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Abstract
In many industrial or healthcare contexts, keeping track of the number of people is essential. Radar systems, with their low
overall cost and power consumption, enable privacy-friendlymonitoring inmany use cases. Yet, radar data are hard to interpret
and incompatible with most computer vision strategies. Many current deep learning-based systems achieve high monitoring
performance but are strongly context-dependent. In this work, we show how context generalization approaches can let the
monitoring system fit unseen radar scenarios without adaptation steps. We collect data via a 60 GHz frequency-modulated
continuous wave in three office rooms with up to three people and preprocess them in the frequency domain. Then, using
meta learning, specifically the Weighting-Injection Net, we generate relationship scores between the few training datasets
and query data. We further present an optimization-based approach coupled with weighting networks that can increase the
training stability when only very few training examples are available. Finally, we use pool-based sampling active learning to
fine-tune the model in new scenarios, labeling only the most uncertain data. Without adaptation needs, we achieve over 80%
and 70% accuracy by testing the meta learning algorithms in new radar positions and a new office, respectively.

Keywords Active learning · Meta learning · Radar · Few shot learning · People counting · Weighting network

1 Introduction

Counting the number of people in an environment can be a
crucial task not only in industrial settings but also in med-
ical and safety scenarios. In difficult times, such as during
a pandemic, keeping track of the occupancy of an environ-
ment can greatly reduce the risk of spreading a pathogen [1,
2]. Estimating the presence of people can lead to other
advantages, such as enabling energy management plans in
places with frequent turnover of people, such as hospitals,
by smartly activating equipment and heating systems [3].
A non-automated measure may be challenging or impos-
sible in many contexts, such as for pedestrian crowds in
public areas [4]. The majority of solutions designed for peo-
ple monitoring rely on images captured by cameras and
thermal sensors [5]. Most camera-based solutions use RGB
or time of flight (ToF) sensors, and occupancy informa-
tion is estimated using computer vision [6, 7] or machine

B Gianfranco Mauro
gianfranco.mauro@infineon.com

B Manuel P. Cuellar
manupc@ugr.es

Extended author information available on the last page of the article

learning [8–10]. Camera systems that use cross techniques
for image segmentation and edge detection, such as convo-
lutional neural networks (CNNs), achieve high performance
even in crowded environments, but suffer from the inher-
ent problem of a lack of privacy [11]. Thermal sensors, on
the other hand, are much less privacy-invasive because of
the usage of infrared frequencies and often lower image res-
olution [12]. Thermal sensors also have the advantage of
being usable in the dark, but they can be affected by ther-
mal noise, caused, for example, by heaters and sunlight. In
addition, the lack of depth information generally does not
allow distinguishing between people moving in the same
direction. In contrast to visual solutions, many other sys-
tems exploit the measurement of environmental quantities.
Radio-frequency (RF) and laser technologies are typically
classified as non-image-based approaches [13]. The CO2

sensors, for example, can be used to estimate the occupancy
of a room by the concentration of carbon dioxide produced
by individuals. Such systems are frequently low-power but
must account for venting systems and are practically unus-
able in open spaces [14]. LiDARs represent often another
privacy-friendly solution for people counting and tracking.
Through the use of pulsed lasers and a scanner, a LiDAR
yields the generation of 2-D or 3-D maps of the surrounding
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space [15, 16]. Such systems frequently have high spatial
resolution and frame rates, but they can be costly and power-
consuming. RF-based systems have the advantage of having
almost no privacy concerns and little dependence on light and
weather conditions. These characteristics make them appro-
priate for monitoring several people. Wi-Fi technology, for
example, can enable the recognition and segmentation of
people even through walls and obstructions [17, 18]. Wi-Fi
modules, however, require the development of high output
power in the RF range (≈ W) and a continuous working
operation to exploit their functionalities. On the contrary,
radar sensors are more versatile in many applications thanks
to lower power consumption (≈ mW) and optimized system
power management. Among radar modulations, frequency-
modulated continuous wave (FMCW) is particularly suited
to people monitoring, allowing accurate estimation of the
range and velocity of both dynamic and static targets located
within the device’s field of view (FoV) [19, 20]. Specifically,
60 GHz technology is particularly suitable for short-range
people monitoring applications [21]. Radars transmitting
around this frequency are cost-effective and versatile com-
pared to other solutions such as cameras or LiDAR. Further,
the 60 GHz frequency is much less susceptible to interfer-
encewith other radio-frequency signals orBluetooth devices.
Image-based or high-resolution RF systems often implement
a vision-based pipeline to predict the number of people in
a given context. This approach can lead to high classifica-
tion performance even in the challenging task of tracking
through image segmentation, edge detection, and skeleton-
pose extraction [6]. On the other hand, radar data are hardly
interpretable through classical computer vision approaches.
In this case, deep learning (DL) techniques are commonly
used to process the information [22].

DL is nowadays finding the most varied uses for solving
tasks and speeding up processes. Over the years, classes of
DL models have been developed to extract valuable infor-
mation from the available data for given tasks. Examples are
CNNs for feature map generation or recurrent neural net-
works (RNNs) for processing time series. Over the years,
multiple neural network topologies, such as Inception [23]
and VGGNet [24] have been designed to solve specific
tasks with successful outcomes.Yet, such topologies have
the inherent need to be trained on a large amount of data
to achieve robust performance across new contexts. Com-
monly, thesemodels are adaptable to new tasks by leveraging
transfer learning [25], tailoring parameters to newly collected
data. However, the limited availability of data and the need
for rapid adaptation to new contexts make transfer learning
hardly usable for defined types of tasks. To deal with these
challenges, a specific branch of DL called few-shot learn-
ing has gained momentum in recent years [26]. The goal of
few-shot learning is to exploit the little available information
and data patterns, leveraging previous experience to adapt

to new contexts or solve tasks that have not been tackled
before.Few-shot learning is approached from different per-
spectives by specific DL sub-branches such as meta learning
and active learning [27, 28].

Meta learning, or learning to learn, accounts for the set
of algorithms where the primary goal is to learn how to
approach new tasks given some past experience, or meta-
data [29, 30]. This process not only encourages context
generalization but also accelerates the fine-tuning of already
observed taskswhen newdata are available. If themeta learn-
ing is optimization-based, an iterative learning process called
episodic learning based on available training data is gener-
ally used. For a task defined in N–way, i.e., N classes, the
few available samples are called shots. To assess general-
ization performance, C samples of support and J samples
of query are fed to the defined model for each class. Algo-
rithms commonly used for meta learning are model agnostic
meta learning (MAML) [31] and Reptile [32] which, thanks
to their very general conceptualization, enable the episodic
adaptation of most of the common topologies defined in
DL. Frameworks based on optimization-based meta learn-
ing are highly effective and performwell in several data-poor
tasks [33, 34]. However, they have an inherent need for train-
ing on a set of representative data for each new, unseen task to
learn to generalize. A specific kind of method, called relation
network [35], was created to obviate this need by exploiting
the ability of the model to compare the features of different
examples and learn to distinguish them. The comparison is
possible by properly shaping themodel topology and regress-
ing a relation score between 0 and 1, comparing individual
support and query examples. The relation scores are uncon-
ventionally regressed by minimizing the mean squared error
(MSE) to the ground truth of query instances. This approach
assumes that all available support instances are mutually
independent of each other. Intuitively, the model relies on a
one-to-one comparison rather than comparing the new query
examples with all the available support samples. Such issues
are addressed by the weighting network [36]. In this adapted
topology, the relation between support and query is propa-
gated through two modules. A first comparison module for
the extraction of the similarity between the samples and a sec-
ondweightingmodule that compresses the information into a
one-dimensional vector representing the relation scores. This
method leverages all available support sample features for
query prediction. Further, the weighting network endorses
the use of traditional classification cost functions such as
crossentropy during episodic optimization.

Active learning, on the other hand, aims to optimize the
model’s performance with as few labeled instances as pos-
sible [37, 38]. To accomplish this, the algorithm has control
over the inputs on which it trains, labels, or requests addi-
tional information about the data it deems most useful for
learning. A common strategy is to assign a priority score to
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the unlabeled data pool, exploiting, for example, the proba-
bility distribution generated by themodel. Only the instances
identified as most uncertain are then labeled and used dur-
ing training. This procedure, called pool-based sampling, is
normally repeated multiple times, increasing the amount of
labeled training data, until satisfactory performance for a
given task is achieved.

In this paper, we exhibit how few-shot learning techniques
can grant generalization of scenarios (environments and loca-
tions) for an FMCW radar-based algorithm designed for
people counting. The application of this system is intended
for uncrowded areas or rooms where there is a need to count
the presence of a few people. For this work, a specific dataset
was collected using a 60 GHz radar that was set up for the
task of counting people. The information was gathered in
three different offices with at least four different in-room
locations. Per location, 0 to 3 people took part in the data
recording for at least 60 seconds per session. The data were
preprocessed in frequency to extract range andDoppler infor-
mation from the people in the scene. Meta learning is then
used for the monitoring use case, estimating the number of
people from radar data. Instead of using all the available
data in a single training, we propose a few-shot episodic
approach to foster and speed up adaptation. To meet the
learning needs, we introduce both a new relation topology,
whichwe call theWeighting-InjectionNet, and an algorithm,
which we call model-agnostic meta-weighting (MAMW).
TheWeighting-Injection Net represents a modification to the
traditional weighting network presented in [36]. Instead of
an embedding module that reduces the dimensionality of the
support samples for the next comparison step, the proposed
one uses an injection module. This module increases the
dimensionality of input data, generating a feature-enriched
representation of support and query samples for the next
relational phase. The overall network scheme is shown in
Fig. 1. The MAMW, on the other hand, combines the query
relation strategy of the weighted network with the two-step
optimization-based approach of MAML. This is meant to
improve the stability of the few-shot episodic training, espe-
cially when only very few instances are available as training.
Experiments with 1–, 2–, 5–, and 10–shot have been per-
formed and analyzed for the proposedmethods. The achieved
generalization results have been comparedwith those of other
state-of-the-art approaches. State-of-the-art comparisons are
also conducted up to five-person counting, to test the limita-
tions of the radar-based episodic approach.

We also exhibit how pool-based sampling active learn-
ing can be efficiently employed to fine-tune the performance
of a relational model by exploiting the most uncertain data.
Showing how, for adaptations in new contexts, the use of
generalization information learned from episodic adaptation
leads to a better fit than starting from random initialization.
The active learning strategy has been used to fit the 1–shot-

pre-trained model on data from an office room used as a test
that is therefore unseen in the meta-training phase.

