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A B S T R A C T

Obesity in children is related to the development of cardiometabolic complications later in life, where
molecular changes of visceral adipose tissue (VAT) and skeletal muscle tissue (SMT) have been proven to
be fundamental. The aim of this study is to unveil the gene expression architecture of both tissues in a cohort
of Spanish boys with obesity, using a clustering method known as weighted gene co-expression network
analysis. For this purpose, we have followed a multi-objective analytic pipeline consisting of three main
approaches; identification of gene co-expression clusters associated with childhood obesity, individually in
VAT and SMT (intra-tissue, approach I); identification of gene co-expression clusters associated with obesity-
metabolic alterations, individually in VAT and SMT (intra-tissue, approach II); and identification of gene
co-expression clusters associated with obesity-metabolic alterations simultaneously in VAT and SMT (inter-
tissue, approach III). In both tissues, we identified independent and inter-tissue gene co-expression signatures
associated with obesity and cardiovascular risk, some of which exceeded multiple-test correction filters. In these
signatures, we could identify some central hub genes (e.g., NDUFB8, GUCY1B1, KCNMA1, NPR2, PPP3CC)
participating in relevant metabolic pathways exceeding multiple-testing correction filters. We identified the
central hub genes PIK3R2, PPP3C and PTPN5 associated with MAPK signaling and insulin resistance terms. This
is the first time that these genes have been associated with childhood obesity in both tissues. Therefore, they
could be potential novel molecular targets for drugs and health interventions, opening new lines of research on
the personalized care in this pathology. This work generates interesting hypotheses about the transcriptomics
alterations underlying metabolic health alterations in obesity in the pediatric population.
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1. Introduction

Childhood obesity is one of the leading health concerns of recent
decades [1]. Low-grade systemic inflammation along with insulin re-
sistance are key components in the metabolic alterations associated
with childhood obesity, which unleash the emergence of cardiovascular
disease (CVD), as well as type 2 diabetes (T2D) in adulthood [2–4].
Low-grade systemic inflammation is mainly due to the infiltration of
immune cells into the adipose tissue producing the dysregulation of its
endocrine function [5]. Adipose tissue is mainly distributed throughout
the body as subcutaneous and visceral adipose tissue (VAT). Metabolic
disorders are more strongly linked to alterations in VAT compared with
subcutaneous depots, highlighting the association with hypertension,
diabetes, insulin resistance, increased mortality, hepatic steatosis, and
atherosclerosis, among others [6].

Importantly, not only adipose tissue is implicated in developing
obesity metabolic alterations. Dysregulation of skeletal muscle tissue
(SMT) metabolism can also influence developing insulin resistance
and alter whole-body glucose homeostasis [7]. VAT and SMT interact
with each other through the secretion of proteins with a key role in
controlling metabolic health (adipokines and myokines, respectively);
and this is known as the VAT-SMT metabolic axis [8,9]. The molecular
mechanisms involved in obesity-associated inflammation and altered
metabolism in VAT and SMT were assessed separately [10,11]. Inter-
estingly, some pathways, such as IL-6 and IL1B have been extensively
escribed as simultaneously dysregulated in both tissues in middle-
ged adults with severe obesity, leading to the appearance of metabolic
ysfunction [12]. However, to the best of our knowledge, the concerted
iological mechanisms and gene expression signatures affecting the
nter-tissue metabolic homeostasis associated with obesity in children
re not yet known.

In biological systems, genes are organized into networks follow-
ng a free-scale network topology (i.e., a network with a few highly
nterconnected central genes and many poorly connected peripheral
enes) [13]. Understanding the structure of human gene expression net-
orks and their dysregulation is essential to identify relevant molecular

argets implicated in the physiopathology of multifactorial diseases,
uch as obesity. With the aim of discovering patterns and relationships
hat underlie human gene expression networks, Artificial Intelligence
echniques, and especially those of Machine Learning (ML), have been
uccessfully applied [14]. Clustering is one of the ML techniques most
idely used in bioinformatics. This technique identifies natural groups

n data, allowing scientists to better interpret and understand biological
rocesses that govern systems at the molecular level [15–17]. A wide
ange of clustering methods have been developed to address com-
on research challenges in transcriptomics, such as the identification

f epistasis phenomena [18] and the integration of inter-tissue gene
xpression signatures [19]. Among them, a hierarchical clustering tech-
ique for the identification of gene–gene relationships named Weighted
ene Co-expression Network Analysis (WGCNA) is of particular inter-
st [20,21]. WGCNA is defined as a clustering method that, based on
imilarity, correlation and distance measures, identifies gene groups
ith similar expression patterns in a set of samples. Thus, by trans-

orming unprocessed expression values in organized, interconnected
nd clustered charts; it can uncover concealed patterns in the initial
ataset. The application of WGCNA to transcriptomic data from two
ifferent tissues (VAT and SMT) would allow the discovery of concerted
ene co-expression patterns altered in different tissues and linked to a
pecific disorder, such as obesity.

In this study, we applied WGCNA to the entire genome-wide associ-
tion data from SMT and VAT with the aim of revealing co-expression
lusters, as well as their ontological functions associated with obesity
nd metabolic dysfunction in children. The specific aims of this study
re: (I) Identification of the gene co-expression clusters associated
ith childhood obesity, individually in VAT and SMT (intra-tissue ap-
2

roach), (II) Identification of the gene co-expression clusters associated
with obesity-metabolic alterations, individually in VAT and SMT (intra-
tissue approach), and (III) Identification of the gene co-expression
clusters associated with obesity-metabolic alterations simultaneously
in VAT and SMT (inter-tissue approach). Moreover, we have devel-
oped a web page associated with this paper (i.e., https://sci2s.ugr.
es/WGCNAInterTissueObesitys) with supplementary material for this
study.

