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Abstract: Palygorskite is an aluminum and magnesium silicate characterized by its fibrous mor-
phology, providing it with great versatility in industrial applications, including pharmaceuticals.
Although most of the reserves are in the United States, in recent years occurrences of commercially
exploited deposits in Brazil have been recorded, mainly in the country’s northeast region. This has
motivated this study, which analyzes raw Brazilian palygorskite compared to a commercial sample
(Pharmasorb® colloidal) to demonstrate its pharmaceutical potential. The chemical and mineral
composition of the samples were evaluated for surface properties, granulometry, morphology, crystal-
lography, thermal analysis, and spectroscopy. Raw palygorskite presented 67% purity, against 74% for
Pharmasorb® colloidal. The percentage purity relates to the presence of contaminants, mainly car-
bonates and quartz (harmless under conventional conditions of pharmaceutical use). Furthermore, it
was possible to confirm the chemical composition of these phyllosilicates, formed primarily of silicon,
aluminum, and magnesium oxides. The crystallographic and spectroscopic profiles were consistent
in both samples, showing characteristic peaks for palygorskite (2θ = 8.3◦) and bands attributed to
fibrous phyllosilicates below 1200 cm−1, respectively. The thermal analysis allowed the identification
of the main events of palygorskite, with slight differences between the evaluated samples: loss of
water adsorbed onto the surface (~85 ◦C), removal of water contained in the channels (~200 ◦C),
coordinated water loss (~475 ◦C), and, finally, the dehydroxylation (>620 ◦C). The physicochemical
characteristics of raw palygorskite align with pharmacopeial specifications, exhibiting a high specific
surface area (122 m2/g), moderately negative charge (−13.1 mV), and compliance with the required
limits for heavy metals and arsenic. These favorable technical attributes indicate promising prospects
for its use as a pharmaceutical ingredient in the production of medicines and cosmetics.

Keywords: palygorskite; excipients; pharmaceutical applications; clay mineral

1. Introduction

Clays are naturally occurring materials composed mainly of finely divided minerals,
which have plastic behavior in the presence of water and harden when dry [1]. The most
relevant properties of these materials refer to the nanometric size of the structural units
and the presence of mesopores and micropores, which give them a high contact surface, a
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variable surface charge, adsorptive capacity, and hydrophilicity [2,3]. Such characteristics
make these inorganic materials attractive for some pharmaceutical applications. Although
official textbooks have recognized some clay minerals as pharmaceutical excipients, these
materials have been used as drug carriers for many decades [4–7]. These nanomaterials
have been used for various purposes, such as increasing drug solubility, improving stability,
or modifying drug release profiles [8–11]. Among the groups of phyllosilicates described
in pharmacopoeias, and therefore are apt for use in pharmaceutical products, kaolin, talc,
montmorillonite, bentonite, palygorskite, and sepiolite stand out [12].

Palygorskite, most commonly known as attapulgite in pharmaceutical texts, is an
aluminum and magnesium silicate characterized by its tunnels and rectangular chan-
nels, of which their restricted dimensions allow for the insertion of small molecules and
cations [13,14]. The highly adsorptive properties of palygorskite are due to its moderately
negative surface charge, intermediate cation-exchange capacity, and high specific area [13].
The main deposits of palygorskite can be found in the United States, but there are some
commercially exploitable deposits in Brazil, more particularly in the northeastern region
of the country [15]. Given its availability, accessibility at a low cost, and the versatility
of applications for which it can be used, palygorskite attracts great industrial interest. In
the pharmaceutical field, it can be used as a diluent, adsorbent, and disintegrant in solid
pharmaceutical forms; colloidal palygorskite is able to form gels and stabilize emulsions,
as well as treat diarrhea [16,17].

The fact that palygorskite is an inorganic material that is biocompatible and capable of
composing pharmaceutical preparations reinforces its use in the development of drug de-
livery systems [11,18–23]. Therefore, this study characterizes a palygorskite extracted from
a Brazilian reserve in order to demonstrate its potential pharmaceutical use by performing
comparative analyses. To do so, a palygorskite sample, commercially available and already
authorized as a pharmaceutical excipient (Pharmasorb® colloidal), was used as a reference.

