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Abstract. Unsupervised techniques are ubiquitous to study and un-
derstand the complex patterns that arise when analyzing genomic data
at single-cell resolution. Particularly, unsupervised deep learning models
provide state-of-the-art solutions for the most common tasks that arise
when dealing with scRNA-seq data. However, the biological usefulness
of these complex models is burdened by their black-box nature. To ad-
dress such limitations several lines of research have emerged, from post
hoc approximations to ante hoc modeling. In this work, we study the be-
havior of two biologically-constrained variational autoencoders (ante hoc
modeling). On the one hand, we use a one-layer architecture where the
constraints come from the signaling pathways, and, on the other hand, we
propose a two-layer architecture following the recent trends in mechanis-
tic models of signal transduction. We use the representations learned by
the model as proxies of the signaling activity at the single-cell level. We
check the performance of the scoring model using a known scRNA-seq
public dataset with a clearly established ground truth. Although both
models capture the relevant signals, the most pronounced differences are
better captured by the one-layer architecture, while the two-layer design
is able to learn more fine-grained features that can expose less prominent
aspects of the data.

Keywords: variational autoencoder (VAE) · single-cell RNA sequenc-
ing (scRNA-seq) · latent space representation · interpretable neural net-
work (xAI).
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1 Introduction

The emergence of single-cell RNA sequencing (scRNA-seq) technologies has en-
abled the study of the complexity and heterogeneity at the transcriptomic level
with an unprecedented resolution [24]. However, as the technologies advance so
does the computational needs, in order to produce tools, protocols, and models
that can cope with the increasing data dimensionality [16,32]: at the sample
(more cells), variable (e.g. more genes), and modality axes (different kinds of
measurements).

From a data science point of view, there are innumerable challenges that
arise when trying to decipher the complex patterns across the myriad of single-
cell datasets released on a yearly basis: from cell-type clustering, annotation,
visualization, quality control, dataset integration, to name a few [16]. Machine
Learning [23], and in particular Deep Learning-based solutions [29], are especially
well suited for scRNA-seq data-driven tasks.

However, the latent representations learned by deep-learning-based methods
are not useful for interpreting the underlying biology [30], which is a major
drawback from a systems-biology point of view. To address these limitations
several ante hoc, which make the model more interpretable a priori, and post hoc,
which explain the model a posteriori using subrogate interpretable models, have
been proposed. In this work, we are interested in domain-constrained models [5],
where the wiring of the neural networks (NNs) is conditioned by one or multiple
sources of a priori knowledge of the domain (biology in our case).

Among the plethora of explainable modeling solutions, domain-constrained
deep learning models have drawn the attention of the research community. For
instance, Visible Neural Networks (VNNs), NNs where the layers are coupled
with representations of the biological components of human cells, have been
used to better understand eukaryotic cells [19] or to model the human cell struc-
ture to predict anti-cancer drug responses [15]. In [18] they propose ExiMap,
an interpretable network for data integration and gene program discovery. Al-
though a review of the different explainability and interpretability methods and
terminology is beyond the scope of this work, we refer the reader to consult [7]
for a general review and [33] for a biology-focused one.

In this work, we aim to analyze the biological utility of the representations
learned by a variational autoencoder (VAE) constrained by cell signaling entities.
More precisely, we are interested in studying how the source of a priori knowledge
conditions the biological results offered by the model. To this aim, we train the
informed VAE using two different sources of domain knowledge: i) the Reactome
pathway database [6] and ii), the Kyoto Encyclopedia of Genes and Genomes
database (KEGG) [22]. While on Reactome we use the gene sets as is, to make
it easily comparable with the literature [11], when using the KEGG database
we follow the recent trends in mechanistic modeling to decompose the pathways
into smaller functional units (the so-called circuits) [12,4]. The models are fit to a
dataset of human peripheral blood mononuclear cells (PBMCs) of lupus patients
where the ground truth of an interferon-β perturbation experiment is known [13].
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We empirically demonstrate how the biological signal learned by a simple known
VAE architecture can be refined by using more fine-grained constraints.

2 Materials and Methods

2.1 Dataset

In this work, we evaluate the proposed model’s biological usefulness by scor-
ing the pathway and circuit activities in a publicly available dataset that con-
tains untreated and IFN-β stimulated human peripheral blood mononuclear cells
(PBMC) from eight patients with Lupus [13], see Table 1 for a brief summary of
the cell type distribution. The data was obtained using the scanpy library [31],
as described in the book “Single-cell best practices” [11].

