
Attribute Repair for Threat Prevention⋆

Thorsten Tarrach1, Masoud Ebrahimi2, Sandra König1, Christoph
Schmittner1, Roderick Bloem2, and Dejan Ničković1

1 AIT Austrian Institute of Technology
2 Graz University of Technology

Abstract. We propose a model-based procedure for preventing security
threats using formal models. We encode system models and threats as
satisfiability modulo theory (SMT) formulas. This model allows us to ask
security questions as satisfiability queries. We formulate threat preven-
tion as an optimization problem over the same formulas. The outcome
of our threat prevention procedure is a suggestion of model attribute
repair that eliminates threats. We implement our approach using the
state-of-the-art Z3 SMT solver and interface it with the threat analysis
tool THREATGET. We demonstrate the value of our procedure in two
case studies from automotive and smart home domains.

1 Introduction

The proliferation of communication-based technologies requires engineers to have
cybersecurity in mind when designing new applications. Historically, security
decisions in the early stages of development have been made informally. The
upcoming requirements regarding security compliance in soon-to-be-mandatory
standards such as the ISO/SAE 21434 call for more principled security assess-
ment of designs and the need for systematic reasoning about system security
properties has resulted in threat modeling and analysis tools. One example of
this new perspective is the Microsoft Threat Modelling Tool (MTMT) [8], devel-
oped as part of the Security Development Lifecycle. MTMT provides capabilities
for visual system structure modelling. Another example is THREATGET [12,3],
a threat analysis and risk management tool, originally developed in academia
and following its success, commercialized and used today by leading word-wide
companies in automotive and Internet-of-Things (IoT) domains. Threat mod-
eling and analysis significantly reduces the difficulty of a security assessment,
reducing it to accurate modeling of the systems and the security requirements.
⋆ This project has received funding from the European Union’s Horizon 2020 re-

search and innovation programme under grant agreements No 956123 (FOCETA),
No 871385 (TEACHING) and from the program “ICT of the Future” of the Austrian
Research Promotion Agency (FFG) and the Austrian Ministry for Transport, Innova-
tion and Technology under grant agreements No. 867558 (project TRUSTED). This
preprint has not undergone peer review (when applicable) or any post-submission
improvements or corrections. The Version of Record of this contribution is published
in LNCS 14181, and is available online at https://doi.org/10.1007/978-3-031-40923-
3_11



Existing methods use ad-hoc methods to reason about the security of systems.
As a result, it is not easy to extend such tools with model repair capabilities.
Although a trial-and-error method is always possible, it does not provide a sys-
tematic exploration of the space of possible prevention measures and leaves the
question of optimizing the cost of the prevention to the designer’s intuition. As
a result, remedying a potential threat remains cumbersome and simple solutions
may be missed, especially in presence of multiple interacting threats.

This paper proposes a procedure for preventing threats based on a formal
model of the structure of the system and a logic-based language for specifying
threats. The use of rigorous, formal languages to model the system and specify
threats allows us to automate threat prevention. More specifically, we reduce the
problem of checking presence of threats in the system model to a satisfiability
modulo theory (SMT) check. A threat specification defines a class of potential
threats and a witness of a system model that satisfies a threat specification
defines a concrete threat in the model. This allows us to frame the problem of
preventing concrete threats as an attribute parameter repair.

The attributes of system components define a large spectrum of security
settings and, in presence of a threat, of possible preventive actions. This class of
repairs enables simple and localized measures whose cost can easily be assessed
by a designer. We formulate attribute repair as a weighted maximum satisfiability
(MaxSAT) problem with a model of cost of individual changes to the system
attributes. This formulation of the problem allows us to find changes in the
model with minimal cost that result in removing as many threats as possible.

We introduce threat logic as a specification language to specify threats. We
formalize the system model as a logic formula that consists of a conjunction of
sub-formulas, called assertions, parameterized by attributes that specify security
choices. The conjunction of the system model formula and a negated threat
formula is satisfiable iff there are no threats in the system. We introduce clauses
that change the specific instantiation of model attributes to a different value
and associate a weight with each such assertion. Then, the MaxSAT solution
of this formula is the set of changes to system model attributes with minimum
cost that ensure the absence of the threat. Given an incorrect system, we can
choose the weights so that we compute the set of changes to system model
attributes with the minimal cost to remove the existing threats from the model.
To ensure that our method scales to industrial size models, we also define a
heuristic that provides partial threat prevention by addressing repairable threats
and explaining the reason why the others cannot be repaired. We believe that
this method, even though partial and approximate in general, can compute near
optimal repairs for many real-world problems.

We implemented the threat prevention method in the THREATGET tool
and evaluated it on two case studies from the automotive and the IoT domains.

Motivating Example We motivate this work with a smart home application
from the IoT domain, depicted in Figure 1. The smart home architecture con-
sists of 7 typed elements: (1) a control system, (2) an IoT field gateway, (3)



temperature and (4) motion sensors, (5) a firewall, (6) a web server and (7) a
mobile phone. The elements are interconnected using wired and wireless connec-
tors. The elements and connectors have associated sets of attributes that describe
their configuration. For instance, every connector has attributes Encryption, Au-
thentication and Authorization. The attribute Encryption can be assigned the
values No, Yes and Strong. We associate to each attribute a cost of changing the
attribute value, reflecting our assessment of how difficult it is to implement the
change. In this example, the temperature and the motion sensor communicate
wirelessly with the gateway. If the motion sensor detects a movement, the user
is notified by phone. It is possible to override the behavior, e.g., the heating can
be turned on remotely in case of late arrival. The web server protected by the
firewall allows for access and information exchange from and to the smart home.
The IoT sub-system protected by the firewall defines a security boundary called
the IoT Device Zone. Communication should be confidential and encrypted out-
side the IoT Device, which is represented by the two associated assets.

IoT Field
Gateway

Motion
Sensor

Temprature
Sensor

Control
System Firewall WebServer Mobile

Phone

Cryptographic
Asset

Confidentiality
Asset

Wireless
Connector

Wireless
Connector

Wire
Connector

Wire
Connector

Wire
Connector

Wire
Connector

Wireless
Connector

Wireless
Connector

Wireless
Connector

Wireless
Connector

IoT Device Zone

Fig. 1: Smart Home IoT model.

Threats in this smart home system are characterized by logical relations be-
tween elements, connectors and their attributes. Consider two potential threats
that are applicable to this example: Threat 1: The web server enables data
logging functionality without encrypting the data, and Threat 2: The mobile
phone device is connected to the web server, without the web server enabling
data logging. Assume that the web server has data logging enabled, but no data
encryption, thus matching Threat 1. If we consider this threat in isolation, we
can eithrt repair it by turning off the data logging, or by implementing the data
encryption on the web server. The first repair results in matching Threat 2.
Only the second repair results in the removal of all security threats. Given two
data encryption algorithms with costs c1 and c2, where c1 > c2, implementing
the latter is the cost-optimal option. We see that an optimal preventive solution
must consider simultaneous repair of multiple threats.



2 Threat Modelling

A threat model consists of two main components, a system model and a database
of threat rules. A system model provides an architectural view of the system
under investigation, representing relevant components, their properties, as well
as relations and dependencies between them 1.

System Model A system model M consists of:

– a set E of elements: an element e ∈ E is a typed logical (software, database,
etc.) or physical (ECUs, sensors, actuators, etc.) component.

– a set C of connectors: a connector c ∈ C is a direct interaction between two
elements, a source s(c) ∈ E and a target element t(c) ∈ E.