For the meta learning algorithms, we also conducted
experiments on a publicly available dataset for few-shot
learning in the Appendix A. The main contributions of this
paper are as follows:

1. Implementation, to the best of our knowledge, of the first
context-adaptable radar-based solution for counting peo-
ple without a necessary adaptation training.

2. Design and implementation of the Weighting-Injection
Net. This network represents a variation of the weighting
network with an injection module. The injection oper-
ation increases the dimension of support and queries
to ease feature matching in the subsequent comparison
module.

3. Design of a cross-algorithm between MAML and the
weighting network, called MAMW to increase the train-
ing stability of 1– and 2–shot experiments.

4. Development of a pool-based sampling active learning
algorithm compatible with weighting network topolo-
gies.

2 Related works

In this section, we first investigate state-of-the-art solutions
for people counting that offer similar features to radar-based
systems, such as privacy preservation and low frame reso-
lution. We then focus on the specific approaches aimed at
context generalization and active learning.

When low frame resolution and privacy are system needs,
traditional image segmentation and detection methods are
often replaced or aided by deep learning. Neural networks
can also be used to process time series or generate density
maps for crowd monitoring.

Massa et al. [39] presented a recurrent neural net-
work (RNN) architecture called LRCN-RetailNet (Long-
term recurrent convolutional network) that takes as input
sequences of low-resolution RGB frames and analyzes
their spatiotemporal content for people counting. The strat-
egy outperforms other state-of-the-art single-image-based
approaches. The system based on temporal sequences may
be unusable in low frame rate scenarios or with hardware
implementation constraints. Gomez et al. [40] developed a
system using long-wave infrared imaging and a CNN imple-
mentation on the NXP® LPC54102 microcontroller. The
classification approach is binary, exploiting a small detection
window on image sections to predict the presence or absence
of heads. Because all weights fit in a 512 KB flash mem-
ory, the CNN can be easily deployed on the microcontroller.
The counting algorithm using the embedded version of the
model achieves an accuracy of 53.7% on test images and up

123



G. Mauro et al.

1

2

3

0

1

Injection Module

Comparison Module

Weighting Module

Probability

1

2

3

0

Support Samples
Query Sample

Increased Dimensionality

Support and Query 
Comparison

Features 
Weighting

Weighting-Injection Net

Fig. 1 Weighting network with an injection module (Weighting-
Injection Net). At least one instance per class, represented in the figure
with a different marker color and a label, is used as support. A query
example belonging to one of the classes is what is to be associatedwith a
label by the classification algorithm. An injection module trained on the
support images enables the concatenation of a query with an increased-

dimensionality representation of each support. A comparison module
merges support and query information by mapping the relation into a
one-dimensional vector. Finally, a weighting module composed of fully
connected layers maps the relational information to the query label. The
model parameters are represented by θ

to six people. This solution is very low-power and privacy-
friendly, but the presence of heat sources in the environment
could cause counting issues due to the low resolution of the
thermal sensor.

The most common types of RF-based systems used for
monitoring areWi-Fi and radars that use impulse radio ultra-
wide band (IR-UWB) or FMCW technology. Most of these
solutions are inherently characterized by privacy preserva-
tion and low sensor resolution. Kianoush et al. [41] presented
a people counting system via Wi-Fi radio infrastructure that
uses an ensemble of models to leverage the space-frequency
features of various transmission and reception channels. The
ensemble exploits Bayesian techniques based on signal prop-
agation statistics from RX to TX, a feed-forward neural
network (FF-NN), and long-short-term memory (LSTM).
Some of the constructed ensembles achieve an accuracy
of over 95% in the test setup. However, a network of Wi-
Fi terminals is employed for this purpose, which results
in higher power consumption and challenges usability in
other environments. Bao et al. [42] featured a CNN-based
algorithm for people counting focusing on extracting multi-
scale range-time maps from IR-UWB radar data. Sequences
of radar frames are preprocessed to extract the peak infor-
mation and remove the background. The single frames are
then stacked together to form range-time maps. The method
proved robust in counting up to 10 people in the selected
environment. However, the time dependency and lack of
velocity information may make the system unsuitable for

real-time applications where multiple people may be at the
same distance. Stephan et al. [43] proposed a people counting
solution via the BGT60TR13 radar system (60 GHz FMCW)
that makes use of knowledge distillation from synchronized
camera data during the model generation. The suggested
architecture first processes the camera RGB data, exploit-
ing an OpenPose network that extracts the people’s poses
through pre-trained layers of the VGG-16 network and a
multi-stage CNN. The extracted information is then fed to
a triplet network with a 32-D embedding layer to gener-
ate clusters for each person count class. Radar information
is first preprocessed in the form of range Doppler images
(RDI) and fed to an encoder with fully connected final lay-
ers that learn through knowledge distillation from camera
embeddings. Information transfer is possible by minimiz-
ing the Kullback-Leibler (KL) divergence between radar and
camera embeddings. The method is robust and leads, in the
test phase, to an accuracy of up to 71% for six people with
another radar sensorwith different positions and orientations.
What is learned through knowledge distillation, however,
could significantly affect the capabilities of the architecture
in new environments where morphological and light condi-
tions would directly influence the camera data.

A few cutting-edge works attempt to solve the people
counting problem through active learning or aim at context
generalization.

Vandoni et al. [44] featured a solution that uses active
learning, coupled with SVMs, to improve training on subar-
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eas of crowd images via head count. Samples that are more
dissimilar than those already tagged are estimated in terms
of their uncertainty via a metric that accounts for crowd
density, called maximum excess over subarrays (MESA).
Zhao et al. [45] also proposed an active learning solution for
head counting in camera-based density maps. In this case,
in the iterative process of instances sampling to be labeled,
both crowd density information and dissimilarity from pre-
vious selections are employed. The sampling technique is a
context-appropriate version of partition-based sample selec-
tion with weights (PSSW). The number of people is then
regressed through mean absolute error (MAE) and MSE.
Both methods presented in [44] and [45] result effective in
improving the people count through uncertainty sampling
in crowded scenes but are very dependent on the 2D RGB
nature of the images. Zhang Yingying et al. [46] proposed
a multi-column convolutional neural network (MCNN) to
estimate crowd head counts from single images without tem-
poral dependence. Even with a sparse number of people, the
method outperforms other cutting-edge solutions on a vari-
ety of public datasets. The model, trained on a large dataset
with various density map sizes, can be easily tuned for new
datasets and contexts via transfer learning. The required res-
olution is nonetheless high and could create context-specific
privacy issues. Reddy et al. [47] and Zan et al. [48] designed
an adaptive algorithm to generate crowd density maps using
MAMLwith episodic training. In [47] a backbone consisting
of the first layers of VGG-16 and a density map estimator
are trained on various RGB sequences collected in differ-
ent environments. The pioneering approaches depict how
meta learning can be effectively employed for people count-
ing. Hou X. et al. [49] presented a cross-domain solution
for the estimation of density maps by episodic learning. In
this case, a domain-invariant feature representation module
is exploited, where synthetic and real camera data are used as
source and target domains, respectively. The densitymaps are
then generated using a pre-trainedCNNnetwork and an algo-
rithmcalledβ-MAML,whereβ represents the generalization
step’s learning rate. The parameter β is dynamically adapted
in the episodes by exploiting the gradient information of parts
of the images. The number of people is finally estimated from
the density maps. The meta learning approach presents more
robust performance for the algorithm than other state-of-the-
art methods for density map generation. However, the need
for a sensor camera does not allow for low-resolution uses
or where privacy is a requirement.

Some cutting-edge RF-based works also propose adap-
tive context generalization solutions. Hou H. et al. [50]
illustrated a few-shot learning solution for indoor crowd
counting using Wi-Fi technology. The solution consists of
a two-stage framework called domain-agnostic and sample-
efficient wireless indoor crowd (DaseCount). In a first stage
of meta-training, two separate CNNs learn to extract human

activity information from wireless channel state informa-
tion (CSI) measurements. Generalization performance is
improved at this stage by knowledge distillation. In the meta-
testing phase, the features extracted via CNNs from the
CSI data are fed to a few-shot regression algorithm for the
people counting task. The presented framework achieves,
on average, over 96% accuracy for counting up to eight
people in various domain setups. Yet, the solution is com-
putationally expensive for classifier retraining and may not
be suitable for frequent Wi-Fi transceiver location changes.
Zhang Yong et al. [51] proposed a WI-FI-based few-shot
learning solution for activity recognition that makes use of
graph neural networks. The method uses a graph convo-
lutional block attention module to extract activity-related
information fromCSI data. A final classification layer is used
to classify the graph features and recognize the activity. The
approach presents a robust 99.74% accuracy in the 5–way
5–shot experiment for new environments and activities. Yet,
much computation andmemory are required for model adap-
tations.

3 System setup and radar preprocessing

In this section, we propose a general overview of the system,
discuss the data acquisition setup, and provide information
about the employed radar board, its configuration, and the
main preprocessing steps.

3.1 General overview of the system

Figure 2 depicts the overall framework. First, rooms for data
gathering are chosen for the few-shot learning approach. The
radar data are then gathered from various in-room locations
with varying numbers of people. Preprocessing is performed
to extract range and Doppler information about the people in
the FoV of the device. The sequences of preprocessed frames
are averaged by moving average to generate the individual
instances of the meta-dataset. The data are then saved and
labeled in session-specific folders. The folder names denote
the label encoding, from 0 to 3, of the number of people who
attended the session. In most of the proposed experiments,
the information recorded in two rooms is used as input data
for the episodic training of themeta learningmodel. The third
room is instead utilized for testing. Model fine-tuning can be
performed via active learning on the test data, using the meta
learning model as a baseline.

