
Paving the path towards platform
engineering using a comprehensive

reference model

Ruben van de Kamp
ruvdkamp@gmail.com

July 28, 2023, 94 pages

Academic supervisor: Dr. Zhiming Zhao, z.zhao@uva.nl

Daily supervisor: Kees Bakker, k.bakker@hostedsolutions.nu

Host organisation/Research group: Wehkamp, wehkamp.nl

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Master Software Engineering

http://www.software-engineering-amsterdam.nl

mailto:ruvdkamp@gmail.com
mailto:z.zhao@uva.nl
mailto:k.bakker@hostedsolutions.nu
wehkamp.nl
http://www.software-engineering-amsterdam.nl

Abstract

Amidst the growing popularity of platform engineering, promising improved productivity and enhanced
developer experience through an internal developer platform (IDP), this research addresses the prevalent
challenge of a lack of a shared understanding in the field and the complications in defining effective,
customized strategies. Introducing a definitive Platform Engineering Reference Model (PE-RM) based
on the Open Distributed Processing reference model (ODP-RM) framework to provide a common under-
standing. This model offers a structured framework for software organizations to create tailored platform
engineering strategies and realize the full potential of platform engineering. The reference model is val-
idated by conducting a case study in which a contextual design and technical implementation guided
by the reference model is proposed. The case study offers guidance in designing platform engineering in
the context of a software organization. Furthermore, it showcases how to construct a technical platform
engineering implementation, which includes experiments exposing the productivity improvements and
applicability of the implementation. By facilitating a shared vocabulary and providing a roadmap for
implementation, this research aims to mitigate prevailing complexities and accelerate the adoption and
effectiveness of platform engineering across organizations.

Keywords: Platform engineering, reference model, system modeling, cloud infrastructure, Platform
as a Service, development lifecycle

1

Contents

1 Introduction 4
1.1 Problem statement . 4

1.1.1 Research questions . 5
1.1.2 Research method . 6

1.2 Contributions . 6
1.3 Outline . 6

2 Related work 7
2.1 Platform engineering . 7

2.1.1 IDP Reference Architecture . 7
2.1.2 Platform tooling . 8

2.2 Related research . 9
2.2.1 Platform engineering in enterprise application development 10
2.2.2 Composable DevOps . 10

2.3 Reference model frameworks . 10
2.3.1 Zachman framework . 11
2.3.2 Reference model for Service-Oriented Architecture (SOA-RM) 11
2.3.3 Open Distributed Processing reference model . 11
2.3.4 Comparison . 12

2.4 Project lifecycle reference models . 12
2.4.1 Adaptive enterprise project management (AEPM) 12
2.4.2 DevOps reference architecture (DRA) . 13
2.4.3 Software architecture framework for quality-aware DevOps 13

2.5 Summary . 13

3 Platform Engineering Reference Model 14
3.1 Methodology . 15
3.2 Viewpoints . 16

3.2.1 Enterprise viewpoint . 16
3.2.2 Information viewpoint . 23
3.2.3 Computational viewpoint . 26
3.2.4 Engineering viewpoint . 28
3.2.5 Technology viewpoint . 31

3.3 Validation . 32
3.3.1 Reference model comparison . 32
3.3.2 Expert feedback . 32

4 Case study 34
4.1 Conceptual design . 34

4.1.1 Analysis . 34
4.1.2 Requirements . 39
4.1.3 Design . 39
4.1.4 Summary . 43

4.2 Technical implementation . 43
4.2.1 Requirements . 44
4.2.2 Architecture . 45
4.2.3 Functionalities . 47

2

CONTENTS

4.2.4 Summary . 50
4.3 Experiments . 50

4.3.1 Productivity evaluation . 51
4.3.2 Usability study . 53
4.3.3 Platform expert feedback . 56

5 Discussion 60

6 Conclusion 62
6.1 Future work . 63

Bibliography 65

Glossary 68

Appendix A GitHub links 69

Appendix B Case study 70
B.1 Current tech stack . 70
B.2 Performance metrics . 71

Appendix C Implementation 75
C.1 Platform documentation . 75
C.2 Golden paths . 75
C.3 DroneCI pipeline configuration . 79
C.4 Custom backstage code . 80
C.5 Observability & logging . 81

Appendix D Productivity evaluation 83
D.1 Introduction form . 83
D.2 Roles . 83
D.3 Use case . 83

D.3.1 Description . 83
D.3.2 Responses . 84

D.4 Task one . 85
D.5 Task two . 86
D.6 Task three . 86

Appendix E Usability study 87
E.1 Introduction form . 87
E.2 Roles . 87
E.3 Open questions . 87
E.4 Closed questions . 89

Appendix F Platform expert feedback 91
F.1 Introduction text . 91
F.2 Roles . 91
F.3 Open questions . 91
F.4 Closed questions . 92

3

Chapter 1

Introduction

The digital age has initiated substantial transformations across all industries, making digitalization an
imperative for survival in today’s volatile market landscape [1]. In this rapidly growing software-driven
world, the need for organizations to be innovative and improve their technological infrastructure, effi-
ciency, and overall performance becomes more essential. This transition has amplified the importance of
software development and deployment, with DevOps and Agile acting as instrumental drivers of this digi-
tal revolution [2–4]. Agile, advocating adaptability and customer collaboration [5], and DevOps, fostering
cooperation between development and operations teams, enhance the efficiency and quality of software
delivery [6]. Amid increasing technological complexity, platform engineering1 is emerging as a promising
discipline. It focuses on altering the engineering culture and creating an engineering platform, e.g., an
Internal Developer Platform (IDP), to offer self-service capabilities for software development teams in
the cloud-native era [7, 8]. Platform engineering refers to the design, development, and management
of an engineering platform that supports the integration and interoperability of multiple components,
applications, or services 2,3. It involves the creation of robust, scalable, and modular platforms that
facilitate streamlined collaboration, data sharing, and communication across various systems and teams.
By adopting platform engineering principles, organizations can harness the potential of their technologi-
cal assets and resources to deliver more value to their customers and stakeholders. Moreover, it includes
organizational changes to enable development teams to work more efficiently, with the introduction of a
platform team responsible for the engineering platform and related tooling. Yet, interpretation variations
tied to personal perspectives and organizational contexts have rendered the definition ambiguous.

1.1 Problem statement

One of the key challenges software organizations face is the proliferation of tools, frameworks, and li-
braries, which leads to fragmentation and difficulty in selecting the most suitable technology stack. This
problem has been exacerbated by the increasing adoption of methodologies such as DevOps, which em-
phasize rapid iteration, continuous integration, and continuous delivery [9]. With this culture, each
team works independently, reducing the standardization across teams. The absence of clear adoption
and integration guidelines intensifies this issue, contributing to an accumulation of technical debt that
impacts system maintainability, scalability, and performance [10]. The increased tool diversity further
compounds labor costs and hinders effective knowledge sharing and innovation. Furthermore, deploying
applications consistently and reliably across diverse environments is another challenge within the current
software engineering field. Although DevOps advocates for seamless integration between development
and operations [9], managing complex dependencies and configurations across various teams and envi-
ronments is demanding [11, 12]. Inconsistent environments pose a high risk of deployment failures that
could result in service outages, lost revenue, and dissatisfied customers. The lack of standardization
further exacerbates operational costs and impedes the ability to invest in strategic initiatives.

The current software landscape necessitates collaboration between different teams. This is further
amplified by the adoption of methodologies such as DevOps and Agile, which advocate for seamless com-
munication, continuous feedback, and joint decision-making among development, operations, and quality
assurance teams [3, 9]. However, this can be challenging due to information silos and inconsistent pro-

1https://platformengineering.org/blog/what-is-platform-engineering
2https://www.gartner.com/en/articles/what-is-platform-engineering
3https://www.liatrio.com/blog/what-is-platform-engineering-the-concept-behind-the-term

4

https://platformengineering.org/blog/what-is-platform-engineering
https://www.gartner.com/en/articles/what-is-platform-engineering
https://www.liatrio.com/blog/what-is-platform-engineering-the-concept-behind-the-term

CHAPTER 1. INTRODUCTION

cesses, like deployment and development, which result in miscommunication, duplicated efforts, and
errors [12, 13]. This can stall an organization’s ability to deliver quality products and services on time,
leading to inefficiencies that heighten project costs and decrease productivity. Ineffective collaboration
may also lead to increased system complexity, longer development cycles, and inflated operational costs,
particularly visible within microservice architectures. Lastly, governance and resource management pose
significant challenges, particularly for the focus on cost management. The ease of resource provisioning
with cloud providers can result in over-allocation or under-utilization of resources, leading to unneces-
sary spending [14]. The blurred boundaries between traditional roles introduced by DevOps practices
complicate getting an overview and accountability. Organizations must carefully monitor their cloud
resources and associated costs to prevent overspending and unnecessary costs, a particularly pressing
concern in the era of Cloud computing and budget cuts [15].

DevOps enables companies to shift their software development to an agile and lean approach, wherein
software can be released early and with higher frequency[16–18]. This gives great advantages to orga-
nizations, but with these advantages, the described challenges are still present or even aggravated. The
proliferation of tools could be the result of the adoption of DevOps and Cloud computing since each
team is responsible for its entire lifecycle, including infrastructure, tools, and resources, resulting in an
increase in complexity and overlap across different teams. Moreover, without an operations team main-
taining the environments, the risk of inconsistency between environments can increase, resulting in more
deployment failures and maintainability issues. Since DevOps and Agile focus on the project lifecycle
and not on the organizational level, the communication challenges across the whole organization are left
behind, resulting in disparate processes and workflows. Different methodologies have been introduced
to reduce these challenges, like Site Reliability Engineering (SRE) [19], to reduce the time to resolve
production issues. However, it does not solve these challenges other than reducing the effects.

Based on the latest development in the software engineering field, we can conclude that there is a
need for a solution to these challenges stated above, and platform engineering is a candidate. However,
platform engineering adoption faces challenges such as inconsistencies in understanding across different
stakeholders and the interchangeable use of terminology like “Internal Developer Platform” and “De-
vOps”, which create communication hurdles and compromise the efficiency of technological strategies
4,5. Moreover, a clear understanding of the separation of accountability between different teams is es-
sential. Further addressing the team types differentiated by team topologies [20]. Hence, standardizing
the platform engineering terminology is critical to establishing a shared understanding and fostering effi-
cient industry practices, including the added value of platform engineering. Another significant challenge
involves crafting a tailored platform engineering strategy, which requires a deep understanding of the
organization’s processes and culture. It also necessitates comprehending how implementing platform en-
gineering could alter these facets. The complexity in this paradigm shift to platform engineering extends
to organizational changes, architectural design, technology selection, and operational management 6,7.

To address these challenges, this research proposes a reference model for platform engineering called
the Platform Engineering Reference Model (PE-RM). The framework seeks to clarify the nature and
scope of platform engineering, bridging comprehension gaps among various stakeholders. It dissects
platform engineering elements and provides a precise, standardized model, mapping the interconnected
components, processes, and roles. In addition, it includes a case study to validate the reference model.
It offers a guideline and small proof of concept on effectively designing and implementing platform
engineering guided by the PE-RM in a software organization.

1.1.1 Research questions

To tackle these issues, we investigate the following research question;
Main Research Question: How can a software organization effectively integrate platform engineering
using a comprehensive reference model?
In order to give a detailed answer to this question, we have decomposed it into several other research
questions:
RQ1: How to model platform engineering in the context of a software company?
By creating a reference model, we will provide a common understanding of platform engineering from

4https://www.gartner.com/en/articles/what-is-platform-engineering
5https://www.liatrio.com/blog/what-is-platform-engineering-the-concept-behind-the-term
6https://www.infoq.com/news/2023/02/platform-engineeringchallenges
7https://thenewstack.io/platform-engineering/platform-engineering-challenges-and-solutions

5

https://www.gartner.com/en/articles/what-is-platform-engineering
https://www.liatrio.com/blog/what-is-platform-engineering-the-concept-behind-the-term
https://www.infoq.com/news/2023/02/platform-engineering challenges
https://thenewstack.io/platform-engineering/platform-engineering-challenges-and-solutions

CHAPTER 1. INTRODUCTION

different viewpoints. Expert interviews and observations, in combination with the ODP (open distributed
processing) reference model, will be used to create this reference model.

RQ2: How to define a customized platform engineering design tailored to a specific organization?
A case study will be conducted to create a conceptual design guided by the reference model. Validating
the reference model and offering a guideline for designing a tailored platform engineering approach in the
context of a software organization.

RQ3: How to effectively construct a technical platform engineering implementation?
With the reference model and conceptual design, we will create a small prototype that contains the basic
elements of platform engineering. The engineering platform implementation will be used as an example
of a technical implementation and validation of the reference model.

1.1.2 Research method

In this project, we will first try to extract most of the information related to platform engineering from
scientific sources, such as papers (journal papers and conference papers) and theses. However, to get a
clear picture of the state-of-the-art of this new discipline, we will also be looking into industry-related
sources such as interviews, encyclopedias, whitepapers, and forums. All the scientific sources used will be
documented in the bibliography section of this thesis, using the plain Bibtex style. Some other sources,
such as references to forums and articles, will be documented using footnotes. To build the Platform
Engineering Reference Model, we want to conduct a conceptual analysis during this research, including
many expert interviews. The reference model will be created iteratively to validate and improve the model
based on new observations and information. Moreover, we will conduct a case study focusing on our host
organization to provide a conceptual design and technical implementation of platform engineering. The
case study will also be combined with controlled experiments based on the reference model proposed in
this research. By designing a conceptual design and implementing a basic technical engineering platform,
we are able to validate the Reference Model. The validation and evaluation of the proposed technical
implementation will be done by conducting various experiments with different stakeholders.

1.2 Contributions

Our research makes the following contributions:

1. Platform Engineering Reference Model (PE-RM)
The first result is the PE-RM modeled with the use of literature and conceptual analysis. This
reference model is based on the ODP-RM, and an iterative approach is used to improve the appli-
cability and completeness of the model and is validated by a case study.

2. Conceptual design of platform engineering within an organization
Based on the reference model, a case study on migrating to platform engineering is conducted. A
thorough analysis of the case company is performed, and from these observations, a conceptual
design guided by the PE-RM is proposed.

3. A technical platform engineering implementation
To validate the reference model and outline the added value of platform engineering, a proof of
concept (PoC) is created guided by the technical viewpoints of the reference model. This PoC
serves as validation and technical contribution to platform engineering using open-source tooling.
It provides proof and experiments demonstrating its value to a software organization.

1.3 Outline

In Chapter 2, we describe the related work of this thesis. In Chapter 3, we present the Platform
Engineering Reference Model (PE-RM) and its methodology. In Chapter 4, a case study will be presented,
which includes a conceptual design, technical implementation, and experiments of the implementation.
Chapter 5 will contain the discussion and threats to validity. Finally, we present our concluding remarks
in Chapter 6 together with future work.

6

Chapter 2

Related work

In this chapter, we will discuss work that is related to our research. Given that platform engineering is
an emergent field characterized by a relatively light academic literature base, there is also an emphasis
on industry-sourced literature and state-of-the-art tooling. Additionally, various studies that touch upon
platform engineering conceptually or through proposed solutions have been investigated, which proved
instrumental in enhancing the understanding of scientific contributions. Moreover, this section also
looks into the Open Distribution Processing Reference Model (RM-ODP) and other alternative reference
models to model platform engineering. Finally, different reference models and architecture of related
methodologies have been investigated.

2.1 Platform engineering

Platform engineering is getting more popular in the industry, and different types of resources on platform
engineering have been published, including reference architectures and open-source tooling that can help
to implement an engineering platform to support platform engineering adoption. In this section, we will
discover platform engineering-related initiatives relevant to this research.

2.1.1 IDP Reference Architecture

The essential component of platform engineering is an engineering platform e.g., Internal Developer
Platform (IDP), which will allow teams to be more productive and have a better developer experience
by offering self-service capabilities. It will take care of the tools needed to build an application and the
infrastructure to run applications. An IDP will be different for each organization; therefore, creating
a general reference architecture for such IDP can be difficult. There are many ways to create this
engineering platform. Nevertheless, Humanitec proposed a reference architecture that can be used as a
foundation to implement an IDP within an organization. Multiple variations of this reference architecture
are created with different cloud providers (AWS, GCP, Azure)8. In figure 2.1, the reference architecture
with AWS as a cloud provider is shown.

Although this is a technical implementation of the IDP, it can help understand how a potential
platform could be implemented with some specific tools. It helps us separate the components of an engi-
neering platform i.e. Internal Developer Platform (IDP), and what is essential. However, this reference
architecture delves into specific tool choices, which reduces the applicability of this architecture since it
can depend on individual preferences and pre-existing toolsets. Moreover, it ignores the organizational
and cultural changes necessary to adopt platform engineering and the IDP to be effective. A technical
understanding is not enough to implement platform engineering within an organization. Therefore, we
believe this reference architecture is not complete but valuable as input for the technical viewpoints of
our reference model.

8https://humanitec.com/reference-architectures

7

https://humanitec.com/reference-architectures

CHAPTER 2. RELATED WORK

Figure 2.1: Reference architecture Internal Developer Platform (IDP) 8

2.1.2 Platform tooling

In this subsection, we want to discuss the existing platform tooling related to platform engineering.

Otomi

Otomi9 is a self-hosted PaaS (Platform as a Service) and adds developer- and operations-centric tools,
automation, and self-service on top of Kubernetes, offering a multi and hybrid platform experience out-
of-the-box. Otomi is placed in the Cloud Native Computing Foundation (CNCF) landscape 10 under
the PaaS/Container Service section and attempts to connect many of the technologies found in the
CNCF landscape to provide direct value. Otomi is built on top of Kubernetes. It can be helpful as
it eliminates the need to re-inventing the wheel when building and maintaining your own Kubernetes-
based (developer) platform or bespoke stack. Otomi is open source and can be deployed and used in
your infrastructure, which enables organizations to take control of the tool and stack it supports.

For building a small proof of concept, this can be valuable as it offers out-of-the-box tooling. Still, as
a state-of-the-art, it can be a valid option when building an engineering platform implementation with
out-of-the-box functionality and configurations. It gives us more customization since we are not forced
only to use the tools shipped with this PaaS solution; therefore valid to quickstart our PoC. However, for
large organizations, it could be more beneficial to build your own platform based on already used tools.

Backstage

Backstage11 is an open-source developer portal platform built by Spotify that enables developers to man-
age the software development lifecycle (SDLC). It’s a centralized developer portal where developers can
discover services, provision applications, manage versions, documention, and much more. It offers tools
for technical and non-technical team members to perform software management tasks efficiently. The
main purpose of Backstage is to streamline the software development process by integrating functionality
into a single user interface, thereby simplifying the work of developers and increasing productivity.

Backstage is relevant to platform engineering because it essentially serves as a self-service developer
portal for software engineers, automating many aspects of the software development process. In a
company with a platform engineering team, these engineers would typically be responsible for building

9https://otomi.io/
10https://landscape.cncf.io/
11https://backstage.io/

8

https://otomi.io/
https://landscape.cncf.io/
https://backstage.io/

CHAPTER 2. RELATED WORK

and maintaining the underlying technology platforms that the developers use to create and operate
their applications. Backstage simplifies and accelerates this work, as it provides a unified interface for
developers to interact with the different platforms. This enables platform engineering teams to focus on
building robust, scalable technology platforms. At the same time, developers can more easily leverage
these platforms for their work, leading to a more efficient and productive engineering organization.

Azure DevOps

Azure DevOps12 is a suite of development tools, services, and features provided by Microsoft that helps
teams plan smarter, collaborate better, and ship faster with a set of modern dev services. It offers an end-
to-end DevOps toolchain for developing and deploying software. Azure DevOps includes Azure Boards for
work tracking, Azure Repos for source control, Azure Pipelines for CI/CD, Azure Test Plans for testing,
and Azure Artifacts for managing packages. It plays an integral part in the platform engineering realm
as it helps automate the software delivery process and reduces the complexity of managing the lifecycle of
applications, from planning, development, and testing, to deployment. By integrating all aspects of the
software development lifecycle into a single toolset, Azure DevOps allows platform engineers to establish
a unified and automated environment. However, since this tool is universal, not much customization can
be done, which could be essential if your organization requires specific functionality in order to adopt
platform engineering. depending on the organization. Therefore less suitable to fully adopt platform
engineering with this platform.

Heroku

Heroku13 is a cloud-based platform as a service (PaaS) that simplifies the deployment, scaling, and
management of applications. Developed by Salesforce, Heroku supports several programming languages,
including Java, Python, Ruby, Node.js, and more. With Heroku, developers push their application code,
and the platform takes care of the deployment and production environment – enabling developers to
focus on writing code without worrying about the hardware or IT infrastructure. In the context of
platform engineering, Heroku abstracts away many of the lower-level infrastructure management tasks.
This allows platform engineers to focus on more strategic, high-value areas such as optimizing application
performance, managing data services, or improving development processes. However, with the use of
Heroku, the organization is limited with the tools and processes they want to integrate.

SAP business technology platform

SAP Business Technology Platform (BTP) 14, formerly known as SAP Cloud Platform, is an integrated
offering from SAP that provides a suite of services, tools, and technologies to enable businesses to build,
extend, and run their applications in the cloud. It is a PaaS that provides capabilities for integrating
SAP and non-SAP applications, building custom applications, extending SAP cloud and on-premise
applications, and leveraging advanced technologies like machine learning and artificial intelligence. The
platform supports a range of programming languages and frameworks, including Java, Node.js, Python,
and more. For platform engineers, SAP BTP is significant as it simplifies the process of developing and
managing business applications. It provides a unified environment for deploying, managing, and scaling
applications, helping platform engineers build robust, enterprise-grade applications efficiently. However,
with the adoption of SAP, you as an organization are limited by the capabilities of SAP and required to
work within their boundaries, limiting specific functionalities.

2.2 Related research

Since platform engineering is new and mainly pushed by the industry, there is not a lot of scientific
research focused on platform engineering. Therefore we focussed on research related to platform engi-
neering by the proposed tools or platform engineering characteristics. Moreover, these observations can
conclude that the need for scientific evidence for platform engineering could be valuable.

12https://azure.microsoft.com/en-us/products/devops
13https://www.heroku.com/platform
14https://www.sap.com/products/technology-platform.html

9

https://azure.microsoft.com/en-us/products/devops
https://www.heroku.com/platform
https://www.sap.com/products/technology-platform.html

CHAPTER 2. RELATED WORK

2.2.1 Platform engineering in enterprise application development

Prior to the rise of platform engineering in the tech industry, the research by Zhou et al. delved into this
field, particularly in the context of enterprise application development [21]. The study focuses on the need
for systematic and reusable software development methodologies to counter IT projects’ historically high
failure rate. It introduces critical practices like software reuse, component-based software engineering,
model-driven development, and software product line engineering. These methodologies help enhance
software development’s efficiency, reusability, and flexibility. Furthermore, the paper discusses the power
of software platforms in product development, underlining how they streamline the development process
and enhance product diversity. It explores the role of components in web applications and the necessity
of a generalized component model. The author identifies a gap in academic research on platform-based
enterprise application development. They encourage more academic work in this area and propose closer
collaboration between academia and the industry. We believe this can be achieved since there is more
adoption in the industry, and the need for a general understanding of platform engineering is increasing.

However, this paper, written in the early 2000s, fails to account for more contemporary developments
in platform engineering. Given its timeline, certain aspects of the paper are now outdated. Although
it offers an in-depth theoretical framework, it lacks empirical substantiation of the proposed ideas and
methodologies. While discussing elements that influence success and failure in software reuse, the paper
does not thoroughly analyze the obstacles impeding the adoption of platform engineering. The adoption
of platform engineering can vary based on factors such as industry type and organization size. An
in-depth comparative study or exploration into industry-specific challenges and solutions could yield
valuable insights.

2.2.2 Composable DevOps

Given its overlap with other methodologies, platform engineering has been the subject of related research,
such as the concept of composable DevOps, as discussed by McCarthy et al. [22]. The paper focuses on the
development of a composable DevOps solution. It uses an ontology-based approach, with tools such as the
Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL), to model, understand, and
automate the complex processes in the DevOps pipeline. The authors stress that successfully adopting
DevOps practices requires a cross-functional team. Ideally, This team would understand and speak
the same language, promoting more effective collaboration and problem-solving. The paper introduces
the Metadata Provenance Framework for automating DevOps maturity path decisions. The framework
engages in complex interactions between actionable policies and processes, generating metadata that can
be analyzed to comprehend process integrity, behavior, and the precision of decision-making.

The approach to composable DevOps elaborated in this paper has significant implications for platform
engineering. It presents a method to evaluate and enhance DevOps adoption, a critical facet of platform
engineering. By highlighting the role of shared understanding and team dynamics, the paper lends
insights applicable to our research context. The automated decision-making framework could also provide
valuable insights for comprehending and improving decision-making in platform engineering adoption.

Although the paper primarily concentrates on DevOps, platform engineering is a more expansive
concept that includes other elements like API management, Microservices, and cloud platforms. The
paper lightly touches on cultural aspects concerning team understanding and collaboration. Still, a
deeper investigation into the influence of organizational culture and change management is crucial for
successful platform engineering adoption.

McCarthy et al. [22] acknowledged that there are legitimate barriers and concerns from IT and ”gov-
ernance” teams when they bring ideas to the table. The groups responsible for creating and supporting
applications and solutions are chartered. Therefore, they propose a Composable DevOps solution frame-
work that enables iterative collaborative upskilling and collaboration value measurement. This solution
architecture consists of components including a composable DevOps runtime, composable DevOps con-
troller, monitoring framework, and DevOps portal. Many of these components have characteristics that
can be related to platform engineering.

