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Abstract 

Applications in the disciplines of chemistry, pharmaceuticals, communication, physics, and aeronautics 

all heavily rely on graph theory. To examine the properties of chemical compounds, the molecules are 

modelled as a graph. A few physical characteristics of the substance, including its boiling point, enthalpy, 

pi-electron energy, and molecular weight, are related to its geometric shape. Through the resolution of one 

of the interdisciplinary problems characterizing the structures of benzenoid hydrocarbons and 

graphenylene, the essay seeks to ascertain the practical applicability of graph theory. The topological 

index, which displays the correlation of chemical structures using numerous physical, chemical, and 

biological processes, is an invariant of a molecular graph connected with the chemical structure. Shannon's 

concept of entropy served as the basis for the graph entropies with topological indices, which are now 

used to measure the structural information of chemical graphs. Using various graph entropy metrics, the 

theory of graphs can be used to establish the link between particular chemical structural features. This 

study uses the appropriate R, S, Van topological indices to introduce some unique degree-based entropy 

descriptors. Additionally, the graphenylene structure's entropy measurements indicated above were 

computed. 

Keywords: Graphenylene, Shannon’s entropy, Topological descriptors, Van index, S index, R index 

 

1. Introduction 

Due to their use in quantitative structure-activity and quantitative structure-property relationships (QSPR) 

relationships, topological indices, which are structural invariants produced from molecular graphs and 

determine the fundamental connectivity of the molecular network, have received a lot of attention lately 

[1-4].  Degree-based topological indices, the focus of extensive study [1–5], have been used to predict the 

physicochemical features of molecular structures. The information complexity of complex chemical 

compounds like graphenylene can be determined using measures of information entropy. Shannon first 

introduced the concept of information entropy to examine and quantify the complexity of data and 

information transmission, but it has since been widely applied in a variety of scientific fields. One of the 

most important applications of information entropy is the study of the complexity of molecular structures 
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and associated quantum chemical electron densities [6]. Entropy is a phrase used to describe the quantity 

of energy that is scattered and the degree to which thermal energy is not used for work. Entropy was 

initially established by Shannon as a component of the communication theory [6,7]. He claims that a 

system made up of the three components source, channel, and receiver is how data is transmitted. In order 

to prove the entropy represents an absolute limit on how well data can be compressed from the source to 

reach the receiver in his famous coding theorem, Shannon used a variety of methods to encode, transmit, 

and compress the messages during his learning process. The entropy of a probability distribution is the 

indicator of uncertainty. In fact, the conclusion of an analysis can be predicted by using a number that 

represents the degree of uncertainty in the result of the analysis. In addition, numerous researchers looked 

into graph and network studies in the late 1950s. Graph invariants were used to conduct more research on 

entropy measurements, which was beneficial for understanding key graph features [8–11].  The 

complexity of the structural makeup of chemical compounds and complex networks has been studied using 

a variety of theoretical metrics and instruments. In order to investigate the entropies of relational systems, 

academics engage with the concept of entropy in a variety of ways by using a range of problems from 

many disciplines, such as discrete mathematics, discrete biology, discrete chemistry, and statistics, among 

others. A graph's structure can be described using graph entropy in mathematical chemistry [12–14]. A 

benzenoid is a class of chemical compounds that include at least one benzene ring. 

They are highly chemically stable due to their bonds with specific molecules. Benzenoids are aromatic 

hydrocarbons that are widely used in the production of synthetic fibers, plastics, rubber-like goods, dry 

cleaning, and gasoline additives [15]. Their uses in industrial chemistry, notably in polymer-based 

products, are expanding quickly. Each hexagon in the cyclic hydrocarbon graphenylene has a square next 

to it. Biphenylenes are two such hexagons separated by a square. It is composed of two benzene rings 

sandwiched between a cyclobutadiene ring. The building block of graphenylene, which is a 110° C melting 

powder with a pale yellow color, is biphenylene. A hydrocarbon with the chemical formula C12H8, 

biphenylene. A 2D graphene is a potential substance with important uses in the upcoming electrical and 

optical systems. An intriguing precursor to Graphenylene, a 2D porous molecular network similar to 

graphene, is biphenylene. In the characterisation of the delocalized band, this novel material shows good 

dispersion and gap separation [16,17]. Researchers from all over the world have been drawn to several 

studies on graphene because of its amazing qualities and exciting prospective uses because of its 

distinctive 2D structure. Carbon nanotubes, fullerenes, and even graphene nanoribbon can be formed by 

wrapping graphene in a particular way. The family of carbon nanomaterials has been greatly enriched by 

these. Additionally, these investigations have sparked interest in using both experimental methods and 

theoretical computations to take advantage of novel 2D carbon allotropes [18]. The cyclotrimerization of 

graphene, a 2D network of hydrogen-free carbon atoms, produces biphenylene carbon. 

This research's primary objectives are the introduction of novel entropy measures based on R, S, Van 

topological indices and the calculation of defined entropies of graphenylene structure. 

Degree based and neighboring sum degree based entropies of the graphenylene have been calculted in the 

references [19-21].  

In this work, we investigate the R, S, and Van topological indices and related entropy measures for the 

graphenylene structures. 

2. Topological indices and entropies 
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Let G be a chemical graph and v a vertex(atom) of G. The degree of vertex v, denoted as deg(v), is the 

total number of edges which is incident to v. 𝑁(𝑣) is the set of all neighbouring vertices of v. The sum 

degree of the vertex v, denoted as 𝑆𝑣, is the total number of all the degrees of neighbouring vertices of v. 