3.2 Radar board

All radar data in this work were collected using the
BGT60TR13C FMCW sensor [21] from Infineon Tech-
nologies AG. With a center frequency of f0 of 60 GHz
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Fig. 2 Proposed Framework. The setup ismounted in three rooms.Data
sessionswith a number of people from0 to 3 in the scenario are collected
and processed (orange). The frequency analysis is performed via the
fast Fourier transform (FFT). Instances are generated via a moving
average over frame sequences. A meta-dataset is then generated, and
one room is used as the test dataset. A classifier is then episodically
trained and tested. Active learning is used to fine-tune the model to a
new environment (yellow)

and a bandwidth of about 6 GHz, this radar represents a
miniaturized and low-power solution. This f0 and band-
width are especially suitable in short-distance and indoor
applications, resulting in low susceptibility to interference
with other signals such as WiFi or Bluetooth. Thanks to
an operation-optimized duty cycle, the power consumption
for sensing within 5 m is minimized to only 5 mW. The
BGT60TR13C has a transmit (TX) and three receive (RX)
channels built into the package. The RX antennas are placed
orthogonally to each other to enable the reconstruction of
azimuth and elevation angles of arrival (AoA) for the tar-
gets placed in the FoV. The information collected from the
RX channels is mixed with the TX and digitized with 12-
bit resolution via the board connected to the radar sensor
(Fig. 3).

Fig. 3 BGT60TR13 Radar System. The board filters, mixes, and digi-
tizes data from each RX channel, located on top of the radar sensor

3.3 Radar configuration

The BGT60TR13C transmits a series of linearly frequency-
modulated signals called chirps in a defined bandwidth Bw

around the central frequency f0. Each chirp, of duration tc,
normally consists of a fixed number of samples ns . During
use, the information reflected in the RX channels is mixed
with a transmitted signal reference and digitized, thus gen-
erating an output signal called intermediate frequency (IF).
Normally, for further preprocessing, the radar information
is packed into frames, each containing the IF relative to a
sequence of chirps Nc. The theoretical maximum detection
range Rmax and range resolution �r of an FMCW modula-
tion are calculated using the following formulas:

�r = c

2Bw

, (1)

Rmax = �r

2
ns , (2)

where c stands for the speed of light in air. A narrow Bw of
0.48GHzwas chosen to achieve a Rmax of about 10m,which
would cover the entire size of the chosen environments. A
resolution �r of at least 31 cm was chosen to let several
targets placed in front of the radar be distinguished even
at a considerable distance. A ns per chirp of 64 has been
specifically selected. The maximum discernible velocity of
the targets Vmax in one direction and the resolution �v can
instead be calculated with the following formulas:

Vmax = c

4 f0tc
, (3)

�v = 2Vmax

Nc
. (4)

The average human walking speed is about 1.42 m/s. To
allow detecting even faster motions, we opted for a Vmax of
3.5 m/s and a �v of 1.1 cm/s. As a result, we set tc to 351 μs
and Nc to 64. To collect approximately seven frames every
half second, a frame repetition time f ps of 75mswas chosen.
Furthermore, an analog-to-digital converter (ADC) sampling
rate Fs of 2 MHz was chosen. The parameters used to con-
figure the BGT60TR13C for the people counting recordings
in all the selected rooms are listed in Table 1.

3.4 Recording setup

The BGT60TR13C radar systemwas mounted on a tripod for
the people counting data, and the data were collected using a
Raspberry� Pi 4. The raw radar datawere then processed and
labeled offline at a later time on an eight-generation Intel�

CoreTM i5 processor (4 cores). Figure 4 depicts the used
setup. Three different rooms of various sizes were chosen
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Table 1 Radar Sensor Parameters Configuration

Symbol Quantity Value

f0 center frequency 60 GHz

f ps frames per second 13.33

Nc number of chirps 64

ns samples per chirp 64

tc chirp time duration 351 µs

Bw bandwidth [59.78 – 60.26] GHz

Fs sampling frequency ADC 2 MHz

for data collection: an office of approximately 26 m2 and two
meeting rooms of about 20 and 39 m2, respectively. Only a
portion of the office has been used, with walls separating the
other two areas. Various types of furniture, such as cabinets,
desks, tables, and chairs, were left in the rooms and were
unmoved from their locations. The reflection of such objects
represents the so-called clutter that characterizes the FMCW
radar data. A graphical illustration of the three environments,
indicated with the letters S, M , and B, standing for small,
medium, and big, is provided in Fig. 5. Data were gathered
in each room from at least the four corners. Data were also
collected in three additional locations in the office room. At
every location, the tripod was set up at a height ranging from
1.65 to 1.75 meters. Four sessions have been carried out per
location, each lasting approximately 60 seconds for themeet-
ing roomsand90 seconds for the office.Each session contains
data from 0 up to a maximum of 3 people in the room at the
same time. Ten different people with heights ranging from
1.60 to 1.78 meters took part in the recordings. Some data up
to 5 people have been gathered in the big room to further test
the performance of the developed algorithm. Before collect-
ing data, user consent was obtained, and as much privacy and
data anonymization as possible were maintained during the

recordings. The collected data has not been made publicly
available.

3.5 Radar preprocessing

Raw radar frames are difficult to interpret and label. The
information to be fed to a DL model for learning purposes
can be too noisy and highly context-dependent due to clutter.
In this work, we propose to preprocess the raw data collected
for people counting by removing the clutter and extracting
the Doppler and range information of the targets through
frequency analysis with the fast Fourier transform (FFT).
We then perform two averages to reduce the noise in the
data for the next model generation step. One for each frame,
averaging the IF signal ChI F (i) generated for each of the
three RX channels (i ∈ IRX ), and another for each 7-frame
recorded series. The whole process, given the f ps of 75 ms,
leads to the generation of about 2 RDI per second. The main
preprocessing steps are shown in Fig. 6.

The preprocessing steps performed for eachRX-generated
IF signal are as follows:

1. For each chirp (slow time), the average value of the sam-
ples (fast time) is calculated and then subtracted.

2. The IF signal is then multiplied in fast time with a Han-
ning window to reduce the spectral leakage effects.

3. A 1-D FFT is performed on the samples to derive the
range information of the targets.

4. A multiplication with a Hanning window is run also in
the slow time.

5. A 1-D FFT is performed along the slow time to obtain
the velocity information.

6. Todrop the information of static objects, aka clutter,mov-
ing target indication (MTI) is utilized (5).

ChI F (i) = μChI F (i) + (1 − μ)ChI F (i) , (5)

Fig. 4 Data recording setup. A
Raspberry� Pi4 (a) is used for
data storage. For data collection,
the BGT60TR13C radar system
is mounted on the tripod (b).
The tripod is moved between
sessions in the various rooms
and locations (c)

(a) (b) (c)
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Fig. 5 A graphic illustration of the environments chosen for data col-
lection. Data from 0 to 3 people were collected from the four corners
of the rooms. For the office M , data were also gathered at three other
locations (C, E, and H, respectively). For M , data could not be collected
from location B due to the presence of the front door

whereμ ∈ [0, 1] is set to 0.9, and weights the importance
of the current frame against the average of the previous
ones ChI F (i).

7. For each ChI F (i) a constant false alarm rate (CFAR)
algorithm is used to locally select Range and Doppler
peaks in frequency and discard the surrounding informa-
tion, thus increasing the signal-to-noise ratio (SNR).

8. To further improve the SNR, the RDIs(v) for each
frame v ∈ V are computed as the absolute value of the

average of ChI F (i) (6).

RDI (v) =
∣
∣
∣
∣
∣

1

IRX

IRX∑

n=0

ChI F (i)

∣
∣
∣
∣
∣

. (6)

9. The RDIs thus generated are stored in a seven frames
buffer (Nv), which corresponds to roughly half the frame
rate. A moving average is performed on the buffer to fur-
ther reduce the noise in the RDIs. These RDIs represent
the individual instances of the people counting dataset
that get labeled (7).

RDI =
∣
∣
∣
∣
∣

1

Nv

Nv∑

v=0

RDI (v)

∣
∣
∣
∣
∣

. (7)

3.6 People counting dataset

For people counting, three different meta-datasets have been
generated from the collected data of up to three people. Given
a frame timing of 75 ms and the frames averaged performed
on a seven frames buffer, a total of 7,669 labeled samples
have been created. Each sample has a size of 32 times 64
pixels. The width of 64 pixels represents the velocity span,
corresponding to the number of chirps per frame. The height
of 32 pixels represents the range span, corresponding to half
of the bin samples per frame. Independently of the record-
ing room, labels represents the number of people Pm in the
recording, with m ∈ [0, 3]. As shown in Fig. 5, the data has
been divided into sub-folders of the tuple (R, Pm , and L).
The tuple components are the room’s name R: S, M , or B,

Fig. 6 Flow diagram
representing the main
preprocessing steps. The yellow
blocks represent the main
time-domain steps. The orange
ones instead represent the
frequency domain steps
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frame 
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the number of people (Pm), and the location, L ∈ [A, H ].
With an average duration of 60 seconds across all record-
ings in rooms S and B, a total of 1,677 and 1,702 examples
were created, respectively. For M , a total of 4,290 examples
were built with six available locations. With all the avail-
able instances, the following three meta-datasets have been
generated:

• Mixed-Dataset: the data from the sub-folders (R, Pm , L)
were randomly split so that approximately 75% of the
instances was training and 25% was testing. The number
of training and test instances in this case are 5,803 and
1,866, respectively.

• S-Test-Dataset: in this case, all sub-folders (S, Pm , L)
were used as tests, while all others ([M, B], Pm , L) were
used as training. In total, for this meta-dataset, there are
5,922 training examples and 1,677 test examples.

• B-Test-Dataset: all the sub-folders (B, Pm , L) were used
as test, while all the others ([S, M], Pm , L) were used
as training. The number of training and test instances are
5,967 and 1,702, respectively.

In general, for each of the three generated meta-datasets,
the training and test instances are part of the respective train-
ing Dm−train and test Dm−test meta-dataset splits. Three
different averaged RDI examples per class, sampled from the

different recordings in all rooms and locations, are shown in
Fig. 7.

Even in the same environment, RDIs from classes 1 to 3
are difficult to distinguish from one another. Figure 8 shows
a t-distributed stochastic neighbor embedding (t-SNE) with a
2-D component representation of all instances in the S room.
The t-SNE succeeds in correctly clustering only data with
zero people in the environment. A t-SNE representation of
all collected data are shown in Fig. 9 according to the B-Test-
Dataset split. Even with a larger amount of data, only the
zero-person instances are easily clustered. In this case, it can
also be observed that the test data, which represents the B
room, have different features than the rest of the points. This
is an important indication of the dependence of radar data on
the location inwhich they are collected.Algorithms trained in
a single locationmay be difficult to use in other environments
and usually require adaptation. Euclidean distance was used
as a metric, and Barnes-Hut was used as an optimization
algorithm to generate the t-SNE representation.

