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Abstract
We provide a proof of Jacobson’s theorem on derivations of primitive rings with
nonzero socle. Both Jacobson’s theorem and its formulation (in terms of the so-
called differential operators on left vector spaces over a division ring) underlie our
paper. We apply Jacobson’s theorem to describe derivations of standard operator
rings on real, complex, or quaternionic left normed spaces. Indeed, when the space is
infinite-dimensional, every derivation of such a standard operator ring is of the form
A → AB− BA for some continuous linear operator B on the space. Our quaternionic
approach allows us to generalizeRickart’s theoremon representation of primitive com-
plete normed associative complex algebras with nonzero socle to the case of primitive
real or complex associative normed Q-algebras with nonzero socle. We prove that
additive derivations of the Jordan algebra of a continuous nondegenerate symmetric
bilinear form on any infinite-dimensional real or complex Banach space are in a one-
to-one natural correspondence with those continuous linear operators on the space
which are skew-adjoint relative to the form. Finally we prove that additive deriva-
tions of a real or complex (possibly non-associative) H∗-algebra with no nonzero
finite-dimensional direct summand are linear and continuous.
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1 Introduction

Throughout this paper � will denote a division ring and, given a left or right vector
space X over �, we denote by L(X) the ring of all �-linear operators on X .

Let X be a left vector space over �. Following [39, Definition IV.14.1], we say that
a mapping T : X → X is a differential operator on X if it is additive and there exists
a ring derivation d of � such that

T (λx) = λT x + d(λ) x for all λ ∈ � and x ∈ X . (1.1)

It follows from (1.1) that every differential operator on X has a unique associated
derivation. Examples of differential operators on X are all linear operators on X and
all operators in �IX , where �IX denotes the set of mappings of the form x → λx
where λ runs over �. Actually the set Diff (X) of all differential operators on X is
a Lie subring of the ring of all additive operators on X , and contains both L(X) and
�IX as ideals. As a consequence, we are provided with the following.

Fact 1.1 Let X be a left vector space over �, and let T be a differential operator
on X. Then [A, T ] := AT − T A lies in L(X) whenever A does, and the mapping
A → [A, T ] is a ring derivation of L(X).

Differential operators on right vector spaces over� are defined analogously. Indeed,
given a right vector space Y over �, a mapping T : Y → Y is said to be a differential
operator on Y if it is additive and there exists a ring derivation d of � such that

T (yλ) = (T y)λ + yd(λ) for all λ ∈ � and y ∈ Y .

We recall that a pairing over � is a triple (X ,Y , 〈 · , · 〉) where X is a left vector
space over �, Y is a right vector space over � and 〈 · , · 〉 is a bilinear form on X ×Y
which is non-degenerate; i.e. the conditions x ∈ X and 〈x,Y 〉 = 0 imply x = 0, and
the conditions y ∈ Y and 〈X , y〉 = 0 imply y = 0.

Let (X ,Y , 〈 · , · 〉)be apairingover�. Following [39, p. 87],we say that a differential
operator T on X with associated derivation d has an adjoint in Y relative to 〈 · , · 〉 if
there exists a mapping T # : Y → Y such that

〈T x, y〉 = 〈x, T # y〉 + d(〈x, y〉) for all (x, y) ∈ X ×Y . (1.2)

It follows from (1.2) that the mapping T # is unique. If T is a differential operator on X
with associated derivation d, and if T has an adjoint T #, then it is immediate to verify
that T # is a differential operator onY with associated derivation−d. As a consequence,
if A belongs to L(X) ⊆ Diff (X), and if A has an adjoint A# relative to 〈 · , · 〉, then A#

belongs to L(Y ). The set of those linear operators on X which have adjoints relative
to 〈 · , · 〉 is a subring of L(X), which is denoted by L(X ,Y , 〈 · , · 〉). The subset of
L(X ,Y , 〈 · , · 〉) consisting of those operators in L(X ,Y , 〈 · , · 〉) which have finite-
dimensional range is an ideal of L(X ,Y , 〈 · , · 〉), which is denoted by F(X ,Y , 〈 · , · 〉).
By the structure theorem for primitive rings with nonzero socle [39, Section IV.9], up
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to isomorphisms, the primitive rings with nonzero socle are precisely the subrings of
L(X ,Y , 〈 · , · 〉) containing F(X ,Y , 〈 · , · 〉) for some choice of the division ring � and
some choice of the pairing (X ,Y , 〈 · , · 〉) over �. For such a ring A, the socle of A is
F(X ,Y , 〈 · , · 〉).