The multiplication degree of the vertex v, denoted as 𝑀𝑣, is the multiplication of total number of all the 

degrees of neighbouring vertices of v. Van degree of the vertex v, defined as; 𝑣𝑎𝑛(𝑣) =
𝑆𝑣

𝑀𝑣
  [22]. Also, 

reverse Van degree of the vertex v, defined as; 𝑟𝑣𝑎𝑛(𝑣) =
𝑀𝑣

𝑆𝑣
 . Van topological indices defined as [22]; 

The first Van index of a simple connected graph G defined as; 𝑉𝑎𝑛1(𝐺) = ∑ 𝑣𝑎𝑛(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second Van index of a simple connected graph G defined as; 𝑉𝑎𝑛2(𝐺) = ∑ 𝑣𝑎𝑛(𝑢)𝑣𝑎𝑛(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third Van index of a simple connected graph G defined as; 𝑉𝑎𝑛3(𝐺) = ∑ [𝑣𝑎𝑛(𝑢) +𝑢𝑣∈𝐸(𝐺)

𝑣𝑎𝑛(𝑣)]. 

The first reverse Van index of a simple connected graph G defined as; 𝑉𝑎𝑛1𝑟(𝐺) = ∑ 𝑟𝑣𝑎𝑛(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second reverse Van index of a simple connected graph G defined as; 𝑉𝑎𝑛2𝑟(𝐺) =
∑ 𝑟𝑣𝑎𝑛(𝑢)𝑟𝑣𝑎𝑛(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third reverse Van index of a simple connected graph G defined as; 𝑉𝑎𝑛3𝑟(𝐺) =
∑ [𝑟𝑣𝑎𝑛(𝑢) + 𝑟𝑣𝑎𝑛(𝑣)]𝑢𝑣∈𝐸(𝐺) . 

R degree of the vertex v, defined as; 𝑟(𝑣) = 𝑀𝑣 + 𝑆𝑣 [23]. Also, reverse R degree of the vertex v, 

defined as; 𝑟𝑟(𝑣) =
1

𝑀𝑣+𝑆𝑣
. R topological indices defined as [23]: 

The first R index of a simple connected graph G defined as; 𝑅1(𝐺) = ∑ 𝑟(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second R index of a simple connected graph G defined as; 𝑅2(𝐺) = ∑ 𝑟(𝑢)𝑟(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third R index of a simple connected graph G defined as; 𝑅3(𝐺) = ∑ [𝑟(𝑢) + 𝑟(𝑣)]𝑢𝑣∈𝐸(𝐺) . 

The first reverse R index of a simple connected graph G defined as; 𝑅1𝑟(𝐺) = ∑ 𝑟𝑟(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second reverse R index of a simple connected graph G defined as; 𝑅2𝑟(𝐺) = ∑ 𝑟𝑟(𝑢)𝑟𝑟(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third reverse R index of a simple connected graph G defined as; 𝑅3𝑟(𝐺) = ∑ [𝑟𝑟(𝑢) +𝑢𝑣∈𝐸(𝐺)

𝑟𝑟(𝑣)]. 

S degree of the vertex v, defined as; 𝑠(𝑣) = |𝑀𝑣 − 𝑆𝑣| [24]. Also, reverse S degree of the vertex v, 

defined as; 𝑟𝑠(𝑣) =
1

|𝑀𝑣−𝑆𝑣|+1
 . R topological indices defined as [24]: 

The first S index of a simple connected graph G defined as; 𝑆1(𝐺) = ∑ 𝑠(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second S index of a simple connected graph G defined as; 𝑆2(𝐺) = ∑ 𝑠(𝑢)𝑠(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third S index of a simple connected graph G defined as; 𝑆3(𝐺) = ∑ [𝑠(𝑢) + 𝑠(𝑣)]𝑢𝑣∈𝐸(𝐺) . 

The first reverse S index of a simple connected graph G defined as; 𝑆1𝑟(𝐺) = ∑ 𝑟𝑠(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second reverse S index of a simple connected graph G defined as; 𝑆2𝑟(𝐺) = ∑ 𝑟𝑠(𝑢)𝑟𝑠(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third reverse S index of a simple connected graph G defined as; 𝑆3𝑟(𝐺) = ∑ [𝑟𝑠(𝑢) +𝑢𝑣∈𝐸(𝐺)

𝑟𝑠(𝑣)]. 
The graph entropy measurements, which are split into intrinsic and extrinsic measures, allow 

mathematicians to relate graph components like edges and vertices with probability distributions. Graph 

entropies are widely used in a variety of fields, including chemistry, ecology, sociology, and biology 

[25,26]. Dehmer created information functional-based graph entropies, examined their properties, and 

introduced them [27,28]. Estrada et al. [29] gave a physically valid definition of graph entropy in 

addition to studying the walk-based graph entropies.  
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Applications for entropy network measurements include deriving a quantitative definition of a molecular 

structure and analyzing the biological and chemical characteristics of molecular graphs [29]. Entropy 

metrics have many applications in the analysis of chemical graphs. They are employed to look at the 

chemical properties of intricate networks. According to the definition of Shannon's entropy for 2D 

networks based on the topological index T, defined as,  

𝑬𝒏𝒕𝒓𝒐𝒑𝒚𝑻(𝑮) = 𝑬𝒏𝒕𝑻(𝑮) 

= 𝒍𝒐𝒈(𝑻(𝑮)) −
𝟏

𝑻(𝑮)
∑ 𝒇(𝒖𝒗)𝒍𝒐𝒈(𝒇(𝒖𝒗))

𝒖𝒗∈𝑬(𝑮)
 

where f is the topological index's structural-functional identifier. In the case of the second Van index, for 

instance  

𝒇(𝒖𝒗) = 𝒗𝒂𝒏(𝒖)𝒗𝒂𝒏(𝒗) and in the case of the third Van index, for instance 𝒇(𝒖𝒗) = 𝒗𝒂𝒏(𝒖) +

𝒗𝒂𝒏(𝒗).  

