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The m−Order Linear Recursive Quaternions

Orhan Dişkaya and Hamza Menken

Abstract. This study considers the m−order linear recursive sequences yielding some well-known
sequences (such as the Fibonacci, Lucas, Pell, Jacobsthal, Padovan, and Perrin sequences). Also,
the Binet-like formulas and generating functions of the m−order linear recursive sequences have
been derived. Then, we define the m−order linear recursive quaternions, and give the Binet-like
formulas and generating functions for them.
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1. Introduction

Primarily, we will consider a linear recursion sequence that gives us some special se-
quences such as Fibonacci, Lucas, Pell, Jacobsthal, Padovan, Perrin, and Tribonacci with
certain initial conditions and coefficients. Then, we obtain the Binet-like formula and
generating functions of the linear recursive sequence to find the Binet-like formulas and
the generating functions of some special sequences by choosing certain initial conditions
and coefficients. Thus, we will make it easier for us to prove the Binet-like formulas and
generating functions of some special sequences as a result of this study. The m−order
linear recursive sequence definition given below is given by Matyas and Szakacs in [1, 4].
Now, let’s examine some identities by reminding this definition again.
For a0, a1, . . . , am−1 ∈ Z with am−1 ̸= 0 and m ∈ Z+, the m−order linear recursive
sequence {Sn}n≥0 are defined by reccurence relation

Sn+m =

m−1∑
k=0

akSn+k (1)

where the initial conditions S0, S1, . . . , Sm−1 with |S0| + |S1| + · · · + |Sm−1| ≠ 0. The
reccurence relation (1) involves the characteristic equation

a0 + a1x+ a2x
2 + · · ·+ am−1x

m−1 − xm = 0.
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By the complex numbers q1, q2, . . . , qm, we donete the roots of the characteristic equation.
Assume that the numbers ai’s are chosen such that the roots of the characteristic equation
are distinct.
Linear recursive sequences have been studied by many authors [1, 2, 3, 4, 5, 42]. Matyas
investigated some sequence transformations of {Gn+d/Gn}∞n=0 of linear recursive sequences
and linear recurrences and roots-finding methods in [1, 5] where {Gn} is a linear sequence
with m-order. Gatta and D’amito studied sequences Hn for which Hn+1/Hn approaches
the golden ratio in [2] where {Hn} is a third order linear sequence. Komatsu continued
the work of Gatta and D’amito, and examined the sequence Hn for which Hn+1/Hn

approaches an irrational number in [3]. Szakacs investigated sequence {Gn+1/Gn}∞n=1

which are approaching the Golden Ratio, in case {Gn}∞n=0 is defined the k−order linear
recursive sequence of real numbers [4]. In the present work, we derive the Binet-like
Formula and generating functions in the general case.
In [41, 43], the Binet-like formula of the m-order linear recursive sequences is

Sn =
m∑
r=1

prq
n
r , (n ≥ 0) (2)

where

p1 =

∣∣∣∣∣∣∣∣
S0 1 . . . 1
S1 q2 . . . qm
. . . . . . . . . . . .

Sm−1 qm−1
2 . . . qm−1

m

∣∣∣∣∣∣∣∣∏
1≤j<i≤m (qi − qj)

,

p2 =

∣∣∣∣∣∣∣∣
1 S0 . . . 1
q1 S1 . . . qm
. . . . . . . . . . . .

qm−1
1 Sm−1 . . . qm−1

m

∣∣∣∣∣∣∣∣∏
1≤j<i≤m (qi − qj)

,

. . .

pm =

∣∣∣∣∣∣∣∣
1 1 . . . S0

q1 q2 . . . S1

. . . . . . . . . . . .

qm−1
1 qm−1

2 . . . Sm−1

∣∣∣∣∣∣∣∣∏
1≤j<i≤m (qi − qj)

By choosing suitable initial conditions and coefficients we obtain the Binet-like formulas
for the well-known sequences as follows:
If the terms of the sequence (1) take m = 2, S0 = 0, S1 = 1 and a0 = 1, a1 = 1, the
Binet-like formula for the Fibonacci numbers will be denoted by

Sn =
qn2 − qn1
q2 − q1

.
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where q1 and q2 are the roots of the characteristic equation x2−x−1 = 0 of the Fibonacci
sequence Sn+2 = Sn+1 + Sn.
If the terms of the sequence (1) take m = 2, S0 = 2, S1 = 1 and a0 = 1, a1 = 1, the
Binet-like formula for the Lucas numbers will be denoted by

Sn = qn2 + qn1 .