The pioneering and fundamental paper on pairings and their properties is that
of Mackey [47]. Sometimes the sets of the form L(X ,Y , 〈 · , · 〉) for some pairing
(X ,Y , 〈 · , · 〉) over � (regarded as algebras over the centre of �) are called Mackey
algebras. See for example the paper of Penkov and Serganova [51]. Recently deriva-
tions of some Mackey algebras and related Lie algebras were considered in the paper
of Bezushchak [8].

Considering Fact 1.1, it is easily realized that the set Diff (X ,Y , 〈 · , · 〉) of all dif-
ferential operators on X having an adjoint relative to 〈 · , · 〉 is a (Lie) subring of the Lie
ring Diff (X) containing both L(X ,Y , 〈 · , · 〉) and �IX as ideals. As a consequence,
we have the following.

Fact 1.2 Let (X ,Y , 〈 · , · 〉) be a pairing over�, and let T be a differential operator on
X having an adjoint relative to 〈 · , · 〉. Then [A, T ] lies in L(X ,Y , 〈 · , · 〉) whenever A
does, and the mapping A → [A, T ] is a ring derivation of L(X ,Y , 〈 · , · 〉).

Conversely, according to [39, Proposition IV.14.1 and Theorem IV.14.3], we are
provided with the following.

Theorem 1.3 Let (X ,Y , 〈 · , · 〉) be a pairing over�,A be a subring of L(X ,Y , 〈 · , · 〉)
containing F(X ,Y , 〈 · , · 〉), and

D : A → L(X ,Y , 〈 · , · 〉)

be a derivation. Then there exists a differential operator T on X which has an adjoint
relative to 〈 · , · 〉 and satisfies D(A) = [A, T ] for every A ∈ A.

Here, given a subring A of a ring B, by a derivation from A to B we mean an
additive mapping D : A → B satisfying

D(A1A2) = D(A1)A2 + A1D(A2) for all A1, A2 ∈ A.

Theorem 1.3 above is due to Jacobson [39]. As far as we know, Theorem 1.3 has
been forgotten, and no application of it has appeared in the literature. In the case that�
is equal to R (the field of real numbers) or C (the field of complex numbers), and that
X is a Banach space over � naturally paired with its topological dual, Theorem 1.3
has been rediscovered by Šemrl [62, 63] (see also [57, Theorem 1.3]).

In Sect. 2, we provide the reader with a complete proof of Theorem 1.3, and derive
some first applications of it.

In Sect. 3, we suppose that 1
2 ∈ �, and apply Theorem 1.3 to prove that this

theorem remains true ifA is merely assumed to be a Jordan subring of L(X ,Y , 〈 · , · 〉)
containing F(X ,Y , 〈 · , · 〉), and consequently D : A → L(X ,Y , 〈 · , · 〉) is assumed
to be a derivation in the Jordan sense (Theorem 3.5). Precise definitions of a Jordan
subring of a ring, and of a Jordan derivation from such a Jordan subring to the whole
ring, will be given in this section.
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Throughout the remaining part of this paper H will denote the division real algebra
of Hamilton’s quaternions, and almost always F will stand for either R, C or H.

Let X be a left normed space over F. We denote by L(X) the subring of L(X)

consisting of all continuous F-linear operators on X , and by F(X) the ideal of L(X)

consisting of those operators inL(X) having finite-dimensional range. Standard oper-
ator rings (respectively, standard operator Jordan rings) on X are defined as those
subrings (respectively, Jordan subrings) of L(X) which contain F(X). We note that
L(X) is a closed subalgebra of the real normed algebra L(XR), where XR denotes
the real normed space obtained from X by restricting the scalars. Therefore L(X)

becomes naturally a real normed algebra when it is endowed with the operator norm.
Now, to comment on Sect. 4, let us consider the following.

Theorem 1.4 Let X be an infinite-dimensional left normed space over F, let A be a
standard operator Jordan ring on X, and let D : A → L(X) be a Jordan derivation.
Then there exists B ∈ L(X) such that D(A) = [A, B] for every A ∈ A. As a
consequence, D is continuous.

