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Abstract
We consider real hypersurfaces M in complex projective space equipped with both the Levi–
Civita and generalized Tanaka–Webster connections. For any nonnull constant k and any
symmetric tensor field of type (1, 1) L on M , we can define two tensor fields of type (1, 2)
on M , L(k)

F and L(k)
T , related to both connections. We study the behaviour of the structure

operator φ with respect to such tensor fields in the particular case of L = A, the shape
operator of M , and obtain some new characterizations of ruled real hypersurfaces in complex
projective space.

Keywords g-Tanaka–Webster connection · Complex projective space · Real hypersurface ·
kth Cho operator · Torsion operator · Ruled real hypersurfaces

Mathematics Subject Classification 53C15 · 53B25

1 Introduction

Let CPm , m ≥ 2, be the complex projective space endowed with the Kaehlerian structure
(J , g), where g is the Fubini–Study metric of constant holomorphic sectional curvature 4.
Let M be a connected real hypersurface of CPm without boundary, g the restriction of
the metric on CPm to M and ∇ the Levi–Civita connection on M . Take a locally defined
unit normal vector field N on M and let ξ = −J N . This is a tangent vector field to M
called the structure (or Reeb) vector field on M . If X is a vector field on M , we write
J X = φX+η(X)N ,whereφX denotes the tangent component of J X . Thenη(X) = g(X , ξ),
φ is called the structure tensor on M and (φ, ξ, η, g) is an almost contact metric structure
on M induced by the Kaehlerian structure of CPm . The classification of homogeneous real
hypersurfaces in CPm was obtained by Takagi, see [5, 19–21]. His classification contains
6 types of real hypersurfaces. Among them we find type (A1) real hypersurfaces that are
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geodesic hyperspheres of radius r , 0 < r < π
2 , and type (A2) real hypersurfaces that are tubes

of radius r , 0 < r < π
2 , over totally geodesic complex projective spacesCPn , 0 < n < m−1.

We will call both types of real hypersurfaces type (A) real hypersurfaces. They are Hopf,
that is, the structure vector field is principal, and are the unique real hypersurfaces in CPm

such that Aφ = φA, see [11].
Ruled real hypersurfaces in CPm satisfy that the maximal holomorphic distribution on

M , D, given at any point by the vectors orthogonal to ξ , is integrable and its integral mani-
folds are totally geodesic CPm−1. Equivalently, g(AD,D) = 0. For examples of ruled real
hypersurfaces see [6] or [8].

The Tanaka–Webster connection, [22, 24], is the canonical affine connection defined on
a non-degenerate, pseudo-Hermitian CR-manifold. As a generalization of this connection,
Tanno [23], defined the generalized Tanaka–Webster connection for contact metric manifolds
by

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇X ξ − η(X)φY (1.1)

for any vector fields X , Y on the manifold.
Using the almost contact metric structure on M and the naturally extended affine con-

nection of Tanno’s generalized Tanaka–Webster connection, Cho defined the kth generalized
Tanaka–Webster connection ∇̂(k) for a real hypersurface M in CPm , see [3, 4], by

∇̂(k)
X Y = ∇XY + g(φAX , Y )ξ − η(Y )φAX − kη(X)φY (1.2)

for any X,Y tangent to M where k is a nonzero real number. Then ∇̂(k)η = 0, ∇̂(k)ξ = 0,
∇̂(k)g = 0, ∇̂(k)φ = 0. In particular, if the shape operator of a real hypersurface satisfies
φA+Aφ = 2kφ, the kth generalized Tanaka–Webster connection coincideswith the Tanaka–
Webster connection.