– a set A of security assets: an asset a ∈ A describes logical or physical object
(such as an element or a connector) of value. Each element and connector
can hold multiple assets. Similarly, each asset can be associated to multiple
elements and connectors.

– a set B of security boundaries: a boundary b ∈ B describes a separation
between logically, physically, or legally separated system elements.

– a set A of attributes: an attribute a ∈ A is a property that can be associated
to a system elements, connectors and/or assets. Each attribute a can assume
a value from its associated domain Da. We denote by v(x, a) the value of the
attribute a associated to the element/connector/asset x. We finally define
an attribute cost mapping wx,a(v, v

′) associated to (x, a) pairs that defines
the cost of changing the attribute value v ∈ Da to v′ ∈ Da.

Given a system model M , we define a path π in M as an alternating sequence
e1, c1, e2, c2 · · · , cn−1, en of elements and connectors, such that for all 1 ≤ i ≤ n,
ei ∈ E, for all 1 ≤ i < n, ci ∈ C, s(ci) = ei, and t(ci) = ei+1 and for all
1 ≤ i < j ≤ n, ei ̸= ej . We note that we define paths to be acyclic, since acyclic
paths are sufficient to express all interesting security threats.

We use the notation elements(π) and connectors(π) to define the sets of all
elements and of all connectors appearing in a path, respectively. The starting
and the ending element in the path π are denoted by estart(π) = s(c1) and
eend(π) = t(cn−1), respectively. We denote by P (M) the set of all paths in M .

Threat Logic We provide an intuitive introduction of threat logic for specifying
potential threats 2. The syntax of threat logic is defined as follows:

φ := R(X ∪ P ) | ¬φ | φ1 ∨ φ2 | ∃p.φ | ∃x.φ

where X = E ∪ C ∪ A ∪ B, x ∈ X, P is a set of path variables, p ∈ P , and
R(X ∪ P ) is a predicate. The predicate R(X ∪ P ) is of the form:
1 The system and the threat model are formally defined in Appendices A and B.
2 THREATGET uses its own syntax and semantics to express threats [3]. We use

instead predicate logic to facilitate the encoding of the forthcoming algorithms
into SMT formulas. Our implementation contains an automated translation from
THREATGET syntax to threat logic.



1. type(x) = t - the type of x ∈ X is t;
2. x in p - the element or the connector x ∈ E ∪ C is in the path p ∈ P ;
3. connector(e, c) - the element e ∈ E is either the source or the target of the

connector c ∈ C;
4. src(c) = e - the source of the connector c ∈ C is the element e ∈ E;
5. tgt(c) = e - the target of the connector c ∈ C is the element e ∈ E;
6. src(p) = e - the source of the path p ∈ P is the element e ∈ E;
7. tgt(p) = e - the target of the path p ∈ P is the element e ∈ E;
8. crosses(c, b) - the connector c ∈ C crosses the boundary b ∈ B;
9. contained(x, b) - the element or boundary x ∈ E ∪ B is contained in the

boundary b ∈ B;
10. holds(x, a) - the element or the connector x ∈ E ∪ C holds the asset a ∈ A;
11. val(x, att) = v - the valuation of the attribute att associated to x ∈ E∪C∪A

is equal to v.

Example 1. Consider a requirement that there exists a path in the model such
that all the elements in that path are of type Cloud. It is expressed with the
threat logic formula: ∃p.∀e.(e in p =⇒ type(e) = Cloud).

We define an assignment ΠM as a partial function that assigns element,
connector, asset, security boundary and path variables to concrete elements,
connectors, assets, security boundaries and paths from the system architecture
model M . We denote by ΠM [x 7→ i] the item assignment in which x is mapped
to i and otherwise identical to ΠM . Similarly, we denote by ΠM [p 7→ π] the
path assignment in which p is mapped to π and otherwise identical to ΠM . The
semantics of threat logic follow the usual definitions of predicate logic.

We say that a threat logic formula is closed when all occurrences of element,
connector, asset and security boundary variables are in the scope of a quantifier.
Any closed threat logic formula is a valid threat specification. Given a system
model M and a closed threat logic formula φ, we say that M witnesses the threat
φ, denoted by M |= φ iff ΠM |= φ, where ΠM is an empty assignment.

From Threat Logic To First Order Logic (FOL) We interpret threat logic
formulas over system models with a finite number of elements and connectors,
and hence we can eliminate path quantifiers by enumerating the elements and
connectors in the path. We thus obtain an equisatisfiable FOL formula that can
be directly used by an SMT solver. The path quantifier elimination procedure
T that takes as input a threat formula φ and computes the equisatisfiable FOL
formula T (φ) is formalized in Appendix 4.

Example 2. We formalize the two threats described in Section 1:
Threat 1 ∃e.(type(e) = WebServer ∧ val(e,Data Logging) = Yes) ∧val(e,Data Encryption) ̸= Yes)
Threat 2 ∃p, e1, e2.src(p) = e1 ∧ tgt(p) = e2∧

type(e2) = WebServer ∧ type(e1) = MobilePhone ∧val(e2,Data Logging) ̸= Yes)



3 Automated Threat Prevention

We now present our main contribution – a procedure to automatically repair a
system model with one or more threats. We restrict our attention to the class of
attribute repairs that consists in changing the model attribute values and show
how to encode the problem using optimization modulo theories. We first present
an exact algorithm for the minimal attribute repair using an SMT solver, and
then propose a more scalable heuristic for partial repair.

3.1 Attribute Repair

In this work, repairing a model that has one or multiple threats consists in
changing the attribute valuation function of the model. Not every model can be
attribute repaired. For a threat model M we denote by M [v′\v] the threat model
in which the attribute value assignment v is replaced by another assignment v′.

Definition 1 (Threat-repairable model). Given a model M with an at-
tribute valuation function v that witnesses a threat φ, M |= φ, we say that
M is attribute repairable wrt φ iff there exists a v′ such that M [v′\v] ̸|= φ.

We specifically aim at finding the optimal repair, which has the minimal re-
pair cost. To reason about this quantitative repair objective, Definition 2 specifies
the distance d(v, v′) between two attribute valuation functions v and v′ as the
sum of altered attribute costs for attributes that differ in the two valuations.

Definition 2 (Attribute valuation distance). Let M be a system model with
attribute valuation v and attribute cost w. Let v′ be another attribute valuation.
The distance d(v, v′) between v and v′ is defined as:

d(v, v′) =
∑

x∈X,a∈A

wx,a(v(i, a), v
′(x, a)) s.t. v(x, a) ̸= v′(x, a).

For instance, for the attribute ‘Encryption’ the cost of changing from ‘None’ to
‘Weak’ may be 20, but to change ‘None’ to ‘Strong’ may cost 30. A change from
‘Weak’ to ‘Strong’ could cost 15, but a change from ‘Weak’ to ‘None’ may only
cost 1. Sensible cost functions will adhere to some restrictions (such as a variant
of the triangle inequality) that we do not formalize here.

Definition 3 (Minimal attribute repair). Let φ be a threat logic formula
and M a system model such that M |= φ and M is attribute repairable w.r.t. φ.
The minimal attribute repair of M is another threat model M [v′\v] s.t.:

v′ = argmin{d(v, v′′)|M [v′′\v] ̸|= φ}

Other notions of minimal repair. There are at least two other natural notions
of minimal repair. In the first one, costs are associated with the attribute itself.
This means that every change of the attribute carries the same cost. We can
model this by assigning the same cost to all possible combinations of previous



and new value for an attribute. Alternatively, engineers are often not interested
in minimizing the overall real cost, but rather in minimizing the number of
attributes that need to be repaired. We can model this restricted variant of the
problem by associating the fixed cost of 1 each attribute in the model, thus
effectively counting the number of individual attribute repairs. Both variants
can be implemented in a straightforward manner in our framework.