Throughout the remaining part of this paper K will stand for either R or C. All
forerunners of Theorem 1.4, known in the literature, deal only with the case that
F = K. But, for any normed space X over K, L(X) is an algebra over K containing
F(X) as an algebra ideal, and hencewe can think about the so-called standard operator
algebras (respectively, standard operator Jordan algebras) on X , which are defined
as those subalgebras (respectively, Jordan subalgebras) of L(X) which contain F(X).
Now, ordering chronologically, Theorem 1.4 is known in the following particular
cases:

(i) (Chernoff [20]) F = K, A is a standard operator algebra on X , and D is a linear
derivation. Clearly, in this case, the conclusion in the theorem remains true if the
restriction that X is infinite-dimensional is removed.

(ii) (Šemrl [62])F = K, X is a Hilbert space overK,A is a standard operator algebra
on X , and D is a ring derivation. Moreover, in this case, the conclusion in the
theorem does not remain true if the restriction that X is infinite-dimensional is
removed.

(iii) (Šemrl [63]) F = K, X is complete, A is a standard operator algebra on X , and
D is a ring derivation.

(iv) (Han [35]) F = K, A is a standard operator algebra on X , and D is a ring
derivation.

(v) (Vukman [68], see also [44]) F = K, A is a standard operator algebra on X ,
and D is linear. Clearly, in this case, the conclusion in the theorem remains
true if the restriction that X is infinite-dimensional is removed. (In these papers,
completeness of X is assumed but is never applied in the proofs.)

(vi) (The authors [57]) F = K and X is complete.

It is worth mentioning that, roughly speaking, the proof of forerunner (v) (respec-
tively, (vi)) consists of a reduction to forerunner (i) (respectively, (iii)). Most part of
Sect. 4 is devoted to prove Theorem 1.4. Our proof does not consist of a reduction
to any of the forerunners listed above, but relies on an appropriate adaptation of the
argument in the proof of Proposition 3.3 in the Boudi–Marhnine–Zarhouti paper [9]
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(see Theorem 4.10). By a normed pairing over F we mean any pairing (X ,Y , 〈 · , · 〉),
where X is a left normed space over F, Y is a right normed space over F, and the
form 〈 · , · 〉 : X ×Y → F is continuous. Now Theorem 4.10 just quoted asserts that, if
(X ,Y , 〈 · , · 〉) is a normed pairing over F, with X infinite-dimensional and complete,
then Diff (X ,Y , 〈 · , · 〉) ⊆ FIX +L(X), and hence differential operators on X having
an adjoint relative to 〈 · , · 〉 are continuous, and moreover they are linear whenever
F = K. As in the case of forerunner (ii) of Theorem 1.4, we realize that, also for
F = H, the conclusion in Theorem 1.4 does not remain true if the restriction that X is
infinite-dimensional is removed (Remark 4.14).

In Sect. 5, we generalize Rickart’s theorem on representation of primitive complete
normed associative complex algebras with nonzero socle [52, Theorem 2.4.12] to the
case of primitive real or complex associative normed Q-algebras with nonzero socle
(Theorem 5.3). For the formulation and proof of this result, our quaternionic approach
to normed pairings becomes crucial.

In Sect. 6, we describe additive derivations of Jordan algebras of a nondegenerate
symmetric bilinear form on a vector space over any field of characteristic different
from 2, by means of differential operators on the vector parts of such algebras (Propo-
sition 6.2). With the help of Proposition 6.2 and Theorem 4.10, we prove that additive
derivations of the Jordan algebra of a continuous nondegenerate symmetric bilinear
form on any infinite-dimensional real or complex Banach space are in a one-to-one
natural correspondence with those continuous linear operators on the space which
are skew-adjoint relative to the form (Theorem 6.3). Moreover, neither the restric-
tion that X is infinite-dimensional nor the one that X is complete can be removed
(Remark 6.5 and Example 6.7). In particular, Theorem 6.3 provides us with a descrip-
tion of additive derivations of complete smooth normed commutative real algebras,
J B-spin factors, quadratic Jordan H∗-algebras, and quadratic J B∗-algebras, when-
ever they are infinite-dimensional.