Here we can consider the tensor field of type (1, 2) given by the difference of the con-
nections F (k)(X , Y ) = g(φAX , Y )ξ − η(Y )φAX − kη(X)φY , for any X , Y tangent to M ,
see [7] Proposition 7.10, pp. 234–235. We will call this tensor the kth Cho tensor on M .
Associated to it, for any X tangent to M and any nonnull real number k, we can consider
the tensor field of type (1, 1) F (k)

X , given by F (k)
X Y = F (k)(X , Y ) for any Y ∈ T M . This

operator will be called the kth Cho operator corresponding to X . Notice that if X ∈ D, the
corresponding Cho operator does not depend on k and we simply write FX . The torsion of
the connection ∇̂(k) is given by T (k)(X , Y ) = F (k)

X Y − F (k)
Y X for any X , Y tangent to M . We

define the kth torsion operator associated to X to the operator given by T (k)
X Y = T (k)(X , Y ),

for any X , Y tangent to M .
Let L denote the Lie derivative on M . Therefore, LXY = ∇XY − ∇Y X for any X , Y

tangent to M . Now we can define on M a differential operator of first order, associated to the
kth generalized Tanaka–Webster connection, given by

L(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X = LXY + T (k)

X Y

for any X , Y tangent to M . We will call it the derivative of Lie type associated to the kth
generalized Tanaka–Webster connection.

Let now L be a symmetric tensor of type (1, 1) defined on M . We can consider then the
type (1, 2) tensor L(k)

F associated to L in the following way:

L(k)
F (X , Y ) = [F (k)

X , L]Y = F (k)
X LY − LF (k)

X Y
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for any X , Y tangent toM .We also can consider another tensor of type (1, 2) , L(k)
T , associated

to L , by

L(k)
T (X , Y ) = [T (k)

X , L]Y = T (k)
X LY − LT (k)

X Y

for any X , Y tangent to M . Notice that if X ∈ D, L(k)
F does not depend on k. We will write

it simply LF .
In [15], respectively [12], we proved the nonexistence of real hypersurfaces in CPm ,

m ≥ 3, such that, for the tensors of type (1, 2) associated to the shape operator, A(k)
F = 0,

respectively A(k)
T = 0, for any nonnull real number k. Further results on such tensors were

obtained in [13, 14].
The purpose of the present paper is to study the behaviour of both tensors with respect to

the structure operator φ. We will say that A(k)
F is pure with respect to φ if A(k)

F (φX , Y ) =
A(k)
F (X , φY ), for any X , Y tangent to M , Tachibana [18], see also [16, 17]. We will say that

A(k)
F is η-pure with respect to φ if A(k)

F (φX , Y ) = A(k)
F (X , φY ), for any X , Y ∈ D. Analo-

gously, wewill say that A(k)
F is hybridwith respect toφ if A(k)

F (φX , Y )+A(k)
F (X , φY ) = 0 for

any X , Y tangent to M , Tachibana [18], and it is η-hybrid if A(k)
F (φX , Y )+ A(k)

F (X , φY ) = 0
for any X , Y ∈ D. We will prove

Theorem 1.1 Let M be a real hypersurface in CPm, m ≥ 3. Then AF is η-pure with respect
to φ if and only if M is locally congruent to a ruled real hypersurface.

Also we will prove

Theorem 1.2 Let M be a real hypersurface inCPm,m ≥ 3. Then AF is η-hybrid with respect
to φ if and only if M is locally congruent to one of the following real hypersurfaces:

1. a tube of radius π
4 around a complex submanifold of CPm;

2. a real hypersurface of type (A);
3. a ruled real hypersurface.

On the other hand, we also have

Theorem 1.3 Let M be a real hypersurface inCPm,m ≥ 3. Then AF (φX , Y ) = φAF (X , Y )

for any X , Y ∈ D if and only if M is locally congruent to a ruled real hypersurface.

Concerning the tensor A(k)
T , we will prove

Theorem 1.4 There does not exist any real hypersurface in CPm, m ≥ 3, such that A(k)
T is

η-pure with respect to φ, for any nonnull real number k.

Also we will obtain

Theorem 1.5 Let M be a real hypersurface in CPm, m ≥ 3, and k a nonnull real number.
Then A(k)

T is η-hybrid with respect to φ if and only if M is locally congruent to a real
hypersurface of type (A).

As in the case of AF , we can prove

Theorem 1.6 Let M be a real hypersurface in CPm, m ≥ 3, and k a nonnull real number.
Then A(k)

T (φX , Y ) = φA(k)
T (X , Y ), for any X , Y ∈ D, if and only if M is locally congruent

to a ruled real hypersurface.
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We also prove

Theorem 1.7 There does not exist any real hypersurface in CPm, m ≥ 3, such that
A(k)
T (X , φY ) = φA(k)

T (X , Y ) for any X , Y ∈ D and any nonnull real number k.

