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We show that the analyticity and crossing symmetry of the S matrix, together with the optical theorem,
impose restrictions on the renormalization group evolution of dimension-8 operators in the Standard Model
effective field theory. Moreover, in the appropriate basis of operators, the latter manifest as zeros in the
anomalous dimension matrix that, to the best of our knowledge, have not been anticipated anywhere else in
the literature. Our results can be trivially extended to other effective field theories.
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I. INTRODUCTION

One of the most studied aspects of quantum field theory
(QFT) is the evolution of the scale-dependent parameters
under renormalization group (RG) running. For renorma-
lizable QFTs involving only scalars, fermions and gauge
bosons, the explicit form of the RG equations (RGEs) is
completely known up to two loops [1–11]. For QFTs
involving operators of dimension larger than four, also
known as effective field theories (EFTs) because they
characterize only the low-energy behavior of renormaliz-
able QFTs, this problem is significantly much more
complicated. Besides the larger number of interactions,
the reason is the ubiquitous mixing between different
parameters, described by the anomalous dimensions matrix
(ADM); see the Appendix for notation.
Since the last ten years or so, there has been significant

progress toward the renormalization of EFTs, particularly
in the Standard Model (SM) EFT (SMEFT) [12,13] at one
loop and up to dimension 6 [14–19]. More recently, and in
light of the numerous studies highlighting the insufficiency
of dimension-6 terms to capture the richness of low-energy
physics, either because experimental measurements are
precise enough to be sensitive to higher corrections [20–23]
or because certain selection rules force dimension-6
corrections to SM observables to appear at the same order
in perturbation theory as dimension-8 ones [24] or simply
because dimension-6 interactions do not arise in several
well-motivated models of new physics [25–27], the
challenge of renormalizing the dimension-8 SMEFT is
being tackled from multiple angles, including off-shell

approaches [28–31], amplitude methods [32] and geometry
[33]. Software tools that automatize part of this process
have been of enormous importance in this respect [34–36].
Still, the computations entail so many technical and
conceptual challenges, that the full renormalization of
the dimension-8 SMEFT, let alone arbitrary EFTs, is far
from complete.
However, there are aspects of the RG flow of EFTs

that can be understood without necessarily struggling
with the explicit calculation of RGEs. One of these aspects
is the existence of zeros of the ADM. These zeros indicate
that certain EFT interactions are not affected by some
quantum corrections, making classical predictions reliable.
Approaches based on generalized unitarity [37,38],
together with on-shell amplitude methods [39,40], have
shown that certain classes of operators do not mix under
RG running. For example, ϕ6D2 does not renormalize
Bϕ4D2, or in other words γBϕ4D2;ϕ6D2 ¼ 0. See also
Refs. [33,41] for works that unveil certain nontrivial zeros
in the ADM of the SMEFT, but from the perspectives of
supersymmetry and of EFT geometry, respectively.
Yet, there exist other zeroes, representing the (vanishing)

mixing of certain operators of some classes into certain
operators of different ones, that are not explained by current
methods. As a matter of example, let us consider the

operator Õð1Þ
e2ϕ2D3 ≡Oð1Þ

e2ϕ2D3 −Oð2Þ
e2ϕ2D3, with

Oð1Þ
e2ϕ2D3 ¼ iðēγμDνeÞðDðμDνÞϕ†ϕÞ þ H:c:; ð1Þ

Oð2Þ
e2ϕ2D3 ¼ iðēγμDνeÞðϕ†DðμDνÞϕÞ þ H:c: ð2Þ

It can be shown that Õð1Þ
e2ϕ2D3 does not renormalize the

following interaction,

Oð1Þ
B2ϕ2D2 ¼ ðDμϕ†DνϕÞBμρB

ρ
ν; ð3Þ
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despite the fact that, obviously, there are diagrams that are
separately nonvanishing; see Fig. 1.
A rough understanding of this result goes as follows. By

simple dimensional analysis, the running of cð1ÞB2ϕ2D2 scales

linearly with c̃ð1Þe2ϕ2D3 : _cð1ÞB2ϕ2D2 ∼ #1c̃
ð1Þ
e2ϕ2D3 , with #1 some

arbitrary number. Moreover, from very fundamental QFT

principles [42], we know that _cð1Þ
B2ϕ2D2 ≥ 0, whereas c̃ð1Þ

e2ϕ2D3

can have arbitrary sign. Consequently, we must conclude
that #1 ¼ 0.
In this paper, we formulate this insight in general and

precise terms, explaining and anticipating zeroes of this
sort. Furthermore, we follow the same strategy to unravel
the signs of certain (nonvanishing) anomalous dimensions,
which dictate the increase or decrease of the EFT couplings
under running.

