit a decelerated DNAm clock, indicating a lower biological age 

[233]. Many pathologies normally associated with advanced age have been shown to 
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associate with accelerated DNAm clock rates in cross-sectional studies. These include 

Alzheimer’s and other neuropathies [229, 234], Parkinson’s disease [235], non-

alcoholic steatohepatitis (NASH) [236] even decreased physical and mental acuity in 

the Lothian Birth Cohort [237] to name but a few. Moreover, DNAm age has been used 

as a biomarker to predict the future risk of developing a range of disease states, 

including cardiovascular disease and cancer [228, 238–240]. The breadth of 

associations between DNAm clocks and a variety of age-dependent pathologies 

highlights the potential of epigenetic age as a candidate metric of biological ageing 

[218]. 

 

1.3.3 Epigenetic Clocks 
 

The earliest epigenetic clocks developed were trained on relatively small numbers of 

samples and featured few CpGs. Blockand et al. trained the first clock on DNA 

methylation data derived from saliva in 34 pairs of twins and achieved a 5.2 year error 

rate in their initial age estimations [241]. Thereafter, Wolfgang Wagner’s group then 

developed two methylation clocks - trained on multiple cell types and then on fibroblast 

culture passages - with limited accuracy [242, 243]. The first truly effective clock was 

developed by Horvath in 2013 which applied many of the commonly accepted design 

considerations used today [224]. Dubbed the first multi-tissue clock, it was trained 

across a large dataset of 8,000 samples from numerous sources and cell types, 

achieving an average accuracy of 3.6 years. The Hannum clock was devised with a 

similar strategy using peripheral blood and predicts age to an accuracy of 3.9 years 

with 71 CpG sites [225]. 

Epigenetic clocks have been typically trained on methylation data using penalized 

regression models. Such clocks can be represented as a linear model (Equation 1). 

They are predominantly built with Ridge, LASSO or ElasticNet regression algorithms 

which automatically select a set of key CpG loci – the “clock” sites – and assign a 

weight to each loci [244, 245]. These parameters are learned in penalised regression 

by minimizing the cost function and scaling the weights of uninformative CpG loci to 0 

(Equation 1.1). 
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𝑒𝐴𝑔𝑒	~	𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +	β!𝐶𝑝𝐺! +	β"𝐶𝑝𝐺" +⋯	+	β#𝐶𝑝𝐺# (Equation 1.1) 

The learned weights (βn) for each site crudely describe whether a given CpG will 

monotonically increase or decrease with age for β > 0 or β < 0, respectively. Such 

penalized regression models reduce over-fitting where the number of available data-

points used for training is large, such as in a 450k methylation array [204, 222]. 

DNAm clocks have proven successful at predicting age estimates when trained 

against the chronological ages of individuals. However, to capture differing aspects of 

the ageing process, clocks might need adaptations to their training to make them 

sensitive to a new set of phenotypic traits. These clocks have been termed composite 

clocks as they typically utilise a variety of additional biomarker data beyond a simple 

regression against chronological age. The first composite clock from Morgan Levine 

joined ten biometrics that displayed a significant association with age, including 

proteomic data (C-reactive protein, glycated haemoglobin, serum creatinine, urea and 

albumin) and phenotypic measurements (forced expiratory volume, systolic blood 

pressure) amongst others [246]. This was followed up several years later, when Levine 

et al. combined several physiological and phenotypic measurements with 

chronological age to generate the PhenoAge clock [229]. The 513 CpG sites that 

compose this metric have proven to be a more effective predictor of all-cause mortality, 

physical acuity, cancer and morbidity than any previously devised [229]. 

Similar strategies were deployed in the development of the GrimAge clock. Here the 

authors generate a set of clock CpGs by training against smoking status (in pack-

years) coupled with seven blood serum proteins associated with shortened lifespan. 

The resultant clock proved to be effective at predicting mortality, cancer and coronary 

heart disease [247]. 

Due to the ease of accessing biological material, many clocks have been trained on 

peripheral blood mononuclear cells (PBMCs). But as described in Section 1.2, the 

haematopoietic system experiences significant changes with age that cause lineage 

skewing and may alter blood cell count proportions. To counter this, two methods have 

been devised that take different approaches to this issue: firstly, intrinsic age 

acceleration (IEAA) takes into account changes in blood cell count proportions and 

adjusts the measurement accordingly to remove them as a confounding factor in age 
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estimates; while extrinsic age acceleration (EEAA) takes the opposite approach by 

attempting to incorporate cell count proportions into age estimates [248, 249]. 

One final key element that substantially effects clock accuracy is the size and scope 

of the training dataset. The ZhangAge clock utilises 13,402 blood samples (as well as 

259 from saliva) to construct one of the largest training datasets to date [250]. They 

achieve a remarkable correlation between chAge and eAge, achieving an accuracy of 

2.04 years in their prediction. This highlights the importance of data curation: to 

achieve the most accurate predictions, you need a large number of samples with a 

sufficient age range and resolution to achieve accurate measurements of eAge across 

the breadth of the human life-span.  

Clock CpGs  Tissue Training Size Method Type Reference 
IEAA (Horvath) 353 Multi-Tissue 8,000 ElasticNet Intrinsic Horvath (2013) 
EEAA (Hannum) 71 Blood 482 ElasticNet Extrinsic Hannum et al. (2013) 
PhenoAge 513 Blood 9,926 ElasticNet Composite Levine et al. (2018) 
GrimAge 1,113 Blood 1,731 ElasticNet Composite Lu et al. (2018) 
Zhang Clock 319,607 Blood (Saliva) 13,661 ElasticNet Intrinsic Zhang et al. (2019) 

 

Table 1.1: Summary of the main human DNAm methylation clocks used in this 

thesis. Highlighting a variety of differences between them, including training sizes, 

covariables and number of clock CpG sites used in the prediction. 

This thesis uses several of these published clocks to assess for changes in biological 

age that are summarised in Table 1.1. 

 

  



 55 

1.4 Thesis Aims 
 

It is now understood that potentially oncogenic mutations emerge with regularity in the 

blood of ostensibly healthy individuals. As we age, these mutations drive the 

expansion of clones in our HSC pool that leads to an elevated risk of both 

haematological and non-haematological disease. Currently, we have a limited 

understanding of the dynamics of clonal haemopoiesis, how it cooperates with ageing 

and how these components might link to disease. 

This thesis attempts to answer the following questions: 

1. Clonal haematopoiesis presents in later life and associates with many distal 

pathologies linked to advanced age. We utilise several distinct DNA methylation 

clocks to ask: do carriers of clonal haematopoiesis exhibit accelerated 

biological ageing? 

 

2. Clonal haematopoiesis is an expansion of a single HSC driven by positive 

selection in a functionally diverse set of genes. Can we untangle the fitness 

advantages of clone growth and its variation between individuals? Additionally, 

can we leverage fitness advantages as a new predictor of disease risk? 
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Chapter 2: Study Cohorts and Methodologies 
 

In this chapter, I provide a broad summary of the protocols and design constraints 

used in the development of the main cohort used in this thesis: the Lothian Birth 

Cohorts of 1921 and 1936. Furthermore, I describe the methodology used to classify 

somatic mutations, the use of paired DNA methylation data and its application to DNA 

methylation clocks in these cohorts. Finally, I describe the set-up, selection criteria, 

processing and analysis of our longitudinal targeted sequencing panel of genes that 

commonly present in individuals with clonal haematopoiesis and the methods 

deployed to extract the fitness advantages (or growth speeds) of HSPC somatic 

clones. 

 

2.1 The Lothian Birth Cohorts of 1921 and 1936 
 

The Lothian Birth Cohorts (LBCs) of 1921 (LBC1921) and 1936 (LBC1936) are two 

parallel longitudinal studies of ageing and were primarily devised to study features of 

cognitive decline with respect to age. The participants of both cohorts consist of 

individuals born in 1921 and 1936 who undertook the Moray House Test No. 12 – a 

test of cognitive ability – at age 11. In all, Lothian Health Board recruited approximately 

70,000 young people who were registered in the region. With time, this has provided 

a unique baseline of mental acuity in the population for when in 2006 surviving 

participants were recruited to form the body of what is now known as the Lothian Birth 

Cohort [251–253]. 

Beginning in the year 1999, surviving members of these original tests were written to 

and asked to participate in what was then to be the largest study of non-pathological 

cognitive ageing. In all, 550 participants were enrolled in the LBC1921 cohort (mean 

age of 79 years) and 1,091 in the LBC1936 cohort (mean age of 70 years). 

The initial objectives for the LBC were to utilise these historic measurements to better 

understand the determinants of cognitive ageing. In this vein, similar cognitive testing 

to the original Moray House examination was performed, alongside a host of physical 
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examinations, life-style questionnaires and consolidation of medical, sociological and 

demographic records. Alongside this, efforts to store blood to assay for genetic and 

epigenetic associations were made [251]. Blood draws have been taken across five 

waves of data collection at the average ages of (LBC1936/LBC1921) 70/79, 73/82, 

76/85, 79/88 and 82/91 years. The original study design is clarified in Deary et al. 

(2007) [251]. 

 
2.1.1 Ethics, Funding and Data Access for the LBCs 
 

These studies comply with relevant ethical regulations. The study protocol was 

approved by NHS Lothian (formerly Lothian Health). Informed consent was given by 

all participants. Ethics permission for LBC1936 was obtained from the Multi-Centre 

Research Ethics Committee for Scotland (wave 1: MREC/01/0/56), the Lothian 

Research Ethics Committee (wave 1: LREC/2003/2/29) and the Scotland A Research 

Ethics Committee (waves 2, 3, 4 and 5: 07/MRE00/58). Ethics permission for LBC1921 

was obtained from the Lothian Research Ethics Committee (wave 1: 

LREC/1998/4/183; wave 2: LREC/2003/7/23; wave 3: 1702/98/4/183) and the 

Scotland A Research Ethics Committee (waves 4 and 5: 10/MRE00/87). 

Genome-wide DNA-sequencing was funded by the BBSRC (Biotechnology and 

Biological Sciences Research Council). DNA methylation arrays were funded by the 

Centre for Cognitive Ageing and Cognitive Epidemiology (Pilot Fund award), Age UK, 

the Wellcome Institutional Strategic Support Fund, The University of Edinburgh and 

The University of Queensland. 

LBC phenotypic data are available in the database of the Genomes and Phenomes 

(dbGAP) under accession number phs000821.v1.p1. All other Lothian Birth Cohort 

data are deposited in dbGAP or are provided via the LBC Data Access Collaboration. 

Information concerning the cohort is contained here, including its history, data 

summary tables for both LBC1921 and LBC1936 and data access request forms and 

contact information to obtain all data points. 
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2.2 Methodology to Assess the Association of Clonal Haematopoiesis 

and Accelerated Epigenetic Ageing 
 

2.2.1 Selection from the Lothian Birth Cohorts 

Participants were selected from the Lothian Birth Cohorts (LBCs). In all, 1,136 

individuals have been included in this analysis that have paired whole-genome DNA-

sequencing and DNA methylation (DNAm) data (Illumina Human Methylation 450K 

BeadChip). These participants are drawn from both LBC1921 (n=104 and n=166 at 

waves 1 and 4, mean ages 79 and 88, respectively) and LBC1936 (n=873 from wave 

1, mean age of 70 years). 

2.2.2 Calling Somatic Mutations in Whole Genome DNA Sequencing  

 

The whole-genome DNA-sequencing was analysed as follows: Raw sequences were 

initially assessed with FastQC before filtering for poor quality reads (phred quality 

score ≥ 30) and read ends with Trimmomatic [254]. Sequence libraries were then 

aligned to the human reference genome GRCh38 (including alt, HLA and decoy 

sequence contigs) with the Burrows-Wheeler Aligner (BWA) [255]. Duplicate reads 

were removed with samblaster (v0.1.22) [256]. Cleaning and optimisation of the 

alignment files was conducted with the Genome Analysis Toolkit (GATK; v3.4.0) to 

optimise alignments around known “gold standard” SNPs and indels observed in the 

1000 genomes project. Base recalibration was also performed to adjust for intrinsic 

biases in base phred quality scores that are introduced by sequencing platforms, 

ultimately permitting more accurate variant calling downstream [257]. This yielded a 

mean genomic coverage of 34.3 reads. 

We called somatic variants and short indels with the MuTect2 suite (v3.8) [257, 258]. 

Candidate mutations were manually assessed for quality and over-represented 

variants – likely driven by sequencing errors or poor-quality alignments - were 

removed. Single nucleotide variants (SNVs) were then annotated with the COSMIC 

(Catalogue of Somatic Mutations in Cancer) database [259] using the Ensembl Variant 
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Effect Predictor [260]. VCFs were additionally transformed to MAF files (Mutation 

Annotation Format) using vcf2mf (v1.6.16). 

To effectively characterise the presence of mutations known to be associated with 

clonal haematopoiesis, we compared our mutations to a list of driver mutations 

described in Jaiswal et al. (2014) and Genovese et al. (2014) [1, 2]. After curating 

against these lists, we identified somatic mutations in six key genes that exhibited the 

highest mutational burden or are most frequently associated with clonal 

haematopoiesis in the literature. This left 73 participants (6%) that we consider as 

exhibiting some form of mutation driven clonal haematopoiesis in the downstream 

analysis. 

2.2.3 Processing and Normalisation of DNA Methylation Data 

DNA methylation was profiled across 485,512 CpG sites using the Illumina Human 

Methylation 450K BeadChip. Raw methylation bead intensities were read into the R 

language using the minfi package [261]. Normalisation was conducted using the 

“Noob” (Normal-exponential using out-of-band probes) method which utilizes a 

background subtraction technique alongside dye-bias normalisation [262]. In short, 

this method estimates background noise profiles from out-of-band probes which it then 

removes from samples. Normalised DNAm matrices were then submitted for 

epigenetic clock analyses. 

2.2.4 Epigenetic Age Estimators 

Several epigenetic age estimates were calculated for all selected participants. A range 

of clocks were selected that are assumed to capture different aspects of the ageing 

process. Firstly, we considered the Intrinsic Epigenetic Age Acceleration (IEAA) 

measure, an adapted version of the original Horvath clock [228] that regresses out the 

effects of changes to blood cell count proportions as well as the Extrinsic Epigenetic 

Age Acceleration (EEAA) metric – that utilizes the original Hannum clock algorithm 

and clock sites, then couples estimates of age with white blood cell compositions [225, 

263]. Two composite clocks were included in this analysis, including PhenoAge and 

GrimAge methods [229, 247] alongside the ZhangAge method [250]. It must be noted 
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that the ZhangAge clock was partially trained on the Lothian Birth Cohorts and 

therefore, there may be some bias and overly optimistic predictions in participant age 

estimates. The majority of the estimates were obtained using the online clock 

calculator [https://dnamage.genetics.ucla.edu/home]. The ZhangAge clock was 

partially developed in my host institution by the Marioni group - an advisor and 

corresponding author of this manuscript. These clocks are discussed in some detail in 

Section 1.4.3 and Table 1.1. 

2.2.5 Covariates and Regression Model 

To assess for associations between CH and epigenetic age we perform a regression 

analysis using linear models from the ‘lm’ function in the ‘stats’ library and ‘glm’ from 

the MASS packages in R. We adjusted our model using age and sex as covariates 

alongside several immune cell proportions imputed from the methylation data 

(monocytes, CD4T, CD8T, Natural Killer and B cells). We also assessed the 

relationship between CH and blood cell count proportions using age and sex as 

covariates [229, 264]. 
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2.3 Methodology to Characterise the Dynamics of Gene Specific Fitness 

Effects 
 

2.3.1 Participant Selection and Characterisation 
 

In our previous study (Robertson et al., 2019), we identified 73 participants with clonal 

haematopoiesis (CH) in the Lothian Birth Cohorts (LBCs) [4]. While there have been 

numerous studies of clonal haematopoiesis in cross-sectional cohorts that have 

advanced our understanding of the prevalence of CH and its links to disease, at the 

time of writing this study, there had been few large longitudinal cohorts that had 

assessed the dynamics of CH over time. To this end, we have utilized an error-

corrected targeted sequencing approach on a panel of 75 genes (Table 2.1) that are 

known drivers of CH and other myeloid malignancies like AML, MPN and MDS. We 

then sequenced DNA from LBC participants over 3-year intervals that cover the eighth 

and nineth decades of life. 

Table 2.1: Summary of genes included in the targeted sequencing panel.  

 

Cohort Information           
Wave Number 1 2 3 4 5 
Mean Age (years; LBC1936 / LBC1921) 70 / 79 73 / 82 76 / 85 79 / 88 82 / 91 
Number of Samples 40 40 78 63 28 
Gender (m/f) 21 / 19 21 / 19 40 / 38 31 / 32 14 / 14 

Table 2.2: Cohort information across the waves of LBC data collection. 

Using this approach, we sequenced the 73 participants that had previously been 

identified and added an additional 16 with previously unknown CH status that had the 

most available time-points. We have included 85 of the 89 participants in our study, 

Target Genes in Sequencing Panel         
ABL1 CBLC DNMT3A IDH2 MYC RAD21 STAG2 
ANKRD26 CCND2 ETNK1 IKZF1 MYD88 RBBP6 STAT3 
ASXL1 CDC25C ETV6 JAK2 NF1 RPS14 TET2 
ATRX CDKN2A EZH2 JAK3 NOTCH1 RUNX1 TP53 
BCOR CEBPA FBXW7 KDM6A NPM1 SETBP1 U2AF1 
BCORL1 CSF3R FLT3 KIT NRAS SF3B1 U2AF2 
BRAF CUX1 GATA1 KMT2A PDGFRA SH2B3 WT1 
BTK CXCR4 GATA2 KRAS PHF6 SLC29A1 XPO1 
CALR DCK GNAS LUC7L2 PPM1D SMC1A ZRSR2 
CBL DDX41 HRAS MAP2K1 PTEN SMC3 

 

CBLB DHX15 IDH1 MPL PTPN11 SRSF2 
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removing 4 participants that generally exhibited low quality criteria or library 

complexities across the time-course. In all, 248 samples have been included that were 

sequenced in seven batches that included two “Genome in a Bottle” control samples 

per batch (14 total) [265]. All participants included in the study have between 2 and 5 

time points (Table 2.2) 

  

2.3.2 Targeted Error Corrected Sequencing and Data Filtering 

 

Libraries were prepared by Prof. Lee Murphy, Angie Fawkes and Louise MacGillivray 

in the Edinburgh Clinical Research Facility. DNA was extracted from EDTA whole 

blood using the Nucleon BACC3 kit (Sigma Aldrich, cat. Nb GERPN8512), following 

the manufacturer’s instructions. Libraries were prepared from 200ng of each DNA 

sample using the Archer VariantPlex 75 Myeloid gene panel and VariantPlex Somatic 

Protocol for Illumina Sequencing (Invitae, cat. Nb. AB0108, VariantPlex-HGC Myeloid 

Kit, for Illumina), including modifications for detecting low allele frequencies. 

Sequencing of each pool was performed using the NextSeq 500/550 High-Output v2.5 

(300 cycle) kit on the NextSeq 550 platform (Illumina). To inform reproducibility, we 

sequenced two “Genome in a Bottle” DNA samples in each batch of samples (DNA 

NA12878 Coriell Institute) to create a background model for variant errors and batch 

correction [5, 265].  

Sequence libraries were filtered for phred ≥30 using Trimmomatic (v.0.27) before 

alignment to human reference genome hg19 using bwa-mem (v0.7.17) [255]. To 

improve the quality and accuracy of VAF calls, the platform uses a set of unique 

molecular identifiers that are ligated to each read before PCR amplification to enable 

accurate read deduplication. Within the target gene panel, somatic mutations are 

called using three independent variant callers: LoFreq (v2.1.0) [266], FreeBayes [267] 

and Vision (unpublished). Consensus is required from two of the three callers to be 

included downstream. 

All somatic mutations at 2% VAF met a series of quality criteria: 1) the number of reads 

supporting the variant has to surpass a coverage threshold with supporting reads 
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exhibiting no directional biases (AO ≥ 5, UAO ≥ 3); 2) mutations are significantly 

underrepresented (exhibiting low population VAFs) in the gnomAD database (Genome 

Aggregation Database; p ≤ 0.05) [268]; 3) mutations are not obviously inherited from 

the germline (stable allelic frequencies across time-points at ~0.5 or ~1 VAF) which 

might have been overlooked by the gnomAD dataset as a result of the small 

geographical origin of the Lothian Birth Cohort participants; 4) do not exhibit excessive 

overrepresentation across the dataset. Over-represented events were typically 

frameshift duplication and deletions – we believe that the reads driving these events 

share some sequence homology to the targeted regions and are likely misaligned 

artefact from the capture method. We have also curated and cross-referenced our 

variants with both the Catalogue of Somatic Mutations in Cancer (COSMIC) database 

and with reported CH drivers in two large cross-sectional studies [1, 2, 259]. Lastly, 

for any variant that surpassed VAF≥2%, we have included any additional participant 

matched data points across all available time-points regardless of their VAF levels 

(Figure 2.1). 

 

Figure 2.1: Quality control metrics: Coverage. A. Sequence coverage metrics for 

variant calls across all participants and time-points filtered for 2% VAF. The displayed metrics 

are the AO (the number of reads that support the alternative allele, or mutation), versus the 
UAO (the number of sequenced reads with unique start sites supporting the alternative allele 

– a measure of molecular complexity). Red dotted lines indicate the filter thresholds for each 

measurement (AO ≥ 5, UAO ≥ 3). Points are scaled by the VAF of each call. Only 7 of 275 
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variant calls failed to meet the required filter criteria, however, they were not excluded as they 

were supported with data matched events in any participants time-course. B. Box plot showing 
median and interquartile ranges of the allele frequency of all observed mutations at Wave 1. 

This crudely represents how CH is captured in a traditional cross-sectional study. 

Sequencing artefacts can become highly problematic when attempting to detect 

variants at low VAFs in a targeted sequencing platform. To further reduce false-

positive variants in our libraries we leverage the pan-dataset coverage levels of each 

sample and the “Genome in a Bottle” controls to generate a position-specific noise 

profile at each variant to accurately determine a limit of detection (LOD) for each 

variant. We report two additional parameters for each mutation: 1) the Minimal 

Detectable Allele Fraction (95% MDAF; Figure 2.2 A) which denotes the minimum VAF 

that a variant can be detected – essentially, describing a Limit of Detection (LOD) for 

each mutation, and; 2) the VAF Outlier P-Value which describes the probability that 

any mutation call might be an artefact driven by noise or error in the sequencing 

platform. This method calculates the position specific noise distribution across the 

Genome in a Bottle controls and across the pan-dataset coverage levels of all samples 

allowing us to discern over-represented sequencing artefacts from real events (Figure 

2.2 B) [5]. All mutations that had matched time-series data that met our acceptance 

criteria were included downstream (VAF-Outlier P-Value ≤ 0.1). 

 

Figure 2.1: Quality control metrics: Error rates in captured variants. A. The 95% 

MDAF (Minimal Detectable Allele Fraction with 95% Confidence) versus the VAF for each 
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event. All variants used in our analysis above 2% VAF are scaled by their clone size and 

coloured by their functional consequence. Points in red are events that failed to pass our 
quality criteria and are removed from subsequent work. B. The VAF Outlier P-Value 

(describing the pan-cohort position-specific background noise) versus VAF for each event. All 
variants used in the analysis above 2% VAF are scaled by their clone size and coloured by 

their functional consequence. Points in red are events that failed to pass our quality criteria 
and are removed from subsequent work. All accepted events that exceed VAF Outlier P-Value 

> 0.1 are generally low VAF and are supported by matching events across the time-series that 
adhere to our acceptance criteria of VAF Outlier P-Value ≤ 0.1.  

 

2.3.3 Computational Prediction of Missense Variant Effects 
 

Predicting the pathophysiological consequences of mutations can be a non-trivial task. 

There are many gaps in our understanding of gene expression and its downstream 

effects and lack of well annotated data that link events to functional outputs. Most 

importantly, we still have an incomplete understanding of protein structure and function 

– which is particularly telling in some genes [269, 270]. To get an accurate picture of 

the effects of our variants, we have collaborated with Joe Marsh and Ben Livesey 

(University of Edinburgh). Their pipeline uses seven computational variant effect 

predictors recently identified as being most useful for identifying pathogenic mutations 

[271–277]. For each of the variants highlighted in this work, we calculated the fraction 

of previously identified pathogenic and likely pathogenic missense mutations from 

ClinVar and the proportion of variants observed in the human population in the 

gnomAD database (v2.1) for the outputs of each computational predictor before 

averaging across all predictions. The variant effect predictor Deep Sequence [276] 

was not run across all proteins due to the computational burden of running it against 

long protein sequences. Additionally, attempts to predict the effects of missense 

variant on protein (de)stabilisation were performed using FoldX (v5.0), using the 

experimentally determined protein structure (if available), or using the AlphaFold 

protein structure prediction [278, 279]. 
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2.3.4 Mathematical Model of Clonal Dynamics to Infer Fitness 

 

This part of the methodology was undertaken with substantial input from 

mathematicians and modellers Dr Eric Latorre-Crespo and Dr Linus Schumacher. 