2 Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of classC∞ unless
otherwise stated. Let M be a connected real hypersurface inCPm ,m ≥ 2, without boundary.
Let N be a locally defined unit normal vector field onM . Let∇ be the Levi–Civita connection
on M and (J , g) the Kaehlerian structure of CPm .

For any vector field X tangent to M , we write J X = φX + η(X)N , and −J N = ξ . Then
(φ, ξ, η, g) is an almost contact metric structure on M , see [1]. That is, we have

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX , φY ) = g(X , Y ) − η(X)η(Y ) (2.1)

for any vectors X , Y tangent to M . From (2.1) we obtain

φξ = 0, η(X) = g(X , ξ). (2.2)

From the parallelism of J we get

(∇Xφ)Y = η(Y )AX − g(AX , Y )ξ (2.3)

and

∇X ξ = φAX (2.4)

for any X , Y tangent to M , where A denotes the shape operator of the immersion. As the
ambient space has holomorphic sectional curvature 4, the Codazzi equation is given by

(∇X A)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX , Y )ξ (2.5)

for any vectors X , Y tangent to M . We will call the maximal holomorphic distribution D on
M the following one: at any p ∈ M , D(p) = {X ∈ TpM |g(X , ξ) = 0}. We will say that M
is Hopf if ξ is principal, that is, Aξ = αξ for a certain function α on M .

In the sequel we need the following result:

Theorem 2.1 ([9]) If ξ is a principal curvature vector with corresponding principal curvature
α and X ∈ D is principal with principal curvature λ, then 2λ − α �= 0 and φX is principal
with principal curvature αλ+2

2λ−α
.

3 Proofs of results concerning AF

In order to prove Theorem 1.1, we should have FφX AY − AFφXY = FX AφY − AFXφY ,
for any X , Y ∈ D. This yields

g(φAφX , AY )ξ − η(AY )φAφX − g(φAφX , Y )Aξ

= g(φAX , AφY )ξ − η(AφY )φAX − g(AX , Y )Aξ (3.1)

for any X , Y ∈ D. If M is Hopf with Aξ = αξ , the scalar product of (3.1) and ξ gives
g(φAφX , AY ) − αg(φAφX , Y ) = g(φAX , AφY ) − αg(φAX , Y ) for any X , Y ∈ D. Let
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us suppose that X ∈ D satisfies AX = λX . Then AφX = μφX , μ = αλ+2
2λ−α

, and we obtain

−λμ+αμ = λμ−αλ. That is, 2λμ = α(μ+λ). This implies 2αλ2+4λ
2λ−α

= α
(

αλ+2
2λ−α

+ λ
)

=
α

(
2(1+λ)2

2λ−α

)
. Thus, αλ2 + 2λ = αλ2 + α, and so, λ = α

2 . As 2λμ = α(μ + λ), we get

αμ = α(μ + λ). Then αλ = α2

2 = 0, that is, α = 0 and also λ = 0, a contradiction with the
fact 2λ − α �= 0.

This means that M must be non-Hopf. Therefore, locally we can write Aξ = αξ + βU ,
U being a unit vector field in D, α and β functions on M and β �= 0. We also define DU as
the orthogonal complementary distribution in D to the one spanned by U and φU . With this
in mind (3.1) becomes

g(φAφX , AY )ξ − βg(Y ,U )φAφX − g(φAφX , Y )Aξ

= g(φAX , AφY )ξ − βg(φY ,U )φAX − g(AX , Y )Aξ (3.2)

for any X , Y ∈ D. The scalar product of (3.2) and φU gives −βg(Y ,U )g(AφX ,U ) =
−βg(φY ,U )g(AX ,U ) for any X , Y ∈ D. Taking Y = U , we obtain −βg(AU , φX) = 0
for any X ∈ D. As we suppose β �= 0 and changing X by φX , we have g(AU , X) = 0 for
any X ∈ D. This means that

AU = βξ. (3.3)

