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Abstract

The increasing use of deep learning models in critical
areas of computer vision and the consequent need for in-
sights into model behaviour have led to the development of
numerous feature attribution methods. However, these attri-
butions must be both meaningful and plausible to end-users,
which is not always the case. Recent research has empha-
sized the importance of faithfulness in attributions, as plau-
sibility without faithfulness can result in misleading expla-
nations and incorrect decisions. In this work, we propose a
novel approach to evaluate the faithfulness of feature attri-
bution methods by constructing an ‘Attribution Confusion
Matrix’, which allows us to leverage a wide range of exist-
ing metrics from the traditional confusion matrix. This ap-
proach effectively introduces multiple evaluation measures
for faithfulness in feature attribution methods in a unified
and consistent framework. We demonstrate the effectiveness
of our approach on various datasets, attribution methods,
and models, emphasizing the importance of faithfulness in
generating plausible and reliable explanations while also
illustrating the distinct behaviour of different feature attri-
bution methods.

1. Introduction

Research on eXplainable Artificial Intelligence (XAI)
has gained considerable attention in recent years due to
its importance in high-stakes scenarios where the conse-
quences of a model’s decision can have significant impacts
on individuals or society as a whole [5]. By putting hu-
mans in the loop, XAI allows for better insights into the

decision-making process of AI models, allowing for bet-
ter understanding and trust in their outcomes. Additionally,
regulations such as the GDPR’s right to explanation have
made XAI a legal requirement in certain contexts [6].

Among XAI methods, feature attribution methods aim at
identifying the most relevant input features that contribute
to a model’s decision. These attributions must be both faith-
ful to the model behaviour and plausible for the end user [8].
However, it’s important to notice that a plausible explana-
tion is useless if it is not faithful to the model. In this work,
we aim at evaluating the faithfulness of these techniques in a
quantitative manner. Assessing how faithful a deep model’s
explanation is can be quite challenging, given that there is
no perfect ground truth to compare it against. In fact, some
might argue that it is not even possible to define such a truth
in the first place. This makes it tricky to evaluate differ-
ent XAI methods and to determine whether a specific XAI
implementation is accurate or not.

In this paper, we introduce a novel approach to evaluate
the faithfulness of feature attribution methods by construct-
ing an “Attribution Confusion Matrix” which provides fa-
miliar metrics, such as precision, accuracy, recall or the F1
score. By comparing methods in various scenarios, we aim
to guide researchers and practitioners in selecting suitable
attribution methods, contributing to more trustworthy and
interpretable AI systems.

2. Related Work

Various techniques have been proposed in the Computer
Vision (CV) field to evaluate the faithfulness of feature attri-
bution methods. The absence of a ground truth explanation
has led to different approaches. Many methods perturb the
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Figure 1. (a) Example of a mosaic made up of images from the Dogs vs. Cats1 dataset. On the right, the explanations for the target class
dog obtained with: (b) LRP (c) LIME (d) GradCAM. Purple areas correspond to positive attributions and orange to negative ones. Notice
that GradCAM only provides positive attributions. The model used was a ResNet-18 architecture pre-trained on ImageNet and fine-tuned
on the Dogs vs. Cats dataset.

input images according to the attribution maps to evaluate
the effect on the model output [1, 3, 4, 19]. This assumes
that the relevance of a feature is directly related to its ef-
fect on the model output. However, since the perturbed im-
ages fall outside the original data distribution, it is uncertain
whether the change in model output is due to the absence of
relevant features or simply because of the implicit distribu-
tion shift and the consequent model unpredictability. More-
over, we argue that this class of evaluation techniques tends
to favour attribution maps that behave like adversarial at-
tacks and may not necessarily be helpful in understanding
the model’s behaviour in real-world scenarios.

An alternative approach to evaluating feature attribution
methods in deep neural networks is to use a pseudo-ground
truth, such as a mask or bounding box of the target ob-
ject and measure how much relevance falls within that mask
[9, 23]. However, this assumption that relevance should al-
ways fall on the object is not necessarily faithful, as models
may learn to distinguish classes based on the background
rather than the object itself [16]. More generally, we do
not have a precise understanding of what leads a model to
make a particular prediction, and evaluating feature attribu-
tion scores against a bounding box that a human observer
thinks is the source of evidence may introduce bias. To cir-
cumvent this problem, recent works like Focus [2] and [15]
introduce a weaker assumption. Instead of assuming that
relevance should fall on a given mask of the target object,
relevance should fall on the image of the target class. In
the context of image classification, the Focus is obtained
through a set of mosaic images; a grid of images of dif-
ferent classes (including the target class). By doing so, a
pseudo-ground truth is generated, which allows quantify-
ing the amount of relevance that falls on those target class
quadrants (see the example in Figure 1).