4 Proposed approach

In this section, we present our solutions for generalization
learning. We begin by proposing a new network topology
called the Weighting-Injection Net, which is inspired by the
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Fig. 7 Example RDI instances from the people counting dataset. Every row shows three examples per class, chosen from a random combination
of rooms and locations. The axes indicate people relative motion velocity in m/sec and distance from the radar sensor in cm
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Fig. 8 2-D t-SNE
representation of all S room
data. This t-SNE was obtained
with a perplexity of 40 over
6,000 optimization iterations

Small Room (S) Data t-SNE Visualization

weighting network [36]. We then propose an algorithm that
makes use of optimization-basedmeta learning features from
MAML [31], which we call MAMW. This modified version
aims at increasing training stability when only a very limited
number of shots per class are available. Then, we propose
an active learning strategy tailored for weighting networks
to allow fine-tuning in a new environment while minimizing
the amount of required labeled data.

4.1 Meta learning

In episodic meta learning, K tasks are sampled from a
distribution p(Tr ) defined over Dm−train . As the episodes
progress, the goal is to improve the performance of themodel
on tasks sampled from p(Ts)definedonDm−test . InDL, task-
based learning is often achieved via the gradient method,
which involves training the parameters θ ′ by minimizing
a cost function LTr ( fθ ′), where fθ ′ represents the relation

between the input x and the predicted output ŷ. In the rela-
tion networks [35], generalization among tasks is directly
achieved thanks to the intrinsic comparison of instances
enabled by the topology. In optimization-based meta learn-
ing, such as inMAML [31], the information learned for tasks
Tr and encoded in the parameters θ ′, is transferred to a base
model fθ with parameters θ , minimizing an outer cost func-
tion LTr ( fθ ′). In this case, the task-specific cost function
depends on the parameters θ of the base model LTr ( fθ ).

4.1.1 Weighting-injection net

The Weighting-Injection Net aims to compare the features
of the arbitrary examples of query q with those of refer-
ence to the support s classes for each task k ∈ K . The
Weighting-Injection Net, as shown in Fig. 1 is based on three
main modules: injection, comparison, and weighting. Dur-
ing training, the gradient information is propagated through

Fig. 9 2-D t-SNE representation
of the B-Test-Dataset, for all the
recorded data. The B room data
are represented by the “x”
marker, while the rest of the data
(rooms S and M) are
represented by the “o” marker.
This representation was
obtained with a perplexity of 30
over 7,000 optimization
iterations

B-Test Dataset t-SNE Visualization 

S, M Rooms:  

 

B Room: 
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all modules in both forward and backpropagation steps. For
a N–way 1–shot task, the idea is to map the relationship
between support examples sn , where n ∈ N: [1, 2, ..., N ],
to each query example q j , where j is the index of the j-th
example of the set.

The injection module eθ generates a higher dimension
representation of the input x to enhance the extraction and
matching of features in the subsequent comparison step. Gra-
dient information for the injectionmodule is only propagated
as eθ ′(sn) through the support instances. For the query, only
the feature representation eθ ′(q j ) is generated.

The comparison module cθ , takes as input the concatena-
tion along N channels of eθ ′(q j ), with each of the n support
samples. The number of channels N corresponds to the task
number of ways. The features are extracted in the module
using convolution layer sequences, yielding a comparison
vector z. The vector z is generated in the following way:

zn, j = gθ ′(eθ ′(sn) ‖ eθ ′(q j )) , (8)

where ‖ denotes the operation of concatenation along the N
channels.

Lastly, the weighting modulewθ is designed to generate a
probability density from the concatenated N channels in the
z vector. Each zn, j is the output of the comparison module,
between the query q j and a support sn . The predicted output
ŷ j for the sample q j can be expressed as follows:

ŷ j = wθ ′(‖Nn=1zn, j ) = wθ ′(z1, j ‖ z2, j · · · ‖ zN , j ) , (9)

where ‖ represents the sequence of concatenations performed
over the channels N of z.

In the case of a N -way C–shot task, where c ∈ N: [1,
2, ..., C], the supports per class can be denoted as sn,c. The
Weighting-Injection Net can be leveraged in this case to cre-
ate a more robust representation of the comparison vector
zn, j . This can be done by arithmetic averaging over C sets
of N -channel concatenations, given by the embedded repre-
sentations of q j with each of the support sets sn,c. Such a
more robust representation yields the query class estimation
with less bias than with the single support shot scenario. The
mathematical expression for a single q j is as follows:

zn, j = 1

C

C
∑

c=1

gθ ′(eθ ′(sn,c) ‖ eθ ′(q j )) . (10)

The Weighting-Injection Net, trained on p(Tr ), can be
tested, thanks to its inherent structure, on tasks from p(Ts)
without further training. Given a support set with elements
sn,c for a task T ∼ p(Ts) a N–way C–shot, the class

probability density of the j-th query sample q j , is directly
estimated by inference.

4.1.2 Model-agnostic meta-weighting

The weighting network [36] represents a robust episodic
learning algorithm thanks to the inherent feature of instance
comparison. Yet, this method can be characterized by learn-
ing instability when only a few-shot per class are available.
Especially in 1–shot learning, this is due to the comparison
of the query with the individual support instances, which
may not be sufficiently descriptive of a class for a given task.
Hence, we present a method called model-agnostic meta-
weighting (MAMW), which tries to incorporate within the
weighting network some features of optimization-basedmeta
learning to enhance the stability and robustness of prediction
in this setting. Specifically, in the MAMW, we propose to
divide episodic learning into inner and outer steps. Given a
N–way C–shot task:

1. In the inner step, the support instances are compared
with a noisy version of themselves of Gaussian type
via a function eθ (φ((sn,c))). This noise is generated at
random from the N (0, σ 2) distribution in the interval
[−σ , σ ]. Defined sh as the h-th support example, where
H = N · C �⇒ h ∈ N: [1, 2, ..., H ], the computation
of zn,h can be expressed as follows:

zn,h = 1

C

C
∑

c=1

gθ (eθ (sn,c) ‖ eθ (φ(sh))) , (11)

ŷh = wθ(‖Nn=1 zn,h) , (12)

where θ represent the parameters of the base model fθ .
Such operations can also be carried out in batches. An
example of people counting instances compared with
their noisy version is shown in Fig. 10.

2. In the outer step, the comparison between the support
examples sn,c and each query q j is performed, starting
from the weights θ ′ learned in the inner loop. In this case,
the comparison vectors z are computed with the (10) and
the predicted output ŷ j with (9).

The main steps of the MAMW, in the case of few-shot,
supervised learning with outer updates after every task, are
defined in Algorithm 1.

The presented Weighting-Injection Net topology can be
trained via the MAMW algorithm. Also with the MAMW
episodic learning, the Weighting-Injection Net can tackle
new test tasks without the necessary adaptation training.
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Fig. 10 Examples of RDI without (a) and with added Gaussian noise (b) used in the inner step training of the MAMW

MAMW does not need algorithmic modifications when an
embedding module is used instead of the injection module.

Algorithm 1MAMW for N–wayC–shot Supervised Learn-
ing
Require: N–way: n ∈ N: [1, 2, ..., N ]
Require: C–shot: c ∈ N: [1, 2, ..., C]
Ensure: p(T ): distribution over tasks
Ensure: α, β: step size hyperparameters
1: Randomly initialize θ

2: Random sample K tasks T from p(T )

3: for Tk ∈ T do
4: Sample H = N · C support instances sh from Tk
5: for all sh do
6: Compute zn,h in (11)
7: Compute ŷh in (12)
8: Evaluate ∇θLTk (ŷh) by LTk for sh
9: Compute adapted parameters with gradient

descent: θ ′ = θ − α∇θLTk (ŷh)
10: end for
11: Sample J query instances q j from Tk
12: Compute zn, j in (10)
13: Compute ŷ j in (9)
14: Update θ ← θ − β∇θLTk (ŷ j ) for q j
15: end for

4.2 Active learning

Active learning can also be used on top of a meta learn-
ing model to perform fine-tuning on a given task, leveraging
the most uncertain queries during adaptation. We propose
to use pool-based sampling active learning to fine-tune the
Weighting-Injection Net on p(Ts), starting from what has
been learned on p(Tr ). We chose an uncertainty sampling
strategy to let the algorithm decide at each training epoch
which new examples to label.We test the approachwith three
different priority scores: least confidence (LC), margin sam-
pling (MS), and entropy (E), respectively. For the instances

q j = {x j , y j } representing the input/output pairs on queries
sampled by T , the priority scores Sp can be defined as fol-
lows:

SLC = argmax
x j

(1 − Pθ (ŷmax | x j )) , (13)

SMS = argmin
x j

(Pθ (ŷmax | x j ) − Pθ (ŷmax−1 | x j )) , (14)

SE = argmax
x j

(−
N

∑

n=1

Pθ (ŷn | x j ) log Pθ (ŷn | x j )) , (15)

where Pθ of ŷmax is the highest posterior probability pre-
dicted by the model with θ parameters for x j , and N is the
number of classes.

Algorithm 2 defines the main step of the proposed pool-
based sampling on a task T . In general, the Algorithm 2 rep-
resents a generalization of the pool-based sampling approach
for relational models. For a given task, a set of class-related
support examples is initially labeled. As the number of
iterations increases, the uncertainty of the query examples
is evaluated, and those with the highest priority score are
added to the labeled dataset. A maximum number of sup-
port instances per class per iteration is also chosen. Instead
of starting with random weights, parameters learned during
episodic learning on training tasks can be used as the model
initialization. The active learning procedure is therefore per-
formed on unseen test tasks.