2. Materials and Methods
2.1. Materials

The palygorskite sample, provided by Ummio Indústria de Minérios Ltd.a (São Pedro,
Piauí, Brazil), was extracted in the region of Guadalupe, latitude 06◦47′13′′ south and
longitude 43◦34′09′′ west (Piauí, Brazil). This will be characterized as ‘raw palygorskite’
in this study. The sample was then characterized and compared to pharmaceutical-grade
palygorskite, Pharmasorb® colloidal (BASF, Limburgerhof, Germany), which was used as
received. Methylene blue extra-pure grade was purchased from Sigma Aldrich, St. Louis,
MO, USA. All other chemicals and solvents were of analytical grade. Deionized water
(18.2 MW cm) was obtained from a Waters ultrapure water system.

2.2. Methods
2.2.1. Pretreatment of Raw Palygorskite

An aqueous dispersion of palygorskite was prepared (1:10, w/v), which allowed the
denser suspended solids to settle, and the supernatant was collected. The suspension
containing the finest particles was filtered on filter paper, and the material retained on
the filter was then dried in an oven at 60 ◦C for 24 h. The dried product was sieved
through a 200-mesh sieve, obtaining a final yield of approximately 76%. This procedure
was performed before starting the analysis to remove any coarse sand and other foreign
agents from the sample.

2.2.2. Chemical and Mineralogical Composition

The chemical composition of the major elements present in clay minerals was de-
termined by X-ray fluorescence (XRF), using a Bruker S4 Pioneer spectrometer (Karl-
sruhe, Germany), equipped with an Rh anode X-ray tube, voltage of 60 kV, and current
of 150 mA. Powder X-ray diffraction (XRD) of the samples was performed using a Shi-
madzu diffractometer, model XDR-6000 (Kyoto, Japan), with Cu kα radiation, 30 kV, 30 mA,
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5–70◦ (2θ) scan range, in Rietveld mode. Mineralogical composition was determined by
the combination of data obtained in the XRF and XRD analyses, according to the method of
López-Galindo et al. [24].

2.2.3. Inductively Coupled Plasma Optical Emission Spectroscopy Analysis (ICP-OES) for
Heavy Metals and Arsenic

ICP-OES was employed as the analytical technique to determine the presence of
heavy metals and arsenic in the samples of raw Palygorskite and Pharmasorb® colloidal.
Sample preparations were carried out using the Cem Corporation Mars 5 microwave
sample preparation digester (Matthews, NC, USA). Equal masses of 0.50 g were weighed
into the digestion vessel, and 10 mL of HNO3 (Êxodo Científica, São Paulo, Brazil) was
added. The mixture was gently agitated, allowing for a 15 min waiting period before
sealing the vessel. Subsequently, the vessel was placed in the equipment following the
methodology for a single-stage mineral oil sample at a temperature of 200 ◦C, with a ramp
and hold time of 15 min, a pressure of 800 psi, and a power range of 900–1050 W. After
partial digestion, the samples were filtered and diluted with high-purity deionized water.
The sample preparation method used was EPA 3051A from the Environmental Protection
Agency (United States Environmental Protection Agency, 1996), as recommended by SDA
Instruction Normative No. 24 of 2007 [25].

2.2.4. Methylene Blue Adsorption (MBA)

MBA measurements were conducted following Cerezo and co-authors (2001), with
some modifications [26]. Ten milliliters of silicate/water dispersion at 10% (w/v) was
agitated for 15 min at 10,000 rpm in the presence of an 80 mL solution of 0.1% (w/v)
methylene blue in water. Subsequently, the resulting product underwent centrifugation,
and 5 mL of the resulting solution was diluted with water up to 500 mL. The absorbance of
the diluted solution at 625 nm was measured using a UV–visible spectrometer (Evolution
300), Thermo Scientific, Waltham, MA, USA. MBA was calculated using the calibration
curve y = 0.2371x − 0.0218 (r2 = 0.999), which was obtained for methylene blue from
solutions with known concentrations ranging from 0.5 to 3.0 µg/mL.