In the concluding section (Sect. 7) we prove that derivations of a (possibly non-
associative) algebra A over an arbitrary field are differential operators on (the vector
space underlying)A as soon asA has zero annihilator and the centroid ofA reduces to
the scalar multiples of the identity operator on A (Proposition 7.4). Considering this
crucial result, we apply Theorem 4.10 once more (see Lemma 7.18), and adapt the
argument in the proof of the main result in Villena’s paper [67] (see Proposition 7.19),
to show that additive derivations of any real or complex (possibly non-associative) H∗-
algebra with no nonzero finite-dimensional direct summand are linear and continuous
(Corollary 7.24). Actually a better result, in the spirit of Theorem 4.1 in the Johnson–
Sinclair paper [41], is obtained (see Theorem 7.22).

2 A proof of Jacobson’s theorem

§2.1 Given a pairing (X ,Y , 〈 · , · 〉) over � and (x, y) ∈ X ×Y , we denote by x⊗ y
and y⊗ x the rank-one linear operators on X and Y defined by

(x⊗ y)v := 〈v, y〉 x and (y⊗ x)w := y〈x, w〉
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for all v ∈ X and w ∈ Y . The following properties are of direct verification:

(i) (x⊗ y)# = y⊗ x .
(ii) A(x⊗ y) = Ax⊗ y for every A ∈ L(X).
(iii) (x⊗ y)A = x⊗ A# y for every A ∈ L(X ,Y , 〈 · , · 〉).
Moreover, we have the following description:

F(X ,Y , 〈 · , · 〉) =
{ n∑

i=1

xi ⊗ yi : n ∈ N, (xi , yi ) ∈ X ×Y (1 � i � n)

}
.

LetA be a ring, and let X be a faithful irreducible leftA-module. Let E(X) denote
the ring of all additive mappings on X . Then the set

{
B ∈ E(X) : [A, B] = 0 for every A ∈ A

}

is a division ring, which is called the associated division ring of A relative to X . It is
clear that, if (X ,Y , 〈 · , · 〉) is a pairing over �, and ifA is a subring of L(X ,Y , 〈 · , · 〉)
containing F(X ,Y , 〈 · , · 〉), then X is a faithful irreducible left A-module. Here, by
the sake of completeness, we include a proof of the well-known fact that, in this case,
�IX is the associated division ring of A relative to X [39, Theorem II.4.1].

Lemma 2.2 Let (X ,Y , 〈 · , · 〉)beapairingover�andAbea subringof L(X ,Y , 〈 · , · 〉)
containing F(X ,Y , 〈 · , · 〉). Then the associateddivision ringofA relative to X is equal
to �IX .

Proof SinceA ⊆ L(X), for any λ ∈ �, we have that [A, λIX ] = 0 for every A ∈ A. In
order to prove the converse inclusion, let us fix (x0, y0) ∈ X ×Y such that 〈x0, y0〉 = 1.
If B ∈ E(X) satisfies the condition [A, B] = 0 for every A ∈ A, then for each x ∈ X
we have

0 = [x⊗ y0, B] x0 = (x⊗ y0)Bx0 − B(x⊗ y0) x0
= 〈B(x0), y0〉 x − B(〈x0, y0〉 x) = 〈B(x0), y0〉 x − Bx,

and hence B = 〈B(x0), y0〉IX ∈ �IX . 	

We reformulate the above lemma as follows.

Corollary 2.3 Let (X ,Y , 〈 · , · 〉) be a pairing over�, letA be as in Lemma 2.2, and let
S be an additive operator on X such that [A, S] = 0 for every A ∈ A. Then S ∈ �IX .

Now, following some ideas in Šemrl’s papers [62, 63], our proof of Theorem 1.3
goes as follows.

Proof of Theorem 1.3 Let (X ,Y , 〈 · , · 〉) be a pairing over �, let A be a subring of
L(X ,Y , 〈 · , · 〉) containing F(X ,Y , 〈 · , · 〉), and let

D : A → L(X ,Y , 〈 · , · 〉)
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be a derivation. Fix (x0, y0) ∈ X ×Y such that 〈x0, y0〉 = 1, and consider the mapping
T : X → X given by

T x = − D(x⊗ y0) x0.

It is clear that T is additive. On the other hand, by §2.1 (ii), for each A ∈ A and x ∈ X
we have

D(A) x⊗ y0 = D(A)(x⊗ y0) = − AD(x⊗ y0) + D(A(x⊗ y0))

= − AD(x⊗ y0) + D(Ax⊗ y0).

Therefore, considering the definition of T , it is enough to valuate at x0 to realize that
D(A)x = AT x − T Ax . Therefore D(A) = [A, T ] (hence [A, T ] ∈ L(X ,Y , 〈 · , · 〉))
for all A ∈ A.