2.3 Reference model frameworks

In this section, we will discuss the different reference model frameworks that can be used to model various
project lifecycles, focusing on the Open Distributed Processing (ODP) reference model. We will explore
existing research, examine examples of its applications, and compare it with other reference models.

10

CHAPTER 2. RELATED WORK

2.3.1 Zachman framework

The Zachman Framework for Enterprise Architecture is a conceptual structure that provides a systematic
approach to defining, organizing, and managing enterprise architectures. Proposed by John A. Zachman
in 1987, the framework has since become a widely recognized tool for organizing the multiple dimensions
of an enterprise’s information systems [23, 24]. The framework is based on a matrix with six rows
representing different perspectives (e.g., planner, owner, designer, builder, implementer, and worker)
and six columns representing various aspects of the architecture (e.g., data, function, network, people,
and motivation).

The Zachman Framework helps organizations ensure that all relevant aspects of their enterprise
architecture are considered, leading to more coherent, integrated, and maintainable systems. By system-
atically addressing each cell in the matrix, stakeholders can communicate and collaborate on the design,
implementation, and management of the enterprise architecture. The framework has been influential in
developing other reference models and frameworks. It is widely used for guiding organizations in their
efforts to align their information technology (IT) systems with their business objectives and strategies.

2.3.2 Reference model for Service-Oriented Architecture (SOA-RM)

The Reference Model for Service-Oriented Architecture (SOA-RM) is a high-level framework for designing
and implementing service-oriented architectures. Developed by the Organization for the Advancement of
Structured Information Standards (OASIS), the SOA-RM provides an abstract and technology-agnostic
foundation for understanding and creating service-oriented solutions [25]. The model consists of three
main components: the service ecosystem, which includes the providers, consumers, and brokers of ser-
vices; the service-orientation design paradigm, which promotes modularity, reusability, and loose coupling
of services; and the service-oriented enterprise, which represents organizations adopting this.

The SOA-RM provides a set of core concepts, relationships, and principles that guide the design
and implementation of service-oriented systems. By following these guidelines, organizations can create
flexible, scalable, and maintainable systems that adapt to changing requirements and business needs. The
SOA-RM has been applied in various domains, such as e-government and telecommunications, to facilitate
interoperability, reduce complexity, and improve IT systems’ overall agility and responsiveness. Its use
promotes effective communication and collaboration among stakeholders in designing, implementing, and
managing service-oriented architectures.

2.3.3 Open Distributed Processing reference model

The ODP reference model [26], as defined in the joint standard ISO/IEC 10746 and ITU-T Recommen-
dation X.901-X.904, has been widely studied and applied in the design and implementation of distributed
systems [27] origin book. Open distributed processing (ODP) describes systems that support hetero-
geneous distributed processing both within and between organizations through the use of a typical
interaction model. The reference model ODP (RM-ODP) carefully describes its components without
prescribing an implementation. In this case, we are interested in part 3 of RM-ODP which prescribes a
framework using viewpoints from which to abstract or view ODP systems.

Figure 2.2: RM-ODP view points

RM-ODP defines the following five viewpoints:

11

CHAPTER 2. RELATED WORK

• Enterprise viewpoint: is used to organizational requirements and structure. From the enterprise
viewpoint, social and organizational policies can be defined as objects, communities, and roles. The
enterprise language is concerned explicitly with performative actions that change policy, such as
creating an obligation or revoking permission. Especially roles and lifecycles will be of value to
model platform engineering from the enterprise viewpoint.

• Information viewpoint: which defines the types of information to be exchanged between systems.
If all the interacting subsystems involved use the same set of information types, we can achieve
a basic level of consistency in the way information is interpreted and used and avoid problems
that would arise from there being divergent interpretations of it. The objects are divided into
information and action objects.

• Computational viewpoint: which expresses the operations of the system, drawing on the infor-
mation types where appropriate to ensure consistency. This design describes the system’s software
operations and interfaces between components, expressed in a platform-independent manner.

• Engineering viewpoint: which provides a set of generic middleware concepts and solutions, pro-
viding templates for transforming the computational specification into a concrete implementation.
It is responsible for the management of distribution and concrete representations. The use of tools
to select appropriate templates for each environment in which the system is to be deployed is one
of the keys to the effective reuse of engineering solutions.

• Technology viewpoint: which expresses the resources available to support the resulting system
and policies for selecting suitable resource components and technologies, including the declaration
of standards to be used throughout the system implementation. Bringing these aspects together is
essential for the management of conformance.

Kilov et al. [28] provided an in-depth analysis of the ODP reference model, its foundations, and
its practical applications in various domains. The authors discuss the experiences of researchers and
practitioners who have used the ODP reference model in real-world scenarios, as well as the challenges
and lessons learned from these experiences. It can be concluded that since the publication of the RM-
ODP, it has become a mature and widely appreciated framework for distributed system design.

2.3.4 Comparison

The ODP reference model, the Zachman Framework for Enterprise Architecture, and the Reference
Model for Service-Oriented Architecture (SOA-RM) address different aspects of system organization,
management, and technical implementation. The ODP reference model primarily focuses on distributed
systems, emphasizing the separation of concerns, reusability, and interoperability. It provides a sys-
tematic approach that enables stakeholders to understand and address various aspects of a distributed
system through five distinct viewpoints. In contrast, the Zachman Framework offers a comprehensive,
matrix-based structure that organizes an organization’s information systems architecture based on six
perspectives and six aspects. This framework ensures that all relevant aspects of an enterprise’s architec-
ture are considered, resulting in more coherent, integrated, and maintainable systems. The SOA-RM, on
the other hand, is a high-level framework for designing and implementing service-oriented architectures.
It provides an abstract, technology-agnostic foundation for understanding and creating service-oriented
solutions, promoting modularity, reusability, and loose coupling of services.

In the context of platform engineering, the ODP reference model would be a better choice for creating
a reference model because of its focus on distributed systems, separation of concerns, and reusability.
These characteristics align well with the challenges typically encountered in platform engineering, such
as the need to support scalable, modular, and interoperable solutions that can evolve. Additionally,
the ODP reference model’s five viewpoints offer a structured approach that facilitates communication
and collaboration among stakeholders, which is crucial for the successful design, implementation, and
management of platform engineering projects.

2.4 Project lifecycle reference models

2.4.1 Adaptive enterprise project management (AEPM)

The adaptive enterprise project management (AEPM) capability reference model, created by Gill [29]
is an interesting reference model for understanding how Agile can be adopted within an enterprise
organization. AEPM uses a comprehensive approach that focuses on the continuous adjustment and

12

CHAPTER 2. RELATED WORK

improvement of project management processes in response to changes in the business environment.
This approach emphasizes flexibility, agility, and adaptability in managing projects. AEPM facilitates
the rapid identification and mitigation of risks, promotes efficient allocation of resources, and enables
organizations to respond effectively to new opportunities and challenges. By incorporating feedback
loops and iterative planning, AEPM ensures that project goals and objectives remain aligned with the
evolving needs and priorities of the organization.

Integrating AEPM into the platform engineering reference model creation helps to ensure that project
management processes are agile and responsive to changing business needs. This adaptive approach
allows organizations to prioritize and allocate resources more efficiently, leading to more effective decision-
making and better alignment between technology platforms and business objectives.

2.4.2 DevOps reference architecture (DRA)

Ghantous and Gill [30] has done research into creating a DevOps reference architecture (DRA) to deploy
IoT into the cloud. Although this paper is focused on IoT, it can be related to platform engineering
based on points made in this reference architecture. This DRA consists of four different models: DRA
contextual model, conceptual model, logical model, and physical model. The contextual and conceptual
models are abstract, and to achieve an optimal system, DRA relies on the Cloud to provide an abstract
infrastructure layer. The next layer is the Logical model, which states the logical architecture details on
five models: repository, CI-broker, CD platforms, Monitoring and communication, and database. The
final model is the DRA physical model and is the integration of DevOps tools to fulfill the logical model.
These tools can differ for each organization, but generally, they consist of a list of tools.

The integration of these tools is the key factor of the DBA; therefore, platform engineering can help
achieve this integration. Based on this reference model, we can conclude that some interesting points
were made about the logical and physical model of this DBA, which can be used during the creation of
the platform engineering reference model.

2.4.3 Software architecture framework for quality-aware DevOps

Di Nitto et al. did research into a software architecture framework for quality-aware DevOps [31]. In this
research, they stated that many stakeholders are involved in DevOps but do not have a direct relation
to the product but account for the product’s organizational stability. This is also the case for platform
engineering and, to some extent, explained by team topologies [20]. Di Nitto et al. found that the 4+1
software architecture views framework required specialization and additional re-elaboration and therefore
created a refinement of that framework. Based on this research, it can be said that their proposed SQUID
framework offers a valuable basis for describing and achieving quality in DevOps but has limitations in
achieving quality-aware DevOps, especially in terms of tooling, applicability, and user-friendliness.

2.5 Summary

In summary, there is a marked scarcity of research in the scientific and industrial domains on platform
engineering, and the sparse literature available presents varied perspectives on the topic. This underlines
the limited support in identifying and elucidating what platform engineering entails and its potential
applications. The current reference architecture for platform engineering appears to inadequately in-
corporate cultural understanding, offering a limited explanation of the adoption process of platform
engineering within organizations. Since the methodology is different from existing ones the reference
models for other methodologies cannot be applied to platform engineering. Therefore, this research of-
fers significant value by providing a comprehensive reference model of platform engineering, integrating
both technical aspects and cultural dimensions.

Moreover, there are no guidelines or evidence of platform engineering applicability and effectiveness
in a software organization that could further emphasize the importance of platform engineering. There
are no known articles or scientific publications that showcase how to design and implement platform
engineering within a software organization. In addition, there is no evidence of the effectiveness of
integrating a platform engineering approach. Recognizing these gaps, this research aims to contribute
by offering a case study that will propose a conceptual design and technical implementation of platform
engineering guided by the PE-RM.

13

Chapter 3

Platform Engineering Reference
Model

In this chapter, we will introduce the Platform Engineering Reference Model (PE-RM). Based on what
we observed in the existing related work, a general understanding of platform engineering is needed
and will be done by creating a multi-viewpoint reference model. The reference model is based on the
Open Distributed Processing Reference Model (RM-ODP) [26, 27] and is an ensemble of viewpoints
that illustrate the principal objects within each viewpoint, their organization by the proposed platform
engineering lifecycles, and their correlations with objects defined in other viewpoints. The viewpoints
suggested by the PE-RM aim to be as loosely coupled as possible to enable parallel design and develop-
ment efforts across various sectors of an organization. The PE-RM outlines five viewpoints (figure 2),
and the following subsections explain the methodology and elaborate on these five viewpoints.

Platform engineering
RM

Enterprise
viewpoint

Information
viewpoint

Computational
viewpoint

Engineering
viewpoint

Technology
viewpoint

Organisational concerns:
Stakeholders/Roles

Lifecycles
Activities

Functional concerns:
Platform components

Operations
Interfaces

Implementation concerns:
Best practices
Technologies

Standards

Distribution concerns:
Platform planes
Networking
Clients

Data concerns:
Information objects
Action objects

Figure 3.1: The five viewpoints of the Platform Engineering Reference Model.

14

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

3.1 Methodology

An iterative approach was used to acquire a comprehensive understanding of platform engineering by
conducting a series of interviews with numerous experts, each from diverse professional backgrounds
and roles. The organization investigated already manifested some aspects of platform engineering, and
a need for greater standardization of terminology was apparent to enhance its applicability within this
and other organizations, supporting a general vocabulary. Therefore, we interviewed industry experts
outside the organization for a more holistic understanding. Moreover, external resources were conducted
and integrated into the reference model. In section 2.1.1, we outlined the IDP reference architecture of
Humanitec. However, since this only covers the technical aspect of platform engineering, we used it to
model the engineering and technology viewpoints. Consequently, the RM-ODP framework was leveraged
to express the platform engineering terminology, refining its interpretation and application. With the
formulation of the reference model, we conducted a case study that involved constructing a conceptual
design and technical implementation, all of which were guided by the Platform Engineering Reference
Model. This aimed to validate its applicability and provide a concrete blueprint for future utilization.

1. Interviews 2. Viewpoint
creation

3. Reference
model validation

Product owner -
Platform team

Product owner -
Development team

Tech lead -
 development team

Path finder

Developer

Platform engineer

Tech lead -
platform team

External expert

4. Conceptual
design

5. Technical
implementation

Software organization

6. Platform
validation

Case study

Figure 3.2: Methodology Platform Engineering Reference Model.

The first step in developing this reference model involved interviewing eight software engineering
experts of varied roles and backgrounds within and outside the organization (see figure 3.2). Their per-
ceptions guided the formation of viewpoints in the second step. In step three, its validity was assessed
via additional interviews and comparison with related work. After the validation by interviews and
comparison was done, we continued with a case study. The primary validation and applicability of the
reference model were done in the case study consisting of a conceptual design, technical implementation,
and experiments to help showcase the added value and applicability of platform engineering. The con-
ceptual design and technical implementation are guided by the PE-RM and showcase the applicability
and validity of the reference model, together with the experiments. Notably, the methodology adopted
an iterative approach, necessitating continuous refinement of the reference model in light of fresh in-
sights and varied perspectives. This recursive cycle of refining greatly enhanced the model’s maturity
and reliability.

15

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

3.2 Viewpoints

3.2.1 Enterprise viewpoint

The enterprise viewpoint focuses on the organizational context of the domain in which the designed
systems are intended to operate. This viewpoint concentrates on the lifecycle, stakeholders (roles),
and activities that platform engineering will introduce. The enterprise viewpoint is intended to cover
the process changes and how this impact different lifecycles, teams, and their responsibilities. The main
modeling concept of the enterprise viewpoint is lifecycles and based on these lifecycles, roles and activities
are introduced.

Lifecycle

Platform engineering can be separated into two lifecycles: the platform engineering lifecycle and the
application lifecycle. With the adoption of platform engineering, the platform engineering lifecycle will
be introduced, and the application lifecycle will be impacted by introducing an engineering platform.

The platform engineering lifecycle

Platform engineering lifecycle

Platform lifecycle

backlog

Plan

Development Testingdeliverable

Deployment

Release

7

8 9

10

C

Path finding
session

Management
approval

Develop strategy

MonitoringDiscovery

new platform version

Platform metrics

Roadmap

Request featurePath finding
session

Architecture

further investigationpath finders

Roadmap

Architecture

No adoption Feature request

Support

1 2

3

45

1112

13

A B

Design
6

roadmaproadmap

Figure 3.3: Enterprise viewpoint: platform engineering lifecycle

The platform engineering lifecycle outlines the cycle through which an engineering platform will be
introduced and subsequently enhanced by a dedicated platform team. This lifecycle comprises a variety
of pathways, all converging towards implementing a platform that addresses the specific needs of the
development teams. Within this lifecycle, two points of inception are identified: no platform engineering
adoption and platform engineering integration in which development teams can make feature requests.
Stakeholders crucial to this lifecycle encompass the platform team, pathfinders, the management team,
development guilds, and development teams.

A No adoption
For organizations yet to adopt platform engineering, their path aligns with the ”no-adoption” course.
This path includes various phases aimed at designing a platform and roles. It is crucial to recognize that
in most instances, an organization does not commence operations from a clean slate or ”Greenfield” but
rather from an already developed or ”brownfield” state [32], where it is likely that some characteristics
of platform engineering are already present. The ”no-adoption” path includes the following phases:

16

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

1. Management approval: Based on a trigger to improve the software processes within an organi-
zation, the management team has to approve this transition and assign pathfinders. Since this is an
investment without a direct revenue stream, it is important to have technical expertise within this
team to identify the benefits and ROI [33]. The request for the adoption of platform engineering
will most likely come from senior developers or other employees with a technical background.

2. Path finding session: The pathfinders are responsible for getting an overview of the recurring
steps and overlapping tools between different development teams. They can plan path-finding
sessions to get insight into the current way of working within the organization. Based on their
observations, they create the initial roadmap.

3. Develop strategy: Based on the initial roadmap created by the pathfinders, the management
team, including the pathfinders, can develop a plan for adopting platform engineering and assigning
a platform team. The pathfinders and platform team are responsible for the platform architecture.

Platform engineering often starts with a few development teams crafting productivity tools that can grow
into broader systems. Dedicated teams, managerial approval, and clear roles are essential for sustainable
expansion and improvement. The extent of platform engineering adoption hinges on the organization’s
profile, technological state, and openness to this approach. Though seen as a cost center, platform engi-
neering should yield long-term savings.

B Feature request
Once the platform is incorporated into the organization, various routes can be explored to facilitate the
implementation of new features. This could be achieved through Pathfinders instigating an architectural
change that benefits the entire organization or by development teams. As these development teams
utilize the platform, their requests for new features can initiate this pathway, which includes:

4. Request feature: The development team will have a conversation with the platform team (prod-
uct owner) to discuss the need for functionality. Depending on the impact, it can be taken into the
roadmap, or it needs to be further investigated. The platform team (mainly the product owner)
can decide the need for further investigation.

5. Path finding session: Based on the decision of the platform team, path-finding sessions are done
to discuss the feature request and its impact. The impact can be addressed during these sessions,
and alternatives can be researched. If the feature is necessary and beneficial for the organization,
it can be taken into the roadmap. In the end, it is decided by the pathfinders if a feature with a
significant impact will be integrated into the platform.

6. Design: With a roadmap and precise requirements for the feature, the platform team designs
a solution. They can identify the best practice and how it can be implemented within their
engineering platform. Depending on the impact of the change, pathfinders can support the creation
of this architecture.

Given the platform’s size and the number of development teams, this process could occur repeatedly.
Consequently, it’s crucial to ensure that it doesn’t affect the platform’s lifecycle. Additionally, it is vital
to promote an environment where teams feel encouraged to request features that enhance the platform.

C Platform lifecycle
The core of the platform engineering lifecycle is the development of the engineering platform, which is a
continuous lifecycle. Based on the roadmap and architecture, the platform team works on the platform
iteratively, and it includes the following phases:

7. Plan: The platform team works in iterations to deliver value to the development teams faster
and more often. Based on the roadmap, the platform team refines and plans sprint backlogs to
continue delivering value to the development teams according to the roadmap. High-priority stories
are taken into the upcoming sprints and are managed by the product owner.

8. Development: Based on the backlog, the platform team works on improving the platform by
integrating new tools and techniques. Since the platform can consist of many different components,
the platform team will have to deliver different types of outputs. The most common one will be
infrastructure and application code or configuration changes in a cloud provider console.

9. Testing: Before a deliverable can be deployed, it has to be tested to check if no bugs exist that
could break the platform. Depending on the type of deliverable, tests must be done by the platform
team to validate the change, resulting in a releasable platform update. Depending on the change,
how the platform or separate feature is tested can be decided.

17

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

10. Deployment: To ensure that significant changes do not happen at any given moment, the plat-
form team can bundle releases into one deployment. After the deployment, a new version of the
platform will be available to the development teams containing new features or other improvements.
Notifying the update and updating the change log is essential.

11. Monitoring: A new version of the platform will be monitored by automated metrics and tools
to ensure the platform behaves as it should. The platform team can use these metrics to create
dashboards or alerts in case something breaks that could impact the development teams.

12. Discovery: Based on metrics, the platform team can discover improvements to the current plat-
form version. These improvements can be discussed with the product owner (and possibly pathfind-
ers) and validated if they can be taken into the roadmap.

13. Support: The support phase will be during the entire platform lifecycle and is used to support
development teams in using the platform. This includes updating documentation, blueprints for
the golden paths, and other templates like dashboarding. The development guilds maintain the
golden paths at any given moment and are essential to support the adoption of best practices.

Post-deployment, the platform team oversees the platform’s operation, potentially identifying enhance-
ments. Whether the organization opts to construct this platform independently, or outsource it to an
external software company, depends on several factors. These include the level of customized tooling
required, the development teams’ willingness to adopt a more generalized work approach, and the or-
ganization’s in-house expertise. The benefit of an externally developed platform lies in its potential to
decrease maintenance demands.

Applications lifecycle with the use of platform engineering

Application lifecycle

Continuous development

x

Migrate
application domain

Platform
improvement

Construct
application domain

Pl

architecture

production
system

architecture

Feature request

A New project

B Existing project

1

2

foundation

4

5

Provision
application domain Provision toolingresources foundation

missing feature

2 3

Figure 3.4: Enterprise viewpoint: Applications platform engineering lifecycle

Adopting platform engineering fundamentally alters the application lifecycle, dividing at two unique
starting points based on a project’s status. Platform engineering adoption will likely bolster contin-
uous development through the platform’s self-service functionalities. Despite this, it doesn’t directly
influence the continuous development lifecycle, which is why it is modeled as a black box. We posit
that an application’s design precedes continuous development, ensuring a well-defined architecture prior
to development. This can also assist in identifying the platform’s capabilities to support the development.

A New project
Incorporating platform engineering in a new project, the application lifecycle can leverage the plat-
form’s self-service features. The project’s initial stage is key for capitalizing on these advantages. We’ve
identified the following phases:

1. Construct application domain: From business problems and stakeholder requirements, the
development team formulates an architecture, resulting in an application domain. This structure
is fundamental and can be optimized during the continuous development phase.

2. Provision application domain: Utilizing an architecture that embodies various resources (the
application domain), the development team can use golden paths for provisioning. Development

18

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

guilds maintain these paths, encapsulating best practices. Platform-enabled application provision-
ing promotes governance and standardization across development teams.

3. Provision tooling: After resource provisioning, resources are interconnected, and tools are con-
figured to boost productivity and efficiency. Provision tooling ensures the creation and linking of
CI/CD, services, documentation, etc., to the application domain.

Post-provisioning of a new project, the development team possesses the resources needed to create
business value through continuous development. They can opt to reassess the architecture during the
development phase, which enhances the application domain. This can also be influenced by platform
improvements that benefit a project.

B Existing project
For an ongoing project, integrating platform engineering presents more challenges to utilizing the plat-
form and its self-service capabilities. The existing application domain must be transitioned into the
platform ecosystem, involving the following phases:

2. Provision application domain: Based on the existing application domain, the team can em-
ploy golden paths for application provisioning. Platform-enabled provisioning assures the use of
standardized tools and proper governance, adhering to platform guidelines.

3. Provision tooling: After the resources are provisioned, the resources have to be connected, and
tooling needs to be configured to improve productivity and efficiency. This could, for example,
include CI/CD, documentation, networking, and more.

4. Migrate application domain: The existing application can be migrated to the newly provisioned
application domain, done by the development team. It depends on the type of application and the
current state of the project on how much time it takes to migrate the application. This results in
the application running in production using the platform.

This path is essential to leverage platform engineering benefits for existing projects, controlling and
minimizing technical debt.

Platform improvement
Throughout the continuous lifecycle, the development team may identify potential improvements for
their application domain or boost productivity and developer experience. If such an enhancement is
identified, they can consult the golden paths or request the improvement, leading to the following phase:

4. Platform improvement: The team may identify lacking techniques, configurations, or tools that
could enhance their application or improve productivity. It’s crucial that the team can request
these features, ensuring explicit requests and detailed impact assessment.

This path will trigger the platform engineering lifecycle in figure 3.3.

Continuous development
We believe that with the adoption of platform engineering the way development teams create business
value during the continuous development lifecycle will not change. It will impact the productivity and
developer experience in this phase, but not the way it should be done. This way it is up to the organiza-
tion and development teams how they want to use the continuous development lifecycle. However, it is
important to understand that we have extracted the architecture design and provisioning of services out-
side the continuous development lifecycle in order to show the benefits and way of working for platform
engineering within the application lifecycle.

19

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

Stakeholders

Based on the different lifecycles stated above, different stakeholders are involved with the platform
engineering lifecycles. These stakeholders have different roles within this lifecycle, and we will explain
why they are relevant to platform engineering.

Development
 guild

Development
guild

Management

Path findersTech headTech head

Development team Development team Platform team

Frontend
engineer

UX-designer

Backend engineer

Backend engineer

Tester

Tech lead

Product owner

Frontend
engineer

UX-designer

Backend engineer

Backend engineer

Tester

Tech lead

Product owner Product owner

Tech lead

Cloud engineer

Cloud engineer

Operations
engineer

Operations
engineer

Figure 3.5: Enterprise viewpoint: stakeholders

• Platform team: The platform team is responsible for building, maintaining, and evolving the
platform, including the core infrastructure and tools that support the development and deployment
of applications. This team comprises the product owner, tech lead, and different types of developers
with expertise. The platform team is also responsible for ensuring teams can adopt best practices,
and they deliver blueprints for golden paths and how applications should be provisioned. Tools
commonly used across development teams fall under the platform team’s domain.

• Development team: The development teams are cross-functional teams that build business value
for their customers. They consist of a product owner, tech lead, and different types of developers
and testers. Utilizing the platform’s self-service capabilities, they build, maintain, and deliver
applications, and can request new platform features.

• Path finders: Pathfinders can be related to architects and are not part of a development team.
They are individuals or a group that explores new technologies, tools, and practices to improve
the overall software engineering processes within the organization. They evaluate the benefits and
risks associated with new technology adoption, providing recommendations for integration into the
platform. Pathfinder decisions significantly influence the platform’s trajectory.

• Development guilds: Development guilds are groups of developers that share a common interest
or expertise in a particular area, such as a programming language, framework, or technology.
They update and maintain golden paths for their field to foster standardization and best practice
adoption. Using blueprints from the platform team, they create detailed guides for implementing
specific languages or frameworks.

• Management team: The management team consists of the CTO, the tech heads, and pathfinders
and are responsible for the direction and future of the organization’s technology department. Major
decisions require their approval, with pathfinders providing technical input.

20

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

Interactions

Based on the two lifecycles and stakeholders identified above, we will further explain the interactions of
the different phases, especially which actors are involved and what they do. To better understand the
platform engineering practice, we identified key interactions based on the different paths explained in
the lifecycles and proposed them as examples.