3. Main results 

In this section, we first determine the Van, R, and S topological indices for graphenylene families, 

followed by the associated entropies of these indices. Graphenylene can be viewed as the fundamental 

building block of these materials due to its structural resemblances to graphite, fullerene, carbon 

nanotubes, graphene, and other closely related materials such as amorphous carbon, carbon fiber, and 

charcoal. They all share the same structural makeup, although having incredibly varied sizes and shapes, 

hence they all share some traits. As a result, the structural study of graphenylene helps us understand the 

aforementioned materials. 

Each hexagon of the cyclic hydrocarbon graphenylene has a square next to it. Biphenylene is the name for 

two such hexagons that are spaced apart by a square. It is composed of two benzene rings sandwiched 

between a cyclobutadiene ring. The molecular graph of graphenylene is modeled, and the vertices, edges, 

and features are listed in Tables 1 and 4, based on the degrees and neighborhood degrees of the end 

vertices, respectively. According to Figure 1, Graphenylene has a total of 12mn vertices and18mn-2m-2n 

edges, respectively. 

 

 

Figure 1 A planar picture of biphenylene (graphenylene) supercells measuring 4 by 4. 
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 Graphenylene has the following sum and multiplication edge end vertex degree partitions which are 

shown in Table 1.  

Table 1 Edge end vertex sum and multiplication degree partition of graphenylene. 

Cardinality (𝑆𝑢 , 𝑆𝑣) (𝑀𝑢 , 𝑀𝑣) 

2 (4,4) (4,4) 

4 (4,5) (4,6) 

2𝑚 + 2𝑛 − 4 (5,5) (6,6) 

18𝑚𝑛 − 16𝑚 − 16𝑛

+ 14 

(5,8) (6,18) 

4𝑚 + 4𝑛 − 4 (8,8) (18,18) 

4 (8,9) (18,27) 

8𝑚 + 8𝑛 − 16 (9,9) (27,27) 

 

With the help of Table 1, the Van, R and S edge end vertex degree partitions of graphenylene are calculated 

and given in Tables 2-4. 

Table 2 Van edge end vertex degree partition of graphenylene 

Cardinality (𝑣𝑎𝑛(𝑢), 𝑣𝑎𝑛(𝑣)) (𝑟𝑣𝑎𝑛(𝑢), 𝑟𝑣𝑎𝑛(𝑣)) 

2 (1,1) (1,1) 

4 (1,5/6) (1,6/5) 

2𝑚 + 2𝑛 − 4 (5/6,5/6) (6/5,6/5) 

18𝑚𝑛 − 16𝑚

− 16𝑛 + 14 

(5/6,4/9) (6/5, 9/4) 

4𝑚 + 4𝑛 − 4 (4/9,4/9) (9/4,9/4) 

4 (4/9,1/3) (9/4,3) 

8𝑚 + 8𝑛 − 16 (1/3,1/3) (3,3) 

 

Table 3 S edge end vertex degree partition of graphenylene 

Cardinality (𝑠(𝑢), 𝑠(𝑣)) (𝑟𝑠(𝑢), 𝑟𝑠(𝑣)) 

2 (0,0) (1,1) 

4 (0,1) (1,1/2) 
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2𝑚 + 2𝑛 − 4 (1,1) (1/2,1/2) 

18𝑚𝑛 − 16𝑚

− 16𝑛 + 14 

(1,10) (1/2,1/11) 

4𝑚 + 4𝑛 − 4 (10,10) (1/11,1/11) 

4 (10,18) (1/11,1/19) 

8𝑚 + 8𝑛 − 16 (18,18) (1/19,1/19) 

 

Table 4 R edge end vertex degree partition of graphenylene 

Cardinality (𝑟(𝑢), 𝑟(𝑣)) (𝑟𝑟(𝑢), 𝑟𝑟(𝑣)) 

2 (8,8) (1/8,1/8) 

4 (8,11) (1/8,1/11) 

2𝑚 + 2𝑛 − 4 (11,11) (1/11,1/11) 

18𝑚𝑛 − 16𝑚

− 16𝑛 + 14 

(11,26) (1/11,1/26) 

4𝑚 + 4𝑛 − 4 (26,26) (1/26,1/26) 

4 (26,36) (1/27,1/36) 

8𝑚 + 8𝑛 − 16 (36,36) (1/36,1/36) 

 

3.1 Topological indices graphenylene 

The following theorems give the overall Van, R, and S indices representation of graphenylene. 

Theorem 1. Let G(m,n) be a graphenylene network. Then, the second Van index of G(m,n) is; 

𝑉𝑎𝑛2(G(m, n) ) =
20

3
𝑚𝑛 −

463

162
𝑚 −

463

162
𝑛 +

467

81
 

Proof. Considering that G(m,n) is a graphenylene network. By definition; 

𝑉𝑎𝑛2(G(m, n) ) = ∑ 𝑣𝑎𝑛(𝑢)𝑣𝑎𝑛(𝑣)
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 2; 

𝑉𝑎𝑛2(G(m, n) ) = 2 × 1 × 1 + 4 × 1 ×
5

6
+ (2𝑚 + 2𝑛 − 4) ×

5

6
×

5

6
 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) ×
5

6
×

4

9
+ (4𝑚 + 4𝑛 − 4) ×

4

9
×

4

9
+ 4 ×

4

9
×

1

3
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+(8𝑚 + 8𝑛 − 16) ×
1

3
×

1

3
 

the conclusion follows. 