II. DISPERSION RELATIONS AND RUNNING

Let us consider again the operators Oð1;2Þ
e2ϕ2D3 of Eq. (1).

Locality and unitarity in the UV teaches us that the Wilson
coefficients of these operators must satisfy the following
positivity conditions [30,43]:

−cð1Þ
e2ϕ2D3 − cð2Þ

e2ϕ2D3 ≥ 0: ð4Þ

Several observations are now in order.
1. It is easy to prove that, for any pair of values

ðcð1Þ
e2ϕ2D3 ; c

ð2Þ
e2ϕ2D3Þ compatible with Eq. (4), there exists at

least one well-defined (local and unitary) QFT which, at
low-energies and at tree level, is described by the SMEFT

where the only nonvanishing terms are the chosen Oð1;2Þ
e2ϕ2D3

and, at most, other operators of the form e2ϕ2Dn, with n
some natural number.
2. Within any such QFT, let us compute the amplitude

Aðs; tÞ, depending on the Mandelstam variables s and t, for
φiB → φiB in the forward limit t → 0, where crossing
symmetry implies that AðsÞ ¼ Að−sÞ.
Because of point 1, there are no tree-level contributions

to this amplitude. Promoting s to a complex variable, the
singularity structure of AðsÞ consists of a branch cut
extending across the whole ReðsÞ axis due to the loops
of the massless particles; see Fig. 2. Motivated by previous
works on quantum gravity [44], we define the following
observable:

ΣðμÞ≡ 1

2πi

Z
γ

AðsÞs3
ðs2 þ μ4Þ3 ¼

1

2πi

Z
Γ

AðsÞs3
ðs2 þ μ4Þ3 ; ð5Þ

where we have used the analyticity of AðsÞ to deform the
contour of integration from γ to Γ in the second equality.
Advocating the Froissart’s bound [45], AðsÞ=s3 → 0 at
large s, the right-hand side of the equation can be computed
explicitly, giving:

ΣðμÞ ¼ 1

πi

Z
∞

0

s3

ðs2 þ μ4Þ3 limϵ→0
½Aðsþ iϵÞ −Aðs − iϵÞ�

¼ 1

πi

Z
∞

0

s3

ðs2 þ μ4Þ3 limϵ→0
½Aðsþ iϵÞ −Aðsþ iϵÞ��

¼ 2

π

Z
∞

0

ImAðsÞs3
ðs2 þ μ4Þ3 ≥ 0: ð6Þ

In the second equality, we have relied on the Schwarz’s
reflection principleAðsÞ� ¼ Aðs�Þ, while in the last one we
have used the optical theorem, ImAðsÞ ≥ 0.
So, ΣðμÞ is positive, and from its very definition it can be

computed within the EFT provided μ ≪ Λ. To orderOðg21Þ,
for any s in the neighborhood of �iμ2, we have:

AðsÞ ∼ −ðβ8s2 þ β12s4 þ � � �Þ log s
Λ2

; ð7Þ

with β8, β12, etc. being respectively the beta functions of the
dimension-8, dimension-12, etc. operators in the EFT, not
present at tree level in the UV, that contribute to the

amplitude at this order. In our case, β8 is simply −_cð1Þ
B2ϕ2D2,

because this is the only Wilson coefficient entering the
amplitude for φiB → φiB.

FIG. 1. Example diagrams for the renormalization of operators
of type B2ϕ2D2 by interactions of the form e2ϕ2D3. The cross
represents the EFT term, while the dot stands for SM couplings.