Adopt platform engineering
Prior to platform engineering adoption, a trigger often in the form of scalability issues, identified by tech
leads, architects, or management, stimulates consideration. After they identified such issues, platform
engineering can be considered a valid solution. Therefore a company needs to understand the added
value of platform engineering. Existing tools can play an impact on the design decisions made on how
to implement platform engineering.

To identify the added value of platform engineering and create estimation and design, the manage-
ment team assigns pathfinders to look into the current way of working within the different development
teams. They look into the productivity and efficiency issues within development teams and identify
possible overlapping tools and techniques to increase standardization and centralization. Based on these
observations, the pathfinders develop the initial roadmap of the platform. Based on this roadmap, a
platform team can be assigned, and an architecture can be created.

Management

Identify scalability
issues

Discuss platform
engineering adoption

Assign budget

Path finders

Assign path finders

Identify productivity &
efficiency issues

Identify overlapping
tools & techniques

Create design &
estimation

Platform team

Create platform team

Figure 3.6: Enterprise viewpoint: platform engineering adoption interactions

New platform feature
New features can be requested in different ways and by different stakeholders. First, the platform team
can identify new features during the continuous development of the platform and create stories to improve
specific parts of the platform. Second, pathfinders can identify improvements for organizations that need
a new platform feature. Finally, the development teams can request new features to be implemented
into the platform to improve their productivity and efficiency, see figure 3.7.

To initiate the need for a new feature, the development team has to identify an essential improvement
for their way of working. This can be as small as an extra configuration or a completely new tool that
needs to be integrated. The impact of the proposed addition must be understood by the development
team. Once a development team finds a feature that needs to be added to the platform, they can
discuss this with the product owner of the platform team, he/she can identify the impact it has on the
platform and the platform team to decide to take it into the planning, or that further investigation is
needed. During path-finding sessions, stakeholders deliberate the need and impact of the feature. Once
a consensus is reached, the request may be included in the roadmap or rejected. Upon approval, the
platform team devises an architecture/design for the new feature.

21

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

Development teams

Identify missing
feature

Platform team

accept feature

Discuss request

Update roadmap

Create architecture

Path finders

Path finding session

Identify solution

investigation needed

Figure 3.7: Enterprise viewpoint: new feature interactions

Platform lifecycle
The engineering platform lifecycle is a continuous cycle that begins anew each time it’s completed. The
initiation of this cycle necessitates an updated roadmap and a clear architectural design, equipping the
platform team with direction. With these in place, the team plans and executes a sprint to deliver
business value, by developing and testing new features or upgrades. However, because this continuous
lifecycle can be different for each organization this will be seen as an example.

Once a feature passes testing and has a deployment date, it’s released, and a new platform version
becomes available. Post-deployment, the platform team provides support and potentially updates the
”golden paths” based on the infrastructure setup. Deploying platform changes in a development envi-
ronment first allows applications to adapt and avoid production issues. The impact of the new version
can necessitate updating the golden paths, and significant changes may be announced to keep the de-
velopment team informed. Following deployment, the platform team monitors the platform to ensure
stability and identify potential improvements. These findings can prompt new feature requests, leading
to updated roadmaps and architectures and thus restarting the cycle. The following diagram shows the
interactions:

Platform team

Plan sprint

Develop feature

Test platform

Deploy new version

Monitor

Support update

Engineering platform

New version

Development guild

Update golden path

Development team

Use new platform
version

Figure 3.8: Enterprise viewpoint: platform lifecycle interactions

Provisioning project (application domain)
Prior to generating business value through continuous development, the application domain needs to be
provisioned with all necessary platform integrations. This step fosters the adoption of best practices and
promotes standardization within the organization. See figure 3.9 for the modeled interactions.

22

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

The first step is to look into the golden paths maintained by the development guilds to see if there
is a step-by-step tutorial on how to use a particular language or framework within the platform. The
platform also offers provisioning in which the development teams do not have to create or wait for the
creation of specific resources or repositories. The development guilds and platform teams maintain these
golden paths. As soon as the development team provisions an application, all the necessary tools and
integrations are done by a provisioning tool, which makes it easier for the development team to start
creating business value. For a more in-depth explanation of this process, see section 3.2.3 for an in-depth
explanation of the provisioning process.

Within an application domain, the team can also create other resources, like databases, and the
platform will also take care of this. This is essential to improve transparency and encourage governance.
The platform team is responsible for ensuring these resources are created, and the tags are in place. As
soon as everything is created, the team has the entire application domain in place and can start creating
business value. During this path, the development team can identify missing features in the platform
that are not supported but are needed for a specific application. In that case, they can request a feature
from the platform team, and a different process will be started.

Development team

Create a new
application

Get golden paths

Provision application

Provision resource

Foundation

Engineering platform

Show golden paths

Create application

Create resources

Development guild

Maintain golden paths

Platform team

Maintain provision
engine

Maintain team tags

Figure 3.9: Enterprise viewpoint: provisioning service interactions

3.2.2 Information viewpoint

The information viewpoint specification enables the clear and concise representation of the information
objects consumed and produced by the phases in the platform engineering and application lifecycles
introduced in the enterprise viewpoint. A standard model that can be referenced throughout a complete
design specification assures that the same interpretation of information is applied at all levels, including
the activities related to these objects. The PE-RM information viewpoint aims to achieve a shared
model for the design activity, given that it can cover a federation of tools and integration of legacy
systems. The main modeling concepts of the information viewpoint are information objects and action
objects, explained in Tables 2 and 3. From the information viewpoint, the emphasis is on the data,
their evolution, and the activities which enable that evolution. The action objects are based on the
stakeholders and roles introduced from the enterprise viewpoint. Based on the lifecycles defined in the
enterprise viewpoint, the information and action objects will also have relationships since action objects
cannot modify all information objects.

Platform engineering lifecycle

The platform engineering lifecycle can be separated into different phases; each phase has an input and
output. The inputs and outputs, together with the information discussed in the different phases, can be
translated into the following information and action objects:

23

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

Result in the creation of

Architecture design

Developer control plane

Integration & delivery plane

Monitoring & logging plane

Security plane

Resource plane

translated to the team by

Roadmap

Timeline

Projects

 Epics

 Stories

Backlog

Stories

 Name

 Description

 Story points

 Status

Sprints
results in

Deliverable

Author

deployed as

Release

Code build

Approval

Succesfull tests

is linked to

Platform version

Version ID

Documentation

Announcement

Metrics

Dashboards

has

contains

Engineering platform

Developer control plane

Resource plane

Security plane

Monitoring & logging plane

Integration & delivery plane

Infrastructure Code

Code

Test

Documentation

Pull request Application code

Code

Pull request

Documentation

Test

Configuration change

Documentation

Test

team develops

Golden path

Name

Goal

Steps

Path finders

+ Update architecture design

+ Create roadmap

Platform team

+ Develop platform

+ Release platform

+ Monitor platform

Platform team (PO)

+ Update architecture design

+ Update roadmap

+ Maintain backlog

Development guild

+ Maintain golden paths

Figure 3.10: Information viewpoint: information object platform engineering lifecycle

For the platform engineering lifecycle, most objects will be created once and iterated upon during
the continuous platform lifecycle. How and when these objects are updated can be found in figure 3.3.
The information objects are:

Architecture design The architecture design is created based on observations of the pathfinders and
is translated into an architecture that contains the five components of an engineering platform,
which will be explained in section 3.2.4.

Roadmap The roadmap is a more functional component in the platform engineering lifecycle and is
used to create estimation and budget by the management team. It contains the different projects,
epics, and stories needed to hold the deadline. The roadmap is the source of truth for the platform.
Once a feature request is approved, it most likely affects the timeline.

Backlog The backlog is used for the platform team to plan and create tasks based on the roadmap,
which is understandable for the platform engineers. The stories on the backlog have at least a
name, description, story points, and status. This can be different based on preferences.

Deliverable Deliverables of the platform can be different based on the type of functionality added to
the platform. Most of the changes to the infrastructure are done by updating the infrastructure
code, which contains tests and documentation. Moreover, the platform can also contain application
code or configurations that need to be maintained by the platform team.

Release The release is a set of deliverables that must be deployed as a new platform version. To create
a release, it has to be approved, and the tests must succeed. Depending on the type of release, it
will also have to build code to ensure it will be working effectively in the platform.

Engineering platform Engineering platform (i.e., IDP) is the core of platform engineering. It can be
split into five different planes: the developer plane, resource plane, security plane, monitoring &
logging plane, and integration & delivery plane (explained in section 3.2.4).

Platform version The platform always has a current version to keep track of the improvements and
make reverting easier. This contains a version ID, documentation, a possible announcement to the
stakeholders, and a change log.

Golden paths Golden paths are created based on the self-service capabilities the platform provides at
that moment. It will contain different steps and functionality to help development teams achieve
specific goals.

Metrics Platform metrics are available to the platform team to validate the current state of the platform

24

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

by using dashboards. It can vary on which metrics you want to show for the platform that will
help give insight into possible improvements. These metrics could be related to the productivity
improvements of the development teams, for example.

The information viewpoint for the platform engineering lifecycle will also include the following action
objects:

Path finders The pathfinders are mainly responsible for the architecture and initial roadmap and can
help to update it if necessary; they can also help identify the need for a new feature and create an
architecture for it.

Product owner platform team The platform team product owner is responsible for the roadmap and
the backlog on which the team works. Making sure that the deadlines are being met. The platform
team also maintains the overall architecture together with the pathfinders.

Platform team The platform team is responsible for everything related to the platform. They will
mainly interact with the information objects in the continuous lifecycle and focus on building
features for the platform.

Development guilds The development guilds are responsible for maintaining the golden paths that
can be updated based on a new platform version. This includes creating new golden paths or
updating existing once based on a change in the platform.

Application lifecycle

Since we believe that the continuous development lifecycle of a project can be seen as a black box
from the platform engineering perspective, we focus on the information objects related to the start of a
project. We believe that the information objects do not change during the continuous development of an
application. The only thing that will change is the application code and the data within the information
objects. Still, once the architecture has to be updated, it will go through the defined lifecycle again.
Resulting in the following information objects:

Limitations

Architecture

Data layer

Service layer

Application layer

Integration layer

Application domain

Project name

Description

Team

Platform feature request

Problem

Solution

Impact

Translated to

Resources

Identifier

Credentials

Configurations

Uses

Application

Name

Documentation

Documentation

Links

Structure

Engineering platform

Configurations

Version

Golden paths

Foundation

Development team

+ Maintain architecture design

+ Create feature request

+ Provision application domain

+ Build application

Figure 3.11: Information viewpoint: Information object project lifecycle

For the application lifecycle, the platform provides the foundation of the application domain by
offering provision strategies and golden paths. This foundation is used during the continuous development
lifecycle, including the self-service capabilities that improve productivity, and it includes the following
components:

Architecture The architecture is the design of the application domain based on different layers. The
architecture design can differ based on preferences, but overall, it is translated into resources, which
the platform support. The architecture is affected by the golden paths and supported resources.

Application domain The application domain is all the applications and resources needed for a project

25

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

and is maintained by the development teams. It will have a project name and description and
the team responsible for this application. It translates the architecture and contains at least the
following elements: applications, resources, and documentation. The golden paths are used to
adopt best practices and support the integration of this application domain into the platform.

Documentation Each application domain will have the documentation necessary to support knowledge
sharing and decrease knowledge siloes. This documentation must be accessible and easy to read by
the entire organization. The engineering platform could help provide documentation frameworks
or other supporting tools to encourage documentation.

Resources The resources are part of the application domain and can differ for each organization. It
will most likely be databases or other related cloud services. The platform provides the resources
and has default configurations and credentials that can be used to access the resources.

Application The application is the system built by the team; the platform and golden paths provision
the foundation. The platform is responsible for provisioning and configuring at least a git repo,
docker repo, and pipelines to ensure the development team can begin delivering business value.
The platform also enables deployments to make the application available.

Engineering platform The application and the application domain use the platform’s self-service ca-
pabilities to integrate the application into the platform entirely. This includes services and tools
to get applications to production (like pipelines) and tools used in production (like networking,
logging, and observability) without too much manual work.

Platform feature request A platform feature request is based on the problems the development team
encounters while creating the architecture. The platform feature request must include the problem,
a solution, and the impact of the change in the platform. This can include missing support or
updating configurations.

Based on these information objects, the development team can work on the application domain dur-
ing the continuous development lifecycle and change these objects. As soon as the development team
encounters problems that require a change in the infrastructure, the application domain will be updated,
and therefore, these objects will change.

The application lifecycle will also have the following action object:

Development team The development team is responsible for the entire application lifecycle and, there-
fore, can update the different information objects, especially the infrastructure and application
domain. If they find missing features, it can be requested, which will start the other lifecycle.

The development guilds and platform teams are indirectly action objects in this lifecycle since they
can change the platform, which could force development teams to update the application domain.

3.2.3 Computational viewpoint

The computational viewpoint specification models the components that provide different functionalities
for processing data assets and allows the lifecycle to continue to other phases. The computational
viewpoint is concerned with developing the high-level design of the processes and applications supporting
the platform’s self-service capabilities and activities done during the two lifecycles. The viewpoint
expresses models in terms of functional components of the engineering platform and how different parts
will interact with typed interfaces by performing a sequence of activities. The computational viewpoint
specifications refer to specific parts of the engineering viewpoint. In this section, we have worked out
several operations related to the operations with the platform.

Operations

To elucidate the various components of the platform, we’ve analyzed fundamental interactions and pro-
cesses enabled by platform engineering. These interactions stem from the lifecycle and information
objects proposed in the enterprise and information viewpoint. We’ve utilized UML and, specifically,
sequence diagrams to model these operations. Although application deployment is outside our project
lifecycle scope, modeling these interactions is crucial to understanding how the platform functions. Plat-
form engineering serves two functions: facilitating application production deployment and maintaining
applications in production. Our focus in this viewpoint will be on the first, and many of these operations
are proposed as examples. Golden paths can play an important role in the translation of these operations
into functionality.

26

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

Golden paths

Development
guild

trigger

Developer
portal

get golden paths

updated golden path

golden paths

edit golden path

Development
team

new project

Developer
portal

get golden paths

steps in golden path

golden paths

show steps

Figure 3.12: Computational viewpoint: Golden paths

Golden paths are one of the essential components to maximizing platform self-service capabilities and
adopting best practices. Golden paths are part of the developer portal, a component of the Developer
Control Plane. The operations of golden paths can be divided into two parts: the maintainability of the
golden paths and the utilization of golden paths. The development guilds maintain golden paths, which
anyone can access but can only be updated by the responsible development guilds.

For their utilization, the development team can find the needed golden paths on the developer portal.
They can follow the steps in the golden path to achieve their goal. Golden paths can be used to create an
application domain and migrate services to a new platform version. The golden paths also contain the
provisioning service responsible for creating the application domain foundation, which we will explain in
the following operation.

Provision application

Development
team

new architecture

Portal

get golden paths

Provisioned application

golden paths

Provision application Application parameters

Provisioning
service RegistryVersion control Pipelines

Create repo
credentials

Create repo
git repository

Setup Ci/Cd

CI and CD pipeline

Application

Provision resources Resource parameters

Resource
provisioned resources

Infrastructure
code

generate IaC
Resources

Create run environment
run environment

Observability

Create observability

dashboards/alerting

Developer control plane Integration & delivery plane Logging and monitoring plane

Figure 3.13: Computational viewpoint: Provision application domain (example)

In compliance with the architecture, the development team can provision the application domain via the
platform and golden paths. The developer portal should offer golden paths that provide a step-by-step
guide and a built-in provisioning service for application domain setup. According to the application
parameters, the provisioning service generates a version control repository with the required compute
resources. Embedding a provisioning service within the golden paths enhances the developers’ experi-
ence by consolidating functionality and information. This operation ensures deployment tools and the
infrastructure for running applications are in place.

A docker repository and necessary pipelines for building and deploying the application are created

27

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

to guarantee application integration with the delivery plane. Out-of-the-box dashboards should be
available to the development team for monitoring, and the provisioning service can create additional
resources for the application. The provisioning service creates and deploys infrastructure code, which
results in resource creation and ensures correct permissions and credentials. The standardization and
centralization of tools and techniques are promoted, reducing tool proliferation within the organization.

The platform team is also responsible for maintaining applications in production. Thus, the necessary
infrastructure for running these applications must be in place (i.e., networking, load balancing). To keep
the reference model clean, this part is not modeled.

Deploy application

Development
team

new feature

RegistryVersion control Pipelines ObservabilityCompute

push changes
trigger

create image

image tag

deploy image tag & secrets

deployment status
status update

monitor deployment

dashboards

Developer control plane Integration & delivery plane Resource plane Monitoring & logging plane

Secrets & identify

Security plane

get secrets

inject secrets

Figure 3.14: Computational viewpoint: Deploy application (example)

For application deployment, the development team interacts with the platform by pushing code to the
version control. Based on their configurations, this triggers the CI pipeline, builds the application, and
stores it in the registry. The registry returns the new tag and injects it into the CD pipeline, which
deploys the application with the new tag. Depending on the configurations, the development teams
could also interact with the developer plane or integration & deployment plane to deploy the application
in a specific environment. The monitoring & logging plane can be used to monitor the application in
production. Secrets needed for deployment are retrieved from the security plane and injected into the
deployment.

The operations align closely with traditional lifecycles (i.e., DevOps); the only difference is the plat-
form’s automation, relieving the development team from maintaining pipelines, registry, compute re-
sources, and observability. This is done by the platform and maintained by the platform team to lessen
the cognitive load of software developers and enhance productivity.

3.2.4 Engineering viewpoint

The main goal of the engineering viewpoint is to represent the distribution of components among different
software systems and tools. The engineering viewpoint tackles the problem of diversity in platform
structure and gives the prescriptions for supporting the necessary abstract computational interactions in
various situations, explained in the computational viewpoint. Interactions may involve communication
between subsystems (components); accordingly, other engineering solutions will be used. Given that most
organizations will already possess an infrastructure and a set of tools, it can be enhanced by reshaping
it according to the model offered from the engineering perspective. The main modeling concepts of
the engineering viewpoint are engineering objects, containers, and channels. However, to ensure that
the platform engineering is correctly acknowledged, the engineering platform has been separated into
different planes based on the IDP reference architecture outlined in section 2.1.1. The resource plane can
be seen as the foundation on which the platform and applications will run. The engineering platform
can be separated into two features: construction applications and enabling applications to be running
on production, which is not explicitly modeled in this diagram.

28

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

Engineering platform components

The platform divides into five components or ”planes,” each containing various subcomponents or ”ob-
jects.” A concise overview is shown in figure 3.15. The resource plane, functioning as the foundation,
supports all other planes and manages the running applications.

Our main focus lies in the platform’s functionality related to the application lifecycle and its transition
to production rather than maintaining applications in production. This provides a clearer overview and
sharper focus on the platform’s essence. A feature or operation only integrates into the platform once it
aligns with the platform’s entire lifecycle, including all plane interactions.

Engineering platform

User interaction possible

Backend services

Developer control plane

Development Developer portal

Version control / IaC

Provisioning
service

Resource plane

Compute Data & Storage ServicesNetworking

Integration & delivery
plane

CI pipeline

Registry

CD pipeline

Monitoring & logging
plane

Observability

Security plane

Secrets &
Identity

management

Logging

 Cloud provider

Dependencies

Interactions

Figure 3.15: Engineering viewpoint: components of the engineering platform

The platform’s key components are identified in the diagram, which aims to display the high-level
structure of a potential engineering platform, as well as interactions and dependencies among components.
The platform comprises five nodes called ”planes”:

Developer control plane
Developers use the developer control plane to interact with the platform, and it contains the
following components (objects):

• IDE: the local development environment of the development teams; this also includes the
backlog management systems.

• Developer portal: a frontend for development teams to interact with the platform. It contains
at least the following essential components: service catalog, documentation, and golden paths.
It is up to the organization if more features will be integrated.

• Provisioning service: this service can be introduced to provision application domains, and
best practices, and ensure governance is in place. It communicates mainly with the IaC and
other planes to ensure the development team has all the tools and resources.

• Version control: this is the central location where the platform is stored with Infrastructure
as Code (IaC) and contains the different applications built by the development teams. It will
improve transparency, and best practices can easily be adopted.

The development teams most likely interact with the platform through code by pushing code to the
version control. Moreover, the developer portal is the frontend that contains helpful information
like golden paths and the service catalog in which developers can interact through a user interface.

Integration & delivery plane
The integration & delivery plane is an important platform plane since it glues the developer con-
trol plane and resource plane together by automating the build and deployment of the different

29

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

applications. Still, it can also play a role in the provisioning of monitoring and logging resources.
It includes the following nodes:

• CI pipeline: linked to the version control and gets triggered as soon as code is pushed. It will
depend on the setup and configuration of how and when this pipeline will be triggered.

• Registry: stores all releasable artifacts like docker containers and packages, depending on the
use case. Linked to the pipelines to increase automation.

• CD pipeline: updates an environment with a new artifact stored in the registry and can be
triggered by the CI or manually. It could also be responsible for deployment-related tasks.

Depending on the tools used for the CI/CD pipeline, the communication between components can
differ. The platform team maintains these pipelines to create a centralized and standardized way
of building and deploying applications. This way, development teams do not have to worry about
the CI/CD and can focus on the development.

Monitoring & logging plane
The monitoring & logging plane is offered by the platform to give the development teams more
insight into their application. By provisioning the application by the provisioning service, the
platform will make sure that observability and logging are available, containing the following nodes:

• Observability: metrics and dashboards created by the platform to offer insight into the ap-
plications. The observability component will pull the metrics from the different resources.
The platform can offer default dashboards to provide metrics out of the box. It is up to the
organization and use case what kind of observability tools will be used, like tracing or alerting,
could also be included.

• Logging: logging endpoint that the development teams can use to send logs for debugging. It
will have to store many logs and therefore use TCP to receive them. The platform will also
offer querying tools to read logs.

It depends on the use case and organization what kind of monitoring and logging is needed and how
this is configured. The platform team is responsible for these functionalities, and the development
teams for using these platform features.

Security plane
The security plane is available to offer security needs for applications that require secrets or other
sensitive data. It contains the following nodes:

• Secrets & identity management: manages all the secrets, including credentials used to deploy
an application with the correct environment variables. It also takes care of the permissions to
ensure that applications and users have the correct role to perform specific actions.

Using the platform to handle permissions and policies, the security can be centralized and standard-
ized to improve governance. By making sure that the platform handles security and permissions,
it will make it easier to guarantee strict rules and guidelines.

Resource plane
The resource plane contains all the resources necessary to run all the applications within the
organization. It can depend on the type of organization in which resources are needed, but it
includes at least the following:

• Compute: the applications will be running in this plane. This can also include applications
and tools used in the engineering platform and, therefore, essential to set up first.

• Data & storage: resources that can store data and other artifacts like images or files. It also
has to be reachable by applications running in production and can be handled by the security
plane.

• Networking: enabling applications to be reachable from the outside world or internal systems,
including uptime and proper DNS.

• Services: services that are used by applications for certain functionality. For example, a
message broker or email service.

Depending on the use case and size of the organization, the number of resources available can differ.
Moreover, the type of resources you want to make available within the platform can differ. The
resource plane also contains all the cloud provider services that the organization uses; this is the
part that interacts with the cloud.

The different nodes interact via API calls orchestrated by the platform maintained by the platform

30

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

team. The goal is to simplify application deployment in the resource plane, minimizing overhead and
manual configurations. Development teams primarily interact with the developer control plane, which
communicates with the integration & delivery plane, updating the resource plane accordingly. The
monitoring & logging plane receives information from the resource plane and can be adjusted by the
development teams through code updates. By abstracting the underlying infrastructure and automating
processes, including application provisioning and deployment, development teams can focus on coding
and problem-solving, improving productivity and developer experience by reducing cognitive load.

3.2.5 Technology viewpoint

Technology Viewpoint specifications represent the concrete dependencies between design and implemen-
tation. The technology viewpoint is concerned with managing real-world constraints, such as existing
application platforms, tools, or restrictions based on requirements and budget. The adoption of plat-
form engineering will never really have the luxury of being a greenfield project [32], and this viewpoint
brings together information about the existing infrastructure and technology stack. It is concerned with
the selection of universal standards to be used in the system and the allocation and configuration of
resources. It represents the software components and techniques of the implemented system based on
the engineering viewpoint specifications. Bringing this all together, it expresses how the specifications
for an ODP system are to be implemented.

This viewpoint also has an essential role in the management of testing conformance to the overall
specification because it specifies the information required from implementers to support this testing.
The main modeling concepts of the technology viewpoint are components and standards and, in our
case, best practices. Because the engineering platform is a central collection of tools, services, and
automated workflows and can differ for each organization and environment, this viewpoint does not
focus on state-of-the-art tools. In table 3.1, the diagram represents the platform components and the
best practices/standards.

Best practices

Since it can depend on the organization which technologies you want to use to create the engineering
platform, we will focus on the different best practices of each component instead of state-of-the-art
tooling. In table 3.1, we have stated the requirements and the best practices for each component.

Component Requirements Best practices

Developer control plane

Development The development environment is based on the developer’s
preferences. The backlog management tool will most likely
depend on integrations.

IDE & Backlog
management

Developer portal A user interface that contains a service catalog, golden
paths, platform documentation and versioning, to reduce
cognitive load for development teams.

Developer portal &
ChatBot

Provisioning ser-
vice

Used to provision application domains and ensure gover-
nance is in place. Depending on the use case how this can
be implemented.

Microservice

Version control /
IaC

Depending on the software strategy and the current tech-
nologies, platform, and configuration of infrastructure.

GIT & IaC

Integration & delivery plane

CI pipeline Depending on the existing tools and the amount of cus-
tomization each team needs, a pipeline can be chosen.