3D plot of the second Van index of graphenylene network, G(m,n), is shown in Figure 2. 

Theorem 2. Let G(m,n) be a graphenylene network. Then, the second reverse Van index of G(m,n) is; 

𝑉𝑎𝑛2𝑟(G(m, n) ) =
243

5
𝑚𝑛 +

5193

100
𝑚 +

5193

100
𝑛 −

9841

20
 

Proof. Considering that G(m,n) is a graphenylene network. By definition; 

𝑉𝑎𝑛2𝑟(G(m, n) ) = ∑ 𝑟𝑣𝑎𝑛(𝑢)𝑟𝑣𝑎𝑛(𝑣)
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 2; 

𝑉𝑎𝑛2𝑟(G(m, n) ) = 2 × 1 × 1 + 4 × 1 ×
6

5
+ (2𝑚 + 2𝑛 − 4) ×

6

5
×

6

5
 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) ×
6

5
×

9

4
+ (4𝑚 + 4𝑛 − 4) ×

9

4
×

9

4
+ 4 ×

9

4
× 3 

+(8𝑚 + 8𝑛 − 16) × 3 × 3 

the conclusion follows. 

3D plot of the second reverse Van index of graphenylene network, G(m,n), is shown in Figure 3. 

 

 

Figure 2 3D plot of second Van index of G(m,n) 
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Figure 3 3D plot of second reverse Van index of G(m,n) 

Theorem 3. Let G(m,n) be a graphenylene network.  Then, the third Van index of G(m,n) is; 

𝑉𝑎𝑛3(G(m, n)) = 23𝑚𝑛 −
74

9
𝑚 −

74

9
𝑛 +

103

9
 

Proof. Considering that G(m,n) is a graphenylene network. By definition; 

𝑉𝑎𝑛3(G(m, n) ) = ∑ (𝑣𝑎𝑛(𝑢) + 𝑣𝑎𝑛(𝑣))
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 2; 

𝑉𝑎𝑛3(G(m, n) ) = 2 × (1 + 1) + 4 × (1 +
5

6
) + (2𝑚 + 2𝑛 − 4) × (

5

6
+

5

6
) 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × (
5

6
+

4

9
) + (4𝑚 + 4𝑛 − 4) × (

4

9
+

4

9
) + 4 × (

4

9
+

1

3
) 

+(8𝑚 + 8𝑛 − 16) × (
1

3
+

1

3
) 

the conclusion follows. 

3D plot of the third Van index of G(m,n) network is shown in Figure 4. 

Theorem 4. Let G(m,n) be a graphenylene network. Then, the third reverse Van index of G(m,n)is; 

𝑉𝑎𝑛3𝑟(G(m, n) ) =
621

10
𝑚𝑛 +

78

5
𝑚 +

78

5
𝑛 −

83

5
 

Proof. Considering that G(m,n) is a graphenylene network. By definition; 

𝑉𝑎𝑛3𝑟(G(m, n) ) = ∑ (𝑟𝑣𝑎𝑛(𝑢) + 𝑟𝑣𝑎𝑛(𝑣))
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 2; 
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𝑉𝑎𝑛3𝑟(G(m, n) ) = 2 × (1 + 1) + 4 × (1 +
6

5
) + (2𝑚 + 2𝑛 − 4) × (

6

5
+

6

5
) 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × (
6

5
+

9

4
) + (4𝑚 + 4𝑛 − 4) × (

9

4
+

9

4
) + 4 × (

9

4
+ 3) 

+(8𝑚 + 8𝑛 − 16) × (3 + 3) 

the conclusion follows. 

3D plot of the third reverse Van index of graphenylene network, G(m,n), is shown in Figure 5. 

 

Figure 4 3D plot of the third Van index of G(m,n) 

Theorem 5. Let G(m,n)be a graphenylene network. Then, the second S index of G(m,n)is; 

𝑆2(G(m, n) ) = 180𝑚𝑛 + 2834𝑚 + 2834𝑛 − 4728 

Proof. Considering that G(m,n)is a graphenylene network. By definition; 

𝑆2(G(m, n) ) = ∑ 𝑠(𝑢)𝑠(𝑣)
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 3; 

𝑆2(G(m, n) ) = 2 × 0 × 0 + 4 × 0 × 1 + (2𝑚 + 2𝑛 − 4) × 1 × 1 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × 1 × 10 + (4𝑚 + 4𝑛 − 4) × 10 × 10 + 4 × 10 × 18 

+(8𝑚 + 8𝑛 − 16) × 18 × 18 

the conclusion follows. 