5 Experimental setup

In this section, we present all the results achieved on meta
learning episodic experiments and active learning fine-tuning
on the people counting meta-datasets (Section 3.6). The
algorithms have been written in the Python programming
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Algorithm 2 Pool-based Sampling Active Learning for N–
way C–shot Supervised Learning on Weighting-Injection
Net.
Require: N–way: n ∈ N: [1, 2, ..., N ]
Require: C–shot: c ∈ N: [1, 2, ..., C]
Ensure: Task T ∼ p(T )

Ensure: J : Queries to sample per epoch
Ensure: A: Queries to label per epoch
1: Initialize θ with meta-learned weights
2: Initialize Dp = {} as labeled Pool.
3: Sample in T support instances:

sn,c = {xn,c, yn,c}
4: Add all sn,c in Dp
5: Sample in T , J query instances:

q j = {x j , y j }
6: while not done do
7: Compute zn, j in (10)
8: Compute ŷ j in (9)
9: Compute Sp of q j with (13), (14) or (15)
10: With Sp of q j , select A queries q ja and ŷ ja
11: Add all q ja in Dp
12: Update θ ← θ − β∇θLTk (ŷ ja )
13: Sample in Dp support instances:

sn,c = {xn,c, yn,c}
14: Sample in Dp , J query instances:

q j = {x j , y j }
15: end while

language, using the TensorFlow™ module to implement the
DL models. Further experiments on a public dataset have
been performed and discussed in the Appendix A. The codes
related to the algorithms and topologies used for the meta
learning experiments are available online1. As a process unit,
we used an Nvidia® Tesla® P4 GPU and CUDA® Toolkit
v11.1.0 for parallel computing.

5.1 Meta learning experiments

All the episodic experiments have been performed with the
topology presented in Section 4.1.1 and Fig. 1. Specifically,
4–way experiments with 1–, 2–, 5–, and 10–shot have been
performed. The topology has been trained with two differ-
ent algorithms. First with the classical episodic few-shot
training of weighting networks, as defined in [36], using the
Weighting-Injection Net equations (Section 4.1.1). Further,
the topology has been trained in episodic sequences of inner
and outer steps, following the steps of theMAMWalgorithm
proposed inSection4.1.2.All the results presented in this sec-
tion refer to the two algorithms and are consistently called
Weighting-Injection Net and MAMW. Comparison results
of the two algorithms with the state-of-the-art are presented
in the Section 5.1.1. The cutting-edge comparison also fea-

1 The codes for the meta learning algorithms are available at: https://
github.com/GiancoMauro/TF-Meta-Learning

tures some application limit experiments for indoor people
counting up to five individuals in a room.

A graphical representation of the model modules and
respective layers is shown in Fig. 11. The model consists of
283,379 trainable parameters in its entire module sequence.
Of the total, the injection module consists of 239,680 param-
eters, the comparison module of 39,936, and the weighting
module of the remaining 4,180. To rescale feature size, max
pooling is used in cascade to the 2D convolution (Conv2D)
for the two modules eθ and gθ . In addition, batch normal-
ization is used to increase the stability of training. All batch
normalization layers are followed by a rectified linear unit
(ReLU) activation function. To map the output vector into a
probability distribution over the classes, the softmax is used
as an activation function forwθ . The cost function chosen for
the query classification is categorical crossentropy, and the
optimization algorithm is Adam. β1 and β2 for Adam have
been set to 0 and 0.5, respectively. A learning rate of 5e − 4
has been chosen for the Weighting-Injection Net. A learning
rate of 5e − 4 has also been chosen for both the inner and
outer steps of MAMW. For the Gaussian noise statistic on
theMAMW inner step, a value of σ 2 equal to 0.005 has been
chosen. This value represents an empirical choice, noting that
larger values led to the loss of the main information in the
support instances, while smaller values were less effective
for the performance of the experiments.

Regardless of the number of shots, every meta-training
experiment is performed over 22,000 episodes, each of a sin-
gle training epoch. The episodic learning is carried out on
Dm−train . The validation and testing have been performed at
the end of each episode on 10-shot per class (40 samples) on
tasks sampled by Dm−train and Dm−test respectively.

All experiments have been carried out with an embed-
ding size g of 64. Smaller embedding sizes resulted in
non-convergent experiments, whereas larger sizes resulted in
meta-overfitting on Dm−train . For the injection module, an
output representation of 14 · 14 · g has been chosen (feature
size). This led to a representation per image of 12,544 units
(Table 2). On the Nvidia® Tesla® P4 GPU, the number of
floating points operations per second (FLOPS) for the injec-
tion module with this configuration is 108 megaFLOPS. The
size in bytes of the weights of the model when saved in ”.h5”
format, regardless of the chosen episodic training algorithm
and the number of shots, is 1,148 KB. Some experiments at
varying feature sizes are also presented later in this section
to test the benefits of the injection module over the standard
embedding module.

The obtained values of prediction accuracy, model size,
and single-sample prediction latency are compared to state-
of-the-art values obtained by training other algorithms on the
people counting dataset employed in this work. The accu-
racy results for the Weighting-Injection Net are reported for
varying numbers of shots. Each experiment by algorithm,
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Fig. 11 Representation of the topology modules and respective layers
used in the relational experiments. The injection module (eθ ) increases
the data dimensionality via a sequence of convolutional layers. The
query sample is compared with all the available support samples.

To combine relevant features, the comparison module (gθ ) employs
convolution and global average pooling. The weighting module (wθ )
generates a feature matching probability density using dense layers and
softmax activation

meta-dataset, and number of shots has been performed three
times and tested on 10,000 final tasks sampled by Dm−test .
All presented results include the 95% confidence interval in
addition to the average accuracy value.

Theperformance evaluationof each individual experiment
is measured according to the validation and test accuracy
values obtained by the model as the number of episodes
increases. For every experiment, a box plot on the validation
and testing accuracy statistics of tasks sampled by Dm−train

Table 2 Network Layers Configuration - People Counting

Module Type Filter Shape1 Output Shape

Injection Conv2D 3×7×1×64 j×30×58×64

MaxPool 2×2 j×15×29×64

Conv2D 3×7×64×64 j×13×23×64

Conv2D2 3×7×64×64 j×13×19×64

Conv2D2 3×7×64×64 j×14×14×g

Comparison Conv2D2 3×1×2g×g jc×44×16×g

MaxPool 3×3 jc×14×5×g

Conv2D 3×3×g×g jc×12×3×g

AvgPool 1×1 jc×g

Weighting Dense ng×16 j×16

Dense 1×n j×n

The indices n and c represent the class and shot number, respectively.
The index of the j-th query shot is represented by j . The g represents
the embedding size, which was set to 64 in the experiments
1For the Conv2D layers, the filter shape dimensions are, respectively,
kernel height and width and input and output channels
2 In these layers, a symmetric zero-padding of 1 is applied to both the
width and height of the samples

and Dm−test is constructed every 2,200 episodes. In the fol-
lowing plots and paragraphs, statistical insights from one
of the experiments performed are analyzed. Specifically, a
MAMW 10–shot experiment on Mixed-Dataset is chosen
thanks to the good achieved generalization performance.
Figure 12 shows the set of box plots generated as the train-
ing episodes advance for the considered experiment. As the
episodes progress, the mean and median values of the dis-
tributions rise while the quartiles and whiskers narrow. With
episodes progressing, even the outliers move closer to the
upper limit of accuracy. The described behavior demonstrates
how, thanks to previously acquired experience, the model
can generalize better on new sampled tasks. This means that
newly learned parameters θ generalize better in new con-
texts, i.e., new locations and test rooms, resulting in higher
performance under the same learning conditions.

Discrete accuracy density histograms can be used to
represent the distribution underlying individual box plots.
Graphical evidence of how the distribution tends to shift
towards higher generalization accuracy can be observed by
comparing the first and last histograms of the episodic opti-
mization. Such density histograms can also be compared to
a Gaussian probability distribution, thus showing what per-
centage of the achieved accuracy lies between the first and
third quartiles. Figure 13 depicts a comparison of accuracy
statistics for the examined experiment at the beginning and
end of the episodic training. Even for tasks sampled only
by Dm−test , the probability density tends, as the episodes
progress, to take on a negative skew towards the upper limit
of accuracy. The actual distributions underlying the box plots
are not Gaussian but multi-modal with density peaks due to
the variable complexity of the sampled tasks.
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Evaluation on Test: Dm-test    (b) 

MAMW - Injection - People Counting 10-shot Mixed-Dataset - Box Plots Over Episodes 
Evaluation on Training: Dm-train    (a) 

d

Fig. 12 Accuracy statistics box plots vs. episodes for a MAMW 10–
shot Mixed-Dataset experiment. The red box plots are generated on
validation tasks(a), whereas the blue ones (b) are generated on test

tasks. The median and mean values are represented by a horizontal line
and a green triangle in each box plot. The small circles represent the
box plot outliers

The generalization capability can be addressed at the level
of individual classes by constructing cumulative confusion
matrices on task sequences. Labels 0 to 3 represent the real
and predicted number of people for the two dataset splits.
Figure 14 depicts the confusion matrices underlying the first
and last box plots of Fig. 12 for bothDm−train andDm−test .

Figure 15 shows another example of cumulative confusion
matrices for aWeighting-Injection Net 5–shot experiment on
S-Test-Dataset. It is noticeable in both Figs. 14 and 15, that
the model learns to generalize better as episodes progress for
both unseen locations and rooms. Most miss-classifications,
especially at the end of episodic learning, lie around themain
diagonal. This means that the models, in most cases, count
±1 person compared to the actual number of individuals in
the environment.Moreover, themajority of themisclassifica-
tions happen for the classes of 1 to 3 persons, while themodel
easily succeeds in distinguishing the case 0 that corresponds
to no people detected in the sensor’s FoV. The per-class accu-
racy of the test confusion matrices in Fig. 15 turns out to be
lower than that in Fig. 14. This is due not only to the use
of 10–shot instead of 5–shot in the experiment but also to
the higher complexity of the test tasks. In fact, the Fig. 15

experiment sampled all test tasks from a room not included
in the training (S).

The prediction accuracy values obtained as an average of
the post-training tests for each experiment type are listed in
Tables 3, 4, 5 for the three defined meta-datasets.