3.2 Attribute Repair as Weighted MaxSMT

We encode the attribute repair problem (see Section 3.1) as a weighted MaxSMT
problem, in which F represents a (hard) assertion, while F1, . . . , Fm correspond
to soft assertions and every soft assertion Fi has an associated cost cost i.

Definition 4 (Weighted MaxSMT [1]). Given an SMT formula F, a set
of SMT formulas F1, . . . , Fm and a set of real-valued costs cost1, . . . , costm, the
weighted MaxSMT problem consists in finding a subset K ⊆ M of indices with
M = {1, . . . ,m} such that: (1) F∧

∧
k∈K Fk is satisfiable, and (2) the total cost∑

i∈N\Kcost i is minimized.

We now sketch the encoding of the minimal attribute repair problem into
weighted MaxSMT. We assume that we have a MaxSMT solver object, with the
following functionality: push() - push new context to solver stack, pop() - pop
context from solver stack, add(φ) - add new hard assertion φ, add_soft(φ, c) -
add new soft assertion φ with weight c, solve() - check if formula is satisfiable,
max_solver() - check if formula is max-satisfiable, and model() - generate and
return a model witnessing satisfaction of a formula.

Given a system model M and a set of threat logic formulas Φ = {φ1, . . . , φn},
we compute the MaxSMT formulas F that represents the hard assertion F =
FM ∧

∧n
j=1 ¬φj conjoins FM that encodes the entire system model except its

attribute valuations and costs with the negation of each threat logic formula φj .
We also define one soft assertion Fx,a,v for each element x, attribute a of x and
possible value v of a, stating intuitively that v(x, a) = v. These soft attributes
are mutually exclusive if they assert different values for the same attribute. We
set up the costs of each Fx,a,v in such a way that asserting Fx,a,v leads to cost
corresponding to changing the value of a to v. (The exact value of the cost
function can easily be computed by solving a linear system of equations.)

We use the weighted MaxSAT solver max solve(FM ∧
∧n

j=1 ¬φj ∧
∧

Fx,a,v) to
obtain the satisfiability verdict and the optimization cost. Informally, the solver
can return three possible verdicts:3

– sat verdict with total cost 0: the system model M does not contain a potential
threat defined by any of the threat formulas φi,

– sat verdict with total cost k: the system model M contains a set of poten-
tial threats defined by a subset of threat formulas and can be repaired by

3 We ignore here a fourth possible verdict unknown that can arise in practice and that
happens if the solver is not able to reach a conclusion before it times out.



changing the values of model attributes with total cost k. The solver returns
a model, which defines a possible repair, i.e. the altered attribute values that
render the formula satisfiable,

– unsat verdict: the system model M is not attribute repairable with respect
to at least one threat formula φi.

The encoding of the attribute repair into this MaxSMT problem provides an
effective solution to the minimum attribute repair problem.

Theorem 1. Let M be a system model and {φ1, . . . , φn} a set of closed threat
logic formula. We have that max solve(FM ∧

∧n
i=1 ¬φi ∧

∧
F∈Ψ F ) provides the

solution to the minimum attribute repair problem.

3.3 Partial Repair of Unrepairable Models

The problem with the approach from Section 3.2 arises if there is a formula
φi for which M is not attribute repairable. In that case, the entire problem is
unsatisfiable, even if other threats could be repaired. This outcome, although
correct, is not of particular value to the security engineer. Ideally, the objective
is to repair attributes for threats that can be repaired and explain the others.

We observe that attribute-unrepairable threats have a particular form and
correspond to formulas without constraints on attribute valuations. An induc-
tive visit of the formula allows a syntactic check has_attr(φ) whether a threat
formula φ has any constraint on attribute valuations. Algorithm 1 implements
PartialRepair, a method that adapts the MaxSMT algorithm from Section 3.2
to compute a partial repair of M with respect to a subset of repairable threat
formulas. The procedure removes all threat logic formulas that are satisfied by
the model and that are known to be unrepairable, before computing MaxSMT.

From the definition of the partial repair algorithm, it follows that the MaxSAT
applied to the subset of (potentially) repairable threat formulas corresponds to
the minimum attribute repair restricted to that subset of threat formulas.

Corollary 1. Let M be a system model, Φ = {φ1, . . . , φn} a set of closed threat
logic formulas and G ⊆ Φ a subset of repairable threats, i.e. for all φ ∈ G, M ̸|=
φ or has attr(φ) is true. We have that max solve((FM ∧

∧
φ∈G ¬φ) ∧

∧
F∈Ψ F )

provides the solution to the minimum attribute repair problem restricted to the
set G of threat formulas.

Explaining unrepairable threats: The partial repair method is useful in the pres-
ence of threats that cannot be addressed by attribute repair only. The SMT
solver can be used to provide in addition an explanation of why a threat cannot
be repaired – the solver assigns values to variables in threat logic formulas that
witness its satisfaction (i.e. the presence of that threat). This witness explains
exactly why that formula is satisfied and locates in the system model the one set
of items that are responsible for that verdict. The threat may match at multi-
ple locations of the model, which could be discovered by multiple invocations of
the solver (while excluding the previously found sets). Note that the MaxSMT



will repair all occurrences though, because the threat is negated there and the
negated existential quantifier becomes a forall quantifier.

The procedure takes as input the solver (we assume that it already has the
system model encoding that includes all hard assertions), the set of attribute
valuations given in the form of assertions, and the set of threat logic formulas.
The procedure maintains two sets of threat logic formulas, the ones that do not
pose any threat to the system model and the ones that do pose a threat, but are
repairable (line 1). The set of unrepairable formulas are implicitly the ones that
are in neither of these two sets.

Algorithm 1 Partial attribute repair: PartialRepair()

Input : M , {φ1, . . . , φn}, FM , F̂M , Ψ
Output: status of repair, cost of repair,

list of repaired attribute values Ψ̂
1 solver← SMTSolver() ;
2 solver. add(F̂M ) ;
3 G← ∅ ;
4 for φ ∈ {φ1, . . . , φn} do
5 solver. push() ;
6 solver. add(T (φ)) ;
7 status← solver. solve() ;
8 solver. pop() ;
9 if status = sat then

10 if has attr(φ) then
11 G← G ∪ {φ} ;
12 else if status = unsat then
13 G← G ∪ {φ} ;

14 solver← SMTMaxSolver() ;
15 solver. add(FM ) ;
16 for F ∈ Ψ do
17 solver. add soft(F, cost(F )) ;
18 for φ ∈ G do
19 solver. add(¬T (φ)) ;
20 status← solver.max solve() ;
21 Ψ̂ ← ∅ ;
22 totalcost← 0 ;
23 if status = sat then
24 m← solver.model() ;
25 Ψ̂ , totalcost← repair(m,Ψ) ;
26 return status, totalcost, Ψ̂

For every threat logic formula φ, the procedure first checks if that threat is
present in the system model using the SMT solver (lines 5–10). If the threat
is absent, it is added to the set of formulas that do not represent any threat
(lines 11–12). Otherwise, the procedure attempts to compute a repair for that
particular threat (lines 13–33). It first checks whether the threat logic formula
refers to any attribute valuations (line 14). If not, the formula is unrepairable.
Otherwise (lines 15–19), the formula is added as a hard assertion, and the set of
attribute valuations are added as soft assertions are added as soft assertions to
the solver, and the MaxSMT solver is invoked. If the solver gives unsat verdict,
it means that the model cannot be repaired to satisfy the threat logic formula.
Otherwise (lines 20–32), we use the model witnessing the satisfaction of the
threat logic formula to compute the partial repair for that formula (line 22).
The outcome of the repair method is a the repaired set of attribute assertions
and the number of assertions that needed to be altered. The procedure checks
that this partial repair is consistent with the previous repairs (i.e. that it does
not lead to violation of other previously processed threat logic formulas), and
the repair is accepted only upon passing this last consistency check (lines 24-32).