2. Materials and methods

2.1. Experimental design and study population

The study population was composed of 12 Spanish children (11
boys, 1 girl), aged 6–12. Participants were diagnosed with a false-
positive prognosis of severe appendicitis or a hernia and underwent
abdominal surgery at the Pediatric Surgery Department of the Reina
Sofía Hospital, University of Cordoba, Spain. The criteria of Cole et al.
(2000) were used to determine the obesity status [22]. 11 participants
had an adequate VAT sample (6 normal-weight [5 boys] and 5 boys
with obesity [all boys]), whereas the number of children with suitable
SMT sample was 10 (5 normal weight [4 boys] and 5 boys with obesity
[all boys]). The 5 boys with obesity and 3 boys and 1 girl with normal-
weight coincided in both sample groups (VAT and SMT), presenting
valid samples for both tissues. A summary of the study design can be
found in Fig. 1.

Tanner’s criteria was utilized to define the pubertal stage [23] and
corroborated by blood sex hormone levels. The inclusion criteria for the
study population were: pre-pubertal state; age from 5 to 14 years old;
and non-existence of syndromic obesity. Exclusion criteria were: pu-
bertal state (Tanner II-V); the presence of malnutrition or illness; along
with the use of medications that alter glucose or lipid metabolism and
blood circulation. Supplementary details regarding the study design can
be found elsewhere [24].

2.2. Biochemical and anthropometric determination

Body weight (kg) and height (cm) were measured using standard-
ized procedures, and body mass index (BMI) was determined. BMI
Z-Score was then estimated following the reference table of Sobradillo
et al. [25]. Systolic blood pressure (SBP) and diastolic blood pressure
(DBP) were assessed by the same trained professional according to
international guidelines [26]. Fasting blood samples were obtained
before surgery using venipuncture and stored at −80 ◦C until further
analysis. Glucose levels were quantified using the glucose oxidase
method; and plasma insulin concentrations were analyzed via radioim-
munoassay [24]. The insulin resistance index was computed as the
homeostatic assessment model for insulin resistance (HOMA-IR) [27].
The quantitative insulin sensitivity check index (QUICKI) was also
calculated as described by Katz et al. (2000) [28]. Total leptin con-
centrations were determined by ELISA (BioSource International Inc.,
Camarillo, CA, USA). Plasma high density lipoprotein (HDL-c), low den-
sity lipoprotein (LDL-c) and total cholesterol, as well as apolipoprotein
A1 (Apo-A) and B (Apo-B) levels, were obtained using an automatic
analyzer (Roche-Hitachi Modular P and D Autoanalyzer). Importantly,
when referring to any of the abovementioned variables we will use the
term cardiometabolic traits.

2.3. Descriptive statistics and microarray analysis

The normality of all continuous variables was assessed. Shapiro–
Wilk tests were performed and variables were transformed when nec-
essary. Levene’s test means was used to check for heteroscedasticity.
Next, the Mann–Whitney U Test and t-test were then implemented in
accordance with standard assumptions to identify group dissimilarities.
We evaluated the effect of confounding variables such as age and sex by

studying its differences between groups with a t-test, and its correlation
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Fig. 1. Study population details and overall analysis plan. Further supplementary
information concerning the objectives and specific goals of each approach can be
referenced in Section 3 of the associated supplementary website linked to this
manuscript.

with the first two principal components of the filtered gene dataset
of each tissue. In any case, no significant associations were found.
Furthermore, any children in our population showed signs of puberty
entrance (evaluated by trained pediatricians using Tanner Scale) [23],
which could be the main source of chronological variability in molecu-
lar profiles. It should be noted that the correlation of a cluster with age
was also considered as exclusion criterion in the cluster selection ((R2
> |0.7| or 𝑝-value < 0.05)), please see Section 2.6 of this manuscript
or further information.

.4. Data pre-processing and feature selection

Fluorescence intensity cues per individual and tissue samples were
btained from microarray analyses. The quality of transcriptomic raw
EL files was evaluated with R (version 4.2.1) [29]. Since clustering
lgorithms based on similarity criteria are very sensitive to differences
n the magnitude or scales of the data [30,31], a multi-chip robust mean
ormalization strategy was applied. All genes were annotated according
3

to the current version of org.Hs.eg.db database [32]. Affymetrix mi-
croarrays provide an initial number of genes higher than 30,000. Data
acquisition based on high-throughput technology often faces missing
values attributable to insufficient resolution, fabrication errors, and
poor hybridization, among others [33–35]. Missing data was removed
since its presence may entangle the use of clustering algorithms and
lead to spurious conclusions.