A limitation of the aforementioned works is that they

only considers positive relevance, as they calculates the pro-
portion of relevance that falls on the images of the target
class in relation to the sum of positive relevance for the en-
tire mosaic. However, other feature attribution methods also
provide negative relevance (see Figure 1). Negative rele-
vance is attributed to areas that provide evidence against the
target class, favouring other classes instead. This issue has
been addressed in the past by setting the negative impact
to zero, which results in a loss of information and numeri-
cal instabilities of division by zero when all attributions are
negative. Although progress has been made in evaluating
feature attribution, limitations like not accounting for nega-
tive attributions or biased human-generated masks remain.

This work extends the Focus framework to include neg-
ative attributions as pseudo-scores, introducing the Attribu-
tion Confusion Matrix for a more comprehensive evaluation
approach.

3. Proposed Approach
The proposed approach involves rethinking feature attri-

bution scores as a set of classification scores that catego-
rizes input into “relevant” and “non-relevant” classes. This
is achieved by using the relaxed assumption of the Focus,
which states that if a new image is composed of images
from classes A and B in the same dataset, the attributions
for class A should be mostly on images of A, while the ones
against class A should be mostly on images of B.

3.1. Building the Attribution Confusion Matrix

We redefine key quantities in classification evaluation for
feature attribution. To formalize this, let us first define T as
the set of images belonging to the target class within the
mosaic, N as the set of images not belonging to the target
class, and αi as the feature attributions. Therefore, for each
mosaic, we define:
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• True Positive evidence (TP) =
∑

i∈T |max(0, αi)|

• False Positive evidence (FP) =
∑

i∈N |max(0, αi)|

• True Negative evidence (TN) =
∑

i∈N |min(0, αi)|

• False Negative evidence (FN) =
∑

i∈T |min(0, αi)|

3.2. Adapting Metrics from Classification

The previous indicators are combined into an Attribution
Confusion Matrix, enabling the evaluation of feature attri-
bution performance, akin to the classic confusion matrix in
classification tasks. Thanks to this link to the confusion ma-
trix, we can borrow and extend metrics developed for the
classification case to evaluate feature attribution. We pro-
pose redefining each metric X as Attribute-X. So, for exam-
ple, we can define:

• Attribute-Accuracy = TP+TN
TP+TN+FP+FN

• Attribute-Precision = TP
TP+FP

• Attribute-Recall = TP
TP+FN

• Attribute-F1 = 2×TP
2×TP+FP+FN

The use of metrics adapted from classification can fa-
cilitate the evaluation of feature attribution models in a
standardized and interpretable manner. We acknowledge
that certain metrics may hold greater relevance in spe-
cific scenarios. For instance, in certain medical appli-
cations, we could prioritize feature attribution methods
which minimize the number of false positives (i.e., high
Attribute-Precision) to avoid unnecessary treatments or pri-
oritize attribution which minimizes false negatives (i.e.,
high Attribute-Recall) to avoid non-diagnosed pathological
cases. This allows practitioners to identify the most suit-
able option for their particular requirements. It is worth not-
ing that the original Focus metric is equivalent to Attribute-
Precision, thus inheriting its strengths and weaknesses.

4. Experiments
To be consistent with the previous Focus experiments [2]

and for the sake of reproducibility, we use the same mod-
els. Specifically, two different architectures: VGG16 [21]
and ResNet-18 [7]. The models were fine-tuned on the fol-
lowing datasets: the Dogs vs. Cats1 dataset (binary prob-
lem), the MAMe [13] dataset (29 categories of art medi-
ums and techniques) and the MIT67 [14] dataset (67 in-
door scenes). The first two datasets were combined with
pre-training on ImageNet [18] and the third one with the
Places365-Standard dataset [24]. We evaluate the proposed
metrics on each model using 4 feature attribution methods:

1https://www.kaggle.com/c/dogs-vs-cats/

1. LIME [17]: based on the Tulio et al. implementation2.
For each explanation, 1000 samples are used, and only
the 6 superpixels with the largest attribution in absolute
value are considered.

2. LRP [3]: we use the implementation of Nam et al. [12].
The different rules used per layer are: the zB-rule [11]
on the first layer, the LRP − ϵ [3] rule on fully con-
nected layers, and the LRP − αβ [3] with α = 1 and
β = 0 on convolutional layers.