2.2.5. Loss on Drying

The moisture content of the clays was determined from the drying of 1 g of the samples,
under 105 ◦C, until constant weight in an oven (Q317M-22, Quimis, São Paulo, Brazil) [27].

2.2.6. Acidity and Alkalinity

A 5% (w/v) aqueous dispersion was prepared in carbon dioxide-free water, after
magnetic stirring for 5 min. The pH was measured using a pHmeter (Q400AS, Quimis, São
Paulo, Brazil). The electrode was previously calibrated using buffer solutions of pH 4, 7,
and 10 [27].

2.2.7. Surface Properties and Particle Size Analysis

Specific area was determined using the BET method (Brunauer–Emmett–Teller) through
adsorption–desorption isotherms of N2 in a specific area and pore analyzer Beckman Coul-
ter, model SA 3100 (Brea, CA, USA). Before measuring, the samples were degassed under
vacuum at constant temperature (120 ◦C) for two hours. Particle size analysis was per-
formed in a Cilas laser granulometer, model 1090 (Orléans, France). Each sample was
deposited in the feeder device, in dry mode, under vibration at a frequency of 55 Hz. Pow-
ders were propelled into the analyzer by compressed air under 2500 mb. The particle size
distribution is determined by the diameters at 10%, 50%, and 90% of the cumulative volume
of distribution, respectively, d10, d50, and d90 (µm). Span, calculated from Equation (1), is
an index that determines the range of distribution of fractions with different particle sizes.

Span =
d90 − d10

d50
(1)
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Zeta potential (ζ) was determined at 25 ◦C using Zetasizer Nano ZS Malvern (Worces-
tershire, UK). The samples were suspended in water at a concentration of 0.1% (w/v) and
the values obtained corresponded to the average of twenty runs, which were performed in
triplicate for each sample.

2.2.8. Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared (FTIR) spectra were recorded on a Shimadzu FTIR spec-
trometer, IR Prestige-21 model (Tokyo, Japan) equipped, with an attenuated total reflectance
(ATR) accessory. Measurements were performed at an interval of 700–4000 cm−1, at a reso-
lution of 4 cm−1.

2.2.9. Thermal Analysis

Thermogravimetric (TG) and differential thermal analyses (DTA) were performed
using a Shimadzu thermobalance, model DTG-60 (Tokyo, Japan), in the range of 30–800 ◦C.
A precision scale was used to measure the 5.0 ± 0.5 mg of sample used, contained in
an alumina crucible, and heated at 10 ◦C/min in a nitrogen atmosphere with a flow of
50 mL/min.

2.2.10. Transmission Electron Microscopy Analysis

Palygorskite samples were deposited on a Cu grid to determine their morphology in a
Philips CM20 High Resolution Transmission Electron Microscope (HRTEM) operated at
200 kV (Dresden, Germany).

3. Results
3.1. Chemical and Mineralogical Composition

Data from the chemical analysis of the studied samples are shown. By evaluating the
chemical composition, Si, Mg, and Al are observed as the major elements in both specimens,
demonstrating that it is a magnesium and aluminum silicate (Table 1).

Table 1. Chemical composition of palygorskite samples.

Oxides (%, w/w) Raw Palygorskite Pharmasorb® Colloidal

SiO2 53.70 59.57
MgO 10.68 8.94
Al2O3 10.25 10.22
CaO 4.63 3.83

Fe2O3 4.09 3.08
K2O 1.00 0.91
TiO2 0.90 0.70
MnO 0.27 0.05
P2O5 0.05 0.82
Na2O 0.05 0.06

Loss on ignition 14.38 11.82

Clay mineral samples from natural sources commonly have varying compositions,
depending on the location they were extracted from, and their mineralogical classification.
Some of the minerals or organic substances associated with phyllosilicates are quartz,
feldspar, carbonates, sulphates, iron, and aluminum oxides, among others [12].

