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The m—Order Linear Recursive Quaternions

Orhan Digkaya and Hamza Menken

Abstract. This study considers the m—order linear recursive sequences yielding some well-known
sequences (such as the Fibonacci, Lucas, Pell, Jacobsthal, Padovan, and Perrin sequences). Also,
the Binet-like formulas and generating functions of the m—order linear recursive sequences have
been derived. Then, we define the m—order linear recursive quaternions, and give the Binet-like
formulas and generating functions for them.
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1. Introduction

Primarily, we will consider a linear recursion sequence that gives us some special se-
quences such as Fibonacci, Lucas, Pell, Jacobsthal, Padovan, Perrin, and Tribonacci with
certain initial conditions and coefficients. Then, we obtain the Binet-like formula and
generating functions of the linear recursive sequence to find the Binet-like formulas and
the generating functions of some special sequences by choosing certain initial conditions
and coefficients. Thus, we will make it easier for us to prove the Binet-like formulas and
generating functions of some special sequences as a result of this study. The m—order
linear recursive sequence definition given below is given by Matyas and Szakacs in [1, 4].
Now, let’s examine some identities by reminding this definition again.

For ag,a1,...,am_1 € Z with a;,,—1 # 0 and m € Z*, the m—order linear recursive
sequence {S,},~, are defined by reccurence relation

m—1

Sn—l—m = Z akSnJrk (1)
k=0

where the initial conditions Sy, Si,...,Sm,—1 with |So| + |S1| + -+ + [Sm—1] # 0. The
reccurence relation (1) involves the characteristic equation

ao+ a1z + asx® + -+ ap_z™ 1t — 2™ = 0.
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By the complex numbers q1, qo, . . . , ¢m, we donete the roots of the characteristic equation.
Assume that the numbers a;’s are chosen such that the roots of the characteristic equation
are distinct.

Linear recursive sequences have been studied by many authors [1, 2, 3, 4, 5, 42]. Matyas
investigated some sequence transformations of {G),14/Gn}, -, of linear recursive sequences
and linear recurrences and roots-finding methods in [1, 5] where {G},} is a linear sequence
with m-order. Gatta and D’amito studied sequences H,, for which H,1/H, approaches
the golden ratio in [2] where {H,} is a third order linear sequence. Komatsu continued
the work of Gatta and D’amito, and examined the sequence H,, for which H,i/H,
approaches an irrational number in [3]. Szakacs investigated sequence {G,4+1/Gn}oo
which are approaching the Golden Ratio, in case {G,},- is defined the k—order linear
recursive sequence of real numbers [4]. In the present work, we derive the Binet-like
Formula and generating functions in the general case.

In [41, 43], the Binet-like formula of the m-order linear recursive sequences is

m
Sn = g, (n>=0) (2)
r=1
where
So 1 - 1
S1 @2 - gm
Sim—1 qgnfl - qm_l
p1 = ’
H1§j<i§m (@ —a5)
1 So ... 1
¢ St ... Om
q{nil Smfl ... qz—l
b2 = s
H1§j<i§m (@i — ‘Ij)
1 1 ... S
q1 @2 ... S
"t gt . Sma
Pm =

Hl§j<i§m (4 — a5)
By choosing suitable initial conditions and coefficients we obtain the Binet-like formulas
for the well-known sequences as follows:
If the terms of the sequence (1) take m = 2, Sp = 0,51 = 1 and agp = 1,a; = 1, the
Binet-like formula for the Fibonacci numbers will be denoted by
§, = L4t

92 —q1
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where ¢; and ¢ are the roots of the characteristic equation 22 — 2z —1 = 0 of the Fibonacci
sequence Sp+2 = Sp4+1 + Sh.

If the terms of the sequence (1) take m = 2, Sp = 2,51 = 1 and ag = 1,a; = 1, the
Binet-like formula for the Lucas numbers will be denoted by

Sn=q; +q-

2 _ 2 —1=0 of the Lucas

where g1 and g9 are the roots of the characteristic equation x
sequence Sp+2 = Spt+1 + Sh.
If the terms of the sequence (1) take m = 2, Sy = 0,51 = 1 and a9 = 1,a; = 2, the

Binet-like formula for the Pell numbers will be denoted by

n __ .n
S, =29
92 —q1

where ¢; and ¢o are the roots of the characteristic equation 2> — 2z — 1 = 0 of the Pell
sequence Syt = 25,41 + Sh.

If the terms of the sequence (1) take m = 2, Sy = 0,51 = 1 and ag = 2,a; = 1, the
Binet-like formula for the Jacobsthal numbers will be denoted by

5, = L4t
92 —q1

where ¢ and ¢y are the roots of the characteristic equation 22 — 2 —2 = 0 of the Jacobsthal
sequence Sy1o = Sp+1 + 25,.