As can be observed from Tables 3, 4 and 5, regardless
of the used meta-dataset, the 1– or 2–shot experiments per-
formed with the MAMW lead to higher average accuracy
values than the Weighting-Injection Net. In these specific
cases, in episodic learning, the few supports per class make
the prediction given by the Weighting-Injection Net less
robust, where the learning depends solely and exclusively
on the comparison with the query. MAMW instead sup-
plies more information to the model thanks to the initial
comparison with a noisy version of the support samples,
thus emphasizing the potential intrinsic noise of the query
data. For the 5– and 10–shot experiments, the two episodic
approaches lead to different performances with respect to the
used meta-dataset. TheMAMWoutperforms theWeighting-
InjectionNet on theMixed-Dataset, regardless of the number
of shots. The Mixed-Dataset contains, in fact, recordings
from all rooms, but with different locations and numbers
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Probability Distr. Comparison with Gaussian - Last

 

Fig. 13 MAMW 10–shot experiment, first (a) and last (b) box plot
underlying distributions, generated on test tasks sampled from Mixed-
Dataset. The q1 and q2 values on the Gaussians indicate the first and
third quartiles, respectively. The probability density histograms show

the actual non-Gaussian nature of the distribution. The accuracy prob-
ability density for the last box plot (b) exhibits a negative skew as a
result of the generalization learning

MAMW - 10-shot - Mixed-Dataset - Cumulative Confusion Matrices

Confusion Matrix on Training: Dm-train Confusion Matrix on Test: Dm-test

Episodes: 0-5499 (a) Episodes: 16500-21999 (b)

Confusion Matrix on Training: Dm-train Confusion Matrix on Test: Dm-test

Fig. 14 Cumulative confusion matrices for a 10–shot MAMWMixed-Dataset experiment. Confusion matrices are obtained on the first (a) and last
(b) 5,550 meta-iterations in the validation phase for both Dm−train and Dm−test sampled tasks
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Weighting-Injection Net - 5-shot - S-Test-Dataset - Cumulative Confusion Matrices

Confusion Matrix on Training: Dm-train

Meta Iterations: 0-5499 (a) Meta Iterations: 16500-21999 (b)

Confusion Matrix on Test: Dm-test Confusion Matrix on Training: Dm-train Confusion Matrix on Test: Dm-test

Fig. 15 Cumulative confusion matrices for a 5–shot Weighting-Injection Net S-Test-Dataset experiment. Confusion matrices are obtained on the
first (a) and last (b) 5,550 meta-iterations in the validation phase for both Dm−train and Dm−test sampled tasks. In this case, the entire S room is
utilized as the test set

of people. In this case, the MAMW goal of capturing noise
similarity between support and query also aids query class
recognition. This is thanks to the intrinsic features of the
RDIs collected in the same room, which are thus influenced
by the properties of that environment. On S-Test-Dataset and
B-Test-Dataset instead, the Weighting-Injection Net outper-
formsMAMW in most 5– and 10–shot experiments. In these
cases, given the relevant difference in context for the test
room, the MAMW comparison with the noisy version of
supports might shift the learning objective towards detecting
noise rather than the class of query samples.

For relation-based topologies, there is no need to perform
adaptation training for new tasks as a result of the direct
comparison of features between the newly available support
samples and the query. Therefore, the adaptation time to a
new task is null. Instead, the inference time on a single sam-
ple (query) can be computed as a function of the number
of shots. It corresponds to the time required by the model
to predict the query class given the available supports. The
time required to compute the z comparison vectors for all
available supports is thus included in the inference time for
single queries. As both the proposed algorithms share the
same inference procedure, these values are independent of
the employed approach. The single sample inference time
is also independent of the selected counting meta-dataset,

Table 3 Accuracyof the twometa learning approaches onpeople count-
ing (4 classes):Mixed-Dataset

Accuracy [%] on
Mixed-Dataset

Weighting-
Injection Net

MAMW

1–shot 63.01 ± 0.21 66.95 ± 0.22

2–shot 71.79 ± 0.20 74.10 ± 0.20

5–shot 78.26 ± 0.18 78.63 ± 0.19

10–shot 81.40 ± 0.16 82.16 ± 0.16

given the same input size. Average inference values on a sin-
gle query are listed in Table 6.

As can be seen fromTable 6, the inference time for a single
query increases as the number of shots increases. Multiple
supports available per class enable a more robust prediction
of the query class, as shown in (10).However, this requires the
generation of multiple z comparison vectors, which, in pro-
portion to the number of shots, lead to a progressive increase
in inference time on a single query.

Classification accuracy is also dependent on the chosen
feature representation dimension in the feature extraction
module eθ . In specific experimental settings, the injection
can counter episodic overfitting effects by increasing feature
size as opposed to the standard embedding. The 14 · 14 fea-
ture size chosen for all the other experiments is compared
with two representations of 4 · 4 and 9 · 9 respectively. Given
the size of an RDI example of 32 · 64 = 2, 048, a feature
representation of 4 · 4 · 64 = 1, 024 converts the injec-
tion module into an embedding module. Compared with the
108 MegaFLOPS required by the feature size of 14 · 14,
the size 4 · 4 requires only 0.28 MegaFLOPS. Overall, the
injection operation, compared to embedding, results in the
GPU performing significantly more FLOPS. This is due to
the larger size of the extracted features in the convolutional
layers.

Table 4 Accuracyof the twometa learning approaches onpeople count-
ing (4 classes): S-Test-Dataset

Accuracy [%] on
S-Test-Dataset

Weighting-
Injection Net

MAMW

1–shot 59.85 ± 0.19 61.98 ± 0.19

2–shot 61.14 ± 0.16 64.48 ± 0.17

5–shot 71.77 ± 0.17 73.40 ± 0.18

0–shot 76.61 ± 0.16 73.53 ± 0.16
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Table 5 Accuracyof the twometa learning approaches onpeople count-
ing (4 classes): B-Test-Dataset

Accuracy [%] on
B-Test-Dataset

Weighting-
Injection Net

MAMW

1–shot 54.26 ± 0.23 57.35 ± 0.23

2–shot 60.00 ± 0.22 60.83 ± 0.22

5–shot 69.98 ± 0.18 68.57 ± 0.18

10–shot 71.06 ± 0.18 70.74 ± 0.18

Table 7 features the results on the S-Test-Dataset, obtained
with the Weighting-Injection Net as feature size, and the
number of shots vary. The 1–shot experiment seems to ben-
efit more from embedding than from an injection module.
The squeezed representation of features in such experiments
leads to amore compact representation. The entire weighting
network can succeed in extracting key features from the few
samples available per class in each episode bringing benefits
of generalized learning. On the other hand, as the number of
shots increases, a larger representation of features seems to
lead to greater benefits in training. With 5– or 10–shot per
class, a larger feature space upstreamof the comparisonmod-
ule facilitates feature extraction from the available support
samples and yields better generalization results. The effect of
overfitting on individual tasks is clearly visible by comparing
the accuracy obtained with the 4 · 4 feature size between the
5– and 10– shot experiments. Contrary to the common sce-
nario, the performance of the model worsens as the number
of shots doubles. Without tuning the other hyperparameters,
the small feature size favors single-task adaptation rather than
generalized learning, reducing so, the overall performance.

5.1.1 Comparison with the state-of-the-art and limitations

In this section, the results of Weighting-Injection Net and
MAMW are compared to the results of other state-of-the-art
meta learning methods for the task of people counting. Rep-
tile [32] is used as a baseline algorithm. MAML 2nd [31]
and a more stabilized and performant version of MAML
presented in Antoniou et al. [52], are the other algorithms

Table 6 Average single-sample inference time computed as the average
of all MAMW and Weighting-Injection Net experiments on all defined
meta-datasets, in function of the number of shots. Every experiment has
been run over 10,000 final tasks on Nvidia® Tesla® P4 GPU

Number of Shots Avg. Inference Time [ms]

1–shot 14.46

2–shot 16.21

5–shot 27.03

10–shot 43.73

used for comparison. The latter, labeled MAML+, lever-
ages the contributions ofmulti-step loss optimization (MSL),
derivative-order annealing (DA), and cosine annealing of
meta-optimizer learning rate (CA). Themodel chosen for the
state-of-the-art algorithms is a CNN suitable for the gener-
alization goal, consisting of four main blocks. The first three
blocks consist of a Conv2D with 64, 128, and 256 filters,
followed by batch normalization and the ReLU activation
function. The last block consists of a dense layer with 4 neu-
rons, corresponding to the number of classes. This topology
consists of 403,332 trainable parameters compared to the
283,379 of MAMW and the Weighting-Injection Net. The
adaptation training was done with Adam as the optimizer,
with learning rates of 8e−3 and 7e−3 in the inner and outer
cycles, respectively. Likewise, in this case, the values of β1

and β2 for Adam have been set to 0 and 0.5, respectively. The
model training was executed on 22,000 episodes with a batch
size of 2 and a number of epochs per task of 4, respectively.
The comparison was performed on 10,000 final tasks on S-
Test-Dataset for 1–, 2–, 5– and 10–shot over 3 repetitions
of each experiment. For each task, 10 test samples per class
were randomly selected, resulting in 40 test instances in total.
The computed mean classification accuracy values are listed
in Table 8. As can be observed, the MAMW turns out to be
the best-performingmethod in all experiments apart from the
10–shot experiment, where, as commented in Section 5.1, the
Weighting-Injection Net achieves a higher average accuracy.
The accuracy values obtained with the proposed methods are
better despite using 30% fewer trainable parameters. As the
number of shots increases, relation-based models show an
even larger accuracy gap than optimization-based ones due
to the more robust prediction given by averaging the com-
parison vectors computed for the available support samples.

Because of the direct mapping between sample and label
in the learning process, the single-sample inference time
for Reptile, MAML 2nd and MAML+ is independent of the
number of shots. Across all the experiments, on an average
of 10,000 final tasks, the overall estimated inference time
has been 33.47 ms. In comparison to the results in Table 6,
only for the 10–shot experiments, the pure optimization-
based methods turn out to be 25% faster for single inference,
whereas they turn out to be slower in the other configurations.

The task adaptation time needed for the various algorithms
is provided in Table 9. The considered state-of-the-art meth-
ods require an adaptation time per task that rises considerably
as the number of shots increases. On the contrary, relation-
based models, thanks to their comparison-based topology,
do not require adaptation for new tasks and therefore lead
to a null adaptation time. This results in a great advantage
for relational topologies over traditional optimization-based
topologies.