Given the longitudinal nature of this study we can use the probabilistic solution of an 

established minimal model of cell division to infer the parameter distribution resulting 

in the observed time evolution of VAF trajectories in a participant’s genetic profile [21, 

202]. For each individual we simultaneously estimate the fitness of variants as well as 

the size of the stem cell pool, without needing to estimate the time of mutation 

acquisition. In this model cells exist in two states: stem cells (SCs) or differentiated 

cells (DCs). Under the assumption that DCs cannot revert to a SC state, differentiation 

inevitably leads to cell death and is treated as such. Furthermore, assuming that each 

SC produces the same amount of fully differentiated blood cells allows a direct 

comparison between the VAF of a variant as observed in blood samples and the 

number of SCs forming the genetic clone (clone size).  

For an individual with a collection of clones {𝑐$}$∈&, the VAF evolution in time 𝑣$(𝑡) of a 

clone 𝑐$ corresponds to 𝑣$(𝑡) =
#!(()
"*(()

, where 𝑣$(𝑡) is the variant allele frequency of the 

variant at time 𝑡, 𝑛$(𝑡) is the number of SCs carrying the variant and 𝑁(𝑡) corresponds 

to the total number of diploid HSPCs present in the individual. Finally, we assume that 

that 𝑁(𝑡) = 𝑁+ + ∑ 𝑛$(𝑡)	$∈& where 𝑁+ is the average number of wildtype (WT) HSPCs 

in the individual. The bias towards self-renewal of symmetric divisions is 

parameterised by parameter 𝑠 and determines the fitness advantage of a clone. In 

normal haematopoiesis 𝑠 = 0, in which case clones undergo neutral drift. For clones 

with non-neutral (fitness-increasing) mutations, 𝑠 > 0, and these average clone size 

grows exponentially in time as 𝑒,((-(") from an initial population of 1 SC at the time of 

mutation acquisition 𝑡.. The full distribution of clone sizes is well approximated by a 

negative binomial distribution matching the mean (exponential growth) and variance 

of the full stochastic solution. Since the model dynamics are Markovian (without 

memory), once we condition on a previously observed time-point in a trajectory, the 

prediction for all future times is independent of 𝑡.. From the predicted clone size 

distributions, we can infer the marginal posterior distribution of parameter s using 
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Bayes’ theorem. We further take into account the sampling error during sequencing to 

estimate the distribution of clone sizes at the start and end of each time interval in the 

longitudinal sequencing data. Here we approximate this sampling error as binomial. 

When multiple fit clones are present in an individual, we constrain the inference to 

share the stem cell pool size 𝑁(𝑡) for all variant trajectories in this individual. This 

increases the data/parameter ratio, and produces richer dynamics, where the 

evolution of exponentially growing clones can be suppressed by the growth of a fitter 

clone. This implies that even non-competitive models, where trajectories grow 

independently of each other, will result in competitive dynamics in the observed VAF 

trajectories as variants strive for dominance of the total production of blood cells.  

We take into account possible clonal substructures for all fit variants in an individual, 

selecting models with co-occurring mutations on the same clone if they are more likely 

after biassing against models with multiple mutations per clone, as these are 

presumed to be rarer. We then infer the posterior fitness distributions per clone for the 

most likely clonal model in every participant.  

Once we have inferred the posterior distributions of the parameters, we use the mode 

of the distribution (maximum a posteriori (MAP) estimate) for each mutation to 

visualise the deterministic, i.e., average, growth curves. These result in the logistic 

time evolution of its corresponding VAF,  

𝑣(𝑡) 	= 	
1

2 + 2𝑁+𝑒-,((-(")
	, 

where we determine the time of mutation acquisition 𝑡. - which is only used for plotting 

- using maximum likelihood. Although deterministic fits are not a direct reflection of the 

inference results of our stochastic model, these can be used to visually assess the 

“goodness of fit” of the fitness MAP estimates and have been included for each 

participant in the LBC1921 and LBC1936 respectively in later figures. 

Note that this model cannot account for loss of heterozygosity events.  

 

2.3.5 Likelihood-Based Filter for Time-Series Data (LiFT) 
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To select fit variants, we compare the likelihood of the clonal model, including binomial 

sampling error, to a model of sequencing artefacts. The artefact model assumes all 

variability arises from sampling error with a proportion that remains constant over time. 

For variants that occur more than once in our dataset we use a beta-binomial model 

to account for overdispersion and for unique variants we use a binomial model. We 

select variants as fit only if the model evidence for the clonal model is at least 4 times 

that of the artefact model. Fit variants thus selected are taken through to clonal 

structure model selection and fitness inference as described above. 

 

2.3.6 Framework and Data Availability 
 

Both LiFT and Bayesian inference of the posterior distribution of model parameters 

were implemented in Python v.3.7 [280] with dependencies on NumPy v.1.21.5 [281], 

Scipy v.1.7.3 [282] and Pandas 1.3.4. Survival analysis was implemented using 

Python v.3.7 with dependencies on Lifelines 0.26.4. Data curation was undertaken in 

Python v.3.7 and R base. 

All read data from the longitudinal cohort has been deidentified and uploaded to the 

NCBI Gene Expression Omnibus (Geo) with accession ID: GSE178936.  
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Chapter 3: Clonal Haematopoiesis is Associated with 
Accelerated Epigenetic Ageing 
 

3.1 Introduction 
 

The gradual accumulation of genetic damage is one of the hallmarks of ageing [283]. 

Clonal haematopoiesis (CH) is a characterised by the emergence of clonal 

subpopulations in our circulating blood and HSPCs. The expansion of these clones is 

driven by somatic mutations in genes that lead to increased clonal fitness in the stem 

cell population. While CH is defined by the presence of clones in apparently healthy 

individuals lacking obvious cytopenia’s, the genetic drivers are also known drivers of 

myeloid malignancies [53, 185]. The prevalence of CH markedly expands with age to 

become almost ubiquitous by late-life. Alongside this, clonal haematopoiesis has been 

shown to associate not only with cancer, but with many distal pathologies, including 

ischaemic heart failure, cardiovascular disease and atherosclerosis for which age is a 

key risk factor [1, 194].  

While CH has a strong association with several diseases associated with ageing, it’s 

links to accelerated biological or epigenetic age remain unexplored. DNA methylation 

(DNAm) has emerged as a powerful tool for estimating biological age and numerous 

DNAm clocks have been developed that use a collection of clock CpG sites that track 

with age [223]. The vast majority of these clocks have been built with penalised 

regression algorithms that select these clock sites based on the linear relationships of 

DNAm changes with age, the resultant weighted algorithm across selected CpGs have 

proven to be adept at predicting the epigenetic age of test participants [204]. 

Deviations from chronological age towards an increased epigenetic age have been 

associated with increased risk of all-cause mortality and age-related morbidities [220, 

222, 227–229]. Accelerated epigenetic age has also been shown to be associated with 

numerous pathologies that have functional and mechanistic evidence of advanced 

biological ageing, highlighting the capability of epigenetic clocks to effectively capture 

elements of biological ageing [230, 232, 234, 235]. 
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Several epidemiological and functional studies have linked clonal haematopoiesis to 

distal pathologies of age, here we used paired whole-genome sequencing and DNA-

methylation data from the Lothian Birth Cohort to present evidence of accelerated 

epigenetic ageing in individuals with CH. 

3.2 Results 
 

The Lothian Birth Cohorts of 1921 (LBC1921) and 1936 (LBC1936) are two 

longitudinal epidemiological studies of ageing [251–253]. Participants have been 

followed up every ~3 years, each for five waves, from the ages of 70 and 79, for the 

LBC1936 and LBC1921 respectively. Participants were community-dwelling, relatively 

healthy and mostly lived in the City of Edinburgh or its surrounding area when 

recruited.  

Whole blood DNA methylation levels were assessed using the Illumina 

HumanMethylation450 BeadChip. Quality control details are reported in the Section 

2.1.3. Genomic variants were determined in 1,136 LBC participants (n=870 from wave 

1 at mean age 70 years in LBC1936; n=101 and n=165 at mean ages 79 and 87, 

respectively in LBC1921) where paired whole-genome sequencing (WGS) and 

methylation data was available. WGS data were aligned with Burrows-Wheeler Aligner 

and processed for duplicate mapping reads with samblaster yielding an average 

genomic coverage of 34.3 reads. Single-nucleotide variants and short indels were 

called with MuTect (v3.8) before annotation using the Ensembl Variant Effect Predictor 

alongside the Cosmic database of coding mutations (v86) [258–260]. CH variants 

were classified as per Jaiswal et al [1]. A detailed description of the methodology is 

included in the Section 2.1.  

We considered and assessed epigenetic age acceleration in CH across six different 

DNAm clocks. Firstly, we utilized the Intrinsic Epigenetic Age Acceleration (IEAA – 

hereafter referred to as Horvath age acceleration) measure, which is an adapted 

version of the original Horvath clock that controls for white blood cell proportions [228] 

and has been considered to be partly driven by the number of cell divisions [284]. We 

have also assessed for accelerated epigenetic ageing using the adapted extrinsic 

Hannum clock (Extrinsic Epigenetic Age Acceleration – EEAA) which can track with 
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changes in blood cell count compositions [249] and can be considered to be influenced 

by external or environmental factors [229, 247]. Alongside this, we have additionally 

assessed for age acceleration with the Zhang Clock [250] and two composite clocks 

trained as predictors of all-cause mortality – the PhenoAge [229] and GrimAge models 

[247]. A detailed summary describing the training parameters and desired outcomes 

of the epigenetic clocks used in this analysis is shown in Table 1.1 and Table 3.1.  

 

Figure 3.1: CH variants discovered in Lothian Birth Cohort (LBC) participants. 
A. Oncoplot showing variant types within the CH positive subset of the LBC. This subset 

represents 73 participants (6% of 1,136 total) where one or more described somatic variants 
were detected in the six most prevalent CH-associated genes. B. Box plot describing the 

distribution of variant allele frequencies in all detected somatic CH variants. Genes with a 
single variant not shown are TP53 and SF3B1 (allele frequencies of 0.089 and 0.257, 

respectively). The overall distribution of allele frequencies by LBC cohort (LBC1921/LBC1936) 

is also shown. 

 

Epigenetic age estimates were regressed on chronological age to yield age 

acceleration residuals. Linear regression adjusting for sex, imputed white blood cell 

proportions (Monocytes, Natural Killer, CD4T, CD8T and B Cells) and methylation 

processing batch was used to determine the association between CH status 

(predictor) and Age Acceleration (response).  
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Clock CpGs  Tissue Outcome Type Training Details 

IEAA (Horvath) 353 Multi-Tissue Chronological 
age 

Intrinsic Primarily taken from non-tumour TCGA 
samples and reweighted to reduce effects 
of blood cell count proportions. 
  

EEAA (Hannum) 71 Blood Chronological 
age 

Extrinsic Utilizes same CpG sites as Hannum, but 
trained and reweighted to maximize 
influence of blood cell count proportions. 
  

PhenoAge 513 Blood Mortality Composite 
(Extrinsic) 

A measure of all-cause mortality, through 
training with several associated markers. 
These include blood cell proportions and 
morphology, C-Reactive Protein (CRP) and 
serum glucose, albumin and creatinine. 
  

GrimAge 1,113 Blood Mortality Composite 
(Extrinsic) 

This clock is trained on eight biomarkers 
that have been used to predict advanced 
ageing and mortality. These include, 
Adrenomedullin (ADM), Cystatin C, Leptin, 
SERPINE/PAI1, Growth Differentiation 
Factor 15 (GDF15), Beta-2-Microglobulin 
(B2M), TIMP Metalloproteinase Inhibitor 1 
(TIMP1) and smoking pack years.  
  

Zhang Clock 319,607 Blood (some 
Saliva) 

Chronological 
age 

Intrinsic At the time of publication, this clock was 
trained on the largest available dataset and 
had the highest accuracy on internal test 
data. 
  

Table 3.1: A summary of the training parameters and desired outcomes of the 
epigenetic clocks used in this analysis. 

 

Of the ten most prevalent CH mutated genes described in several epidemiological 

studies (Figure 1.4) [1, 2, 51, 52, 64], we had sufficient sample size and sequencing 

depth to annotate the top six in the LBCs. We identified 73 participants (from 1,136) 

with CH (6%; Figure 3.1A). The gene-specific prevalence ranged between 1-36 cases 

with CH-variant allele frequencies ranging from 0.034-0.677 (Figure 3.1B). Mutations 

in TET2 were exclusively frameshift and mutations detected in JAK2 (all V617F), 

SF3B1 and TP53 were exclusively missense.  
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Figure 3.2: Effect of clonal haematopoiesis on epigenetic age estimates in the 
IEAA (Horvath) clock. A. Scatter plot of Horvath age acceleration (IEAA; years) for 

individual LBC participants against the allele frequency of their CH variant in both LBC1921 
(orange dots, net 3.7 years; p = 2.5 x 10-3) and LBC1936 (green dots, net 4.5 years; p = 2.3 x 

10-6) cohorts. Density plot highlighting the shift in distribution of Horvath age acceleration 
between CH-positive (orange) and -negative participant (blue) groups. Non-CH carriers (blue 

dots). B. Plot showing net IEAA in CH (with 95% confidence intervals). The effect of sex (male 
versus female) on epigenetic ageing within the LBC is shown for comparison.  

 

CH status was associated with a significant increase in Horvath age acceleration: the 

increase was 4.5 (SE 0.9) years in LBC1936 and 3.7 (SE 1.2) years in LBC1921 (p = 

2.3 x 10-6 and 2.5 x 10-3, respectively; Figure 3.2A and Table 3.2). Compared with non-

CH carriers, those with TET2 mutations had a 6.1 (SE 2.2) year and 6.4 (SE 1.9) year 

increase in Horvath age acceleration in LBC1936 and LBC1921 (p = 0.004 and p = 

0.001), respectively. Those with DNMT3A mutations had 3.8 (SE 1.2) years increase 

in LBC1936, and 3.0 (SE 1.9) years in LBC1921 (p = 0.002 and p = 0.11), respectively 

(Figure 3.2B). These effect sizes are much larger than the sex-based differences in 

Horvath age acceleration, which were 1.8 (SE 0.4) years for men in LBC1936 (p = 5.1 

x 10-5), and 1.0 years (SE 0.8) in LBC1921 (p = 0.18) (Figure 3.2B and Table 3.2).  
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Figure 3.3: Effect of clonal haematopoiesis on epigenetic age estimates in the 

EEAA (Hannum) clock. A. Scatter plot showing the Hannum age acceleration (EEAA; 

years) against the allele frequency of CH variants in both LBC1921 (orange dots, net 1.9 
years; p = 0.16) and LBC1936 (green dots, net 2.3 years; p = 0.01) cohorts. Density plot 

highlighting shift in distribution of EEAA between CH-positive (orange) and -negative 
participant (turquoise) groups. Non-CH carriers (blue dots). B. Plot showing the net EEAA in 

CH (with 95% confidence intervals). The effect of sex (male versus female) on epigenetic 

ageing within the LBC is shown for comparison. 

 

We also considered age acceleration estimates from four additional epigenetic clocks: 

Extrinsic (Hannum) Epigenetic Age (EEAA) [249], PhenoAge [229], GrimAge [247] and 

Zhang Age [250] (Figure 3.3A,B and Figure 3.4A–F). Briefly, CH status was linked to 

increased EEAA, PhenoAge, GrimAge and ZhangAge, acceleration in LBC1921 

(effect sizes: 1.9 years, 3.7 years, 2.8 years and 0.8 years with p = 0.16, 0.014, 9.6 x 

10-4, and 3.5 x 10-3, respectively). In LBC1936 there was a modest association 

between CH and increased EEAA and ZhangAge (2.3 years and 0.5 years, p = 0.012 

and 4.4 x 10-3) but no association with PhenoAge or GrimAge acceleration (p = 0.32 

and 0.99, respectively).  
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LBC1936 LBC1921 

CH Beta SE P-Value Beta SE P-Value 
IEAA 4.49 0.94 2.29E-06 3.73 1.22 2.54E-03 
EEAA 2.31 0.92 1.24E-02 1.94 1.37 1.57E-01 
Zhang 0.45 0.16 4.40E-03 0.76 0.26 3.46E-03 
PhenoAge 1.06 1.06 3.15E-01 3.65 1.48 1.43E-02 
GrimAge 0.01 0.71 9.89E-01 2.81 0.84 9.55E-04 
TET2 

      

IEAA 6.13 2.15 4.38E-03 6.37 1.93 1.11E-03 
EEAA 2.14 2.13 3.17E-01 4.40 2.17 4.39E-02 
Zhang 0.66 0.37 7.75E-02 1.20 0.40 2.72E-03 
PhenoAge 2.75 2.41 2.56E-01 3.20 2.31 1.68E-01 
GrimAge -0.77 1.65 6.42E-01 2.98 1.26 1.88E-02 
DNMT3A 

      

IEAA 3.79 1.22 2.02E-03 3.01 1.87 1.09E-01 
EEAA 1.65 1.19 1.66E-01 0.95 2.05 6.43E-01 
Zhang 0.40 0.21 6.00E-02 0.35 0.37 3.49E-01 
PhenoAge 0.55 1.37 6.88E-01 3.85 2.23 8.49E-02 
GrimAge -0.23 0.93 8.02E-01 1.56 1.22 2.02E-01 
Sex (Male)           
IEAA 1.78 0.44 5.06E-05 1.04 0.77 1.80E-01 
EEAA 2.97 0.43 8.53E-12 2.78 0.86 1.43E-03 
Zhang 0.19 0.07 9.16E-03 0.17 0.16 2.90E-01 
PhenoAge 1.85 0.49 1.73E-04 -0.56 0.93 5.48E-01 
GrimAge 3.68 0.33 2.00E-16 2.85 0.53 1.76E-07 

Table 3.2: A summary of associations with clonal haematopoiesis and 

epigenetic age estimates. Alongside this, specific CH genes are represented 

where sufficient mutational prevalence is achieved. 
 

LBC1936 LBC1921 
CH OR LCI (95%) UCI (95%) P OR LCI (95%) UCI (95%) P 
Age 1.13 0.78 1.64 0.54 1.07 0.95 1.22 0.28 
Sex (M) 1.06 0.57 2.02 0.85 0.60 0.23 1.45 0.27 
NK 0.57 0.37 0.84 0.01 1.17 0.74 1.80 0.48 
Mono 1.26 0.91 1.73 0.16 1.12 0.73 1.72 0.59 
B-cell 1.10 0.86 1.31 0.34 1.37 1.01 1.94 0.05 
CD4T 0.85 0.61 1.15 0.30 0.65 0.40 1.01 0.07 
CD8T 0.77 0.46 1.17 0.28 0.94 0.58 1.42 0.79 
TET2 

        

Age 1.54 0.62 4.08 0.36 1.13 0.93 1.44 0.25 
Sex (M) 1.33 0.31 6.87 0.71 0.88 0.18 3.99 0.87 
NK 0.52 0.17 1.26 0.20 1.27 0.65 2.34 0.46 
Mono 1.78 0.85 3.51 0.11 1.79 0.92 3.65 0.09 
B-cell 1.04 0.33 1.45 0.89 1.43 0.94 2.10 0.06 
CD4T 0.95 0.43 1.97 0.90 0.68 0.30 1.38 0.32 
CD8T 0.39 0.02 1.52 0.35 1.36 0.72 2.34 0.29 
DNMT3A 

        

Age 1.22 0.74 2.03 0.44 0.99 0.83 1.20 0.92 
Sex (M) 0.59 0.25 1.35 0.22 0.15 0.01 0.84 0.08 
NK 0.56 0.32 0.93 0.04 0.57 0.24 1.22 0.18 
Mono 1.61 1.07 2.38 0.02 1.03 0.49 2.19 0.93 
B-cell 0.83 0.34 1.23 0.60 1.29 0.85 1.89 0.17 
CD4T 0.92 0.59 1.45 0.72 0.77 0.39 1.42 0.43 
CD8T 1.03 0.58 1.60 0.92 1.05 0.40 2.06 0.90 

Table 3.3: Associations of blood cell count proportions with CH status, CH 
specific genes and sex (male versus female). 
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Figure 3.4: Effect of clonal haematopoiesis on epigenetic age estimates in the 

PhenoAge, GrimAge and ZhangAge clocks. Legend as Figure 3.2 and Figure 3.3 for 

the PhenoAge (A & B), GrimAge (C & D) and ZhangAge (E & F) clocks, respectively. 



 77 

There was no consistent association between CH status and white cell count 

proportions across the two cohorts: a lower proportion of NK cells was linked with CH 

carrier status in LBC1936 (odds ratio per SD of cell counts, 0.57 95% CI [0.37, 0.84]), 

while a higher B cell proportion was associated with CH status in LBC1921 (OR 1.37 

[1.01, 1.94]) (Table 3.3) [4]. 

 

3.3 Conclusion and Discussion 
 

In these results, we observed significant associations between CH and epigenetic age 

acceleration in the independent Lothian Birth Cohorts of 1921 and 1936 in a variety of 

epigenetic clocks, though not all. Firstly, we observed the strongest associations with 

CH in the canonical clocks IEAA, EEAA and ZhangAge – with the intrinsic clock, IEAA, 

being particularly effective. Earlier studies into the potential mechanisms of intrinsic 

age-acceleration highlighted its correlation with the number of population doublings in 

common human cell-lines [284, 285]. This might imply that the strong response from 

the intrinsic clocks to CH may be driven by heightened levels of self-renewal or 

proliferation in HSPC clones in cells with corresponding driver mutations, or 

conversely, exhaustion of the WT HSPCs leading to the positive section of mutant 

clones [284, 285]. It is possible that we might be able to delineate these effects in 

certain model systems by longitudinally assessing clock rates in tandem with accurate 

clonal VAF measurements. In addition, the ZhangAge intrinsic clock also showed 

significant associations with CH in both the LBC1921 and the LBC1936.  

The extrinsic ageing clocks showed more modest associations with CHIP (2.3 years 

in the LBC1936 and 1.9 years in LBC1921, p = 0.012 and p = 0.15, respectively). 

Individuals regularly exhibit reductions in lymphoid cell counts in old age that results 

in a reduction in immune function [32]. It’s possible that a more general age-dependent 

shift in blood cell count proportions, particularly in the older LBC1921 cohort, masked 

the effects of CHIP in our analysis. While we observed minimal associations with the 

composite clocks (PhenoAge and GrimAge) in the younger LBC1936 cohort, the older 

LBC1921 cohort exhibited significant associations in both. This might be a facet of the 
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long timeframes required for CH to become pathologically relevant, or driven by 

selection biases in the composition of the older cohort. 

We also observed significant associations with DNMT3A and TET2 mutations in the 

intrinsic ageing clocks. Due to the lack of mutational coverage, no other genes 

associations were measured. In future, larger cohorts will be required to achieve a 

more complete appraisal of the links of CH to epigenetic ageing across a more diverse 

range of genetic drivers. In addition, one might look for improvements in the 

measurement of VAF levels for these drivers via error-corrected or even exome 

sequencing to better understand its links to clone size. 

After this work was published in 2019, the links between CH and epigenetic ageing 

were reciprocated in three further studies. Nachun et al. showed that CH, DNMT3A 

and TET2 are significantly associated with accelerated epigenetic age at levels 

consistent with ours. Thanks to their larger cohort, they were able to probe deeper into 

the genetic background of CH and highlighted that individuals with multiple genetic 

drivers display the greatest age-accelerations [285]. Thereafter, Feldkamp et al. 

showed that the VAF of somatic CH mutations have a significant impact on epigenetic 

age estimates, highlighting the importance of clone size in CH - orthologous to the 

work of Abelson who showed that clone size has a significant impact on cancer 

progression and disease risk [3, 286]. Finally, Soerensen et al. used a small cohort of 

Danish twins and found significant links to clone size and eAge across the cohort and 

between twin pairs [287]. 

To conclude, these results show an important relationship between CH and epigenetic 

ageing estimates. 
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Chapter 4: Longitudinal Dynamics of Clonal 
Haematopoiesis Identifies Gene-Specific Fitness Effects 

 

Clonal haematopoiesis of indeterminate potential (CHIP) increases rapidly in 

prevalence beyond age 60 and has been associated with increased risk for 

malignancy, heart disease and ischemic stroke. CHIP is driven by somatic mutations 

in hematopoietic stem and progenitor cells (HSPCs). Since mutations in HSPCs often 

drive leukaemia, we hypothesised that HSPC fitness substantially contributes to 

transformation from CHIP to leukaemia. HSPC fitness is defined as the proliferative 

advantage over cells carrying no or only neutral mutations. If mutations in different 

genes lead to distinct fitness advantages, this could enable patient stratification. We 

quantified the fitness effects of mutations over 12 years in older age using longitudinal 

sequencing and developed a filtering method that considers individual mutational 

context alongside mutation co-occurrence to quantify the growth potential of variants 

within individuals. We find that gene-specific fitness differences can outweigh inter-

individual variation and therefore could form the basis for personalised clinical 

management. 

 

4.1 Introduction 
 

Age is the single largest factor underlying the onset of many cancers [288]. Age-related 

accumulation and clonal expansion of cancer-associated somatic mutations in healthy 

tissues has been posited recently as a pre-malignant status consistent with the 

multistage model of carcinogenesis [289]. However, the widespread presence of 

cancer-associated mutations in healthy tissues highlights the complexity of early 

detection and diagnosis of cancer [1, 2, 191, 290, 291]. 

Clonal haematopoiesis of indeterminate potential (CHIP) is defined as the clonal 

expansion of haematopoietic stem and progenitor cells (HSPCs) in healthy aged 

individuals. CHIP affects more than 10% of individuals over the age of 60 years and 

is associated with an estimated 10-fold increased risk for the later onset of 



 80 

haematological neoplasms [1, 2, 290]. There is a clear benefit of detecting CHIP early 

for close clinical monitoring and early detection as the association between clone size 

and malignancy progression is well-established [1, 53, 292]. 