3. GradCAM [20]: based on the Gildenblat et al. imple-
mentation3.

4. Integrated Gradients (IG) [22]: the implementation
used is from Kokhlikyan et al. [10]. We use 30 steps to
approximate the integral and the black image is used
as a baseline.

Notice that while LIME, LRP and IG provide both posi-
tive and negative relevance, GradCAM only generates pos-
itive attributions. These methods were chosen due to their
popularity in the research community, and their diverse ap-
proaches to explainability. The source code to reproduce all
experiments is available online4.

5. Discussion and Future Work
The evaluation results are shown in Table 1. For each

target class: 100 mosaics were built for the Dogs vs. Cats
dataset (a total of 200), 100 mosaics for the MAMe (a to-
tal of 2,900) and 10 mosaics for the MIT67 (670 in total).
Each mosaic is composed of two images of the target class
and two other randomly chosen from the rest of the classes.
Note that to keep the image content within the original data
distribution (i.e. the one that the model has been trained on),
images are not resized and therefore mosaics have a size of
448×448. It is important to acknowledge that the reliability
of attribution methods is directly affected by the accuracy of
the underlying model. A high-performing model (e.g. Dogs
vs. Cats models) reinforces the plausibility of the assump-
tion that attributions are genuinely associated with labels.
In this context, our first finding is that all metrics consid-
ered appear to be equally affected by this factor, as the dif-
ferences between metrics for the same attribution method
remain consistent across models (e.g. Attribute-Precision,
Attribute-Recall), irrespective of their downstream task ac-
curacy.

Among the methods obtaining positive and negative rel-
evance (i.e. LIME, LRP and IG), for the Dogs vs. Cats
task (high-performing models) LIME consistently obtains

2https://github.com/marcotcr/lime
3https://github.com/jacobgil/pytorch-grad-cam
4https : / / github . com / HPAI - BSC / Attribution -

Confusion-Matrix
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Table 1. Mean and standard deviation of the four metrics computed: Attribute-Precision, Attribute-Accuracy, Attribute-Recall and
Attribute-F1. Each metric is shown grouped by column and each row shows the results for a combination of a feature attribution method,
a specific architecture and a target task. For each model, the metric obtaining the highest mean is highlighted in bold. Note that since
GradCAM does not provide negative relevances both TN = 0 and FN = 0, thus Attribute-Precision and Attribute-Accuracy coincide.

Attribute-Precision Attribute-Accuracy Attribute-Recall Attribute-F1

LIME 0.9935 (± 0.0724) 0.9913 (± 0.0435) 0.9863 (± 0.0746) 0.9855 (± 0.0859)
LRP 0.9526 (± 0.0877) 0.9343 (± 0.0835) 0.9011 (± 0.1707) 0.9141 (± 0.1290)
IG 0.4973 (± 0.0912) 0.5038 (± 0.0011) 0.5039 (± 0.0015) 0.4963 (± 0.0471)

VGG16
acc: 0.9893

GradCAM 0.9446 (± 0.0577) 0.9446 (± 0.0577) - -

LIME 0.9913 (± 0.0739) 0.9853 (± 0.0786) 0.9796 (± 0.1131) 0.9776 (± 0.1154)
LRP 0.9741 (± 0.1018) 0.9729 (± 0.1012) 0.9690 (± 0.1142) 0.9707 (± 0.1066)
IG 0.4937 (± 0.0802) 0.5018 (± 0.0006) 0.5019 (± 0.0008) 0.4944 (± 0.0419)

Dogs
vs.

Cats ResNet-18
acc: 0.9878

GradCAM 0.9725 (± 0.0320) 0.9725 (± 0.0320) - -

LIME 0.7987 (± 0.2603) 0.8048 (± 0.2373) 0.9490 (± 0.1757) 0.8359 (± 0.2333)
LRP 0.7827 (± 0.2015) 0.7913 (± 0.1967) 0.9103 (± 0.2200) 0.8311 (± 0.2001)
IG 0.5354 (± 0.1050) 0.5043 (± 0.0023) 0.5065 (± 0.0035) 0.5152 (± 0.0512)

VGG16
acc: 0.8069

GradCAM 0.8665 (± 0.1123) 0.8665 (± 0.1123) - -

LIME 0.8020 (± 0.2520) 0.7987 (± 0.2422) 0.9632 (± 0.1508) 0.8443 (± 0.2205)
LRP 0.8864 (± 0.1268) 0.8913 (± 0.1237) 0.9866 (± 0.0786) 0.9292 (± 0.0989)
IG 0.6076 (± 0.1213) 0.5027 (± 0.0015) 0.5041 (± 0.0024) 0.5452 (± 0.0526)