To test the application limits of the episodic learning
approach for radar-based people counting, experiments were
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Table 7 Accuracy achieved for
the Weighting-Injection Net
with varying feature size on
people counting (4 classes):
S-Test-Dataset. The chosen
embedding size g is 64

Accuracy [%] on
S-Test-Dataset

1,024 (4 · 4 · g) 5,184 (9 · 9 · g) 12,544 (14 · 14 · g)

1–shot 61.63 ± 0.20 60.17 ± 0.21 59.85 ± 0.19

2–shot 63.84 ± 0.18 63.83 ± 0.17 61.14 ± 0.16

5–shot 68.82 ± 0.18 68.63 ± 0.16 71.77 ± 0.17

10–shot 67.94 ± 0.16 71.49 ± 0.17 76.61 ± 0.16

also conducted with up to five people per session in the big
room B (Section 3.6). In this case, five sessions of oneminute
each per location and number of people were collected and
used. Locations A andCwere used to generate training tasks,
and locations B and D were used for testing tasks. Table 10
presents the results obtained on test data for the average of
three experiments and 10,000 final tasks. The results for this
meta-dataset show similar characteristics to those where an
entire room is used exclusively as a test. In general, the two
proposed approaches outperform the state of the art regard-
less of the number of shots. The MAMW proves more stable
and performs better in experiments with very few shots (1–
and 2–). The Weighting-Injection Net, on the other hand,
outperforms MAMW for the 5– and 10– shot approaches.
The extension of the counting approach to up to five people
and the limitation of radar resolution for close targets in this
scenario make generalization more complex. The increased
complexity is reflected in the RDIs input instances and fea-
tures across the different recording locations. For this reason,
with a larger number of shots, MAMW performs less well,
favoring noise filtering in support samples rather than classi-
fication of query instances. Weighting-Injection Net, on the
other hand, focuses directly on learning the query class and
performs better in this scenario.

In general, although the proposed algorithms outperform
the state of the art, they lead to an average accuracy of less
than 60% over the six classes with 10–shots. This unfortu-
nately shows that the purely episodic generalization approach
with a few shots is limited to scenarioswith a very small num-
ber of people. Adaptations to larger and more varied datasets
or the use of radar sensors with higher resolution could obvi-
ate the current limitations. Theweights of the countingmodel
up to 5 people need an in-memory size of 1,156 KB. This
value is slightly larger than the approach of up to 3 people.

More information on a single experiment for the adaptation
of up to five people is provided in Appendix B.

5.2 Active learning experiments

Active learning experiments with the Algorithm 2 are
intended to demonstrate howmeta learning-drivenmodel ini-
tialization benefits task fine-tuning. All the experiments have
been carried out on the task of radar-based people count-
ing, using 75% and 25% of the data collected in the S room
as training and testing, respectively. This means that active
learning aims to boost the estimation performance in count-
ing people in the entire small room, given all the locations in
which the RDIs were collected. Since all the in-room loca-
tions are considered at once, the adaptation in this case is
more complex thanduring episodic training.Theuncertainty-
based experiments used priority scores Sp defined in (13),
(14) and (15). As initialization, the parameters θ obtained
after the 1–shot episodic learning ofWeighting-Injection Net
and MAMW on the remaining two environments (M and B)
have been used. As Dp grows larger, the experiments are lim-
ited to a maximum of five supports per class. The selected
number of epochs for the active learning training is 6,000.
For each epoch, 4 queries (J ) are to be sampled, with A of
them labeled using the uncertainty-based approach. Table 11
compares the average results from three experiments for each
defined Sp score to the random initialization of θ . As can be
seen from the table, the results for initialization based on
MAMW and Weighting-Injection Net vary very little as the
chosen priority score differs. Such initialization, however,
leads to a great performance gap compared to the random
one, which also features training instability over repetitions.
The Weighting-Injection Net also seems to achieve slightly
better performance than the MAMW. This is most likely

Table 8 Mean classification
accuracy achieved by the
various algorithms, for
experiments on people counting
(4 classes): S-Test-Dataset

Accuracy [%] on
S-Test-Dataset

Reptile MAML 2nd MAML+ Weighting-
Injection Net

MAMW

1–shot 49.61 ± 0.16 49.92 ± 0.18 52.53 ± 0.17 59.85 ± 0.19 61.98 ± 0.19

2–shot 52.02 ± 0.15 53.79 ± 0.16 56.91 ± 0.16 61.14 ± 0.16 64.48 ± 0.17

5–shot 57.95 ± 0.15 60.26 ± 0.17 60.38 ± 0.16 71.77 ± 0.17 73.40 ± 0.18

10–shot 63.00 ± 0.16 65.49 ± 0.17 64.67 ± 0.16 76.61 ± 0.16 73.53 ± 0.16
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Table 9 Adaptation time per
new task by algorithm and
number of shots

Avg. Adaptation
Time [ms]

Reptile MAML 2nd MAML+ Weighting-
Injection Net1

MAMW1

1–shot 130 135 135 – –

2–shot 275 286 310 – –

5–shot 606 660 667 – –

10–shot 1,261 1,294 1,411 – –

The values, computed on Nvidia® Tesla® P4 GPU, are averaged over three repetitions of each experiment for
10,000 tasks
1For MAMWandWeighting-Injection Net, considering only the need to compare the query with the available
supports, the adaptation time is null (0 ms)

Table 10 Mean classification
accuracy achieved by the
various algorithms, for people
counting (6 classes): B room, B
and D locations

Accuracy [%] on
B room test

Reptile MAML 2nd MAML+ Weighting-
Injection Net

MAMW

1–shot 35.05 ± 0.11 36.82 ± 0.13 35.56 ± 0.13 36.00 ± 0.13 44.86 ± 0.16

2–shot 37.12 ± 0.12 41.01 ± 0.13 40.03 ± 0.13 46.60 ± 0.15 48.71 ± 0.13

5–shot 39.25 ± 0.12 44.74 ± 0.13 43.86 ± 0.13 55.69 ± 0.14 50.64 ± 0.14

10–shot 43.19 ± 0.12 48.56 ± 0.13 46.01 ± 0.12 57.83 ± 0.14 56.71 ± 0.14

Table 11 Accuracy on people
counting (4 classes), obtained
through pool-based sampling
active learning

Accuracy [%] on Small Room S Weighting-Injection Net MAMW Random Init.

SLC 63.09 60.81 31.14

SMS 63.41 59.98 26.46

SE 63.62 61.54 43.44

All the S room data have been used for the adaptation. The results are averaged over three experiment
repetitions of 6,000 iterations each. The initialization consists of meta-learned weights for the M and B
rooms

Fig. 16 Entropy pool-based
active learning accuracy across
epochs. The thicker lines
highlight the best experiments
by type of initialization.
Accuracy values are averaged
per trial every 20 epochs.
Random initialization (green)
experiments are more unstable
and collapse to 25% random
learning on 4 classes

Pool-based Entropy Active Learning - Room: (S) - 1-Shot Initialization

Random Weights Init.

Weighting-Injection Net Init.
MAMW Init.
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related to the large availability of labeled data, which for
a test room setup, makes this method more performant than
MAMW (Section 5.1). In the case of random initialization,
however, the model succeeds in learning almost exclusively
when entropy Se is used as the scoring function. This may
be due to the entropy formulation itself, which results in a
more balanced query selection by taking into account the
distribution over all classes for the score computation.

The accuracy learning curve for the entropy-based exper-
iments is depicted in Fig. 16. Adaptation starting with
Weighting-Injection Net and MAMW weights exhibits sim-
ilar accuracy profiles as training epochs progress. Random
initialization, on the other hand, not only leads to lower-
performing learning but also to instability and experiment
failure, collapsing to a 25% accuracy over the four classes.
In this case, the algorithm encounters difficulties with only a
few learning data at a time to generalize to all locations.
Fluctuations in accuracy curves are due to adaptation to
new labeled data sampled from different S room locations,
which normally display different features. This behavior
can be observed in the t-SNE representations of the data in
Section 3.6.

6 Conclusion

This paper features how meta learning and active learning
can be effectively employed for radar-based people counting
using real-world data. For such a use case, multiple meta-
datasets are generated based on different combinations of
rooms and radar orientations. Episodic learning for few-shot
adaptation is carried out through a comparative approach.
The model learns task-wise to map features of query exam-
ples to representative support instances belonging to the same
class. In this way, the belonging class of a radar instance is
predicted by comparing it with representative support exam-
ples of classes zero to three people. With respect to the
traditional weighting network, an injection module increases
the input data dimensionality before the comparison step.
This process facilitates the comparison of query and support
features, reducing episodic task overfitting and aiding gen-
eralization. The overall topology with an injection module is
called the Weighting-Injection Net.

An episodic adaptation algorithm called model-agnostic
meta-weighting is then presented for specific adaptations
to very few-shot per task. This two-step training algo-
rithm combines the weighting network topology and the
optimization-based meta learning approach to enhance the
feature extraction capabilities of the model. The approach
features an inner step task adaptation that compares sup-
port instances with a noisy version of themselves, lead-
ing to more stable generalization training, especially in

the 1–shot training. Finally, a pool-based active learning
approach designed specifically for relation-based methods
is presented. Using only the available samples with the high-
est prediction uncertainty, this algorithm seeks to minimize
the number of examples needed for learning.

The presented meta learning achieves cutting-edge accu-
racy in people counting while also yielding other perfor-
mance advantages. The relation-based topology grants no
training time for adaptation at new radar test locations. Fur-
thermore, the availability of multiple support examples per
class allows for more robust averaged query estimation. Both
the presented algorithms are up to 15% more accurate than
the state-of-the-art for 1– and 10–shot. They are also found
to be up to 50% faster for computing single-sample inference
when the model is tested on a new task. The active learning
algorithm performs better and is more stable when the initial-
ization is set to the episodically learnedweights rather than at
random.Nonrandom initialization improves radar adaptation
accuracy by 30% on test room radar instances.

Despite the great benefits shown, the work presented is
only tested offline on previously collected data. In the future,
it will be important to test such a system in a real-time set-
ting. The monitoring approach with more than three people
leads to accuracy performance which may be insufficient in
several practical contexts. Future work will focus on using
relation-based topologies and sensor fusion to counter the
current limitations. The use of an unconventional injection
module for the relational networks could bring additional
benefits for feature representation in episodic learning. In-
depth studies will therefore be conducted on the possible
applications and limitations of such a module. Research on
the injection module will also be carried out in the field of
the interpretability of neural networks and training complex-
ity. Also, further active learning and uncertainty sampling
strategies that focus on episodic learning with relation-based
approaches will be investigated.

Appendix A: Experiments on public dataset

This section presents the results obtainedwith theWeighting-
Injection Net (Section 4.1.1) and MAMW (Section 4.1.2) on
Omniglot [53] public dataset.

A.1 Omniglot dataset

Omniglot [53], is a dataset specifically created for few-shot
learning. That dataset contains hand-written instances of as
many as 1,623 characters taken from50 alphabets. Each char-
acter was drawn by different people a total of 20 times each.
The meta-dataset, divided between Dm−train and Dm−test ,
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as defined in the Ominglot repository 2, was used for training
and testing the Weighting-Injection Net and MAMW.