where q1 and q2 are the roots of the characteristic equation x2 − x − 1 = 0 of the Lucas
sequence Sn+2 = Sn+1 + Sn.
If the terms of the sequence (1) take m = 2, S0 = 0, S1 = 1 and a0 = 1, a1 = 2, the
Binet-like formula for the Pell numbers will be denoted by

Sn =
qn2 − qn1
q2 − q1

.

where q1 and q2 are the roots of the characteristic equation x2 − 2x − 1 = 0 of the Pell
sequence Sn+2 = 2Sn+1 + Sn.
If the terms of the sequence (1) take m = 2, S0 = 0, S1 = 1 and a0 = 2, a1 = 1, the
Binet-like formula for the Jacobsthal numbers will be denoted by

Sn =
qn2 − qn1
q2 − q1

.

where q1 and q2 are the roots of the characteristic equation x2−x−2 = 0 of the Jacobsthal
sequence Sn+2 = Sn+1 + 2Sn.
If the terms of the sequence (1) take m = 2, S0 = a, S1 = b and a0 = −q, a1 = p, the
Binet-like formula for the Horadam numbers will be denoted by

Sn =
(aq1 − b)qn2 − (aq2 − b)qn1

q2 − q1
.

where q1 and q2 are the roots of the characteristic equation x2−px+q = 0 of the Horadam
sequence Sn+2 = pSn+1 − qSn.
If the terms of the sequence (1) take m = 2, S0 = 1, S1 = t and a0 = −1, a1 = 2t, the
Binet-like formula for the Chebyshev polynomials will be denoted by

Sn =
(t− q1)q

n
2 − (t− q2)q

n
1

q2 − q1
.

where q1 and q2 are the roots of the characteristic equation x2 − 2tx + 1 = 0 of the
Chebyshev polynomial sequence Sn+2 = 2tSn+1 − Sn.
If the terms of the sequence (1) take m = 3, S0 = 1, S1 = 1, S2 = 1 and a0 = 1, a1 =
1, a2 = 0, the Binet-like formula for the Padovan numbers will be denoted by

Sn = p1q
n
1 + p2q

n
2 + p3q

n
3 ,
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where p1 =
(q2 − 1)(q3 − 1)

(q1 − q2)(q1 − q3)
, p2 =

(q1 − 1)(q3 − 1)

(q2 − q1)(q2 − q3)
, p3 =

(q1 − 1)(q2 − 1)

(q3 − q1)(q3 − q2)
and q1, q2,

q3 are the roots of the characteristic equation x3 − x − 1 = 0 of the Padovan sequence
Sn+3 = Sn+1 + Sn.
If the terms of the sequence (1) take m = 3, S0 = 3, S1 = 0, S2 = 2 and a0 = 1, a1 =
1, a2 = 0, the Binet-like formula for the Perrin numbers will be denoted by

Sn = qn1 + qn2 + qn3 .

where q1, q2, q3 are the roots of the characteristic equation x3 − x − 1 = 0 of the Perrin
sequence Sn+3 = Sn+1 + Sn.
If the terms of the sequence (1) take m = 3, S0 = 0, S1 = 1, S2 = 1 and a0 = 1, a1 =
1, a2 = 1, the Binet-like formula for the Tribonacci numbers will be denoted by

Sn = p1q
n
1 + p2q

n
2 + p3q

n
3 ,

where p1 =
qn+2
1

(q1 − q2)(q1 − q3)
, p2 =

qn+2
2

(q2 − q1)(q2 − q3)
, p3 =

qn+2
3

(q3 − q1)(q3 − q2)
and q1,

q2, q3 are the roots of the characteristic equation x3 − x2 − x − 1 = 0 of the Tribonacci
sequence Sn+3 = Sn+2 + Sn+1 + Sn.
The Binet-like formulas and generating functions of some special sequences are available
in the studies in [25, 27, 7, 20, 10, 15, 12, 23, 38, 17, 14, 31, 11, 9, 13, 33, 18, 8, 16, 30,
32, 6, 34, 36, 35, 39, 26, 19, 37, 21, 22, 28, 29, 24, 40]. Now we give generating function
for the m−order linear recursive sequences.
In [43], the generating function of the m−order linear recursive sequences is

∞∑
n=0

Snx
n =

∑m−1
i=0 Six

i
(
1−

∑m−i−1
j=1 am−jx

j
)

1−
∑m−1

k=0 akxm−k
.