The dataset allows us to easily measure the performance of unsupervised
methods since we have the ground truth for the perturbations, thus we can use
an unsupervised method for inferring the signaling activity and compare the
results across the two groups: control and stimulated. Due to the nature of the
perturbation, we expect that interferon-based pathways are scored higher in the
stimulated population than in the control (non-stimulated) cells. This is a known
result [11,18] when studying the dataset with the Reactome pathway database
[6].

Table 1. Cell type distribution of the untreated and IFN-stimulated human PBMC
cells dataset by Kang et al. [13]

Condition
B

cells
CD14+

Monocytes
CD4 T
cells

CD8 T
cells

Dendritic
cells

FCGR3A+
Monocytes

Megakar-
yocytes

NK

control 1316 2932 5560 811 258 520 63 855
stimulated 1335 2765 5678 810 271 569 69 861

2.2 Sources of biological information

In order to elucidate if the VAE activity scoring is stable under changes of the a
priori knowledge used to inform the network, we trained two Neural Networks
using different sources of biological knowledge. On the one hand, we have trained
a VAE informed by the Reactome pathway knowledgebase [6] and, on the other
hand, we have used the Kyoto Encyclopedia of Genes and Genomes database
(KEGG) [22] to inform the neural network architecture. See Section 2.3 for a
concise explanation of how the information is used to inform the variational
autoencoder design.
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2.3 Model Design

In this work, we proposed a biologically constrained artificial neural network,
i.e. a NN whose weights and kernels (the informed layers) are conditioned by a
set of a priori knowledge. We aim to improve the explainability of the model by
learning biologically interpretable scoring functions from each informed layer.

Variational autoencoders To learn a latent representation of the data we
adopt a variational autoencoder (VAE) architecture (see Figure 1), which is
a type of deep generative model used for unsupervised learning that learns a
probability distribution over the latent representation. It aims to reconstruct
data points (x), let’s call (x̂) the reconstructed approximation, with a minimum
error as possible by means of a composite network conformed by an encoder (e)
and a decoder (d) block joined in a non-trivial way (i.e. there is a bottleneck
layer where the information is necessarily compressed).

The model assumes that there is an underlying data distribution, where the
encoder gives us the distribution (Gaussians µx, σx)) of this latent representation
of the data (Equation 1a), while the decoder block samples from the distribution
generating new data points (Equation 1b), the approximation (x̂). These latent
variables are used to sample a vector (z) (see Equation 2) which is used to feed
to the decoder block (see Equation 1b) to reconstruct the input data.

To optimize the model, two terms are needed to compose the final loss
function (Equation 3a): the reconstruction loss (Equation 3b) and the Kull-
back–Leibler divergence or similarity loss. These terms are derived from the
probabilistic model, in our case, given the Gaussian assumptions, the recon-
struction loss takes the form of the mean squared error between the input (x)
and the approximation (x̂) data points, while the KL loss guides the model to
become a unit normal distribution (Equation 3c). To compute the expectation
value of the reconstruction term we use the sampling approximation.

encoded data(e) = N (µx, σx) (1a)

decoded data = d(z) (1b)

sampling = z ∼ N (µx, σx) (2)

loss = reconstruction loss+ similarity loss (3a)

reconstruction loss =
1

N

N∑
i=1

(xi − x̂i)
2 (3b)

similarity loss = KL[ N (µx, σx),N (0, 1) ] (3c)
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Fig. 1. Proposed Variational autoencoder (VAE) architecture

Signaling-primed layers In this work, we constrain the VAE architecture by
using a priori biological knowledge that informs the construction and operations
of the layers. An informed layer behaves as a linear layer except that the kernel is
informed by an indicator matrix (IS) that informs, using a collection of biological
entities S = {s}nS

j=1, which inputs of the previous layer should be used. Thus, if
the previous layer has the biological entities A = {a1, . . . , ak}, IS(i, j) = 1 if the
entity ai belongs to the entity sj , otherwise IS(i, j) = 0.

An S-informed layer H⋆
S is updated using the following formula:

H⋆
S = activation ((W ⊙ IS)H+ b) (4)

where W and b denote the corresponding weight and bias tensors, IS the
indicator matrix of the signalization gene set S, H the previous layer out-
puts, activation in an activation function and, ⊙ represents the element wise
(Hadamard) product.