The particular mechanisms by which common mutations of CHIP, e.g., DNMT3A and 

TET2 contribute to the progression of leukaemia are still not understood, which hinders 

early diagnosis of CHIP on a gene or variant-basis [53, 124, 293, 294]. In clinical 

practice, CHIP is diagnosed by the presence of somatic mutations at variant allele 

frequencies (VAF) of at least 2% in cancer-associated genes in more than 4% of all 

blood cells [1, 200]. Clonal fitness, defined as the proliferative advantage of stem cells 

carrying a mutation over cells carrying no or only neutral mutations, has emerged as 

an alternative clone-specific quantitative marker of CHIP [202, 295]. As mutations in 

stem cells often drive leukaemia [1], we hypothesise that stem cell fitness contributes 

substantially to transformation from CHIP to leukaemia. 

Stratification of individuals to inform close clinical monitoring for early detection or 

prevention of leukaemia in the future will depend on our ability to accurately associate 

genes and their variants with progression to disease. However, it remains unresolved 

whether variant- or gene-specific fitness effects outweigh other factors contributing to 

variable progression between individuals such as environment or genetics. 

Hitherto fitness effects have been predicted from large cross-sectional cohort data [3, 

202]. In this approach, single time-point data from many individuals is pooled to 

generate allele frequency distributions. Although this method allows the study of a 

large collection of variants, pooling prevents estimation of an individual’s mutational 

fitness effects from cross-sectional data. Inferring fitness from a single time-point 

creates additional uncertainty about whether a mutation has arisen recently and has 

grown rapidly (high fitness advantage) or arose a long time ago and grown slowly (low 

fitness advantage). With longitudinal samples, fitness effects of individual mutations 

can be estimated directly from the change in VAF over multiple time-points. 

In this study we work with longitudinal data from the Lothian Birth Cohorts of 1921 

(LBC1921) and 1936 (LBC1936) [253]. Such longitudinal data are rare worldwide 

owing to their participants’ older age (70-90 years) and their three-yearly follow-ups 

over 12 years in each cohort and over 21 years total timespan. We developed a new 
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framework for extracting fitness effects from longitudinal data using Bayesian 

inference. Firstly, a likelihood-based filter for time-series data (LiFT) allowed us to 

segregate between sequencing artefacts or naturally drifting populations of cells and 

fast-growing clones. Secondly, we infer the growth potential or fitness effects 

simultaneously for all growing mutations within each individual and also allow for 

clones with multiple mutations if these are favoured by Bayesian model comparison. 

We detected gene-specific fitness effects within our cohorts, highlighting the potential 

for personalised clinical management. 

 

4.2 Results 
 

4.2.1 Longitudinal Profiling of CH Variants in Advanced Age 
 

The Lothian Birth Cohorts (LBCs) of 1921 (n=550) and 1936 (n=1091) are two 

independent, longitudinal studies of ageing with approximately three yearly follow up 

for five waves, from the age of 70 (LBC1936) and 79 (LBC1921) [253]. We previously 

identified 73 participants with CHIP at Wave 1 through whole-genome sequencing 

(WGS) [4]. Here, we used a targeted error-corrected sequencing approach using a 75 

gene panel (ArcherDX/Invitae; Table 2.1) to assess longitudinal changes in variant 

allele frequencies (VAF) and clonal evolution over 21 years across both LBC cohorts 

(6 years in LBC21 and 12 years in LBC36; Table 2.2).  

Error-corrected sequencing allowed accurate quantification, providing more sensitive 

clonal outgrowth estimates compared to our previous WGS data. We sequenced 248 

LBC samples (85 individuals across 2-5 time-points) and achieved a sequencing depth 

of 2238x mean coverage (2153x median) over all targeted sites with an average of 1.6 

unique somatic variants (pan-cohort VAF 0.03-87%, median VAF 4.4%) detected per 

participant. We examined all participant-matched events across the time-course: 

sequence quality control metrics revealed that only 7 of 275 data-points failed to meet 

our quality criteria likely due to low initial VAF. The majority of our variant loci generally 

displayed a high number of supporting reads, with a mean of 258 (Figure 2.1A). 
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Figure 4.1: Unique clonal haematopoiesis variants at 2% VAF in the LBCs. A. 

Counts of unique events that exceeded 2% VAF across the range of the longitudinal cohorts 
in our panel of 75 hematopoietic genes. B. Counts of the functional consequences of the 

unique events listed in Figure 4.1A. Missense mutations, frameshift insertions and deletions 

and nonsense mutations are indicated. Exact counts, n, are for each category. C. Schematic 
of the top seven most affected genes in the cohort with the largest clone size of an event in 

any given gene shown. All affected participants were clustered across all timepoints, with the 
point size scaled by VAF and coloured by the functional consequence of the variant (as per 

Figure 4.1B and legend). Key: del, deletion; FS, frameshift; ins, insertion. 

For our initial analysis, we retained variants with at least one time-point at 2% VAF 

(Appendix 1). DNMT3A was the most commonly mutated CHIP gene (n=39 events in 

33 participants), followed by TET2 (n=18 events in 15 participants), JAK2 (n=8 events 

in 8 participants) and ASXL1 (n= 3 events in 3 participants) (Figure 4.1A-C; Figure 

4.2). Our mutation spectrum is consistent with previous studies in finding DNMT3A 

and TET2 as the most frequently mutated genes [1, 2]. We detected some variants 

more frequently at certain hot spots within a gene such as R882H in DNMT3A, with 

previously unreported variants being present as well (Figure 4.3A-F, Appendix 1) [1]. 

We most frequently detect missense mutations with several other key protein altering 
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event types ranking highly, including frameshift insertions/deletions and nonsense 

mutations (Figure 4.1A-C).  

 

 

Figure 4.2: Heatmap of all captured variants across all timepoints. Schematic of 

all affected genes in the cohort with the largest clone size of an event in any given gene shown 
above 2% VAF. All affected participants have been clustered across all time-points, with the 

point size scaled by VAF and coloured by the functional consequence of the variant (as per 
legend). Key: del, deletion; FS, frameshift; ins, insertion. 

Participants broadly cluster together across their time-course, driven by the expanding 

or stable VAF of their harboured mutations and underscores the high prevalence and 

large clone size of common clonal haematopoietic drivers, namely, DNMT3A, TET2 

and JAK2 (Figure 4.1A-C). In the case of JAK2V617F, we identified two individuals 

who developed leukaemia at Wave 2 and received treatment between Waves 2 and 

3, likely driving a clear reduction in clone size (Figure 4.3E). Those individuals were 

excluded from further analysis. In our data, we identified a lower frequency of 
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mutations in splicing genes, such as SF3B1, despite the older age of the cohorts 

(Figure 4.1A and Figure 4.2). This is in contrast to previously published cohort data, 

where splicing mutations became more prominent with increased age [52]. The 

majority of mutations were missense, frameshift and nonsense mutations (Figure 

4.1B).  

 

Figure 4.3: VAF trajectories across the time-series alongside the locations of 

protein affecting mutations in DNMT3A, TET2 and JAK2. A. Clone size trajectories 

of all DNMT3A mutations across the time series in both LBC1921 and LBC1936 coloured by 
the functional consequence of the variant (as per Figure 4.1A and 4.1C). B. Locations of 

somatic mutations discovered in DNMT3A. Protein-affecting events are marked and labelled 
across the structure of the gene (missense in red, truncating in purple, stacked for multiple 

events) with the structure of the gene labelled along the amino acid length of its protein. C. 
Clone size trajectories of all TET2 mutations across the time series in both LBC1921 and 

LBC1936 coloured by the functional consequence of the variant D. The locations of somatic 
mutations in TET2. Protein-affecting events are marked and labelled across the structure of 
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the protein E. Clone size trajectories of all JAK2 mutations across the time series in both 

LBC1921 and LBC1936 coloured by the functional consequence of the variant. Points marked 
in black denote timepoints after which the affected participant received treatment for 

leukaemia. F. The locations of protein-affecting somatic events are marked and labelled 
across the structure of the JAK2 protein. All eight JAK2 mutations are p.Val617Phe (JAK2 

V617F) missense variants.  

Overall, our sequencing approach allowed for high resolution, longitudinal mapping of 

CHIP variants over 6 and 12-year time spans in the LBC21 and LBC36, respectively, 

and 21-year time-span across both cohorts from the same geographical region and 

born 9 years apart. 

 

4.2.2 Cataloguing the Fitness Effects for CH Variants at >2% VAF 
 

 

Figure 4.4: Model to capture the gradients and growth potential of variants at 
2% VAF threshold in longitudinal data. A. Schematic of the mathematical model (top) 
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and workflow (bottom) used to infer the fitness of mutations reaching VAF > 2% during the 

observed time span. Clonal structure and fitness inference are based on a mathematical 
model of clonal dynamics (Methods). HSPCs (top, yellow cells) naturally acquire mutations 

over time that can be neutral (s = 0, green cell) or increase self-renewal bias (s > 0, brown cell), 
leading to the formation of genetic clones. B. VAF measurement v(t0) at initial timepoint t0 

versus gradient in VAF, (𝑣(𝑡𝑒𝑛𝑑)−𝑣(𝑡0))/(𝑡𝑒𝑛𝑑−𝑡0), between initial and last timepoints t0 and tend 
of all variants detected in the LBCs with at least two timepoints. Each data point corresponds 

to a trajectory in the LBCs and has been coloured according to its CHIP status based on the 
2% VAF threshold (red box). Blue and orange, respectively, denote whether trajectories 

achieved a VAF > 2% during the observed time span or not. Note: VAF is displayed on a 
logarithmic scale, as most mutations are concentrated at low VAF. C. Number of trajectories 

passing the currently used 2% VAF threshold, broken down into whether VAF is increasing or 

decreasing from the first to last timepoint. Artwork includes images by Servier Medical Art 
licensed under CC BY 3.0. 

Stem cell fitness is defined as the proliferative advantage over cells carrying no or only 

neutral mutations. It remains incompletely understood to what extent fitness is gene- 

or variant-specific, or determined by the bone marrow microenvironment and clonal 

composition. Earlier estimates suggested a wide spread of fitness effects even for 

variants of the same gene [202], which would make it difficult to clinically stratify 

individuals with CHIP.  

To determine the fitness effects of the variants identified in our cohorts (Figure 4.1A; 

Figure 4.2), we initially selected all CHIP variants in our data using the commonly used 

criterion of defining any variants with VAF>2% as CHIP [53, 200], and retaining only 

those variants with at least 2 time-points (Figure 4.4B). This approach identified 76 

CHIP mutations overall (Figure 4.4C). To estimate the fitness effect each variant 

confers, we use Bayesian inference and birth-death models of clonal dynamics (Figure 

4.4A) including all trajectories with at least 2 time-points (Appendix 2). The resulting 

fitness values show an overall dependence of fitness on the gene level (Figure 4.5), 

with a wide distribution of fitness for some genes, such as TET2 and DNMT3A, but not 

others such as JAK2 (which are all the same variant). 
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Figure 4.5: The fitness effects of variants at the 2% VAF threshold. Fitness effects 

of mutations grouped by gene and ranked by median fitness. The posterior probability 

distribution of the fitness as inferred from our model of clonal dynamics is displayed for each 
mutation (only the 90% interval is shown). The sample size, n, of observed variants in each 

gene is denoted in brackets. When more than one mutation is observed in a gene, we further 
display a box plot showing the median and exclusive interquartile range of the MAP fitness 

estimates associated with the gene. 

 

4.2.3 Longitudinal Trajectories Accurately Stratify CHIP Variants 
 

Since longitudinal data allow direct quantification of the growth in VAF over time, we 

can inspect the gradients (fluctuations) in VAF for variants that were classified as CHIP 

based on thresholding. We find that a VAF>2% threshold not only misses fast growing 

and potentially harmful variants (Figure 4.4B) but can include variants whose 

frequencies are shrinking (Figure 4.4B, 4.4C) and thus either do not confer a fitness 

advantage or are being outcompeted by other clones. Overall, 70% of CHIP mutations 

detected by thresholding at 2% VAF were growing during the observed time span 

(Figure 4.4B, 4.4C). Longitudinal data thus reveal limitations in defining CHIP 

mutations based on a widely used VAF threshold. 
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Figure 4.6: LiFT allows for the classification of fit variants <2% VAF. A. Schematic 

of LiFT algorithm. LiFT compares a model of clonal dynamics with an artifact model and 
performs Bayesian model selection. The subsequent steps to infer clonal structure and fitness 

distributions are as in Figure 4.4A and 4.4B. B. Gradient in VAF versus VAF for variants 

detected in the LBCs with at least two timepoints and at least one VAF > 1% per trajectory, 
with filtered (orange), fit (blue) and synonymous (light green dots) mutations, classified by LiFT 

on a logarithmic scale. C. Longitudinal trajectories of fit (blue) and filtered (orange) mutations 
linked to age in years.  

To overcome the limitations of a threshold-based selection of fit variants, we sought 

to filter variants based on longitudinal information, by comparing a stochastic model of 

clonal dynamics with a model of sequencing artefacts (Figure 4.6A). This novel 

approach, which we named Likelihood-based filter for time-series data (LiFT), allows 

classification of fit variants even for VAF<2%. LiFT classification of fit variants broadly 

agreed with noise profile statistics from the Archer DX pipeline (Figure 2.2A, 2.2B), but 

identified additional variants by leveraging the longitudinal nature of the data.  

LiFT classification resulted in 114 variant trajectories (Figure 4.6B-D), 86% of which 

grew over the observed time span. We note that the VAF of fit mutations may still 

shrink over time due to the presence of an even fitter clone in the same individual. This 

is in contrast to thresholding at 2% VAF, with only 70% of variants identified to be 
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growing and thus likely to confer a fitness advantage. Of 114 variants we detected, 50 

would not have been detected using the previous VAF-threshold filter. We therefore 

recomputed fitness estimates for this new set of fit trajectories (Figure 4.7B, 4.7C). 

Growing variants that were missed by the traditional filtering method include highly fit 

variants such as U2AF1 Q157R (fitness 33.5%) and DNMT3A R882H (fitness 16%) 

(Figure 4.6C, 4.7D, Appendix 3). VAF-thresholding did not identify any TP53 variants. 

However, LiFT identified four TP53 mutations, all of which were growing over the 

observed time-course (Figure 4.6C, 4.7D, Appendix 3). In addition, all of those were 

either termination/frameshift mutations or were previously reported as cancer 

associated in COSMIC [259] and classified as likely damaging (Appendix 4). 

Moreover, all TP53 variants led to high fitness effects, thus our filtering method allows 

us to identify potentially harmful variants at very low VAFs. Overall, the variants 

detected by LiFT were of higher fitness than those detected by VAF-thresholding 

(Figure 4.7C; Kruskal-Wallis H=14, p=1 x 10-4), with an even larger effect size when 

comparing variants that are exclusive to each filtering algorithm (Figure 4.7C; Kruskal-

Wallis H=18, p=1 x 10-5). 

We further stratified variants using seven computational predictors recently identified 

as being most useful for identifying pathogenic mutations [271–277] (Figure 4.7D and 

Appendix 4), categorising the most prevalent CHIP variants into likely damaging (21 

variants), possibly damaging (20 variants) and likely benign (11 variants), as well as 

frameshifts and terminations (37 variants, which are also most likely damaging to 

protein structure and thus protein function). Our novel LiFT algorithm therefore 

produces a low false discovery rate of pathogenic variants, with 88% of the detected 

fit variants being predicted to be possibly damaging, frameshift or termination. 

Taken together, applying a probabilistic model of clonal dynamics to longitudinal 

sequencing data results in a novel method, the LiFT algorithm, that improves on the 

threshold-based definition of CHIP mutations (Figure 4.6A). The LiFT algorithm 

replaces an arbitrary cut-off on VAF by a choice of false discovery rate (through a 

Bayes Factor threshold) and as a result selects fewer trajectories with shrinking VAF 

(Figure 4.4B, 4.4C and Figures 4.6B, 4.7A). 
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Figure 4.7: LiFT allows for the classification and inference of clonal structure of 

fit variants <2% VAF. A. Number of trajectories classified as fit by LiFT, broken down into 

increasing or decreasing VAF from first to last timepoint. B. Left, deterministic fit of all 
mutations selected by LiFT in an individual of the LBC cohorts using the inferred optimal clonal 

structure. 90% CIs associated with binomial sampling noise are shown for each data point. 
VAF is displayed on a logarithmic scale. Right, posterior distribution of fitness associated to 

each clonal structure. C. Fitness effects of variants broken down by filtering method. The 
sample size, n, and statistical analyses comparing the distribution of fitness, computed using 

the non-parametric Kruskal–Wallis test, are highlighted (*H = 14, P = 1 × 10−4; **H = 18, 
P = 1 × 10−5). D. Fitness of variants selected as fit by LiFT broken down by their maximum VAF, 

>2% and <2%, and damage prediction. The top row displays a bar plot of variant counts for 

each category. The bottom row displays box plots showing the median and interquartile range 
of the distribution of MAP fitnesses by damaging prediction displayed on a logarithmic scale 

to emphasize relative differences in fitness between variants. Consequently, of a total of 89 
variants with a damage prediction, 17 variants whose damage prediction was difficult to 

discern with fitness below 2% are not shown but are reported in Appendix 3. A marginal plot 
shows the Gaussian kernel density estimation of the MAP fitness values. Key: fs, frameshifts; 

ter, terminations. 
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4.2.4 Clinical Relevance of LiFT 
 

We further analysed differences in the distributions of fitness between genes using a 

non-parametric test. Despite having small sample sizes for many genes, we still 

detected statistically significant differences among the distributions of fitness effects 

(Figure 4.8A, 4.8B). In particular, we found that mutations in TP53, SF3B1 and SRSF2 

conferred a higher fitness advantage over mutations in commonly mutated CHIP 

genes such as JAK2 and DNMT3A. We have also tested differences in fitness by 

genes when summarised into functional categories and found trajectories of genes 

involved in DNA methylation to have lower fitness than genes involved in splicing and 

genes for transcription factors that are relevant in development (Figure 4.9A, 4.9B). 

 

Figure 4.8: LiFT and gene specific fitness effects. A. Fitness effects of mutations 

selected as fit by the LiFT algorithm, grouped by gene and ranked by median fitness. The 
posterior probability distribution of the fitness as inferred from our model of clonal dynamics is 

displayed for each mutation (only the 90% interval is shown). The sample size, n, of observed 

variants in each gene is denoted in brackets. When more than one mutation is observed in a 
gene, we further display a box plot showing the median and exclusive interquartile range of 

the MAP estimates of fitness associated with the gene. B. Analysis of variance of the 
distribution of fitness across genes. Heat map of all statistically significant (P < 0.05) Kruskal–
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Wallis H statistics, labelled by effect size, computed for all combinations of pairs of genes. The 

effect size is only shown for statistically significant relations. Variants with a fitness below 2% 
were left out of this study, as our prediction classifies them as conferring no or a negligible 

fitness advantage. 

 

 

Figure 4.9: LiFT and gene-fitness summarised by ontological classes. A. 

Distribution of fitness by gene category. Genes are grouped according to their biological 

function into DNA methylation (TET2, DNMT3A), Splicing (SF3B1, U2AF1, SRSF2, U2AF2, 
ZRSR2, LUC7L2, DDX41), mitogenic function (KRAS, NF1, JAK2, JAK3, SH2B3, PTEN, 

PTPN11, NRAS), cohesin (RAD21, STAG2), DNA damage (TP53, CDKN2A, PPM1D, ATRX) 
and Transcription factors (TF) important during development (GATA2, RUNX1, NOTCH1, 

CUX1, ETV6). The sample size, n, of each gene category is denoted in brackets. For each 

gene category we display a boxplot showing the maximum a posteriori (MAP) estimates of 
fitness for variants in the category, as well as the median and exclusive interquartile range. B. 

Analysis of variance of the maximum posterior fitness estimates across gene categories. 
Heatmap of all statistically significant (p < 0.05) Kruskal-Wallis H statistics, labelled by effect 

size, computed for all combinations of pairs of genes. The effect size is only shown for 
statistically significant relations. Variants with a fitness below 2% were left out of this study as 

our prediction classifies them as conferring no or a negligible fitness advantage. 

Differences in the distribution of fitness allow us to predict the future growth of 

mutations from initial time-points. For example, if a patient presents with a variant in a 

gene with 10% fitness at 1% VAF, its growth could be confidently measured after 7 

months (Figure 4.10A), warranting a clinical follow-up over that time-frame to confirm 
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or revise the fitness estimate. Conversely, the time between observations places a 

lower bound on the fitness that can be measured for mutations of a given VAF (Figure 

4.10B). These data can then inform on the time-frame for close clinical monitoring and 

early detection of disease. 

 

Figure 4.10: Clinical relevance of LiFT. A. Minimum referral time in years based on 2 

standard deviations below the expected growth of a clone given an initial VAF and fitness. 
Each line shows the initial size of mutation versus referral time for a given fitness. B. Minimum 

detectable fitness at referral observation based on 2 standard deviations below the expected 
growth of a clone given an initial VAF and fitness. Each line shows minimum detectable fitness 

versus referral time for an initial clone size. 

Abelson and colleagues compared CHIP carriers who never developed AML with 

CHIP where individuals subsequently developed AML and found that the number of 

mutations, the mutational burden and the size of the larger driver clone were 

associated with the risk of progression to AML [3]. In this study, we carried out a 

survival analysis to correlate the maximum observed VAF of mutations and survival. 

This correlation was stronger in the older cohort (LBC21), although not statistically 

significant (Hazard Ratio of 1.35, 95% CI [0.83, 2.19]; p=0.23) due to the small sample 

size (Figure 4.11, Table 4.1). In the younger cohort (LBC36), we found that survival 

better correlated with the speed of growth of a mutation, although this was again not 

statistically significant (Hazard Ratio of 1.35, 95% CI [0.76, 2.4]; p=0.3) (Figure 4.11, 

Table 4.1). 
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Importantly, only 2 time-points are necessary to apply LiFT, making this a widely 

applicable method for existing cohorts and future studies. We propose the use of LiFT 

over thresholding for clinical practice. 

 

cohort covariate coef exp(coef) se(coef) coef 
lower 
95% 

coef 
upper 
95% 

exp(coef) 
lower 
95% 

exp(coef) 
upper 
95% 

z p -log2(p) 

LBC21 growth 
speed 

-
0.199 

0.819 0.245 -0.67 0.281 0.506 1.325 -0.81 0.417 1.2613 

LBC21 max VAF 0.297 1.346 0.248 -0.19 0.785 0.826 2.193 1.19 0.231 2.1083 

LBC36 growth 
speed 

0.302 1.353 0.292 -0.27 0.876 0.762 2.402 1.03 0.300 1.7339 

LBC36 max VAF 0.038 1.039 0.326 -0.60 0.678 0.548 1.971 0.11 0.905 0.1437 

Table 4.1: Survival analysis on the effects of maximum VAF and clone growth 

speed. Value p corresponds to the chi-squared test in the Cox hazard analysis. 

 

 

Figure 4.11: Estimations of gene fitness have the potential to provide a novel 
route to estimating clinical outcomes. A. Survival analysis (Cox proportional hazards 

regression model) broken down by cohort and covariates. LBC1921 and LBC1936 are 

analysed separately given their difference in age during the observed time-span. (left) Error 
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bar showing the inferred hazard ratio coefficient and 95% CI for each regression study, as well 

as the sample size, n, and the number of observed events in each analysis. Note that none of 
the survival analyses shown are statistically significant. The complete summary for each 

analysis is found in Table 4.1. (right) Kaplan-Meyer survival plots for the LBC cohort stratified 
using 2 standard deviations of the analysed covariate. 

 

4.3 Conclusion and Discussion 
 

The clinical potential for stratifying progression of CHIP depends on whether genes 

confer distinct fitness advantages. Indeed, most studies so far have not shown a clear 

distinction of fitness effects on a gene basis and have shown considerable overlap in 

fitness coefficients between variants of different genes. We show that fitness can 

substantially differ by gene and gene category. Combining longitudinal data with a new 

method to identify CHIP variants allows for more accurate fitness estimates of CHIP 

than cross sectional cohort data and motivates further studies with increased sample 

sizes. 

Our fitness estimates are independent of the time when the mutation was acquired. In 

cross-sectional studies, fitness estimates are generally (inversely) correlated with the 

mutation rate, introducing additional uncertainty [202]. In contrast, our fitness 

estimates are based on the observed growth between longitudinal samples, and thus 

also take into account other mutations in an individual. The resulting fitness estimates 

are largely independent of HSC absolute numbers. 

The strength of our approach, combining longitudinal data with our LiFT algorithm, is 

exemplified by U2AF1 and TP53 for which no variants were identified by a 2% VAF 

threshold (Figure 4.4B, 4.42C). In contrast, our LiFT method identified one U2AF1 and 

5 TP53 variants, all of which are conferring a fitness advantage, scored as possibly 

damaging in our missense variant effect analysis and have been previously reported 

in COSMIC [259] (Figure 4.7D, Appendix 2 and 3). Moreover, we pick up the DNMT3A 

R88H variant with LiFT, but not 2% VAF thresholding, a mutation that is well reported 

in the context of leukaemia [80]. Therefore, for patients with those variants close 

clinical monitoring for early detection of disease such as leukaemia is merited. 
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 Figure 4.12: Visualisation of clonal trajectories in the LBC1921.   