The scalar product of (3.2) and U yields −βg(Y ,U )g(φAφX ,U ) − βg(φAφX , Y ) =
−βg(φY ,U )g(φAX ,U ) − βg(AX , Y ), for any X , Y ∈ D. As β �= 0, we have

g(Y ,U )g(AφU , φX) + g(AφY , φX) = g(φY ,U )g(AφU , X) − g(AX , Y ) (3.4)

for any X , Y ∈ D. If we take X = U in (3.4), it follows 2g(AφU , φX) = −g(AU , X) for
any X ∈ D. From (3.3), changing X by φX , we obtain g(AφU , X) = 0 for any X ∈ D.
Therefore

AφU = 0. (3.5)

Now the scalar product of (3.2) and Z ∈ DU implies −βg(Y ,U )g(φAφX , Z) =
−βg(φY ,U )g(φAX , Z), for any X , Y ∈ D, Z ∈ DU . If Y = φU , we obtain βg(φAX , Z)

= 0 for any X ∈ D, Z ∈ DU . If we change Z by φZ and bear in mind that β �= 0, it follows
g(AZ , X) = 0 for any Z ∈ DU , X ∈ D. Therefore,

AZ = 0 (3.6)

for any Z ∈ DU . From (3.3), (3.5) and (3.6), M is locally congruent to a ruled real hypersur-
face. The converse is trivial and we have finished the proof of Theorem 1.1.

Now if AF is η-hybrid, we have

g(φAφX , AY )ξ − η(AY )φAφX − g(φAφX)Aξ + g(φAX , AφY )ξ

−η(AφY )φAX − g(AX , Y )Aξ = 0 (3.7)

for any X , Y ∈ D. Let us suppose that M is Hopf and write Aξ = αξ . If we take the
scalar product of (3.7) and ξ , it follows g(φAφX , AY )−αg(φAφX , Y )+ g(φAX , AφY )−
αg(AX , Y ) = 0, for any X , Y ∈ D. Thismeans that AφAφX−αφAφX−φAφAX−αAX =
0 for any X ∈ D. If we take X ∈ D such that AX = λX , as AφX = μφX , we get
−λμ + αμ + λμ − αλ = 0. That is, α(μ − λ) = 0. Thus, either α = 0, and by Cecil and
Ryan [2] we have (1) in Theorem 1.2, or μ = λ. This means that Aφ = φA and in this case
we have (2) in Theorem 1.2.

123



J.D. Pérez, D. Pérez-López

If M is non-Hopf, following the same steps as in Theorem 1.1 we obtain (3) in Theorem
1.2, finishing its proof.

If we suppose that M satisfies the condition in Theorem 1.3, we must have FφX AY −
AFφXY = φFX AY − φAFXY for any X , Y ∈ D. This yields

g(φAφX , AY )ξ − η(AY )φAφX − g(φAφX , Y )Aξ = −η(AY )φ2AX

−g(φAX , Y )φAξ (3.8)

for any X , Y ∈ D. If we suppose that M is Hopf, the scalar product of (3.8) and ξ gives
g(φAφX , AY ) − αg(φAφX , Y ) = 0. Therefore, AφAφX − αφAφX = 0, for any X ∈ D.
If we suppose that X ∈ D satisfies AX = λX we obtain μ(α − λ) = 0. Therefore, either

μ = 0 and then α �= 0 and λ = − 2
α
, or if μ �= 0, α = λ and then μ = α2+2

α
. Moreover, all

principal curvatures are constant and, by Kimura [5], M must be locally congruent to a real
hypersurface appearing among the six types in Takagi’s list. Looking at such types, none has
our principal curvatures, Takagi [20], proving that M must be non-Hopf.

We write as above Aξ = αξ + βU , with the same conditions. Then (3.8) becomes

g(AφAφX , Y )ξ − βg(Y ,U )φAφX − g(φAφX , Y )Aξ

= −βg(Y ,U )φ2AX − βg(φAX , Y )φU (3.9)

for any X , Y ∈ D. The scalar product of (3.9) and φU gives, bearing in mind that β �= 0,

g(Y ,U )g(AU , φX) = g(Y ,U )g(φAX ,U ) − g(φAX , Y ), (3.10)

for any X , Y ∈ D. If X = Y = U , we get g(AU , φU ) = −2g(AU , φU ). Thus,

g(AU , φU ) = 0. (3.11)