Containerization

Registry Depending on the way the organization wants to deploy
applications and how to store artifacts.

Repositories

CD pipeline The CD pipeline will most likely look the same across dif-
ferent types of applications, and therefore, it must be cen-
tralized, depending on the CI and cloud provider.

Containerization

Monitoring & logging plane

31

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

Observability Observability can be very diverse and depends on the num-
ber of services and requirements. Different types of observ-
abilities can be considered.

Metrics Scraper &
Elastic storage

Logging Logging tools are based on an estimation of messages that
will be sent to the logging cluster and requirements on
querying logs.

Elastic storage &
Querying tool

Security plane

Secrets & iden-
tity

Secret and identify will most likely be offered by the cloud
provider and it depends on the organization to which degree
this is needed.

Role management
& secret manager

Resource plane

Compute The compute will be decided based on the infrastructure the
organization want to run on and what is already configured.

Docker & Kuber-
netes & serverless

Data & storage This will be based on the existing way of storing data in
the organization and choosing the best options.

Databases & file
storage

Networking Networking will be based on the cloud provider and the
front-facing frontend that are being built.

Load balancer &
gateways

Services This completely depends on the use cases of the organiza-
tions. A possible service is a message broker.

Example: message
broker

Table 3.1: Technology viewpoint: engineering platform components

3.3 Validation

3.3.1 Reference model comparison

The proposed reference model, which partially draws upon the existing IDP reference architecture,
facilitates a comparative analysis between the two. Unlike the reference architecture, which mainly
focuses on technical aspects such as the technologies used, the proposed reference model encompasses
a broader perspective. The proposed model includes technical components and emphasizes the cultural
and organizational shifts necessary for adopting platform engineering. This makes the proposed model
more comprehensive than the solely technology-driven IDP reference architecture.

The existing IDP reference architecture has its merits, with specific tools and techniques designed
for seamless integration with the AWS cloud provider, giving an understanding of a possible technical
implementation. Compared to the proposed reference model, the engineering and technology viewpoint
also focuses on the technical implementation of platform engineering, but in a more generic way. This
freedom of choice, coupled with the comprehensive nature of our model, makes it versatile and easily
adaptable across different organizations. Conversely, the proposed reference model remains a support
tool and is not tool-specific, articulating only the best practices for distinct components.

The biggest gain of the proposed reference model compared to the IDP reference architecture is
the comprehension of lifecycles and the cultural impact of platform engineering. Platform engineering
will introduce different working methods which are not visible in the existing reference architecture.
The proposed reference model explains the different lifecycles, the stakeholders, and the separation of
accountability between different roles. In the IDP reference architecture, many claims are made about
the benefits of the Internal Developer Platform and multiple concrete examples are given. Within these
examples, assumptions are made which are not explained. An example can be given that when a resource
is not known to the IDP, it has to be added to the general baseline, but it doesn’t explain how that
process works. That is one of the reasons why this reference model is more comprehensive than the
existing reference architecture.

3.3.2 Expert feedback

We conducted 8 expert interviews with staff in different positions to identify the relevancy, applicability,
and validity of the proposed reference model. The scripts for the interviews differ in structure, types

32

CHAPTER 3. PLATFORM ENGINEERING REFERENCE MODEL

of questions, and number of questions, depending on the role and expertise of the interviewee. Experts
were selected for voluntary interviews based on their position, status, and experience. Further criteria for
selecting the experts were knowledge of relevant functions, the ability to provide accurate information,
and their availability to be interviewed. In section 3.1, the different experts are explained. We also
interviewed an external expert to get a broader understanding. In the following, we discuss our findings
based on the expert interviews.

Five experts underscored the crucial need for a distinct separation of accountability between devel-
opment and platform teams. This delineation of roles and responsibilities fosters streamlined processes
and enables effective operations. The development teams focus on creating and refining software prod-
ucts, whereas the platform team’s duty revolves around constructing and maintaining the platform.
This division is made clear in the reference model and paves the way for clear accountability within the
organization.

Second, three experts concurred that adopting platform engineering does not inherently alter the
development lifecycle. Instead, platform engineering enhances this lifecycle by introducing advanced
tools, streamlined workflows, and an infrastructure that provides greater efficiency and reliability. It
acts as an enabler, not a disruptor, allowing development teams to continue their lifecycle activities with
increased productivity.

Moreover, five experts emphasized that the engineering platform has two key roles - guiding appli-
cations to production and ensuring their continued operation post-deployment. By elaborating on these
responsibilities, misunderstandings and ambiguities can be effectively mitigated. This level of clarity
promotes better alignment between different teams and aids in fostering a more efficient, collaborative
environment. Consequently, this transparency contributes to improved validity and reliability of the
reference model.

Finally, three experts, mainly related to the platform lifecycle, suggested that improved communi-
cation with development teams could significantly enhance the platform’s applicability. This dialogue
becomes even more critical in the context of platform alterations that could impact development work.
Their insights imply the value of having a structured process to communicate changes, as highlighted in
our reference model through implementing “golden paths” and versioning.

33

Chapter 4

Case study

This chapter seeks to demonstrate the practical application of the Platform Engineering Reference Model
(PE-RM) to effectively design and implement platform engineering within a software organization. We
will establish the credibility and relevance of this model by elaborating on its applicability by conceptual
design and validating its technical implementation through various experiments. Consequently, the chap-
ter is divided into three sections: Conceptual Design, Technical Implementation, and Experimentation.

4.1 Conceptual design

In this section, we will delve into utilizing the Platform Engineering Reference Model (PE-RM) to develop
a conceptual design tailored for a software-centric organization. In doing so, we enhance our compre-
hension of the Reference Model and verify its applicability within an organization. To design platform
engineering with specific reference to the organization, we will analyze the existing setup, extending to a
functional and technical understanding of the technology department and its software processes within
a software organization. Our exploration will focus on the current state and the areas of potential im-
provements. From these observations and contextual analysis, we will outline specific requirements that
aim to enhance the existing practices with platform engineering. Consequently, leveraging the insights
obtained from the analysis and defined requirements, we will construct a platform engineering design
underpinned by the PE-RM. To conclude this section, we will reflect on the relevance and adaptability
of the PE-RM to clarify how the model can be strategically deployed within an organization.

4.1.1 Analysis

Wehkamp is one of the leading online retailers in the Netherlands, offering a broad range of products,
with more than 400,000 items and serving millions of customers. In order to serve all these customers
and ship thousands of parcels daily, the organization needs to have software systems to support these
requests each day. Wehkamp has over 100 employees in the technology department working on different
parts of the website and related software systems.

Organizational setup

The technology department has many software development teams divided into store/platform and core/-
operations (explained in figure 4.1). Every department is overseen by a Tech Head, who is ultimately
responsible for their section and is also part of the Tech MT. There are different types of teams within
this department, and they could be different in their team construction. In table 4.1, we explained the
different types of teams and the roles they include. Table 4.2 contains a list of all the development ex-
pertise within development teams. In addition to these teams, the technology department also includes
pathfinders who are not part of a team and have a head of pathfinders which, in the case of Wehkamp,
is the CTO. Their primary role involves providing technical input in decision-making processes, thus, as-
sisting in guiding the overall software processes within the organization. Moreover, they are also available
to assist development teams when needed.

An essential team for this analysis is the cloud team, which is responsible for the container platform
we will research, and consists of 7 full-time employees. Currently, the technology department has enough
engineers for the workload they have. However, the cloud team could be seen as understaffed due to the

34

CHAPTER 4. CASE STUDY

transition to a new container platform which requires a lot of expertise and manpower.

CTO

Head of Store / Platform

Team brands &
 recomendation

Team checkout

Team core shopping

Team apps

Team UX design

Head of core

Team product
information

Team data science

Team tech finance

Team data engineering

Team supplier
management

Team follow the
money

PathfindersSupport office

Team cloud

Team network & server

Team workplace

Security

Self service

Customer service

Fulfillment

Order management

Warehousing

Figure 4.1: Wehkamp hierarchy: technology department

Team Roles

Development team Tech lead, product owner, scrum master, testers, backend/frontend developers

Cloud team Product owner, tech lead, scrum master, cloud engineers

Network & server team Product owner, tech lead, sys admin, network admin

Special teams Product owner, tech lead, configuration engineers, information analysts

Workplace team Service desk, sysadmins (external hired)

Table 4.1: Type of teams.

Expertise Description

Frontend developers Frontend applications build in JavaScript with Node.js and React. It also in-
cludes the maintenance of custom NPM packages.

.NET developers Many microservices are built in .NET and running in containers. This also
includes NuGet packages.

Java developers Some older services are built in Java, and not all are running in the cloud, but
on-premise. This also includes Maven packages.

Scala developers Many services are built with Scala in a dockerized environment. However, they
plan to migrate from Scala to Java or .NET.

Python developers Python is used across different applications and services. Mainly as a support-
ing tool and, in some cases, as a backend service.

Data scientists Data scientists mainly work in external systems like Databricks. They interact
with different parts of the platform and develop in Python and Scala.

Data engineers Data engineerings mainly work on the data platform (delta lake, vent ingest,
reporting pipelines) and develop in Python and Scala.

Table 4.2: Type of developers.

35

CHAPTER 4. CASE STUDY

Technology stack

Wehkamp’s infrastructure comprises two key divisions: the on-premise and the cloud-based systems.
Our investigation, however, will be centered primarily around their cloud infrastructure which serves as
the core of their operations. Wehkamp’s cloud environment allows development teams to deploy their
microservices and microsites as containers. While these applications are encapsulated in containers, the
choice of programming languages is subject to certain constraints, primarily due to an architectural
choice since they believe limiting the number of languages will make engineers more mobile in the
organization (see table 4.2). For the adoption of a new language, it’s required that the development team
first discuss and receive approval from the pathfinders; otherwise, they must select from the already-
approved languages. At present, Wehkamp is transitioning towards a new container platform. Therefore,
we found it necessary to deliver a comprehensive overview of all tools deployed across the current and new
environments. This analysis of the tools was carried out using the framework provided in the engineering
viewpoint of the PE-RM (proposed in section 3.2.4). The architecture of both environments, analyzed
from the perspective of this model, is explained in table 4.3 and explained in more detail in appendix B.

The main driving force behind Wehkamp’s decision to establish a new environment is its commitment
to staying current with state-of-the-art technology. This fits the requirements of automatic scaling
and cost efficiency. This shift is prominently characterized by their adoption of Kubernetes [34]. By
transitioning to a new infrastructure, there will also be the opportunity to support more capabilities for
the development teams, which we have stated in table 4.4. While the new environment is largely geared
towards enhancing the deployment and production performance of Docker containers, it is essential to
note that not all categories have been subjected to change. To fully grasp the incremental value that the
new environment imparts to the development teams, we have drawn comparisons between the capabilities
of both platforms in table 4.4. In appendix B, we have stated an overview of all the tools based on the
architecture framework proposed in the engineering viewpoint of the PE-RM.

Category Technology current environment Technology new environment

Developer control plane

IDE JetBrains, Visual Studio (Code) JetBrains, Visual Studio (Code)

Portal SlackBot, Confluence, Jira, Trello SlackBot, Confluence, Jira, Trello

Version control GitHub, Terraform, Ansible GitHub, Terraform

Integration & delivery plane

CI pipeline Jenkins Jenkins

Registry AWS ECR, JFrog, NPM, NuGet, PyPi,
Maven

AWS ECR, JFrog, NPM, NuGet, PyPi,
Maven

CD pipeline Jenkins, Cypress, Postman Jenkins, ArgoCD

Monitoring & logging plane

Observability Thanos, Grafana, Prometheus, AlertMan-
ager, PagerDuty

Thanos, Grafana, Prometheus, AlertMan-
ager, PagerDuty, Jaeger, Kiali

Logging Elastic Search, Kibana, Kinesis, Fluentd Elastic Search, Kibana, Kinesis, Fluent-
Bit

Security plane

Secrets & identify
management

GitHub, IAM, Consul GitHub, IAM, Secret Manager

Resource plane

Compute Docker, Mesos, Marathon, Consul,
ZooKeeper

Docker, Kubernetes, Keda, Karpenter

Database PostgreSQL, Redis, Elastic Search, Dy-
namoDB, S3

PostgreSQL, Redis, elastic storage, Dy-
namoDB, S3

Networking Cloudflare, Elastic Load Balancer, VPC,
HAProxy, Certificate Manager, Ngnix and
Lua

Cloudflare, Elastic Load Balancer, VPC,
Certificate Manager, Istio

Messaging Kafka Kafka (MSK)

Table 4.3: Technologies.

36

CHAPTER 4. CASE STUDY

Capability Current platform New platform

Configuration man-
agement

A custom repository with CD job to push
secrets from GitHub to consul that can be
injected into the containers. In combina-
tion with docker labels

Secrets are stored in the secret manager,
and the argo applicationSet is stored in a
different workload file.

Kafka message broker Self-managed Kafka server. Managed Kafka server.

Terraform state One big terraform state in a GitHub repos-
itory.

Three stages of terraform states: (1) ac-
count seeding: including networking and
vpc. (2): platform: including guard duty
and EKS clusters. (3) Application provi-
sioning: terraform code for an application.

Policy management Services have access to all resources. An application has, by default, no access
to resources, and policies have to be added
and approved.

Application scaling Is possible in Mesos/Marathon but is never
configured.

Based on metrics and Keda, the application
can be scaled automatically to manage the
workload.

Platform scaling In Mesos/Marathon, they used a headroom
function to scale, but it is not very cost-
effective.

With the use of Karpenter, the platform is
able to buy spot instances and add them,
making it more cost-effective.

Cron job Chronos is installed in Blaze to run a con-
tainer.

The new platform offers cron job support
with the needed observability.

Running a job Jenkins is used for some maintenance jobs;
application-like jobs are in the container,
which could be a huge risk.

Creating a job (K8s jobs) on Kubernetes
and terminates once done.

Table 4.4: Platform capabilities.

Development and deployment process

In addition to the technological stack, it’s also crucial to assess how the development teams operate and
the kind of processes within the organization. To provide clarity and structure, we have divided the
processes into distinct categories:

• Development Methodologies: Development teams adopt Scrum with two-week sprint cycles and a
DevOps approach allowing independent application deployment. Platform teams manage network-
ing and cloud operations. ArgoCD with GitOps is utilized in the new environment, and a chatbot,
SlackBot, is used to interact with the platform by provisioning functionalities.

• Version Control Practices: Teams use a Slackbot (together with a provisioning service) to create
GitHub repositories, Docker registries, and CI/CD pipelines. The configuration of GitHub reposi-
tories is at the discretion of each team. The Git strategy uses master and feature branches, with
automatic deployment upon code push to the master branch.

• Pipelines: Creating a GitHub repository via Slackbot triggers the creation of ECR repositories
and related CI/CD pipelines. Builds are done in Docker containers with Jenkins jobs. Continuous
scanning of GitHub enables automatic trigger of Jenkins CI jobs, which has too many permissions.
A GitOps approach with ArgoCD is implemented in the new environment.

• Deployment Strategies: Feature branches aren’t deployed by default, but a parameter can allow
it. Master branch code is auto-deployed to development, then production. Unique Docker images
simplify rollbacks. In the new environment, batch deployments smooth out the process.

Based on these development and deployment processes, many significant initiatives already help
increase the productivity of the development teams. However, with these practices, there are also some
downsides. For example, it can take some time for Jenkins to visualize the Pipelines necessary to
deploy applications since they are centralized and not easily customizable by development teams. Each
development team has a lot of freedom in adopting its guidelines and rules related to its git strategy and
coding standards, making standardizing more difficult.

37

CHAPTER 4. CASE STUDY

Productivity and performance metrics

To evaluate the current workflow, we identified key performance metrics that could be influenced by
platform engineering, such as onboarding times for developers and applications and deployment rate.
Developer onboarding time signifies how long a new engineer takes to deploy their first application. In
contrast, application onboarding time measures the time needed to deploy a new application with all
required tools. Deployment rate tracks the average number of weekly deployments.

To measure these, we analyzed three new developers for developer onboarding time, conducted an
experiment to measure application onboarding time, and used various sources for deployment rate.
These metrics are stated in table 4.5, and we elaborate on these metrics in more detail in appendix B.2.
However, these metrics showed that the organization lacks a way to gather this information, hindering
performance improvement.

Metric Description Result

Developer onboarding
time

The time it takes for a new engineer to
deploy an application to production.

Average: 15 working days

Application onboard-
ing time

Time to deploy an application to pro-
duction.

Total time: 185 minutes

Deployment rate The average amount of deployments
done for an application to production.

Current environment: 153 per week,
new environment: 84 per week

Table 4.5: Performance metrics.

Despite existing tools aiding developers in specific tasks, much work remains manual. For example,
developers can use a Slack bot for creating repositories and pipelines in application provisioning. However,
they must create metrics exposure manually, follow best practices, and set up database policies. This
increases the onboarding time and error rate, especially with a GitOps approach where Yaml files are
essential. In addition, this will also increase the developer onboarding time since it can be difficult and
confusing to get started.

Maintenance and support

From a platform perspective, providing platform feedback primarily involves direct messaging to the
platform team to initiate a discussion. When platform issues arise, the cloud team generally undertakes
repair efforts promptly. However, there is a formalized method for requesting new platform features
or notifying development teams about platform malfunctions. However, this is not generally adopted
and used, making feature requests less frequent. The primary mode of communication between the
platform/cloud team and the development teams is Slack, where an announcement can be made on a
specific channel.

Slack also serves as the principal communication channel for support, assisting developers with re-
solving specific platform-related issues. Whenever the platform undergoes an update, this information
is communicated through Slack. Platform documentation pages are available, but they are located at
different locations. However, this is not a structured means of communicating new platform features.

Conclusion

While Wehkamp already demonstrates several characteristics of platform engineering, both organiza-
tionally and technically, numerous unexplored aspects of platform engineering could be pivotal for a
more efficient implementation. The transition to a new container platform has resolved many technical
challenges; however, fundamental issues remain. Therefore, we can infer that significant enhancements
could be achieved by implementing platform engineering on both technical and organizational levels to
refine the overall processes.

A primary area of improvement will be the onboarding time of applications and employees. The
time required to provision and deploy an application to production, equipped with the necessary tools
and observability, is relatively extensive. Additionally, there’s an abundance of manual configuration
that could disrupt a centralized and standardized workflow, but more importantly, it is prone to errors.
Wehkamp’s usage of a Slackbot, which solely creates repositories and pipelines, does not address the
creation of code or ArgoCD manifests needed for application deployment. This lack of automation
could lead to time-consuming, non-standardized processes across different applications when performed

38

CHAPTER 4. CASE STUDY

manually by developers. For new developers, it could be daunting to understand the existing applications
and their functionalities, thereby increasing onboarding time. Furthermore, the lack of standardization
in observability and logging could extend the time to resolve production issues.

Organizationally, the informal communication between the cloud and development teams could pose
challenges. The absence of formal opportunities to provide feedback or request new features could impair
communication, resulting in reduced alignment. The platform lacks official documentation that could
aid developers in understanding changes made by the platform team or the appropriate usage of tools.

4.1.2 Requirements

From the insights gathered during our case study analysis, we will formulate specific requirements on
which a potential platform engineering initiative should be based. These requirements are exclusively
derived from our observations, and will subsequently be translated into a functional and technical design,
in line with the reference model. Since these requirements are based on our observations, we can not
make them measurable, and they will be used more as guidelines.

Organizational requirements

Here, we detail the organizational requirements of platform engineering and the criteria it needs to meet.
These requirements express the desired organizational changes that the adoption of platform engineering
should bring about. Given that this organization has already incorporated some aspects of platform
engineering, we will only lay out new requirements that arise from potential improvements compared to
the current operational methodology.

1. Improve communication and elaboration between the platform and development teams to increase
the effectiveness of the platform features

2. Introduce formal accountability rules, who is responsible for maintaining a tool, and when will it
become part of the platform team or development teams.

3. Improve the onboarding time of developers.

4. Integrate policies on when to use tools; they can only be used once they are fully integrated into
the platform.

5. Formal communication channels between developers and the platform team to increase elaboration.

Technical requirements

Here, we outline the technical requirements of platform engineering and the standards it needs to ful-
fill. These requirements represent the expected technical enhancements the engineering platform should
introduce to the organization. As Wehkamp has already embraced some elements of platform engineer-
ing, we will focus on presenting the new requirements and technological modifications based on possible
enhancements when compared with the existing mode of operation. We only focussed on the technical
requirements that platform engineering could bring to the organization.

1. Measure productivity and performance metrics to track progress over time to see the impact of
platform improvements.

2. Improve onboarding time of applications to make it easier to deploy to production.

3. Information about applications should be easier to find. This includes documentation and other
relevant information.

4. The platform needs to have versioning to get more control and formality on new changes.

5. The platform should offer tools to help with deployment configurations

6. The CI needs to be more secure by ensuring it only runs in a sandbox.

7. Reduce logging costs by introducing rules on when to log certain levels and what handles these
logging requests.

8. Services do not have access to other services by default. This has to be defined to increase security
and an overview.

4.1.3 Design

In this segment, we will construct a platform engineering design drawing on the analysis conducted and
the requirements compiled throughout the case study. Leveraging the Platform Engineering Reference

39

CHAPTER 4. CASE STUDY

Model, we propose a platform engineering methodology designed to address particular challenges and
enhance the overall software procedures within the organization. It will also serve to verify the validity
of the reference model crafted in chapter 3. To provide deeper insights into the utility of the reference
model, this section will be organized according to different viewpoints.

Enterprise viewpoint

Implementing platform engineering involves two lifecycles within the organization: platform and appli-
cation (detailed in section 3.2.1). Communication between platform and development teams needs to be
formalized to streamline the platform lifecycle, transition from ad hoc Slack messages to a structured
approach, and facilitate feature requests. This also includes better support from the platform team to
the development teams. Since we treat the application development lifecycle as a black box, we focus
on the initial state, which can significantly impact development. This lifecycle can be enhanced by
introducing methods to support application provisioning through a centralized, standardized tool that
supports golden paths.

Various stakeholders play essential roles in platform engineering integration, as explained in sec-
tion 3.2.1. These roles must be clearly defined for the entire technology department. In table 4.6, we
outline these roles, responsibilities, and interactions with different lifecycles. A meaningful rule of thumb
is the accountability of the platform team - if two or more development teams utilize a tool, it should
fall under the platform team’s responsibility.

Stakeholder Responsibilities Interactions

Platform team The organization already has a platform
team, which is responsible for the platform

They will improve the platform, create new
releases and support development teams by
offering easy-to-use tools.

Development
teams

They are the users of the platform. These development teams are the stakehold-
ers of the platform and could request new fea-
tures.

Development
guilds

They have to be formed to offer golden paths
to developers to push best practices and en-
able integration with the platform

They will offer support to development teams
by golden paths

Pathfinders Pathfinders are already within the organiza-
tion and overlook the entire software process.

They help with platform adoption, feature re-
quests, and infrastructure design of the plat-
form.

Table 4.6: Stakeholders.

With the introduction of stakeholders and lifecycles, we formalize many stakeholder interactions,
making it easier to leverage platform engineering. We focus on three key interactions: (1) Make feature
requests more accessible by designating the platform product owner as the primary contact. (2) Focus on
deployment when developing new platform features and bundle deployments into releases. (3) Introduce
rules for project provisioning through the platform to increase standardization and adherence to best
practices. Further details on these interactions can be found in section 3.2.1 of the Platform Engineering
Reference Model.

Information viewpoint

Right now, the organization is missing some key information and action objects that could help adopt
platform engineering (for reference, see section 3.2.2). The following information and action objects need
to be introduced:

• Platform version: This would improve documentation and facilitate communication between the
platform and development teams. Bundling deployments into a single release enhances the change
log clarity and helps development teams understand what has been changed, promoting tool adop-
tion and standardization.

• Golden paths: Implementing golden paths on the engineering platform would boost productivity
by enabling the automatic creation of new applications with all necessary tools included. This
could reduce onboarding time and decrease code or configuration errors.

40

CHAPTER 4. CASE STUDY

• Metrics: The platform currently lacks detailed productivity metrics and other data that could
enhance understanding of the platform. Such metrics are vital for identifying areas of improvement.

• Platform feature requests: These would allow development teams to create new applications us-
ing preferred tools. With the enforcement of golden paths, it would become easier for teams to
make platform requests for unsupported functionalities. Especially a formal process to investigate
features could benefit from a bigger discussion.

Computational viewpoint

From the computational viewpoint, we will focus on the operations that will most impact the organization
related to the analysis and requirements. The main improvement is the provisioning of an application
domain, which would also result in the introduction of golden paths. This would introduce new inter-
actions between the development teams and the platform. With the introduction of golden paths, the
translation of these operations can become easier since each operation can be created in a golden path.

(1) Golden paths are the first gain to improve standardization across the organization by developing
golden paths for development teams to provision an application. Therefore the organization introduces
a developer portal to make these golden paths possible and a development guild to manage these golden
paths. Without these components, it will be challenging to create the golden paths to offer advantages
to development teams in the provisioning of their application domain. In section 3.2.3, we explained
this operation in more detail. For these golden paths to be useful the development guild needs to work
together with the platform team to offer full integration with the platform. Although the implementation
of golden paths is up to the organization, these are possible options based on our observations:

• Provisioning of react application: this will reduce the onboarding time of new applications as it
takes a lot of time to provision applications in the current way of working.

• Provisioning of ArgoCD applicationSet for deployment: this will reduce errors and increase stan-
dardization for deployments, reducing maintainability.

• Migration of application from current to a new environment: help developers reduce the configu-
rations they have to do to migrate their applications to the new environment.