FIG. 2. Structure of the singularities of a two-to-two amplitude
in the forward limit in the plane of the complex Mandelstam
variable s at one loop.
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From Eq. (7), we can compute ΣðμÞ explicitly by using
Cauchy’s theorem:

ΣðμÞ ¼
X

r¼�iμ2
Res

AðsÞs3
ðs2 þ μ4Þ3 ðs ¼ rÞ

¼ 1

4μ4
½3_cð1Þ

B2ϕ2D2μ4 þOðμ8Þ� þO
�
μ4 log

μ

Λ

�
: ð8Þ

Now, in the limit μ → 0, we have that:

4

3
ΣðμÞ ≈ _cð1Þ

B2ϕ2D2 ≥ 0: ð9Þ

3. In the case at hand, _cð1Þ
B2ϕ2D2 receives contributions only

from loops involving the dimension-8 operators of the form
e2ϕ2D3 and SM couplings; see Fig. 1. Loops involving
pairs of e2ϕ2Dn operators (because of 1, other classes are
absent), contain at least four external ϕ or fermions. Hence,

_cð1Þ
B2ϕ2D2 ¼ #1c

ð1Þ
e2ϕ2D3 þ #2c

ð2Þ
e2ϕ2D3 ≥ 0: ð10Þ

4. The equation above must hold for any UV completion
considered in points 1 and 2, and therefore, following 1, for

all values of cð1;2Þ
e2ϕ2D3 compatible with the positivity bound in

Eq. (4). The only possibility is that

_cð1ÞB2ϕ2D2 ¼ −δðcð1Þe2ϕ2D3 þ cð2Þe2ϕ2D3Þ; δ ≥ 0: ð11Þ

From here, it is clear that _cð1Þ
B2ϕ2D2 vanishes in the case

cð1Þ
e2ϕ2D3 ¼ cð2Þ

e2ϕ2D3 , which is tantamount to say that Õð1Þ
e2ϕ2D3

does not renormalizeOð1Þ
B2ϕ2D2 . A different way of looking at

this consists in making the following change of basis:

c⃗e2ϕ2D3 ¼ Pe2ϕ2D3 · ⃗̃ce2ϕ2D3 ; Pe2ϕ2D3 ¼
�
1 0

−1 1

�
; ð12Þ

where c⃗e2ϕ2D3 ¼ ðcð1Þ
e2ϕ2D3c

ð2Þ
e2ϕ2D3Þ and likewise for the tilde

counterpart.
In this new basis, we have:

_cð1Þ
B2ϕ2D2 ¼ ð−δ − δÞ · Pe2ϕ2D3 · ⃗c̃e2ϕ2D3

¼ ð0 − δÞ · ⃗c̃e2ϕ2D3 : ð13Þ

This zero in the ADM reflects the fact, mentioned at the

beginning of this paper, that c̃ð1Þe2ϕ2D3 is not bounded by

positivity (it can have either sign) while _cð1Þ
B2ϕ2D2 must be

positive.
The reasoning we just followed, consisting in points 1–4,

can be applied to any pair of dimension-8 interactions (the

renormalizing and the renormalized ones), provided they
are both restricted by positivity, with only one caveat. Let
us consider the mixing of e2ϕ2D2 into ϕ4D4 operators.
Point 1 before remains the same. In point 2, we should
compute instead the amplitude for φiφj → φiφj which, for

example for i ¼ 1, j ¼ 2, implies that _cð2Þ
ϕ4D4 ≤ 0 [46,47].

However, point 3 is no longer true, because in this case
there are loops involving pairs of dimension-6 e2ϕ2D
interactions that contribute to the aforementioned ampli-
tude. This implies that the conclusions in 4 do not follow
and hence, a priori, no constraints can be obtained for the
mixing at hand.
We see that what makes the difference between the two

cases is that, in the former one, the renormalized operator
(of type B2ϕ2D2) does contain fields (B) not present in the
renormalizing interaction (of type e2ϕ2D3). On general
grounds, we can establish the following result:

(i) Let Oi be a tree-level dimension-8 operator with
ci ≥ 0, and Oj any other dimension-8 operator such
that Oi has fields not present in Oj.

(ii) Then, the running of Oi by Oj fulfills
_ci ¼ γijcj ≤ 0.

(iii) If cj is itself bounded by positivity, namely cj ≥ 0,
then γij ≤ 0; otherwise, γij ¼ 0.

Notice that the only information about the UV stays
in the tree-level origin of the operator Oi. Embedding the
EFT into a well-defined UV, as in point 1, is only a
trick; after all, the ADM is an infrared object and therefore
should be restricted on the basis of low-energy informa-
tion only.