If we take Y = U , X ∈ D and orthogonal to U in (3.10), we have g(φAU , X) =
2g(AφU , X) for such an X . From (3.11) the same is true for X = U . Therefore, 2AφU−φAU
has no component in D. As its scalar product with ξ also vanishes, we get

2AφU = φAU . (3.12)

If we take Y = φU , X ∈ D in (3.10), it follows g(AX ,U ) = 0 for any X ∈ D. Thus,

AU = βξ (3.13)

and, from (3.11),

AφU = 0. (3.14)

The scalar product of (3.9) and U , bearing in mind (3.13) and (3.14), gives g(φAφX ,

Y ) = g(Y ,U )g(φ2AX ,U ) = −g(Y ,U )g(AX ,U ) = 0, for any X ∈ D. Taking φX ∈ DU

instead of X , we obtain φAX = 0. Applying φ, we get

AX = 0 (3.15)

for any X ∈ DU . From (3.13), (3.14) and (3.15), M must be locally congruent to a ruled real
hypersurface and we have finished the proof of Theorem 1.3.

Remark 3.1 With proofs similar to the proof of Theorem 1.3, we can obtain other charac-
terizations of ruled real hypersurfaces in CPm , m ≥ 3, if we consider any of the following
conditions:

1. AF (φX , Y ) + φAF (X , Y ) = 0, for any X , Y ∈ D;
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2. AF (X , φY ) = φAF (X , Y ), for any X , Y ∈ D;
3. AF (X , φY ) + φAF (X , Y ) = 0, for any X , Y ∈ D.

4 Results concerning A(k)
T

If we suppose that A(k)
T is η-pure with respect to φ, we will have FφX AY − F (k)

AYφX −
AFφXY + AFYφX = FX AφY − F (k)

AφY X − AFXφY + AFφY X for any X , Y ∈ D. This
yields

g(φAφX , AY )ξ − η(AY )φAφX − g(A2Y , X)ξ − kη(AY )X − g(φAφX , Y )Aξ

+g(AY , X)Aξ = g(φAX , AφY )ξ − η(AφY )φAX − g(φA2φY , X)ξ

+kη(AφY )φX − g(AX , Y )Aξ + g(φAφX)Aξ (4.1)

for any X , Y ∈ D. Let us suppose that M is Hopf with Aξ = αξ . Then (4.1) becomes
g(φAφX , Y )ξ − g(A2Y , X)ξ − αg(φAφX , Y )ξ + αg(AY , X)ξ = g(φAX , AφY )ξ −
g(φA2φY , X)ξ − αg(AX , Y )ξ + αg(φAφY , X)ξ , for any X , Y ∈ D. Let us suppose
that X ∈ D satisfies AX = λX . Then AφX = μφX and from the last equation we
obtain −λμ − λ2 + 2αμ + 2αλ = λμ + μ2. That is (μ + λ)2 − 2α(μ + λ) = 0. Thus,
(μ + λ)(μ + λ − 2α) = 0. If μ + λ = 0, as μ = αλ+2

2λ−α
, we get 2λ2 + 2 = 0, which is

impossible. Therefore μ + λ = 2α and the value of μ yields λ2 − 2αλ + 1 + α2 = 0. This
equation has no real solutions and this implies that our real hypersurface must be non-Hopf.

As in the previous section, we write locally Aξ = αξ + βU , with the same conditions,
and also make the following computations locally. The scalar product of (4.1) and φU gives
−η(AY )g(AφX ,U ) − kη(AY )g(X , φU ) = −η(AφY )g(AX ,U ) + kη(AφY )g(X ,U ) for
any X , Y ∈ D. That is, bearing in mind that β �= 0,

g(Y ,U )g(AφX ,U ) + kg(Y ,U )g(X , φU ) = g(φY ,U )g(AX ,U ) − kg(φY ,U )g(X ,U )

(4.2)

for any X , Y ∈ D. Take Y = φU in (4.2) to obtain g(AX ,U ) − kg(X ,U ) = 0, for any
X ∈ D. Therefore,

AU = βξ + kU . (4.3)