If the terms of the sequence (1) take m = 2, Sy = a,S1 = b and a9 = —q,a; = p, the
Binet-like formula for the Horadam numbers will be denoted by

g _ laa1—b)gz — (agz —b)ai
" a2 —q1

where ¢, and g2 are the roots of the characteristic equation 2 —pz +¢ = 0 of the Horadam
sequence Sp+2 = pSp+1 — ¢S,

If the terms of the sequence (1) take m = 2, Sy = 1,5; =t and ag = —1,a; = 2t, the
Binet-like formula for the Chebyshev polynomials will be denoted by

(t—q)gy — (t — q2)qt
42 — q1

Sp =

where q; and ¢o are the roots of the characteristic equation x? — 2tz + 1 = 0 of the
Chebyshev polynomial sequence Sy, 19 = 2tS;,+1 — Sy.

If the terms of the sequence (1) take m = 3, Sp = 1,57 = 1,5, =1 and a9 = 1,01 =
1, a2 = 0, the Binet-like formula for the Padovan numbers will be denoted by

Sn = p1qy + p2q3 + P3q3
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(g2 —1)(gz — 1) Dy — (@1 —1)(gs — 1) s — (1 —1)(e2 = 1)
(1 — a2)(q1 — g3)° (22 — @1)(g2 — g3) (a3 —q1)(a3 — ¢
g3 are the roots of the characteristic equation 3 — 2 — 1 = 0 of the Padovan sequence
Sn+3 = SnJrl + Sn
If the terms of the sequence (1) take m = 3, Sp = 3,51 = 0,52 = 2 and a9 = 1,41 =
1,as = 0, the Binet-like formula for the Perrin numbers will be denoted by

where p; =

] and q1, g2,

Sp=0qf +a5 + 5.

where q1, g2, g3 are the roots of the characteristic equation 23 — 2 — 1 = 0 of the Perrin
sequence Sp43 = Spt1 + Sn.

If the terms of the sequence (1) take m = 3, Sp = 0,51 = 1,82 = 1 and ag = 1,41 =
1,a = 1, the Binet-like formula for the Tribonacci numbers will be denoted by

Sn = p1qy + p2q3 + P3g3

+2 -+2 —+2
qr @ q3

y P2 = y P3 =
(1 — @) (@1 — g3) (g2 — q1)(q2 — g3) (g3 — q1)(g3 — q2)
q2, q3 are the roots of the characteristic equation 23 — 22 — 2 — 1 = 0 of the Tribonacci
sequence Sp4+3 = Spt+2 + Sn+1 + Sy.
The Binet-like formulas and generating functions of some special sequences are available
in the studies in [25, 27, 7, 20, 10, 15, 12, 23, 38, 17, 14, 31, 11, 9, 13, 33, 18, 8, 16, 30,
32, 6, 34, 36, 35, 39, 26, 19, 37, 21, 22, 28, 29, 24, 40]. Now we give generating function
for the m—order linear recursive sequences.
In [43], the generating function of the m—order linear recursive sequences is

where p; =

and qq,

By choosing suitable initial conditions and coefficients we obtain the generating functions
for the well-known sequences as follows:
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m S0,51, -+, Sm—1 A0y Gy« - vy Q1 Generating Functions Names of sequence
2 So=0,58 =1 ap=1,a1 =1 T Fibonacci
1 —2:E — 2
2 So=2,51=1 ag=1,a1 =1 T Lucas
1— T — x2
2 5020751:1 a0:1,a1:2 m Pell
2 So=0,51=1 ag=2,a1 =1 _ Jacobsthal
1-— :g — 222
2 So=a,5,=> ag=q,a1 =p M Horadam
1 —Ipm ; qr
2 So=1,81=t ag=—1,a1 =2t LU Chebyshev polynomials
1— 2t_|a_: i&— x2
3 S=1,8=1,8=1 a=1,a=1,a,=0 _ree Padovan
1—a22 -3
3— 22 .
3 50:375120,52:2 aozl,alzl,agzo T 2 .3 Perrin
1-— ri—x
3 S5=0,5=1,5=1 ag=1a=1a=1 Tribonacci

1—az—22—2a3

Now we give exponential generating function for the m—order linear recursive se-

quences.

The exponential generating function of the m—order linear recursive sequences is

m

00 o

E Snizg preqr$~
n!

n=0

r=1

By choosing suitable initial conditions and coefficients we obtain the generating
functions for the well-known sequences as follows:

50,815+, Sm—1

ap,at, . .-

s Am—1

Exponential Generating Functions

Names of sequence

m
2
2
2

wWww N

So=0,51=1
Sp=2,51=1
Sop=0,51=1

apg =1,a1 =
ap =1,a1 =

apg =1,a1 =

1
1
2

Sop=0,51=1 ag =2,a1 =1

So=a,S1 =b ap =4g,a1 =p

So=1,51 =t ag = —1,a1 =2t
So=1,851=1,8,=1 ag =1,a1 =1,a2 =0
S0 =3,51=0,52 =2 ag =1,a1 =1,a2 =0
So=0,51=1,5=1 ag=1l,a;1 =1l,a2 =1