(2) Provisioning of applications is the second improvement that has to be done and can be achieved
with the use of golden paths, a developer portal, and a provisioning service. Within Wehkamp, they
already have a provisioning service. However, this service only provisions the basic resources and does
not take care of scaffolding an application. In order to fully take advantage of platform engineering,
scaffolding has to be done. This will include exposing the correct metrics across all applications and
adopting best practices. In section 3.2.3, we explained this in more detail. However, the sequence could
depend on each organization. In the case of this case study, we have worked out two golden paths. For
more details see figure 4.2 for the sequence of provisioning an application and figure 4.3 for provisioning
the deployment for an application.

Development
team

new architecture

Backstage

get golden paths

Deployed application

golden paths

Deploy application Deployment parameters

Provisioning
service ArgoCDGitHub Grafana

status

Create workload
workload

Secret
manager

deploy application

create dashboarding
status

create secrets
reference

Developer control plane Integration & delivery plane Monitoring & logging plane Security plane

Figure 4.2: Golden path: provision application

41

CHAPTER 4. CASE STUDY

Development
team

new architecture

Backstage

get golden paths

Deployed application

golden paths

Deploy application Deployment parameters

Provisioning
service ArgoCDGitHub Grafana

status

Create workload
workload

Secret
manager

deploy application

create dashboarding
status

create secrets
reference

Developer control plane Integration & delivery plane Monitoring & logging plane Security plane

Figure 4.3: Golden path: provision application deployment

Engineering & technology viewpoint

Next to the organizational changes and operations that must be introduced, we also need to develop the
technical implementation to support these changes. This will be done with the engineering viewpoint
(explained in section 3.2.4) and the technology viewpoint (explained in section 3.2.5). Since many of the
technical implementations are based on preferences and existing tools, the focus was not on changing the
entire technology stack but on the main improvements that can be done to support the other viewpoints
but also comply with the requirements and observations. Figure 4.4 provides a possible architecture, the
technology stack beforehand can be found in appendix B.

Compute Data & storage Networking Services

Resource plane

Development Developer portal

Version Control

CD pipeline

Registry

CI pipeline

Logging

Observability Secrets & identify management

Developer control plane Integration & delivery plane Monitoring & logging plane Security plane

Engineering platform design

Figure 4.4: Engineering platform technical implementation

42

CHAPTER 4. CASE STUDY

In this architecture, you can see three main changes done, which focus on achieving better integration
of platform engineering and complying with the requirements and observations. Moreover, this technical
implementation will support the creation of platform engineering according to the enterprise, information,
and computational viewpoints.

(1) Backstage is the tool that all the development teams will use to communicate with the platform.
Backstage could have multiple functionalities, giving the platform versioning and documentation. But
also offer golden paths and service discoverability. Therefore the part that will play the most crucial role
in the transition to a successful platform engineering strategy is Backstage.

(2) DroneCI can be a potential new tool to help give developers more control of their pipelines.
Moreover, this way, the golden paths for the provisioning of specific tools can be easily customized. Each
language could have its pipeline configuration. Moreover, this way, the organization can give the CI fewer
privileges and be more sandboxed. However, the choice of which tool this should be can be different
based on preferences or other factors.

(3) Apache DevLake is a new service that can be introduced due to the lack of metrics about
performance within the organization. By looking into the performance metrics, we found that getting
those is very difficult. Therefore, apache Devlake can be used to give more insight into the DORA metrics
of the organization [35].

4.1.4 Summary

From our analysis, it’s evident that the organization exhibits certain platform engineering attributes.
However, this doesn’t necessarily indicate a seamless integration of platform engineering practices. No-
tably, there’s an apparent communication gap between the platform and development teams. This is
exacerbated by the absence of a developer portal, making the support process from the platform team to
the development teams more difficult and complex. The organization lacks standardized practices such
as golden paths, platform versioning, and formal channels for feature requests, which play a vital role in
platform engineering and the PE-RM. Additionally, critical performance metrics remain hidden, making
it difficult to validate the current productivity. There’s an evident overreliance on tools, as each team
can independently create their resources. This freedom, while possibly beneficial in some contexts, has
led to discrepancies in code quality and deployment practices, decreasing standardization and amplifying
communication challenges.

In designing the platform engineering approach, our focus was not only on the technical aspects
but more holistically on understanding platform engineering from the organizational point of view. By
categorizing these challenges into the different viewpoints, we were able to design actionable recommen-
dations. On an organizational level, the establishment of development guilds and clear role definitions
can make a significant difference. From the information and computational perspectives, the introduc-
tion of golden paths and platform versioning will be beneficial. Hence, implementing a developer portal,
specifically ”Backstage”, stands to be a transformative step for the organization. Not only would it
provide platform versioning and golden paths, but it would also streamline application and developer
onboarding by offering comprehensive information and support. Further, the incorporation of tools like
DroneCI will empower developers with more pipeline control. Simultaneously, utilizing Apache DevLake
can ensure that crucial metrics are easily accessible.

We leveraged the Platform Engineering Reference Model (PE-RM) to architect this platform engi-
neering design, facilitating a customized implementation. It underscored the requisite organizational
and technical shifts to fully embrace the platform engineering paradigm. By integrating new roles, in-
formation constructs, and technologies, these viewpoints collectively form a cohesive and interrelated
structure.

4.2 Technical implementation

Now that we have given a guideline on how the Platform Engineering Reference Model can be used
to design a tailor-made platform engineering design for an organization, we will focus on the technical
implementation. Since implementing an engineering platform based on the design is too big for this short
time, we have focussed on a small implementation with open-source tooling to show how to implement
a primary engineering platform. This section will outline the different requirements used to build this
solution, the architecture and components, and the unique functionalities and added value.

43

CHAPTER 4. CASE STUDY

4.2.1 Requirements

This section will explain the requirements used to implement the engineering platform. The requirements
are based on the observations in the case study and the context of this research. These observations are
translated into users’ stories and thereafter into functional and technical requirements.

User stories

Since we are building an engineering platform that should provide value to development teams, we need
to identify what features should be included from their point of view (in order to add value). This can
be achieved by identifying user stories, which we will list in this section.

• As a developer, I want the platform to generate my applications so I can focus on creating business
value with the correct configuration and best practices.

• As a developer, I want the platform to generate the deployment configurations so I can deploy my
application to a development environment.

• As a developer, I want the platform to generate the deployment configurations so I can deploy my
application to a production environment.

• As a developer, I want to get the current version of the platform so I get insight into the changes
and the documentation.

• As a developer, I want to see logs of my application by default so I can focus on creating the
application and retrieving logs.

• As a developer, I want to have default dashboarding so I can get metrics of my applications without
creating dashboarding myself.

• As a developer, I want to expose my application to the outside world without manually adding
gateways so my application is reachable.

• As a developer, I want to be able to inject secrets into my application by default so I can store and
inject secrets securely.

• As a developer, I want to have an overview of all the applications within the organization so I can
gather information about the architecture.

• As a developer, I want the platform to scan my docker images for security issues, so I get security
checks by default.

• As a platform engineer, I want to have a separation in development and production, so development
teams can deploy in both development and production independently.

Based on the user stories, we collected a list of requirements to grasp better what our proposed system
should be able to do. We have split these requirements into functional and non-functional requirements.

Functional requirements

Here we list the functional requirements that we want our framework to fulfill. These requirements
describe the desired behavior of our system and are transformed to be more understandable in the
context of platform engineering.

• The platform must have a scaffolding functionality to provision two types of applications: React
and NestJS.

• The platform must configure the docker registry and pipeline for building and pushing docker
images when provisioning an application

• The platform must have a scaffolding functionality to create a workload for an application’s pro-
duction and development environment.

• The platform must show the platform version, including the change logs, to the developers.

• The platform must offer logging and observability by default.

• The platform must offer a way to expose applications to the outside world.

• The platform must include secure ways to store and injects secrets.

• The platform must have discovery functionality to get an overview of all the applications.

• The platform must offer image scan functionality to validate the security of docker images.

• The platform must separate a development and production environment for deployed applications.

• The platform should allow developers to change configurations manually.

44

CHAPTER 4. CASE STUDY

Non-functional requirements

Aside from the functional requirements, we also designed some non-functional requirements for our
system. These requirements focus on the technical aspects of the platform.

• The graphical user interface should focus on the functionality above the design.

• The platform should be protected with authentication.

• The platform should be accessible by a DNS.

• The platform should only use open-source tooling.

• The platform must use open-source tooling to increase transparency.

• The platform must have a web interface that developers can use.

4.2.2 Architecture

We have constructed an architectural design for our engineering platform, as depicted in figure 4.5. This
design, founded on the engineering and technology viewpoints of the Platform Engineering Reference
Model (chapter 3), showcases the platform’s components, their purposes, and design decisions.

Our prototype’s goal was to showcase essential platform engineering functionalities, not tool selec-
tion. We utilized Otomi, an open-source Platform as a Service system, to fulfill this aim (detailed
in section 2.1.2). This platform integrated various tools, which we configured to meet requirements,
while customizations enabled new functionalities, including the integration of additional tools such as
Backstage (section 2.1.2). This section will detail the main design and implementation decisions.

We chose Otomi and Backstage for their flexibility in creating tailor-made solutions, a cornerstone
of platform engineering. This choice bypassed the constraints of other Platform as a Service (PaaS)
solutions like Azure DevOps and Heroku.

Compute Data & storage Networking Services

Resource plane

Development Developer portal

Version Control

CD pipeline

Registry

CI pipeline

Logging

Observability Secrets & identify management

Developer control plane Integration & delivery plane Monitoring & logging plane Security plane

Engineering platform

Figure 4.5: Implementation: engineering platform infrastructure

Developer control plane

In creating the developer control plane, we utilized Otomi as a central point for platform setup. Primarily,
this interface is navigated by the platform team. In contrast, Backstage serves as the developer portal,
providing facilities for provisioning and application discovery and serving as a repository for platform
versioning and documentation. Several golden paths, have been established within Backstage. These
golden paths, which are outlined in more detail in Appendix C, include the following:

• Create React application.

45

CHAPTER 4. CASE STUDY

• Create NestJS application.

• Create development workload for application.

• Create production workload for application.

To execute these golden paths, Backstage interfaces with Gitea via an API, managing a variety of
configurations. This includes creating repositories with templating, configuring pipelines for DroneCI,
and establishing ArgoCD workload files. Depending on the specific golden path, it can modify a file to
add distinct configurations. We’ve embedded custom functions within Backstage, which trigger HTTP
requests to Gitea, updating repositories with code generated in Backstage. Additionally, developers
leverage Otomi for tasks like creating DNS records or injecting secrets. For version control, we elected
to use Gitea, largely due to its integration with the Otomi PaaS solution. We established a dedicated
repository, argo-workload, which maintains the record of applications as applicationSets deployed through
ArgoCD on Kubernetes. This repository is interconnected with ArgoCD. To ensure the smooth operation
of Backstage in conjunction with Gitea, it was necessary to create custom functionalities. These are
documented extensively in Appendix C.4.

Integration & delivery plane

The tools incorporated within the integration & delivery plane were part of the Otomi installation,
although with modifications to fit our framework. We streamlined DroneCI by integrating Harbor
secrets into the organization, automatically injecting necessary secrets to push Docker images to Harbor,
thereby simplifying configuration for new applications. The DroneCI configuration pipelines were auto-
provisioned via a custom function in Backstage (see Appendix C.3).

For ArgoCD, a repository, argo-workload, was created in Gitea. This repository houses various YAML
files, including application sets. Utilizing golden paths for file creation enhances error minimization
and boosts developers’ productivity. Both development and production versions of the application are
contained within each application set, and they run on a single Kubernetes cluster. The application set
refers to specific files located in a named folder tagged as either “dev” or “prod”. These folders contain
three files: development.yaml, service.yaml, and servicemonitor.yaml (details are in Appendix A). Each
application maintains a unique name and namespace for effective monitoring and logging. ArgoCD
updates Kubernetes deployments automatically following repository updates.

Configurations of DroneCI pipelines, found in the repository, are provisioned by golden paths, which
can append new deployment pipelines based on the path selected. Similarly, the ArgoCD repository is
auto-configured using golden paths, ensuring accurate namespace and port specifications in Kubernetes.
Manual adjustments are possible but typically unnecessary.

Monitoring & logging plane

For observability, we use a combination of Istio, Grafana, and Prometheus to gather metrics of applica-
tions. By default, Prometheus is connected to Istio in a service mesh to gather metrics about a container
and store it. Grafana is used to display those logs in dashboards. Since we deploy applications with a
unique namespace, we can easily query logs based on the namespace. This makes it easier for developers
to get the logs and metrics for their applications without having to worry about the configurations.

In terms of monitoring, we provide default dashboards for developers, empowering them with direct
access to metrics. For the prototype, we’ve expanded this offering by devising a custom dashboard
applicable for each application. These customized dashboards reveal unique metrics specifically exposed
by their corresponding applications. By implementing applications via the ’golden paths’, developers
automatically receive this expanded functionality. This enhanced dashboard can then be used to identify
HTTP errors originating from their applications, facilitating prompt issue resolution. By standardizing
this approach, all applications will emit identical metrics, consequently enabling universal dashboards.
This provides a coherent view across all applications and fosters an environment of standardization,
enhancing the overall efficiency of our monitoring and observability architecture.

Security plane

To secure the platform with role-based access control (RBAC) and identity management, we’ve incor-
porated several tools to enhance security. Initially, our implementation only established a default team
endowed with full rights; however, this arrangement allows for future modifications. To engage with the
platform, users are required to sign in through an account managed by Keycloak, a step that grants
access to all tools deployed within the platform. This system ensures that we maintain control over

46

CHAPTER 4. CASE STUDY

user management and settings, boosting overall security. For application-related matters, we rely on
HashiCorp Vault for secret injection into pods. This is particularly useful when deploying in a Kuber-
netes environment, as it ensures that secrets are readily accessible. This strategy promotes secure secret
storage, eliminating the risk associated with storing sensitive data in plain text. Furthermore, we’ve es-
tablished a connection between Vault and ArgoCD to facilitate smooth integration, minimizing the need
for manual intervention. An illustrative example of this can be found in the argo-workload repository,
where Backstage retrieves its secrets from HashiCorp Vault. This particular arrangement underscores
our commitment to creating a secure and user-friendly platform.

Resource plane

The compute components of this platform, which fundamentally operate on Kubernetes, are central to
our platform, largely due to our decision to utilize Otomi. This strategy allows for significant vendor lock-
in reduction, even enabling custom hosting. For this particular implementation, we’ve chosen Digital
Ocean as the hosting provider, favoring its easy configuration and provision of large clusters, which
contributes to expedited development time. Numerous pods and deployments are initialized within the
Kubernetes environment to ensure the platform’s functionality.

While the emphasis of this implementation doesn’t fall on data and storage—resulting in their exclu-
sion—there exist many possibilities for database integration. Given that the platform resides on a cloud
provider, we could introduce Terraform into Gita to provision databases or create a new ’golden path’
that empowers developers to provision Postgres databases within Kubernetes.

As for networking, we employ a suite of tools that facilitate network connectivity, ingress, and load
balancing for all tools and applications housed within the platform. Given that both custom applications
(developer-built) and platform tooling operate on Kubernetes, we’ve enabled various ingress controllers to
manage traffic flow. We utilize Nginx as an ingress controller, while Istio takes charge of networking and
request management. Additionally, we employ external DNS to assign a default DNS to our application,
ensuring that applications are accessible via specific DNS. Most of which is set up by Otomi.

Though services were not the primary focus of this implementation, we did integrate Trivy to illustrate
one potential service the platform could offer. Trivy conducts vulnerability scans on Docker containers,
providing developers with valuable insights and advanced security tooling. From this implementation,
we recognized in short order that we also employ Otomi as a service, as it assists in exposing applications
and injecting secrets into them.

4.2.3 Functionalities

In this section, we will work on the functionalities of the platform to understand the platform imple-
mentation and added value of the platform. In order to show you what functionalities are unique to this
implementation and could help the adoption of platform engineering, we have created figure 4.6. In this
figure, you can see the main events of an application lifecycle, which is a simplified version of the one
proposed in section 3.2.1. In the case of the implementation, we have focussed on the (1) application
domain and (2) observability and logging.

start

Create application domain

- Create repository
- Inject template

- Best practices
- Pipeline configurations

Development lifecycle

Update application domain

- Create deployment configuration
- Update pipeline
- Create argoCD config files
- Create/update applicationSet

Monitor application

- Get logs with Loki
- Get metrics with Grafana

Figure 4.6: Application lifecycle: different events

47

CHAPTER 4. CASE STUDY

Automated provisioning of services

The primary contribution of implementing the engineering platform is the development of golden paths,
which streamline the configuration processes for applications, pipelines, and deployments. This approach
allows developers to prioritize the construction of an application that creates business value instead of
being sidetracked by the complexities of configuration. The ability to construct these golden paths is
influenced by the organization’s structure and the technologies utilized. Development guilds and the
platform team can curate golden paths tailored to specific actions. In the present implementation, we
have engineered four distinct golden paths: Create Nest.js application, Create React application, Create
development workload for application, and Create production workload for application (refer to figure C.2
in the appendix). Each golden path serves unique objectives and functions within the implementation
process. All development teams can access these golden paths through the developer portal.

For instance, if there is a need to create a Nest.js application, a dedicated golden path can guide
this process. The sole requirement is the application’s name. The golden path then scaffolds the appli-
cation, integrating universally applicable boilerplates and metrics configurations that facilitate default
dashboarding (further elaborated in section 4.2.3). This process also incorporates the creation of a Gitea
repository, including DroneCI configurations and a Dockerfile for building and pushing a Docker image
to Harbor. Upon completion, the platform provides the developers with links to the repository, pipeline,
and catalog. These links allow the developers to validate the creation process and commence with the
application’s development. Figure 4.7 presents a sequence diagram that outlines the steps to provision
a new application. Additional resources, including links to template and example repositories, can be
found in appendix A. Appendix C provides a detailed description of the implementation process.

Development
team

new application

Backstage

get golden paths

application repository

golden paths

Provision application

Backstage
backend HarborGitea DroneCI

status

Developer control plane Integration & delivery plane

request application name

application name

provision application
scaffold repository

status

create DroneCI pipeline

create registry

status

status

import service

catalog-info

Figure 4.7: Platform implementation: provision application

We assume that the continuous development of an application can be considered a black box, given
that the specific development approach can depend significantly on the organization and development
team. However, once the development team is ready to deploy the application, the platform aids the
deployment process by providing a separate golden path to update the application domain with workload
files (refer to figure C.5 in the appendix). In our implementation, the applications are deployed using
ArgoCD on Kubernetes. This deployment method, however, may vary across different organizations.
Typically, organizations maintain a separation between development and production environments. Cor-
respondingly, we have devised two distinct golden paths to cater to these environments: development
workload and production workload. Once the development team initiates the deployment, they can
employ the respective golden path to execute five distinct steps.

1. The first step is to update the DroneCI pipeline in the application repository to ensure that the
following change of the application will be automatically deployed.

2. The second step is creating a Kubernetes deployment file that will be configured with default
settings and the latest docker tag of the application.

48

CHAPTER 4. CASE STUDY

3. In step three, the Kubernetes service configuration file is created to ensure that the deployment is
created with the correct name and namespace.

4. The fourth step is creating a service monitor that will ensure that the metrics will be exposed to
Prometheus that will be used for observability purposes.

5. In the last step, the golden path will create or update the applicationSet in the argoCD workload
repository. If the development team creates a development workload, this applicaionSet will be
created, and when it is a production workload, production will be added to the applicationSet.

Once the applicationSet is updated, argoCD will sync the repository and deploys it on Kubernetes. Using
this golden path, the application will be deployed on the correct cluster with the correct settings and
namespace. In appendix C, this golden path is explained in more detail.

Development
team

create workload

Backstage

get golden paths
golden paths

Create workload

Backstage
backend Gitea

create service.yaml
status

create servicemonitor.yaml
status

create/update applicationset
status

Developer control plane Integration & delivery plane

request application name

application name

create workload
update pipeline

status

create deployment.yaml

ArgoCDDroneCI

add pipeline

status

sync changes

Kubernetes

deploy application

status
status

Resource plane

Harbor

get latest image
image tag

Figure 4.8: Platform implementation: provision application deployment

Employing these golden paths to provision the complete application domain enables the platform to
manage the entire lifecycle, thus reducing the cognitive load on developers. This provisioning method
simplifies the integration of applications with various tools, such as gateways, and secret management,
among others. As a result, transitioning the responsibility of configuration from developers to the
platform boosts the productivity of development teams. Additionally, it promotes a higher degree of
standardization and centralization, leading to more efficient and consistent operations.

Default observability and logging

Another distinctive attribute of the platform that enhances the effectiveness of development teams is the
incorporation of default observability and logging for applications. Utilizing golden paths, maintained by
development guilds and the platform team, for application provisioning allows the platform to provide
default dashboards and logging for these applications. This becomes particularly critical for production
systems. As applications are deployed in a standardized manner onto the platform, which includes the
scaffolding of metrics within the namespace that aligns logically with the platform, development teams
can utilize integrated dashboards across all applications. This obviates the need for development teams
to configure dashboards or logging settings individually, allowing them instead to leverage the predefined
tools readily available. Figure 4.9 showcases a sequence diagram illustrating the process of obtaining
logs and metrics for a specific application. Please note while the connection between Loki/Prometheus
and Kubernetes may differ in practice, this representation simplifies the data source identification.

The platform’s capacity to offer default dashboarding extends to creating default alerts, which can be
universally applicable to all applications constructed by the golden paths initiated by development teams.
This heightens the level of standardization across varied teams, simplifying the detection of production
issues that impact multiple applications. Additionally, this feature eliminates the need for development
teams to worry about observability as it is inherently provided. Appendix C.5 elaborates further on the
platform’s default observability and logging functionalities.

49

CHAPTER 4. CASE STUDY

Development
team

get observability

Grafana

get dashboards

Loki Kubernetes

dashboards

show dashboard

filter namespace

Prometheus

query metrics

metricsdashboard metrics

scrape metrics endpoint
metrics

get logs
query logs on namespace

logs

get container logs
container logs

Logging & monitoring plane Resource plane

Figure 4.9: Platform implementation: default observability and logging

4.2.4 Summary

Through this technical implementation, we have demonstrated how an engineering platform can promote
the adoption of platform engineering within an organization—showcasing the added value of platform
engineering by creating a centralized and standardized platform with golden paths, documentation and
integrated tooling. This methodology can enhance the performance and productivity of developers while
fostering standardization and centralization within the organization, which consequently helps decrease
maintenance overhead. When compared with Platform as a Service (PaaS) solutions like Azure DevOps,
a significant advantage of our approach is its adaptability across an entire company. The high degree
of customizability ensures organizations can integrate the platform into their existing technology stacks,
eliminating the need for a complete migration to a new platform. Moreover, it will eliminate vendor
lockin since it can run on many different providers.

The implementation process for any organization requires a dedicated platform team that collabora-
tively works with development guilds to construct the golden paths. Overall, this approach streamlines
the application lifecycle by minimizing the configuration tasks assigned to developers. By centralizing
and standardizing all tools and provisioning strategies, the organization could also enhance the migra-
tion process, as the platform offers golden paths specifically designed to facilitate this. In addition, it
increases the control of the organization on the tools used, tackling the challenge of the proliferation of
tools. Moreover, by using golden paths and a centralized platform, cloud spending can be monitored
better to decrease costs where possible.

Although the current technical implementation serves as a small prototype and lacks certain features
that could be beneficial for the organization, it serves as a powerful example. Further enhancements could
include more thorough validation during the creation of a new application, along with additional pa-
rameters to enhance provisioning visibility, such as team tags. Additionally, the platform could enforce
application provisioning through golden paths, increasing the organization’s control and encouraging
teams to utilize specific tools. However, given the illustrative nature of this prototype, these functional-
ities have not yet been implemented.

4.3 Experiments

In this section, we will perform a number of experiments to demonstrate the value of the platform
implementation. We try to keep a uniform layout in the presented information. In the experimental
setup subsections, we describe 1) the environment of the experiment, 2) possible assumptions we have
in regard to the results, and 3) the goal of the experiment. Finally, we will show and discuss the results.

50

CHAPTER 4. CASE STUDY

4.3.1 Productivity evaluation

In this experiment, we want to show the advantages of our platform implementation, focussing on the
application lifecycle (for more information, see section 3.2.1 of the PE-RM). This can be validated
by measuring the productivity metrics of developers, especially the onboarding time of developers and
applications. In the results, we will refer to our case study performance metrics for comparison. We will
gather this information in the same experiment as the usability study.

Experimental setup

The central hypothesis guiding our experiment declares that the utilization of the platform will enable
participants to accelerate the deployment of their applications to production, even when operating with
a minimal information base. We speculate that the developer portals and integrated tools present within
the platform will facilitate a more efficient application onboarding process. Considering the participants’
unfamiliarity with the platform, we also anticipate an accelerated self-onboarding process due to the
ability to deploy to production within the experimental setup.

To ensure dependable test outcomes, we will divide the participants into two groups: one provided
with a tutorial and the other without. This arrangement allows us to draw comparisons between on-
boarding times, ascertaining the impact of platform documentation on the process. Participants’ current
roles and experience levels will also be factored in to measure the influence of prior knowledge on their
speed of adaptation. In describing the task, we will outline fundamental information concerning what
the task involves and the necessary prerequisites to begin. The group granted a tutorial will receive
a detailed, sequential breakdown of their designated tasks and operational principles. Observation of
task execution will offer insights into whether participants can accomplish their assignments within an
acceptable time frame.

Prior to initiating their tasks, we will present participants with a use case and ask them to estimate the
duration it would take to deploy an application to production without the aid of a platform. They will also
be prompted to identify what they perceive to be the most challenging aspect of application onboarding.
Upon task completion, we will have sufficient data to delve into two key performance metrics: developer
onboarding time and application onboarding time. Averaging these results and cross-referencing them
with case studies will enable us to determine whether our platform significantly influences productivity,
particularly in application lifecycle management and development team performance.