As has been mentioned before, in this work we define two different archi-
tecture designs. On the one hand, we use the Reactome pathway database to
inform the first hidden layer of the VAE, thus we only have one informed layer,
where A are the genes, S is the collection of the pathway gene sets and IS en-
codes the information of which gene belongs to every gene set. On the other
hand, the architecture for the KEGG database is constructed using the circuit
decomposition proposed in [12], where each pathway is decomposed into effector
sub-pathways (so-called circuits) that represent the minimal functional units. We
inform the first hidden layer of the architecture using the gene sets defined by the
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circuits in a similar fashion as with Reactome pathways, where A,S represent
the genes circuits, respectively. However, given that each pathway is decomposed
into as many circuits as effector genes, the resulting neuronal wiring could be
too sparse, since each circuit has potentially new genes compared to whole path-
ways. To overcome such limitations, we create a second hidden layer based on
the pathways, a node of the first hidden layer is connected to a node of the sec-
ond layer if the circuit that it represents belongs to the pathway represented by
the node of the second hidden layer. To avoid connecting the layers in blocks, we
also connect a pathway ℓ with a circuit j if they share a gene. This KEGG-based
design improves upon other works by the authors when conditioning supervised
neural networks to identify cell types [9,8].

The circuit decomposition and gene set extraction for the KEGG database
has been done using the HiPathia R package (v 2.11.4) [12] for the Homo sapiens
organism.

Hyperparameter selection We trained the networks for 100 epochs, used
Hyperbolic tangent activation functions for all layers except the output layer for
the decoder which uses a linear activation function, and the informed layers were
regularized using ℓ2-based activity regularizers, and we used the ADAM opti-
mizer [14]) for the optimization with a learning rate of 1e-5. It was implemented
in Python 3.10 using numpy (v 1.23.5) [10], scipy (v 1.10.1) [28] and TensorFlow
2.10 [20]

2.4 Visualization and comparison of the signaling activity

Since the signaling entities, either from circuits or pathways, are first-class en-
tities of our model, we can use standard statistical tools to analyze the inferred
signaling activity at the single-cell resolution.

The Scanpy library [31] has been used to visualize the signaling activities
inferred by the VAE at single-cell resolution following the standard procedure
to visualize gene expression: i) we create an AnnData object [27,26] where the
bottleneck layer substitutes the slot of gene expression data, ii) compute the
neighbor graph, iii) cluster the cells using the leiden algorithm [25] as proposed
in [17], iv) use the UMAP dimensionality reduction technique [21] to produce
a two-dimensional space that is easy to visualize, v) add new layers with the
inferred activities, and vi) color the cells by the inferred activity of any given
circuit or pathway.

In this work, we have used the tools provided by the Scanpy library to per-
form Wilcoxon rank-sum tests to compare the inferred signaling activity across
different groups of cells: IFN-β stimulated versus control (i.e. non-stimulated)
cells. In all cases, p values have been corrected for multiple testing with False
Discovery Rate (FDR) [3]. We report circuit/pathway names, the test scores
(scores), FDR-adjusted p values (pvals adj), and the log fold change (logFC)
between the conditions.
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2.5 Code availability

The code required to train the networks and execute all of the analyses reported
in this work can be found at https://github.com/babelomics/ivae scorer.

3 Results

In this section, we present the results of our signaling scoring model trained
with KEGG or Reactome as the source of a priori knowledge (see Section 2.3).
All the models have been fitted using the same hyperparameter schema (see
Section 2.3) to the dataset of PBMCs cells described in Section 2.1. The ground
truth is labeled as stimulated or control to indicate if the cells have been treated
with interferon-β (IFN-β) or not, respectively.

3.1 Pathway activity at single-cell resolution using KEGG as prior
knowledge

Here we present the results on the IFN-β perturbed dataset [13] (see Section 2.1)
for the proposed VAE scoring model using the KEGG pathway database as the
source of a priori information 2. Once the model has been fitted, we compute
the circuit activities using the first hidden layer of the encoder (see Section 2.3)
and use them to carry out a Wilcoxon rank-sums test between the control and
stimulated cell groups. The results for the top-10 ranked circuits are summarized
in Table 2. The nomenclature for the circuits is “pathway: effector genes”.

As expected, the top-ranked circuits detected by our method capture parts
of interferon-related signaling pathways. The list is dominated by the “Rig-I-
like receptor” pathway since most of its circuits are represented, which could be
driven by the fact that RIG-I-like receptors (RLRs) recruit particular intracel-
lular adaptor proteins to activate signaling pathways that result in the creation
of type I interferon, among other inflammatory cytokines. Moreover, the circuits
that have IFN-α or IFN-β as effectors, namely the “Toll-like receptor signaling
pathway: INF-α” and “Toll-like receptor signaling pathway: INF-β” circuits, are
among the top-ranked circuits, which should be expected given the interferon-
based treatment.