By choosing suitable initial conditions and coefficients we obtain the generating functions
for the well-known sequences as follows:
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m S0, S1, . . . , Sm−1 a0, a1, . . . , am−1 Generating Functions Names of sequence

2 S0 = 0, S1 = 1 a0 = 1, a1 = 1
x

1− x− x2
Fibonacci

2 S0 = 2, S1 = 1 a0 = 1, a1 = 1
2− x

1− x− x2
Lucas

2 S0 = 0, S1 = 1 a0 = 1, a1 = 2
x

1− 2x− x2
Pell

2 S0 = 0, S1 = 1 a0 = 2, a1 = 1
x

1− x− 2x2
Jacobsthal

2 S0 = a, S1 = b a0 = q, a1 = p
a+ (b− ap)x

1− px− qx2
Horadam

2 S0 = 1, S1 = t a0 = −1, a1 = 2t
1− tx

1− 2tx+ x2
Chebyshev polynomials

3 S0 = 1, S1 = 1, S2 = 1 a0 = 1, a1 = 1, a2 = 0
x+ 1

1− x2 − x3
Padovan

3 S0 = 3, S1 = 0, S2 = 2 a0 = 1, a1 = 1, a2 = 0
3− x2

1− x2 − x3
Perrin

3 S0 = 0, S1 = 1, S2 = 1 a0 = 1, a1 = 1, a2 = 1
x

1− x− x2 − x3
Tribonacci

Now we give exponential generating function for the m−order linear recursive se-
quences.
The exponential generating function of the m−order linear recursive sequences is

∞∑
n=0

Sn
xn

n!
=

m∑
r=1

pre
qrx.

By choosing suitable initial conditions and coefficients we obtain the generating
functions for the well-known sequences as follows:

m S0, S1, . . . , Sm−1 a0, a1, . . . , am−1 Exponential Generating Functions Names of sequence

2 S0 = 0, S1 = 1 a0 = 1, a1 = 1
eq2x − eq1x

q2 − q1
Fibonacci

2 S0 = 2, S1 = 1 a0 = 1, a1 = 1 eq2x + eq1x Lucas

2 S0 = 0, S1 = 1 a0 = 1, a1 = 2
eq2x − eq1x

q2 − q1
Pell

2 S0 = 0, S1 = 1 a0 = 2, a1 = 1
eq2x − eq1x

q2 − q1
Jacobsthal

2 S0 = a, S1 = b a0 = q, a1 = p
(aq1 − b)eq2x − (aq2 − b)eq1x

q2 − q1
Horadam

2 S0 = 1, S1 = t a0 = −1, a1 = 2t
(t − q1)e

q2x − (t − q2)e
q1x

q2 − q1
Chebyshev polynomials

3 S0 = 1, S1 = 1, S2 = 1 a0 = 1, a1 = 1, a2 = 0 p1e
q1x + p2e

q2x + p3e
q3x Padovan

3 S0 = 3, S1 = 0, S2 = 2 a0 = 1, a1 = 1, a2 = 0 eq1x + eq2x + eq3x Perrin
3 S0 = 0, S1 = 1, S2 = 1 a0 = 1, a1 = 1, a2 = 1 p1e

q1x + p2e
q2x + p3e

q3x Tribonacci

1.1. m−Order Linear Recursive Quaternions

A quaternion is defined by

q = a0e0 + a1e1 + a2e2 + a3e3

where a0, a1, a2 and a3 are real numbers and e0 = 1, e1 = i, e2 = j and e3 = k are the
standart basis in R4.
The quaternion multiplication is defined using the rules:

e20 = 1, e21 = e22 = e23 = −1
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e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1 and e3e1 = −e1e3 = e2.

This algebra is associative and non-commutative.
Let q = a0e0+a1e1+a2e2+a3e3 and p = b0e0+ b1e1+ b2e2+ b3e3 be any two quaternions.
Then the addition and subtraction of them is

q ∓ p = (a0 ∓ b0)e0 + (a1 ∓ b1)e1 + (a2 ∓ b2)e2 + (a3 ∓ b3)e3

and for k ∈ R, the multiplication by scalar is

kq = ka0e0 + ka1e1 + ka2e2 + ka3e3

and the conjugate and norm of a quaterion are

q = a0e0 − a1e1 − a2e2 − a3e3

and
N(q) = qq = a20 + a21 + a22 + a23.

Addition, equality and multiplication by scalar of two quaternions can be found [1, 2, 5].

Definition 1.1. The m−order linear recursive quaternion {QSn}n≥0 is defined by

QSn = Sne0 + Sn+1e1 + Sn+2e2 + Sn+3e3 (3)

where Sn is the m−order linear recursive numbers.