Results

A total of ten people participated in the experiment. Despite a limited sample size, the participant’s
different expertise allows us to assess whether the platform implementation is versatile enough to serve a
variety of developers or if the experience differs based on their specializations. As evident in Figure 4.10,
the most frequently represented role among the participants was that of a software developer, but the
pool also included a number of junior and senior developers.

Figure 4.10: Participant roles

Our first objective was to understand the participants’ initial expectations by presenting them with
a use case to evaluate their experience with DevOps and onboarding an application. We offered a
scenario in which they had to estimate the time required to bring an application to production under

51

CHAPTER 4. CASE STUDY

certain constraints (refer to Appendix D). As shown in Figure 4.11, the average estimation was relatively
high, suggesting that the participants believed that deploying an application to production is a time-
consuming process. We also asked them to identify what they would find most challenging when bringing
an application to production and documented the most common responses.

Figure 4.11: Use case estimation

What do you think would be the most d i f f i c u l t part ?
1) Se t t i ng up the d i f f e r e n t deployment s e t t i n g s and d i f f e r e n t environments .
2) To have the dashboards o f your app l i c a t i o n for monitor ing purposes .
3) Conf igur ing a l l the t o o l s so that they can communicate without e r r o r with

eachother .

Upon task completion, we requested the participants to reassess their initial response to the first
question to confirm if their perspective on the time taken to get an application to production had
changed. While there were variations in the answers, the majority of the participants now believed
that it would take longer than they had initially assumed (see Figure 4.12). This suggests that many
participants were unaware of the complexities involved in deploying an application to production. Given
the observations around the challenging parts and lack of experience, it appears that platform engineering
can play a pivotal role in eliminating the uncertainties and gaps in knowledge among software developers,
thereby allowing them to focus more on development rather than on configuration, infrastructure, and
cloud aspects.

Figure 4.12: Use case estimation change

We divided the participants into two groups for the next part of our experiment: one group was
provided with no documentation or tutorial on how to use the platform, while the other group was given
both. This approach helped us determine the intuitive nature and ease of use of the platform. Depending
on their group assignment, the participants were given different tasks (outlined in Appendix D). The
group provided with a tutorial and documentation was tasked slightly differently, making their task a bit

52

CHAPTER 4. CASE STUDY

more challenging (see Appendix D). Although this makes a direct comparison of the results somewhat
difficult, it does provide more insightful observations, especially given that the ”no-tutorial” group needed
more time to complete their task (see Figure 4.13).

1 2 3 4 5
0

10

20

30
23,2

Participant

T
im

e
(m

in
u
te
s)

(a) No tutorial

1 2 3 4 5
0

10

20

30

19

Participant

T
im

e
(m

in
u
te
s)

(b) Tutorial

4 5 6
0

2

4

6

8

Time

R
es
p
o
n
se
s

(c) Read metrics and logs

Figure 4.13: Time to resolve experiment task

Based on these observations, we can draw the following conclusions:

• The significant time discrepancy between completing the task using the platform and the time they
anticipated it would take to manually configure it is striking, averaging a 6-hour difference. This
showcases the immense potential of platform engineering to enhance the application lifecycle and
increase onboarding time.

• The evident difference in performance between the tutorial and no-tutorial groups underscores the
value of comprehensive platform documentation, which can be instrumental in guiding developers
through specific tasks, especially in the absence of assistance.

• Automatic logging and metrics can be significant time savers. Some participants expressed that
configuring logging and metrics might be challenging. However, the experiment revealed that with
this implementation, metrics and logs could be gathered easily.

Despite the case organization incorporating some elements of platform engineering, such as provision-
ing a GitHub repository, a Docker registry, and a pipeline (refer to Section 4.1.1), a significant gap exists
in application onboarding time when compared to these results. The primary reason for this disparity
is the efficient provisioning of the applications themselves and the deployment workload files, leading to
considerable time savings.

4.3.2 Usability study

We want to conduct a usability study in the form of a survey and contextual analysis among software
developers from inside and outside the organization to get feedback on the usability and effectiveness of
the platform.

Experimental setup

This experiment is designed to investigate developers’ interaction with our platform. By configuring
a setup where developers are tasked with onboarding a new application, we can assess the platform’s

53

CHAPTER 4. CASE STUDY

usability and its potential to enhance productivity and efficiency. By providing developers with a minimal
information set required to deploy an application to production, we aim to test the platform’s intuitiveness
and ease of use while simultaneously identifying potential feature gaps.

Upon task completion, participants will be invited to fill out a survey hosted via Google Forms15. This
process will allow us to compare our observations with those of the participants. The survey encompasses
a blend of open and closed-format questions. The closed questions present either multiple-choice options
for participants to select or a linear scale for participants to provide a feedback rating on a scale from 1
to 5, and in certain cases, from 1 to 10.

The survey initiates with a question concerning the participant’s background to contextualize their
expertise and experience. Subsequently, participants are asked to rate the platform’s ease of use on a scale
from 1 to 5. The ensuing question seeks to understand the proportion of manual work relative to work
completed by the platform. Our fourth query is centered around the platform’s usability and learning
curve: is it simple to navigate or potentially complex? The fifth question invites participants to highlight
their favorite features of the platform. Furthermore, we are interested in uncovering potential platform
enhancements proposed by the participants. If applicable, we inquire how the platform compares to their
existing workflows and the most significant differences noted. Lastly, we request general feedback about
the platform and suggestions for further refinements.

Results

A total of ten people participated in the experiment. Despite a limited sample size, the participant
demographic allows us to assess whether the platform implementation is versatile enough to serve a
variety of developers or if the experience differs based on their specializations. As evident in Figure E.1,
the most frequently represented role among the participants was that of a software developer, but the
pool also included a number of junior and senior developers.

Upon task completion (refer to Appendix E for task descriptions), participants were posed several
questions concerning to the platform’s usability. The initial question targeted the platform’s ease of
use. From the gathered responses, a consensus emerged indicating the platform was easy to navigate
(see Figure 4.14). However, we noted during the experiments that the multitude of interfaces could be
perplexing for some, slightly reducing the overall ease of use. This observation will be taken into account
in future work. The subsequent question addressed the volume of work handled by the platform in relation
to task completion. This question is aimed to determine whether the platform strengthens productivity
or if substantial manual work remains a requirement. Based on the responses, it was apparent that the
platform performed the majority of the work (see Figure 4.15). This outcome supports our hypothesis
that developers can dedicate their focus to application development rather than being bogged down by
configurations.

Figure 4.14: Ease of use

15https://www.google.com/intl/en/forms/about/

54

CHAPTER 4. CASE STUDY

Figure 4.15: Amount of support from the platform

Regarding the platform’s learning curve, a noticeable trend emerged from the responses. With the aid
of documentation, participants found it easier to comprehend what tasks could be performed and how
to carry them out. Without documentation, understanding the necessary steps become more challeng-
ing. This trend confirmed our observations, where guidance was crucial to initiate participant activity.
Frequent switching between tools also contributed to the confusion, underscoring the necessity for the
platform team to furnish development teams with robust support and thorough documentation.

Learning curve o f the plat form
1) With the docs , i t was very easy to use .
2) S ince I did this task without t u t o r i a l I needed some time to c l i c k through some o f

the t o o l s . But a f t e r I l ea rned which t o o l did what i t was extremely easy to
create , bui ld , deploy and expose an app l i c a t i on

3) Pretty s t ra i ght f o rward , although there are a l o t o f t o o l s that are thrown at you
in one go

4) Each s e r v i c e i n s i d e the plat form i s s t r a i gh t f o rwa rd and i s very easy to use . But
you have to switch between d i f f e r e n t s e r v i c e with in the platform , and they a l l
have d i f f e r e n t UI .

5) I t was very easy to use . Makes this task much qu i cke r . Only th ing I did not
r e a l l y l i k e was a l l the sw i t ch ing between t o o l s / tabs . But this i s to be expected
when t ry ing to use l o t s o f t o o l s .

6) The l i n k s between the d i f f e r e n t apps used were not always as l o g i c a l or easy to
understand . However , with a l i t t l e b i t o f documentation and an overview o f how
the t o o l s work toge the r I th ink the r e l a t i o n s between the d i f f e r e n t apps w i l l be
e a s i e r to understand and w i l l improve the proce s s for a f i r s t time user .

7) Easy to use , with ba s i c exp lanat ion about some o f the t o o l s I was un f ami l i a r with
8) Rather easy . I wont be s t r u g g l i n g on yamls c on f i g u r a t i o n s
9) Yes everyth ing was easy to use and documentation was very h e l p f u l . Only negat ive

was that many app l i c a t i o n s / s i t e s were used and i t could be s impe l e r i f i t was
a l l in a s i n g l e f low .

10) For someone without much knowledge o f the t o o l s that are used on the platform ,
us ing the s e t o f t o o l s can be a b i t daunting . However , the ac tua l p roce s s o f
us ing the t o o l s i s qu i t e s t r a i gh t f o rwa rd s i n c e not many manual ta sk s need be
performed by the user . Exposing the s i t e to the world was the most complex step .

When asked about their favorite platform features, participants’ responses clustered around a few key
themes. From a developer’s perspective, they particularly appreciated having minimal configurations to
set, thereby reducing their workload. Hence, the highly favored feature was the golden paths, a tool that
manages all configurations with the least necessary input. The most valued features were collectively
displayed in Figure 4.16 to provide an overview.

What improvements do you sugges t for this plat form ?
1) Create golden paths that w i l l he lp deve l ope r s to migrate app l i c a t i o n s . Not only

the c r e a t i on o f new app l i c a t i on s , but a l s o migrat ions
2) To have i t in one p lace .
3) Maybe the re i s a way to merge the content from otomi and backstage toge the r . So

a l l the in fo rmat ion i s in one p lace .
4) Documentation .
5) Good documentation about workflow and ba s i c in fo rmat ion o f t o o l s used
6) hard to say at moment I used i t the f i r s t time , for now looks good to me

55

CHAPTER 4. CASE STUDY

7) Try to inc lude as much in a s i n g l e f low .
8) Finding a way to l e t the user i n t e r a c t with a l l the t o o l s without having to

switch between i n t e r f a c e s would improve the proce s s . Something such as a wik i
that would exp la in a l l s t ep s in d e t a i l would make the adoption o f the plat form
e a s i e r .

50%

20%
20%

10%

Golden paths

Backstage

Observability

Deployment process

Figure 4.16: Which feature of the platform did you like the most?

Some suggested improvements align with topics previously discussed in this research, including the
consolidation of all functionalities within a singular developer portal. However, due to constraints on time
and resources, these features could not be realized during this experiment and will be prioritized in future
work. Proposals such as 4) and 5) were indeed valuable, but these are already implemented. However,
based on the version of the platform participants used, they didn’t have the opportunity to utilize the
documentation. Furthermore, all participants indicated they would support platform engineering within
their organization, with their experiences detailed in Appendix E. In response to the query regarding
whether the platform met their expectations, they provided the following feedback.

General feedback
1) Yes
2) I didnt have any expec ta t i on from the plat form
3) Yess , maybe a b i t more than expected
4) I expected the plat form to br ing ease o f use so in that case i t worked . However ,

i t s t i l l r e q u i r e s the user to have an understanding o f mu l t ip l e t o o l s . I th ink a
t o o l l i k e otomi a l r eady takes away a l o t o f the pains , but maybe having one

t o o l in which you can setup an en t i r e app l i c a t i on without l e av ing the t o o l i s ,
o f course , most d e s i r a b l e . For example , i f you look at other p la t fo rms l i k e
Verce l .

5) I had l i t t l e to no expec ta t i on s about plat form eng in e e r i ng
6) sure . yaml−s to me i s r e a l p lace for a l o t o f mistakes . So this plat form i s very

u s e f u l to avoid i s s u e s .
7) yes , I did not know what to expect from plat form eng in e e r i ng but was p l e a s an t l y

su rp r i s ed .
8) I t i s not what I expected . My devops expe r i ence i s not that deep , and imagining

what to expect from a plat form was t h e r e f o r e d i f f i c u l t for me. After us ing the
platform , the b e n e f i t s o f i t have become much more c l e a r to me, and i t has a l s o
g iven me a c l e a r e r view o f what i s meant by a plat form .

4.3.3 Platform expert feedback

With this experiment, we want to get feedback on the platform engineering lifecycle aspect of the
implementation. The focus of the other experiments was on the developer feedback on the application
lifecycle but not on the technical implementation of the platform itself. In this experiment, we will give
a demo to platform experts to get their feedback on the implementation. The participants were either
architects, tech leads or platform engineers, which can all be related to the stakeholders introduced in
the PE-RM.

Experimental setup

Our experiment will initiate with a comprehensive demonstration of our implemented design to subject
matter experts within the field. This demonstration aims to provide context, clarify our design choices,
and illustrate them. We plan to delve into a deeper technical discussion to enhance our understanding
of the architecture and technical execution of our design. An interactive session will follow, granting
experts an opportunity to pose questions for additional information or clarity.

Subsequent to this informational session, experts will be requested to complete a brief survey. The
survey will consist of open-ended and multiple-choice questions designed to gather valuable feedback

56

CHAPTER 4. CASE STUDY

on the platform. The multiple-choice queries will assess the platform’s practical application, whereas
the open-ended questions are structured to produce suggestions for improvement and affirm areas of
successful implementation. It will be highlighted that feedback should be contextualized within the
modest size and scope of the platform.

The first question seeks information regarding the respondent’s professional background. This ap-
proach enables us to verify the expertise of the participants and, thus, the validity of their feedback. The
subsequent question assesses the overarching design of the platform, followed by questions relating to
user experience, ease of use, and the platform’s potential applicability within an organizational context.
Respondents will be asked to provide their responses on a scale of 1 to 5. The latter section of the survey
focuses on their perspectives on the most valuable features of the current implementation. Respondents
will also be prompted to suggest new features they believe would enhance the platform and their reasons
for the additions. In light of the platform’s function as a prototype, we invite thoughts on how it could
seamlessly integrate with other tools and systems. Lastly, we ask if they would endorse the platform as
a model for others and how it would support technical implementation within their organizations. In
this way, we aim to validate the various aspects of the platform, including technical execution, relevance,
and practical application.

Results

In this experiment, we engaged with five experts related to platform engineering, all with backgrounds in
DevOps or platform engineering. Using a combination of a demo and a discussion about the implementa-
tion, we posed a series of questions focused on the platform’s applicability and integration potential. The
initial question aimed to clarify their current roles to better comprehend their experiences and expertise,
as presented in Figure 4.17.

Figure 4.17: Current role of experts

The first pair of questions were closed-ended, targeting the platform’s overall design and ease of use
from the viewpoint of a platform engineer. The feedback collected indicated that both the design and the
ease of use of the platform were well-received (refer to Figure 4.18 and Figure 4.19). However, considering
the limited time and decisions made during platform implementation, certain design aspects may have
drawbacks, particularly with the choice of Otomi. Nonetheless, in this project, the benefits outweigh the
disadvantages.

Subsequent questions delved into the platform’s applicability within an organization and its com-
patibility with different tools. This allowed us to assess the platform’s potential usability in real-world
scenarios and its value proposition to other organizations seeking to implement a similar platform. The
feedback here was mixed; while two experts found it applicable and integrative, others suggested that
it would require additional work to be fully applicable. Yet, given the bespoke nature of platform engi-
neering, we can conclude that it could serve as a useful example, even if it is not directly transferable to
all organizations.

57

CHAPTER 4. CASE STUDY

Figure 4.18: Overall design of the platform

Figure 4.19: Ease of use of the platform

Figure 4.20: Applicability of the platform in an organization

Figure 4.21: Platform integrations with other systems

Following the closed-ended questions, we asked the experts several open-ended questions to gain
more nuanced feedback on the platform’s implementation. These responses facilitated some valuable
conclusions and observations. For the complete set of answers, refer to appendix F.

58

CHAPTER 4. CASE STUDY

Which f e a t u r e s did you f i nd most va luab l e ?
1) Catalog and Click−through d e t a i l views
2) Backstage and the i n t e g r a t i o n o f a l l the components .
3) The IDP , prov id ing golden paths for the development o f new app l i c a t i on s ,

p r ov i s i on i n g workloads , e t c . S p e c i f i c a l l y for the onboarding o f new deve l ope r s
and ge t t i n g people up to speed when swi tch ing teams , e t c .

4) Golden paths & documentation
5) The ” connec t i v ene s s ” in the platform , everyth ing i s connected and by i t , i t he lp s

the deve loper as i t l e s s e n s the burden o f g e t t i n g app l i c a t i o n s ready for
deployment .

Are the re f e a t u r e s that you think should be added to the plat form ?
1) Mesh and Trace c o r r e l a t i o n to graph views
2) Po l i cy agents (Gatekeeper) can be h e l p f u l to avoid mistakes . Enforc ing guard

r a i l s can help the s e c u r i t y and s t a b i l i t y o f the plat form .
3) D e f i n i t e l y the IDP , maybe even the PaaS aspect o f your platform , because ; why re−

invent the wheel ?
4) More e l abo ra t e and in t e g r a t ed golden paths . Also l ook ing for upgrade paths , as we

now favor con s t ruc t i ng new th ing s over mainta in ing / upgrading the o ld one .

Does this implementation help you with your t e c hn i c a l implementation at your
o rgan i z a t i on ? I f yes , how?
1) I t would help for demonstrat ion purposes , e s p e c i a l l y Backstage ; but due to the

IAM in t e g r a t i o n and HA con s t r a i n t s i t would not work in this c on f i gu r a t i on out
o f the box .

2) For Otomi , i t i s very good to have a showcase o f what i s p o s s i b l e and i t i s easy
to PoC some t o o l s . Using i t as a plat form could be more d i f f i c u l t because you
have to ” play ” by t h e i r r u l e s . You g ive away some f l e x i b i l i t y (t h e i r pace o f
development i s s lower then from the components i t s e l f) and t a i l o r −made usage we
now have (I n t e g r a t i on between our IaC and Kubernetes c l u s t e r s for example)

3) I r e a l l y l i k e d the implementation and p o s s i b i l i t i e s o f Backstage , impressed by
the demo and I am convinced we need to spend time to implement this in our
plat form .

4) I th ink the work for the deve l ope r s w i l l be much e a s i e r this way . For the
plat form team managing and s tandard i z i ng w i l l take o f f . Also onboarding o f new
team members (or app l i c a t i o n s) w i l l be much e a s i e r than i t i s now .

5) I t shows what can be done (het maakt j e l e kk e r) . I t shows the power . But i t does
not he lp us to a c t ua l l y get there , as the t o o l s and i n t e g r a t i o n d i f f e r per use
case .

Add i t iona l comments or sugg e s t i on s
1) This i s a s t rong demonstrat ion due to the ” b a t t e r i e s inc luded ” approach in s t ead

o f l e an ing on a s p e c i f i c s e r v i c e vendor . On the other hand , this has the
downside o f be ing r e l i a n t on a s i n g l e VM image vendor , which ab s t r a c t s away some
o f the component i n s t a l l a t i o n .

2) Great work . We have been t a l k i n g about implementing something l i k e this for a
year now . Great to see a working example . Keep up the good work .

Based on the feedback, we were able to make several significant conclusions regarding our small-scale
prototype. The most valued feature appears to be the developer portal, which development teams can
leverage to carry out platform-related tasks. Through the demo and discussions, we observed that these
golden paths could help create more standardized configurations and reduce errors since the developer
portal handles these. The absence of certain features is due to the project’s limited scope and duration.
This is also compounded by the fact that such features are typically organization-specific and may vary
between organizations. The feedback related to the use of Otomi is valid, particularly for large organi-
zations that wish to avoid vendor lock-in. However, for the purposes of a small prototype, Otomi can
streamline the setup process and deliver value quickly. Overall, the feedback was positive, suggesting
that this implementation could serve as a beneficial example for organizations considering the implemen-
tation of an engineering platform and wishing to understand the value of such an endeavor.

In conclusion, we asked if the platform experts would recommend this platform as an example to other
organizations. The responses were unanimous: all agreed that this could serve as a valid example for
other organizations, reflecting the core aim of this implementation. For a more detailed overview, all
questions and responses from this experiment are documented in Appendix F.

59

Chapter 5

Discussion

In this research, we have established a Platform Engineering Reference Model (PE-RM), based on the
ODP-RM reference model [26], designed to assist organizations in embracing the discipline of platform
engineering. With five distinct viewpoints, our model explores platform engineering from various per-
spectives, encompassing both technical and organizational aspects. Despite the increasing popularity
and relevance of platform engineering in today’s digital landscape, the field remains underrepresented in
scientific literature and inadequately explored in industrial articles and whitepapers. This often results
in difficulties for organizations aiming to comprehend and embrace the discipline fully. Our research aims
to fill this gap, providing a comprehensive reference model that enables a more profound understanding
of platform engineering and facilitating its adoption. To enhance the practical relevance of our reference
model, we conducted a case study, presenting both conceptual and technical implementations of platform
engineering guided by the PE-RM. Notably, we found that existing reference architectures, such as the
Internal Developer Portal proposed by Humanitec 16, often fail to consider the organizational aspects
crucial to platform engineering. Additionally, the relatively dated existing scientific literature [21, 22]
fails to encapsulate the platform engineering discipline’s scope fully.

Our research, enriched by an in-depth case study and a series of validating experiments, has resulted
in key conclusions highlighting the effectiveness and adaptability of the PE-RM. The reference model
encapsulates all recognized aspects of platform engineering. This comprehensive scope positions the
model as a robust tool capable of enhancing software processes and overcoming organizational challenges.
Its applicability extends far beyond addressing technical challenges. It also provides concrete solutions
to a wide array of issues that software organizations frequently struggle with. The practical application
of the model demonstrated in the case study serves as a demonstration of its efficacy. Another significant
finding of our research is that the reference model can be successfully adapted into a contextually relevant
technical implementation. This adaptation proves helpful in tackling a broad range of software challenges
specific to an organization. The demonstrated adaptability in the case study shows the maturity of
the model’s technical viewpoints and their interrelation with other aspects. In addition, our research
reveals that the platform implementation resulting from the reference model can serve as a valuable
guide for organizations. It offers a concrete demonstration of adopting a platform engineering approach,
emphasizing its unique features and added value. This practical illustration can significantly benefit
organizations aiming to adopt platform engineering by providing a reference for their implementation
journey. Lastly, our research affirms the potential of the Platform Engineering Reference Model to
bring about significant improvements in productivity, expressed in performance metrics. Through a
detailed conceptual analysis during the case study and subsequent experimental results, we observed
that organizations adopting a platform engineering approach delineated by the model could experience
substantial gains in productivity, as showcased in the experiment results. In conclusion, these key findings
underscore the vast potential and practical implications of our reference model for platform engineering.
The model shows the promising capacity to address existing challenges in software organizations while
optimizing their performance metrics, making it an essential tool in the landscape of platform engineering.

Our implementation of the engineering platform demonstrated within the case study utilized open-
source tooling. It resulted in the development of custom tools and applications that are open-sourced for
use within any organization. By validating it within Wehkamp and their industry experts, we can assume
that industry professionals have validated the implementation in combination with the experimental
results.

16https://humanitec.com/reference-architectures

60

https://humanitec.com/reference-architectures

CHAPTER 5. DISCUSSION

During the development of our reference model and its associated conceptual and technical designs,
we discovered that methodology modeling is inherently complex. We observed that introducing new roles
within an organization necessitates clear accountability structures, which initially we had not considered.
Additionally, validating the applicability of our reference model to a diverse range of organizations was
challenging, given the unique nature of each organization. Despite these hurdles, discussions with ex-
perts outside the organization enabled us to refine our model. Furthermore, our research highlighted the
necessity of considering greenfield and brownfield projects [32], which present unique considerations in
implementing platform engineering. In addition, during the creation of the reference model, we expe-
rienced difficulty modeling different operations and interactions since they differ for each organization.
This is also the case for the technology viewpoint, which focusses more on examples, rather than state-
of-the-art, since it can be challenging to model all the different integrations.

Although our research is grounded in a single case study, which may appear to threaten validity,
consultations with external experts and experiments with developers outside the organization imply
broader applicability. Since we already used a PaaS solution that takes care of many of the technical
challenges related to integrating tools into a single platform, we still had to find a way to make it easier
for developers, therefore introducing a developer portal and configuring the tools so it would all be
working as one platform. One of the challenges was the integration of many interfaces into one tool,
which was also one of the main feedback points from the experiments. Moreover, it’s worth noting that
our technical implementation, while basic and straightforward, lacks some fundamental features such as
form validation and improved user experience. As our primary focus was to validate the reference model
and provide an example, these aspects were not prioritized but should be considered in further research.
In addition, the performance metrics used to compare the technical implementation to the contextual
analysis and participants’ experience could be expanded to cover more metrics to give a broader view of
platform engineering’s feedback.

61

Chapter 6

Conclusion

In this research, our primary aim was to develop a reference model that elucidates platform engineering
within a software organization, thereby facilitating the adoption of platform engineering. Our proposed
Platform Engineering Reference Model (PE-RM) serves as a valuable tool for organizations seeking to
transition from existing methodologies to platform engineering or for those initiating their journey in
this field. Our conceptual design serves as a roadmap for organizations keen on using the reference model
to integrate platform engineering into their processes. In addition, we created an illustrative platform
implementation following the guidelines of the reference model, which enables us to substantiate the
efficacy of the reference model. Upon conducting extensive research, it becomes clear that platform
engineering is a specialized field. It involves the unification of a technological engineering platform with
specific lifecycle stages, roles, and information objects to form a unique methodology that can be applied
to the entire software organization. The principal aim of platform engineering is to streamline, standard-
ize, and centralize the tools and best practices across all development teams. Unlike DevOps, platform
engineering significantly reduces the cognitive load on developers. Instead of requiring developers to con-
figure the entire application lifecycle individually, platform engineering introduces standardization and
centralization. This approach not only simplifies processes but also promotes consistency and efficiency
across the board, ultimately leading to higher productivity and better-quality outcomes. We initiated
this study with several research questions, to which we can now provide comprehensive answers.