3D plot of the second S index of graphenylene network, G(m,n), is shown in Figure 6. 
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Figure 5 3D plot of the third reverse Van index of G(m,n) 

 

Figure 6 3D plot of the second S index of G(m,n) 

Theorem 6. Let G(m,n) be a graphenylene network. Then, the second reverse S index of G(m,n)is; 

𝑆2𝑟(G(m, n) ) =
9

11
𝑚𝑛 −

15031

87362
𝑚 −

15031

87362
𝑛 +

156296

43681
 

Proof. Considering that G(m,n)is a graphenylene network. By definition; 

𝑆2𝑟(𝐺G(m, n) ) = ∑ 𝑟𝑠(𝑢)𝑟𝑠(𝑣)
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 3; 

𝑆2𝑟(G(m, n) ) = 2 × 1 × 1 + 4 × 1 × 1/2 + (2𝑚 + 2𝑛 − 4) × 1/2 × 1/2 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × 1/2 × 1/11 + (4𝑚 + 4𝑛 − 4) × 1/11 × 1/11 + 4 × 1/11 × 1/19 

+(8𝑚 + 8𝑛 − 16) × 1/19 × 1/19 

the conclusion follows. 

http://www.ffspublishing.com.tr/gala.html


Graphs and Linear Algebra 2(2024), 11-33           http://www.ffspublishing.com.tr/gala.html        ISSN: 2636-7947 
DOI: http://www.doi.org/10.5281/zenodo.8375189 

 

 21  
 

3D plot of the second reverse S index of graphenylene network, G(m,n), is shown in Figure 7. 

 

Figure 7 3D plot of the second reverse S index of G(m,n) 

Theorem 7. Let G(m,n)be a graphenylene network. Then, the third S index of G(m,n)is; 

𝑆3(G(m, n) ) = 198𝑚𝑛 + 196𝑚 + 196𝑛 − 394 

Proof. Considering that G(m,n)is a graphenylene network. By definition; 

𝑆3(G(m, n) ) = ∑ (𝑠(𝑢) + 𝑠(𝑣))
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 3; 

𝑆3(G(m, n) ) = 2 × (0 + 0) + 4 × (0 + 1) + (2𝑚 + 2𝑛 − 4) × (1 + 1) 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × (1 + 10) + (4𝑚 + 4𝑛 − 4) × (10 + 10) + 4 × (10 + 18) 

+(8𝑚 + 8𝑛 − 16) × (18 + 18) 

the conclusion follows. 

3D plot of the third S index of graphenylene network, G(m,n), is shown in Figure 8. 
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Figure 8 3D plot of the third S index of G(m,n) 

Theorem 8. Let G(m,n) be a graphenylene network. Then, the third reverse S index of G(m,n)is; 

𝑆3𝑟(G(m, n) ) =
117

11
𝑚𝑛 −

1230

209
𝑚 −

1230

209
𝑛 +

2599

209
 

Proof. Considering that G(m,n)is a graphenylene network. By definition; 

𝑆3𝑟(G(m, n) ) = ∑ (𝑟𝑠(𝑢) + 𝑟𝑠(𝑣))
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 3; 

𝑆3𝑟(G(m, n) ) = 2 × (1 + 1) + 4 × (1 +
1

2
) + (2𝑚 + 2𝑛 − 4) × (

1

2
+

1

2
) 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × (
1

2
+

1

11
) + (4𝑚 + 4𝑛 − 4) × (

1

11
+

1

11
) + 4 × (

1

11
+

1

19
) 

+(8𝑚 + 8𝑛 − 16) × (
1

19
+

1

19
) 

the conclusion follows. 

3D plot of the third reverse S index of graphenylene network, G(m,n), is shown in Figure 9. 
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Figure 9 3D plot of the third reverse S index of G(m,n) 

Theorem 9. Let G(m,n)be a graphenylene network. Then, the second R index of G(m,n)is; 

𝑅2(G(m, n) ) = 5148𝑚𝑛 + 8738𝑚 + 8738𝑛 − 15696 

Proof. Considering that G(m,n)is a graphenylene network. By definition; 

𝑅2(G(m, n) ) = ∑ 𝑟(𝑢)𝑟(𝑣)
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 4; 

𝑅2(G(m, n) ) = 2 × 8 × 8 + 4 × 8 × 11 + (2𝑚 + 2𝑛 − 4) × 11 × 11 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × 11 × 26 + (4𝑚 + 4𝑛 − 4) × 26 × 26 + 4 × 26 × 36 

+(8𝑚 + 8𝑛 − 16) × 36 × 36 

the conclusion follows. 

3D plot of the second R index of graphenylene network, G(m,n), is shown in Figure 10. 
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Figure 10 3D plot of the second R index of G(m,n) 

Theorem 10. Let G(m,n) be a graphenylene network. Then, the second reverse R index of G(m,n)is; 

𝑅2𝑟(G(m, n) ) =
9

143
𝑚𝑛 −

90521

3312738
𝑚 −

90521

3312738
𝑛 +

4166545

53003808
 

Proof. Considering that G(m,n)is a graphenylene network. By definition; 

𝑅2𝑟(𝐺(m, n) ) = ∑ 𝑟𝑟(𝑢)𝑟𝑟(𝑣)
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 4; 

𝑅2𝑟(G(m, n) ) = 2 × 1/8 × 1/8 + 4 × 1/8 × 1/11 + (2𝑚 + 2𝑛 − 4) × 1/11 × 1/11 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × 1/11 × 1/26 + (4𝑚 + 4𝑛 − 4) × 1/26 × 1/26 + 4 × 1/26 × 1/36 

+(8𝑚 + 8𝑛 − 16) × 1/36 × 1/36 

the conclusion follows. 

3D plot of the second reverse R index of graphenylene network, G(m,n), is shown in Figure 11. 

Theorem 11. Let G(m,n) be a graphenylene network. Then, the third R index of G(m,n) is; 

𝑅3(G(m, n) ) = 666𝑚𝑛 + 236𝑚 + 236𝑛 − 574 

Proof. Considering that G(m,n) is a graphenylene network. By definition; 

𝑅3(G(m, n) ) = ∑ (𝑟(𝑢) + 𝑟(𝑣))
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 4; 

𝑅3(G(m, n) ) = 2 × (8 + 8) + 4 × (8 + 11) + (2𝑚 + 2𝑛 − 4) × (11 + 11) 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × (11 + 26) + (4𝑚 + 4𝑛 − 4) × (26 + 26) + 4 × (26 + 36) 

+(8𝑚 + 8𝑛 − 16) × (36 + 36) 
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the conclusion follows. 