The composition of an ideal cell of palygorskite corresponds to (Mg, Al)5Si8O20(OH)2
(OH2)4·4H2O, which justifies its characterization as a magnesium and aluminum sili-
cate [28]. However, it is rare to find samples of palygorskite with a purity higher than 75%.
Quartz (SiO2), calcite (CaCO3), and dolomite CaMg (CO3)2 are the minerals most frequently
associated with this phyllosilicate [12]. The same crystalline phases identified in the miner-
alogical analysis of raw palygorskite had already been found in similar samples analyzed
by our group [20], as well as in a previous characterization of Pharmasorb® colloidal [29].
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Thus, the highest value of SiO2 in relation to the other oxides is related to the main compo-
nents of the samples (palygorskite and quartz) (Table 1). The main recommendations for
the use of palygorskite, as an excipient in oral and topical pharmaceutical formulations, do
not pose a risk of exposure to high levels of quartz through these routes [30]. Furthermore,
the American Pharmacopoeia does not present any restriction on the content of these parti-
cles, and recent publications reinforce that the use of pharmaceutical products containing
quartz does not pose a relevant risk when administered orally and topically [31,32]. The
highest relative composition of SiO2 in Pharmasorb® colloidal is associated with the degree
of purity of this sample, which is higher than in raw palygorskite, corroborated by the
diffraction analysis (Figure 1). Baltar and collaborators (2009) reported that palygorskite
samples obtained from the same deposit as raw palygorskite had equivalent quartz content
(15.5–18.0%) [33].
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Crystallographic analysis of the samples confirmed the results obtained by XRF, ob-
serving the characteristic pattern of palygorskite in the spectrum of Figure 1, with a more
intense reflection at 8.3◦, followed by other smaller reflections, also corresponding to paly-
gorskite, at 2θ = 13.8◦, 16.3◦, 19.8◦, 20.8◦, 27.7◦, and 35.3◦. The obtained diffraction patterns
are in agreement with the literature [20,34,35]. A slightly higher proportion of calcium mag-
nesium oxide in raw palygorskite was identified when compared to Pharmasorb® colloidal.
This finding can be attributed to the presence of associated minerals such as dolomite
(Figure 1). The formation of palygorskite is favorable in arid and semiarid regions in the
presence of carbonates and alkaline medium, rich in magnesium, with the crystallization
of dolomite [36,37]. Pharmasorb® colloidal also has a small amount of calcite, the most
common type of calcium carbonate, which was also identified in a previous analysis of this
sample [18].

In addition to the reflections of phyllosilicate, the impurities identified in the miner-
alogical analysis, such as quartz and carbonates, can be identified in the diffractogram.
Dolomite was identified in raw palygorskite at 2θ = 30.9◦ and 41.1◦, while calcite (2θ = 29.4◦)
can be seen in the diffractogram of Pharmasorb® colloidal. These data indicate that even
the pharmaceutical-grade palygorskite has a certain level of impurities [38].

Iron detected in the FRX analysis is a common element in palygorskite samples, since
the Fe3+ cation is present in the octahedral sheet. The percentage of iron oxide between
3 and 5% is consistent with the mean values reported by other authors [20,39,40].

Some of the transition metals identified in the composition of phyllosilicates, such as
iron, manganese, and copper (Table 1), are of pharmaceutical interest due to their potential
catalytic properties in oxidative reactions of drugs, which may have a negative impact on
the stability of drugs that are susceptible to oxidation [41].

The proportion of manganese oxide in raw palygorskite was 0.27% and is in agreement
with samples from the same region (0.21%) as found by Pereira et al. [40]. However, it
has a value approximately five times higher than that of commercial palygorskite. These
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variations are related to the mechanism by which the clay mineral was formed and its
origin [42,43].

The combination of XRF and XRD results demonstrate the mineralogical composition
of raw palygorskite as follows: palygorskite (67%), dolomite (15%), and quartz (13%).
Pharmasorb® colloidal, in turn, is composed of palygorskite (74%), quartz (10%), and
calcite (5%). The diffractograms of raw palygorskite and Pharmasorb® colloidal are shown
in Figure 1 and show the crystalline profile of the palygorskite in the two samples. At angle
2θ = 8.3◦, an intense reflection of the palygorskite plane (110) is observed. The presence
of quartz is confirmed by reflection at 2θ = 26.6◦, with higher relative intensity in the raw
palygorskite sample, in agreement with the mineralogical analysis. Dolomite carbonate is
identified at angles 2θ = 30.9◦ and 41.1◦ in raw palygorskite; a peak referring to calcite is
observed at 2θ = 29.4◦ in the Pharmasorb® colloidal diffractogram (Figure 1).