III. CONSTRAINED ANOMALOUS DIMENSION
MATRIX

Let us use the previous result to derive different
restrictions on the ADM of the SMEFT, summarized in
Table I and explained below. To this aim, we work out first
the relevant positivity constraints:

cð2Þ
ϕ4D4 ≥ 0; cð1Þ

ϕ4D4 þ cð2Þ
ϕ4D4 ≥ 0;

cð1Þ
ϕ4D4 þ cð2Þ

ϕ4D4 þ cð3Þ
ϕ4D4 ≥ 0; ð14Þ

−cð1Þ
B2ϕ2D2 ≥ 0; −cð1Þ

W2ϕ2D2 ≥ 0; ð15Þ

−cð1Þ
e2ϕ2D3 − cð2Þ

e2ϕ2D3 ≥ 0;

−ðcð1Þ
l2ϕ2D3 þ cð2Þ

l2ϕ2D3 þ cð3Þ
l2ϕ2D3 þ cð4Þ

l2ϕ2D3Þ ≥ 0;

cð3Þ
l2ϕ2D3 þ cð4Þ

l2ϕ2D3 − cð1Þ
l2ϕ2D3 − cð2Þ

l2ϕ2D3 ≥ 0; ð16Þ

−ce2B2D ≥ 0; −cl2B2D ≥ 0;

−ce2W2D ≥ 0; −cð1Þ
l2W2D

≥ 0; ð17Þ
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−ce4D2 ≥ 0; −cð2Þl4D2 ≥ 0; −ðcð1Þl4D2 þ cð2Þl4D2Þ ≥ 0;

−cð2Þl2e2D2 ≥ 0: ð18Þ

Some of these relations were previously obtained in
Refs. [30,43,47–50].
Next, we focus on the renormalization of B2ϕ2D2 by

ϕ4D4. In light of Eq. (15), and following the previous

discussion, we have that _cð1Þ
B2ϕ2D2 ≥ 0 and that this inequality

must hold for all values of cð1Þ
ϕ4D4 ; c

ð2Þ
ϕ4D4 ; c

ð3Þ
ϕ4D4 compatible

with Eq. (14). Therefore:

_cð1Þ
B2ϕ2D2 ¼ αðcð1Þ

ϕ4D4 þ cð2Þ
ϕ4D4 þ cð3Þ

ϕ4D4Þ þ βðcð1Þ
ϕ4D4 þ cð2Þ

ϕ4D4Þ
þ γcð2Þ

ϕ4D4 þ � � �
¼ ðαþ βÞcð1Þ

ϕ4D4 þ ðαþ βþ γÞcð2Þ
ϕ4D4 þ αcð3Þ

ϕ4D4 þ � � � ;
ð19Þ

with α, β, γ ≥ 0. The ellipses indicate Wilson coefficients
of other operator classes, which can be turned to zero. We
conclude that

γ
cð1Þ
B2ϕ2D2

;cð2Þ
ϕ4D4

≥ γ
cð1Þ
B2ϕ2D2

;cð1Þ
ϕ4D4

≥ γ
cð1Þ
B2ϕ2D2

;cð3Þ
ϕ4D4

; ð20Þ

all them being non-negative. This result is what is shown in
the first three entries of Table I, though the relation between
the size of the three ADM elements themselves is not
specified there.
The next 0 and − in the first row of Tab. I follows from

our previous discussion on the renormalization of B2ϕ2D2

by e2ϕ2D3; see Eq. (13). Reasoning alike for l2ϕ2D3, we
define:

c⃗l2ϕ2D3 ¼ Pl2ϕ2D3 · ⃗c̃l2ϕ2D3 ;

Pl2ϕ2D3 ¼

2
6664
−2 1 −1 1

2 0 1 0

0 −1 −1 1

0 0 1 0

3
7775; ð21Þ

with c⃗l2ϕ2D3 ¼ ðcð1Þ
l2ϕ2D3c

ð2Þ
l2ϕ2D3c

ð3Þ
l2ϕ2D3c

ð4Þ
l2ϕ2D3Þ and similarly

for the tilde counterpart. In this case, taking into account

Eq. (16), we have that c̃ð2Þ
l2ϕ2D3 ≤ 0 and c̃ð4Þ

l2ϕ2D3 ≤ 0, while the

first and third ones are unconstrained. Accordingly, c̃ð1Þ
l2ϕ2D3

and c̃ð3Þl2ϕ2D3 cannot renormalize any Wilson coefficient with

definite-sign beta function, which explains the zeros in their
respective columns in Table I.
Following the same logic for the rest of the interactions

(no more changes of basis are needed), we complete
Table I. The crosses entries × in the table cannot be
constrained on the basis of positivity. We note in passing

that c̃ð1Þ
e2ϕ2D3 , c̃

ð1Þ
l2ϕ2D3 , etc. do renormalize other operators,

obviously not restricted by positivity, as it can be checked
by explicit computation. For example:

_̃cð1Þl2ϕ2D3 ∝ ðg21 − 3Y2
eÞc̃ð1Þe2ϕ2D3 : ð22Þ

Two more comments are still in order. First, note that the
þ (−) entries in Table I indicate that the corresponding
entries are positive (negative) irrespective of the actual
values of the SM couplings, meaning that they could be
proportional to combinations like for example g22 þ Y2

e, but
not g2Ye or g22 − Y2

e; for example the latter can have
arbitrary sign depending on whether one takes the limit
g2 ≪ Ye or g2 ≫ Ye. (This contrasts with what occurs to
most of the other anomalous dimensions; check simply

TABLE I. Structure of the SMEFT ADM in the subspace of operators constrained by positivity. The þ ð−Þ implies that the
corresponding entry is ≥ 0 (≤ 0). The nonbold zeros are trivial; see the text for details.

cð1Þ
ϕ4D4 cð2Þ

ϕ4D4 cð3Þ
ϕ4D4 c̃ð1Þ

e2ϕ2D3 c̃ð2Þ
e2ϕ2D3 c̃ð1Þ

l2ϕ2D3 c̃ð2Þ
l2ϕ2D3 c̃ð3Þ

l2ϕ2D3 c̃ð4Þ
l2ϕ2D3 ce4D2 cð1Þ

l4D2 cð2Þ
l4D2 cð1Þ

l2e2D2 cð2Þ
l2e2D2

cð1Þ
B2ϕ2D2

þ þ þ 0 − 0 − 0 − 0 0 0 0 0

cð1Þ
W2ϕ2D2

þ þ þ 0 0 0 − 0 − 0 0 0 0 0

c̃ð2Þ
e2ϕ2D3

þ þ þ × × 0 − 0 − − 0 0 0 −

c̃ð2Þ
l2ϕ2D3

þ þ þ 0 − × × × × 0 − − 0 −

c̃ð4Þl2ϕ2D3
þ þ þ 0 − × × × × 0 − − 0 −

ce2B2D 0 0 0 0 − 0 0 0 0 − 0 0 0 −
cl2B2D 0 0 0 0 0 0 − 0 − 0 − − 0 −
ce2W2D 0 0 0 0 − 0 0 0 0 0 0 0 0 −
cð1Þ
l2W2D

0 0 0 0 0 0 − 0 − 0 − − 0 0

cð2Þ
l2e2D2

0 0 0 0 − 0 − 0 − − − − × ×
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Eq. (22) above.) So the table provides more information
than one could naively expect.
And second, on top of the definite signs, there exist

inequalities between different ADM entries.We have already
commented on some of them; see Eq. (20). The rest are