3D plot of the third R index of graphenylene network, G(m,n), is shown in Figure 12. 

 

 

Figure 11 3D plot of the second reverse R index of G(m,n) 

 

Figure 12 3D plot of the third R index of GN(m,n) 

Theorem 12. Let G(m,n)be a graphenylene network. Then, the third reverse R index of G(m,n) is; 

𝑅3𝑟(G(m, n) ) =
333

143
𝑚𝑛 −

1228

1287
𝑚 −

1228

1287
𝑛 +

1951

1287
 

Proof. Considering that G(m,n)is a graphenylene network. By definition; 

𝑅3𝑟(𝐺G(m, n) ) = ∑ (𝑟𝑟(𝑢) + 𝑟𝑟(𝑣))
𝑢𝑣∈𝐸(G(m,n) )

 

As a result by using Table 4; 
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𝑅3𝑟(G(m, n) ) = 2 × (
1

8
+

1

8
) + 4 × (

1

8
+

1

11
) + (2𝑚 + 2𝑛 − 4) × (

1

11
+

1

11
) 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × (
1

11
+

1

26
) + (4𝑚 + 4𝑛 − 4) × (

1

26
+

1

26
) + 4 × (

1

26
+

1

36
) 

+(8𝑚 + 8𝑛 − 16) × (
1

36
+

1

36
) 

the conclusion follows. 

3D plot of the third reverse R index of graphenylene network, G(m,n), is shown in Figure 13. 

 

Figure 13 3D plot of the third reverse R index of G(m,n) 

 

3.2 Entropies of  grapenylene 

The following theorems give the overall entropies which are based on Van, R, and S indices representation 

of G(m,n). 

Theorem 13. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the second 

Van index of G(m,n)is; 

𝐸𝑛𝑡𝑉𝑎𝑛2(𝐺) = log (
20

3
𝑚𝑛 −

463

162
𝑚 −

463

162
𝑛 +

467

81
) −

1

20
3 𝑚𝑛 −

463
162 𝑚 −

463
162 𝑛 +

467
81

(2𝑚 + 2𝑛

− 4) ×
25

36
× 𝑙𝑜𝑔

25

36
 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) ×
10

27
× 𝑙𝑜𝑔

10

27
+ (4𝑚 + 4𝑛 − 4) ×

16

81
× 𝑙𝑜𝑔

16

81
+ 4 ×

4

27
× 𝑙𝑜𝑔

4

27
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+(8𝑚 + 8𝑛 − 16) ×
1

9
× 𝑙𝑜𝑔

1

9
) 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑉𝑎𝑛2(𝐺) = 𝑙𝑜𝑔(𝑉𝑎𝑛2(𝐺)) −
1

𝑉𝑎𝑛2(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 1, the conclusion follows. 

Theorem 14. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the second 

reverse Van index of G(m,n)is;  

 𝐸𝑛𝑡𝑉𝑎𝑛2𝑟(𝐺) =  𝑙𝑜𝑔 (
243

5
𝑚𝑛 +

5193

100
𝑚 +

5193

100
𝑛 −

9841

20
) −

1
243

5
𝑚𝑛+

5193

100
𝑚+

5193

100
𝑛−

9841

20

(4 ×
6

5
× 𝑙𝑜𝑔

6

5
+

(2𝑚 + 2𝑛 − 4) ×
36

25
× 𝑙𝑜𝑔

36

25
 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) ×
27

10
× 𝑙𝑜𝑔

27

10
+ (4𝑚 + 4𝑛 − 4) ×

81

16
× 𝑙𝑜𝑔

81

16
+ 27 × 𝑙𝑜𝑔

27

4
 

+(8𝑚 + 8𝑛 − 16) × 18 × 𝑙𝑜𝑔3) 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑉𝑎𝑛2𝑟(𝐺) = 𝑙𝑜𝑔(𝑉𝑎𝑛2𝑟(𝐺)) −
1

𝑉𝑎𝑛2𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 2, the conclusion follows. 

Theorem 15. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the third 

Van index of G(m,n)is;  

 𝐸𝑛𝑡𝑉𝑎𝑛3(𝐺) =  𝑙𝑜𝑔 (23𝑚𝑛 −
74

9
𝑚 −

74

9
𝑛 +

103

9
) −

1

23𝑚𝑛−
74

9
𝑚−

74

9
𝑛+

103

9

(4 × 𝑙𝑜𝑔2 + 4 ×
11

6
× 𝑙𝑜𝑔

11

6
+

(2𝑚 + 2𝑛 − 4) ×
5

3
× 𝑙𝑜𝑔

5

3
 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) ×
23

18
× 𝑙𝑜𝑔

23

18
+ (4𝑚 + 4𝑛 − 4) ×

8

9
× 𝑙𝑜𝑔

8

9
+ 4 ×

7

9
× 𝑙𝑜𝑔

7

9
 

+(8𝑚 + 8𝑛 − 16) ×
2

3
× 𝑙𝑜𝑔

2

3
) 

 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑉𝑎𝑛3(𝐺) = 𝑙𝑜𝑔(𝑉𝑎𝑛3(𝐺)) −
1

𝑉𝑎𝑛3(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 3, the conclusion follows. 