Removing unrepairable formulas in Algorithm 1 does not guarantee that
the remaining threat formulas can be simultaneously repaired, e.g. in presence



mutually inconsistent threat formulas. We hence propose a heuristic procedure
for partial repair in Algorithm 2.

4 Implementation and Case Studies

We did a prototype implementation of the proposed methods in Java and inte-
grated it to THREATGET. We used THREATGET’s threat database from au-
tomotive and IoT domains originating from multiple sources, including security-
related standards and previously discovered threats. The tool imports system
models as JSON files and threat descriptions as THREATGET rules, translates
both to FOL SMT formulas and uses Z3 as the MaxSMT solver. The MaxSMT
solver’s results are used to compute the repair suggestions. While THREATGET
is a proprietary software (with a free academic license), our threat repair exten-
sion is distributed under the BSD-3 license. We assume the default attribute
change cost 1 and allow the user to change it using a CSV file. We apply our
tool to two case studies from two domains: the smart home IoT application in-
troduced as our motivating example in Section 1, and the vehicular telematic
gateway. A third key fob case study can be found in Appendix C, in which we
compare the vanilla MaxSMT approach to the heuristic procedure.



Algorithm 2 Approximate partial repair: HPartialRepair

Input : M , {φ1, . . . , φn}, FM , Ψ
Output: Repair status and cost, set of repaired and non-repaired threats,

repaired set of attributes
1 nothreat← ∅ ; repairable← ∅ ; totalcost← 0 ;
2 solver← SMTMaxSolver() ;
3 solver. add(FM ) ;
4 for φ ∈ {φ1, . . . , φn} do
5 solver. push() ;
6 for F ∈ Ψ do
7 solver. add(F ) ;
8 solver. add(T (φ)) ;
9 status← solver. solve() ;

10 solver. pop() ;
11 if status = unsat then
12 nothreat← nothreat ∪ {φ} ;
13 else if status = sat then
14 if has attr(φ) then
15 solver. push() ;
16 for F ∈ Ψ do
17 solver. add soft(F, cost(F )) ;
18 solver. add(¬T (φ)) ;
19 status← solver.max solve() ;
20 if status = sat then
21 m = solver.model() ;
22 Ψ̂ , c← repair(m,Ψ) ;
23 solver. pop() ;
24 solver. push() ;
25 solver. add(

∨
φ′∈repairable∪nothreat T (φ

′)) ;
26 for F ∈ Ψ̂ do
27 solver. add(F ) ;
28 status← solver. solve() ;
29 if status = unsat then
30 repairable← repairable ∪ {φ} ;
31 Ψ ← Ψ̂ ;
32 totalcost← totalcost+ c ;
33 solver. pop() ;
34 return status, totalcost, repairable, nothreat, Ψ

Smart Home IoT Application This case study was introduced in Section 1.
In this section, we report on the experimental results obtained by applying our
threat repair approach. The model has been analysed against 169 IoT-related
threat descriptions given in the form of threat log formulas. We applied both
the full MaxSMT optimization procedure and its heuristic variant.

Both the model and the database of IoT threat formulas are publicly avail-
able. Table 1 summarizes the outcomes. To accurately report the number of
repairable formulas we implement Algorithm 2 without line 31. The cost reflects



the number of attributes (per item) changed in the model because we set the
cost per attribute to 1 in our experiments. We can observe that the heuristic
procedure was able to repair 27 out of 36 found threats in less than 50 seconds.

Table 1: Results of attribute repair applied to Smart Home IoT case study.
verdict SAT # formulas w/t threat 133
total # formulas 169 total cost 77
# repairable formulas 27 time (s) 46.7
# unrepairable formulas 9

We illustrate the repair process on two threats from the database of IoT
security threats. We first consider the threat with the title “Attacker can deny
the malicious act and remove the attack foot prints leading to repudiation issues”.
This threat is formalized using the threat logic formula

∃e. type(e) = Firewall ∧ (v(e,Activity Logging) ̸= Yes ∨ v(e,Activity Logging) = Missing).

The SMT solver finds that the model satisfies the above formula and hence
has a threat. The witness shows that one element of type ‘Firewall’ has the
‘Activity Logging’ attribute set to ‘undefined’, thus explaining the threat. The
proposed repair consists in implementing the activity logging functionality. This
repair was found to be consistent with the other ones and is reported as part
of the overall repair suggestion. The second threat has the title “Spoofing IP”
and is reported as an irreparable threat. It is formalized using the threat logic
formula

∃c.∃e1.∃e2 type(c) = Internet Connection ∧ src(c) = e1 ∧ tgt(c) = e2.

This threat cannot be repaired by changing the model attributes. On the con-
trary, this threat formula states that any connection to the internet constitutes
a potential IP spoofing threat.

Vehicular telematic gateway This study is based on an industrial-strength
model of a vehicular telematic gateway (VTG) [9]. The VTG connect internal
elements of the vehicle with external services. it offers vehicle configuration and
entertainment and navigation to the user. An item is a term introduced by ISO
26262, describing a system or combination of systems, enabling a function on
the vehicle level. The industrial company that devised the THREATGET model
develops such systems for usage by different vehicle manufacturer so that the
item is developed based on assumptions about the vehicle that need validation.

We consider a telematic ECU that offers remote connectivity for the on-
board network to support various remote services including data acquisition,
remote control, maintenance, and over-the-air (OTA) software update. It also
provides a human-machine interface (HMI) for navigation, configuration, and
multimedia control. HMI represents the central element in a vehicle, connecting
the control system to the human operator and the backend. It has cellular and



wireless local area network (WLAN) interfaces for wireless connectivity. For
local connectivity, it includes a USB port for software updates and application
provision. The telematics system is also connected to other onboard ECUs.

For our analysis we considered two variants of time-triggered control. A sim-
plified model contains 15 elements, 24 transitions and 5 assets, while the full
model has 25 elements, 48 transitions and 5 assets. The presence of two models
reflects the iterative design process in which the high-level simplified model was
refined into the complete model based on the previous analysis.

A model of the full version is shown in Figure 3 (Appendix D). The results
of the attribute repair are presented in Table 2. We see that the tool is able to
scale to large industrial models. It analyses 95 threat formulas in 497s, repairing
19 out of 42 threats with the cost 57. The same set of rules were repaired in
127s on the simplified model. The main complexity in repairing large models
comes from the threat formulas that contain quantification over path. This is not
surprising because each such formula corresponds to a bounded model checking
(reachability) problem. To confirm this observation, we analysed the full model
without formulas with quantification over paths. The analysis of 82 such formulas
was done in less than 118s, resulting in the repair of 18 out of 39 threats.