LOI was conducted to assess the extent of weight reduction upon subjecting a sample
to high temperatures in a muffle furnace. The LOI results, expressed as a percentage of the
original sample weight (Table 1), revealed comparable values for both palygorskite samples.
However, the raw palygorskite sample displayed a slightly higher percentage (14.38%)
than the Pharmasorb® colloidal sample (11.82%). This weight loss can be attributed to
the volatilization of organic constituents, thermal decomposition of specific compounds
(organic matter present in the material), or dehydration of crystalline hydrates [44].

3.2. Inductively Coupled Plasma Optical Emission Spectroscopy Analysis (ICP-OES) for Heavy
Metals and Arsenic

ICP-OES analysis identified heavy metals as cadmium, cobalt, chromium, lead, nickel,
and arsenic. Notably, the quantities of all elements detected comply with the specifications
outlined in the British Pharmacopoeia [27]. It is worth mentioning that mercury was not
detected in the analysis.

3.3. Methylene Blue Adsorption (MBA)

Furthermore, the findings regarding the adsorption capacity utilizing methylene blue
as a model revealed that Pharmasorb® colloidal exhibited a superiority of approximately
15-fold over raw palygorskite. This significant disparity suggests the need for further
investigation into potential strategies aimed at modifying the structure of the silicate, with
the objective of enhancing its molecular adsorption capacity.

3.4. Loss on Drying

The water molecules adsorbed on the surface and part of the zeolitic water inserted
in the palygorskite tunnels are easily removed under low temperatures (<110 ◦C) [45].
Therefore, the loss by desiccation test showed losses lower than the limit stipulated by
the British Pharmacopoeia (<17%), where raw palygorskite presented a loss of 6.36% and
Pharmasorb® colloidal 8.65%. This result is in agreement with the data from the thermo-
gravimetric analysis. It is assumed that the slightly higher moisture adsorption in the
commercial sample refers to the higher specific surface.

3.5. Acidity and Alkalinity

The pH values obtained for the samples are shown in Table 2. It is possible to ob-
serve that the aqueous suspensions have a basic character, given the high content of basic
salts (dolomite and calcite) associated with their geological formation. Pharmasorb® col-
loidal complied with pharmacopeial requirements (pH 7.0–9.5); however, raw palygorskite
missed the upper margin slightly. According to Souza et al., impurities related to mineral
carbonates can be easily removed after a simple acid treatment [46].
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Table 2. Surface and granulometric properties of raw palygorskite and Pharmasorb® colloidal.

Sample Specific Surface
Area (m2/g)

pH * Zeta Potential
(mV) *

Particle Size Distribution (µm)

d10 d50 d90 Span

Raw
palygorskite 122 9.63 ± 0.10 −13.1 ± 0.9 1.40 11.38 41.96 3.56

Pharmasorb® 196 8.76 ± 0.06 −15.5 ± 0.1 1.14 3.43 13.09 3.48

* Data were represented as mean ± standard deviation (n = 3).

3.6. Surface Properties and Particle Size Analysis

Surface properties and granulometry (Table 2) are relevant aspects for the characteri-
zation of solid-state inputs, as they influence properties of pharmaceutical interest, such as
adsorptive capacity and rheological profile.

Raw palygorskite has a BET-specific area of 122 m2/g, corresponding to approximately
60% of the measurement observed for Pharmasorb® colloidal. The granulometric analysis of
the palygorskite samples indicated an average micrometric size, with bimodal distribution
due to the fibrous morphology of the material. The average diameter of raw palygorskite
was 16.71 µm, while Pharmasorb® colloidal had a smaller average diameter (5.5 µm).
The particles have a heterogeneous distribution, with Span values of 3.56 and 3.48 for
raw palygorskite and Pharmasorb® colloidal, respectively. Both samples, when dispersed
in distilled water, presented similar zeta potential values, thus confirming the negative
character of the surface of the palygorskite fibers.