Research Question 1: How to model platform engineering in the context of a software
company?
In chapter 3, we introduce the PE-RM, which elucidates platform engineering in the context of a soft-
ware organization. It encompasses five viewpoints: enterprise, information, computation, engineering,
and technology. The enterprise, information, and computation viewpoints primarily focus on the orga-
nizational aspect; this includes the suggestion of new roles, lifecycles, and operations. In contrast, the
engineering and technology viewpoints provide a framework for modeling the technical implementation
of the engineering platform. The validation of this reference model was achieved through expert feed-
back, comparison with an alternative reference architecture, and a case study, which operationalized
the PE-RM, thereby proving its applicability. The case study also includes a technical implementation
demonstrating the technical feasibility of the reference model.

Research Question 2: How to define a customized platform engineering design tailored
to a specific organization?
In chapter 4, we present a conceptual design guided by the PE-RM developed in chapter 3. This design
includes distinct sections outlining the analysis, requirement analysis, and design. Serving as a practical
guide for organizations, it elucidates how platform engineering can be operationalized with the assistance
of the PE-RM. We extracted crucial information through the analysis, enabling us to develop a platform
engineering design based on the PE-RM. Simultaneously, the design provides validation and guidance
for other organizations intending to utilize the Platform Engineering Reference Model.

Research Question 3: How to effectively construct a technical platform engineering im-
plementation?
In chapter 4, we outline a technical platform implementation guided by the PE-RM. Drawing from the
conceptual design and reference model, we conducted a requirements analysis, designed an engineer-
ing platform architecture, and implemented a basic engineering platform. This implementation, which
includes the design choices and unique features of the platform, serves as an exemplar for operational-
izing platform engineering at a technical level. We conducted numerous experiments to validate the

62

CHAPTER 6. CONCLUSION

implementation, illustrating the advantages of platform engineering within a software organization.
Main research question: How can a software organization effectively integrate platform

engineering using a comprehensive reference model?
The answer to the main research question is synthesized from the responses to the subsidiary research
questions. Besides these answers, we developed an encompassing Platform Engineering Reference Model,
modeling platform engineering from various perspectives to grasp the entire methodology holistically.
We also proposed a conceptual design guided by this reference model to provide a practical guide for
designing platform engineering within an organization. Furthermore, we created a basic engineering
platform implementation serving as a proof of concept demonstrating the technical implementation
process, including experiments to validate the applicability and added value of the implementation.

6.1 Future work

The Platform Engineering Reference Model (PE-RM) can be further enhanced by validating its applica-
bility by conducting case studies across various organizations. Examining its efficacy across organizations
of varying sizes and sectors would augment the model’s validity. Such an approach would also enable the
evaluation of the model’s universality and adaptability to a broad range of contexts. The technical im-
plementation currently serves as a concise and effective prototype that showcases the potential benefits of
platform engineering. However, it remains basic. The engineering platform could be further augmented
by incorporating additional functionalities that span across more stages of the application lifecycle. For
instance, provisioning an application could include features such as tagging or enabling applications to
be exposed simultaneously. Usability could be amplified by integrating all functionalities into a singular,
user-friendly interface. There also exists potential for constructing an engineering platform from scratch
or utilizing different tools, which could yield insightful comparisons. However, this lies beyond the scope
of the current research. Lastly, given a more expansive timeframe and an additional case study, the
PE-RM could be further refined. For instance, observing an organization with fully integrated platform
engineering, as per this reference model, would offer valuable insights into the model’s organizational
benefits in greater detail, including more performance metrics.

63

Acknowledgements

We would like to thank Dr. Z. Zhao because he has had a massive influence on this research via
his insightful scientific recommendations. With his guidance, we were able to bring this research to
a high level with papers publishable to high-level conferences. Also, we want to thank K. Bakker for
his support during this research with insightful meetings and discussions on implementing platform
engineering within the organization. We also want to thank all the people we have spoken to within
Wehkamp and outside the organization. Finally, we want to thank Wehkamp for hosting this project.

64

Bibliography

[1] A. Bharadwaj, O. A. E. Sawy, P. A. Pavlou, and N. Venkatraman, “Digital business strategy:
Toward a next generation of insights,” MIS Quarterly, vol. 37, no. 2, pp. 471–482, 2013, issn:
02767783. doi: 10.25300/misq/2013/37:2.3.

[2] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A roadmap and agenda,” Journal
of Systems and Software, vol. 123, pp. 176–189, 2017, issn: 0164-1212. doi: 10.1016/j.jss.2015.
06.063.

[3] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of agile methodologies: Towards
explaining agile software development,” en, Journal of Systems and Software, Special Issue: Agile
Development, vol. 85, no. 6, pp. 1213–1221, Jun. 2012, issn: 0164-1212. doi: 10.1016/j.jss.
2012.02.033.

[4] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Dimensions of devops,” in Agile Processes in Soft-
ware Engineering and Extreme Programming, C. Lassenius, T. Dingsøyr, and M. Paasivaara, Eds.,
Springer International Publishing, 2015, pp. 212–217, isbn: 978-3-319-18612-2.

[5] M. Fowler, J. Highsmith, et al., “The agile manifesto,” Software development, vol. 9, no. 8, pp. 28–
35, 2001.

[6] G. Kim, J. Humble, P. Debois, J. Willis, and N. Forsgren, The DevOps Handbook: How to Create
World-Class Agility, Reliability, & Security in Technology Organizations, en. IT Revolution, Nov.
2021, isbn: 978-1-950508-43-3.

[7] Humanitec, “State of platform engineering report,” Tech. Rep., 2022, p. 18.

[8] N. Kersten, The Top DevOps Trends from Our 2021 State of DevOps Report, en. [Online]. Available:
https://www.puppet.com/blog/devops-trends.

[9] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation, en. Pearson Education, Jul. 2010, isbn: 978-0-321-67022-9.

[10] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory and Practice,”
IEEE Software, vol. 29, no. 6, pp. 18–21, Nov. 2012, Conference Name: IEEE Software, issn: 1937-
4194. doi: 10.1109/MS.2012.167.

[11] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the ”Stairway to Heaven” – A Mulitiple-Case
Study Exploring Barriers in the Transition from Agile Development towards Continuous Deploy-
ment of Software,” in 2012 38th Euromicro Conference on Software Engineering and Advanced
Applications, ISSN: 2376-9505, Sep. 2012, pp. 392–399. doi: 10.1109/SEAA.2012.54.

[12] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Dimensions of DevOps,” en, in Agile Processes in Soft-
ware Engineering and Extreme Programming, C. Lassenius, T. Dingsøyr, and M. Paasivaara, Eds.,
ser. Lecture Notes in Business Information Processing, Cham: Springer International Publishing,
2015, pp. 212–217, isbn: 978-3-319-18612-2. doi: 10.1007/978-3-319-18612-2_19.

[13] D. E. Strode, S. L. Huff, B. Hope, and S. Link, “Coordination in co-located agile software devel-
opment projects,” en, Journal of Systems and Software, Special Issue: Agile Development, vol. 85,
no. 6, pp. 1222–1238, Jun. 2012, issn: 0164-1212. doi: 10.1016/j.jss.2012.02.017.

[14] R. Makhlouf, “Cloudy transaction costs: A dive into cloud computing economics,” Journal of Cloud
Computing, vol. 9, Jan. 2020. doi: 10.1186/s13677-019-0149-4.

[15] I. Matt Campbell, “The Platform Engineering Guide: Principles and Best Practices,” en, InfoQ,
2023. [Online]. Available: https://www.infoq.com/minibooks/platform-engineering-guide/.

65

https://doi.org/10.25300/misq/2013/37:2.3
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1016/j.jss.2012.02.033
https://www.puppet.com/blog/devops-trends
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1109/SEAA.2012.54
https://doi.org/10.1007/978-3-319-18612-2_19
https://doi.org/10.1016/j.jss.2012.02.017
https://doi.org/10.1186/s13677-019-0149-4
https://www.infoq.com/minibooks/platform-engineering-guide/

BIBLIOGRAPHY

[16] F. M. A. Erich, C. Amrit, and M. Daneva, “A qualitative study of DevOps usage in practice,” en,
Journal of Software: Evolution and Process, vol. 29, no. 6, Jun. 2017, issn: 2047-7473, 2047-7481.
doi: 10.1002/smr.1885.

[17] R. W. Macarthy and J. M. Bass, “An Empirical Taxonomy of DevOps in Practice,” 2020 46th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 221–228,
Aug. 2020, Conference Name: 2020 46th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA) ISBN: 9781728195322 Place: Portoroz, Slovenia Publisher: IEEE. doi:
10.1109/SEAA51224.2020.00046.

[18] T. Dyb̊a and T. Dingsøyr, “Empirical studies of agile software development: A systematic review,”
en, Information and Software Technology, vol. 50, no. 9, pp. 833–859, Aug. 2008, issn: 0950-5849.
doi: 10.1016/j.infsof.2008.01.006.

[19] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Eds., Site reliability engineering: how Google runs
production systems, First edition. Beijing ; Boston: Oreilly, 2016, isbn: 978-1-4919-2912-4.

[20] M. Skelton and M. Pais, Team topologies: organizing business and technology teams for fast flow.
It Revolution, 2019.

[21] J. Zhou, Y. Ji, D. Zhao, and J. Liu, “Platform engineering in enterprise application development,”
in 2010 International Conference on E-Business and E-Government, 2010, pp. 112–115. doi: 10.
1109/ICEE.2010.36.

[22] M. A. McCarthy, L. M. Herger, S. M. Khan, and B. M. Belgodere, “Composable DevOps: Auto-
mated Ontology Based DevOps Maturity Analysis,” in 2015 IEEE International Conference on
Services Computing, Jun. 2015, pp. 600–607. doi: 10.1109/SCC.2015.87.

[23] J. A. Zachman, “The zachman framework for enterprise architecture,” Primer for Enterprise En-
gineering and Manufacturing.[si]: Zachman International, 2003.

[24] C. M. Pereira and P. Sousa, “A method to define an enterprise architecture using the zachman
framework,” in Proceedings of the 2004 ACM Symposium on Applied Computing, ser. SAC ’04,
Nicosia, Cyprus: Association for Computing Machinery, 2004, pp. 1366–1371, isbn: 1581138121.
doi: 10.1145/967900.968175.

[25] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and B. A. Hamilton, “Reference
model for service oriented architecture 1.0,” OASIS standard, vol. 12, no. S18, pp. 1–31, 2006.

[26] K. Raymond, “Reference Model of Open Distributed Processing (RM-ODP): Introduction,” en, in
Open Distributed Processing: Experiences with distributed environments. Proceedings of the third
IFIP TC 6/WG 6.1 international conference on open distributed processing, 1994, ser. IFIP — The
International Federation for Information Processing, K. Raymond and L. Armstrong, Eds., Boston,
MA: Springer US, 1995, pp. 3–14, isbn: 978-0-387-34882-7. doi: 10.1007/978-0-387-34882-7_1.

[27] P. F. Linington, Z. Milosevic, A. Tanaka, and A. Vallecillo, Building Enterprise Systems with ODP:
An Introduction to Open Distributed Processing, en. CRC Press, Sep. 2011, isbn: 978-1-4398-6625-2.

[28] H. Kilov, P. F. Linington, J. R. Romero, A. Tanaka, and A. Vallecillo, “The Reference Model of
Open Distributed Processing: Foundations, experience and applications,” en, Computer Standards
& Interfaces, RM-ODP: Foundations, Experience and Applications, vol. 35, no. 3, pp. 247–256,
Mar. 2013, issn: 0920-5489. doi: 10.1016/j.csi.2012.05.003.

[29] A. Q. Gill, Adaptive Cloud Enterprise Architecture, en. World Scientific, Jun. 2015, isbn: 978-981-
4632-14-0.

[30] G. B. Ghantous and A. Q. Gill, “DevOps Reference Architecture for Multi-cloud IOT Applica-
tions,” in 2018 IEEE 20th Conference on Business Informatics (CBI), ISSN: 2378-1971, vol. 01,
Jul. 2018, pp. 158–167. doi: 10.1109/CBI.2018.00026.

[31] E. Di Nitto, P. Jamshidi, M. Guerriero, I. Spais, and D. A. Tamburri, “A software architec-
ture framework for quality-aware DevOps,” in Proceedings of the 2nd International Workshop
on Quality-Aware DevOps, ser. QUDOS 2016, New York, NY, USA: Association for Computing
Machinery, Jul. 2016, pp. 12–17, isbn: 978-1-4503-4411-1. doi: 10.1145/2945408.2945411.

[32] C. D. Sousa, “Brownfield redevelopment versus greenfield development: A private sector perspective
on the costs and risks associated with brownfield redevelopment in the greater toronto area,”
Journal of Environmental Planning and Management, vol. 43, no. 6, pp. 831–853, 2000. doi: 10.
1080/09640560020001719.

66

https://doi.org/10.1002/smr.1885
https://doi.org/10.1109/SEAA51224.2020.00046
https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1109/ICEE.2010.36
https://doi.org/10.1109/ICEE.2010.36
https://doi.org/10.1109/SCC.2015.87
https://doi.org/10.1145/967900.968175
https://doi.org/10.1007/978-0-387-34882-7_1
https://doi.org/10.1016/j.csi.2012.05.003
https://doi.org/10.1109/CBI.2018.00026
https://doi.org/10.1145/2945408.2945411
https://doi.org/10.1080/09640560020001719
https://doi.org/10.1080/09640560020001719

BIBLIOGRAPHY

[33] R. van Solingen, “Measuring the roi of software process improvement,” IEEE Software, vol. 21,
no. 3, pp. 32–38, 2004. doi: 10.1109/MS.2004.1293070.

[34] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE Cloud Computing,
vol. 1, no. 3, pp. 81–84, 2014. doi: 10.1109/MCC.2014.51.

[35] N. Forsgren, M. C. Tremblay, D. VanderMeer, and J. Humble, “Dora platform: Devops assessment
and benchmarking,” in Designing the Digital Transformation, A. Maedche, J. vom Brocke, and A.
Hevner, Eds., Cham: Springer International Publishing, 2017, pp. 436–440, isbn: 978-3-319-59144-
5.

67

https://doi.org/10.1109/MS.2004.1293070
https://doi.org/10.1109/MCC.2014.51

Glossary

Agile A project management and product development methodology that emphasizes flexibility, col-
laboration, customer satisfaction, and delivering working software frequently. It’s often used in
software development, with methods including Scrum and Kanban. 4

API A set of rules and protocols for building and interacting with software applications. APIs define
the methods and data formats that applications can use to communicate with each other. 10

CI/CD Continuous Integration/Continuous Deployment. 9

cloud computing A technology that uses remote servers on the internet to store, manage, and process
data, rather than a local server or personal computer. It allows on-demand access to a shared pool
of computing resources, which can be rapidly provisioned and released with minimal management
effort. 5

DevOps A software development approach that combines software development (Dev) and information
technology operations (Ops) to shorten the system development life cycle while delivering features,
fixes, and updates frequently in close alignment with business objectives. 4

greenfield A project that lacks constraints imposed by prior work. 16

microservices A software development architecture where an application is structured as a collection
of loosely coupled, independently deployable services. Each service, or ”microservice”, runs a
unique process and communicates through a well-defined, lightweight mechanism (often HTTP-
based APIs) to serve a specific business goal. 10

NestJS NestJS is a popular open-source, back-end framework for Node. js and TypeScript-based,
server-side applications. It is intended to provide a solid foundation for developing server-side
applications by leveraging well-known patterns and the best practices from other frameworks.. 44,
46

ODP-RM Open Distributed Processing Reference Model. 6

PaaS A cloud computing model that provides customers a platform to develop, run, and manage appli-
cations without the complexity of building and maintaining the infrastructure typically associated
with developing and launching an app. 8

React React is a free and open-source front-end JavaScript library for building user interfaces based on
components. It is maintained by Meta and a community of individual developers and companies.
React can be used to develop single-page, mobile, or server-rendered applications. 44, 45

ROI Return of Investment. 17

Site Reliability Engineering A discipline that incorporates aspects of software engineering and ap-
plies them to infrastructure and operations problems. The main goals are to create scalable and
highly reliable software systems. It was developed by Google and is often considered a specific
implementation of DevOps. 5

68

Appendix A

GitHub links

Backstage: https://github.com/RubenvdKamp08/backstage

ArgoCD workload files: https://github.com/RubenvdKamp08/argo-workload

React template: https://github.com/RubenvdKamp08/react-template

Nest.js template: https://github.com/RubenvdKamp08/nest-template

Example site: https://github.com/RubenvdKamp08/example-site

Example service: https://github.com/RubenvdKamp08/example-service

69

https://github.com/RubenvdKamp08/backstage
https://github.com/RubenvdKamp08/argo-workload
https://github.com/RubenvdKamp08/react-template
https://github.com/RubenvdKamp08/nest-template
https://github.com/RubenvdKamp08/example-site
https://github.com/RubenvdKamp08/example-service

Appendix B

Case study

B.1 Current tech stack

Compute Data & storage Networking Services

Resource plane

Development Developer portal

Version Control

CD pipeline

Registry

CI pipeline

Logging

Observability Secrets & identify management

Developer control plane Integration & delivery plane Monitoring & logging plane Security plane

Blaze container platform

Figure B.1: Technology stack current environment

70

APPENDIX B. CASE STUDY

Compute Data & storage Networking Services

Resource plane

Development Developer portal

Version Control

CD pipeline

Registry

CI pipeline

Logging

Observability Secrets & identify management

Developer control plane Integration & delivery plane Monitoring & logging plane Security plane

Atlas container platform

Figure B.2: Technology stack new environment

B.2 Performance metrics

Employee First day First commit mas-
ter

First story finished

Employee 1 / team
product information

10 April April 26 2 May

Employee 2 / team
customer service

1 January 10 January 11 January

Employee 3 / team ful-
filment

1 June 19 June 3 July

Table B.1: Onboarding time developers.

71

APPENDIX B. CASE STUDY

Figure B.3: Weekly deployments old environment

Service Number of deployments

blaze-product-enrichment-service 1

blaze-product-onboarding-price-service 1

blaze-product-onboarding-price-site 1

blaze-product-onboarding-service 1

blaze-search-product-index-processor 1

blaze-family-generator-site 1

blaze-enrichment-processor 1

blaze-discount-management-site 1

blaze-product-overview-pinboard-management-site 1

blaze-oms-service 5

atlas-configuration-management-site 1

atlas-configuration-management-service 1

blaze-content-site-wehkamp 3

atlas-product-information-slack-bot-service 2

blaze-navigation-service 11

blaze-one-page-checkout-site-nl.wehkamp 8

blaze-header-footer-service 1

blaze-resources-site 3

blaze-brandoverview-site 1

blaze-secret-sales-sync-service 1

blaze-search-term-redirect-service 1

72

APPENDIX B. CASE STUDY

blaze-product-taxonomy-processor 2

blaze-basket-site-nl.wehkamp 1

blaze-wishlist-site-wehkamp 1

blaze-pdp-site 1

blaze-search-site-wehkamp 1

blaze-acount-service-com 2

blaze-financial-transaction-manager-service 15

blaze-autosuggest-service 3

blaze-search-service 1

blaze-search-product-index-processor 1

blaze-oms-order-proxy-service 1

blaze-search-enrichment-processor 2

blaze-canopydeploy-data-processor 1

blaze-staticfile-service 8

blaze-discount-management-site 1

atlas-authentication-service 1

blaze-payment-ml-service 1

blaze-product-overview-pinboard-management-site 1

blaze-combination-service 1

blaze-financial-transaction-manager-service 15

blaze-search-service 1

blaze-brandinfo-service 1

sep-copy 1

blaze-search-product-index-processor 1

blaze-payment-ml-service 2

blaze-oms-order-proxy-service 1

blaze-search-enrichment-processor 1

blaze-canopydeploy-data-processor 1

blaze-tracking-pixel-service 2

blaze-product-overview-pinboard-management-site 1

blaze-combination-service 1

Table B.2: Production deployments new environment, retrieved from Git commits

To measure the onboarding time of an application, we decided to create a new front-end application
with the latest Wehkamp packages and best practices. In order to fulfill this task, we asked a frontend
developer how to fulfill this task. In the table below, we have stated the different steps and the time
it took to finish each task to run this application in production. The application did not contain any
custom code.

73

APPENDIX B. CASE STUDY

Task Description Time Observations

Provision application Create repository, docker
registry and pipeline

30 minutes 1 minute GitHub, 8 minutes ECR,
1 minute Jenkins sync and 20 min-
utes for CD job visibility)

Create application
code

Create an application with
code, metrics exposure and
docker configurations

70 minutes There is no scaffolder, you have to
copy and paste from another ser-
vice

Build docker image Build docker image and
store in registry

10 minutes Sometimes difficult to see which
steps goes wrong in Jenkins

Deploy to development
environment

Create workload and deploy
the docker image in the de-
velopment environment

10 minutes There is no scaffolder. You have
to copy and paste from other con-
figuration file.

Deploy to production
environment

Update workload and De-
ploy the docker image in the
production environment

5 minutes If you have setup the application-
Set correctly, it is very easy.

Get logs Get the logs of the applica-
tion deployed

45 minutes Because of custom packages, logs
could be difficult to setup

Get metrics Get the metrics of the appli-
cation deployed

15 minutes Difficult to find the dashboards.

Table B.3: Onboarding time application.

74

Appendix C

Implementation

C.1 Platform documentation

For a detailed platform documentation on how the functionality like golden paths are working, please
see the mkdocs files located in: https://github.com/RubenvdKamp08/backstage/tree/master/docs.

In backstage the docs were available and looked like this:

Figure C.1: Developer portal: platform documentation

C.2 Golden paths

For a more detailed explanation of the golden paths, please use the documentation defined in: https:

//github.com/RubenvdKamp08/backstage/tree/master/docs/golden_paths.

75

https://github.com/RubenvdKamp08/backstage/tree/master/docs
https://github.com/RubenvdKamp08/backstage/tree/master/docs/golden_paths
https://github.com/RubenvdKamp08/backstage/tree/master/docs/golden_paths

APPENDIX C. IMPLEMENTATION

Figure C.2: Developer portal: golden paths overview

76

APPENDIX C. IMPLEMENTATION

Figure C.3: Golden path: create nest application

Figure C.4: Golden path: create react application

77

APPENDIX C. IMPLEMENTATION

Figure C.5: Golden path: create development workload

Figure C.6: Golden path: create production workload

78

APPENDIX C. IMPLEMENTATION

C.3 DroneCI pipeline configuration

−−−
kind : p i p e l i n e
type : kubernetes
name : bu i ld
s t ep s :

− name : yaml va l ida to r
image : devatherock /drone−yaml−va l i d a t o r : l a t e s t
s e t t i n g s :

debug : true
c on t i nu e on e r r o r : fa l se
a l l ow dup l i c a t e k ey s : fa l se
ignore unknown tags : true

− name : bui ld−push
image : p lug in s / docker
s e t t i n g s :

r e g i s t r y : harbor . 1 3 4 . 2 0 9 . 1 3 8 . 1 2 5 . nip . i o
repo : harbor . 1 3 4 . 2 0 9 . 1 3 8 . 1 2 5 . nip . i o /team−admin/example−s e r v i c e
i n s e cu r e : true
username :

f r om se c r e t : REGISTRYUSERNAME
password :

f r om se c r e t : REGISTRY PASSWORD
tags :

− ${DRONE BUILD NUMBER}
− l a t e s t

−−−
kind : p i p e l i n e
type : kubernetes
name : update−docker−dev
c lone :

d i s a b l e : true
s t ep s :

− name : c lone−workload
image : p lug in s / g i t
commands :

− g i t c l one https : // g i t e a . 134 .209 .138 .125 . nip . io /otomi/argo−workload . g i t .
− name : update−docker−tag

image : a l p i n e / g i t
commands :

− sed − i
’ s /example−s e r v i c e : . ∗ / example−s e r v i c e : ’ ”${DRONE BUILD NUMBER}” ’ /g ’
. / example−s e r v i c e−dev/deployment . yaml

− name : g i t−c on f i g
image : a l p i n e / g i t
commands :

− g i t c on f i g −−g l oba l user . name ”Drone CI”
− g i t c on f i g −−g l oba l user . emai l ”bot@drone . com”

− name : g i t−push
image : appleboy/drone−g i t−push
s e t t i n g s :

branch : master
remote : https : // g i t e a . 134 .209 .138 .125 . nip . io /otomi/argo−workload . g i t
username :

f r om se c r e t : GIT USERNAME
password :

f r om se c r e t : GIT PASSWORD
fo r c e : true
commit : true
commit message : Update example−s e r v i c e−dev with docker image ${DRONE BUILD NUMBER}
author name : droneCI
author emai l : g i t e a@ l o ca l . domain

depends on :
− bu i ld

−−−
kind : p i p e l i n e
type : kubernetes
name : update−docker−prod
c lone :

d i s a b l e : true

79

APPENDIX C. IMPLEMENTATION

s t ep s :
− name : c lone−workload

image : p lug in s / g i t
commands :

− g i t c l one https : // g i t e a . 134 .209 .138 .125 . nip . io /otomi/argo−workload . g i t .
− name : update−docker−tag

image : a l p i n e / g i t
commands :

− sed − i
’ s /example−s e r v i c e : . ∗ / example−s e r v i c e : ’ ”${DRONE BUILD NUMBER}” ’ /g ’
. / example−s e r v i c e−prod/deployment . yaml

− name : g i t−c on f i g
image : a l p i n e / g i t
commands :

− g i t c on f i g −−g l oba l user . name ”Drone CI”
− g i t c on f i g −−g l oba l user . emai l ”bot@drone . com”

− name : g i t−push
image : appleboy/drone−g i t−push
s e t t i n g s :

branch : master
remote : https : // g i t e a . 134 .209 .138 .125 . nip . io /otomi/argo−workload . g i t
username :

f r om se c r e t : GIT USERNAME
password :

f r om se c r e t : GIT PASSWORD
fo r c e : true
commit : true
commit message : Update example−s e r v i c e−prod with docker image ${DRONE BUILD NUMBER

}
author name : droneCI
author emai l : g i t e a@ l o ca l . domain

t r i g g e r :
branch :

− master
depends on :

− update−docker−dev

C.4 Custom backstage code

Location: https://github.com/RubenvdKamp08/backstage/blob/master/packages/backend/src/plugins/
scaffolder.ts

. . .

export interface GiteaConf ig {
host : s t r i n g
password : s t r i n g

}

export default async func t i on c r ea t eP lug in (
env : PluginEnvironment ,

) : Promise<Router> {
const c a t a l o gC l i e n t = new Cata logCl i ent ({

discoveryApi : env . d i scovery ,
}) ;

const i n t e g r a t i o n s = ScmIntegrat ions . fromConfig (env . c on f i g) ;

const bu i l t I nAc t i on s = c r e a t eBu i l t i nAc t i on s ({
i n t e g r a t i on s ,
ca ta l ogC l i en t ,
c on f i g : env . con f i g ,
r eader : env . reader ,

}) ;

const g i t e a I n t e g r a t i o n : any = env . c on f i g . get (’ i n t e g r a t i o n s . g i t e a ’) ;
const g i t eaCon f i g : GiteaConf ig = {

. . . g i t e a I n t e g r a t i o n [0] ,
host : ‘ https : //${ g i t e a I n t e g r a t i o n [0] . hos t } ‘

}

80

https://github.com/RubenvdKamp08/backstage/blob/master/packages/backend/src/plugins/scaffolder.ts
https://github.com/RubenvdKamp08/backstage/blob/master/packages/backend/src/plugins/scaffolder.ts

APPENDIX C. IMPLEMENTATION

const a c t i on s = [
. . . bu i l t InAct i ons ,
pub l i shGi tea (g i t eaCon f i g) , //custom ac t i ons
updatePipe l ine (g i t eaCon f i g) , //custom ac t i ons
createKubeDeployment (g i t eaCon f i g) , //custom ac t i ons
createKubeServ ice (g i t eaCon f i g) , //custom ac t i ons
updateApplicationWorkload (g i t eaCon f i g) , //custom ac t i ons
c r e a t eSe rv i c eMon i t o rF i l e (g i t eaCon f i g) //custom ac t i ons

] ;
. . .