 



 97 

 

 

Figure 4.13: Visualisation of clonal trajectories in the LBC1936.   
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Combining longitudinal data with LiFT enables a personalised approach managing 

CHIP (Figures 4.12 and 4.13). Longitudinal data allows quantifying fitness effects even 

for mutations not seen in large cohorts, as cross-sectional fitness estimation requires 

a mutation to be observed in multiple individuals. Our method offers clinicians a way 

forward for patient stratification even for unique variants occurring in single individuals, 

since two time-points for one individual suffice to estimate fitness including uncertainty 

quantification. We have provided a prediction of the time required between first and 

second observations to be able to accurately infer fitness, depending on the initial VAF 

of a mutation in an individual (Figure 4.10A). For high fitness mutations (>10%) a 

follow-up clinical observation could be performed after only a few months, even for 

small clones (1% VAF or less). Conversely, the time between observations places a 

lower bound on the fitness that can be measured for mutations of a given VAF (Figure 

4.10B). In future, these data can be used to inform time to the next appointment for 

close clinical monitoring of patients with clones containing highly fit variants, which will 

likely outcompete other clones. Using longitudinal data to better quantify and predict 

clonal progression in our study, however, comes with a trade-off in the lower number 

of participants in our cohort and limits the power of cross-sectional analysis to find 

associations. 

In addition, our inference method aims to resolve the clonal composition of multiple 

mutations in an individual. Specifically, we can now infer the likely co-occurrence of 

mutations from longitudinal data. Current cross-sectional studies do not take into 

account the clonal composition of individuals and therefore make predictions of the 

isolated effect of a mutation. In contrast, we are able to link fitness to clones carrying 

a specific combination of mutations that is unique to each individual, without relying 

on any prior knowledge of variant-specific fitness effects (Appendix 2). 
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Chapter 5: Conclusions 
 

We inevitably acquire somatic mutations in our tissues and organs as we age. The 

nature of this somatic mutational burden is rapidly changing how we view cancer 

evolution and its interactions with ageing. The discovery of clonal haematopoiesis has 

been an essential milestone in our understanding of the somatic evolution of cancer 

due to the abundance of material we have access to from purportedly healthy 

individuals. Work over the last decade has highlighted its age-dependent prevalence, 

genetic architecture and links to haematological and non-haematological disease. 

Here we have characterised the somatic mutational burden in the Lothian Birth Cohort 

and shown a link between CH and accelerated epigenetic ageing in several published 

clocks. I then present one of the first longitudinal assessments of mutational fitness in 

CH. Here we note the importance and varying rates of clone growth between 

mutations in different gene contexts and propose a new method of appraising the 

clinical relevance of clone growth. Here I will discuss the key outcomes of this work, 

highlighting some of the critical questions that arise and directions for future 

investigation. 

 

5.1 What is the Relevance of Accelerated Epigenetic Ageing in CH 
 

While epigenetic age accelerations had previously been associated with a range of 

pathologies [220, 237–239], its links to CH had not yet been elucidated. Here we show 

that CH is significantly associated with biological age acceleration in several intrinsic 

and extrinsic clocks with effect sizes that have broadly been recapitulated in several 

studies since [285–287]. Why we observe accelerated epigenetic ageing in patients 

with CH is a matter of some debate and gets to the core of what drives mutational 

fitness. Two potential questions emerge from this study: 1) does CH require advanced 

age and an aged environment to create a positive fitness effect when they were once 

deleterious or neutral? Or 2) do the mutations in CH alter the profiles of their cellular 

outputs, creating a more inflammatory, aged environment?  
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Recent evidence from several functional studies has suggested that both aspects 

might be true. It has been shown that mutations in both TET2 and DNMT3A result in 

increased inflammatory outputs [84, 94, 98] and that mutated cells show increased 

tolerance to these environments [94, 296, 297]. There is also evidence of an interplay 

in the form of enhanced inflammatory crosstalk between mutated HSCs, the niche and 

systemic stresses [181–183]. Conversely, spliceosomal and DDR genes appear only 

to grow when certain conditions within the context of specific aged environments. This 

could allow us to use accelerated epigenetic ageing with CH status as a new proxy to 

assess the risk of increased clonal growth and disease outcomes [285]. 

CH is a substantial risk factor for numerous age-related and distal pathologies. While 

we were underpowered to perform an effective EWAS (epigenome-wide association 

study) for clonal haematopoiesis, other groups have shown substantial signatures of 

changing DNA methylation profiles associated with CH. The affected loci overlap 

regions and genes linked to cardiovascular disease and cancer progression, 

particularly AML [298]. When we consider this, alongside their association with 

epigenetic age estimates, it’s compelling to think that it might be possible to create a 

predictive tool for CH using methylation data that captures the oligoclonal burden 

within an individual and their associated risk of disease progression.  

To conclude, a greater functional and epidemiological study of CH will allow for a more 

practical understanding of the pathogenesis of this phenomenon alongside the age-

dependent physiological changes that might drive it. 

 

5.2 Why Do Different Genes Have Different Fitness Estimates 
 

This work has highlighted the marked divergence of mutational fitness across the 

spectrum of common CH genes (chapter 4). This likely points to a variety of different 

mechanisms and the mixture of intrinsic and extrinsic factors that facilitate this growth 

across a lifetime. Mutations in the most common genes, DNMT3A and TET2, have 

relatively low fitness effects and emerge consistently throughout life and take many 

years to reach dominance in the haematopoietic system. Mutations in spliceosomal 
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genes, however, can present with large fitness estimates – even growing at rates 

above 50% per year - but only emerge in later life [5, 52, 101]. Our fitness scores 

explain, in part, why we see the patterns and prevalence of specific gene mutations in 

CH at a population level while also hinting at the possible mechanisms of their growth. 

Somatic evolution highlights the cooperation required between mutations to achieve 

increased fitness within an environment. To the best of our knowledge, this platform 

is the first to not only look at a gene level but it can also achieve estimates of fitness 

at a clonal level with complex mutational contexts. 

While our understanding of the variety of mechanisms that drive clone growth is in its 

early days, a greater understanding of both the age dependence and mechanisms of 

mutational fitness will be vital in enabling accurate predictions of clonal expansions 

and their associated disease risk. Furthermore, elucidating these mechanisms may 

eventually lead to targets that will allow us to slow the growth of potentially pathogenic 

clones within a clinical setting. 

 

5.3 Potential Clinical Implications of Gene Fitness Estimates 
 

CH has well-described links to haematological and non-haematological diseases [3, 

199]. Translation of this knowledge to the clinical setting has thus far been complicated 

as it has been difficult to calculate the risk associated with complex mutational contexts 

at an individual level and how quickly they might grow to dominate the haematopoietic 

system. While our work has highlighted how specific driver mutations have well 

preserved fitnesses across a small population, it has also shown that fitness estimates 

themselves may prove to be an important metric in predicting disease risk and death. 

The classical cross-sectional view of CH can provide an accurate estimate of the 

clonal burden in individuals and to which the risk of progression to AML has been 

linked [3]. However, this simple snapshot and use of arbitrary thresholds fails to 

account for the dynamics of CH and the presence of low VAF mutations that may still 

have high rates of growth. The relative stability of clone growth in genes - across this 

small cohort and others [101] – means that we have calculated the fitness estimate for 
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a mutation, we can make accurate predictions of its behaviour over time (Figure 4.10). 

This will allow for accurate monitoring of patient risk over long time scales. 

We also present the use of fitness estimates as a new measure of disease risk. We 

have observed that the growth speed (fitness x VAF) of a mutation has proven to be 

a better predictor of all-cause mortality than clone size alone. While underpowered, 

we hope the expansion of our longitudinal cohort alongside projecting fitness 

estimates within the UK Bio Bank will help us to fully understand the potential of this 

method to stratify patient risk. 

 

5.4 Final Remarks 
 

This work adds context and perspective on CH and provides a framework for the 

prediction of clone growth and its associated risks. While our knowledge of CH has 

increased dramatically in recent times, the next phase of research must act to flesh 

out a more complete set of known CH drivers. The work of Jaiswal et al., and 

Genovese et al. described the most prevalent gene-variants, now a new generation 

and scale of cohort work will be needed to discover new somatic drivers and provide 

a better understanding of how they interact with the germline. 

Alongside this, better model systems are required to allow for a more comprehensive 

study of the mechanisms of clonal expansion and how it interacts with the aged 

environment. The last ten years have transformed our view of the somatic evolution of 

cancer. There is no doubt the next decade will have massive implications in our 

understanding of CH, leading to improvements in our ability to predict, prevent and 

treat haematological and non-haematological disease. 
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Appendix 1: List of Unique Variants Detected at 2% VAF 
 

Participant ID Gene Name Protein Substitution Base Substitution Variant Class Largest VAF 
CHIP_LBC21_011 ASXL1 p.Gln925Ter c.2773C>T Nonsense_Mutation 0.0242 
CHIP_LBC21_015 ASXL1 p.Val807Ile c.2419G>A Missense_Mutation 0.0505 
CHIP_LBC21_016 ASXL1 p.Glu635ArgfsTer15 c.1900_1922del Frame_Shift_Del 0.0572 
CHIP_LBC21_017 BCOR p.Thr1265Pro c.3793A>C Missense_Mutation 0.0218 
CHIP_LBC21_011 BCORL1 p.Val105Gly c.314T>G Missense_Mutation 0.024 
CHIP_LBC36_037 BRAF p.Gly455Arg c.1363G>A Missense_Mutation 0.0218 
CHIP_LBC21_038 CBL p.Leu380Pro c.1139T>C Missense_Mutation 0.0394 
CHIP_LBC36_037 CBL p.Gly104Arg c.310G>A Missense_Mutation 0.023 
CHIP_LBC36_037 CBLC p.Pro438Leu c.1313C>T Missense_Mutation 0.0204 
CHIP_LBC21_011 CDKN2A p.Val28Gly c.83T>G Missense_Mutation 0.0235 
CHIP_LBC21_018 CDKN2A p.Val82Gly c.245T>G Missense_Mutation 0.02 
CHIP_LBC36_002 CDKN2A p.Thr79Pro c.235A>C Missense_Mutation 0.0258 
CHIP_LBC36_035 CEBPA p.Tyr181Ser c.542A>C Missense_Mutation 0.0204 
CHIP_LBC21_002 DNMT3A p.Ile769Ser c.2306T>G Missense_Mutation 0.0221 
CHIP_LBC21_003 DNMT3A 

 
c.1668-3C>G Splice_Region 0.4261 

CHIP_LBC21_005 DNMT3A p.Ile840Ter c.2517del Frame_Shift_Del 0.4481 
CHIP_LBC21_007 DNMT3A p.Asp748AlafsTer3 c.2243_2259del Frame_Shift_Del 0.0931 
CHIP_LBC21_007 DNMT3A p.Asn797Ser c.2390A>G Missense_Mutation 0.1423 
CHIP_LBC21_013 DNMT3A p.Ser255ProfsTer61 c.762del Frame_Shift_Del 0.0377 
CHIP_LBC21_015 DNMT3A p.Val657Met c.1969G>A Missense_Mutation 0.0501 
CHIP_LBC21_024 DNMT3A p.Leu504ProfsTer42 c.1510dup Frame_Shift_Ins 0.1086 
CHIP_LBC21_024 DNMT3A p.Lys744Ter c.2230A>T Nonsense_Mutation 0.1097 
CHIP_LBC21_032 DNMT3A p.Val687Asp c.2060T>A Missense_Mutation 0.0755 
CHIP_LBC21_034 DNMT3A 

 
c.2173+1G>A Splice_Site 0.0476 

CHIP_LBC36_009 DNMT3A p.Leu547Phe c.1639C>T Missense_Mutation 0.297 
CHIP_LBC36_011 DNMT3A 

 
c.1852-1G>A Splice_Site 0.3006 

CHIP_LBC36_012 DNMT3A p.Pro627ArgfsTer22 c.1878_1884del Frame_Shift_Del 0.1057 
CHIP_LBC36_013 DNMT3A p.Arg635Gln c.1904G>A Missense_Mutation 0.16 
CHIP_LBC36_014 DNMT3A p.Gln534ArgfsTer117 c.1601del Frame_Shift_Del 0.132 
CHIP_LBC36_015 DNMT3A p.Leu344Gln c.1031T>A Missense_Mutation 0.0219 
CHIP_LBC36_015 DNMT3A p.Thr257MetfsTer59 c.770del Frame_Shift_Del 0.1056 
CHIP_LBC36_016 DNMT3A p.Glu725GlyfsTer54 c.2174del Frame_Shift_Del 0.0596 
CHIP_LBC36_017 DNMT3A 

 
c.2322+1G>A Splice_Site 0.1588 

CHIP_LBC36_018 DNMT3A 
 

c.1554+1G>A Splice_Site 0.0938 
CHIP_LBC36_020 DNMT3A p.Tyr536ThrfsTer115 c.1605del Frame_Shift_Del 0.2593 
CHIP_LBC36_021 DNMT3A p.Cys559Ter c.1677C>A Nonsense_Mutation 0.3837 
CHIP_LBC36_021 DNMT3A p.Arg771Gln c.2312G>A Missense_Mutation 0.3827 
CHIP_LBC36_022 DNMT3A p.Arg326Gly c.976C>G Missense_Mutation 0.28 
CHIP_LBC36_023 DNMT3A 

 
c.1429+1G>C Splice_Site 0.037 

CHIP_LBC36_024 DNMT3A p.Gly550Arg c.1648G>A Missense_Mutation 0.026 
CHIP_LBC36_028 DNMT3A 

 
c.2478+1G>T Splice_Site 0.3834 

CHIP_LBC36_030 DNMT3A p.Phe752LeufsTer4 c.2256_2257del Frame_Shift_Del 0.3116 
CHIP_LBC36_034 DNMT3A p.Tyr735Asn c.2203T>A Missense_Mutation 0.1961 
CHIP_LBC36_035 DNMT3A p.Arg309ProfsTer8 c.924_925dup Frame_Shift_Ins 0.3821 
CHIP_LBC36_036 DNMT3A p.Gly673ProfsTer35 c.2016_2029del Frame_Shift_Del 0.2438 
CHIP_LBC36_036 DNMT3A p.Met682IlefsTer31 c.2045dup Frame_Shift_Ins 0.0415 
CHIP_LBC36_037 DNMT3A p.Met761Ile c.2283G>A Missense_Mutation 0.02 
CHIP_LBC36_040 DNMT3A 

 
c.2083-2A>G Splice_Site 0.0432 

CHIP_LBC36_041 DNMT3A p.Arg736Cys c.2206C>T Missense_Mutation 0.0936 
CHIP_LBC36_042 DNMT3A p.Ala353ValfsTer39 c.1056_1057del Frame_Shift_Del 0.3256 
CHIP_LBC36_043 DNMT3A p.Trp581Gly c.1741T>G Missense_Mutation 0.0842 
CHIP_LBC36_043 DNMT3A p.Trp860Arg c.2578T>C Missense_Mutation 0.0425 
CHIP_LBC36_034 EZH2 p.Ser443Ter c.1328C>A Nonsense_Mutation 0.024 
CHIP_LBC21_017 GATA2 p.Thr457Pro c.1369A>C Missense_Mutation 0.0201 
CHIP_LBC36_021 GATA2 p.Arg396Trp c.1186C>T Missense_Mutation 0.039 
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Participant ID Gene Name Protein Substitution Base Substitution Variant Class Largest VAF 
CHIP_LBC21_003 JAK2 p.Val617Phe c.1849G>T Missense_Mutation 0.8352 
CHIP_LBC21_010 JAK2 p.Val617Phe c.1849G>T Missense_Mutation 0.2772 
CHIP_LBC36_003 JAK2 p.Val617Phe c.1849G>T Missense_Mutation 0.5015 
CHIP_LBC36_004 JAK2 p.Val617Phe c.1849G>T Missense_Mutation 0.2546 
CHIP_LBC36_007 JAK2 p.Val617Phe c.1849G>T Missense_Mutation 0.3028 
CHIP_LBC36_022 JAK2 p.Val617Phe c.1849G>T Missense_Mutation 0.0792 
CHIP_LBC36_026 JAK2 p.Val617Phe c.1849G>T Missense_Mutation 0.3183 
CHIP_LBC36_027 JAK2 p.Val617Phe c.1849G>T Missense_Mutation 0.7418 
CHIP_LBC36_030 KMT2A p.Gln33Pro c.98A>C Missense_Mutation 0.0226 
CHIP_LBC36_031 LUC7L2 p.Met10Val c.28A>G Missense_Mutation 0.0248 
CHIP_LBC21_017 NF1 p.Ala1197Ser c.3589G>T Missense_Mutation 0.1076 
CHIP_LBC21_018 NF1 p.Val7Gly c.20T>G Missense_Mutation 0.0209 
CHIP_LBC36_040 PPM1D p.Glu459Ter c.1375G>T Nonsense_Mutation 0.0204 
CHIP_LBC21_004 RAD21 p.Asp400Ala c.1199A>C Missense_Mutation 0.0238 
CHIP_LBC21_018 RAD21 p.Val140dup c.419_421dup In_Frame_Ins 0.0246 
CHIP_LBC21_023 RAD21 

 
c.815-3_815-
2delinsGG 

Splice_Site 0.0206 

CHIP_LBC21_037 RUNX1 p.Ser410Ala c.1228T>G Missense_Mutation 0.0206 
CHIP_LBC36_003 SF3B1 p.Gly742Asp c.2225G>A Missense_Mutation 0.0829 
CHIP_LBC36_005 SF3B1 p.Lys700Glu c.2098A>G Missense_Mutation 0.0257 
CHIP_LBC36_037 STAT3 p.Met586Ile c.1758G>A Missense_Mutation 0.0215 
CHIP_LBC21_001 TET2 p.Asp236IlefsTer14 c.705del Frame_Shift_Del 0.2107 
CHIP_LBC21_008 TET2 p.Glu350LeufsTer24 c.1043_1047dup Frame_Shift_Ins 0.0319 
CHIP_LBC21_008 TET2 p.Ser714Ter c.2141C>G Nonsense_Mutation 0.0349 
CHIP_LBC21_019 TET2 p.Thr313TyrfsTer18 c.936dup Frame_Shift_Ins 0.1293 
CHIP_LBC21_024 TET2 p.Arg550Ter c.1648C>T Nonsense_Mutation 0.1156 
CHIP_LBC21_027 TET2 p.Lys780SerfsTer8 c.2339_2340del Frame_Shift_Del 0.0287 
CHIP_LBC21_039 TET2 p.Arg581His c.1742G>A Missense_Mutation 0.0308 
CHIP_LBC21_046 TET2 p.Pro851LeufsTer22 c.2552del Frame_Shift_Del 0.132 
CHIP_LBC21_046 TET2 p.Gln916Ter c.2746C>T Nonsense_Mutation 0.0541 
CHIP_LBC36_005 TET2 p.Ser502LeufsTer31 c.1505del Frame_Shift_Del 0.2661 
CHIP_LBC36_008 TET2 p.Glu368AsnfsTer4 c.1102del Frame_Shift_Del 0.3403 
CHIP_LBC36_017 TET2 p.Tyr192His c.574T>C Missense_Mutation 0.0667 
CHIP_LBC36_019 TET2 p.Tyr192His c.574T>C Missense_Mutation 0.4671 
CHIP_LBC36_020 TET2 p.Ser153PhefsTer9 c.457dup Frame_Shift_Ins 0.0391 
CHIP_LBC36_024 TET2 p.Asn752ArgfsTer59 c.2255_2261del Frame_Shift_Del 0.1445 
CHIP_LBC36_033 TET2 p.Ile565AsnfsTer2 c.1693dup Frame_Shift_Ins 0.0368 
CHIP_LBC36_033 TET2 p.Ile565Thr c.1694T>C Missense_Mutation 0.0388 
CHIP_LBC36_043 TET2 p.Phe854LeufsTer19 c.2562del Frame_Shift_Del 0.082 
CHIP_LBC36_003 TP53 p.Glu258Lys c.772G>A Missense_Mutation 0.0223 
CHIP_LBC21_028 ZRSR2 p.Gly438Arg c.1311_1312inv Missense_Mutation 0.0221 
CHIP_LBC36_016 ZRSR2 p.Tyr175Cys c.524A>G Missense_Mutation 0.0412 
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Appendix 2: Complete List of Unique Fit CHIP Variants at 
2% VAF 
 

Gene Base Substitution Protein 
Substitution 

Fitness Fitness 
Confidence 

Co-Occurring Mutations 

RAD21 c.815-3_815-
2delinsGG 

 
0.075 [0.01 0.24] 

 

DNMT3A c.2173+1G>A 
 

0.02 [0.    0.065] 
 

DNMT3A c.1852-1G>A 
 

0.015 [0.   0.05] 
 

DNMT3A c.1554+1G>A 
 

0 [0.    0.015] 
 

DNMT3A c.1429+1G>C 
 

0 [0.   0.03] 
 

DNMT3A c.2083-2A>G 
 

0.055 [0.015 0.1] PPM1D c.1375G>T 
DNMT3A c.2322+1G>A 

 
0 [0. 0.] TET2 c.574T>C 

DNMT3A c.2478+1G>T 
 

0.1 [0.025 0.165] 
 

NF1 c.3589G>T p.A1197S 0.055 [0.025 0.09] GATA2 c.1369A>C, BCOR 
c.3793A>C 

DNMT3A c.1056_1057del p.A353Vfs*39 0.08 [0.05 0.1] 
 

DNMT3A c.1677C>A p.C559* 0.105 [0.09 0.12] GATA2 c.1186C>T, DNMT3A 
c.2312G>A 

TET2 c.705del p.D236Ifs*14 0.155 [0.12 0.19] 
 

RAD21 c.1199A>C p.D400A 0 [0.   0.08] 
 

TET2 c.1102del p.E368Nfs*4 0.185 [0.17 0.2] 
 

PPM1D c.1375G>T p.E459* 0.055 [0.015 0.1] DNMT3A c.2083-2A>G 
ASXL1 c.1900_1922del p.E635Rfs*15 0.135 [0.1   0.175] 

 

DNMT3A c.2174del p.E725Gfs*54 0.04 [0.005 0.1] ZRSR2 c.524A>G 
DNMT3A c.2256_2257del p.F752Lfs*4 0.09 [0.06 0.125] KMT2A c.98A>C 
TET2 c.2562del p.F854Lfs*19 0 [0. 0.] DNMT3A c.1741T>G, DNMT3A 

c.2578T>C 
ZRSR2 c.1311_1312inv p.G438R 0 [0.    0.055] 

 

DNMT3A c.1648G>A p.G550R 0.105 [0.08 0.13] TET2 c.2255_2261del 
DNMT3A c.2016_2029del p.G673Pfs*35 0 [0.    0.005] DNMT3A c.2045dup 
TET2 c.1693dup p.I565Nfs*2 0.05 [0.03 0.075] TET2 c.1694T>C 
TET2 c.1694T>C p.I565T 0.05 [0.03 0.075] TET2 c.1693dup 
DNMT3A c.2306T>G p.I769S 0 [0.   0.07] 

 

SF3B1 c.2098A>G p.K700E 0.485 [0.375 0.595] TET2 c.1505del 
DNMT3A c.2230A>T p.K744* 0.06 [0.025 0.09] DNMT3A c.1510dup, TET2 

c.1648C>T 
TET2 c.2339_2340del p.K780Sfs*8 0 [0.   0.05] 

 

DNMT3A c.1031T>A p.L344Q 0 [0.    0.025] DNMT3A c.770del 
CBL c.1139T>C p.L380P 0 [0.    0.035] 

 

DNMT3A c.1510dup p.L504Pfs*42 0.06 [0.025 0.09] TET2 c.1648C>T, DNMT3A 
c.2230A>T 

DNMT3A c.1639C>T p.L547F 0.025 [0.01 0.045] 
 

LUC7L2 c.28A>G p.M10V 0.205 [0.035 0.52] 
 

DNMT3A c.2045dup p.M682Ifs*31 0 [0.    0.005] DNMT3A c.2016_2029del 
TET2 c.2255_2261del p.N752Rfs*59 0.105 [0.08 0.13] DNMT3A c.1648G>A 
DNMT3A c.1878_1884del p.P627Rfs*22 0 [0.   0.01] 

 

TET2 c.2552del p.P851Lfs*22 0.135 [0.095 0.175] TET2 c.2746C>T 
KMT2A c.98A>C p.Q33P 0.09 [0.06 0.125] DNMT3A c.2256_2257del 
DNMT3A c.1601del p.Q534Rfs*117 0.02 [0.005 0.035] 

 

TET2 c.2746C>T p.Q916* 0 [0.   0.06] TET2 c.2552del 
ASXL1 c.2773C>T p.Q925* 0.185 [0.12 0.255] CDKN2A c.83T>G, BCORL1 

c.314T>G 
DNMT3A c.924_925dup p.R309Pfs*8 0.095 [0.055 0.14] CEBPA c.542A>C 
DNMT3A c.976C>G p.R326G 0.14 [0.115 0.165] JAK2 c.1849G>T 
GATA2 c.1186C>T p.R396W 0.31 [0.27 0.335] DNMT3A c.1677C>A, DNMT3A 

c.2312G>A 
TET2 c.1648C>T p.R550* 0.06 [0.025 0.09] DNMT3A c.1510dup, DNMT3A 

c.2230A>T 
TET2 c.1742G>A p.R581H 0.15 [0.1   0.205] 
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Gene Base Substitution Protein 
Substitution 

Fitness Fitness 
Confidence 

Co-Occurring Mutations 

DNMT3A c.1904G>A p.R635Q 0.175 [0.14 0.205] 
 