Now the scalar product of (4.1) and U yields

−g(Y ,U )g(φAφX ,U ) − kg(Y ,U )g(X ,U ) − g(φAφX , Y ) + g(AY , X)

= −g(φY ,U )g(φAX ,U ) + kg(φY ,U )g(φX ,U ) − g(AX , Y ) + g(φAφY , X) (4.4)

for any X , Y ∈ D. Taking Y = U in (4.4) we obtain

− kg(X ,U ) − 3g(φAφX ,U ) + 2g(AU , X) = 0 (4.5)

for any X ∈ D. Taking X ∈ DU and changing X by φX in (4.5) we get g(AφU , X) = 0 for
any X ∈ DU . If X = U in (4.5), we have −k + 3g(AφU , φU ) + 2k = 0. Bearing in mind
(4.3) we have obtained

AφU = −k

3
φU . (4.6)

Moreover, the scalar product of (4.1) and φZ ∈ DU implies

− g(Y ,U )g(AφX , Z) − kg(Y ,U )g(X , φZ) = −g(φY ,U )g(AX , Z) + kg(φY ,U )g(X , Z)

(4.7)
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for any X , Y ∈ D, Z ∈ DU . Taking Y = φU in (4.7) we obtain g(AZ , X) − kg(Z , X) = 0
for any Z ∈ DU , X ∈ D, and this yields

AZ = kZ (4.8)

for any Z ∈ DU . Take Z ∈ DU . Then AZ = kZ and AφZ = kφZ . From the Codazzi
equation, ∇φZ (kZ) − A∇φZ Z − ∇Z (kφZ) + A∇ZφZ = 2ξ . Its scalar product with ξ gives
−kg(Z , φAφZ) − g(∇φZ Z , αξ + βU ) + kg(φZ , φAZ) + g(∇ZφZ , αξ + βU ) = 2. Then,
βg([Z , φX ],U ) + 2k2 + αg(Z , φAφZ) − αg(φZ , φAZ) = 2. Therefore

g([Z , φZ ],U ) = 2 − 2k2 + 2αk

β
. (4.9)

Moreover, its scalar product with U implies −kg([Z , φZ ],U ) − g(∇φZ Z , βξ + kU ) +
g(∇ZφZ , βξ + kU ) = 0. This gives βg(Z , φAφZ) − βg(φZ , φAZ) = 0 or 2βk = 0,
which is impossible and proves Theorem 1.4.

Suppose now that A(k)
T is η-hybrid with respect to φ. Then we have

g(φAφX , AY )ξ − η(AY )φAφX − g(A2Y , X)ξ − kη(AY )X + g(φAX , AφY )ξ

−η(AφY )φAX − g(φA2φY , X)ξ + kη(AφY )φX = 0 (4.10)

for any X , Y ∈ D. Let us suppose that M is Hopf. Then (4.10) gives g(AφAφX , Y ) −
g(A2X , Y ) − g(φAφAX , Y ) − g(φA2φX , Y ) = 0, for any X , Y ∈ D. Then AφAφX −
A2X − φAφAX − φA2φX = 0 for any X ∈ D. If X ∈ D satisfies AX = λX , we obtain
−λμ−λ2 +λμ+μ2 = 0. Therefore, λ2 = μ2. As in the previous theorem, λ+μ = 0 gives
a contradiction. This means that λ = μ and φA = Aφ. This yields that M must be locally
congruent to a real hypersurface of type (A). The converse is immediate.

Suppose then that M is non-Hopf and Aξ = αξ +βU . Taking the scalar product of (4.10)
and φU we have

−g(Y ,U )g(AφX ,U ) − kg(Y ,U )g(X , φU ) − g(φY ,U )g(AX ,U )

+kg(φY ,U )g(X ,U ) = 0 (4.11)

for any X , Y ∈ D. If Y = φU in (4.11), we obtain g(AU , X)−kg(U , X) = 0 for any X ∈ D

and this yields

AU = βξ + kU . (4.12)

Following the above proof step by step, we can also see that AφU = kφU and AZ = kZ ,
for any Z ∈ DU . If we apply again the Codazzi equation to Z and φZ , Z ∈ DU , we obtain
kβ = 0, which is impossible and finishes the proof of Theorem 1.5.