cI2T — d1T

92 — 4
E!12g +€lem
42T _ q1®

eqzqg _ Zlnw

q2 — g1
(a1 — b)e92% — (agy — b)et1®

q2 — g1 o
(t — q1)e?2® — (i — gg)enr®

q2 — g
prel® +P2€q27}+1736q31
ed1® 4 92T 4 o437
p1efl® 4+ pred2® 4 p3ed3®

1.1. m—Order Linear Recursive Quaternions

A quaternion is defined by

q = apeg + aje1 + azez + azes

Fibonacci
Lucas

Pell
Jacobsthal
Horadam

Chebyshev polynomials

Padovan
Perrin
Tribonacci

where ag, a1, as and az are real numbers and eg = 1, e; = i, e3 = j and e3 = k are the
standart basis in R%.
The quaternion multiplication is defined using the rules:

e%:e%:egz—l
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€1€2 = —e9€] = €3, €23 — —€3€2 — €1 and €361 — —€1€3 — €9.

This algebra is associative and non-commutative.
Let ¢ = ageg +ar1e1 + ages +azes and p = bpeg + breg + baes + bzes be any two quaternions.
Then the addition and subtraction of them is

qF p=(ao Fbo)eo + (a1 F bi)er + (a2 F ba)ea + (az F b3)es
and for k € R, the multiplication by scalar is
kq = kageg + kare1 + kases + kases
and the conjugate and norm of a quaterion are
q = apep — a1e] — azez — azes

and
N(q):qq:a%—i-a%%-a%—l—a%.

Addition, equality and multiplication by scalar of two quaternions can be found [1, 2, 5].

Definition 1.1. The m—order linear recursive quaternion {QSy,}n>0 is defined by

QS = Speg + Spy1e1 + Spy2e2 + Snises (3)
where S, is the m—order linear recursive numbers.

Theorem 1.2. The Binet-like formula for the m—order linear recursive quaternion
{an}nzo 18

m

QS, = Zprq}q;l (4)

r=1
where ¢, = ey + qre1 + q?,eg + q,?,’eg.

Proof. From the definition of the m—order linear recursive quaternion Q5S, in (3) and
Binet-like formula for the m—order linear recursive number S,,, we write

QS,, = Speg + Spy1e1 + Spi2e2 + Spyzes
m m m m
= g0+ Y ped e + > pedi e+ Y prgles
r=1 r=1 r=1 r=1

m
> pr(eo + grer + gies + gles) qf
r=1

Prdrq,

[
NE

ﬁ
Il
MR
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As a special case of the equality (4), the Binet-like formula of Fibonacci quaternions
can be given as follows:
For m = 2, the Binet-like formula for the Fibonacci quaternions will be denoted by

A n o ~on
a2 —q1
where ¢; and ¢ are the roots of the characteristic equation 22 — 2z —1 = 0 of the Fibonacci
sequence Spig = Spi1+ S, and ¢1 = e +qje1 + qiea +gies, G2 = eo + qze1 + giea + gaes.
Binet-like formulas of other special quaternion sequences can be obtained in a similar way
using (4).
Theorem 1.3. The generating function for m—order linear recursive quaternion

{ as, }nZO 18

(eoz® 4+ e12? + eaw + e3) Gs(x) — (So(e12? + ez + €3) + Si(e2x? + esz) + Sa(eza?))
23

Gos(z) =
where Gg(x) is the generating function of the m—order linear recursive sequences

Proof. Let

[e.e]
Gos(r) =)  QSna" (5)
n=0
be generating function of the m—order linear recursive quaternion. We have
Gos(z) = Z (Sneo + Snt+1€1 + Snt2ez + Snises) ™
n=0
= ep Z Spx” + ey Z SnJrla?n + e2 Z Sn+2.’17” +e3 Z SnJrga?n
n=0 n=0 n=0 n=0
1 S 1 S S
= eoGS(x) —+ €1 (GS(.T)x — m) —+ €92 (GS(QS')J/Q — ? — x)

3 3 a2 x

1 S S S
+es3 (GS(:C)— 22 —2)

(e0z® + e12? + eax + €3) Gs(x) — (So(e12? + eax + e3) + S1(e20? + e3x) + Sz (e33?))
23

O]

As a special case of the equality (5), the Binet-like formula of Fibonacci quaternions
can be given as follows:
For m = 2, the generating function for the Fibonacci quaternions will be denoted by

z+er +exz+1)+es(z+2)

Generating functions of other special quaternion sequences can be obtained in a similar
way using (5).
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Theorem 1.4. The exponential generating function of the m—order linear recursive
quaternions is

m
= priretr” (6)
r=1
Proof. Let
oo "L‘n
=2 9%y
n=0 "

Using the identity (2), we get

Z QS — ZZPTQT‘QT ' Zpr%"

n=0r=1 r=1 n=0

Zp G et

O]

For m = 2, the exponential generating function for the Fibonacci quaternions will be
denoted by

G — et

Esle) = @2 —q

Exponential generating functions of other special quaternion sequences can be obtained
in a similar way using (6).
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