Let A and B be in A and �IX , respectively. Since both A and [A, T ] lie in
L(X ,Y , 〈 · , · 〉), and [L(X ,Y , 〈 · , · 〉), B] = 0, we obtain

0 = [[A, B], T ] = [[A, T ], B] + [A, [B, T ]] = [A, [B, T ]].

Therefore, since A is arbitrary in A, it follows from Lemma 2.2 that [B, T ] lies in
�IX . Thus [�IX , T ] ⊆ �IX because B is arbitrary in �IX .

Now consider the mapping d : � → � determined by the condition

d(λ)IX = − [λIX , T ]

for every λ ∈ �. Then, clearly, d is a ring derivation of �. Moreover, for each λ ∈ �

and x ∈ X we have

T (λx) = − D(λx⊗ y0) x0 = − [λx⊗ y0, T ] x0
= − [(λIX )(x⊗ y0), T ] x0 = − [λIX , T ](x⊗ y0) x0 − (λIX )[x⊗ y0, T ] x0
= − [λIX , T ] x − (λIX )D(x⊗ y0) x0 = d(λ)IX x − λD(x⊗ y0) x0
= d(λ) x + λT x .

It follows that T is a differential operator on X .
Finally, note that for each y ∈ Y we have

[x0⊗ y, T ] = D(x0⊗ y) ∈ L(X ,Y , 〈 · , · 〉),

and hence we may consider the mapping y → Sy := [x0⊗ y, T ]# y0 from Y to Y .
Note also that E0 = x0⊗ y0 is an idempotent satisfying E0x0 = x0, and hence

E0D(E0) x0 = D(E2
0) x0 − D(E0)E0x0 = D(E0) x0 − D(E0) x0 = 0.

Therefore

〈D(x0⊗ y0) x0, y0〉 x0 = E0D(E0) x0 = 0,
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hence 〈D(x0⊗ y0) x0, y0〉 = 0, and so 〈T x0, y0〉 = 0. Now, for any (x, y) ∈ X ×Y ,
we see that

〈x, Sy〉 = 〈x, [x0⊗ y, T ]# y0〉 = 〈[x0⊗ y, T ] x, y0〉
= 〈(x0⊗ y)T x, y0〉 − 〈T (x0⊗ y) x, y0〉
= 〈〈T x, y〉 x0, y0〉 − 〈T (〈x, y〉 x0), y0〉
= 〈T x, y〉〈x0, y0〉 − 〈〈x, y〉T x0 + d(〈x, y〉) x0, y0〉
= 〈T x, y〉 − 〈x, y〉〈T x0, y0〉 − d(〈x, y〉)
= 〈T x, y〉 − d(〈x, y〉).

Hence S is an adjoint of T . 	

Remark 2.4 Let (X ,Y , 〈 · , · 〉) be a pairing over�, letA be a subring of L(X ,Y , 〈 · , · 〉)
containing F(X ,Y , 〈 · , · 〉), let D : A → L(X ,Y , 〈 · , · 〉) be a derivation, and let T be
the differential operator on X given by Theorem 1.3. It follows from Corollary 2.3
that, ‘essentially’, T is uniquely determined by D. Moreover, regarding the proof of
Theorem 1.3 we have given, we realize that, for each (x0, y0) ∈ X ×Y with 〈x0, y0〉 =
1, themapping x → −D(x⊗ y0) x0 is a representative of T , and that (for such a choice
of T ) [x0⊗ y, T ] lies in L(X ,Y , 〈 · , · 〉) for every y ∈ Y , allowing to determine T # as
the mapping y → [x0⊗ y, T ]#y0.

Let X be a left vector space over �. Following [39, Definition IV.4.1], the
(algebraic) dual X∗ of X is defined as the set of all linear mappings from X to
�. X∗ has a natural structure of right vector space over � for the operations

( f + g)(x) = f (x) + g(x) and ( f λ)(x) = f (x)λ

for all x ∈ X , f , g ∈ X∗, and λ ∈ �. It is clear that, by defining

〈x, f 〉 = f (x) for all x ∈ X and f ∈ X∗,

(X , X∗, 〈 · , · 〉) becomes a pairing over �. Let A be in L(X). Then for f ∈ X∗ we
have f A ∈ X∗ and

〈Ax, f 〉 = f (Ax) = 〈x, f A〉 for every x ∈ X .