One of the most striking properties of fibrous clay minerals is their high specific
surface area, attributed to their small particle size, the presence of channels and tunnels,
and the morphology of the crystal [14]. Raw palygorskite presented a specific area of
122 m2/g, a similar value to those reported for samples from the same region: 113 m2/g [39],
118 m2/g [34], and 125 m2/g [47]. The superior specific area of Pharmasorb® colloidal can
be ascribed to the thermal treatment to which it is subjected. This thermal treatment can
cause partial unobstruction of the channels and tunnels of the clay mineral.

Bearing in mind that palygorskite is mainly used as an adsorbent, tablet, capsule
disintegrant, and tablet binder in solid pharmaceutical dosage forms, this property is of
great relevance. Furthermore, the high specific surface area enables the adsorption of drugs
as demonstrated by several authors [11,18,48,49].

The zeta potential is a measure used to characterize the electrokinetic potential of
colloidal dispersions, whose value is influenced not only by the properties of the dispersed
phase, but also by the pH, the ionic strength, and other parameters of the dispersing
medium [50]. The surface can change its charge under the influence of the pH of the
medium. This is due to the externally arranged Si-OH groups. In alkaline environments,
the silanol groups are deprotonated, making the clay surface more electronegative, as
demonstrated by Yang et al. [51]. However, a previous analysis conducted on the pa-
lygorskite extracted from the same geographical region determined the point of zero
charge to be around pH 8 [40]. As a result, the surface of palygorskite has the potential
to undergo protonation within a significant range of physiological pH conditions. This
finding is particularly relevant when considering the material’s potential application for
oral administration.

In addition, the zeta potential can help to predict the system’s stability. The surface
charge can even correlate with palygorskite biocompatibility: some studies have reported
that negatively charged particles have better biological compatibility, as they are not so
easily internalized by cells due to electrostatic repulsion between the negative surface of
the particles and the anionic glycosaminoglycans anchored in the cell membrane [52]. All
these properties, as well as their similarities with Pharmasorb® colloidal, indicate that raw
palygorskite can be used as a pharmaceutical excipient.

A parameter capable of influencing the specific area of fibrous phyllosilicates refers
to the size of the fibers. Palygorskite is recognized as a 1D nanomaterial since the single
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crystal has a width of 20–30 nm and its length is generally of the order of micrometers,
depending on its origin [53].

Both samples comply with the granulometric specification of the American Pharma-
copoeia, which determines that palygorskite particles must have a particle size below 45 µm.
The raw palygorskite sample has a larger mean diameter than Pharmasorb® colloidal due
to the industrial processing applied to this sample to reduce the size of its particles and
break down the agglomerated fibers. The heterogeneity observed in the measurements
is related to the random formation of these agglomerates, in which the crystals are not
aligned or even parallel. The amplitude indicated by Span can also be attributed to the
presence of contaminants, such as quartz, which correspond to 10–13% of the sample.

The results corroborate the difference found in the specific area of the samples since
this parameter is inversely proportional to the size of the particles. The surface charges
measured on palygorskite samples are similar. They are in line with data in the literature,
which show a moderately negative charge due to the replacement of Al3+ by Fe2+ in the
octahedral sheet [13,54–56].

3.7. Fourier Transform Infrared Spectroscopy

FTIR spectra curves show the similarity between the raw palygorskite and Pharmasorb®

colloidal (Figure 2). The spectrum in the infrared region of palygorskite is characterized
by presenting signals referring to hydroxyl vibrations above 3000 cm−1, related to water,
or around 1650 cm−1, referring to water in tunnels and channels. The bands of fibrous
phyllosilicates appear below 1200 cm−1.
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The bands related to structural hydroxyl stretching (Al-Al-OH) appear at 3618 cm−1,
while the stretching of the hydroxyl corresponding to the coordinated and adsorbed wa-
ter molecules appears at 3540 cm−1. The band at 1651 cm−1 belongs to the vibrational
deformation of physiosorbed water and to the water molecules within the phyllosilicate
channels. The band at 1197 cm−1 is characteristic of the sepiolite–palygorskite group due
to tetrahedral inversion (Si-O-Si). The Si-O stretching vibration at 976 cm−1 and the Al-Al-
OH deformation band at 912 cm−1 were properly identified at 976 cm−1 and 912 cm−1,
respectively. The aforementioned bands coincide with reports in the literature [57–59].

