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In this paper, we conduct a statistical analysis to exam-
ine the diversity distribution resulting from two different
approaches: The first one, standard approach, is a baseline
augmentation approach where a random augmentation is ap-
plied to each sample in each epoch independently; The second
one, random batch approach, is another new augmentation
approach designed where a random augmentation is applied
to each tiny-batch in each epoch independently and which
samples are in the same tiny-batch is random and independent
across all epochs.

The diversity from augmentation is measured by the num-
ber of unique augmented samples from all samples in all
epochs. Under the same assumptions from [1], the expecta-
tion of diversity is the same across standard approach and
random batch approach. However, the variance of diversity
from random batch approach is higher than that from standard
approach, which is the cost of these mini-batch approaches to
reduce compute time. The intuition behind this cost is, when
the same augmentation is unfortunately applied to the same
sample in different epochs, diversity loss is amplified due to
the fact that the same augmentation is applied to all samples
in the same mini-batch.

Following the same assumptions from [1], we assume K
epochs, N samples, augmentation set A, batch size n.

Define Xit as the indicator of whether augmentation At is
applied to the i-th sample.

Xit =


1, if augmentation At is applied to the i-th sample

at least once in all epochs,
0, otherwise.

Define Xi as the number of unique augmented samples from
the i-th sample in all epochs.

Xi = ∑
t

Xit

Define X as the number of unique augmented samples from
all samples in all epochs.

X = ∑
i

Xi

In order to visualize the variance of diversity in our ap-
proach vs per-sample augmentation, ?? presents the ratio of
the standard deviation of diversity in our approach over the
standard deviation of diversity in per-sample augmentation,
given different parameters for RandAugment (K = 2∼ 140,
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Figure 1: Ratio of the standard deviation.
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N = 1743042, |A| = 16, n = 1 ∼ 100) and AutoAugment
(K = 2∼ 200, N = 1743042, |A|= 25, n = 1∼ 100), respec-
tively, where standard deviation is the square root of variance.

Based on detailed proof of the below sections, the variance
of diversity in our approach is almost the same as that of per-
sample augmentation in typical DNN training tasks where
mini-batch size n « sample size N. As a result, our approach
maintains the same level of diversity as per-sample augmen-
tation, thus guaranteeing the same level of convergence in
model training. This analysis confirms that we do not inadver-
tently increase the number of epochs for model convergence
and can benefit from faster training time compared to standard
approaches.

1 Standard Approach

To start with, we get the expectation of Xi as follows.

E(Xi) = ∑
t

E(Xit) = ∑
t

P(Xit = 1) = ∑
t
(1−P(Xit = 0))

= ∑
t

(
1−
(
|A|−1
|A|

)K
)

= |A|

(
1−
(
|A|−1
|A|

)K
)

Then we get the expectation of diversity or equivalently X as
the sum of expectations of all Xi.

E(X) = ∑
i

E(Xi) = N|A|

(
1−
(
|A|−1
|A|

)K
)

To get the variance of X , Var(X) = E(X2)− (E(X))2, we
need E(X2) and E(X)2.

E(X2) = E(∑
i

Xi)
2 = E(∑

i
X2

i +∑
i6= j

XiX j)

= ∑
i

E(X2
i )+∑

i 6= j
E(XiX j) = ∑

i
E(X2

i )+∑
i 6= j

E(Xi)E(X j)

(E(X))2 = (∑
i

E(Xi))
2 = ∑

i
(E(Xi))

2 +∑
i6= j

E(Xi)E(X j)

Note that E(XiX j) = E(Xi)E(X j) in the standard approach
that a random augmentation is applied to each sample inde-
pendently. Since the last term of E(X2) and E(X)2 are same,
Var(X) can be expanded as follows.

Var(X) = E(X2)− (E(X))2 = ∑
i

E(X2
i )−∑

i
(E(Xi))

2

We need E(X2
i ) and it can be expanded as follows.

E(X2
i ) = E(∑

t
Xit ∑

s
Xis) = ∑

t
∑
s

E(XitXis)

= ∑
t

∑
s

P(Xit = 1,Xis = 1)

To expand the above formula further, we need other formulas.
We started from the probability of Xit = 0 and Xis = 0 where
t and s refers different augmentations.

P(Xit = 0,Xis = 0), t 6= s

= P(Xit = 0)P(Xis = 0|Xit = 0)

=

(
|A|−1
|A|

)K( |A|−2
|A|−1

)K
=

(
|A|−2
|A|

)K

Then, we get the sum of the probability of Xit = 0 and Xis = 0
in all combinations of two augmentations.