A.2 Experiments on omniglot

On Omniglot, the experiments have been performed with
1–shot for 2– and 5–way and 5–shot for 5– and 10–way.
The topology used for these experiments is the same as for
radar-based people counting (Figs. 1 and 11), but it has been
adapted to the larger input size. Each handwritten sample
has a resolution of 105×105 pixels. The chosen embedding
size g and feature size for the injection module have been
32 and 22, respectively. The configuration of the layers is
presented in Table 12. In this case, task classification is also
accomplished by minimizing categorical crossentropy with
Adam as the optimization method, with β1 and β2 set to
0 and 0.5, respectively. The episodic learning rate used for
the Weighting-Injection Net and the outer step learning rate
used forMAMWexperiments have been set to 3e−4 For the
MAMW, an inner step learning rate of 5e − 5 has been uti-
lized. Regardless of the number of shots, one query sample
q j per class per episode is used for tasks sampled on p(Tr )
and defined on Dm−train . The generalization is then tested
episode-wise on 10 test instances per class, on tasks T sam-
pled from p(Ts) in Dm−test , and p(Tr ). All the experiments
have been performed on 22,000 episodes. The built models
have then been tested for 10,000 final tests on tasks sampled
from p(Ts) in Dm−test .

A.3 Results and state-of-the-art comparison
omniglot

Also on Omniglot, to assess the generalization performance,
box plots have been generated based on the average accu-
racy obtained for sets of 2,200 episodes. As an example, the
trend obtained for the 5–shot, 5–way Weighting-Injection
Net experiment is shown in Fig. 17. As the episodes progress,
training onOmniglot sees a sharper increase in generalization
in the early stages than radar-based people counting. This is
most likely caused by the greater variety of classes among
the handwritten characters, whose features take longer to be
extracted by the relational network through the comparison
mechanism.

The accuracy values achieved with Weighting-Injection
Net and MAMW are listed for the various experiments in
Table 13, in comparison with state-of-the-art methods. For
the state-of-the-art algorithms, a TensorFlow™ implementa-
tion and the same testing pipeline as for the people counting

2 Available at https://github.com/brendenlake/omniglot/

Table 12 Network Layers Configuration - Omniglot

Module Type Filter Shape1 Output Shape

Injection Conv2D 2×2×1×64 j×104×104×64

MaxPool 2×2 j×52×52×64

Conv2D 3×3×64×64 j×50×50×64

MaxPool 2×2 j×25×25×64

Conv2D 2×2×64×64 j×24×24×64

Conv2D 3×3×64×64 j×22×22×g

Comparison Conv2D2 3×1×2g×g jc×23×24×g

MaxPool 3×3 jc×7×8×g

Conv2D 3×3×g×g jc×5×6×g

AvgPool 1×1 jc×g

Weighting Dense ng×64 j×64

Dense 1×n j×n

The n and c represent the indices for class and shot number, respectively.
The index of the j-th query shot is represented by j . The g represents
the embedding size, which was set to 32 in the experiments
1 For the Conv2D layers, the filter shape dimensions are, respectively,
kernel height and width, and input and output channels
2 In this layer, a symmetric zero-padding of 1 is applied to both the
width and height of the samples

comparison have been adopted. The accuracy of the tasks
is not calculated on a single query sample per class, as in
Reptile [32], but on ten test instances per class in a step fol-
lowing the learning step. This allows a more fair comparison
with relational algorithms, where the query example is not
used in a step subsequent to the support ones. In addition, no
data augmentation or scaling is performed on single inputs, in
contrast to theMAMLmethods presented in [31, 52]. For the
state-of-the-art methods, the same CNN topology and con-
figurations presented in Section 5.1.1 for radar-based people
counting have been used on Omniglot.

All experiments have been performed on an Nvidia®

Tesla® P4 GPU and CUDA® Toolkit v11.1.0 for parallel
computing.

Similarly to what has been observed in Section 5.1 for
the radar-based people counting dataset, the MAMW seems
to perform better than the Weighting-Injection Net in the 1–
shot and 10–way scenarios (Table 13). For the 5–shot 5–way
experiment, the two relation-based algorithms achieved sim-
ilar accuracy, which is comparable to MAML 2nd. This may
be inherent in the fact that for Omniglot, unlike radar data,
there is no intrinsic background noise in the input instances.
Consequently, the introduction of noise in the comparison
between supports in MAMW does not promote general-
ization learning when many shots are fed to the network.
Conversely, MAMW inner step may divert attention away
from the learning goal of single tasks. Even for Omniglot,
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5
5

Injection-Weighting Net - Omniglot 5-shot 5-way - Box Plots Over Episodes
Evaluation on Training: Dm-train (a)

Evaluation on Test: Dm-test (b)

d

Fig. 17 Accuracy statistics box plots vs. episodes for a Weighting-
Injection Net 5–shot 5–way experiment on Omniglot. The red box plots
are constructed on validation tasks sampled fromDm−train (a), whereas

the blue ones are constructed on test tasks sampled from Dm−test (b).
The median and mean values are represented by a horizontal line and a
green triangle in each box plot

using the injection module seems to help generalization
learning by making it easier to compare support features and
queries in a higher dimension. Regardless of the number of
ways and shots, the Weighting-Injection Net and MAMW
outperform the other state-of-the-art in most of the Omniglot
experiments. The presented methods, with about 30% fewer
parameters, also perform significantly better in single-shot
approaches than optimization-based methods. In the 1–shot
5–way experiment, MAMW leads to an average accuracy
about 18% higher than MAML+.

Appendix B: More people count details

This section analyzes a single episodic meta learning exper-
iment for radar-based indoor people counting up to five
people.

B.1 Single experiment people counting analysis up
to five individuals

The outcomes of the episodic adaptation on the five people
meta-dataset of Section 5.1.1 can be analyzed at the level
of the individual experiment. Every experiment consists of

Table 13 The mean
classification accuracy achieved
by the various selected
algorithms for experiments on
Omniglot

Accuracy [%] on
Omniglot Eval.

Reptile MAML 2nd MAML+ Weighting-
Injection Net

MAMW

1–shot 2–way 69.21 ± 0.30 74.18 ± 0.34 80.30 ± 0.32 76.65 ± 0.32 81.99 ± 0.31

1–shot 5–way 41.14 ± 0.10 55.76 ± 0.23 59.36 ± 0.23 71.46 ± 0.23 72.19 ± 0.23

5–shot 5–way 52.59 ± 0.20 84.99 ± 0.14 77.50 ± 0.18 85.76 ± 0.15 85.02 ± 0.16

5–shot 10–way 36.72 ± 0.15 78.60 ± 0.12 77.61 ± 0.13 79.11 ± 0.12 81.23 ± 0.12
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d

Evaluation on Test: B and D Locations (b)

Weighting-Injection-Net - People Counting 10-shot - 5 People in B Room - Box Plots Over Episodes
Evaluation on Training: A and C Locations (a)

Fig. 18 Accuracy statistics box plots vs. episodes for a Weighting-
Injection Net 10–shot 6–way experiment on radar-based people count-
ing (B room). The red box plots are constructed on validation tasks (a),

whereas the blue box plots are constructed on test tasks (b). The median
andmean values are represented by a horizontal line and a green triangle
in each box plot

22,000 episodes of meta-training in the room B (Fig. 5).
Training and validation are performed on tasks sampled from
locations A and C in the room, while testing is done on
tasks sampled from locations B and D. The experiment is
a 6–way, since zero individuals in the room is also consid-
ered a class. Figures 18, 19 and 20, show different statistical
insights of a 10–shot Weighting-Injection Net experiment.
Figure 18 displays the trend of box plots built on accuracy as
episodes increase. Compared to the training up to three peo-
ple (Fig. 12), the adaptation up to five people shows a less
pronounced trend of improvement. In this case, the test fails
to generalize better from 15,000 episodes onward, reaching
a saturation of accuracy around 55%. Figure 19 reveals the
density histograms underlying the first and last box plots con-
structed on the test in episodic learning. In comparison to the
adaptation of up to three people Fig. 13, no marked reduc-
tion in whiskers or negative skew in the last histogram is

noticeable. Yet, there is an increase in average accuracy from
37% to 55% (18% improvement in generalization). A very
interesting analysis can be done by analyzing the accuracy on
individual classes, thus by generating the cumulative confu-
sion matrices shown in Fig. 20. As in the confusion matrices
generated for the 4-way approach (Figs. 14 and 15), the
model easily succeeds in classifying the absence of people in
the environment, reaching a solid 98% class accuracy in the
test at the end of episodic learning. Further, as the episodes
progress, the generalization approach yields higher accuracy
in counting more than one person. Moreover, most of the
miss-classifications lie around the main diagonal of the con-
fusion matrix, which represents the ±1 of accuracy. This
means that most of the classification errors tend to under- or
overestimate the number of people in the room by only one
unit.
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E

First Episodes Test: B and D Locations Box Plot

Probability Distr. Comparison with Gaussian - First

Density Histogram - First Density Histogram - Last

              )a( (b)

Weighting-Injection-Net - People Counting 10-shot - 5 People in B Room - 
First Vs Last Test Box Plot: Accuracy Distribution 

Last Episodes Test: B and D Locations Box Plot

Probability Distr. Comparison with Gaussian - Last

Fig. 19 Weighting-Injection Net 10–shot 6–way, first (a) and last (b)
box plot underlying distributions, generated on people counting test
tasks. The q1 and q2 values on the Gaussians indicate the first and
third quartiles, respectively. The probability density histograms show

the actual non-Gaussian nature of the distribution. The accuracy proba-
bility density for the last box plot (b) has a mean value shifted towards
higher accuracy as a result of the generalization learning

Confusion Matrix on Training: A and C Locations Confusion Matrix on Test: B and D Locations Confusion Matrix on Training: A and C Locations 

Weighting-Injection Net - People Counting 10-shot - 5 People in B Room - Cumulative Confusion Matrices
Episodes: 0-5499 (a) Episodes: 16500-21999 (b)

Confusion Matrix on Test: B and D Locations

Fig. 20 Cumulative confusion matrices for Weighting-Injection Net 10–shot 6–way people counting experiment. Confusion matrices are obtained
on the first (a) and last (b) 5,550 meta-iterations in the validation phase for both training and test sampled tasks
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