We were interested on the reduction of the dimensionality space
of the whole genome to genes whose behavior is relevant for the
disease that we were studying. On this reduced search space, we focus
on generating co-expression networks that allowed the identification
of molecular patterns or signatures in each tissue, to unveil which
pathways or biological functions are altered individually and simul-
taneously, in the context of obesity and metabolic syndrome. The
reduction of the whole genome dimensionality with feature selection
based on expert knowledge is key to find relevant patterns and not
to mislead in the immensity of genes that can sometimes lead to
spurious associations [15,16]. Considering this, and focusing on the
biological relevance and comprehensibility of the clustering algorithms
with micro-array data [36], we performed a Differential Expression
(DE) analysis to decrease the initial number of genes. Therefore, DE
genes found in each tissue when comparing normal-weight subjects
versus boys with obesity within each tissue group (nominal p-value
< 0.05 and signal log-ratio > |1|, in any comparison) were selected.
The effect of co-founding variables (i.e., age, height and sex) was
evaluated correlating them with the first principal components of gene
datasets. We did not included them in DE analysis since there were
no significant differences found between normal-weight and obesity
groups. The resulting normalized data set for each tissue group was
formatted according to WGCNA R package requirements [37].

2.5. Knowledge-extraction phase: WGCNA approach

The WGCNA package supplies R functions for performing
co-expression network analysis of genome-wide expression data. It uses
hierarchical average linkage clustering to group genes with similar
expression levels (e.g., all up-regulated or all down-regulated) [38–40].
The WGCNA procedure was implemented here following three different
approaches (which are also summarized in Fig. 1):

Approach I. Intra-tissue WGCNA considering all participants. In this
approach, gene expression data from VAT was analyzed in 11 children
(5 with obesity and 6 normal-weight); as well as from SMT in 10
children (5 with obesity and 5 normal-weight). We aimed to identify
the intra-tissue gene co-expression clusters associated with cardiovas-
cular risk and the development of obesity in prepubertal children,
individually in VAT and SMT.

Approach II. Intra-tissue WGCNA considering only boys with obe-
sity. In this approach, only the VAT from 5 boys with obesity and
the SMT from the same 5 boys with obesity were selected as valid
gene expression data. We aimed to identify the intra-tissue gene co-
expression clusters associated with obesity metabolic alterations and
cardiovascular risk within each tissue in prepubertal boys with obesity,
individually in VAT and SMT.

Approach III. Inter-tissue WGCNA considering only boys with obe-
sity. This third approach aimed to identify the co-expression clusters
from VAT and SMT correlated with altered metabolism and cardio-
vascular risk in obesity simultaneously in both tissues. Inter-tissue
analyses were thus performed using VAT and SMT data from the same
individuals.

It should be noted that in this study we have sequencing infor-
mation from abdominal surgery performed on children so, given the
logistical difficulties associated with obtaining such data, the sample
size considered is inevitably small.

Section 3 of web associated with this paper describes in detail

the steps followed for each of the above-mentioned approaches and
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Fig. 2. Graphical characterization of associations among eigengene co-expression cluster vectors along with cardiometabolic traits from childhood obesity (Inter-tissue Approach
III). Associations may be observed as correlation values (p-values). Each row corresponds to a co-expression cluster and each column to a trait. Each cell contains the corresponding
correlation coefficient and nominal p-value. The table is color-coded by correlation according to the color legend. A higher resolution version of this figure is available on the
website associated with the supplementary material of this paper, found in Section 4 (Fig. 20).
provides additional information regarding their purpose and interrela-
tionships.

A deep description of the steps implemented for each of the above-
mentioned approaches can be found in the paper’s web Section 3. We
strongly encourage readers to take a look of this section to get a better
understanding of the findings that will be presented in next sections.

2.6. Functional validation of findings: criteria for considering clusters as
biologically meaningful

To highlight the most relevant co-expression clusters (among all
identified) in the framework of childhood obesity and its metabolic
alterations, correlation coefficients between eigengene co-expression
cluster vectors and cardiometabolic traits were evaluated. Their associ-
ation enabled us to classify each cluster as a risk or protection cluster,
in terms of obesity and metabolic dysfunction. The criteria for consid-
ering a cluster as biologically meaningful were defined using statistical
significance (nominal p-value < 0.05 [in the case of approaches I and
II], and p-value ≤ 0.1 [in the inter-tissue approach III] for at least one
cardiometabolic trait); as well as correlation coefficient (𝑅2), which
had to be ≥ 0.7 or ≤ −0.7 to be considered. Those correlated with
confounding variables (such as age) were discarded. It should be noted
that the consideration of a different level of significance in the inter-
tissue is justified due to the fact that the number of clusters considered
is much larger and some of their correlations are refer to VAT and SMT
individually, please see the large number of clusters with missing values
in Fig. 2 that represent the mismatch between the genes of both tissues
in each cluster.

Gene co-expression clusters positively correlated with weight, BMI
Z-Score, DBP, SBP, glucose, insulin, HOMA, apo-B, LDL-c and total
cholesterol; and negatively correlated with QUICKI, apo-A and HDL-
c were considered to be risk co-expression clusters. On the contrary,
4

clusters that negatively correlated with weight, BMI Z-Score, DBP, SBP,
glucose, insulin, HOMA, apo-B, LDL-c and total cholesterol; and posi-
tively correlated with QUICKI, apo-A and HDL-c were considered to be
protection co-expression clusters [24]. Among all co-expression clusters
that exceeded the aforementioned thresholds, those that did not show
consistent behavior according to the direction of their associations in
different cardiometabolic traits were excluded.

Co-expression clusters selected according to these criteria were
subjected to functional enrichment analysis in order to identify their
component genes and map biological pathways. For this purpose, only
eigen-genes or hub genes whose FDR-adjusted p-value from their cor-
relation with cardiometabolic traits was < 0.05 and whose cluster
membership degree was > 0.8 were selected [41]. Cluster membership
refers to the correlation of a particular gene expression profile with
its cluster eigengene vector. For more details on the concept of degree
of membership and the selection of the soft thresholding power using
scale-free topology fitting, refer to Section 3 of the website associated
with this paper.