Theorem 1.2. The Binet-like formula for the m−order linear recursive quaternion
{QSn}n≥0 is

QSn =
m∑
r=1

pr q̂rq
n
r (4)

where q̂r = e0 + qre1 + q2re2 + q3re3.

Proof. From the definition of the m−order linear recursive quaternion QSn in (3) and
Binet-like formula for the m−order linear recursive number Sn, we write

QSn = Sne0 + Sn+1e1 + Sn+2e2 + Sn+3e3

=

m∑
r=1

prq
n
r e0 +

m∑
r=1

prq
n+1
r e1 +

m∑
r=1

prq
n+2
r e2 +

m∑
r=1

prq
n+3
r e3

=
m∑
r=1

pr
(
e0 + q1re1 + q2re2 + q3re3

)
qnr

=
m∑
r=1

pr q̂rq
n
r
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As a special case of the equality (4), the Binet-like formula of Fibonacci quaternions
can be given as follows:
For m = 2, the Binet-like formula for the Fibonacci quaternions will be denoted by

QSn =
q̂2q

n
2 − q̂1q

n
1

q2 − q1
.

where q1 and q2 are the roots of the characteristic equation x2−x−1 = 0 of the Fibonacci
sequence Sn+2 = Sn+1+Sn, and q̂1 = e0+ q11e1+ q21e2+ q31e3, q̂2 = e0+ q12e1+ q22e2+ q32e3.
Binet-like formulas of other special quaternion sequences can be obtained in a similar way
using (4).

Theorem 1.3. The generating function for m−order linear recursive quaternion
{QSn}n≥0 is

GQS(x) =

(
e0x

3 + e1x
2 + e2x+ e3

)
GS(x)−

(
S0(e1x

2 + e2x+ e3) + S1(e2x
2 + e3x) + S2(e3x

2)
)

x3

where GS(x) is the generating function of the m−order linear recursive sequences

Proof. Let

GQS(x) =

∞∑
n=0

QSnx
n (5)

be generating function of the m−order linear recursive quaternion. We have

GQS(x) =

∞∑
n=0

(Sne0 + Sn+1e1 + Sn+2e2 + Sn+3e3)x
n

= e0

∞∑
n=0

Snx
n + e1

∞∑
n=0

Sn+1x
n + e2

∞∑
n=0

Sn+2x
n + e3

∞∑
n=0

Sn+3x
n

= e0GS(x) + e1

(
GS(x)

1

x
− S0

x

)
+ e2

(
GS(x)

1

x2
− S0

x2
− S1

x

)
+ e3

(
GS(x)

1

x3
− S0

x3
− S1

x2
− S2

x

)
=

(
e0x

3 + e1x
2 + e2x+ e3

)
GS(x)−

(
S0(e1x

2 + e2x+ e3) + S1(e2x
2 + e3x) + S2(e3x

2)
)

x3

As a special case of the equality (5), the Binet-like formula of Fibonacci quaternions
can be given as follows:
For m = 2, the generating function for the Fibonacci quaternions will be denoted by

GQS(x) =
x+ e1 + e2(x+ 1) + e3(x+ 2)

1− x− x2
.

Generating functions of other special quaternion sequences can be obtained in a similar
way using (5).
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Theorem 1.4. The exponential generating function of the m−order linear recursive
quaternions is

ES(x) =
m∑
r=1

pr q̂re
qrx (6)

Proof. Let

ES(x) =
∞∑
n=0

QSn
xn

n!

Using the identity (2), we get

ES(x) =
∞∑
n=0

QSn
xn

n!
=

∞∑
n=0

m∑
r=1

pr q̂rq
n
r

xn

n!
=

m∑
r=1

pr q̂r

∞∑
n=0

(qrx)
n

n!
=

m∑
r=1

pr q̂re
qrx

For m = 2, the exponential generating function for the Fibonacci quaternions will be
denoted by

ES(x) =
q̂2e

q2x − q̂1e
q1x

q2 − q1

Exponential generating functions of other special quaternion sequences can be obtained
in a similar way using (6).

References

[1] F. Matyas, Sequence transformations and linear recurrences of higher order. Acta
Mathematica et Informatica Universitatis Ostraviensis, 2001, v. 9, no 1, 45-51.

[2] F. Gatta, A. D’amico, Sequences Hn for which Hn+1/Hn Approaches the Golden Ratio,
2008.

[3] T. Komatsu, Sequences Hn for which Hn+1/Hn approaches an irrational number, Fi-
bonacci Quaterly, 2010, v. 48, no 3, 265-275.
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