In the raw palygorskite spectrum, an antisymmetric carbonate stretching band was
observed between 1550 and 1300 cm−1, and a less intense band at 876 cm−1, typical of the
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carbonate anion, was also identified. Both have been previously described for palygorskite
samples [60]; however, they are less intense in the Pharmasorb® colloidal spectrum. This
agrees with the XRF and XRD results, which indicate the presence of a higher number of
carbonates in raw palygorskite with respect to Pharmasorb® colloidal.

The band around 1600 cm−1 also has lower intensity in Pharmasorb® colloidal than
in raw palygorskite. This difference can also be ascribed to the thermal treatment of
Pharmasorb®, which can remove the adsorbed water, the water contained in the channels,
and even the coordinated water, depending on the temperature and heating time [61].

3.8. Thermal Analysis

The thermogravimetric analysis of the samples demonstrated agreement with the
literature, which describes the mass loss of this phyllosilicate in four steps (Figure 3 and
Table 3). The succession of events can be divided as follows: the first event represents the
loss of water adsorbed onto its surface, the second loss corresponds to the removal of water
contained in the fiber channels, the third stage refers to coordinated water loss, and, finally,
the dehydroxylation of the octahedral sheet is observed [62].
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Table 3. Thermal events related to phyllosilicates obtained from TG and DTA curves.

Sample Temperature
Range (◦C) Tpeak (◦C) Weight Loss (%) Residue (%)

Raw
palygorskite

30–88.90 87.92 5.72

74.01
88.90–200.58 211.97 3.57

200.58–485.41 478.37 7.19
485.41–686.07 683.74 9.51

Pharmasorb®

colloidal

30–96.27 84.77 7.13

78.73
96.27–219.25 197.26 4.27

221.25–489.62 472.37 6.93
489.62–644.64 627.53 2.94

The DTA curves (Figure 4) indicate a succession of endothermic events corresponding
to the four stages of mass loss previously observed in the thermogravimetric analysis.
Initially, it is observed that the raw palygorskite sample presents the first event divided
into two stages, possibly related to moisture weakly adsorbed onto the surface of the phyl-
losilicate, given that it has not undergone any previous treatment, unlike the commercial
clay, Pharmasorb® colloidal. In the raw palygorskite sample, at temperatures below 100 ◦C,
it is observed that the first event has a poorly resolved peak, which is related to surface
adsorbed water. The second event refers to a partial loss of water in the phyllosilicate chan-
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nels, as Rhouta et al., (2013) reported when analyzing Moroccan palygorskite samples [63].
The loss of residual zeolite water at 200 ◦C is similar to the two analyzed phyllosilicates.
The loss of part of the water coordinated to the cations of the octahedral sheet of raw
palygorskite was evidenced by a shoulder around 400 ◦C, while this event is less intense in
Pharmasorb® colloidal. The analysis of Chinese palygorskite samples reported by Cheng
et al., (2011) demonstrated that the amount and type of impurity present influence the
thermal behavior of phyllosilicates, such as calcite or dolomite [64].
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Figure 4. DTA curves of raw palygorskite and Pharmasorb® colloidal.

A greater difference between the samples was found in the last thermal event, which
was more intense and rougher for the raw palygorskite, probably due to the presence
of dolomite. According to Cheng et al., (2011), the dehydroxylation of the clay mineral
is followed by the decomposition of carbonates between 600 and 700 ◦C [64]. Therefore,
the higher carbonate content in the crude sample justifies this loss [64]. The presence of
dolomite in raw palygorskite justifies the higher mass loss of this sample above 600 ◦C
compared to Pharmasorb® colloidal.