The Gene ontology (GO) as well as the Kyoto encyclopedia of genes
and genomes (KEGG) databases were employed to extract functional
information for each list of hub genes per cluster [42,43]. Of all sig-
nificantly enriched terms evidenced by clustering (whose FDR-adjusted
p-value < 0.05), we considered only those functionally enriched terms
that mapped at least 1 hub gene.

Among the clusters selected by approach, a selection of the top
and most interesting was performed according to: (1) correlation levels
(depending on the aim of the approach: anthropometry in approach
I, and metabolic dysfunction in approaches II and III), (2) cluster size
(excluding clusters with a number of genes annotated that exceed
twice the median value of all clusters from each approach) and (3)
relationship of enriched terms per cluster with obesity and metabolic

alterations.
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Table 1
Descriptive statistics generated from an analysis of variance of cardiometabolic traits in the entire study population (N = 12).
Variables Normal-weight With obesity FDR-Adj p-val

6 boys/1 girl 5 boys

Age (years) 8.57 (1.72) 10.2 (1.3) 0.618
Weight (kg) 34.66 (15.79) 55.8 (6.57) 0.166
Height (cm) 136.19 (14.78) 141 (8.94) 0.888
BMI (kg/m2) 16.89 [14.73, 25.74] 28.3 [26.08, 29.50] 0.07
BMI Z-score −0.25 (1.24) 3.12 (1.07) 0.035
DBP (mm Hg) 61.33 (7.42) 71.2 (12.56) 0.63
SBP (mm Hg) 111.33 (7.84) 123 (15.80) 0.63
Glucose (mg/mL) 84.57 (12.45) 89.2 (7.98) 0.888
Insulin (mU/L) 1.42 [0.62, 2.06] 2.5 [0.84, 5.30] 0.813
HOMA index 0.29 [0.11, 0.44] 0.53 [0.17, 1.28] 0.888
QUICKI index 0.51 (0.06) 0.45 (0.08) 0.813
Apo-A (mg/dL) 114.29 (29.62) 144.5 (10.47) 0.595
Apo-B (mg/dL) 71.29 (22.33) 61 (21.32) 0.888
HDL-c (mg/dL) 55 (14.58) 69 (18.46) 0.762
LDL-c (mg/dL) 86 (24.36) 81.9 (33.58) 0.958
Cholesterol (mg/dL) 155.14 (35.14) 162.75 (44.54) 0.958
Triglycerides (mg/dL) 59 [38.00, 150.00] 62.5 [35.00, 77.00] 0.958
AST (U/L) 20 (3.37) 20.25 (3.86) 0.958
ALT (U/L) 14.57 (3.87) 22.75 (5.12) 0.166
PCR (mg/L) 44.3 [4.50, 380.40] 15.2 72.00] 0.958
Urea (mg/dL) 24.29 (4.07) 23.8 (7.26) 0.958
Proteins (g/dL) 7.04 (0.54) 7.45 (0.58) 0.813
Calcium (mg/dL) 10.45 (0.65) 10.47 (0.15) 0.967
Sodium (mmol/L) 136.14 (2.67) 135.2 (3.83) 0.933
Potassium (mmol/L) 4.37 (0.57) 4.24 (0.23) 0.933
Chlorine (mmol/L) 100.71 (2.98) 99.6 (3.36) 0.888
TSH (mU/L) 1.74 [0.32, 8.50] 1.01 [0.62, 3.41] 0.958
T4 (ng/dL) 1.4 (0.37) 1.28 (0.10) 0.888
FSH (mU/L) 0.3 [0.20, 1.70] 0.6 [0.20, 1.00] 0.951
Testosterone (pg/mL) 0.48 (0.17) 0.6 (0.21) 0.813
Cortisol (nmol/L) 26.08 (15.44) 18.98 (16.99) 0.888
Leukocytes (cell n◦) 14160 (6105.34) 13200 (4988.99) 0.958
Erythrocytes (cell n◦) 4.65 (0.48) 4.68 (0.42) 0.958
Hemoglobin (g/dL) 12.76 (0.86) 13.16 (0.86) 0.888
Hematocrit (∖%) 37.71 (3.38) 39.04 (3.00) 0.888
3. Results

A summary of descriptive statistics comparing the participants’
cardiometabolic traits from the entire study population (N = 12) can
be found in Table 1. The descriptive statistics according to tissue-type
group can be found as a supplementary file in Section 1 of the website
created for this paper. Details of laboratory gene expression microarray
analyses are also shown on this paper’s website as supplementary
methods, specifically in Section 2.