Theorem 16. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the third 

reverse Van index of G(m,n)is;  
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 𝐸𝑛𝑡𝑉𝑎𝑛3𝑟(𝐺) =  𝑙𝑜𝑔 (
621

10
𝑚𝑛 +

78

5
𝑚 +

78

5
𝑛 −

83

5
) −

1
621

10
𝑚𝑛+

78

5
𝑚+

78

5
𝑛−

83

5

(4 × 𝑙𝑜𝑔2 + 4 ×
11

5
× 𝑙𝑜𝑔

11

5
+

(2𝑚 + 2𝑛 − 4) ×
12

5
× 𝑙𝑜𝑔

12

5
 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) ×
69

20
× 𝑙𝑜𝑔

69

20
+ (4𝑚 + 4𝑛 − 4) ×

9

2
× 𝑙𝑜𝑔

9

2
+ 21 × 𝑙𝑜𝑔

21

4
 

+(8𝑚 + 8𝑛 − 16) × 6 × 𝑙𝑜𝑔6) 

 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑉𝑎𝑛3𝑟(𝐺) = 𝑙𝑜𝑔(𝑉𝑎𝑛3𝑟(𝐺)) −
1

𝑉𝑎𝑛3𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 4, the conclusion follows. 

Theorem 17. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the second 

S index of G(m,n)is;  

 𝐸𝑛𝑡𝑆2(𝐺) =  𝑙𝑜𝑔(180𝑚𝑛 + 2834𝑚 + 2834𝑛 − 4728) −
1

180𝑚𝑛+2834𝑚+2834𝑛−4728
((18𝑚𝑛 − 16𝑚 −

16𝑛 + 14) × 10 × 𝑙𝑜𝑔10 + (4𝑚 + 4𝑛 − 4) × 10 × 10 + 4 × 180 × 𝑙𝑜𝑔180 

+(8𝑚 + 8𝑛 − 16) × 648 × 𝑙𝑜𝑔18)) 

 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑆2(𝐺) = 𝑙𝑜𝑔(𝑆2(𝐺)) −
1

𝑆2(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 5, the conclusion follows. 

 

Theorem 18. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the second 

reverse S index of G(m,n)is;  

 𝐸𝑛𝑡𝑆2𝑟(𝐺) =  𝑙𝑜𝑔 (
9

11
𝑚𝑛 −

15031

87362
𝑚 −

15031

87362
𝑛 +

156296

43681
) −

1
9

11
𝑚𝑛−

15031

87362
𝑚−

15031

87362
𝑛+

156296

43681

(4 × 𝑙𝑜𝑔1/2 +

(2𝑚 + 2𝑛 − 4) ×
1

4
× 𝑙𝑜𝑔

1

4
+ (18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) ×

1

22
× 𝑙𝑜𝑔

1

22
+ (4𝑚 + 4𝑛 − 4) ×

1

121
×

𝑙𝑜𝑔
1

121
+ 4 ×

1

209
× 𝑙𝑜𝑔

1

209
+ (8𝑚 + 8𝑛 − 16) ×

1

361
× 𝑙𝑜𝑔

1

361
) 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑆2𝑟(𝐺) = 𝑙𝑜𝑔(𝑆2𝑟(𝐺)) −
1

𝑆2𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 6, the conclusion follows. 
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Theorem 19. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the third S 

index of G(m,n)is;  

 𝐸𝑛𝑡𝑆3(𝐺) =  𝑙𝑜𝑔(198𝑚𝑛 + 196𝑚 + 196𝑛 − 394) −
1

198𝑚𝑛+196𝑚+196𝑛−394
((2𝑚 + 2𝑛 − 4) × 2 ×

𝑙𝑜𝑔2 + (18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × 11 × 𝑙𝑜𝑔11 + (4𝑚 + 4𝑛 − 4) × 20 × 𝑙𝑜𝑔20 + 112 × 𝑙𝑜𝑔28 +

(8𝑚 + 8𝑛 − 16) × 72 × 𝑙𝑜𝑔6) 

 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑆3(𝐺) = 𝑙𝑜𝑔(𝑆3(𝐺)) −
1

𝑆3(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 7, the conclusion follows. 

 

Theorem 20. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the third 

reverse S index of G(m,n)is;  

 𝐸𝑛𝑡𝑆3𝑟(𝐺) =  𝑙𝑜𝑔 (
117

11
𝑚𝑛 −

1230

209
𝑚 −

1230

209
𝑛 +

2599

209
) −

1
117

11
𝑚𝑛−

1230

209
𝑚−

1230

209
𝑛+

2599

209

(4 × 𝑙𝑜𝑔2 + 6 ×

𝑙𝑜𝑔
3

2
+ (18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) ×

13

22
× 𝑙𝑜𝑔

13

22
+ (4𝑚 + 4𝑛 − 4) ×

2

11
× 𝑙𝑜𝑔

2

11
+ 4 ×

30

209
×

𝑙𝑜𝑔
30

209
+ (8𝑚 + 8𝑛 − 16) ×

2

19
× 𝑙𝑜𝑔

2

19
) 

 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑆3𝑟(𝐺) = 𝑙𝑜𝑔(𝑆3𝑟(𝐺)) −
1

𝑆3𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 8, the conclusion follows. 