The last event contemplates the condensation of the remaining structural hydroxyls,
which require higher temperatures to diffuse due to the collapse of the channels, followed
by the thermal decomposition of the carbonates. This loss was represented by an intense
and extended endothermic peak in raw palygorskite (Tpeak = 683.74 ◦C), justified by the
significant presence of dolomite in the sample. A less sharp peak represented calcite de-
composition in the DTA curve (Tpeak = 627.53 ◦C) of Pharmasorb® colloidal, corroborating
the more subtle loss of mass of this carbonate in the thermogravimetric curve.

3.9. Electron Microscopy Analysis

Analysis by transmission electron microscopy showed the acicular morphology of
this phyllosilicate in both samples (Figure 5). Moreover, their macroscopic similarities
are undeniable.

The crystals shown in Figure 5 occur as thin, elongated fibers of varying lengths,
randomly distributed in different ways: isolated, grouped in a few units parallel to each
other, or forming massive bundles from the agglomerated structures [65,66]. Pharmasorb®

colloidal fibers were shorter than in the raw palygorskite, which corroborates the data
shown in Table 2.

At this point of the study, it seems clear that the main differences between raw paly-
gorskite and Pharmasorb® colloidal mainly lie in the amount of secondary mineral phases.
Although the amount of impurities is low compared with most phyllosilicate deposits, a
further purification of raw palygorskite could easily increase its quality and potential uses.
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Purification operations, such as the removal of coarser quartz particles and acid
leaching to reduce carbonates and iron oxides, are quite straightforward. Such steps would
increase the surface area of the raw palygorskite and minimize possible incompatibilities
between the phyllosilicate and drugs susceptible to oxidation, thus exerting a significant
impact on the final uses of the Brazilian palygorskite.

Raw palygorskite has shown several positive attributes that make it a viable choice for
use in pharmaceutical and cosmetic production. It meets safety and quality requirements
established by the British Pharmacopoeia, is more cost-effective compared to Pharmasorb
colloidal, is readily available, and benefits from a well-established value chain.

Palygorskite is a biocompatible raw material that has been extensively studied for
its safety in vitro assays involving various cell types. These studies have demonstrated
its biocompatibility with macrophages, fibroblasts, renal epithelium, and human cervical
cancer cells [6,67,68]. Furthermore, palygorskite is recognized as an adjunct in the treatment
of diarrhea and is also listed as a pharmaceutical excipient in non-parenteral formulations
in American and European pharmacopeias. In a recent publication by our group, the
biocompatibility results of microparticles prepared with chitosan and the same raw paly-
gorskite were presented. The study employed BALB/3T3 clone A31 embryonic fibroblasts
from mice, and the results demonstrated high biocompatibility, indicating satisfactory
outcomes [69]. These factors, along with its proven efficacy in the pharmaceutical industry,
indicate its quality and safety for use in such applications.

4. Conclusions

Historically, clay minerals have played an important role in human history, from their
uses in the building industry to healthcare, and especially in the pharmaceutical field. In
fact, they are widely used as excipients and active ingredients themselves, appearing in
medical and pharmaceutical textbooks. However, to be used in the pharmaceutical field,
they must meet minimum quality and purity standards. This manuscript aims to character-
ize a raw palygorskite clay mineral extracted from a Brazilian deposit and compares it with
a pharmaceutical-grade palygorskite commercialized as Pharmasorb® colloidal. To this
end, both samples were characterized using X-ray fluorescence, X-ray powder diffraction,
BET surface method, granulometry, zeta potential, infrared spectroscopy, thermal analysis,
and electron microscopy.

The results confirm that the clay mineral extracted from the Brazilian deposit can be
considered a palygorskite, this being the main mineral phase present. The secondary min-
eral phases found were also equivalent for both samples. Moreover, the physicochemical
properties of the Brazilian sample, even without previous treatments or purification, were
very similar to those of Pharmasorb® colloidal. Due to its high specific surface area, particle
size, and moderated negative charge. The exploitation of such a high quality, natural
resource of palygorskite for the healthcare field can be of benefit to not only the healthcare
field itself but it could also foster the growth and development of Brazil. This becomes
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even more important when we consider that the number of deposits of such high purity in
this mineral is low. Brazilian raw palygorskite meets all the minimum quality standards
that enable it to be exploited from a pharmaceutical perspective, and for it to potentially be
applied in non-parenteral drugs and cosmetics.
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