In this study, we performed a feature selection step that resulted
6000 DE genes from VAT and SAT, of which 224 genes met the
inclusion criteria in both tissue groups. WGCNA was performed and
a summary of the revealed gene co-expression cluster structures can
be found in Fig. 1. From approach I, we identified 10 co-expression
clusters in VAT, 4 satisfying our quality selection criteria; and 11 co-
expression clusters in SMT, 6 satisfying quality selection criteria. By
incorporating both normal-weight and boys with obesity into the anal-
ysis, approach I (intra-tissue) aimed to identify co-expression clusters
that were associated with anthropometric measurements. Otherwise,
approaches II (intra-tissue) and III (inter-tissue), which only included
boys with obesity, allowed the identification of cluster structures as-
sociated with cardiometabolic phenotypes. The clusters identified in
the inter-tissue approach III represent the shared molecular networks
of tissues, which were correlated with metabolic and cardiovascular
risk dysfunction. We identified 15 VAT co-expression clusters from
approach II, 5 of which satisfied our quality selection criteria; and
17 co-expression clusters in SMT, 7 of which exceeded our quality
selection criteria. From approach III (inter-tissue), we distinguished
37 co-expression clusters (Fig. 2), 4 of which satisfied our quality
selection criteria. The complete list of hub genes identified for each
cluster selected according to approach is available in Section 3 of the
paper’s website (specifically in Table 2 to 6). Supplementary material
5

regarding cluster-trait correlation results is accessible in Section 4 of the
paper’s website, which presents an in-depth examination of cluster-trait
relationships by approach and tissue in Supplementary Fig. 16 to 20
and Tables 10 to 14. Functional enrichment analysis was performed on
the selected clusters by only selecting hub genes for each cluster. Func-
tional enrichment results and its selected hub genes for all approaches
can be found on Section 5 of the paper’s associated website. Top clusters
by approach were then identified by authors according to correlation
levels, cluster size and relevance of enriched terms to obesity.

3.1. Top gene co-expression clusters associated with anthropometrics mea-
surements (intra-tissue approach I)

A summary of the most relevant clusters and pathways identi-
fied in approach I can be found in Fig. 3(A). In VAT, the grey-60
cluster stands out due to its protection correlation with obesity and
cardiometabolic alterations (i.e., higher expression values for the genes
from the cluster are associated with lower weight and BMI z-score).
Likewise, the dark-grey cluster also stands out because of its risk
correlation (i.e., higher expression levels associate with higher values
of BMI and BMI z-score). Hub genes from these co-expression clus-
ters include important obesity targets such as (e.g., LEP, NDUFA2,
NDUFB8, NDUFB9, NDUFS3, RHOQ, RPS6, SHC1, ITGA1, CD47, GLS2).
Among these hubs, the LEP, NDUFB8, NDUFS3, SHC1 and RPS6 genes
passed the multiple comparisons tests and further mapped to interesting
KEGG terms: ‘‘D-Glutamine and D-glutamate metabolism’’, ‘‘insulin
signaling pathway’’ and ‘‘non-alcoholic fatty liver disease (NAFLD)’’.
In SMT, we can highlight the green-yellow and dark-green clusters
as a result of their protection correlation with obesity. The black
cluster was also selected from SMT based on its risk correlation. Hub
genes from mentioned co-expression clusters (e.g., LIMD1, BAHD1,
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Fig. 3. Functional enrichment analysis for the top co-expression clusters identified in
approaches I and II. (A) contains functional enrichment results for the top clusters in
approach I, SMT and VAR respectively. (B) presents functional enrichment for the top
clusters in approach II, SMT and VAT respectively. The 𝑥-axis gathers the enriched
terms per cluster and the 𝑦-axis the significance of the enrichment (FDR-adjusted p-
value < 0.05). The color of each cluster corresponds to its protection (green) or risk
(red) correlation with obesity and cardiometabolic traits.

ACTR2, CNOT4, ASH2L, ABHD5, FABP4, RIPK1, CFLAR, MAP2K3, SER-
PINE1, ATF2, CCL5, ALDH4A1, POLR1C, POLR2J, POLR2J2, POLR2J3,
PRKCA, VAMP4) mapped to significantly enriched functional terms
such as ‘‘arginine and proline metabolism’’, ‘‘hippo signaling pathway
- multiple species’’, as well as ‘‘TNF signaling pathway‘‘. Among these
hubs, PRKCA, SERPINE1 and VAMP4 exceeded the FDR-Adjust p-value
threshold. Given the nature of the experimental design of approach I
(which included both normal-weight children and boys with obesity),
the most significant correlations between grous and cardiometabolic
traits identified were for anthropometric measures.

3.2. Top gene co-expression clusters associated with metabolic alterations
(intra-tissue approach II)

A summary of the most relevant clusters and pathways identified
in approach II can be found in Fig. 3 (C and D). In VAT, the green
and brown clusters were highlighted due to their protection correlation
with blood pressure (i.e., SBP, DBP), purple and pink by its risk corre-
lation with lipid metabolism (i.e., LDL-c, apo-B and total cholesterol).
Hub genes from these co-expression clusters (e.g., GCSH, SARDH,
IFNA7, ATG5, BCAT1, BCAT2, GCG, ADRB1, SST, PTGER3, CAMK2B,
ATP1A3, ATP2B3, PDE4 A, ABCA1, APOE) mapped to significantly
enriched functional terms such as ‘‘branched-chain amino acid biosyn-
thetic process’’, ‘‘cAMP signaling pathway’’, ‘‘cholesterol metabolism’’,
‘‘glycine, serine and threonine metabolism’’, and ‘‘RIG-I-like receptor
signaling pathway’’. In SMT, the purple and grey-60 clusters stand out
due to their protection correlation with lipid metabolism (i.e., HDL-
c, LDL-c, apo-B and total cholesterol), while the magenta and cyan
clusters for their risk correlation with glucose and lipid metabolism
(i.e., glucose and LDL-c). Hub genes from these co-expression clus-
ters (e.g., ATP5F1E, DPF3, MAP2K3, MAPK14, PRKAA2, UQCR11,
SMARCC1, TGFBR2, PRKAA2, TNFSF10, GABARAPL1, INHBB, E2F5,
HACD2, FGFR1, FGFR2, PDGFRA, GNG4, CALM2, CALM3, CALM1,
RASA4, RASA4B, ATG5) mapped to significantly enriched functional
6

terms per cluster: ‘‘fatty acid elongation’’, ‘‘foxO signaling pathway’’,
‘‘Ras signaling pathway’’, ‘‘regulation of cytokine secretion involved in
immune response’’ ‘‘TGF-beta signaling pathway’’ and ‘‘thermogenesis’’.