Table 2: Results of attribute repair for two vehicular telematic gateways.

with flow w/o flow

simple full full

verdict SAT SAT SAT
total # formulas 95 95 82
# repairable formulas 15 19 18
# unrepairable formulas 25 23 21
# formulas w/t threat 55 53 43
total cost 29 57 57
time (s) 127 497 118

One repaired threat was Spoofing sensors by external effects. It was present
because a CAN interface is connected to an ECU (the secondary CPU) and they
both hold an asset (the Communication Interface). It represents the possibility
that the assets could be attacked to send incorrect data to vehicle sensors (i.e.,
radar signals). That could lead to giving incorrect decisions based on the tam-
pered input signal, affect the safe operation of the vehicle, or impact on usual
vehicle functionalities. Our tool suggests to this threat by implementing an input
validation on the Secondary CPU, which enables the CPU to detect false data.

5 Related work

Threat modeling and analysis has received increasing interest in the recent
years, both in academia and industry. A plethora of commercial and open-source
threat modeling tools have been developed, including THREATGET [12,3], Mi-
crosoft Threat Modeling Tool [8], ThreatModeler [15], OWASP Threat Dragon [7]



and pytm [17], Foreseeti [6], Security Compass SD Elements [14] and Tutamen
Threat Model Automator [16]. These tools can be divided into three categories:
(1) manual approaches based on excel sheets or questionnaires [16], (2) graphi-
cal modelling approaches without an underlying formal model [8,7,15,14], and (3)
model-based system engineering tools with an underlying formal model [6,17,12,3].
The first class of tools does not admit automated threat analysis and any threat
prevention measure must be manually identified and selected. Several tools from
the second and third class [8,6,12,3] provide some limited form of hard-coded
measures that are associated to individual threats or assets, without considering
threat inter-dependencies nor mitigation costs and are not able to compute a
global and consistent set of threat prevention measures. Hence our threat pre-
vention approach could be integrated to theses classes of tools.
Optimization Modulo Theories (OMT) combine SMT solvers with opti-
mization procedures [2,4,5,10,13]. to find solutions optimizing some objective
function Parameter synthesis using SMT solvers does not require optimization
objectives in general. Bloem et al. [11] synthesized parameter values ensuring
safe behavior of cyber-physical systems through solving an ∃∀ SMT formula. In
this work, users specify safe states in terms of state and parameter values; then,
the synthesizer attempts to compute correct parameter values conforming to an
invariant template such that for all possible inputs all reachable states are safe.

6 Discussion and Future Work

We presented a framework that enables automated threat prevention by repair-
ing security-related system attributes. Although widely applicable, attribute-
value repair is not enough to cover all interesting preventive procedures. For
example, protecting safety-critical components connected to a Controller Area
Network (CAN) bus in a vehicle cannot be done just by encrypting messages. In
fact, encryption is not part of the CAN protocol. The preventive measure would
require separating trusted (safety-critical) part of the system from the untrusted
one (entertainment system, etc.) with a firewall, a measure that is beyond the
attribute-value repair. Despite few similar examples, the attribute repair re-
mains a suitable repair strategy for the majority of threats present in common
architectures. Intuitively, this is the case because the attributes document the
counter-measures taken against common classes of threats, e.g. authentication
as a counter-measure against escalation of privilege. The more general model
repair problem can addresses the limitations illustrated by the CAN example by
enabling addition and removal of elements in the model. Unrestricted alteration
of models would lead to trivial and uninteresting repairs, e.g. it suffices to dis-
connect all elements in the model from each other to disable the vast majority of
threats. Hence, model repair requires a restriction of repair operations and even
just identifying a set of useful repair operations is a challenging task. The more
general model repair is a separate research problem that differs in several key
aspects from the attribute-value repair and we plan to tackle it as future work.



References

1. N. Bjørner and A. Phan. νz - maximal satisfaction with Z3. In 6th International
Symposium on Symbolic Computation in Software Science, SCSS 2014, pages 1–9,
Gammarth, La Marsa, Tunisia, Dec. 2014. EasyChair.

2. N. Bjørner, A. Phan, and L. Fleckenstein. νZ - An Optimizing SMT Solver. In
C. Baier and C. Tinelli, editors, TACAS 2015, volume 9035 of Lecture Notes in
Computer Science, pages 194–199, London, UK, April 2015. Springer.

3. K. Christl and T. Tarrach. The analysis approach of threatget. CoRR,
abs/2107.09986, 2021.

4. A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. A modular approach to
maxsat modulo theories. In M. Järvisalo and A. V. Gelder, editors, SAT 2013, vol-
ume 7962 of Lecture Notes in Computer Science, pages 150–165, Helsinki, Finland,
July 2013. Springer.

5. I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken. Minimum satisfying assignments
for SMT. In P. Madhusudan and S. A. Seshia, editors, CAV 2012, volume 7358
of Lecture Notes in Computer Science, pages 394–409, Berkeley, CA, USA, July
2012. Springer.

6. Foreseeti AB. Foreseeti. Online, 2020. Accessed: 2020-11-29.
7. M. Goodwin and J. Gadsden. Owasp threat dragon. Online, 2020. Accessed:

2020-11-29.
8. R. McRee. Microsoft threat modeling tool 2014: identify & mitigate. ISSA Journal,

39:42, 2014.
9. M. W. Mürling. Security by design: New "THREATGET" tool tests cyber security

in vehicles and systems. Online Article, 2021.
10. R. Nieuwenhuis and A. Oliveras. On SAT modulo theories and optimization prob-

lems. In A. Biere and C. P. Gomes, editors, SAT 2006, volume 4121 of Lecture Notes
in Computer Science, pages 156–169, Seattle, WA, USA, Aug. 2006. Springer.

11. H. Riener, R. Könighofer, G. Fey, and R. Bloem. SMT-based CPS parameter
synthesis. In G. Frehse and M. Althoff, editors, ARCH@CPSWeek 2016, 3rd In-
ternational Workshop on Applied Verification for Continuous and Hybrid Systems,
volume 43 of EPiC Series in Computing, pages 126–133, Vienna, Austria, 2016.
EasyChair.

12. M. E. Sadany, C. Schmittner, and W. Kastner. Assuring compliance with protec-
tion profiles with threatget. In SAFECOMP 2019 Workshops, Lecture Notes in
Computer Science, pages 62–73, Berlin, 2019. Springer.

13. R. Sebastiani and P. Trentin. Optimathsat: A tool for optimization modulo theo-
ries. J. Autom. Reason., 64(3):423–460, 2020.

14. Security Compass Ltd. Security compass sd elements. Online, 2020. Accessed:
2020-11-29.

15. ThreatModeler Software, Inc. Threatmodeler. Online, 2020. Accessed: 2020-11-29.
16. Tutamantic Ltd. Tutamen threat model automator. Online, 2020. Accessed: 2020-

11-29.
17. J. Was, P. Avhad, M. Coles, N. Ozmore, R. Shambhuni, and I. Tarandach. Owasp

pytm. Online, 2020. Accessed: 2020-11-29.



A System Model

This section defines a formal model that we use to analyze a system against a
database of threats. A system model provides an architectural view of the system
under investigation, representing relevant components, their properties, as well
as relations and dependencies between them. Complete, formal definitions of the
system and the threat model are given in [3].

The system model is designed from a set of available entities, such as el-
ements, connectors, security assets and security boundaries. These entities are
typed, can have attributes (properties) assigned to values drawn from some do-
main. The entity types, attributes and domains are not arbitrary – they are
selected from a predefined “arena” that we call a meta model.

Before providing a formal definition of a meta model, we introduce useful
notation. We use the term item to refer to a generic model entity when distinction
is unnecessary. In particular, we denote by I = E ∪ C ∪ A ∪ B the universe of
items, where E , C, A and B are disjoint sets of all possible elements, connectors,
assets and boundaries, respectively.