The condition in Theorem 1.6 implies

g(φAφX , AY )ξ − η(AY )φAφX − g(A2Y , X)ξ − g(A2Y , X)ξ

−g(φAφX , Y )Aξ + g(AX , Y )Aξ = −η(AY )φ2AX − g(φAX , Y )φAξ

+g(φAY , X)φAξ (4.13)

for any X , Y ∈ D. If M is Hopf, (4.13) yields g(AφAφX , Y )ξ − g(A2X , Y )ξ −
αg(φAφX , Y )ξ − αg(AX , Y )ξ = 0 for any X , Y ∈ D. Its scalar product with ξ shows
that AφAφX − A2X − αφAφX + αAX = 0, for any X ∈ D: If X ∈ D satisfies AX = λX ,
AφX = μφX and we obtain (α − λ)(μ + λ) = 0. As we saw before, λ + μ �= 0. Therefore,
λ = α and as μ = αλ+2

2λ−α
, we get μ = α2+2

α
. Thus, M has two distinct constant principal

curvatures. From [2, 10] M must be locally congruent to a geodesic hypersphere. In this case
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M has only a principal curvature on D. That means that α = α2+2
α

, which is impossible.
Therefore M must be non-Hopf and as above, we write Aξ = αξ + βU . In this case (4.13)
looks as follows:

g(φAφX , AY )ξ − βg(Y ,U )φAφX) − g(A2Y , X)ξ − g(φAφX)Aξ

+g(AX , Y )Aξ = −βg(Y ,U )φ2AX − βg(φAX , Y )φU + βg(φAY , X)φU

(4.14)

for any X , Y ∈ D. Bearing in mind that β �= 0, the scalar product of (4.14) and φU
gives −g(Y ,U )g(AφX ,U ) = −g(Y ,U )g(φAX ,U ) − g(φAX , Y ) + g(φAY , X) for any
X , Y ∈ D. Taking Y = U , we get g(φAU , X) = −g(φAX ,U )−g(φAX ,U )+g(φAU , X).
Therefore, g(AφU , X) = 0 for any X ∈ D, and

AφU = 0. (4.15)

Taking Y = φU in the last equation, we get 0 = −g(AX ,U ) + g(φAφU , X), for any
X ∈ D. Bearing in mind (4.15), this implies g(AU , X) = 0 for any X ∈ D and so

AU = βξ. (4.16)

From (4.15) and (4.16),DU is A-invariant. If in the equality used to find (4.15) and (4.16)
we take Y ∈ DU , we obtain 0 = g(φAY , X) + g(AφY , X) for any Y ∈ DU , X ∈ D. Then,
φAY + AφY = 0 for any Y ∈ DU . If we suppose that AY = λY , we get AφY = −λφY .

The scalar product of (4.14) and Z ∈ DU gives

− g(Y ,U )g(φAφX , Z) = g(Y ,U )g(AX , Z) (4.17)

for any X , Y ∈ D, Z ∈ DU . Taking Y = U , X = Z , we obtain g(AφZ , φZ) = g(AZ , Z).
This yields λ = −λ. Therefore λ = 0 and M is locally congruent to a ruled real hypersurface.
This finishes the proof of Theorem 1.6.

The condition in Theorem 1.7 yields

g(φAX , AφY )ξ − η(AφY )φAX − g(φA2φY , X)ξ + kη(AφY )φX

−g(AX , Y )Aξ + g(φAφY , X)Aξ = −η(AY )φ2AX − kη(AY )X

−g(φAX , Y )φAξ + g(φAY , X)φAξ (4.18)

for any X , Y ∈ D. If we suppose that M is Hopf with Aξ = αξ , (4.18) becomes

g(φAX , AφY )ξ − g(φA2φY , X)ξ − αg(AX , Y )ξ + αg(φAφY , X)ξ = 0 (4.19)

for any X , Y ∈ D. This gives −φAφAX − φA2φX − αAX + αφAφX = 0 for any X ∈ D.
If X ∈ D satisfies AX = λX , we obtain (μ − α)(λ + μ) = 0. As in previous theorems, this
case leads to a contradiction.