}

The custom functions are defined in: https://github.com/RubenvdKamp08/backstage/blob/master/
packages/backend/src/plugins/scaffolder/actions/custom.ts.

Location: https://github.com/RubenvdKamp08/backstage/blob/master/packages/backend/src/index.
ts

. . .
import { GiteaUrlReader } from ’ . / g i t e a / g i t e a ’ ;

f unc t i on makeCreateEnv (c on f i g : Conf ig) {
const root = getRootLogger () ;
const r eader = UrlReaders . default ({ l o gg e r : root , con f i g , f a c t o r i e s : [GiteaUrlReader .

f a c t o r y] }) ; // custom fac t o r y
const d i s cove ry = HostDiscovery . fromConfig (c on f i g) ;
const cacheManager = CacheManager . fromConfig (c on f i g) ;
const databaseManager = DatabaseManager . fromConfig (con f i g , { l o gg e r : root }) ;
const tokenManager = ServerTokenManager . noop () ;
const ta skSchedu le r = TaskScheduler . fromConfig (c on f i g) ;
. . .

}

. . .

The Gitea factory that was created to read docs: https://github.com/RubenvdKamp08/backstage/
blob/master/packages/backend/src/gitea/gitea.ts

C.5 Observability & logging

81

https://github.com/RubenvdKamp08/backstage/blob/master/packages/backend/src/plugins/scaffolder/actions/custom.ts
https://github.com/RubenvdKamp08/backstage/blob/master/packages/backend/src/plugins/scaffolder/actions/custom.ts
https://github.com/RubenvdKamp08/backstage/blob/master/packages/backend/src/index.ts
https://github.com/RubenvdKamp08/backstage/blob/master/packages/backend/src/index.ts
https://github.com/RubenvdKamp08/backstage/blob/master/packages/backend/src/gitea/gitea.ts
https://github.com/RubenvdKamp08/backstage/blob/master/packages/backend/src/gitea/gitea.ts

APPENDIX C. IMPLEMENTATION

Figure C.7: Read metrics from grafana dashboards

Figure C.8: Read application logs in Loki

82

Appendix D

Productivity evaluation

D.1 Introduction form

For this experiment I want to validate a platform engineering implementation and see if this way we can
improve the productivity by offering a platform to handle a lot of configurations.

In order to do this usability study I will ask you to perform one or two tasks which are difficult at
first, but with the basic documentation I will provide it should be feasible within 30 minutes.

D.2 Roles

Figure D.1: Participant roles

D.3 Use case

D.3.1 Description

Before we get started with this experiment. We are wondering what your current estimations would be
with your current knowledge about DevOps, platform engineering and especially on getting applications
to production.

Imagine the following situation You are a software engineering within an organization which runs
applications on Kubernetes. These deployments are handled with ArgoCD which automatically means
they adopt a GitOps strategy. They also use a CI/CD provider like CircleCI/Jenkins/DroneCI/GitHub
actions in which you can create your own pipeline configurations to build and deploy your applications.
The organization also has a registry to store your docker containers. In order to get your application into
production you have to make sure that your application is reachable to the outside world and it needs

83

APPENDIX D. PRODUCTIVITY EVALUATION

observability and logging in order to get information about your application. Before the application will
be deployed to production you need to test your application in a development environment to ensure the
quality.

In this setup, how long would it take to get your application to production? In this case you have to
include the following facts:

• The CI/CD pipeline needs to build docker images

• The CI/CD pipeline needs to automatically update the deployments on dev and prod

• You need to have the dashboards of your application for monitoring purposes

• You need to have the ability to query the logs of your application

D.3.2 Responses

Figure D.2: Use case estimation

What do you think would be the most d i f f i c u l t part ?
1) Se t t i ng up the d i f f e r e n t deployment s e t t i n g s and d i f f e r e n t environments .
2) Conf igur ing a l l the t o o l s so that they can communicate without e r r o r with

eachother .
3) Most d i f f i c u l t par t s o f the chain are u sua l l y mistakes in the bu i ld c on f i gu r a t i on

and having to r e t r y the e n t i r e p i p e l i n e .
4) To have the dashboards o f your app l i c a t i o n for monitor ing purposes
5) The p i p e l i n e c on f i g u r a t i o n s
6) Depends on where the Kubernetes c l u s t e r i s running and whether the c l u s t e r i s

managed or s e l f −managed . Managed c l u s t e r s are e a s i e r to i n t e g r a t e with than s e l f
−managed c l u s t e r s . I th ink the part which w i l l be most time−consuming i s the CI
setup . E sp e c i a l l y the e n t i r e ”DTAP” s t r e e t . DTAP i s a b i t outdated , but the
concepts remain . Test ing should be done automat ica l ly , some systems may need a
t e s t i n g environment to be setup (th ink o f e2e or acceptance t e s t i n g) . This can
become complex qu i ck ly . Afterward , the automatic t e s t s i t needs to be deployed
to an acceptance or demo environment where manual t e s t i n g can be done (i f
nece s sa ry) . After manual approval (or not) the changes can be merged to
product ion . Se t t i ng up this proce s s in al ignment with bus in e s s needs w i l l be the
most complex .

7) I n t e g r a t i on o f bu i l d i ng and deploy ing
8) Conf igurat ion
9) Because I have l im i t ed knowledge o f dashboards and sav ing l o g s the l a s t two par t s

:
− You need to have the dashboards o f your app l i c a t i on for monitor ing purposes
− You need to have the a b i l i t y to query the l o g s o f your app l i c a t i on
would be the most d i f f i c u l t and timeconsuming for me.
10) Se t t i ng up the p i p e l i n e because during p i p e l i n e con f i gu ra t i on , t r i a l and e r r o r

can slow down prog r e s s

84

APPENDIX D. PRODUCTIVITY EVALUATION

Figure D.3: Use case estimation change

D.4 Task one

In this first task you will be asked to create a react application and deploy this application to a develop-
ment environment on Kubernetes. This react application and deployment needs to contain the following
configuration/tooling:

• Git repository with the react code

• Pipeline setup to build the application in a docker image

• Pipeline setup to deploy the application to Kubernetes (dev)

• ArgoCD workload files to manage the deployments (dev)

• Exposure to the outside world

The deliverable are:

• A git repository with the code

• A docker image stored in the registry

• A Kubernetes deployment of your docker image

• A url to serve the application

The links required to get started are the following:

• backstage: this is the developer portal used to help you with certain tasks

• otomi: this is the developer portal used to navigate to the tools you need to use

The tools needed for this task are:

• Gitea: remote git

• DroneCI: CI platform

• Harbor: docker registry

• ArgoCD: GitOps CD tool for kubernetes

• Otomi services: expose applications

The credentials will be given in the google meet itself.

The goal of this task In this task you will need to get a react application to the development environment,
you will end up with a url and on this url the site is served to the user. Example: https://example-site-
dev.134.209.138.125.nip.io

Please ask questions if necessary.

85

APPENDIX D. PRODUCTIVITY EVALUATION

D.5 Task two

In this second task you will be asked to create a NestJS application and deploy this application to a
production environment on Kubernetes. This NestJS application and deployment needs to contain the
following configuration/tooling:

• Git repository with the NestJS code

• Pipeline setup to build the application in a docker image

• Pipeline setup to deploy the application to Kubernetes (dev)

• Pipeline setup to deploy the application to Kubernetes (prod)

• ArgoCD workload files to manage the deployments (both dev and prod)

• Exposure to the outside world

In this experiment we have divided the groups into two categories: the one with no documentation
or tutorial and the one with a tutorial to help you out. This is something that will be told before the
first task.

The links required to get started are the following:

• backstage: this is the developer portal used to help you with certain tasks

• otomi: this is the developer portal used to navigate to the tools you need to use

The tools needed for this task are:

• Gitea: remote git

• DroneCI: CI platform

• Harbor: docker registry

• ArgoCD: GitOps CD tool for kubernetes

• Otomi services: expose applications

The credentials will be given in the google meet itself.

The goal of this task In this task you will need to get a react application to the development environment,
you will end up with a url and on this url the site is served to the user. Example: https://example-
service-prod.134.209.138.125.nip.io

Please ask questions if necessary.

D.6 Task three

In this third task you will be asked to retrieve the logs of the NestJS application you deployed in the
task before.

For this situation we have enabled each nestjs application with a /error endpoint which will throw a
http error message including a log and metrics. Your task is to query these logs and show these metrics.

The tools needed for this task are:

• Loki: query logs

• Grafana: dashboarding

We have created a predefined dashboard which can help you to show you the correct metrics: Custom:
application metrics.

86

Appendix E

Usability study

E.1 Introduction form

For this experiment I want to validate a platform engineering implementation and see if this way we can
improve the productivity by offering a platform to handle a lot of configurations.

In order to do this usability study I will ask you to perform one or two tasks which are difficult at
first, but with the basic documentation I will provide it should be feasible within 30 minutes.

E.2 Roles

Figure E.1: Participant roles

E.3 Open questions

Learning curve o f the plat form
1) With the docs , i t was very easy to use .
2) S ince I did this task without t u t o r i a l I needed some time to c l i c k through some

o f the t o o l s . But a f t e r I l ea rned which t o o l did what i t was extremely easy to
create , bui ld , deploy and expose an app l i c a t i on .

3) Pretty s t ra i ght f o rward , although there i s a l o t o f t o o l s that are thrown at you
in one go .

4) Each s e r v i c e i n s i d e the plat form i s s t r a i gh t f o rwa rd and i s very easy to use . But
you have to switch between d i f f e r e n t s e r v i c e with in the platform , and they a l l
have d i f f e r e n t UI .

5) I t was very easy to use . Makes this task much qu i cke r . Only th ing I did not
r e a l l y l i k e was a l l the sw i t ch ing between t o o l s / tabs . But this i s to be expected
when t ry ing to use l o t s o f t o o l s .

87

APPENDIX E. USABILITY STUDY

6) The l i n k s between the d i f f e r e n t apps used were not always as l o g i c a l or easy to
understand . However , with a l i t t l e b i t o f documentation and an overview o f how
the t o o l s work toge the r I th ink the r e l a t i o n s between the d i f f e r e n t apps w i l l be
e a s i e r to understand and w i l l improve the proce s s for a f i r s t time user .

7) Easy to use , with ba s i c exp lanat ion about some o f the t o o l s I was un f ami l i a r with
8) Rather easy . I wont be s t r u g g l i n g on yamls c on f i g u r a t i o n s
9) Yes everyth ing was easy to use and documentation was very h e l p f u l . Only negat ive

was that many app l i c a t i o n s / s i t e s were used and i t could be s impe l e r i f i t was
a l l in a s i n g l e f low .

10) For someone without much knowledge o f the t o o l s that are used on the platform ,
us ing the s e t o f t o o l s can be a b i t daunting . However , the ac tua l p roce s s o f
us ing the t o o l s i s qu i t e s t r a i gh t f o rwa rd s i n c e not many manual ta sk s need be
performed by the user . Exposing the s i t e to the world was the most complex step .

Which f e a tu r e o f the plat form did you l i k e most?
1) Backstage
2) Backstage golden paths
3) Docs and golden paths
4) Golden paths
5) Obse rvab i l i t y . Logging and metr i c s worked out o f the box .
6) Golden paths
7) The easy dashboarding and logg ing as this would be harder for me to do myse l f as

I have no expe r i ence with i t .
8) Golden paths
9) deployment process , auto yaml c on f i g u r a t i on

What improvements do you sugges t for this plat form ?
1) −
2) Create golden paths that w i l l he lp deve l ope r s to migrate app l i c a t i o n s . Not only

the c r e a t i on o f new app l i c a t i on s , but a l s o migrat ions
3) To have i t in one p lace .
4) Maybe the re i s a way to merge the content from otomi and backstage toge the r . So

a l l the in fo rmat ion i s in one p lace .
5) Documentation . See answer above
6) Good documentation about workflow and ba s i c in fo rmat ion o f t o o l s used
7) hard to say at moment I used i t the f i r s t time , for now looks good to me
8) Try to inc lude as much in a s i n g l e f low .
9) Finding a way to l e t the user i n t e r a c t with a l l the t o o l s without having to

switch between i n t e r f a c e s would improve the proce s s . Something such as a wik i
that would exp la in a l l s t ep s in d e t a i l would make the adoption o f the plat form
e a s i e r .

Overa l l expe r i ence : Would you recommend us ing a plat form in your da i l y ta sk s at your
o rgan i z a t i on ? What would be the main advantages o f us ing this plat form in comparison
to no plat form ?

1) Yes I would recommend us ing a plat form . Because i t g r e a t l y reduces the time
needed to s e t everyth ing up and t roub l e shoo t e r r o r s .

2) Yes . Using a plat form e l im ina t e s a grea t dea l o f t a sk s that would normally have
to be done manually . In a l a r g e o rgan i z a t i on that would a l s o r e s u l t in long
wait ing t imes for teams to r e s o l v e t i c k e t s .

3) I t can reduce deployment and maintenance part . I t avo ids deve loper to wr i t e
d i f f e r e n t c on f i g f i l e s , but this a l s o can be a reason the deve l ope r s do not know
how the plat form works under the hood

4) The big advantage i s that i t saves a l o t o f time s e t t i n g everyth ing up . Also
e a s i e r for new people to use and get to know . Makes i t a l s o l e s s e r r o r prone .

5) Ease o f use . I th ink the ”T shaped deve loper ” i s a good idea , but i t needs to be
c on s t r i c t e d to development and the ta sk s surrounding i t . Creat ing and
mainta in ing the e n t i r e p roce s s around the running s t a t e o f an app l i c a t i on should
not be the main focus o f a deve loper . I th ink having a ded icated plat form

eng in e e r i ng team makes more sense .
6) Main advantages would be the reduct ion in time i t would take for e x i s t i n g teams

to c r e a t e new app l i c a t i o n s conforming to the o r g an i s a t i on s standard , but an even
b igge r gain (I hypothes i ze) could be gained by a l l ow ing new teams to setup

t h e i r a pp l i c a t i o n s accord ing to o rgan i z a t i on standards .
7) sure I would use i t . main + o f i t − l e s s manual work that can produce a l o t o f

pain
8) 8/10 The setup was easy and the t u t o r i a l s gave a c l e a r exp lanat ion o f how

everyth ing was supposed to work .
9) Overa l l yes , but i t would depend on the type o f o r gan i z a t i on . I have worked at

sma l l e r companies be f o r e where new p i p e l i n e s would r a r e l y be deployed as they
had a s e t o f smal l and s t ab l e s e r v i c e s . Adopting the plat form could in this case
be too time consuming compared to the b e n e f i t s . However , a l a r g e s e t o f

88

APPENDIX E. USABILITY STUDY

companies (which are o f t en l a r g e r as we l l) f r e qu en t l y deploy new p i p e l i n e s or
perform r e l a t e d ta sk s . For these companies , I b e l i e v e adopting a plat form would
y i e l d many b e n e f i t s in the long run thanks to the time i t saves employees .

The main advantage o f us ing the plat form i s l e s s e n i n g the time employees have to
spend on devops ta sk s and the f a c t that i t s s t anda rd i z e s the devops proce s s
with in an o rgan i z a t i on .

General feedback : I s this what you expected from a plat form ?
1) −
2) Yes
3) I did not have any expec ta t i on from the plat form
4) Yess , maybe a b i t more than expected
5) I expected the plat form to br ing ease o f use so in that case i t worked . However ,

i t s t i l l r e q u i r e s the user to have an understanding o f mu l t ip l e t o o l s . I th ink a
t o o l l i k e otomi a l r eady takes away a l o t o f the pains , but maybe having one

t o o l in which you can setup an e n t i r e app l i c a t i o n without l e av ing the t o o l i s ,
o f course , most d e s i r a b l e . For example , i f you look at other p la t fo rms l i k e
Verce l .

6) I had l i t t l e to no expec ta t i on s about plat form eng in e e r i ng
sure . yaml−s to me i s r e a l p lace for a l o t o f mistakes . So this plat form i s very

u s e f u l to avoid i s s u e s .
7) yes , I did not know what to expect from plat form eng in e e r i ng but was p l e a s an t l y

su rp r i s ed .
8) I t i s not what I expected . My devops expe r i ence i s not that deep , and imagining

what to expect from a plat form was t h e r e f o r e d i f f i c u l t for me. After us ing the
platform , the b e n e f i t s o f i t have become much more c l e a r to me, and i t has a l s o
g iven me a c l e a r e r view o f what i s meant by a plat form .

E.4 Closed questions

Figure E.2: Ease of use

89

APPENDIX E. USABILITY STUDY

Figure E.3: Amount of support from the platform

Figure E.4: Would you suggest platform engineering in your organization?

90

Appendix F

Platform expert feedback

F.1 Introduction text

In the past few weeks I have been working on a simple platform implementation with the help of Otomi,
Backstage and other open source tools. This implementation is a compliment of the already created plat-
form engineering reference model and can be used as an example on how you could implement a platform.

Before sending you this survey we had a discussion about the platform I have created, together with a
demo of the platform. Based on this discussion and demo I would like to get some formal feedback on
the implementation to see wether the platform is suitable or not.

This survey will take around 5 minutes to finish.

F.2 Roles

Figure F.1: Current role of experts

F.3 Open questions

Which f e a t u r e s did you f i nd most va luab l e ?
1) Catalog and Click−through d e t a i l views
2) Backstage and the i n t e g r a t i o n o f a l l the components .
3) The IDP , prov id ing golden paths for the development o f new app l i c a t i on s ,

p r ov i s i on i n g workloads , e t c . Al l from a one−stop−shop . Very impre s s i v e and super
u s e f u l . S p e c i f i c a l l y for the onboarding o f new deve l ope r s and ge t t i n g people up
to speed when swi tch ing teams , e t c .

91

APPENDIX F. PLATFORM EXPERT FEEDBACK

4) Golden paths & documentation
5) The ” connec t i v ene s s ” in the platform , everyth ing i s connected and by i t , i t he lp s

the deve loper as i t l e s s e n s the burden o f g e t t i n g app l i c a t i o n s ready for
deployment . This g i v e s the deve loper more time to fo cus on what he does bes t :
s o l v i n g bus in e s s problems .

Are the re f e a t u r e s that you think should be added to the plat form ?
1) Mesh and Trace c o r r e l a t i o n to graph views
2) Po l i cy agents (Gatekeeper) can be h e l p f u l to avoid mistakes . Enforc ing guard

r a i l s can help the s e c u r i t y and s t a b i l i t y o f the plat form .
3) D e f i n i t e l y the IDP , maybe even the PaaS aspect o f your platform , because ; why re−

invent the wheel ?
4) Not r i g h t now
5) More e l abo ra t e and in t e g r a t ed golden paths . Also l ook ing for upgrade paths , as we

now favor con s t ruc t i ng new th ing s over mainta in ing / upgrading the o ld one .

Does this implementation help you with your t e c hn i c a l implementation at your
o rgan i z a t i on ? I f yes , how?
1) I t would help for demonstrat ion purposes , e s p e c i a l l y Backstage ; but due to the

IAM in t e g r a t i o n and HA con s t r a i n t s i t would not work in this c on f i gu r a t i on out
o f the box .

2) For Otomi , i t i s very good to have a showcase o f what i s p o s s i b l e and i t i s easy
to PoC some t o o l s . Using i t as a plat form could be more d i f f i c u l t because you
have to ” play ” by t h e i r r u l e s . You g ive away some f l e x i b i l i t y (t h e i r pace o f
development i s s lower then from the components i t s e l f) and t a i l o r −made usage we
now have (I n t e g r a t i on between our IaC and Kubernetes c l u s t e r s for example)

I r e a l l y l i k e d the implementation and p o s s i b i l i t i e s o f Backstage , impressed by the
demo and I am convinced we need to spend time to implement this t o o l in our
plat form .

3) See prev ious answers r egard ing Backstage /IPD/PaaS .
4) I th ink the work for the deve l ope r s w i l l be much e a s i e r this way . For the

plat form team managing and s tandard i z i ng w i l l take o f f . Also onbarding o f new
team members (or app l i c a t i o n s) w i l l be much e a s i e r than i t i s now .

5) I t shows what can be done (het maakt j e l e kk e r) . I t shows the power . But i t does
not he lp us to a c t ua l l y get there , as the t o o l s and i n t e g r a t i o n d i f f e r per use
case .

Add i t iona l comments or sugg e s t i on s
1) This i s a s t rong demonstrat ion due to the ’ b a t t e r i e s inc luded ’ approach in s t ead

o f l e an ing on a s p e c i f i c s e r v i c e vendor . On the other hand , this has the
downside o f be ing r e l i a n t on a s i n g l e VM image vendor , which ab s t r a c t s away some
o f the component i n s t a l l a t i o n , which might be r equ i r ed knowledge during outages
or p lat form debugging as we l l as migrat ion to d i f f e r e n t p la t fo rms once a

mismatch between requi rements or c on s t r a i n t s occurs .
2) Very n i c e work ! Keep i t up . :)
3) Great work . We have been t a l k i n g about implementing something l i k e this for a

year now . Great to see a working example . Keep up the good work .

F.4 Closed questions

92

APPENDIX F. PLATFORM EXPERT FEEDBACK

Figure F.2: Overall design of the platform

Figure F.3: Ease of use of the platform

Figure F.4: Applicability of the platform in an organization

93

APPENDIX F. PLATFORM EXPERT FEEDBACK

Figure F.5: Platform integrations with other systems

Figure F.6: Would you recommend this platform as an example to others?

94

	Introduction
	Problem statement
	Research questions
	Research method

	Contributions
	Outline

	Related work
	Platform engineering
	IDP Reference Architecture
	Platform tooling

	Related research
	Platform engineering in enterprise application development
	Composable DevOps

	Reference model frameworks
	Zachman framework
	Reference model for Service-Oriented Architecture (SOA-RM)
	Open Distributed Processing reference model
	Comparison

	Project lifecycle reference models
	Adaptive enterprise project management (AEPM)
	DevOps reference architecture (DRA)
	Software architecture framework for quality-aware DevOps

	Summary

	Platform Engineering Reference Model
	Methodology
	Viewpoints
	Enterprise viewpoint
	Information viewpoint
	Computational viewpoint
	Engineering viewpoint
	Technology viewpoint

	Validation
	Reference model comparison
	Expert feedback

	Case study
	Conceptual design
	Analysis
	Requirements
	Design
	Summary

	Technical implementation
	Requirements
	Architecture
	Functionalities
	Summary

	Experiments
	Productivity evaluation
	Usability study
	Platform expert feedback

	Discussion
	Conclusion
	Future work

	Bibliography
	Glossary
	Appendix GitHub links
	Appendix Case study
	Current tech stack
	Performance metrics

	Appendix Implementation
	Platform documentation
	Golden paths
	DroneCI pipeline configuration
	Custom backstage code
	Observability & logging

	Appendix Productivity evaluation
	Introduction form
	Roles
	Use case
	Description
	Responses

	Task one
	Task two
	Task three

	Appendix Usability study
	Introduction form
	Roles
	Open questions
	Closed questions

	Appendix Platform expert feedback
	Introduction text
	Roles
	Open questions
	Closed questions