 

Theorem 21. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the second 

R index of G(m,n)is;  

 𝐸𝑛𝑡𝑅2(𝐺) =  𝑙𝑜𝑔(5148𝑚𝑛 + 8738𝑚 + 8738𝑛 − 15696) −
1

5148𝑚𝑛+8738𝑚+8738𝑛−15696
(768 ×

𝑙𝑜𝑔2 + 352 × 𝑙𝑜𝑔88 + (2𝑚 + 2𝑛 − 4) × 242 × 𝑙𝑜𝑔11 + (18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × 286 ×

𝑙𝑜𝑔286 + (4𝑚 + 4𝑛 − 4) × 1352 × 𝑙𝑜𝑔26 + 3744 × 𝑙𝑜𝑔936 + (8𝑚 + 8𝑛 − 16) × 2612 × 𝑙𝑜𝑔6) 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑅2(𝐺) = 𝑙𝑜𝑔(𝑅2(𝐺)) −
1

𝑅2(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 9, the conclusion follows. 
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Theorem 22. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the second 

reverse R index of G(m,n)is;  

 𝐸𝑛𝑡𝑅2𝑟(𝐺) =  𝑙𝑜𝑔 (
9

143
𝑚𝑛 −

90521

3312738
𝑚 −

90521

3312738
𝑛 +

4166545

53003808
) −

1
9

143
𝑚𝑛−

90521

3312738
𝑚−

90521

3312738
𝑛+

4166545

53003808

(2 ×

1

64
× 𝑙𝑜𝑔

1

64
+ 4 ×

1

88
× 𝑙𝑜𝑔

1

88
+ (2𝑚 + 2𝑛 − 4) ×

1

121
× 𝑙𝑜𝑔

1

121
 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) ×
1

286
× 𝑙𝑜𝑔

1

286
+ (4𝑚 + 4𝑛 − 4) ×

1

676
× 𝑙𝑜𝑔

1

676

+ 4 ×
1

936
× 𝑙𝑜𝑔

1

936
 

+(8𝑚 + 8𝑛 − 16) ×
1

1296
× 𝑙𝑜𝑔

1

1296
) 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑅2𝑟(𝐺) = 𝑙𝑜𝑔(𝑅2𝑟(𝐺)) −
1

𝑅2𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 10, the conclusion follows. 

 

Theorem 23. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the third R 

index of G(m,n)is;  

 𝐸𝑛𝑡𝑅3(𝐺) =  𝑙𝑜𝑔(666𝑚𝑛 + 236𝑚 + 236𝑛 − 574) −
1

666𝑚𝑛+236𝑚+236𝑛−574
(64 × 𝑙𝑜𝑔2 + 76 ×

𝑙𝑜𝑔19 + (2𝑚 + 2𝑛 − 4) × 22 × 𝑙𝑜𝑔22 

+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) × 37 × 𝑙𝑜𝑔37 + (4𝑚 + 4𝑛 − 4) × 52 × 𝑙𝑜𝑔 × 𝑙𝑜𝑔52
+ 4 × 62 × 𝑙𝑜𝑔62 

+(8𝑚 + 8𝑛 − 16) × 72 × 𝑙𝑜𝑔72) 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑅3(𝐺) = 𝑙𝑜𝑔(𝑅3(𝐺)) −
1

𝑅3(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 11, the conclusion follows. 

 

Theorem 24. Let G be a graphenylene network G(m,n). Then, entropy of G which is based on the third 

reverse R index of G(m,n)is;  

 𝐸𝑛𝑡𝑅3𝑟(𝐺) =  𝑙𝑜𝑔 (
333

143
𝑚𝑛 −

1228

1287
𝑚 −

1228

1287
𝑛 +

1951

1287
) −

1
333

143
𝑚𝑛−

1228

1287
𝑚−

1228

1287
𝑛+

1951

1287

(2 ×
1

4
× 𝑙𝑜𝑔

1

4
+ 4 ×

19

88
× 𝑙𝑜𝑔

19

88
+ (2𝑚 + 2𝑛 − 4) ×

2

11
× 𝑙𝑜𝑔

2

11
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+(18𝑚𝑛 − 16𝑚 − 16𝑛 + 14) ×
37

286
× 𝑙𝑜𝑔

37

286
+ (4𝑚 + 4𝑛 − 4) ×

1

13
× 𝑙𝑜𝑔

1

13

+ 4 ×
31

468
× 𝑙𝑜𝑔

31

468
 

+(8𝑚 + 8𝑛 − 16) ×
1

18
× 𝑙𝑜𝑔

1

18
) 

Proof. Considering that G is a graphenylene network. By definition; 

𝐸𝑛𝑡𝑅3𝑟(𝐺) = 𝑙𝑜𝑔(𝑅3𝑟(𝐺)) −
1

𝑅3𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 12, the conclusion follows. 

4. Conclusions 

The generalized mathematical expression for R, S, and Van topological indices for structures of 

graphenylene is described in this study. Information-theoretic entropy measurements of various phases of 

2D materials of graphenylenes are provided by these generalized mathematical formulations. The 

structures examined here were shown to have very little variation in their entropies. These many phases 

of 2D materials made from graphite might be predicted in terms of their thermochemistry, 

physicochemical properties, electrical, optical, and mechanical characteristics using our proposed 

topological indices and entropy metrics. Additionally, these indices can be combined with metrics derived 

from quantum chemistry, such as molecular hardness, polarizability measures, atomic charges, etc., to 

create a platform that is robust in predicting molecular connectivity and electronic-based attributes. 

Numerous probabilistic entropy metrics are produced using the same indices that Shannon's formula uses 

to define the probability function. We create a connection between the degree-based entropies of and 

structures using their respective degree-based topological indices. By linking the architectures of and 

graphenylene with a number of their physicochemical and optoelectronic properties, the results of this 

study could significantly advance QSAR and QSPR studies of these materials. 
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