One of the advantages of cell-level gene-set scoring mechanisms is that we
can identify cells where specific gene sets are active [1], in our case signaling cir-
cuits/pathways. Although a complete analysis of the scoring performance across
the different cell groups is beyond the scope of the present work, Figure 2 shows
the activity at the single-cell resolution of the major sources of variation across
the stimulated and control groups. As outlined in Section 2.4 each axis repre-
sents a component of the UMAP reduction of the latent space learned by the
VAE. The top sub-figures represent the cells grouped by either the condition
(control or stimulated) or the cell type. Instead, the rest of the sub-figures show
the change in the level of activity of each signaling circuit across the cells.

https://github.com/babelomics/ivae_scorer
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condition

RIG-I-like receptor
MAPK14

RIG-I-like receptor
MAPK8

RIG-I-like receptor
MAVS TMEM173

0.02   0.04    0.06    0.08   0.10    0.12

cell type

0.025  0.050   0.075  0.100  0.125 0.025   0.05   0.075  0.10   0.125    0.15

a. b. c.

RIG-I-like receptor
CHUK IKBKB IKBKG

0.02   0.04   0.06  0.08   0.10   0.12

RIG-I-like receptor
IRF7

0.025  0.05  0.075  0.10  0.125  0.15

RIG-I-like receptor
NFKB1

0.02        0.04        0.06        0.08

Natural killer cell 
mediated cytotoxicity

TNFRSF10D

0.05        0.10        0.15        0.20

RIG-I-like receptor
IRF3 PIN1

0.02       0.04       0.06       0.08

Cytosolic DNA-sensing
TBK1

0.02      0.04      0.06      0.08      0.10

Toll-like receptor
IFNA1

0.02    0.04    0.06    0.08    0.10

Fig. 2. Circuit activity scoring using the KEGG-informed VAE.
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Table 2. Top 10 differentially activated KEGG circuits with respect to the stimulated
versus control comparison

circuits scores pvals adj logFC

RIG-I-like receptor: MAVS TMEM173 104.57 0.00 2.63
RIG-I-like receptor: MAPK14 103.98 0.00 2.63
RIG-I-like receptor: MAPK8 103.82 0.00 2.62
RIG-I-like receptor: CHUK IKBKB IKBKG 100.95 0.00 2.34
RIG-I-like receptor: IRF7 100.26 0.00 2.46
RIG-I-like receptor: NFKB1 97.65 0.00 2.06
Natural killer cell mediated cytotoxicity: TNFRSF10D 62.89 0.00 0.55
RIG-I-like receptor: IRF3 PIN1 62.15 0.00 1.36
Cytosolic DNA-sensing pathway: TBK1 61.26 0.00 1.36
Toll-like receptor: IFNA1 58.35 0.00 1.37

3.2 Pathway activity at single-cell resolution using Reactome as
prior knowledge

Following an analogous procedure to the one presented in the previous section
for the KEGG database, we fitted a Reactome-informed VAE to the same IFN-β
perturbed dataset [13].

Table 3 shows the top 10 deferentially activated Reactome pathways with
respect to the stimulated versus control comparison following the Wilcoxon pro-
cedure (see Section 2.4). Given that a group of cells has been stimulated with
IFN-β, it is expected that interferon-related pathways should be ranked higher
in the stimulated cells with respect to the control population [13,11], as it is the
case: the top expressed pathways in stimulated cells according to the Reactome-
informed VAE include the “Interferon α, β Signaling”, “Interferon Signaling”,
“Interferon Gamma Signaling”, and “Antiviral Mechanism By IFN Stimulated
Genes” pathways, among others. activated Reactome pathways with respect to
the stimulated versus control comparison following the Wilcoxon procedure (see
Section 2.4). Given that a group of cells has been stimulated with IFN-β, it is
expected that interferon-related pathways should be ranked higher in the stim-
ulated cells with respect to the control population [13,11], as it is the case: the
top expressed pathways in stimulated cells according to the Reactome-informed
VAE include the “Interferon α, β Signaling”, “Interferon Signaling”, “Interferon
Gamma Signaling”, and “Antiviral Mechanism By IFN Stimulated Genes” path-
ways, among others.

Figure 3 shows the pathway activity scores at the single-cell level for the
top-scored interferon-related pathways. The figure is composed as in the KEGG-
informed case, the axes represent the UMAP reduction of the cell representation
learned by the Reactome-informed VAE, we show the cell type and condition
groups, as well as the activity of each top-ranked Reactome pathway across the
cells.