In our framework, every item has a type. We denote by E, C, A and B the
sets of valid types for elements, connectors, assets and boundaries, resp. We also
use the notation I = E ∪ C ∪ A ∪ B to group the types for generic items.

All items have attributes and attributes are assigned values. Let A denote
the set of all attributes, and V the set of all attribute values. The mapping
D : A → 2V defines the domain D(a) ⊆ V of the attribute a ∈ A.

Definition 5 (Meta model). A meta model M is a tuple M = (I,A,V,D,a),
where

– I, A and V are finite sets of item types, attributes and attribute values,
– D is a function mapping attributes to sets of values, and
– a : I → 2A is an attribute labelling that maps every item type i ∈ I to a

finite set a(i) ⊆ A of attributes.

We are now ready to define a system model M , which is instantiated by
entities selected from its associated meta model M. Definition 6 formalizes a
system model.

Definition 6 (System Model). A system model M is a tuple M = (M, I, τ, s, t, v, w, β, α),
where:

– M is a meta model,
– I ⊆ I is a finite set of items, partitioned into a disjoint union of elements

E ⊆ E, connectors C ⊆ C, assets A ⊆ A, and boundaries B ⊆ B ,
– τ : I → I is the type labelling function that maps items i ∈ I to their types

τ(i) ∈ I, such that (1) if i ∈ E, then τ(i) ∈ E, (2) if i ∈ C, then τ(i) ∈ C,
(3) if i ∈ A then τ(i) ∈ A, and (4) if i ∈ B then τ(i) ∈ B,

– s : C → E and t : C → E denote functions that map a connector to its
source and target elements, respectively.



– v : I ×A ⇀ V is a partial attribute valuation function, where (1) v(i, a) is
defined if a ∈ a(τ(i)), and (2) if v(i, a) is defined, then v(i, a) ∈ D(a).

– w : I × A × D × D ⇀ R≥0 is a partial attribute cost function such that
w(i, a, x, x′) is defined only if v(i, a) is defined and x, x′ ∈ D(a), which de-
notes the cost of changing the attribute a from value x to x′ for item i.

– β ⊆ B × (B ∪ E) is a binary boundary containment relation that encodes a
tree in which the leaves are elements of E and the internal nodes are elements
of B. We use β∗ to denote the transitive closure of the boundary containment
relation.

– α : (E ∪ C) × A is the asset relation between assets on one side, and
elements and connectors on the other side. Each element/connector can hold
multiple assets. Similarly, each asset can be associated to multiple elements
and connectors.

Definition 7 (Path). Given a system model M , a path in M is an alternating
sequence of elements and connectors in the form of π = e1, c1, e2, c2 · · · , cn−1, en,
such that for all 1 ≤ i ≤ n, ei ∈ E, for all 1 ≤ i < n, ci ∈ C, s(ci) = ei, and
t(ci) = ei+1 and for all 1 ≤ i < j ≤ n, ei ̸= ej. 4

We use the notation elements(π) and connectors(π) to define the sets of all
elements and of all connectors appearing in a path, respectively. The starting
and the ending element in the path π are denoted by estart(π) = s(c1) and
eend(π) = t(cn−1), respectively. We denote by P (M) the set of all paths in M .

Example 3. We illustrate the system model on the generic IoT example from
Section 1. The model consists of 4 elements (Cloud, Fog Node, IoT Field Gate-
way, Intelligent Monitoring Device) and 6 connectors. Table 3 associates elements
to their respective types, drawn from the meta model. There is only one type,
Communication Flow, associated to all connectors.

Table 3: Type Labelling
element type

Cloud Cloud
Fog Node Fog
IoT Field Gateway Gateway
Intelligent Monitoring Device

Every element and connector has multiple associated attributes. For instance
attributes Authentication, Authorization and Tamper Protection are three at-
tributes of the IoT Field Gateway element. Cloud elements have additional at-
tributes, such as the Data Logging and Data Encryption. Data Encryption at-
tribute can for instance take values from the domain {Yes,No,Undefined}.
4 We only consider acyclic paths. This is sufficient to express all interesting threats.



B Threat Logic

We introduce threat logic for specifying potential threats. While the authors
of THREATGET define their own syntax and semantics to express threats [3]
we use standard predicate logic in this paper. The use of the predicate logic
facilitates the encoding of the forthcoming algorithms into SMT formulas. Our
implementation contains an automated translation from THREATGET syntax
to threat logic.

Let X be a finite set of item variables and P a finite set path variables. The
syntax of threat logic is defined as follows:

φ := R(X ∪ P ) | ¬φ | φ1 ∨ φ2 | ∃p.φ | ∃x.φ

where x ∈ X, p ∈ P , and R(X ∪ P ) is a predicate of the form:

R(X ∪ P ) := type(x) = t (1)
| xec in p (2)
| connector(xe, xc) (3)
| src(xc) = xe (4)
| tgt(xc) = xe (5)
| src(p) = xe (6)
| tgt(p) = xe (7)
| crosses(xc, xb) (8)
| contained(xeb , xb) (9)
| holds(xec , xa) (10)
| val(x, att) = y (11)

where x ∈ I, xe ∈ E, xc ∈ C, xec ∈ E ∪C, xb ∈ B, xeb ∈ E ∪B, xa ∈ A, p ∈ P ,
t ∈ I, att ∈ A, and v ∈ D(att).

The predicate (1) holds if the type of x is t, (2) holds if the element or the
connector xec is in the path p, (3) holds if the element xe is either the source
or the target of the connector xc, (4) holds if the source of the connector xc is
the element xe, (5) holds if the target of the connector xc is the element xe, (6)
holds if the source of the path p is the element xe, (7) holds if the target of the
path p is the element xe, (8) holds if the connector xc crosses the boundary xb,
(9) holds if the element or boundary xeb is contained in the boundary xb, (10)
holds if the element or the connector xec holds the asset xa, and (11) holds if
the valuation of the attribute att associated to the item x is equal to y.

Example 4. Consider a requirement that states that there exists a path in the
model such that all the elements in that path fulfil a certain conditions, e.g.
all elements are of type Cloud. The following threat logic formula expresses the
above requirement:

∃p.∀e.(e in p =⇒ type(e) = Cloud).

We define an assignment ΠM as a partial function that assigns item and
path variables to items and paths from M . We denote by ΠM [x 7→ i] the item



assignment in which x is mapped to i and otherwise identical to ΠM . Similarly,
we denote by ΠM [p 7→ π] the path assignment in which p is mapped to π and
otherwise identical to ΠM . The semantics of threat logic are defined inductively
in Table 4.