DNMT3A c.2206C>T p.R736C 0.05 [0.03 0.075] 
 

DNMT3A c.2312G>A p.R771Q 0.105 [0.09 0.12] GATA2 c.1186C>T, DNMT3A 
c.1677C>A 

TET2 c.457dup p.S153Ffs*9 0.1 [0.08 0.12] DNMT3A c.1605del 
RUNX1 c.1228T>G p.S410A 0 [0.    0.095] 

 

EZH2 c.1328C>A p.S443* 0.235 [0.16 0.33] DNMT3A c.2203T>A 
TET2 c.1505del p.S502Lfs*31 0.145 [0.125 0.165] SF3B1 c.2098A>G 
BCOR c.3793A>C p.T1265P 0.055 [0.025 0.09] NF1 c.3589G>T, GATA2 

c.1369A>C 
DNMT3A c.770del p.T257Mfs*59 0 [0.    0.025] DNMT3A c.1031T>A 
TET2 c.936dup p.T313Yfs*18 0.335 [0.28 0.39] 

 

GATA2 c.1369A>C p.T457P 0.055 [0.025 0.09] NF1 c.3589G>T, BCOR 
c.3793A>C 

CDKN2A c.235A>C p.T79P 0.065 [0.02 0.125] 
 

BCORL1 c.314T>G p.V105G 0 [0.   0.04] CDKN2A c.83T>G, ASXL1 
c.2773C>T 

RAD21 c.419_421dup p.V140dup 0.08 [0.03 0.135] NF1 c.20T>G 
CDKN2A c.83T>G p.V28G 0 [0.   0.04] BCORL1 c.314T>G, ASXL1 

c.2773C>T 
JAK2 c.1849G>T p.V617F 0.145 [0.13 0.16] 

 

JAK2 c.1849G>T p.V617F 0.015 [0.    0.075] 
 

JAK2 c.1849G>T p.V617F 0.14 [0.115 0.165] DNMT3A c.976C>G 
JAK2 c.1849G>T p.V617F 0.12 [0.105 0.14] 

 

DNMT3A c.1969G>A p.V657M 0.01 [0.   0.08] ASXL1 c.2419G>A 
DNMT3A c.2060T>A p.V687D 0.065 [0.02 0.115] 

 

NF1 c.20T>G p.V7G 0.08 [0.03 0.135] RAD21 c.419_421dup 
ASXL1 c.2419G>A p.V807I 0.01 [0.   0.08] DNMT3A c.1969G>A 
DNMT3A c.1741T>G p.W581G 0 [0. 0.] DNMT3A c.2578T>C, TET2 

c.2562del 
DNMT3A c.2578T>C p.W860R 0.115 [0.02 0.245] DNMT3A c.1741T>G, TET2 

c.2562del 
ZRSR2 c.524A>G p.Y175C 0.04 [0.005 0.1] DNMT3A c.2174del 
CEBPA c.542A>C p.Y181S 0.095 [0.055 0.14] DNMT3A c.924_925dup 
TET2 c.574T>C p.Y192H 0 [0. 0.] DNMT3A c.2322+1G>A 
DNMT3A c.1605del p.Y536Tfs*115 0.175 [0.155 0.195] TET2 c.457dup 
DNMT3A c.2203T>A p.Y735N 0.105 [0.09 0.125] EZH2 c.1328C>A 
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Appendix 3: LiFT-Filter Variant Fitness Estimates 
 

Participant 
ID 

Gene Base 
Substitution 

Protein ID Exceeds 
2% VAF 

Fitness Fitness 
Confidence 

Co-Occuring 
Mutation 

LBC21_018 BCORL1 c.4619-5A>G 
 

FALSE 0.07 [0.03 0.115] NF1 c.20T>G, RAD21 
c.419_421dup, 
BCORL1 c.707T>G 

LBC21_016 ETV6 c.34-4A>G 
 

FALSE 0.525 [0.25 0.77] ASXL1 
c.1900_1922del 

LBC21_030 BCOR c.3503-51A>C 
 

FALSE 0.45 [0.32 0.6] TET2 c.961C>T 

LBC21_034 STAG2 c.463-1G>A 
 

FALSE 0.03 [0.005 0.07] DNMT3A 
c.2173+1G>A 

LBC21_034 DNMT3A c.2173+1G>A 
 

TRUE 0.03 [0.005 0.07] STAG2 c.463-1G>A 

LBC36_020 TP53 c.994-5T>C 
 

FALSE 0.265 [0.215 0.32] LUC7L2 c.279del, 
DNMT3A c.1605del, 
TET2 c.457dup 

LBC36_017 DNMT3A c.2322+1G>A 
 

TRUE 0.06 [0.04 0.08] 
 

LBC36_018 DNMT3A c.1554+1G>A 
 

TRUE 0 [0.    0.015] 
 

LBC36_011 DNMT3A c.1852-1G>A 
 

TRUE 0.015 [0.   0.05] TP53 c.818G>A 

LBC36_038 KDM6A c.1329+457G>T FALSE 0.145 [0.1 0.19] LUC7L2 c.157A>G 

LBC36_040 DNMT3A c.2083-2A>G 
 

TRUE 0.06 [0.02 0.105] PPM1D c.1375G>T, 
SRSF2 c.330C>G 

LBC36_023 DNMT3A c.1429+1G>C 
 

TRUE 0 [0.   0.03] KRAS c.436G>C, 
TP53 c.711G>A 

LBC36_028 DNMT3A c.2478+1G>T 
 

TRUE 0.105 [0.04 0.18] TP53 c.757_758dup 

LBC36_043 DNMT3A c.1122+1G>A 
 

FALSE 0.47 [0.215 0.79] DNMT3A c.2727T>A, 
DNMT3A c.2578T>C, 
DNMT3A c.2228C>T 

LBC21_040 SH2B3 c.331G>C p.A111P FALSE 0.27 [0.135 0.43] 

LBC21_017 NF1 c.3589G>T p.A1197S TRUE 0.075 [0.04 0.115] 

LBC36_023 KRAS c.436G>C p.A146P FALSE 0.175 [0.105 0.24] DNMT3A 
c.1429+1G>C, TP53 
c.711G>A 

LBC21_038 KDM6A c.51T>G p.A17= FALSE 0.515 [0.26 0.635] CBL c.1139T>C, 
SRSF2 c.361A>G 

LBC36_042 DNMT3A c.1056_1057del p.A353Vfs*39 TRUE 0.08 [0.055 0.1] BCORL1 c.1261T>C 

LBC36_042 BCORL1 c.1261T>C p.C421R FALSE 0.08 [0.055 0.1] DNMT3A 
c.1056_1057del 

LBC36_021 DNMT3A c.1677C>A p.C559* TRUE 0.105 [0.09 0.12] U2AF2 c.1421T>C, 
GATA2 c.1186C>T, 
DNMT3A c.2312G>A 

LBC21_001 TET2 c.705del p.D236Ifs*14 TRUE 0.155 [0.12 0.19] 
 

LBC21_004 RAD21 c.1199A>C p.D400A TRUE 0 [0.    0.085] BCOR c.1163T>G, 
ATRX c.6524T>C 

LBC36_008 TET2 c.1102del p.E368Nfs*4 TRUE 0.185 [0.17 0.2] 
 

LBC36_040 PPM1D c.1375G>T p.E459* TRUE 0.06 [0.02 0.105] SRSF2 c.330C>G, 
DNMT3A c.2083-
2A>G 

LBC21_016 ASXL1 c.1900_1922del p.E635Rfs*15 TRUE 0.135 [0.105 0.18] ETV6 c.34-4A>G 

LBC36_016 DNMT3A c.2174del p.E725Gfs*54 TRUE 0.04 [0.005 0.1] ZRSR2 c.524A>G 

LBC36_006 ASXL1 c.2329G>T p.E777* FALSE 0.06 [0.02 0.105] DNMT3A c.1156del 

LBC21_011 PTEN c.834C>G p.F278L FALSE 0.16 [0.115 0.21] ASXL1 c.2773C>T 

LBC36_021 U2AF2 c.1421T>C p.F474S FALSE 0.31 [0.275 0.34] GATA2 c.1186C>T, 
DNMT3A c.1677C>A, 
DNMT3A c.2312G>A 

LBC21_021 PPM1D c.1602del p.F534Lfs*5 FALSE 0.13 [0.04 0.23] 
 

LBC36_030 DNMT3A c.2256_2257del p.F752Lfs*4 TRUE 0.095 [0.065 0.13] NF1 c.2935A>C 
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Participant 
ID 

Gene Base 
Substitution 

Protein ID Exceeds 
2% VAF 

Fitness Fitness 
Confidence 

Co-Occuring 
Mutation 

LBC36_043 DNMT3A c.2727T>A p.F909L FALSE 0.195 [0.105 0.29] DNMT3A 
c.1122+1G>A, 
DNMT3A c.2578T>C, 
DNMT3A c.2228C>T 

LBC36_020 LUC7L2 c.279del p.F93Lfs*16 FALSE 0.265 [0.215 0.32] DNMT3A c.1605del, 
TET2 c.457dup, TP53 
c.994-5T>C 

LBC21_028 ZRSR2 c.1311_1312inv p.G438R TRUE 0.005 [0.    0.055] STAG2 c.2725C>T 

LBC36_024 DNMT3A c.1648G>A p.G550R TRUE 0.185 [0.135 0.245] DNMT3A c.2330C>G, 
TET2 c.2255_2261del 

LBC36_036 DNMT3A c.2016_2029del p.G673Pfs*35 TRUE 0 [0.    0.005] DNMT3A c.2045dup 

LBC21_004 ATRX c.6524T>C p.I2175T FALSE 0.28 [0.14 0.43] RAD21 c.1199A>C, 
BCOR c.1163T>G 

LBC36_028 TP53 c.757_758dup p.I254Pfs*92 FALSE 0.235 [0.165 0.31] DNMT3A 
c.2478+1G>T 

LBC36_031 DNMT3A c.929T>C p.I310T FALSE 0.115 [0.035 0.225] LUC7L2 c.28A>G, 
CUX1 c.599A>G 

LBC36_033 TET2 c.1693dup p.I565Nfs*2 TRUE 0.055 [0.03 0.08] U2AF2 c.959T>C, 
TET2 c.1694T>C 

LBC36_033 TET2 c.1694T>C p.I565T TRUE 0.055 [0.03 0.08] U2AF2 c.959T>C, 
TET2 c.1693dup 

LBC21_002 DNMT3A c.2306T>G p.I769S TRUE 0 [0.   0.07] 
 

LBC21_027 SF3B1 c.2429T>C p.I810T FALSE 0.345 [0.11 0.67] TET2 c.2339_2340del 

LBC36_031 CUX1 c.599A>G p.K200R FALSE 0.37 [0.175 0.63] LUC7L2 c.28A>G, 
DNMT3A c.929T>C 

LBC36_005 SF3B1 c.2098A>G p.K700E TRUE 0.485 [0.375 0.6] TET2 c.1505del 

LBC21_024 DNMT3A c.2230A>T p.K744* TRUE 0.06 [0.025 0.09] DNMT3A c.1510dup, 
TET2 c.1648C>T 

LBC21_027 TET2 c.2339_2340del p.K780Sfs*8 TRUE 0 [0.   0.05] SF3B1 c.2429T>C 

LBC21_036 SH2B3 c.371T>A p.L124Q FALSE 0.06 [0.01 0.245] SH2B3 c.380C>G 

LBC36_002 NOTCH1 c.6881T>G p.L2294R FALSE 0.235 [0.08 0.425] 

LBC21_018 BCORL1 c.707T>G p.L236R FALSE 0.365 [0.115 0.68] BCORL1 c.4619-
5A>G, NF1 c.20T>G, 
RAD21 c.419_421dup 

LBC36_033 U2AF2 c.959T>C p.L320P FALSE 0.26 [0.125 0.4] TET2 c.1693dup, 
TET2 c.1694T>C 

LBC36_015 DNMT3A c.1031T>A p.L344Q TRUE 0 [0.    0.025] DNMT3A c.770del 

LBC21_038 CBL c.1139T>C p.L380P TRUE 0 [0.    0.035] SRSF2 c.361A>G, 
KDM6A c.51T>G 

LBC21_004 BCOR c.1163T>G p.L388R FALSE 0.28 [0.14 0.43] RAD21 c.1199A>C, 
ATRX c.6524T>C 

LBC21_024 DNMT3A c.1510dup p.L504Pfs*42 TRUE 0.06 [0.025 0.09] TET2 c.1648C>T, 
DNMT3A c.2230A>T 

LBC36_009 DNMT3A c.1639C>T p.L547F TRUE 0.025 [0.01 0.045] NF1 c.20T>G 

LBC21_006 TET2 c.2243del p.L748Yfs*3 FALSE 0.08 [0.015 0.165] 

LBC36_031 LUC7L2 c.28A>G p.M10V TRUE 0.115 [0.035 0.225] DNMT3A c.929T>C, 
CUX1 c.599A>G 

LBC36_023 TP53 c.711G>A p.M237I FALSE 0.175 [0.105 0.24] DNMT3A 
c.1429+1G>C, KRAS 
c.436G>C 

LBC21_045 RAD21 c.860T>C p.M287T FALSE 0.005 [0.  0.1] 
 

LBC36_036 DNMT3A c.2045dup p.M682Ifs*31 TRUE 0 [0.    0.005] DNMT3A 
c.2016_2029del 

LBC36_024 TET2 c.2255_2261del p.N752Rfs*59 TRUE 0.105 [0.08 0.13] DNMT3A c.2330C>G, 
DNMT3A c.1648G>A 

LBC21_036 SH2B3 c.380C>G p.P127R FALSE 0.06 [0.01 0.245] SH2B3 c.371T>A 

LBC36_012 DNMT3A c.1878_1884del p.P627Rfs*22 TRUE 0 [0.   0.01] 
 

LBC36_043 DNMT3A c.2228C>T p.P743L FALSE 0.195 [0.105 0.29] DNMT3A c.2727T>A, 
DNMT3A 
c.1122+1G>A, 
DNMT3A c.2578T>C 
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LBC36_024 DNMT3A c.2330C>G p.P777R FALSE 0.185 [0.135 0.245] TET2 c.2255_2261del, 
DNMT3A c.1648G>A 

LBC21_046 TET2 c.2552del p.P851Lfs*22 TRUE 0.135 [0.095 0.175] TET2 c.2746C>T 

LBC21_019 U2AF1 c.470A>G p.Q157R FALSE 0.335 [0.285 0.39] TET2 c.936dup 

LBC21_030 TET2 c.961C>T p.Q321* FALSE 0.45 [0.32 0.6] BCOR c.3503-51A>C 

LBC36_014 DNMT3A c.1601del p.Q534Rfs*117 TRUE 0.02 [0.005 0.035] 

LBC21_028 STAG2 c.2725C>T p.Q909* FALSE 0.145 [0.07 0.23] ZRSR2 
c.1311_1312inv 

LBC21_046 TET2 c.2746C>T p.Q916* TRUE 0 [0.   0.06] TET2 c.2552del 

LBC21_011 ASXL1 c.2773C>T p.Q925* TRUE 0.16 [0.115 0.21] PTEN c.834C>G 

LBC36_041 TP53 c.818G>A p.R273H FALSE 0.255 [0.2   0.315] DNMT3A c.34A>C, 
DNMT3A c.2206C>T 

LBC36_011 TP53 c.818G>A p.R273H FALSE 0.015 [0.   0.05] DNMT3A c.1852-
1G>A 

LBC36_035 DNMT3A c.924_925dup p.R309Pfs*8 TRUE 0.08 [0.045 0.11] 

LBC36_022 DNMT3A c.976C>G p.R326G TRUE 0.15 [0.13 0.175] JAK2 c.1849G>T, 
DNMT3A c.2204A>G 

LBC36_021 GATA2 c.1186C>T p.R396W TRUE 0.31 [0.275 0.34] U2AF2 c.1421T>C, 
DNMT3A c.1677C>A, 
DNMT3A c.2312G>A 

LBC36_038 LUC7L2 c.157A>G p.R53G FALSE 0.145 [0.1 0.19] KDM6A 
c.1329+457G>T 

LBC21_024 TET2 c.1648C>T p.R550* TRUE 0.06 [0.025 0.09] DNMT3A c.1510dup, 
DNMT3A c.2230A>T 

LBC21_039 TET2 c.1742G>A p.R581H TRUE 0.15 [0.105 0.205] 

LBC36_013 DNMT3A c.1904G>A p.R635Q TRUE 0.175 [0.145 0.205] JAK2 c.1849G>T 

LBC36_041 DNMT3A c.2206C>T p.R736C TRUE 0.06 [0.035 0.08] DNMT3A c.34A>C, 
TP53 c.818G>A 

LBC36_021 DNMT3A c.2312G>A p.R771Q TRUE 0.105 [0.09 0.12] U2AF2 c.1421T>C, 
GATA2 c.1186C>T, 
DNMT3A c.1677C>A 

LBC36_001 DNMT3A c.2645G>A p.R882H FALSE 0.16 [0.08 0.245] 

LBC21_038 SRSF2 c.361A>G p.S121G FALSE 0.515 [0.26 0.635] CBL c.1139T>C, 
KDM6A c.51T>G 

LBC36_020 TET2 c.457dup p.S153Ffs*9 TRUE 0.11 [0.09 0.13] LUC7L2 c.279del, 
DNMT3A c.1605del, 
TP53 c.994-5T>C 

LBC36_034 EZH2 c.1328C>A p.S443* TRUE 0.235 [0.16 0.33] DNMT3A c.34A>C, 
DNMT3A c.2203T>A 

LBC36_005 TET2 c.1505del p.S502Lfs*31 TRUE 0.145 [0.125 0.165] SF3B1 c.2098A>G 

LBC36_010 FBXW7 c.1547C>T p.S516F FALSE 0 [0.   0.12] 
 

LBC36_030 NF1 c.2935A>C p.S979R FALSE 0.43 [0.26 0.655] DNMT3A 
c.2256_2257del 

LBC36_034 DNMT3A c.34A>C p.T12P FALSE 0.105 [0.085 0.12] EZH2 c.1328C>A, 
DNMT3A c.2203T>A 

LBC36_041 DNMT3A c.34A>C p.T12P FALSE 0.255 [0.2   0.315] TP53 c.818G>A, 
DNMT3A c.2206C>T 

LBC36_015 DNMT3A c.770del p.T257Mfs*59 TRUE 0 [0.    0.025] DNMT3A c.1031T>A 

LBC21_019 TET2 c.936dup p.T313Yfs*18 TRUE 0.335 [0.285 0.39] U2AF1 c.470A>G 

LBC21_018 RAD21 c.419_421dup p.V140dup TRUE 0.07 [0.03 0.115] BCORL1 c.4619-
5A>G, NF1 c.20T>G, 
BCORL1 c.707T>G 

LBC36_006 DNMT3A c.1156del p.V386Cfs*21 FALSE 0.06 [0.02 0.105] ASXL1 c.2329G>T 

LBC36_022 JAK2 c.1849G>T p.V617F TRUE 0.15 [0.13 0.175] DNMT3A c.976C>G, 
DNMT3A c.2204A>G 

LBC21_010 JAK2 c.1849G>T p.V617F TRUE 0.015 [0.    0.075] 
 

LBC36_013 JAK2 c.1849G>T p.V617F FALSE 0.075 [0.015 0.155] DNMT3A c.1904G>A 

LBC36_026 JAK2 c.1849G>T p.V617F TRUE 0.145 [0.135 0.16] 
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LBC36_007 JAK2 c.1849G>T p.V617F TRUE 0.12 [0.105 0.14] 

LBC21_015 DNMT3A c.1969G>A p.V657M TRUE 0.01 [0.   0.08] ASXL1 c.2419G>A 

LBC21_032 DNMT3A c.2060T>A p.V687D TRUE 0.065 [0.02 0.115] 

LBC21_018 NF1 c.20T>G p.V7G TRUE 0.07 [0.03 0.115] BCORL1 c.4619-
5A>G, RAD21 
c.419_421dup, 
BCORL1 c.707T>G 

LBC36_009 NF1 c.20T>G p.V7G FALSE 0.025 [0.01 0.045] DNMT3A c.1639C>T 

LBC21_015 ASXL1 c.2419G>A p.V807I TRUE 0.01 [0.   0.08] DNMT3A c.1969G>A 

LBC36_043 DNMT3A c.2578T>C p.W860R TRUE 0.195 [0.105 0.29] DNMT3A c.2727T>A, 
DNMT3A 
c.1122+1G>A, 
DNMT3A c.2228C>T 

LBC36_040 SRSF2 c.330C>G p.Y110* FALSE 0.565 [0.225 0.935] PPM1D c.1375G>T, 
DNMT3A c.2083-
2A>G 

LBC36_016 ZRSR2 c.524A>G p.Y175C TRUE 0.04 [0.005 0.1] DNMT3A c.2174del 

LBC36_020 DNMT3A c.1605del p.Y536Tfs*115 TRUE 0.185 [0.17 0.205] LUC7L2 c.279del, 
TET2 c.457dup, TP53 
c.994-5T>C 

LBC36_022 DNMT3A c.2204A>G p.Y735C FALSE 0.35 [0.255 0.45] DNMT3A c.976C>G, 
JAK2 c.1849G>T 

LBC36_034 DNMT3A c.2203T>A p.Y735N TRUE 0.105 [0.085 0.12] EZH2 c.1328C>A, 
DNMT3A c.34A>C 

 

 



Appendix 4: Damage Predictions for Single Nucleotide Variants 
 

Gene Uniprot Variant DeepSeq REVEL >gnomAD >ClinVar SIFT4G SNAP2 DEOGEN2 VEST4 gnomAD 
mean 

clinVar 
mean 

ΔΔG 
full 

ΔΔG 
AlphaFold 

Category 
Assigned 

GATA2 P23769 R396W -8.634 0.912 0.967 0.171 0.000 78.000 0.929 0.919 0.970 0.325 -0.116 0.302 
 

U2AF1 Q01081 Q157R - 0.596 0.917 0.250 0.001 - - 0.825 0.907 0.250 - 0.836 possibly 
damaging 

SF3B1 O75533 K700E -16.139 0.619 0.906 0.400 0.011 53.000 0.587 0.688 0.865 0.433 -0.920 -0.748 
 

LUC7L2 Q9Y383 R53G - 0.358 0.960 - 0.002 86.000 0.488 0.816 0.960 - - 1.269 likely damaging 
LUC7L2 Q9Y383 M10V - 0.202 0.784 - 0.042 46.000 0.212 0.462 0.770 - - 1.410 

 

BCOR Q6W2J9 L388R - 0.108 0.372 0.000 0.636 -9.000 0.263 0.473 0.452 0.100 - 0.617 likely benign 
JAK2 O60674 V617F -8.876 0.881 0.960 0.857 0.007 88.000 0.845 0.885 0.909 0.589 1.828 1.608 likely damaging 
ATRX P46100 I2175T - 0.963 1.000 0.826 0.001 - - 0.866 0.991 0.630 - 1.625 likely damaging 
TET2 Q6N021 I565T - 0.226 0.859 0.500 0.133 -52.000 0.084 0.071 0.456 0.200 - 1.225 

 

TET2 Q6N021 R581H - 0.032 0.143 0.000 0.140 -7.000 0.022 0.228 0.363 0.300 - 0.711 
 

DNMT3A Q9Y6K1 L344Q -6.753 0.928 0.882 0.703 0.001 74.000 0.885 0.976 0.829 0.685 2.986 3.536 
 

DNMT3A Q9Y6K1 L547F -6.757 0.653 0.555 0.162 0.139 28.000 0.532 0.763 0.544 0.180 4.604 4.462 
 

DNMT3A Q9Y6K1 G550R -7.397 0.799 0.670 0.324 0.019 46.000 0.816 0.765 0.657 0.338 1.869 -0.265 
 

DNMT3A Q9Y6K1 R635Q -7.159 0.828 0.698 0.351 0.065 39.000 0.946 0.778 0.679 0.383 0.857 1.217 
 

DNMT3A Q9Y6K1 V657M -4.779 0.697 0.585 0.162 0.009 39.000 0.955 0.920 0.701 0.414 2.018 0.945 
 

DNMT3A Q9Y6K1 V687D -5.736 0.952 0.934 0.838 0.000 83.000 0.987 0.958 0.883 0.748 3.925 4.793 
 

DNMT3A Q9Y6K1 Y735N -9.957 0.860 0.742 0.405 0.003 50.000 0.938 0.972 0.826 0.635 2.228 0.720 
 

DNMT3A Q9Y6K1 Y735C -7.865 0.895 0.799 0.514 0.002 23.000 0.939 0.953 0.789 0.577 1.804 0.776 likely damaging 
DNMT3A Q9Y6K1 R736C -6.080 0.923 0.860 0.676 0.015 36.000 0.987 0.822 0.730 0.477 4.011 2.946 

 

DNMT3A Q9Y6K1 P743L -9.984 0.885 0.786 0.459 0.001 52.000 0.982 0.910 0.841 0.653 2.897 2.276 likely damaging 
DNMT3A Q9Y6K1 I769S -7.962 0.964 0.962 0.892 0.001 64.000 0.928 0.962 0.867 0.730 3.823 4.410 

 