3.3. Top gene co-expression clusters associated with metabolic alterations
(inter-tissue approach III)

A summary of the most relevant clusters and pathways identified
in approach III can be found in Fig. 4. As a reminder, this approach
aimed to identify the shared molecular signatures associated with
metabolic dysfunction simultaneously in both tissues (VAT and SMT)
in boys with obesity. From this approach, we highlighted some clus-
ters with a protection correlation with metabolic alterations (tan and
skyblue-3, which correlated with HOMA and insulin), as well as some
others with a risk correlation with metabolic dysfunction (magenta
and green-yellow, which showed correlations with apo-B, LDL-c, apo-A
and HDL-c). Hub genes from these co-expression clusters mapped to
significantly enriched functional terms such as ‘‘adipocytokine signal-
ing pathway’’, ‘‘cGMP biosynthetic process’’, ‘‘cGMP-mediated signal-
ing’’, ‘‘insulin resistance’’, ‘‘lipid droplet formation’’, ‘‘MAPK signaling
pathway’’, ‘‘NAFLD’’, ‘‘p53 signaling pathway’’, ‘‘positive regulation
of SREBP signaling pathway’’, ‘‘valine. leucine and isoleucine biosyn-
thesis’’ as well as ‘‘vascular smooth muscle contraction’’; all of them
strongly related to the molecular alterations of these tissues in the con-
text of obesity. Some interesting hubs among these clusters that mapped
those functional terms were CALCRL, CD36, GUCY1B1, KCNMA1, MLX,
NPR2, PPP3CC, PIK3R2, PTPN5, RXRA and SOCS3. Among these hubs,
GUCY1B1, KCNMA1, NPR2 and PPP3CC exceeded the FDR-Adjust p-
value threshold. Finally, we studied the convergence of results from
both approaches since inter-tissue approach III jointly considered the fit
to the free-scale topology criterion in each tissue. A Venn diagram for
the hub genes identified in each of the intra-tissue approaches II (VAT
and SMT) and III showed that the inter-tissue identified a large number
of new hub genes that were not previously identified by the intra-
tissue approach II, reinforcing the need to analyze this scenario (Fig. 5).
Further information regarding the intersection between approaches and
the hub-genes that were exclusively identified in consensus approach
but not in approach II can be consulted in Section 3 of the paper’s
website (specifically in Tables 8 and 9).

4. Discussion

This study revealed the gene expression architecture of VAT and
SMT in the context of obesity by using the clustering method WGCNA,
following three different approaches. As a result, we identified both
independent and inter-tissue gene expression clusters that were cor-
related with obesity and cardiovascular risk (Fig. 2). Functional en-
richment analysis of the hub genes composing identified co-expression
clusters from each approach revealed gene pathways that are strongly
related to obesity and systemic metabolism. As far as we can appreciate,
this is the first time the inter-tissue transcriptomic relationships have
been assessed between VAT and SMT in the context of childhood
obesity. As a result, we propose some interesting molecular mechanisms
that might underlie muscle-adipose tissue cross-talk in obesity and
metabolic dysfunction.

As might be expected from its study design, approach I individu-
ally identified co-expression clusters in VAT and SMT associated with
anthropometric measurements. These co-expression clusters represent
groups of genes whose expression is simultaneously up- or down-
regulated in each tissue and whose overall expression profile is further
correlated with the obesity degree in these children. In VAT, the genes
that best characterized the identified clusters, known as hub genes,
were involved in important biological pathways or disease routes by
means of clusters such as ‘‘NAFLD’’, ‘‘insulin signaling pathway’’, and
‘‘ECM-receptor interaction’’, which are essential for the maintenance
of metabolic homeostasis in obesity. This is interesting since there
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Fig. 4. Functional enrichment analysis for the top co-expression clusters identified in the inter-tissue approach III. The 𝑥-axis gathers the enriched terms per cluster and the 𝑦-axis
the significance of the enrichment (FDR-Adjusted p-value < 0.05). The color of each cluster corresponds with its protection (green) or risk (red) correlation with obesity and
cardiometabolic traits.
Fig. 5. Venn diagram of gene composition differences between hub genes from clusters
from approach II and clusters from approach III (inter-tissue). There were 135 hub
genes found in approach III that were not detected following the intra-tissue approach
II, emphasizing the need for a joint analysis of both tissues.