The results of the Reactome-informed VAE are on par with those presented
in the “Single-cell best practices” manual [11] where they use the same IFN-β
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Table 3. Top 10 differentially activated Reactome pathways with respect to the stim-
ulated versus control comparison

pathways scores pvals adj logFC

Interferon α, β Signaling 109.32 0.00 3.75
Interferon Signaling 105.27 0.00 2.42
Cytokine Signaling In Immune System 104.96 0.00 2.43
Negative Regulators Of DDX58 IFIH1 Signaling 102.65 0.00 2.39
Antiviral Mechanism By IFN Stimulated Genes 101.54 0.00 2.38
NS1 Mediated Effects On Host Pathways 95.99 0.00 2.15
Interferon Gamma Signaling 88.25 0.00 0.97
OAS Antiviral Response 87.39 0.00 2.44
Post Translational Modification... 87.00 0.00 2.19
DNA Damage Bypass 84.06 0.00 1.83

perturbed dataset to assert the performance of the decoupleR tool [2] when
inferring the activity of the pathways at the single-cell resolution by means of
the AUCell method [1].

Furthermore, the difference at the signaling level between the stimulated and
control condition is clearer and easier to interpret when using Reactome to in-
form the VAE since it includes a specific entity for the interferon signaling path-
way.

3.3 Gene-set precision

In this section, we use the previously fitted models (KEGG and Reactome in-
formed VAE) to study the Influenza pathway, whose enrichment has been already
described for the dataset under study in [13].

When using the KEGG-informed VAE we observe a significant alteration
of the “Influenza A: IRF7” circuit (part of the “Influenza A” KEGG pathway)
between the control and stimulated condition (FDR-adjusted p-value < 0.05,
logFC > 1). Interestingly, the “Influenza A: IRF7” circuit leads to the interferon-
based T cell activation and antibody response. Figure 4 shows the “Influenza A:
IRF7” circuit scores across the cells using the same representation schema of the
previous section.

However, when using the broader Reactome pathways to inform the VAE, the
model losses the ability to capture the Influenza-based differences that require
more precise gene sets. Instead, the model captures differences at the cell-type
level, as can be seen in Figure 5.

Note that, these differences in performance could not be related to differences
in the intrinsic quality of the databases. Further research is needed since it is
likely that the Influenza signal could be captured with the Reactome database
by finding a way to decompose each pathway into functional subunits akin to
what we have done with the KEGG database.
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condition

Interferon Signaling Cytokine Signaling 
In Immune System

Interferon α, β
Signaling

0.1         0.2         0.3        0.4        0.5

cell type

0.1              0.2              0.3

a. b. c.

Negative Regulators Of 
DDX58 IFIH1 Signaling

0.02     0.04     0.06     0.08     0.10

Antiviral Mechanism By 
IFN Stimulated Genes

NS1 Mediated Effects 
On Host Pathways

0.02        0.04        0.06        0.08

Interferon Gamma 
Signaling

OAS Antiviral 
Response

Post Translational 
Modification

DNA Damage 
Bypass

0.1         0.2         0.3        0.4        0.5

0.05           0.10            0.15 0.1              0.2              0.3

0.02          0.04          0.060.02   0.04   0.06  0.08   0.10   0.120.02    0.04    0.06    0.08    0.10

Fig. 3. Pathway activity scoring using the Reactome-informed VAE.



12 P. Gundogdu et al.

condition Influenza A
IRF7

cell typea. b. c.

0.02          0.04          0.06

Fig. 4. Influenza circuit scoring using the KEGG-informed VAE.

condition Influenza Infectioncell typea. b. c.

0.1           0.2           0.3           0.4

Fig. 5. Influenza pathway activity scoring using the Reactome-informed VAE.

4 Conclusions

This work provides an empirical evaluation of how unsupervised neural networks
can be conditioned with a priori biological knowledge to infer cell-level pathway
activities. Our proposed signaling-informed variational autoencoder provides re-
sults comparable to those found in the literature while being easily extensible to
include other biological entities. However, as expected, our model works better
if the knowledge base used to inform the wiring of the neural network includes
entities that are better aligned with the underlying biological conditions.
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2. Badia-i-Mompel, P., Vélez Santiago, J., Braunger, J., Geiss, C., Dimitrov, D.,
Müller-Dott, S., Taus, P., Dugourd, A., Holland, C.H., Ramirez Flores, R.O., Saez-
Rodriguez, J.: decoupleR: Ensemble of computational methods to infer biological
activities from omics data. Bioinformatics Advances 2(1), vbac016 (Jan 2022).
https://doi.org/10.1093/bioadv/vbac016

3. Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society.
Series B (Methodological) 57(1), 289–300 (1995)
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