γ
cð1Þ
W2ϕ2D2

;cð2Þ
ϕ4D4

≥ γ
cð1Þ
W2ϕ2D2

;cð1Þ
ϕ4D4

≥ γ
cð1Þ
W2ϕ2D2

;cð3Þ
ϕ4D4

; ð23Þ

γ
cð1Þ
e2ϕ2D3

;cð2Þ
ϕ4D4

≥ γ
cð1Þ
e2ϕ2D3

;cð1Þ
ϕ4D4

≥ γ
cð1Þ
e2ϕ2D3

;cð3Þ
ϕ4D4

; ð24Þ

γ
c̃ð2Þ
l2ϕ2D3

;cð2Þ
ϕ4D4

≥ γ
c̃ð2Þ
l2ϕ2D3

;cð1Þ
ϕ4D4

≥ γ
c̃ð2Þ
l2ϕ2D3

;cð3Þ
ϕ4D4

; ð25Þ

γ
c̃ð4Þ
l2ϕ2D3

;cð2Þ
ϕ4D4

≥ γ
c̃ð4Þ
l2ϕ2D3

;cð1Þ
ϕ4D4

≥ γ
c̃ð4Þ
l2ϕ2D3

;cð3Þ
ϕ4D4

; ð26Þ

and

���γc̃ð2Þ
l2ϕ2D3

;cð1Þ
l4D2

��� ≤ ���γc̃ð2Þ
l2ϕ2D3

;cð2Þ
l4D2

���; ð27Þ
���γc̃ð4Þ

l2ϕ2D3
;cð1Þ

l4D2

��� ≤
���γc̃ð4Þ

l2ϕ2D3
;cð2Þ

l4D2

���; ð28Þ
���γcl2B2D;cð1Þl4D2

��� ≤ ���γcl2B2D;cð2Þl4D2

���; ð29Þ
���γcð1Þ

l2W2D
;cð1Þ

l4D2

��� ≤ ���γcð1Þ
l2W2D3

;cð2Þ
l4D2

���; ð30Þ
���γcð2Þ

l2e2D2
;cð1Þ

l4D2

��� ≤ ���γcð2Þ
l2e2D2

;cð2Þ
l4D2

���: ð31Þ

IV. CONCLUSIONS

We have derived a number of restrictions on the
anomalous dimensions of the SMEFT at dimension 8,
relying uniquely on the crossing symmetry, analyticity and
positivity of the imaginary part of two-to-two scattering
amplitudes in the forward limit.
This way, restricting to the electroweak sector of the

SMEFTwith only one flavor, and in the appropriate basis of
operators, we have found 52 elements of the ADM that
must have definite sign (either nonpositive or non-
negative), as well as 24 non-trivial zeros. Moreover, we
have found inequalities involving the aforementioned
anomalous dimensions themselves.
We can envisage different future directions. To start with,

it would be desirable to cross-check our results by explicit
calculation. (Those concerning operators with only e, B and
ϕ will be given in a longer companion paper.) Also, we can
envision applying these findings to phenomenological
studies where the running of dimension-8 operators might
be important [20,22,31,51,52]. Likewise, it would be
interesting to extend these results to the full SMEFT
(that means, including colour and flavor) as well as to

the LEFT [53] and other EFTs, with the aim of under-
standing better the quantum structure of these theories.
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APPENDIX: NOTATION AND CONVENTIONS

Within this paper, we ignore color and flavor. We use the
following notation for the SM fields: e and l represent the
right- and left-handed leptons; B and W refer to the Uð1ÞY
andSUð2ÞL gauge bosons, respectively, and g1 and g2 are the
corresponding gauge couplings;ϕ ¼ ðφ1 þ iφ2;φ3 þ iφ4ÞT
stands for the Higgs doublet. Thus, the relevant SM
Lagrangian reads:

LSM ¼−
1

4
WI

μνWIμν −
1

4
BμνBμνþ l̄i=Dlþ ēi=De

þðDμϕÞ†ðDμϕÞþμ2ϕjϕj2 − λϕjϕj4− ðl̄ϕYeeþH:c:Þ;
ðA1Þ

where Ye is the Yukawa coupling and ϕ̃ ¼ iσ2ϕ� with σI
being the Pauli matrices; I ¼ 1, 2, 3.
In the absence of lepton-number violation, the SMEFT

Lagrangian reads:

LSMEFT ¼ LSM þ 1

Λ2

X
i

cð6Þi Oð6Þ
i þ 1

Λ4

X
j

cð8Þj Oð8Þ
j þ � � � ;

ðA2Þ
where Λ ≫ 100 GeV represents the cutoff below which the
SMEFT is no longer a valid theory, and the ellipses encode
higher-dimensional operators. The first sum runs over a
basis of dimension-6 interactions [12], while the second
does it over the dimension-8 counterpart [26,54]. In this
work, we are mostly interested in the dimension-8 Wilson
coefficients, which we parametrize using the notation of
Ref. [26],1 from where the field content of the interactions

1The only change we make in this respect is that, for the second
l4D2 operator, we consider the more commonly used

Oð2Þ
l4D2 ¼ Dνðl̄γμσIlÞDνðl̄γμσIlÞ:
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is apparent. (For example, the class of operators with two e
fields, one B boson, one Higgs and one derivative is named
e2Bϕ2D.) The dependence of dimension-8 operators on the
energy scale μ̃ is governed by the corresponding beta
functions, which at one loop read:

βci ¼ _cð8Þi ¼ 16π2μ̃
dcð8Þi

dμ̃
¼ γijc

ð8Þ
j þ γ0ijkc

ð6Þ
j cð6Þk ; ðA3Þ

where we have indicated explicitly that both βci and _ci
name the same object.
A notable part of the ADM γ has been already computed

explicitly in Refs. [30,32,33], but most is still missing.
Likewise for γ0; see Refs. [29,31,33]. In this work, we want
rather to unveil certain correlations (some known, some
others not previously anticipated) between different entries
in γ without relying on explicit calculations.
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