Thus, M must be non-Hopf and, as usual, we write Aξ = αξ + βU . In this case (4.18)
implies

g(φAX , AφY )ξ − βg(φY ,U )φAX − g(φA2φY , X)ξ + kβg(φY ,U )φX

−g(AX , Y )Aξ + g(φAφY , X)Aξ = βg(Y ,U )AX − β2g(Y ,U )g(X ,U )ξ

−kβg(Y ,U )X − βg(φAX , Y )φU + βg(φAY , X)φU (4.20)

for any X , Y ∈ D. The scalar product of (4.20) and φU , bearing in mind that β �= 0, gives

−g(φY ,U )g(AX ,U ) + kg(φY ,U )g(X ,U ) = g(Y ,U )g(AφU , X)

−kg(Y ,U )g(φU , X) − g(φAX , Y ) + g(φAY , X) (4.21)
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for any X , Y ∈ D. If we take Y ∈ DU in (4.21), we obtain

g(AX , φY ) − g(AφX , Y ) = 0 (4.22)

for any X ∈ D, Y ∈ DU .
Taking X ∈ DU in (4.21), we infer

− g(φY ,U )g(AU , X) = g(Y ,U )g(AφU , X) + g(AφY , X) + g(φAY , X) (4.23)

for any X ∈ DU , Y ∈ D.
Take X = U and φY instead of Y in (4.22) to have

g(AU , Y ) + g(AφU , φY ) = 0 (4.24)

for any Y ∈ DU . Take Y = φU in (4.23). Then

g(AU , X) + g(AφU , φX) = −g(AU , X) (4.25)

for any X ∈ DU . From (4.24) and (4.25), we derive

g(AU , X) = g(AφU , X) = 0 (4.26)

for any X ∈ DU .
The scalar product of (4.20) and U yields

g(φY ,U )g(AφU , X) + kg(φY ,U )g(φX ,U ) − g(AX , Y ) + g(φAφY , X)

= g(Y ,U )g(AX ,U ) − kg(Y ,U )g(X ,U ) (4.27)

for any X , Y ∈ D. In (4.27) we take Y = U and obtain 2g(AU , X) + g(AφU , φX) =
kg(U , X) for any X ∈ D. If X = φU we get

g(AU , φU ) = 0 (4.28)

and if X = U , we have

2g(AU ,U ) + g(AφU , φU ) = k. (4.29)

Taking Y = φU in (4.27), we obtain 2 g(AφU , X) + g(φAU , X) = kg(φU , X). If
X = φU , we conclude

2g(AφU , φU ) + g(AU ,U ) = k. (4.30)

From (4.29) and (4.30),

g(AU ,U ) = g(AφU , φU ) = k

3
. (4.31)

From (4.26), (4.28) and (4.31), we obtain

AU = βξ + k

3
U ,

AφU = k

3
φU . (4.32)

The scalar product of (4.20) and ξ yields

g(φAX , AφY ) − g(φA2φY , X) − αg(AX , Y ) + αg(φAφY , X) = 0 (4.33)
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for any X , Y ∈ D. Taking X = U in (4.33), we obtain g(φAU , AφY ) + g(AφY , AφU ) −
αg(AU , Y )−αg(AφU , φY ) = 0 for anyY ∈ D. From (4.32)weget

(
2k2
9 − 2kα

3

)
g(U , Y ) =

0 for any Y ∈ D. Taking U = Y ,

k = 3α. (4.34)

If we take X = φU in (4.33), we have g(φAφU , AφY )− g(AU , AφY )− kα
3 g(φU , Y )+

αg(AφY ,U ) = 0 for any Y ∈ D. From (4.32) and (4.34) it follows β2 g(U , φY ) = 0 for any
Y ∈ D. If Y = φU , then β = 0, which is impossible and this finishes the proof of Theorem
1.7.

Remark 4.1 With proofs similar to the ones appearing in this section, we could also obtain
non-existence results for real hypersurfaces in CPm , m ≥ 3, satisfying any of the following
conditions:

1. A(k)
T (φX , Y ) + φA(k)

T (X , Y ) = 0 for any X , Y ∈ D and any nonnull real number k;

2. A(k)
T (X , φY ) + φA(k)

T (X , Y ) = 0 for any X , Y ∈ D and any nonnull real number k.
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