Table 4: Threat logic semantics.
ΠM |= type(x) = t ↔ τ(ΠM (x)) = t
ΠM |= xec in p ↔ ΠM (xec) ∈ (elements(ΠM (p)) ∪ connectors(ΠM (p)))
ΠM |= connector(xe, xc) ↔ s(ΠM (xc)) = ΠM (xe) or t(ΠM (xc)) = ΠM (xe)
ΠM |= src(xc) = xe ↔ s(ΠM (xc)) = ΠM (xe)
ΠM |= tgt(xc) = xe ↔ t(ΠM (xc)) = ΠM (xe)
ΠM |= src(p) = xe ↔ estart(ΠM (p)) = ΠM (xe)
ΠM |= tgt(p) = xe ↔ eend(ΠM (p)) = ΠM (xe)
ΠM |= crosses(xc, xb) ↔ (ΠM (xb), s(ΠM (xc))) ̸∈ β∗ ⇔ (ΠM (xb), t(ΠM (xc))) ∈ β∗

ΠM |= contained(xeb , xb) ↔ (ΠM (xb), ΠM (xeb)) ∈ β∗

ΠM |= holds(xec, xa) ↔ (ΠM (xec), ΠM (xa)) ∈ α
ΠM |= val(x, att) = y ↔ v(ΠM (x), att) = y
ΠM |= ¬φ ↔ ΠM ̸|= φ
ΠM |= φ1 ∨ φ2 ↔ ΠM |= φ1 or ΠM |= φ2

ΠM |= ∃x.φ ↔ ∃i ∈ I.ΠM [x→ i] |= φ
ΠM |= ∃p.φ ↔ ∃π ∈ P (M).ΠM [p→ π] |= φ

We say that a threat logic formula is closed when all occurrences of item
variables are in the scope of a quantifier. Any closed threat logic formula is
a valid threat specification. Given a system model M and a closed threat logic
formula φ, we say that M witnesses the threat φ, denoted by M |= φ iff ΠM |= φ,
where ΠM is an empty assignment.

B.1 From Threat Logic To First Order Logic

We observe that we interpret threat logic formulas over system models with
a finite number of elements and connectors, and hence we can eliminate path
quantifiers by enumerating the elements and the connectors in the path.

FM is the translation of the model M , where the elements, connectors, bound-
aries, and assets are encoded as enum sorts. Further, FM consists of the functions
τ , s, t as well as the relations α and β∗. The function v is not part of FM , be-
cause the attribute values are not hard assertions. Instead we add the following
constraints to FM to ensure attributes can have only valid values:

∀x ∈ I, a ∈ A. (τ(x) /∈ a(a) ⇒ v(x, a) = ⊥) ∧

∀x ∈ I, a ∈ A. (τ(x) ∈ a(a) ⇒
∨

y∈D(a)

v(x, a) = y)



The set of soft assertions Ψ = {F1, . . . , Fm} is defined as

{Fi,a,x}i∈I,τ(x)∈a(a),x∈D(a),x ̸=vι(i,a),

where Fi,a,x =
∨

x′∈D(a),x ̸=x′ v(i, a) = x′.
We use vι to refer to the original attribute value assignment in M and v for the

value assignment the SMT solver discovers. Each soft assertion is a disjunction
over all possible attribute values with the exception of the possible new value.
This disjunction is violated iff the attribute is indeed assigned this new value.
Note that the current value of the attribute is in each disjunction and therefore
keeping the current value of an attribute has cost 0. The cost of Fi,a,x is

cost(Fi,a,x) = w(i, a, vι(i, a), x).

Finally, we denote by F̂M = FM ∧F1 ∧ . . .∧Fm the full translation of the model
M that includes the soft assertions.

Definition 8. Consider a system model M with n elements. We define the in-
ductive translation operator T , that translates threat logic formulas to first-order
formulas with their known semantics. The result of T can be fed directly into an
SMT solver. Given a threat logic formula φ defined over X and P , we define a
mapping σ that associates to every p ∈ P a set {x1

p, . . . , x
n−1
p , kp} of fresh and

unique xi
p item (connector) variables not in X and a fresh and unique kp integer

variable. We use kp to denote the length of the actual path discovered by the SMT
solver and n for the maximum possible length of a path, where n is the number
of elements in M .

We define

T (src(p) = xe) = xe = s(x1
p)

T (tgt(p) = xe) =
∨n−1

i=1 kp = i ∧ xe = t(xi
p)

T (xec in p) =
∨n−1

i=1 (i ≤ kp ∧ (xec = xi
p∨

xec = s(xi
p) ∨ xec = t(xi

p)))
T (R′(X)) = R′(X)
T (¬φ) = ¬T (φ)
T (φ1 ∨ φ2) = T (φ1) ∨ T (φ2)
T (∃x.φ) = ∃x.T (φ)
T (∃p.φ) = ∃x1

p, . . . , x
n−1
p ∈ C, kp ∈ {1, . . . , n−1}.(∧n−1

i=1

(
i ≤ kp ⇒

(3) (
∧i

j=1 t(xi
p) ̸= s(xj

p))∧
(4) (i = 1 ∨ t(xi−1

p ) = s(xi
p))

))
∧ T (φ)

where R′(X) are the other predicates defined over item variables only.

The translation of T (∃p.φ) ensures that {xi
p}i and kp encode a path of size

kp (see (4)) that is acyclic (i.e. no element in the encoded path is repeated, see
(3)).



Proposition 1. Let M be a system model, ΠM an assignment function and φ
a closed threat logic formula. We have that

ΠM |= φ iff F̂M ∧ T (φ) is satisfiable

Example 5. We formalize in Table 5 the two threats described informally in
Section 1.

Table 5: Two threats from motivating example in threat logic.

Threat 1 ∃e.(type(e) = Cloud ∧ val(e,Data Logging) = Yes)
∧val(e,Data Encryption) ̸= Yes)

Threat 2 ∃p, x1
e, x

2
e.src(p) = x1

e ∧ tgt(p) = x2
e∧

type(x2
e) = Cloud ∧ type(x1

e) = Device
∧val(x2

e,Data Logging) ̸= Yes)

B.2 Proofs

For the following proofs we recall our definition of T (∃p.φ).

T (∃p.φ) =∃x1
p, . . . , x

n−1
p ∈ C, kp ∈ {1, . . . , n−1}. (1)( n−1∧

i=1

(
i ≤ kp ⇒ (2)

(

i∧
j=1

t(xi
p) ̸= s(xj

p))∧ (3)

(i = 1 ∨ t(xi−1
p ) = s(xi

p))
))

∧ T (φ) (4)

Proof. The proof works by structural induction over the threat logic formula.
The base cases are if φ equals to:

– R′(X): since T (R′(X)) = R′(X) and this directly refers to the semantics,
the property is fulfilled

– src(p) = xe: since T (src(p) = xe) = (s(xp
1) = xe), the property is fulfilled

– tgt(p) = xe: The target of a path is the target of the last connector in
the path. For a known length of the path kp the disjunction collapses to
xe = t(xkp

p ), because kp = i is false for all other i. This corresponds to the
semantics of the path.

– xec in p: Using the same argument as above, all xi
p past the length of the

path kp are ignored.



The induction cases are ¬φ, φ1 ∨ φ2, ∃x.φ and ∃p.φ. All but the last case
are trivial.

To prove the correctness of the translation of ∃p.φ we split the problem
into two directions. In the first direction we proof that if there exists a path
p in our model our first order logic encoding will find it. Suppose there exists
a path π ∈ P (M) = e1, c1, e2, c2 · · · , cl−1, el, such that ΠM [p → π] |= φ. We
show that then F̂M ∧ T (∃p.φ) is satisfiable by giving values for the variables
x1
p, . . . , x

n−1
p , kp:

kp = l − 1
x1
p = c1

...
xl−1
p = cl−1

xl
p = c1

...
xn−1
p = c1

The condition i ≤ kp ensures that all xi
p for i > l − 1 are ignored in the

following checks. For 1 ≤ i < j ≤ l − 1 condition (3) is clearly fulfilled as π
is an acyclic path. Condition (4) follows because c1, . . . , cl−1 form a path. T (φ)
follows by induction.