MAMe

ResNet-19
acc: 0.8220

GradCAM 0.8941 (± 0.0938) 0.8941 (± 0.0938) - -

LIME 0.7800 (± 0.2585) 0.7823 (± 0.2319) 0.9390 (± 0.1823) 0.8218 (± 0.2280)
LRP 0.6012 (± 0.1918) 0.6132 (± 0.1898) 0.6886 (± 0.2231) 0.6367 (± 0.2022)
IG 0.5262 (± 0.0809) 0.5076 (± 0.0043) 0.5118 (± 0.0057) 0.5157 (± 0.0401)

VGG16
acc: 0.6948

GradCAM 0.8248 (± 0.1076) 0.8248 (± 0.1076) - -

LIME 0.9543 (± 0.1102) 0.9302 (± 0.1347) 0.9611 (± 0.1282) 0.9492 (± 0.1220)
LRP 0.9136 (± 0.1434) 0.9169 (± 0.1417) 0.9736 (± 0.1240) 0.9397 (± 0.1307)
IG 0.6980 (± 0.0910) 0.5034 (± 0.0017) 0.5042 (± 0.0020) 0.5829 (± 0.0334)

MIT67

ResNet-18
acc: 0.7619

GradCAM 0.9302 (± 0.0749) 0.9302 (± 0.0749) - -

the best scores on all measures. LRP gets the second po-
sition obtaining close Attribute-Precision scores, but lower
Attribute-Recalls (thus making more false negative predic-
tions). Lastly, IG gets similarly random results on all met-
rics. Note that IG results may vary depending on the num-
ber of steps and the baseline image used. For the MAMe re-
sults (i.e. models with lower accuracy) LIME shows lower
performance in all the metrics with respect to the simpler
Dogs vs. Cats task, probably due to model performance
drop. This also affects the variance, which increases in
all metrics, particularly in Attribute-Precision (unreliable
amount of false positives). Regarding the Attribute-Recall
scores, both LIME and LRP maintain high mean values. Fi-
nally, for the MIT67 task (i.e. models with even lower per-
formance) LIME performs better than LRP for all metrics,
particularly in VGG16, with only two exceptions (Attribute-
Recall and Attribute-F1 for ResNet-18).

A consistent relevant finding across the experiments is
the high Attribute-Recall score of LIME and LRP (obtain-

ing a mean greater than 0.9 in all experiments except one).
That being said, underperforming models often yield lower
precision scores than recall scores, indicating higher reli-
ability of negative relevances with respect to positive rele-
vances. However, in the case of LIME, this feature might be
a consequence of the superpixels selection of LIME, since
the explanation will only provide negative results, as long
as these superpixels have high relevance in absolute value
(being among the top 6 most attributed superpixels). This
could be important for some case studies, which could mo-
tivate their use in contrast with methods which only provide
positive relevance.

GradCAM generates only positive relevances, so Table
1 displays Attribute-Accuracy and Attribute-Precision, be-
cause other metrics would be misleading (e.g. the Attribute-
Recall score would be always 1 since the false negatives
always are 0 by definition). GradCAM performs well in
all tasks, ranking as the top method in half of the experi-
ments, also obtaining a small variance in general. However,
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in cases where negative relevance is important, GradCAM
applicability is limited.

As stated in §2, the Attribute-Precision score sometimes
encounters numerical problems. This issue arises when all
the attributions are negative, leading to a denominator of
zero in Attribute-Precision. Consequently, this error propa-
gates to Attribute-F1. Conversely, Attribute-Accuracy only
suffers from this issue when all the attributions are zero.
This is reasonable, as the accuracy of an all-zero explana-
tion remains ambiguous.

Our proposed approach enables a comprehensive com-
parison of existing methods and can serve as a tool for de-
veloping and testing new methods in the CV field. This
is directly applicable to other domains like natural lan-
guage processing (e.g. sentiment analysis) and assessing
transformer-based models on vision tasks. Our framework
has broader implications for the validation of tools in spe-
cific use cases where the relevance of false negatives and
false positives is distinct (e.g. systems that provide support
in analyzing images in medical domains). Finally, it is wor-
thy to remark the importance of evaluating the faithfulness
of feature attribution methods, and our proposed approach
provides a valuable tool for doing so. We hope that our
work will inspire further research and contribute to the de-
velopment of trustworthy and explainable AI systems.
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