DNMT3A Q9Y6K1 R771Q -6.601 0.904 0.808 0.541 0.034 -7.000 0.822 0.916 0.643 0.347 -0.061 0.309 
 

DNMT3A Q9Y6K1 P777R -7.739 0.937 0.898 0.757 0.001 47.000 0.872 0.950 0.804 0.640 7.769 7.363 likely damaging 
DNMT3A Q9Y6K1 W860R -5.792 0.905 0.813 0.595 0.015 87.000 0.842 0.907 0.746 0.536 4.660 2.229 

 

DNMT3A Q9Y6K1 R882H -8.980 0.742 0.621 0.243 0.050 43.000 0.818 0.648 0.633 0.320 -0.194 0.305 possibly 
damaging 

DNMT3A Q9Y6K1 F909L -6.782 0.883 0.783 0.432 0.011 63.000 0.806 0.772 0.690 0.356 4.014 2.597 possibly 
damaging 

DNMT3A Q9Y6K1 I310T -5.851 0.854 0.731 0.405 0.002 61.000 0.852 0.945 0.744 0.477 1.642 3.642 possibly 
damaging 

DNMT3A Q9Y6K1 R326G -5.945 0.759 0.632 0.270 0.004 80.000 0.805 0.973 0.740 0.482 5.912 6.570 
 

BCORL1 Q5H9F3 C421R - - - - - 44.000 - - 0.944 1.000 - -0.424 likely damaging 
NF1 P21359 S979R - 0.239 0.352 0.046 0.533 -86.000 0.613 0.710 0.295 0.042 - - likely benign 
NF1 P21359 A1197S - 0.291 0.472 0.064 0.022 -74.000 0.667 0.693 0.448 0.071 - - 

 

PTPN11 Q06124 K260R -0.615 0.397 0.332 0.009 0.442 -82.000 0.393 0.647 0.245 0.031 0.058 0.022 likely benign 
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mean 
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PTEN P60484 F278L -7.509 0.804 0.831 0.099 0.008 49.000 0.939 0.922 0.898 0.226 1.597 1.193 possibly 
damaging 

KRAS P01116 A146P -13.991 0.935 1.000 0.907 0.001 75.000 0.938 0.970 0.971 0.764 -0.948 -1.298 likely damaging 
TP53 P04637 M237I -6.257 0.923 0.906 0.592 0.023 45.000 0.995 0.937 0.853 0.441 2.735 1.230 possibly 

damaging 
TP53 P04637 R273H -4.405 0.868 0.816 0.218 0.032 72.000 0.995 0.963 0.838 0.395 1.097 -0.315 possibly 

damaging 
RAD21 O60216 D400A - 0.153 0.474 0.000 0.144 - 0.165 0.305 0.536 0.036 - 0.256 

 

RAD21 O60216 M287T - 0.094 0.275 0.000 0.545 - 0.056 0.303 0.229 0.000 - -0.263 likely benign 
ASXL1 Q8IXJ9 V807I -3.846 0.026 0.180 0.000 0.858 -84.000 0.058 0.026 0.149 0.167 - 0.254 

 

CBL P22681 L380P - 0.974 0.998 0.867 0.001 - 0.965 0.979 0.967 0.583 3.298 0.271 
 

U2AF2 P26368 F474S -14.096 0.240 0.890 - 0.001 54.000 0.349 0.839 0.960 - 4.395 4.461 likely damaging 
U2AF2 P26368 E71G -0.627 0.072 0.143 - 0.355 -27.000 0.047 0.471 0.370 - - 0.474 possibly 

damaging 
U2AF2 P26368 L320P -14.907 0.841 1.000 - 0.001 86.000 0.362 0.922 0.993 - 8.166 7.678 likely damaging 
ZRSR2 Q15696 G438R - 0.209 0.655 - 0.751 -46.000 0.007 0.102 0.197 - - 1.395 

 

ZRSR2 Q15696 Y175C - 0.590 0.915 - 0.001 73.000 0.451 0.760 0.955 - - 3.349 
 

SH2B3 Q9UQQ2 A111P 1.162 0.065 0.311 0.000 0.193 -74.000 0.197 0.082 0.142 0.000 - 2.128 likely benign 
SH2B3 Q9UQQ2 L124Q -2.326 0.187 0.651 0.000 0.017 -38.000 0.483 0.175 0.482 0.083 - -0.801 likely benign 
SH2B3 Q9UQQ2 P127R -1.527 0.039 0.151 0.000 0.133 -70.000 0.233 0.105 0.200 0.000 - -2.160 likely benign 
SRSF2 Q01130 S121G -0.531 0.127 0.483 0.000 0.166 11.000 0.070 0.308 0.297 0.500 - -0.146 possibly 

damaging 
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Age is the single largest factor underlying the onset of many 
cancers1. Age-related accumulation and clonal expansion 
of cancer-associated somatic mutations in healthy tissues 

has been posited recently as a pre-malignant status consistent with 
the multi-stage model of carcinogenesis2. However, the widespread 
presence of cancer-associated mutations in healthy tissues high-
lights the complexity of early detection and diagnosis of cancer3–7.

CHIP is defined as the clonal expansion of HSPCs in healthy 
aged individuals. CHIP affects more than 10% of individuals over 
the age of 60 years and is associated with an estimated ten-fold 
increased risk for the later onset of hematological neoplasms3–5. 
There is a clear benefit of detecting CHIP early for close clinical 
monitoring and early detection, as the association between clone 
size and malignancy progression is well-established5,8,9.

The particular mechanisms by which common mutations of 
CHIP—for example, DNMT3A and TET2—contribute to the pro-
gression of leukemia are still not understood, which hinders early 
diagnosis of CHIP on a gene or variant basis8,10–12. In clinical practice, 
CHIP is diagnosed by the presence of somatic mutations at variant 
allele frequencies (VAFs) of at least 2% in cancer-associated genes, 
that is in more than 4% of all blood cells8,13. Clonal fitness, defined as 
the proliferative advantage of stem cells carrying a mutation over cells 
carrying no or only neutral mutations, has emerged as an alternative 
clone-specific quantitative marker of CHIP14,15. As mutations in stem 
cells often drive leukemia5, we hypothesized that stem cell fitness 
contributes substantially to transformation from CHIP to leukemia.

Stratification of individuals to inform close clinical monitor-
ing for early detection or prevention of leukemia in the future will 
depend on the ability to accurately associate genes and their vari-
ants with progression to disease. However, it remains unresolved 
whether variant-specific or gene-specific fitness effects outweigh 
other factors contributing to variable progression among individu-
als, such as environment or genetics.

Hitherto, fitness effects have been predicted from large 
cross-sectional cohort data14,16. In this approach, single-timepoint 
data from many individuals are pooled to generate allele frequency 
distributions. Although this method allows the study of a large col-
lection of variants, pooling prevents estimation of an individual’s 
mutational fitness effects from cross-sectional data. Inferring fit-
ness from a single timepoint creates additional uncertainty about 
whether a mutation has arisen recently and has grown rapidly (high 
fitness advantage) or arose a long time ago and has grown slowly 
(low fitness advantage). With longitudinal samples, fitness effects of 
individual mutations can be estimated directly from the change in 
VAF over multiple timepoints.

In this study, we worked with longitudinal data from the Lothian 
Birth Cohort of 1921 (LBC1921) and the Lothian Birth Cohort of 
1936 (LBC1936)17. Such longitudinal data are rare worldwide owing 
to their participants’ older age (70–90 years) and their three-yearly 
follow-ups over 12 years in each cohort and over 21 years of total 
timespan. We developed a new framework for extracting fitness 
effects from longitudinal data using Bayesian inference. First, a 
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likelihood-based filter for time series data (LiFT) allowed us to 
segregate between sequencing artifacts or naturally drifting popu-
lations of cells and fast-growing clones. Second, we inferred the 
growth potential or fitness effects simultaneously for all growing 
mutations within each individual and also allowed for clones with 
multiple mutations if these are favored by Bayesian model compari-
son. We detected gene-specific fitness effects within our cohorts, 
highlighting the potential for personalized clinical management.

Results
Longitudinal profiling of CHIP variants in advanced age. The 
Lothian Birth Cohorts (LBCs) of 1921 (n = 550) and 1936 (n = 1091) 
are two independent, longitudinal studies of aging with approxi-
mately three-yearly follow-up for five waves, from the age of 70 years 
(LBC1936) and 79 years (LBC1921)17. We previously identified 73 
participants with CHIP at wave 1 through whole-genome sequenc-
ing (WGS)18. Here, we used a targeted error-corrected sequencing 
approach using a 75-gene panel (ArcherDX/Invitae) to assess lon-
gitudinal changes in VAFs and clonal evolution over 21 years across 
both LBC cohorts (6 years in LBC1921 and 12 years in LBC1936; 
Supplementary Table 1). Error-corrected sequencing allowed accu-
rate quantification, providing more sensitive clonal outgrowth esti-
mates than our previous WGS data. We sequenced 248 LBC samples 
(85 individuals across 2–5 timepoints) and achieved a sequencing 
depth of 2,238× mean coverage (2,153× median) over all targeted 
sites with an average of 1.6 unique somatic variants (pan-cohort 
VAF 0.03–87%, median VAF 4.4%) detected per participant. We 
examined all participant-matched events across the time course: 
sequence quality control metrics revealed that only seven of 275 
data points failed to meet our quality criteria, likely due to low ini-
tial VAF. Most of our variant loci generally displayed a high number 
of supporting reads, with a mean of 258 (Extended Data Fig. 1a).

For our initial analysis, we retained variants with at least one 
timepoint at 2% VAF (Supplementary Table 2). DNMT3A was the 
most commonly mutated CHIP gene (n = 39 events in 33 partici-
pants), followed by TET2 (n = 18 events in 15 participants), JAK2 
(n = 8 events in eight participants) and ASXL1 (n = 3 events in three 
participants) (Fig. 1a–c and Extended Data Fig. 1e). Our mutation 
spectrum is consistent with previous studies in finding DNMT3A 
and TET2 as the most frequently mutated genes4,5. We detected 
some variants more frequently at certain hotspots within a gene, 
such as R882H in DNMT3A, with previously unreported vari-
ants being present as well (Fig. 1d–i and Supplementary Table 2)5.  
We most frequently detected missense mutations with several other 
key protein-altering event types ranking highly, including frame-
shift insertions and deletions and nonsense mutations (Fig. 1a–c).  
Participants broadly cluster together across their time course, 
driven by the expanding or stable VAF of their harbored mutations, 
underscoring the high prevalence and large clone size of common 
clonal hematopoietic drivers, namely DNMT3A, TET2 and JAK2 

(Fig. 1a–c). In the case of JAK2V617F, we identified two individuals 
who developed leukemia at wave 2 and received treatment between 
waves 2 and 3, likely driving a clear reduction in clone size (Fig. 1h). 
Those individuals were excluded from further analysis. In our data, 
we identified a lower frequency of mutations in splicing genes, such 
as SF3B1, despite the older age of the cohorts (Fig. 1a and Extended 
Data Fig. 1e). This is in contrast to previously published cohort data, 
where splicing mutations became more prominent with increased 
age19. Most mutations were missense, frameshift and nonsense 
mutations (Fig. 1b).

Overall, our sequencing approach allowed for high-resolution, 
longitudinal mapping of CHIP variants over 6-year and 12-year 
time spans in LBC1921 and LBC1936, respectively, and 21-year 
time span across both cohorts from the same geographical region 
and born 9 years apart.

Cataloguing of fitness effects for CHIP variants at >2% VAF. 
Stem cell fitness is defined as the proliferative advantage over cells 
carrying no or only neutral mutations. It remains incompletely 
understood to what extent fitness is gene-specific or variant-specific 
or determined by the bone marrow microenvironment and clonal 
composition. Earlier estimates suggested a wide spread of fitness 
effects even for variants of the same gene14, which would make it 
difficult to clinically stratify individuals with CHIP. To determine 
the fitness effects of the variants identified in our cohorts (Fig. 1a 
and Extended Data Fig. 1e), we initially selected all CHIP variants 
in our data using the commonly used criterion of defining any vari-
ants with VAF > 2% as CHIP8,13 and retaining only those variants 
with at least two timepoints (Fig. 2b). This approach identified 76 
CHIP mutations overall (Fig. 2c). To estimate the fitness effect that 
each variant confers, we used Bayesian inference and birth–death 
models of clonal dynamics (Fig. 2a), including all trajectories with 
at least two timepoints (Supplementary Table 3). The resulting fit-
ness values show an overall dependence of fitness on the gene level 
(Fig. 2d), with a wide distribution of fitness for some genes, such as 
TET2 and DNMT3A, but not others, such as JAK2 (which are all the 
same variant).

Longitudinal trajectories accurately stratify CHIP variants. 
Because longitudinal data allow direct quantification of the growth 
in VAF over time, we can inspect the gradients (fluctuations) in VAF 
for variants that were classified as CHIP based on thresholding. We 
found that a VAF > 2% threshold not only misses fast-growing and 
potentially harmful variants (Fig. 2b) but can also include variants 
whose frequencies are shrinking (Fig. 2b,c) and, thus, either do not 
confer a fitness advantage or are being outcompeted by other clones. 
Overall, 70% of CHIP mutations detected by thresholding at 2% VAF 
were growing during the observed time span (Fig. 2b,c). Longitudinal 
data, thus, reveal limitations in defining CHIP mutations based on a 
widely used VAF threshold.

Fig. 1 | Clonal hematopoiesis in the LBCs. a, Counts of unique events that exceeded 2% VAF across the range of the longitudinal cohorts in our panel of 
75 hematopoietic genes. b, Counts of the functional consequences of the unique events listed in Fig. 1a. Missense mutations, frameshift insertions and 
deletions and nonsense mutations are indicated. Exact counts, n, are for each category. c, Schematic of the top seven most affected genes in the cohort 
with the largest clone size of an event in any given gene shown. All affected participants were clustered across all timepoints, with the point size scaled 
by VAF and colored by the functional consequence of the variant (as per Fig. 1b and legend). d, Clone size trajectories of all DNMT3A mutations across 
the time series in both LBC1921 and LBC1936 colored by the functional consequence of the variant (as per Fig. 1b,c). e, Locations of somatic mutations 
discovered in DNMT3A. Protein-affecting events are marked and labeled across the structure of the gene (missense in red, truncating in purple, stacked 
for multiple events) with the structure of the gene labeled along the amino acid length of its protein. f. Clone size trajectories of all TET2 mutations across 
the time series in both LBC1921 and LBC1936 colored by the functional consequence of the variant (as per Fig. 1b,c). g, The locations of somatic mutations 
in TET2. Protein-affecting events are marked and labeled across the structure of the protein (missense in red, truncating in purple, stacked for multiple 
events). h, Clone size trajectories of all JAK2 mutations across the time series in both LBC1921 and LBC1936 colored by the functional consequence of the 
variant (as per Fig. 1b,c). Points marked in black denote timepoints after which the affected participant received treatment for leukemia. i, The locations 
of somatic mutations in JAK2. Protein-affecting events are marked and labeled across the structure of the protein (missense in red, truncating in purple, 
stacked for multiple events). All eight JAK2 mutations are p.Val617Phe (JAK2 V617F) missense variants. del, deltion; FS, frameshift; ins, insertion.
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To overcome the limitations of a threshold-based selection 
of fit variants, we sought to filter variants based on longitudinal 
information, by comparing a stochastic model of clonal dynamics 
with a model of sequencing artifacts (Fig. 3a). This novel approach, 
which we named LiFT, allows classification of fit variants even for 
VAF < 2%. LiFT classification of fit variants broadly agreed with 
noise profile statistics from the ArcherDX pipeline (Extended Data 
Fig. 2f,g) but identified additional variants by leveraging the longi-
tudinal nature of the data. LiFT classification resulted in 114 vari-
ant trajectories (Fig. 3b–d and Extended Data Fig. 2a–g), 86% of 
which grew over the observed time span. We note that the VAF of fit 
mutations may still shrink over time due to the presence of an even 
fitter clone in the same individual. This is in contrast to threshold-
ing at 2% VAF, with only 70% of variants identified to be growing 
and, thus, likely to confer a fitness advantage. Of the 114 variants 
we detected, 50 would not have been detected using the previous 
VAF threshold filter. We, therefore, recomputed fitness estimates 
for this new set of fit trajectories (Fig. 3e,f). Growing variants that 
were missed by the traditional filtering method include highly 
fit variants such as U2AF1 Q157R (fitness 33.5%) and DNMT3A 
R882H (fitness 16%) (Fig. 3c,g and Supplementary Table 4). VAF 
thresholding did not identify any TP53 variants. However, LiFT 
identified four TP53 mutations, all of which were growing over 
the observed time course (Fig. 3c,g and Supplementary Table 4). 
In addition, all of those were either termination/frameshift muta-
tions or previously reported as cancer-associated in the Catalogue 
of Somatic Mutations in Cancer (COSMIC)20 and classified as likely 
damaging (Supplementary Table 5). Moreover, all TP53 variants 
led to high fitness effects; thus, our filtering method allows us to 
identify potentially harmful variants at very low VAFs. Overall, the 
variants detected by LiFT were of higher fitness than those detected 
by VAF thresholding (Fig. 3f; Kruskal–Wallis H = 14, P = 1 × 10−4), 
with an even larger effect size when comparing variants that are 
exclusive to each filtering algorithm (Fig. 3f; Kruskal–Wallis 
H = 18, P = 1 × 10−5).

We further stratified variants using seven computational pre-
dictors recently identified as being most useful for identifying 
pathogenic mutations21–27 (Fig. 3g and Supplementary Table 5), 
categorizing the most prevalent CHIP variants into likely damag-
ing (21 variants), possibly damaging (20 variants) and likely benign  
(11 variants) as well as frameshifts and terminations (37 variants, 
which are also most likely damaging to protein structure and, thus, 
protein function; Supplementary Table 6). Our novel LiFT algo-
rithm, therefore, produces a low false discovery rate of pathogenic 
variants, with 88% of the detected fit variants being predicted to be 
possibly damaging, frameshift or termination.

Taken together, applying a probabilistic model of clonal dynam-
ics to longitudinal sequencing data results in a novel method— 
the LiFT algorithm—that improves on the threshold-based defini-
tion of CHIP mutations (Fig. 3a). The LiFT algorithm replaces an 

arbitrary cutoff on VAF by a choice of false discovery rate (through 
a Bayes factor threshold) and, as a result, selects fewer trajectories 
with shrinking VAF (Figs. 2b,c and 3b–d).

Clinical relevance of LiFT. We further analyzed differences in the 
distributions of fitness between genes using a non-parametric test. 
Despite having small sample sizes for many genes, we still detected 
statistically significant differences among the distributions of fit-
ness effects (Fig. 4a,b). In particular, we found that mutations in 
TP53, SF3B1 and SRSF2 conferred a higher fitness advantage over 
mutations in commonly mutated CHIP genes, such as JAK2 and 
DNMT3A. We also tested differences in fitness by genes when sum-
marized into functional categories and found trajectories of genes 
involved in DNA methylation to have lower fitness than genes 
involved in splicing and genes for transcription factors that are rel-
evant in development (Extended Data Fig. 3a,b).

Differences in the distribution of fitness allow us to predict the 
future growth of mutations from initial timepoints. For example, 
if a patient presents with a variant in a gene with 10% fitness at 
1% VAF, its growth could be confidently measured after 7 months  
(Fig. 4c), warranting a clinical follow-up over that timeframe to 
confirm or revise the fitness estimate. Conversely, the time between 
observations places a lower bound on the fitness that can be mea-
sured for mutations of a given VAF (Fig. 4d). These data can then 
inform on the timeframe for close clinical monitoring and early 
detection of disease.

Ableson et al.16 compared CHIP carriers who never developed 
acute myeloid leukemia (AML) with CHIP where individuals subse-
quently developed AML, and they found that the number of muta-
tions, the mutational burden and the size of the larger driver clone 
were associated with the risk of progression to AML. In the pres-
ent study, we carried out a survival analysis to correlate the maxi-
mum observed VAF of mutations and survival. This correlation 
was stronger in the older cohort (LBC1921) although not statisti-
cally significant (hazard ratio (HR) = 1.35; 95% confidence interval 
(CI) 0.83, 2.19; P = 0.23) due to the small sample size (Extended 
Data Fig. 3d and Supplementary Table 7). In the younger cohort 
(LBC1936), we found that survival better correlated with the speed 
of growth of a mutation, although this was, again, not statistically 
significant (HR = 1.35; 95% CI 0.76, 2.4; P = 0.3) (Extended Data 
Fig. 3d and Supplementary Table 7).

Notably, only two timepoints are necessary to apply LiFT, mak-
ing this a widely applicable method for existing cohorts and future 
studies (Extended Data Fig. 3c). We propose the use of LiFT over 
thresholding for clinical practice.

Discussion
The clinical potential for stratifying progression of CHIP depends 
on whether genes confer distinct fitness advantages. Indeed, most 
studies so far have not shown a clear distinction of fitness effects on 

Fig. 3 | LiFT allows classification of fit variants <2% VAF. a, Schematic of LiFT algorithm. LiFT compares a model of clonal dynamics (Fig. 1a) with an 
artifact model and performs Bayesian model selection. The subsequent steps to infer clonal structure and fitness distributions are as in Fig. 1a. b, Gradient in 
VAF versus VAF for variants detected in the LBCs with at least two timepoints and at least one VAF > 1% per trajectory, with filtered (orange), fit (blue) and 
synonymous (light green dots) mutations, classified by LiFT on a logarithmic scale. c, Longitudinal trajectories of fit (blue) and filtered (orange) mutations 
linked to age in years. d, Number of trajectories classified as fit by LiFT, broken down into increasing or decreasing VAF from first to last timepoint. e, Left, 
deterministic fit of all mutations selected by LiFT in an individual of the LBC cohorts using the inferred optimal clonal structure (Supplementary Information 
Methods, Appendix B). 90% CIs associated with binomial sampling noise are shown for each data point. VAF is displayed on a logarithmic scale. Right, 
posterior distribution of fitness associated to each clonal structure. f, Fitness effects of variants broken down by filtering method. The sample size, n, and 
statistical analyses comparing the distribution of fitness, computed using the non-parametric Kruskal–Wallis test, are highlighted (*H = 14, P = 1 × 10−4; 
**H = 18, P = 1 × 10−5). g, Fitness of variants selected as fit by LiFT broken down by their maximum VAF, >2% and <2%, and damage prediction. The top row 
displays a bar plot of variant counts for each category. The bottom row displays box plots showing the median and interquartile range of the distribution of 
MAP fitnesses by damaging prediction displayed on a logarithmic scale to emphasize relative differences in fitness between variants. Consequently, of a 
total of 89 variants with a damage prediction, 17 variants with fitness below 2% are not shown but are reported in Supplementary Tables 4–6. A marginal 
plot shows the Gaussian kernel density estimation of the MAP fitness values. fs, frameshifts; ter, terminations.
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a gene basis and have shown considerable overlap in fitness coef-
ficients among variants of different genes. We show that fitness can 
substantially differ by gene and gene category. Combining longitu-
dinal data with a new method to identify CHIP variants allows for 

more accurate fitness estimates of CHIP than cross-sectional cohort 
data and motivates further studies with increased sample sizes.

Our fitness estimates are independent of the time when  
the mutation was acquired. In cross-sectional studies, fitness 
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estimates are generally (inversely) correlated with the muta-
tion rate, introducing additional uncertainty14. In contrast, our  
fitness estimates are based on the observed growth among longi-
tudinal samples and, thus, also take into account other mutations 
in an individual. The resulting fitness estimates are largely inde-
pendent of hematopoietic stem cell absolute numbers (Extended 
Data Fig. 4b,c).

The strength of our approach, combining longitudinal data with 
our LiFT algorithm, is exemplified by U2AF1 and TP53, for which 
no variants were identified by a 2% VAF threshold (Fig. 2b,c). In 
contrast, our LiFT method identified one U2AF1 and four TP53 
variants, all of which are conferring a fitness advantage, scored as 
possibly damaging in our missense variant effect analysis and have 
been previously reported in COSMIC20 (Fig. 3g and Supplementary 
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Tables 4 and 5). Moreover, we pick up the DNMT3A R88H variant 
with LiFT but not with 2% VAF thresholding—a mutation that is 
well-reported in the context of leukemia28. Therefore, for patients 
with those variants, close clinical monitoring for early detection of 
disease such as leukemia is merited.

Combining longitudinal data with LiFT enables a personal-
ized approach managing CHIP (Extended Data Figs. 5 and 6). 
Longitudinal data allow quantifying fitness effects even for muta-
tions not seen in large cohorts, as cross-sectional fitness estimation 
requires a mutation to be observed in multiple individuals. Our 
method offers clinicians a way forward for patient stratification 
even for unique variants occurring in single individuals, because 
two timepoints for one individual suffice to estimate fitness, includ-
ing uncertainty quantification (Fig. 4e). We have provided a pre-
diction of the time required between first and second observations 
to be able to accurately infer fitness, depending on the initial VAF 
of a mutation in an individual (Fig. 4c). For high fitness muta-
tions (>10%), a follow-up clinical observation could be performed 
after only a few months, even for small clones (1% VAF or less). 
Conversely, the time between observations places a lower bound 
on the fitness that can be measured for mutations of a given VAF 
(Fig. 4d). In the future, these data can be used to inform time to 
the next appointment for close clinical monitoring of patients with 
clones containing highly fit variants, which will likely outcompete 
other clones. Using longitudinal data to better quantify and predict 
clonal progression in our study, however, comes with a tradeoff in 
the lower number of participants in our cohort and limits the power 
of cross-sectional analysis to find associations.