For the second direction we assume an assignment to x1
p, . . . , x

n−1
p , kp fulfill-

ing conditions (1-4) and we need to show that there exists a path π ∈ P (M), such
that ΠM [p → π] |= φ. We construct the path π = s(x1

p)x
1
pt(x1

p)x
2
pt(x2

p) . . . x
kp
p t(xkp

p ).
This is a valid path because s(xi

p) = t(xi−1
p ) for all 1 < i ≤ kp due to condition

(4). It is also an acyclic path due to condition (3). φ follows by induction.

Theorem 1. Let M be a system model and {φ1, . . . , φn} a set of closed threat
logic formula. We have that max solve(FM ∧

∧n
i=1 ¬φi ∧

∧
F∈Ψ F ) provides the

solution to the minimum attribute repair problem.

Proof. Given a system model M , its encoding FM ∧
∧

F∈Ψ F is satisfiable by
definition. Suppose a set of threat rules {φ1, . . . , φn}, we have three cases:

1. If M |=
∧n

i=1 ¬φi then FM ∧
∧

F∈Ψ F ∧
∧n

i=1 ¬T (φi) is satisfiable.
2. If M ̸|=

∧n
i=1 ¬φi and solve(FM ∧

∧n
i=1 T (¬φi)) = unsat, then there exists

φi that cannot be repaired and reveals a structural threat regardless of the
attributes.

3. If M ̸|=
∧n

i=1 ¬φi and solve(FM ∧
∧n

i=1 T (¬φi)) = sat then ∃Ψ ′ ⊆ Ψ s.t.
solve(FM∧

∧n
i=1 T (¬φi)∧

∧
F∈Ψ ′ F ) = unsat, and max solve(FM∧

∧n
i=1 T (¬φi)∧∧

F∈Ψ ′ F ) = sat with some cost k greater than zero.

Consider case (3). Suppose that the minimum attribute threat repair for M
(with valuation function v) and {φ1, . . . , φn} has cost k′ < k. By definition of
minimum attribute threat repair, there exists a valuation function v′, such that



M [v′\v] |= ∧n
i=1¬φi and d(v, v′) = k′. Let Ψ ′ = {Fi,a,x | v(i, a) ̸= v′(i, a)} be the

set of soft assertions for the item-attribute pairs (i, a) for which the valuation
changes from x to x′ with cost(Fi,a,x′) = w(i, a, x, x′), i.e. ΣF∈Ψ ′cost(F ) = k′. It
follows that solve(FM ∧

∧n
i=1 T (¬φi)∧

∧
F∈Ψ\Ψ ′ F ) = sat, hence max solve(FM ∧∧n

i=1 T (¬φi) ∧
∧

F∈Ψ ′ F ) = sat with cost k′, which is a contradiction. It follows
that MaxSAT provides the solutions to the minimum attribute repair problem.

C Case Study: Key Fob

This case study consists of a simplified architectural model of a remote locking
and unlocking mechanism in a car, depicted in Figure 2. This model illustrates
the main capabilities of the THREATGET tool. It consists of a key fob that
communicates in a wireless fashion with the car’s lock/unlock system.

ECU1ECU2 System

KeyFobImmobilizer USB

Infotainment

c1

c2

c3

c4 c5

c6

c7 c8

Fig. 2: Example modeled in THREATGET

This system is connected to an ECU
(Electronic Control Unit) (ECU2 in
Figure 2) that implements the actual
locking and unlocking functionality.
After processing the signal, the user
gets feedback (e.g., a flashing light).
The ECU realizing the lock/unlock
feature is connected (via a CAN bus)
to an ECU that controls the Info-
tainment System. The Infotainment
System interacts with the driver via
a USB port. Components (elements)

and connectors in the model have attributes associated to them, and these at-
tributes have values. For instance, the connector between the Key Fob and the
Lock/Unlock system has an Encryption attribute set to false, meaning that no
encryption is used to communicate between these two elements. Threats are
structural security weaknesses in the model that are modeled as relations be-
tween entities in the model (elements, connectors, attributes and their values,
etc.). A potential threat in the remote locking model could be the presence of
unprotected (non-encrypted) wireless communication channels. The model has a
total of 6 elements and 8 connectors, without any assets or security boundaries.

The threat repair procedure results in an optimized configuration of the sys-
tem architecture model with security attributes that prevent threats from the
original model. The implementation of the recommended measures has an imme-
diate positive impact on the system security. We illustrate one of the proposed
prevention measures.
Manipulation of vehicular data: this threat is present because a malicious user
could connect a Linux machine to the USB interface, access the CAN bus via the
Infotainment system, manipulate command data and send them to the ECUs



Table 6: Results of attribute repair applied to the Key Fob case study.

All threats Subset of threats

full h-partial full h-partial

verdict UNSAT SAT SAT SAT
total # formulas 165 165 21 21
# repairable formulas n/a 25 4 4
# unrepairable formulas n/a 7 0 0
# formulas w/t threat n/a 133 17 17
total cost n/a 33 9 11
time (s) 3.65 103 9.58 25.65

through the CAN bus. The recommended prevention measure consists in imple-
menting authentication for connections to the USB interface, which would result
in ignoring unauthenticated command messages.

We summarize the evaluation of this case in Table 6. We first tried the vanilla
procedure (Algorithm 1). The procedure gave an UNSAT verdict in 3.65s, despite
the fact that all unrepairable rules (according to the has_attr() syntactic check)
were removed from the optimization. This result indicates that that there are
a-priori repairable threat formulas that are either inconsistent with the system
model or with another threat formula. We note that the UNSAT outcome is not
very useful to the engineer because it does not give any (even partial) repair.
On the other hand, the heuristic method (Algorithm 2) successfully computed
a partial repair of the system model, repairing 25 out 32 threats in 103s.

In the next step, we manually selected 21 threat formulas that could be
simultaneously repaired by the vanilla method. The vanilla procedure found 4
threats and repaired all of them in 9.58s with the cost on 9. The heuristic method
also found 4 threats, repaired all of them, but with the sub-optimal cost of 11 in
25.65s. We can see that the flexibility of the heuristic method comes at a price
- both in terms of optimality of the solution and computation time.

D Case Study: Vehicular Telematic Gateway



M
ai

n
C

P
U

(A
R

M
)

P
ow

er
M

an
ag

em
en

t
R
T

C
T
em

pr
at

ur
e

Se
ns

or

SD
C

ar
d/

SI
M

So
ck

et

In
te

rn
al

IP
C

on
fig

D
at

a
C

on
fig

D
at

a

D
D

R
2

N
A

N
D

N
O

R

V
id

eo
M

U
X

E
le

ct
ro

ni
c

D
is

pl
ay

U
se

r
In

te
rf

ac
e

D
ri

ve
r

E
xp

an
si

on
M

od
ul

e

W
L
A

N

C
el

lu
la

r
B

ac
ke

nd

B
lu

et
oo

th

E
th

er
ne

t

U
SB

Se
co

nd
ar

y
C

P
U

(C
A

N
)

In
te

rf
ac

e

C
om

m
un

ic
at

io
n

In
te

rf
ac

e
C

om
m

un
ic

at
io

n
In

te
rf

ac
e

C
A

N
B

us
In

te
rf

ac
e

O
th

er
E

C
U

s

D
is

pl
ay

D
at

a

B
ac

kl
ig

ht
su

pp
ly

D
is

pl
ay

su
pp

ly
P

ri
m

ar
y

D
is

pl
ay

D
at

a

P
W

D

E
na

bl
e

SP
I

SP
I

K
ey

bo
ar

d
In

pu
t

Fig. 3: Model of Vehicular Telematic Gateway


	Attribute Repair for Threat Prevention