∑
t

∑
s

P(Xit = 0,Xis = 0)

= ∑
t=s

P(Xit = 0,Xis = 0)+∑
t 6=s

P(Xit = 0,Xis = 0)

= |A|
(
|A|−1
|A|

)K
+ |A|(|A|−1)

(
|A|−2
|A|

)K

(1)

Now, we get the probability of Xit = 1 and Xis = 1.

P(Xit = 1,Xis = 1)

= 1+P(Xit = 0,Xis = 0)−P(Xit = 0)−P(Xis = 0)

= 1+P(Xit = 0,Xis = 0)−
(
|A|−1
|A|

)K
−
(
|A|−1
|A|

)K

= 1+P(Xit = 0,Xis = 0)−2
(
|A|−1
|A|

)K

(2)

By plugging the fomula (1) and (2), we can calculate the
expectation of the square of Xi.

E(X2
i ) = E(∑

t
Xit ∑

s
Xis) = ∑

t
∑
s

E(XitXis)

= ∑
t

∑
s

P(Xit = 1,Xis = 1)

= ∑
t

∑
s

(
1+P(Xit = 0,Xis = 0)−2

(
|A|−1
|A|

)K
)

= ∑
t

∑
s

(
1−2

(
|A|−1
|A|

)K
)
+∑

t
∑
s

P(Xit = 0,Xis = 0)

= |A|2
(

1−2
(
|A|−1
|A|

)K
)
+ |A|

(
|A|−1
|A|

)K

+ |A|(|A|−1)
(
|A|−2
|A|

)K
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Note that E(X2
i ) and E(Xi) is same for all samples. Finally,

we get the variance of diversity or equivalently X .

Var(X) = ∑
i

E(X2
i )−∑

i
(E(Xi))

2

= NE(X2
1 )+N (E(X1))

2

= N|A|2
(

1−2
(
|A|−1
|A|

)K
)
+N|A|

(
|A|−1
|A|

)K

+N|A|(|A|−1)
(
|A|−2
|A|

)K
−N|A|2

(
1−
(
|A|−1
|A|

)K
)2

2 Random Batch Approach

Note that the distribution of Xi and X is exactly the same under
Standard Approach and Random Batch Approach. Thus, we
use same formulas for E(Xi), E(X), and E(X2

i ) as follows.

E(Xi) = |A|(1− (
|A|−1
|A|

)K)

E(X) = N|A|(1− (
|A|−1
|A|

)K)

E(X2
i ) = |A|2(1−2(

|A|−1
|A|

)K)+ |A|( |A|−1
|A|

)K

+ |A|(|A|−1)(
|A|−2
|A|

)K

However, E(XiX j) = E(Xi)E(X j) does not hold in random
batch approach as samples in a tiny-batch have dependency
on their augmentation. Thus, Var(X) can be expanded as
follows.

Var(X) = E(X2)− (E(X))2 = E(∑
i

Xi)
2− (E(X))2

= ∑
i

E(X2
i )+∑

i 6= j
E(XiX j)− (E(X))2

The only unknown term is ∑i6= j E(XiX j). The term can be
expanded as follows.

E(XiX j), i 6= j = E(∑
t

Xit ∑
s

X js) = ∑
t

∑
s

E(XitX js)

= ∑
t

∑
s

P(Xit = 1,X js = 1)

To expand the above formula further, we need other formulas.
Let At be the t-th augmentation in set A and Cik be the aug-
mentation applied to the i-th sample in k-th epoch. Then, we

start from the probability that At is not applied on j-th sample,
given that At is not applied on i-th sample in some epoch.

P(C j1 6= At |Ci1 6= At), i 6= j

= P(i 6= j in same batch in 1st epoch|Ci1 6= At)

×P(C j1 6= At |i 6= j in same batch in 1st epoch,Ci1 6= At)

+P(i 6= j in different batch in 1st epoch|Ci1 6= At)

×P(C j1 6= At |i 6= j in different batch in 1st epoch,Ci1 6= At)

= P(i 6= j in same batch in 1st epoch)

×P(C j1 6= At |i 6= j in same batch in 1st epoch,Ci1 6= At)

+P(i 6= j in different batch in 1st epoch)P(C j1 6= At)

=
n−1
N−1

1+
N−n
N−1

|A|−1
|A|

=
n−1
N−1

+
N−n
N−1

|A|−1
|A|

(3)

With the formula (3), we can get the probability of Xit = 0
and X jt = 0 where i 6= j as follows.