In addition, our inference method aims to resolve the clonal com-
position of multiple mutations in an individual. Specifically, we can 
now infer the likely co-occurrence of mutations from longitudinal 
data. Current cross-sectional studies do not take into account the 
clonal composition of individuals and, therefore, make predictions 
of the isolated effect of a mutation. In contrast, we are able to link 
fitness to clones carrying a specific combination of mutations that is 
unique to each individual, without relying on any prior knowledge 
of variant-specific fitness effects (Supplementary Table 4).
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Methods
Participant samples and ethics. This study complies with all relevant ethical 
regulations. The study protocol was approved by NHS Lothian (formerly Lothian 
Health). Informed consent was given by all participants. Ethics permission for 
LBC1936 was obtained from the Multi-Centre Research Ethics Committee for 
Scotland (wave 1: MREC/01/0/56), the Lothian Research Ethics Committee  
(wave 1: LREC/2003/2/29) and the Scotland A Research Ethics Committee (waves 2,  
3, 4 and 5: 07/MRE00/58). Ethics permission for LBC1921 was obtained from 
the Lothian Research Ethics Committee (wave 1: LREC/1998/4/183; wave 2: 
LREC/2003/7/23; wave 3: 1702/98/4/183) and the Scotland A Research Ethics 
Committee (waves 4 and 5: 10/MRE00/87).

LBC1921 contains a total of 550 participants at wave 1 of their testing 
(performed between 1999 and 2001) with a gender ratio of 234:316 (male:female) 
and a mean age at wave 1 of 79.1 years (s.d. = 0.6) (Supplementary Table 1)17. 
LBC1936 contains a total of 1,091 participants at wave 1 of their testing (performed 
between 2004 and 2007) with a gender ratio of 548:543 (male:female) and a mean 
age at wave 1 of 69.5 years (s.d. = 0.8) (Supplementary Table 1)17. We previously 
identified 73 participants with CHIP at wave 1 (ref. 18). We sequenced DNA from 
those 73 LBC participants using a targeted gene panel (Supplementary Table 8) and 
added 16 LBC participants with previously unidentified CHIP and 4–5 timepoints. 
We have accepted 85 of 89 participants for inclusion in our study, removing four 
participants for failing to meet quality criteria (low library complexity), with a 
total of 248 samples together with 14 ‘Genome in a Bottle’ (GIAB) controls, two 
per sequencing batch (Supplementary Table 9)29. In addition, two individuals 
carrying the JAK2V617F mutation received treatment for leukemia after the first 
respective timepoint available, potentially driving the observed reductions in clone 
size. Those patients were omitted from further analysis after sequencing (Fig. 1h).

Targeted, error-corrected sequencing and data filtering. DNA was extracted 
from Ethylenediaminetetraacetic acid (EDTA) whole blood using the Nucleon 
BACC3 kit (Sigma-Aldrich, GERPN8512), following the manufacturer’s 
instructions. Libraries were prepared from 200 ng of each DNA sample using the 
Archer VariantPlex® 75 Myeloid gene panel and VariantPlex® Somatic Protocol 
for Illumina sequencing (Invitae, AB0108, and VariantPlex®-HGC Myeloid Kit for 
Illumina; Supplementary Table 9), including modifications for detecting low allele 
frequencies. Sequencing of each pool was performed using the NextSeq 500/550 
High-Output version 2.5 (300 cycle) kit on the NextSeq 550 platform (Illumina). 
To inform reproducibility, background model for error and batch correction,  
we sequenced two GIAB DNA samples in each batch of samples (DNA NA12878, 
Coriell Institute)29.

Reads were filtered for phred ≥30 and adapters removed using Trimmomatic 
(version 0.27)30 before undergoing guided alignment to human genome assembly 
hg19 using bwa-mem (version 0.7.17)31 and bowtie2 (version 2.2.1)32. Unique 
molecular barcodes (ligated before PCR amplification) were used for read 
de-duplication to support quantitative multiplexed analysis and confident mutation 
detection. Within targeted regions, variants were called using three tools (Lofreq 
(version 2.1.0)33, Freebayes34 and Vision (ArcherDX version 6.2.7, unpublished)), 
building a consensus from the output of all callers (Supplementary Table 2).

All filtered variants at 2% VAF met the following criteria: (1) the number 
of reads supporting the alternative allele surpasses the coverage criteria while 
exhibiting no directional biases (AO ≥ 5, UAO ≥ 3); (2) variants are significantly 
underrepresented in the Genome Aggregation Database (gnomAD; P ≤ 0.05)35; 
(3) variants are not obviously germline variants (stable VAF across all waves 
~0.5 or ~1) that may have been underrepresented in the gnomAD due to the 
narrow geographical origin of the LBC participants; and (4) contain events that 
are overrepresented across the dataset—generally frameshift duplications and 
deletions—whose reads share some sequence homology to target regions yet are 
likely misaligned artifact from the capture method (Supplementary Table 2).  
In addition, we manually curated this list, checking for variants that were 
previously reported, as per Jaiswal et al.5, in COSMIC20 or in the published 
literature (Supplementary Table 10). Finally, for any variant that surpassed the 
above criteria at VAF ≥ 2% across the measured time period, we included other 
participant-matched data points regardless of VAF level (Extended Data Fig. 1a,b).

To further mitigate against the diverse sources of noise that can occur in any 
sequencing experiment, which can become especially problematic when attempting 
to detect variants at low VAFs, the ArcherDX variant-calling platform leverages 
the pan-dataset coverage levels of each sample and the GIAB controls to establish a 
position-specific noise profile and, thus, ascertain the limit of detection (LOD) for 
each variant discovered in our panel. Here, we report two parameters for each variant: 
(1) the minimal detectable allele fraction (95% MDAF; Extended Data Fig. 1c), which 
describes the minimum VAF that a variant can be detected in our data, in essence 
describing the LOD for each event; and (2) the VAF outlier P value, which denotes the 
probability that any variant call could have been generated by sequencing noise given 
the position-specific noise distribution across our GIAB controls and the pan-dataset 
coverage levels of our samples, thus allowing us to discern overrepresented 
sequencing artifacts from real events (Extended Data Fig. 1d).

Computational prediction of missense variant effects. To predict which missense 
variants are most likely to be damaging, we used seven computational variant 

effect predictors recently identified as being most useful for identifying pathogenic 
mutations21–27. Specifically, for each variant identified in this study, we determined 
what fraction of previously identified pathogenic and likely pathogenic missense 
variants from ClinVar and what fraction of variants observed in the human 
population from gnomAD version 2.1 for each computational predictor. We then 
averaged these fractions across all predictors. Note that DeepSequence26 was not 
run for all proteins due to its computational intensiveness and difficulty of running 
on long protein sequences. We also performed predictions of missense variant 
(de)stabilization using FoldX 5.0, using the experimentally determined protein 
structure, if available, and the AlphaFold model36,37.

Mathematical model of clonal dynamics to infer fitness. Given the longitudinal 
nature of this study, we can use the probabilistic solution of an established minimal 
model of cell division14,38 to infer the parameter distribution resulting in the 
observed time evolution of VAF trajectories in a participant’s genetic profile  
(Fig. 2a). For each individual, we simultaneously estimated the fitness of variants 
as well as the size of the stem cell pool, without needing to estimate the time of 
mutation acquisition.

In this model, cells exist in two states: stem cells (SCs) or differentiated cells 
(DCs). Under the assumption that DCs cannot revert to a SC state, differentiation 
inevitably leads to cell death and is treated as such. Furthermore, assuming that 
each SC produces the same amount of fully differentiated blood cells allows a 
direct comparison between the VAF of a variant as observed in blood samples 
and the number of SCs forming the genetic clone (clone size). For an individual 
with a collection of clones {ci}i∈I, the VAF evolution in time vi(t) of a clone 
ci corresponds to vi(t) =

ni(t)
2N(t), where vi(t) is the VAF of the variant at time t; 

ni(t) is the number of SCs carrying the variant; and N(t) corresponds to the 
total number of diploid HSPCs present in the individual. Finally, we assume 
that N(t) = Nw +

∑
i∈I ni(t), where Nw is the average number of wild-type 

HSPCs in the individual. The bias toward self-renewal of symmetric divisions is 
parameterized by parameter s and determines the fitness advantage of a clone. 
In normal hematopoiesis, s = 0, in which case clones undergo neutral drift. For 
clones with non-neutral (fitness-increasing) mutations, s > 0, and this average 
clone size grows exponentially in time as es(t−t0) from an initial population of 
one SC at the time of mutation acquisition t0. The full distribution of clone sizes 
is well-approximated by a negative binomial distribution matching the mean 
(exponential growth) and variance of the full stochastic solution (Supplementary 
Information Methods, section 1, and Extended Data Fig. 4a). Because the 
model dynamics are Markovian (without memory), once we condition on 
a previously observed timepoint in a trajectory, the prediction for all future 
times is independent of t0. From the predicted clone size distributions, we can 
infer the marginal posterior distribution of parameter s using Bayes’ theorem 
(Supplementary Information Methods, section 3)39. We further take into account 
the sampling error during sequencing to estimate the distribution of clone sizes at 
the start and end of each time interval in the longitudinal sequencing data. Here, 
we approximate this sampling error as binomial.

When multiple fit clones are present in an individual, we constrain the inference 
to share the SC pool size N(t) for all variant trajectories in this individual. This 
increases the data:parameter ratio and produces richer dynamics, where the evolution 
of exponentially growing clones can be suppressed by the growth of a fitter clone. This 
implies that even non-competitive models, where trajectories grow independently of 
each other, will result in competitive dynamics in the observed VAF trajectories as 
variants strive for dominance of the total production of blood cells.

We take into account possible clonal substructures for all fit variants in an 
individual, selecting models with co-occurring mutations on the same clone if they 
are more likely after biasing against models with multiple mutations per clone, 
as these are presumed to be rarer (Supplementary Information Methods, section 
2.4.7). The evidence supporting the optimal clonal structure, determined by 
Bayesian model comparison, relative to the model assuming no mutations co-occur 
on the same clone is shown in Extended Data Fig. 4d. We then infer the posterior 
fitness distributions per clone for the most likely clonal model in every participant.

Once we have inferred the posterior distributions of the parameters, we use 
the mode of the distribution (maximum a posteriori (MAP) estimate) for each 
mutation to visualize the deterministic—that is, average—growth curves. These 
result in the logistic time evolution of its corresponding VAF,

v(t) =
1

2 + 2Nwe−s(t−t0)
,

where we determine the time of mutation acquisition t0, which is used only for 
plotting, using maximum likelihood (Supplementary Information Methods, 
Appendix B). Although deterministic fits are not a direct reflection of the inference 
results of our stochastic model, these can be used to visually assess the ‘goodness 
of fit’ of the fitness MAP estimates and have been included for each participant in 
LBC1921 and LBC1936, respectively, in Extended Data Figs. 5 and 6.

Note that this model cannot account for loss-of-heterozygosity events.

LiFT. To select fit variants, we compare the likelihood of the clonal model, 
including binomial sampling error, to a model of sequencing artifacts. The artifact 
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model assumes that all variability arises from sampling error with a proportion 
that remains constant over time. For variants that occur more than once in our 
dataset, we use a beta-binomial model to account for overdispersion, and, for 
unique variants, we use a binomial model. We select variants as fit only if the 
model evidence for the clonal model is at least four times that of the artifact model 
(Supplementary Information Methods, section 2.4, and Extended Data Fig. 2c,d). 
Fit variants thus selected are taken through to clonal structure model selection and 
fitness inference as described above.

Workflow overview. A workflow chart describing the full pipeline and 
implementation guidance is included in the GitHub repository (see ‘Code 
availability’). Our pipeline can be applied to other datasets with a few adjustments. 
Our LiFT algorithm has been tailored to the LBC dataset by extracting parameters 
from the distribution of synonymous mutation reads, which inform the priors used 
for our Bayesian inference method (Supplementary Information Methods, section 
2.3.3, and Extended Data Fig. 2a–c). Guidance on how to adapt our LiFT algorithm 
to other datasets is included in the code repository. All other parts of the pipeline, 
including the extraction of variants using ArcherDx software and the inference of 
clonal structures and fitness, are directly applicable to other datasets.

Framework implementation. Both LiFT and Bayesian inference of the posterior 
distribution of model parameters were implemented in Python version 3.7 (ref. 40) 
with dependencies on Numpy version 1.21.5 (ref. 41), Scipy version 1.7.3 (ref. 42) 
and Pandas version 1.3.4. Survival analysis was implemented using Python version 
3.7 (ref. 40) with dependencies on lifelines version 0.26.4 (ref. 43). Data curation was 
undertaken in Python version 3.7 (ref. 40) and R base44, with use of the ‘tidyverse’45 
suite of packages and plotted with ggplot2 (ref. 46).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We have deposited all data pertinent to this analysis, including the de-identified 
raw FASTQ read data and processed variant calls for our longitudinal cohort, onto 
the National Center of Biotechnology Information Gene Expression Omnibus 
under accession ID GSE178936. LBC phenotypic data are available in the database 
of Genotypes and Phenotypes (dbGAP) under accession number phs000821.v1.p1. 
All other Lothian Birth Cohort data are deposited in dbGAP or are provided via 
the LBC Data Access Collaboration (https://www.ed.ac.uk/lothian-birth-cohorts/
data-access-collaboration). Information concerning the cohort is contained 
here, including its history, data summary tables for both LBC1921 and LBC1936 
and data access request forms and contact information to obtain all data points 
(contact: https://www.ed.ac.uk/profile/simon-cox, ; timeframe: 
1 month to respond).

Code availability
All code used in this manuscript is available at https://github.com/neilrobertson/
LBC_ARCHER.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Quality Control Metrics. a. Sequence quality metrics for mutation calls across participants and time-points filtered for 2% VAF. 
Plotted are the AO (the number of sequenced reads supporting the alternative allele (mutation)) against the UAO (the number of sequenced reads with 
unique start sites that support the alternative allele - a measure of molecular complexity). Red dotted lines denote filter thresholds in both measurements 
(AO ≥ 5, UAO ≥ 3) and points are scaled by the VAF of the somatic mutation. Only 7 (of 275) data points failed to meet our filter criteria which were 
not excluded as they were supported with matching events across any participants’ time series. b. Box and jitter plot of the variant allele frequency of all 
observed events in the 1st Wave at 2% VAF coloured by variant classification and ordered by largest mean VAF showing the median and interquartile 
range. c. The 95% MDAF (Minimal Detectable Allele Fraction with 95% Confidence) versus the VAF for each event. All variants used in our analysis above 
2% VAF are scaled by their clone size and coloured by their functional consequence. Points in red are events that failed to pass our quality criteria and are 
removed from subsequent work. d. The VAF Outlier P-Value (describing the pan-cohort position-specific background noise) versus VAF for each event. All 
variants used in the analysis above 2% VAF are scaled by their clone size and coloured by their functional consequence. Points in red are events that failed 
to pass our quality criteria and are removed from subsequent work. All accepted events that exceed VAF Outlier P-Value > 0.1 are generally low VAF and 
are supported by matching events across the time-series that adhere to our acceptance criteria of VAF Outlier P-Value ≤ 0.1. e. Schematic of all affected 
genes in the cohort with the largest clone size of an event in any given gene shown above 2% VAF. All affected participants have been clustered across all 
time-points, with the point size scaled by VAF and coloured by the functional consequence of the variant (as per legend).
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Extended Data Fig. 2 | See next page for caption.

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles Nature MediciNe

Extended Data Fig. 2 | LiFT Method Details. a. Prior distributions for the beta-binomial model for sequencing artefacts. Priors are constructed separately 
for mutations with a single occurrence and mutations with multiple observations in the LBCs (see SI methods Section 2.3). b. Prior distribution of the 
proportion for the binomial model for sequencing artefacts. This prior is constructed only for mutations with a single occurrence in the LBC. c. Effect of the 
Bayes Factor (BF) threshold on the number of non-synonymous variants selected as fit using LiFT. In red, we show the results assuming that sequencing 
artefacts always follow a beta-binomial model, regardless of the mutation occurrence in the LBC. In green, we show the results where the sequencing 
artefact model assumes a binomial model for single occurring mutations and a beta-binomial model for mutations with multiple occurrences in the 
LBCs. d. Effect of the BF on the number of synonymous variants selected as fit using LiFT. Colour coding as in Fig. S2C. e. Longitudinal trajectories of non-
synonymous variants coloured by their LiFT status; fit (blue) and filtered (orange). f. Comparison between LiFT status and the VAF Outlier P-value. Each 
data point corresponds to a trajectory in the LBC and has been coloured according to its LiFT status; fit (blue) and filtered (orange). The coordinates of 
each data point are given by the average VAF Outlier p-Value and their average VAF. g. Comparison between LiFT status and the Minimal Detectable Allele 
Fraction (MDAF). Each data point corresponds to a trajectory in the LBC and has been coloured according to its LiFT status; fit (blue) and filtered (orange). 
The coordinates of each data point are given by the average MDAF and their average VAF. Note that the MDAF is shown on a logarithmic scale.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Clinical Relevance of LiFT - Supporting Material. a. Distribution of fitness by gene category. Genes are grouped according to their 
biological function into DNA methylation (TET2, DNMT3A), Splicing (SF3B1, U2AF1, SRSF2, U2AF2, ZRSR2, LUC7L2, DDX41), mitogenic function (KRAS, NF1, 
JAK2, JAK3, SH2B3, PTEN, PTPN11, NRAS), cohesin (RAD21, STAG2), DNA damage (TP53, CDKN2A, PPM1D, ATRX) and Transcription factors (TF) important 
during development (GATA2, RUNX1, NOTCH1, CUX1, ETV6). The sample size, n, of each gene category is denoted in brackets. For each gene category 
we display a boxplot showing the maximum a posteriori (MAP) estimates of fitness for variants in the category, as well as the median and exclusive 
interquartile range. b. Analysis of variance of the maximum posterior fitness estimates across gene categories. Heatmap of all statistically significant 
(p < 0.05) Kruskal-Wallis H statistics, labelled by effect size, computed for all combinations of pairs of genes. The effect size is only shown for statistically 
significant relations. Variants with a fitness below 2% were left out of this study as our prediction classifies them as conferring no or a negligible fitness 
advantage. c. Influence of the number of time-points in a trajectory on the inferred fitness distributions. We show the maximum posterior estimates for 
genes DNMT3A and TET2 and for all LiFT variants split according to the number of time-points. d. Survival analysis (Cox proportional hazards regression 
model) broken down by cohort and covariates. LBC1921 and LBC1936 are analysed separately given their difference in age during the observed time-
span. (left) Error bar showing the inferred hazard ratio coefficient and 95% CI for each regression study, as well as the sample size, n, and the number of 
observed events in each analysis. Note that none of the survival analyses shown are statistically significant. The complete summary for each analysis is 
found in Supplementary Table 7. (right) Kaplan-Meyer survival plots for the LBC cohort stratified using 2 standard deviations of the analysed covariate.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Clonal Dynamics and Inference - Supporting Material. . a. Approximation of a neutral birth-death model using the negative 
binomial distribution. The exact model assumes symmetric divisions occur every 40 weeks, or 1.3 divisions per year, and has no bias towards self-
renewal (see SI methods Section 1). b. Deterministic trajectory (see SI methods Appendix B) with maximum a posteriori (MAP) fitness and fitted time 
of mutation (left) and joint posterior distribution of fitness and number of wild-type HSPCs population (right) inferred from an individual with a single 
mutation selected by LiFT. 90% confidence intervals associated with binomial sampling noise are shown for each data point. Note that VAF is displayed 
on a logarithmic scale to highlight relative differences and the initial exponential growth of clones. Also note that a small random horizontal jitter has 
been added to data points to avoid overlapping of confidence intervals. c. Deterministic trajectory (see SI methods Appendix B) with maximum posterior 
fitness and fitted time of mutation (left) and joint posterior distribution of fitnesses and number of wild-type HSPCs inferred from an individual with 
three mutations, selected by LiFT, occurring in two clones. 90% confidence intervals associated with binomial sampling noise are shown for each data 
point. Note that VAF is displayed on a logarithmic scale to highlight relative differences and the initial exponential growth of clones. Also note that a small 
random horizontal jitter has been added to data points to avoid overlapping of confidence intervals. d. Evidence supporting the clonal structure selected by 
our Bayesian model comparison relative to the model assuming no mutations co-occur on the same clone. The evidence is only shown for non-trivial cases 
where more than one mutation was selected by LiFT in an individual.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Deterministic Visualisation of Mutational Trajectories in the LBC21. a. Deterministic trajectories (see SI methods Appendix B) 
with maximum a posteriori (MAP) fitness and wild-type stem cells and fitted time of mutation (left) and posterior distribution of fitness associated to 
each clonal structure (right) inferred for all mutations selected by LiFT in each participant of the LBC1921 cohort. 90% confidence intervals associated 
with binomial sampling noise are shown for each data point. Note that VAF is displayed on a logarithmic scale to highlight relative differences and the 
initial exponential growth of clones. To use a logarithmic axis, data points with zero observations have been replaced by VAF = 0.001, or a factor of 
10 below our observation threshold. Also note that a small random horizontal jitter has been added to data points to avoid overlapping of confidence 
intervals.
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Extended Data Fig. 6 | Deterministic Visualisation of Mutational Trajectories in the LBC36. a. Deterministic trajectories (see SI methods Appendix B) 
with maximum a posteriori (MAP) fitness and wild-type stem cells and fitted time of mutation (left) and posterior distribution of fitness associated to 
each clonal structure (right) inferred for all mutations selected by LiFT in each participant of the LBC1936 cohort. 90% confidence intervals associated 
with binomial sampling noise are shown for each data point. Note that VAF is displayed on a logarithmic scale to highlight relative differences and the 
initial exponential growth of clones. To use a logarithmic axis, data points with zero observations have been replaced by VAF = 0.001, or a factor of 
10 below our observation threshold. Also note that a small random horizontal jitter has been added to data points to avoid overlapping of confidence 
intervals.
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A B S T R A C T   

Clonal haematopoiesis of indeterminate potential (CHIP) is widespread in the elderly. CHIP is driven by somatic 
mutations in leukaemia driver genes, such as Janus Kinase 2 (JAK2), Tet methylcytosine dioxygenase 2 (TET2), 
ASXL Transcriptional Regulator 1 (ASXL1) and DNA (cytosine-5)-methyltransferase 3A (DNMT3A), leading to 
reduced diversity of the blood pool. CHIP carries an increased risk for leukaemia and cardiovascular disease. 
Apart from mutations driving CHIP, environmental factors such as chemokines and cytokines have been im-
plicated in age-dependent multimorbidities associated with CHIP. However, the mechanism of CHIP onset and 
the relationship with environmental and cell-intrinsic factors remain poorly understood. Here we contrast cell- 
intrinsic and environmental factors involved in CHIP development and disease propagation.   

1. Introduction 

Age is the single most significant factor underlying the onset of 
many haematological malignancies (de Magalhães, 2013), with changes 
in the clonal composition towards a myeloid bias commonly occurring 
with advanced age (Cho et al., 2008). The onset of clonal haemato-
poiesis of indeterminate potential (CHIP) in the haematopoietic stem 
and progenitor cell (HSPC) compartment is also associated with hae-
matological malignancies (Genovese et al., 2014). CHIP is apparent in 
the general population from age 60 with a steady increase in prevalence 
to 18–20% of individuals aged over 90 years at 2% variant allele fre-
quency (VAF) (McKerrell et al., 2015). CHIP is driven by somatic mu-
tations in leukaemic driver genes, thereby reducing the diversity of the 
stem cell pool. Epigenetic modifiers such as TET2, ASXL1 and DNMT3A 
are the most frequently mutated genes in CHIP. TET2 and DNMT3A are 
epigenetic regulators involved in DNA methylation impacting self-re-
newal and differentiation capacities of haematopoietic stem cells 
(HSCs) while ASXL1 - a member of the polycomb repressive complex - is 
involved in chromatin remodelling and affects hematopoietic re-
populating capacity and expansion of the haematopoietic stem cell 
compartment (Bowman et al., 2018; Challen et al., 2011; Fuster et al., 
2017; Jeong et al., 2018; Ko et al., 2011; Li et al., 2011; Lu et al., 2016;  
Mayle et al., 2015; Moran-Crusio et al., 2011; Pan et al., 2017;  
Quivoron et al., 2011; Wang et al., 2014). Interestingly, one hallmark of 
ageing is the global loss of methylation and profound changes to het-
erochromatin (Chandra and Kirschner, 2016; Cypris et al., 2019). 

JAK2V617F is a common synonymous variant that is frequently 

mutated in CHIP and age-related myeloid malignancies (Chen et al., 
2012), where the JAK2 tyrosine phosphatase is constitutively activated 
driving a plethora of downstream pathways such as the phosphoinosi-
tide-3-kinase/Protein kinase B pathway (PI3K/AKT), Signal Transdu-
cers and Activators of Transcription (STAT) and RAS/RAF/MEK/ERK 
Mitogen-activated protein kinase pathways. Together these pathways 
confer a proliferative advantage, resistance to DNA damage mediated 
apoptosis and can activate an inflammatory response (Chen et al., 
2012). 