is ample evidence showing that the expansion of unhealthy adipose
tissue, mainly VAT, contributes to impaired insulin signaling, reduced
ECM-receptor interaction due to accumulation of ECM components, and
lipodystrophy with ectopic fat accumulation in the liver, which ulti-
mately contributes to the development of NAFLD [44,45]. Among the
most notable hub genes from the identified co-expression clusters, the
hub genes from the grey-60 cluster stand out: the LEP gene, which maps
the ‘‘NAFLD’’ biological term; and the NDUF family genes. LEP encodes
7

leptin, a hormone secreted by the adipose tissue and one of the best-
known key players in obesity [46,47]. The mitochondrial NDUF genes
comprises key genes in the network, demonstrating their potential as
biomarkers. Although the relationship of mitochondrial dysfunction
and the development of obesity is known, this is the first time that
the co-expression of several NDUF family genes in VAT in the setting
of childhood obesity has been described. In SMT, otherwise, identified
cluster hub genes were involved in biological pathways such as; ‘‘hippo
signaling pathways’’, ‘‘TNF signaling pathway’’, ‘‘AGE-RAGE signaling’’
and ‘‘arginine and proline metabolism’’. It is worth mentioning that
the hippo-signaling controls organ size, tissue homeostasis, nutrient-
sensing pathways, and participates developing T2D, NAFLD along with
cardiovascular disorders [47]. Interestingly, the hippo-signaling path-
way also controls skeletal muscle growth and function [48]. Moreover,
the ‘‘AGE-RAGE signaling’’ is an important pathway that controls the
inflammatory cytokine secretion in SMT in obesity [49]. Mapping this
term, we find the TGFB1 hub gene (from the light-green module),
which regulates growth, development and function of many metabolic
tissues, including muscle. TGFB1 is further implicated in energy home-
ostasis, and elevated TGF-𝛽 activity in ectopic adipocytes of SMT has
been reported to induce cellular senescence, which may influence
the metabolic status of muscle in obesity [50,51]. In summary, our
approach I displays gene co-expression clusters associated with the
presence of obesity and some metabolic traits in prepubertal children,
individually in VAT and SMT. The detection of several hub genes, as
well as enriched pathways previously associated with obesity, validate
the relevance of our findings and yield new insights into the molecular
networks underlying obesity in these tissues.

In Approach II, we identified gene co-expression clusters mainly
associated with metabolic disturbances in boys with obesity, individ-
ually in the VAT and SMT. Specifically, in VAT, the expression profile
of identified clusters was associated with lipid metabolism traits. In
SMT, co-expression cluster profiles with a protective behavior were
associated with lower values of the metabolic traits HDL-c, LDL-c, apo-
B and total cholesterol. Their hub genes mapped the enriched terms;
‘‘thermogenesis’’, ‘‘FOXO signaling pathways’’, ‘‘TGF-𝛽 signaling path-
way’’, and ‘‘fatty acid elongation’’. On the other hand, co-expression
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clusters with risk correlation were associated with high levels of glucose
metabolism traits and the terms; ‘‘Ras signaling pathway’’, ‘‘cGMP-PKG
signaling pathway’’, ‘‘regulation of lipolysis in adipocytes’’, ‘‘regula-
tion of cytokine secretion involved in immune response’’, and ‘‘MAPK
signaling pathway’’. In general, from approach II, we found a strong
concordance in terms of cardiometabolic traits correlated with each
cluster expression profile and with their functional enrichment results
for each cluster. For example, in the pink cluster (highlighted in VAT
approach II), we found an association with lipid metabolism alterations
(LDL-c, apo-B and cholesterol) while at the same time the functional
enrichment analysis revealed how hub genes from this cluster map to
biological pathways related to these phenotypes (e.g., ‘‘cAMP signaling
pathway’’ and ‘‘cholesterol metabolism’’, highlighting the hub genes
APOE and ABCA1). APOE and ABCA1 are well-document molecular
argets in the context of obesity [52,53]. The fact that both have been
imultaneously detected as hubs in the same cluster indicates that they
re perfect molecular targets, and that unknown targets of medical
nterest may be found in their cluster. In SMT approach II, the grey-60
nd purple clusters were correlated with lipid metabolism, and further
ssociated with functional terms such as ‘‘fatty acid elongation’’ and
‘thermogenesis’’. This concordance is fundamental for ensuring that the
ardiometabolic trait correlations identified for each cluster are robust
nd reinforces the idea that such clusters are true representations of
he molecular signatures correlated with obesity and metabolic risk.
astly, from the inter-tissue approach III, we identified shared gene
o-expression clusters between both tissues that were correlated with
ardiometabolic traits in boys with obesity. Using this approach, we
ound both risk and protection clusters, showing associations with
lucose and lipid metabolism traits (insulin, HOMA-IR, Apo-A, Apo-B,
DL-c and HDL-c). Hub genes from clusters with a protection profile
apped terms including; ‘‘lipid droplet formation’’, ‘‘MAPK signaling
athway’’, ‘‘p53 signaling pathway’’ and ‘‘positive regulation of SREBP
ignaling pathway’’. Among these terms, the MAPK signaling pathway
from the skyblue-3 cluster and including the hub genes PPP3CC and
TPN5), is one of the most interesting given its potential simultaneous
ole in both VAT and SMT. The MAPK route is implicated in the
egulation of metabolism as a response to exercise in SMT, induces SMT
nflammation [54], and acts as a pro-inflammatory factor in VAT [55].
herefore, it is postulated as a perfect link between both metabolic
issues in obesity. The gene PPP3CC can modulate appetite and body
ass and has also been linked to obesity [56]. The gene family PTPN

s strongly linked with obesity, type 2 diabetes and adiposity [57,58];
owever this is the first time that the gene PTPN has been linked with
he metabolic pathology.