P(Xit = 0,X jt = 0), i 6= j

= P(Xit = 0) ·P(X jt = 0|Xit = 0)

=

(
|A|−1
|A|

)K
·P(C jk 6= At ,k = 1, . . . ,K|Cik 6= At ,k = 1, . . . ,K)

=

(
|A|−1
|A|

)K
· (P(C j1 6= At |Ci1 6= At))

K

=

(
|A|−1
|A|

)K
·
(

n−1
N−1

+
N−n
N−1

|A|−1
|A|

)K

(4)

Then, we also calculate the probability that As is not applied
on j-th sample, given that At is not applied on i-th sample in
some epoch. Note that As and At are not same.

P(C j1 6= As|Ci1 6= At), t 6= s, i 6= j

= P(i 6= j in same batch in 1st epoch|Ci1 6= At)

×P(C j1 6= As|i 6= j in same batch in 1st epoch,Ci1 6= At)

+P(i 6= j in different batch in 1st epoch|Ci1 6= At)

×P(C j1 6= As|i 6= j in different batch in 1st epoch,Ci1 6= At)

= P(i 6= j in same batch in 1st epoch)

×P(C j1 6= As|i 6= j in same batch in 1st epoch,Ci1 6= At)

+P(i 6= j in different batch in 1st epoch)P(C j1 6= At)

=
n−1
N−1

|A|−2
|A|−1

+
N−n
N−1

|A|−1
|A|

(5)

Using the formula (5), we get the probability of (Xit = 0
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and X js = 0 where t 6= s and i 6= j as follows.

P(Xit = 0,X js = 0), t 6= s, i 6= j

= P(Xit = 0)P(X js = 0|Xit = 0)

=

(
|A|−1
|A|

)K
P(C jk 6= As,k = 1, . . . ,K|Cik 6= At ,k = 1, . . . ,K)

=

(
|A|−1
|A|

)K
(P(C j1 6= As|Ci1 6= At))

K

=

(
|A|−1
|A|

)K( n−1
N−1

|A|−2
|A|−1

+
N−n
N−1

|A|−1
|A|

)K

(6)

By plugging the formula (4) and (6), we can get the sum of
probabilities of Xit = 0 and X js = 0 where i 6= j.

∑
t

∑
s

P(Xit = 0,X js = 0), i 6= j

= ∑
t=s

P(Xit = 0,X js = 0)+∑
t 6=s

P(Xit = 0,X js = 0)

= |A|
(
|A|−1
|A|

)K( n−1
N−1

+
N−n
N−1

|A|−1
|A|

)K

+|A|(|A|−1)
(
|A|−1
|A|

)K( n−1
N−1

|A|−2
|A|−1

+
N−n
N−1

|A|−1
|A|

)K

In addition, the probability Xit = 1 and X js where i 6= j, which
is required to expand the unknown term, can be represented
as follows.

P(Xit = 1,X js = 1), i 6= j

= 1+P(Xit = 0,X js = 0)−P(Xit = 0)−P(X js = 0)

= 1+P(Xit = 0,X js = 0)−
(
|A|−1
|A|

)K
−
(
|A|−1
|A|

)K

= 1+P(Xit = 0,X js = 0)−2
(
|A|−1
|A|

)K

Now, we are ready to expand the term E(XiX j) where i 6= j.

E(XiX j), i 6= j = ∑
t

∑
s

P(Xit = 1,X js = 1)

= ∑
t

∑
s

(
1+P(Xit = 0,X js = 0)−2

(
|A|−1
|A|

)K
)

= ∑
t

∑
s

(
1−2

(
|A|−1
|A|

)K
)
+∑

t
∑
s

P(Xit = 0,X js = 0)

= |A|2
(

1−2
(
|A|−1
|A|

)K
)

+ |A|
(
|A|−1
|A|

)K( n−1
N−1

+
N−n
N−1

|A|−1
|A|

)K

+ |A|(|A|−1)
(
|A|−1
|A|

)K( n−1
N−1

|A|−2
|A|−1

+
N−n
N−1

|A|−1
|A|

)K

Finally, the variance of diversity or equivalently X with the
random batch approach is as follows.

Var(X) = ∑
i

E(X2
i )+∑

i 6= j
E(XiX j)− (E(X))2

= N|A|2
(

1−2
(
|A|−1
|A|

)K
)
+N|A|

(
|A|−1
|A|

)K

+N|A|(|A|−1)
(
|A|−2
|A|

)K
+N(N−1)|A|2

(
1−2

(
|A|−1
|A|

)K
)

+N(N−1)|A|
(
|A|−1
|A|

)K( n−1
N−1

+
N−n
N−1

|A|−1
|A|

)K

+N(N−1)|A|(|A|−1)
(
|A|−1
|A|

)K( n−1
N−1

|A|−2
|A|−1

+
N−n
N−1

|A|−1
|A|

)K

−N2|A|2
(

1−
(
|A|−1
|A|

)K
)2
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