DNA damage response and stress-related genes Tumour Suppressor 
53 (TP53) and Protein Phosphatase, Mg2+/Mn2+ Dependent 1D 
(PPM1D) are another class of mutations identified in CHIP (Genovese 
et al., 2014; McKerrell et al., 2015). TP53 and PPM1D mutations are 
predominantly mutated in leukocytes of patients who have undergone 
cancer treatment for solid tumours and display clonal haematopoiesis 
(Coombs et al., 2017), associating genotoxic stress with clonal selec-
tion. In this study, clonal haematopoiesis was associated with secondary 
leukaemia development following solid cancer therapy. In other studies 
elucidating the mechanism of mutant PPM1D in clonal haematopoiesis 
and subsequent therapy-related myeloid malignancies (Hsu et al., 2018;  
Kahn et al., 2018), mutant PPM1D seemed to confer resistance to 
apoptosis in the context of genotoxic stress. Therapy-induced senes-
cence is a prominent feature in cancer therapy and an alternative me-
chanism of cancer therapy resistance, with TP53 being one of the most 
prominent senescence inducers, engaging a specific, downstream se-
nescence programme that differs profoundly from apoptosis (Kahlem 
et al., 2004; Kirschner et al., 2015). Whether TP53 mutations shift the 
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pathway away from apoptosis towards senescence in the context of 
CHIP remains to be elucidated. 

Lastly, splicing factors emerge late in the pathogenesis of CHIP with 
the most prominent being Splicing Factor 3b Subunit (SF3B1), SRSF2 
(Serine and Arginine Rich Splicing Factor 2) and U2 Small Nuclear RNA 
Auxiliary Factor 1 (U2AF1) (Inoue et al., 2016). These mutations alter 
RNA splicing in a sequence-specific manner and might affect down-
stream pathways leading to CHIP over a longer period of time. 

CHIP is associated with an increased risk for haematological cancers 
and all-cause mortality, specifically coronary heart disease and 
ischaemic stroke, for which age is a major risk factor (Genovese et al., 
2014; Jaiswal et al., 2017, 2014; McKerrell et al., 2015; Zink et al., 
2017). In addition, CHIP in patients with heart failure results in in-
creased mortality and hypertension (Dorsheimer et al., 2019). In this 
review, we will discuss factors that can lead to the onset of CHIP and its 
age-associated diseases contrasting fitness acquired by mutations (cell- 
intrinsic) against cell-extrinsic changes in the ageing environment. 

2. Cell-intrinsic contributions to CHIP 

Several landmark studies reported the occurrence of CHIP in 
healthy aged individuals using various deep sequencing approaches of 
peripheral blood mononuclear cells (PBMCs). The major driver muta-
tions, such as JAK2, TET2 and DNMT3A, in all cohorts examined 
overlap, with varying allele frequencies of the distinct driver mutations. 
A few genes were only reported in some cohorts, such as the DNA da-
mage response pathway gene PPM1D (Genovese et al., 2014; Jaiswal 
et al., 2017, 2014; McKerrell et al., 2015). The occurrence of CHIP 
mutations with age pointed to a time-dependent acquisition pattern, 
leading to a competitive advantage and driving CHIP with advanced 
age (Fig. 1). This is especially true when considering splicing factors. 

Mouse studies of commonly mutated CHIP genes support the notion 
that clonal outgrowth is driven by cell-intrinsic properties in the HSPC 
compartment. Among the most frequently mutated genes is Dnmt3a. 
Challen and colleagues demonstrated that conditional loss of Dnmt3a in 
HSCs impairs their differential potential by altering DNA methylation 
(Challen et al., 2011). In knockout mice, loss of Dnmt3a immortalises 
HSCs (Jeong et al., 2018), leading to skewed division potential with 
HSCs being primed towards self-renewal for up to twelve rounds of 
transplantation with gradual and focal loss of DNA methylation at key 
HSC self-renewal sites. In this study, however, transformation required 
additional mutations (Jeong et al., 2018). In a study by Mayle et al., 
transplantation of murine Dnmt3a-knockout HSCs into irradiated wild- 
type mice resulted in the development of a range of haematological 
malignancies, leading to increased mortality. These results suggest a 
cell-intrinsic role of Dnmt3a loss in HSCs in acquiring a preleukemic 
state (Mayle et al., 2015). This is in accordance with another mouse 
study, where HSPCs with a DNMT3aR882H mutation, the most com-
monly found CHIP mutation, promotes leukaemia only in the presence 
of other oncogenes such as N-RasG12D (Lu et al., 2016). 
DNMT3aR882H alone led to hypomethylation at cis-elements of es-
sential stemness genes such as the Meis Homeobox 1 (Meis1), MN1 
proto-oncogene (Mn1), and Hoxa gene clusters, and led to increased 
expression of a panel of stemness genes (Lu et al., 2016). 

TET2 is also commonly mutated in individuals with CHIP. Several 
studies using Tet2 knockout and mutant mouse models have explored 
cell-intrinsic mechanisms of HSCs leading to malignant transformation 
(Ko et al., 2011; Moran-Crusio et al., 2011; Quivoron et al., 2011). All 
these studies showed an expansion of the HSC compartment, as well as 
enhanced self-renewal potential associated with TET2 loss-of-function. 
Interestingly, Li and colleagues demonstrated an increase of the murine 
HSC pool in Tet2 knockout mice, with only a subset of mice developing 
myeloid malignancies (Li et al., 2011). A later study showed sponta-
neous development of different haematological malignancies in Tet2 
knockout mice, resulting from increased mutagenicity (Pan et al., 
2017). Single-cell -targeted sequencing revealed a higher mutation rate 

in Tet2-/- HSPCs particularly at sites which gained 5-hydro-
xymethylcytosine, suggesting TET2 mediated cell-intrinsic changes in 
HSPCs leading to malignant transformation (Pan et al., 2017). 

It is well documented that CHIP mutations can result in inflamma-
tion, leading to, for example, enhanced atherosclerosis. In this context, 
Jaiswal and colleagues (Jaiswal et al., 2014) showed that, when 
atherosclerosis prone mice were transplanted with Tet2 knockout bone 
marrow cells, the development of atherosclerosis was markedly ac-
celerated on the background of a high cholesterol, high-fat diet. In 
addition, higher levels of pro-inflammatory chemokines could be de-
tected in the serum of these mice. On the molecular level, Tet2 knockout 
macrophages, when cultured with low-density lipoprotein, displayed a 
highly inflammatory transcriptional signature compared to wild type 
(WT) macrophages, suggesting the involvement of inflammatory sig-
nalling in the progression of atherosclerosis on a Tet2 mutant back-
ground. In addition, Fuster and colleagues studied the effects of Tet2 
mutant HSPCs and their progeny in atherosclerosis prone mice deficient 
in low-density lipoprotein receptor (Ldlr–/–) by competitive 

Fig. 1. Is CHIP dependent on the environment or driven by cell intrinsic 
factors? 
Upper panel: CHIP is driven cell-intrinsically. Here, the time to acquisition of 
the CHIP mutation (Mut.) and the change in fitness conferred by the mutation 
are the determining factors of clonal outgrowth. Average time to mutation 
depends on a variety of factors, including sequence context of the mutation, 
mutation rate and genotoxic events, such as chemotherapy. 
Lower Panel: CHIP is driven through cell-intrinsic and environmental 
factors. Here, the time to acquisition of the CHIP mutation (Mut.) and the 
change in fitness conferred by the mutation are again determining factors. 
However, clonal outgrowth is enhanced or enabled by environmental changes 
(Env. yellow background). Supposed environmental factors are discussed in the 
main text and include inflammation and other age-related changes. 
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transplantation (Fuster et al., 2017). The authors demonstrated that 
TET2 loss of function in macrophages exacerbated NLR Family Pyrin 
Domain Containing 3 (Nlrp3) mediated Interleukin 1 beta (IL-1b) pro-
duction which in turn accelerated atherosclerosis in a context of CHIP, 
thereby demonstrating that CHIP leads to increased inflammation. In-
flammation resulting from mutations in CHIP associated genes is fur-
ther evidenced by a mouse study, examining the co-operating onco-
genic effects of Jak2V617F and Dnmt3a in HSPCs (Jacquelin et al., 
2018). Dnmt3a loss on top of the Jak2V617F mutation led to the acti-
vation of inflammatory signalling, inducing myelofibrosis. A recent 
study showed that the Jak2V617F mutation in HSPCs gave rise to cir-
culating myeloid cells with enhanced pro-inflammatory properties on 
its own in mouse models of cardiac injury (Sano et al., 2019). These 
studies demonstrate a role for cell-intrinsic activation of inflammatory 
pathways as a consequence of CHIP. 

Modelling approaches contribute further to evidence for mutations 
alone being able to explain CHIP. Watson and colleagues (Watson et al., 
2020) used PBMC sequencing data from various CHIP studies, analysing 
50,000 individuals at varying VAFs. They showed that modelling clone 
size distributions based on a change of fitness conferred by driver 
mutations and the probability (time) to acquire these mutations was 
enough to predict the observed distributions from the collected data 
sets. 

3. Contributing environmental factors towards CHIP 

Systemic inflammation from the environment can promote CHIP 
through, for example, short term inflammatory stress caused by lipo-
polysaccharides in HSPCs (Cai et al., 2018) (Fig. 1). Murine Tet2 
knockout HSPCs display a survival advantage compared to WT HPSCs 
during acute inflammation. Following inflammation, Tet2 knockout 
HSPCs activated the interleukin 6 (Il6) mediated Stat3/Morbid axis, 
leading to the upregulation of B-cell lymphoma 2 (Bcl2) pro-survival 
factor and reduced apoptosis in these cells. Therefore, cell-extrinsic 
factors such as an inflammatory milieu can enhance the competitive 
fitness of CHIP mutant HSPCs over time. 

DNA damage accumulates in aged HSCs and leads to decreased stem 
cell function. One study linked increased DNA damage directly to exit 
from the homeostatic quiescent state of HSCs as a response to physio-
logical stresses, explaining the accumulation of DNA damage in aged 
HSC (Walter et al., 2015). The authors used polyinosinic:polycytidylic 
acid to mimic viral infections, effectively mounting a type I interferon 
response (Walter et al., 2015). In addition, a recent study implicated 
Rad21/Cohesin mediated NFkB signalling in aged HSCs with loss of 
self-renewal in favour of myeloid biased differentiation in response to 
inflammatory stimuli (Chen et al., 2019). Inflammation-induced exit 
from quiescence and ageing-associated inflammation in blood serum 
and tissue could, therefore, influence the selection of mutant HSPCs 
carrying CHIP mutations. 

A small study in 187 ulcerative colitis (UC) patients, an autoimmune 
disease characterised by increased levels of proinflammatory cytokines 
with an average onset age before 30 years, analysed targeted PBMC 
sequencing for CHIP mutations (Zhang et al., 2019). Albeit patient 
numbers being small and the lack of a validation cohort, the study re-
vealed DNMT3A and PPM1D as the most prevalent mutations with a 
lower incidence of TET2 mutations. In this cohort, overall CHIP was 
slightly higher in UC patients, with DNMT3A mutant patients revealing 
significantly higher levels of serum interferon-gamma (IFNg), but not 
tumour necrosis factor-alpha. Interestingly, DNMT3A VAF was a sig-
nificant contributor to increased IFNg levels, suggesting that increased 
IFNg might select for DNMT3A mutations in UC. Given that the onset of 
UC mostly occurs before the age of 30 years - compared to the onset of 
CHIP occurring at least two decades later, this study might provide 
evidence of a pro-inflammatory milieu playing a role in CHIP onset (Ha 
et al., 2010). However, in a minority of UC patients, disease occurs at 
the age of 50 years or older. In this context, inflammation might occur 

first, resulting from, for example, DNMT3A mutant T-cell clones 
(Thomas et al., 2010) or other CHIP related inflammatory processes as 
discussed above. 

4. Associations with CHIP 

Most CHIP studies describe associations with age-related multi-
morbidities or ageing factors, leaving uncertainty over cell-intrinsic 
versus environmental factors and their contributions to CHIP. 

A key determinant of CHIP is the presence of recurrent driver mu-
tations that are functionally well described; however, many samples 
frequently present with not known causal variants - a phenomenon 
known as clonal haematopoiesis with unknown drivers (CH-UD) 
(Genovese et al., 2014). Genovese and colleagues performed whole- 
exome sequencing of PBMCs on 11,845 participants, where the majority 
had not known putative driver mutations, with 1333 participants dis-
playing 1 mutation, 313 participants harbouring 2 mutations, and 272 
with 3 to 18 somatic mutations in total (Genovese et al., 2014). The 
authors then defined CH-UD based on the mutational burden in pas-
senger genes alone, rather than on the identity of the mutations. In 
some participants without known driver mutations, further analysis and 
deeper sequencing eventually revealed a candidate variant (Genovese 
et al., 2014), suggesting that detection sensitivity might have been 
limiting in the first instance. The absence of canonical CHIP variants 
might also be explained by copy-number alterations of affected genes; 
however, it is unlikely that these factors explain all cases. Indeed, some 
have hypothesised CH-UD may be linked to reduced HSC fitness with 
age which results in increased oligoclonality through a depletion of the 
HSC pool (Gibson and Steensma, 2018). 

Robertson and colleagues (Robertson et al., 2019) recently showed 
an increase in epigenetic age, a correlate of biological age, in CHIP 
carriers when compared to individuals without detectable CHIP. In this 
study, CHIP mutations were annotated in the Lothian Birth Cohorts 
(LBCs) of 1921 (n = 550) and 1936 (n = 1091), two independent, 
longitudinal studies in the elderly using whole-genome sequencing. 
Epigenetic clock analysis was then performed on 450 K methylation 
arrays. Increased epigenetic age was noted when considering all CHIP 
mutations together, and TET2 and DNMT3A mutations individually. 
These effects were larger than the known sex differences in age accel-
eration (male >  female) in either cohort. Moreover, VAF was positively 
correlated with accelerated epigenetic age, suggesting a link to clone 
size, which could be driven by intrinsic or environmental factors. 

Zink and colleagues performed deep whole-genome sequencing 
(WGS) in 11,262 Icelanders and identified 1403 cases of CHIP at 2% 
VAF, irrespective of driver mutation status (Zink et al., 2017). Overall 
CHIP in this cohort was much more common compared to other studies, 
with 50% of participants over the age of 85 being carriers, showing 
similar somatic mutation patterns as previously reported (TET2, 
DNMT3A, ASXL1, PPM1D). In this cohort, CHIP mutations were asso-
ciated with reduced telomere length (Zink et al., 2017). This finding 
complements the notion that epigenetic age is altered in CHIP, sug-
gesting that proliferation might be a feature contributing to cell-in-
trinsic ageing factors and systemic ageing. Interestingly, known driver 
mutations were only apparent in a fraction of CHIP carriers. Using 
modelling approaches, the authors suggested that some clones have 
arisen in the absence of mutations as a result of neutral drift, which 
would only act on a small number of active HSCs. However, the ma-
jority of CHIP cases in the absence of mutations remained unexplained, 
suggesting environmental influences. 

Further evidence for clonal outgrowth due to increased age comes 
from a study where WGS of PBMCs from a 115-year-old woman was 
performed (Holstege et al., 2014). The authors detected 450 somatic 
mutations, which were reported as passenger mutations, leading to 
oligoclonal haematopoiesis (Holstege et al., 2014). The authors sug-
gested that the finite lifespan of HSCs leads to CHIP rather than the 
acquisition of driver mutations. Whether HSC lifespan is mainly 
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regulated by environmental (e.g. cytokines promoting proliferation) or 
cell-intrinsic factors (e.g. telomere length) remains to be seen. During 
ageing, senescence due to telomere shortening or other cues has been 
described as a main driver of a proinflammatory environment (Acosta 
et al., 2008; Coppé et al., 2008; Kuilman et al., 2008). Telomere 
shortening in bone marrow stromal cells was correlated with a dys-
functional haematopoietic environment and increased cytokines in 
ageing context (Ju et al., 2007). Whether senescence and SASP play a 
significant role during ageing of the blood compartment remains to be 
conclusively elucidated. 

5. Concluding remarks 

It is becoming increasingly clear that certain mutations lead to 
CHIP. For TET2 and SRSFP95H mutations, myeloid bias was associated 
with CHIP or the initiation of myelodysplastic/myeloproliferative syn-
drome, whereas for DNMT3A multipotent stem cell origin was de-
scribed in the context of CHIP (Buscarlet et al., 2018; Smeets et al., 
2018). However, competition or cooperation between clones of distinct 
sizes, lineage origin and different types of mutations is currently un-
known. For example, could an early clone create an environment fa-
vouring outgrowth of certain other clones over time, by, for example, 
promoting inflammation? 

Although evidence is increasing for mutations driving CHIP, several 
studies also suggest clonal outgrowth can appear in the absence of 
driver mutations. One such scenario could be due to a selection based 
on transcriptional phenotypes in the absence of CHIP, as suggested for 
ageing mouse HSCs. In one study, only a minority subpopulation of 
HSCs developed transcriptional signatures commonly associated with 
HSC ageing such as Tp53 (Kirschner et al., 2017). The majority of HSCs 
showed a transcriptome similar to that of young HSCs, suggesting 
heterogeneous ageing phenotypes on the transcriptional level 
(Kirschner et al., 2017). Whether proliferation of HSC subpopulations 
was driven cell-intrinsically, or whether HSC subpopulations were 
simply being kept in a low proliferative state over time, gaining an 
advantage over exhausted, pro-proliferative HSC populations with in-
creased age, remains to be elucidated. 
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Age-related clonal haemopoiesis 
(ARCH) in healthy individuals was initially 
observed through an increased skewing 
in X-chromosome inactivation [1]. More 
recently, several groups reported that 
ARCH is driven by somatic mutations [2], 
with the most prevalent ARCH mutations 
being in the DNMT3A and TET2 genes, 
previously described as drivers of myeloid 
malignancies. ARCH is associated with an 
increased risk for haematological cancers 
[2]. ARCH also confers an increased risk 
for non-haematological diseases, such as 
cardiovascular disease, atherosclerosis, 
and chronic ischemic heart failure, for 
which age is a main risk factor [3,4]. 
Whether ARCH is linked to accelerated 
ageing has remained unexplored. The 
most accurate and commonly used 
tools to measure age acceleration are 
epigenetic clocks: they are based on 
age-related methylation differences at 
specifi c CpG sites [5]. Deviations from 
chronological age towards an increased 
epigenetic age have been associated with 
increased risk of earlier mortality and age-
related morbidities [5,6]. Here we present 
evidence of accelerated epigenetic age in 
individuals with ARCH.

The Lothian Birth Cohorts (LBCs) 
of 1921 and 1936 are two longitudinal 
studies of ageing [7]. Participants have 
been followed up every ~3 years, each for 
fi ve waves, from the age of 70 (LBC1936) 
and 79 (LBC1921). Participants were 
community dwelling, relatively healthy, 
and mostly lived in the City of Edinburgh 
or its surrounding area when recruited.

Whole-blood DNA methylation levels 
were assessed using the Illumina 
HumanMethylation450 BeadChip 

(Supplemental Experimental Procedures). 
Genomic variants were determined 
in 1,136 LBC participants (n = 870 
from wave 1 at mean age 70 years in 
LBC1936; n = 101 and n = 165 at mean 
ages 79 and 87, respectively, in LBC1921) 
with whole-genome sequencing (WGS) 
and methylation data. WGS data were 
aligned with Burrows-Wheeler Aligner and 
processed for duplicate mapping reads 
with samblaster (genome coverage of 
34.3 reads). Single-nucleotide variants 
and short indels were called with 
MuTect (v3.8) before annotation using 
the Ensembl Variant Effect Predictor 
alongside the Cosmic database of coding 
mutations (v86). ARCH variants were 
classifi ed as per Jaiswal et al. [2].

Epigenetic age acceleration was 
calculated online (https://dnamage.
genetics.ucla.edu/home). We considered 
the Intrinsic Epigenetic Age Acceleration 
(IEAA, hereafter referred to as Horvath 
age acceleration) measure, which is an 
adapted version of the original Horvath 
clock that controls for white blood cell 
proportions [6]. Epigenetic age estimates 
were regressed on chronological age 
to yield age acceleration residuals. 
Linear regression adjusting for sex, 
imputed white blood cell proportions 
(monocytes, natural killer (NK), CD4+ T, 
CD8+ T, and B cells), and methylation 
processing batch was used to determine 
the association between ARCH status 
and Age Acceleration. All analyses were 
conducted in R v3.5.0.

Of the ten most prevalent ARCH 
mutations [2], we had suffi cient sample 
size and sequencing depth to annotate 
the top six in the LBCs. We identifi ed 73 
participants (from 1,136) with ARCH (6%; 
Figure 1A). The gene-specifi c prevalence 
ranged between 1 and 36 cases with 
ARCH-variant allele frequencies ranging 
from 0.034 to 0.677 (Figure 1B). Mutations 
in TET2 were exclusively frameshift and 
mutations detected in JAK2 (all V617F), 
SF3B1 and TP53 were exclusively 
missense. ARCH status was associated 
with a signifi cant increase in Horvath 
age acceleration: the increase was 4.5 
(SE 0.9) years in LBC1936, and 3.7 (SE 
1.2) years in LBC1921 (p = 2.3 x 10-6 and 
2.5 x 10-3, respectively; Figure 1C and 
Table S1). Compared with non-ARCH 
carriers, those with TET2 mutations had 
a 6.1 (SE 2.2) year and 6.4 (SE 1.9) year 
increase in Horvath age acceleration 
in LBC1936 and LBC1921 (p = 0.004 
and p = 0.001), respectively. Those with 

Correspondence DNMT3A mutations had 3.8 (SE 1.2) 
years increase in LBC1936, and 3.0 
(SE 1.9) years in LBC1921 (p = 0.002 and 
p = 0.11), respectively (Figure 1D). These 
effect sizes are much larger than the sex 
differences in Horvath age acceleration, 
which were 1.8 (SE 0.4) years for men in 
LBC1936 (p = 5.1 x 10-5), and 1.0 years 
(SE 0.8) in LBC1921 (p = 0.18) (Figure 1D 
and Table S1). 

We also considered age acceleration 
estimates from four additional epigenetic 
clocks: Extrinsic (Hannum) Epigenetic 
Age (EEAA) [6], PhenoAge [8], GrimAge 
[9] and Zhang Age [10] (Figure 1E,F and 
Figure S1A–F). Briefl y, ARCH status was 
linked to increased EEAA, PhenoAge, 
GrimAge and ZhangAge, acceleration 
in LBC1921 (effect sizes: 1.9 years, 3.7 
years, 2.8 years and 0.8 years with p = 
0.16, 0.014, 9.6 x 10-4, and 3.5 x 10-3, 
respectively). In LBC1936 there was a 
modest association between ARCH and 
increased EEAA and ZhangAge (2.3 years 
and 0.5 years, p = 0.012 and 4.4 x 10-3) 
but no association with PhenoAge or 
GrimAge acceleration (p = 0.32 and 0.99, 
respectively). There was no consistent 
association between ARCH status and 
white cell count proportions across the 
two cohorts: a lower proportion of NK 
cells was linked with ARCH carrier status 
in LBC1936 (odds ratio per SD of cell 
counts, 0.57 95% CI [0.37, 0.84]), while a 
higher B cell proportion was associated 
with ARCH status in LBC1921 (OR 1.37 
[1.01, 1.94]).

We observed associations between 
ARCH and epigenetic age acceleration 
in the independent LBCs of 1921 and 
1936, where the WGS data and the 
DNA methylation data were processed 
together using identical protocols. 
Although we examined multiple 
epigenetic clocks in relation to ARCH 
status, it is possible that the effect 
sizes may vary by the quality control 
approach applied to the methylation data. 
Additional replication from other cohorts 
would further strengthen the magnitude 
and generalisability of the associations. 
Our results could indicate ARCH as an 
underlying cause for systemic ageing, 
explaining its link to non-haematological, 
age-related diseases. 
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Figure 1. ARCH variants discovered in Lothian Birth Cohort (LBC) participants and their 
effects on epigenetic age as shown in the Horvath (IEAA) and Hannum (EEAA) clocks.
(A) Oncoplot showing variant types within the ARCH positive subset of the LBC. This subset represents 
73 participants (6% of 1,136 total) where one or more described somatic variants were detected in the 
six most prevalent ARCH-associated genes. (B) Box plot describing the distribution of allele frequencies 
in all detected somatic ARCH variants. Genes with a single variant not shown are TP53 and SF3B1 (allele 
frequencies of 0.089 and 0.257, respectively). The overall distribution of allele frequencies by LBC cohort 
(LBC1921/LBC1936) is also displayed. (C) Scatter plot of Horvath age acceleration (IEAA; years) for 
 individual LBC participants against the allele frequency of their somatic ARCH variant in both LBC1921 
(orange dots, net 3.7 years; p = 2.5 x 10-3) and LBC1936 (green dots, net 4.5 years; p = 2.3 x 10-6) cohorts. 
Density plot highlighting the shift in distribution of Horvath age acceleration between ARCH-positive 
(orange) and -negative participant (turquoise) groups. Non-ARCH carriers (blue dots). (D) Plot showing 
net IEAA in ARCH (with 95% confi dence intervals). The effect of sex (male versus female) on epigenetic 
ageing within the LBC is shown for comparison. (E) Scatter plot showing the Hannum age acceleration 
(EEAA; years) against the allele frequency of ARCH variants in both LBC1921 (orange dots, net 1.9 years; 

p = 0.16) and LBC1936 (green dots, net 2.3 years; 
p = 0.01) cohorts. Density plot highlighting shift 
in distribution of EEAA between ARCH-positive 
(orange) and -negative participant (turquoise) 
groups. Non-ARCH carriers (blue dots). (F) 
Plot showing the net EEAA in ARCH (with 95% 
confi dence intervals). The effect of sex (male 
versus female) on epigenetic ageing within the 
LBC is shown for comparison.
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