Taking this into account, we can state that the hub genes map-
ing this term (PPP3CC, PTPN5), as well as other hubs from the
kyblue3 cluster, could be part of a complex polygenetic signature of
etabolic alterations of obesity in both tissues. On the other hand, the

o-expression clusters with risk correlation profile identified in this ap-
roach mapped the terms ‘‘valine, leucine and isoleucine biosynthesis’’,

‘insulin resistance’’, ‘‘adipocytokine signaling’’, ‘‘NAFLD’’, ‘‘vascular
mooth muscle contraction’’, ‘‘cGMP biosynthetic process’’ and ‘‘cGMP-
ediated signaling’’. Of these of particular interest is the term ‘‘insulin

esistance’’ term, which points to a common metabolic disturbance
ound in both tissues, which indeed becomes systemic in the context of
besity. Mapping this term, we found that the PIK3R2 (hub gene from
he green-yellow cluster), and its expression in the VAT of T2D patients
s higher compared to glucose tolerant subjects. Moreover, PIK3R2
egulates phosphoinositide 3-kinase activity, an important enzyme in
he insulin signaling pathway in both adipose and muscle tissues. This
ene has been reported previously in obesity networks and has even
een validated by RT-PCR [59,60], however this is the first time that it
as been reported in both in VAT and SMT in boys with obesity. This
ene and its connected hubs within the green-yellow cluster are more
8

xamples of potential polygenetic molecular mechanisms that might 2
nderlie the well-known muscle-adipose tissue cross-talk in obesity and
etabolic dysfunction.

One of the main restrictions of our study is the low number of partic-
pants considered and the need for a validation population, which may
ave resulted in co-expression networks with spurious correlations.
ecause of this, in this work, we have tried to minimize these effects by
mploying strict selection criteria based on the biological consistency
f the correlation of clusters with cardiometabolic traits. Another re-
triction is that the obesity networks referred only to boys, a larger
ample size being necessary to extend our findings toward both sexes.
owever, any children in the population showed signs of puberty en-

rance, along with there was a high homogeneity in terms of age ranges
nd sexual maturation status among the recruited children. Therefore,
e reduced inter-individual variability to the furthest extent. One of

he greatest strengths of this study is the application of a co-expression
nsupervised clustering method that looks for co-expression patterns
rom collected sample biopsies from VAT and SMT, that are rarely
ccessible in the context of childhood obesity. However, given the
imitations of this study, our results should be viewed as an exploratory
pproach and further confirmed with additional populations.

As future lines of research, the possibility of using other ML tech-
iques with a larger data set, such as classification models using hub
enes of selected modules as obesity predictors, could provide essential
nformation on the role of these genes in the pathology. Some advanced
re-processing methods for feature selection; such as wrapper recursive
eature elimination [1] and relative weighted consistency [2, 3], could
e proposed as feature selection methods in further analyses. Specially,
he application of feature selection methods based on the generation
f ML models, such as elastic-net, would be of great relevance for
esearchers with small sample sizes like ours, since they are designed
o deal with overfitting and reduce false positive rates [4, 5]. In our
ase, we selected a traditional but equally valid method based on DE
enes because we wanted to focus on the biological relevance and
omprehensibility of the clustering algorithm with micro-array [6, 7,
].

. Conclusions

Our work identified both independent and inter-tissue gene co-
xpression patterns correlated with obesity and cardiovascular and
ltered metabolism risk in the VAT and SMT of prepubertal children.
n particular, our inter-tissue WGCNA approach III in VAT and SMT
dentified several interesting sets of genes co-expressed in both tissues
or which prior evidence has been reported in the literature referring
o obesity and altered metabolic pathways, along with novel molecular
argets previously unknown. To the best of our knowledge, this study
s the first WGCNA study applied to childhood obesity, that further
valuates the interwoven transcriptomic relationships between VAT
nd SMT in the context of the pathology. This work generates interest-
ng hypotheses on the transcriptomic alterations underlying metabolic
ealth alterations in obesity in the pediatric population and highlights
ew potential molecular targets such as PIK3R2, PPP3C and PTPN5.

thics approval

Written consent from children’s legal guardians was acquired and
ll children agreed to participate. The current protocol (07/19/06) was
uthorized by the Ethics Committee of the Reina Sofia Hospital, in
ccordance with the recommendations of the European Union’s Good
linical Practice (Document 111/3976/88 July 1990) and following
he Revised Declaration of Helsinki. It was also approved by current
panish legislation regulating clinical studies with human subjects (RD

23/04 on clinical trials).
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Appendix A. Supplementary data

Supplementary data can be found in the web page that we have
developed for this study (i.e., https://sci2s.ugr.es/WGCNAInterTissue
Obesitys).

Appendix B. Abbreviations

• Apo-A: Apolipoprotein A1
• Apo-B: Apolipoprotein B
• BMI : Body mass index
• CVD: Cardiometabolic risk disease
• DBP: Diastolic blood pressure
• DE : Differentially expressed
• GEO: Gene expression omnibus
• GO: Gene ontology
• HDL-c: High-density lipoprotein cholesterol
• HOMA: Homeostatic assessment model
• KEGG: Kyoto encyclopedia of genes and genomes
• LDL-c: Low-density lipoprotein cholesterol
• ML: Machine learning
• MM : Cluster membership
• NAFLD: Non-alcoholic fatty liver disease
• QUICKI : Insulin sensitivity check index
• r : Scale-free topology model fit indexes
• 𝑅2: Correlation coefficient
• SBP: Systolic blood pressure
• SMT : Skeletal muscle tissue
• SREBP, sterol regulatory element binding protein.
• T2D: Type 2 diabetes
• TOM : Topological overlap measure
• VAT : Visceral adipose tissue
• WGCNA: Weighted gene co-expression network analysis
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