It follows that the mapping f → f A from X∗ to X∗ is an adjoint of A relative to
〈 · , · 〉. Hence L(X) = L(X , X∗, 〈 · , · 〉). Therefore it is enough to apply Theorem 1.3
to obtain the converse of Fact 1.1 given by the first conclusion in Corollary 2.5 imme-
diately below. The second conclusion in that corollary is straightforwardly checked
by applying Corollary 2.3 to the left vector space X over �, naturally paired with its
algebraic dual. For any ringA, we denote by Der (A) the Lie ring of all derivations of
A.

Corollary 2.5 Let X be a left vector space over �. Then every ring derivation of L(X)

is of the form A → [A, T ] for some differential operator T on X. More precisely:
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for each differential operator T on X, the mapping DT : A → [A, T ] becomes a ring
derivation of L(X), and the mapping T → DT is a surjective Lie anti-homomorphism
from Diff (X) to Der(L(X)) with kernel �IX .

Arguing similarly, with Fact 1.2 instead of Fact 1.1, we obtain the following.

Corollary 2.6 Let (X ,Y , 〈 · , · 〉) be a pairing over �. Then, for each
T ∈ Diff (X ,Y , 〈 · , · 〉), the mapping DT : A → [A, T ] becomes a ring derivation
of L(X ,Y , 〈 · , · 〉). Moreover, the mapping T → DT is a surjective Lie anti-homo-
morphism from Diff (X ,Y , 〈 · , · 〉) to Der(L(X ,Y , 〈 · , · 〉)) with kernel �IX .

Lemma 2.7 Let (X ,Y , 〈 · , · 〉) be a pairing over �, let A be a subring of L(X)

containing F(X ,Y , 〈 · , · 〉), and let D : A → L(X) be a derivation vanishing on
F(X ,Y , 〈 · , · 〉). Then D = 0.

Proof Let A be in A, and let (x, y) be in X ×Y . Then, by §2.1 (ii), A(x⊗ y) lies in
F(X ,Y , 〈 · , · 〉). Therefore, since D vanishes on F(X ,Y , 〈 · , · 〉),

D(A)(x⊗ y) = D(A(x⊗ y)) − AD(x⊗ y) = 0.

Since (x, y) is arbitrary in X ×Y , it is enough to apply §2.1 (ii) again (with D(A)

instead of A) to conclude that D(A) = 0. Hence D = 0 because of the arbitrariness
of A ∈ A. 	

Proposition 2.8 Let (X ,Y , 〈 · , · 〉) be a pairing over �, A be a subring of
L(X ,Y , 〈 · , · 〉) containing F(X ,Y , 〈 · , · 〉), and

D : A → L(X ,Y , 〈 · , · 〉)

be a derivation. Then there exists a unique derivation D̂ : L(X) → L(X) extending
D. Moreover

D̂(L(X ,Y , 〈 · , · 〉)) ⊆ L(X ,Y , 〈 · , · 〉). (2.1)

Proof By Theorem 1.3, there is a differential operator T on X having an adjoint
relative to 〈 · , · 〉 and satisfying D(A) = [A, T ] for every A ∈ A. Since T is a
differential operator on X , it follows from Fact 1.1 that the mapping D̂ : B → [B, T ]
is a derivation of L(X) extending D. But, since T has an adjoint relative to 〈 · , · 〉, it
follows from Fact 1.2 that the inclusion (2.1) holds. Finally, if D is any derivation of
L(X) extending D, then D̂− D is a derivation of L(X) vanishing on F(X ,Y , 〈 · , · 〉),
hence D̂ = D thanks to Lemma 2.7. 	


Let (X ,Y , 〈 · , · 〉) be a pairing over�, and letA be a subring of L(X ,Y , 〈 · , · 〉) con-
taining F(X ,Y , 〈 · , · 〉). Then the symmetric ring of quotients ofA is L(X ,Y , 〈 · , · 〉),
the maximal left ring of quotients of A is L(X), and the extended centroid of A is
isomorphic to the center of� [5, Theorems 4.3.7 and 4.3.8]. Therefore Proposition 2.8
above also follows easily from the left version of [5, Proposition 2.5.1].
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3 Considering Jordan derivations

By a non-associative ringwemean an additive group (R,+) endowed with a mapping
(A, B) → AB from R×R → R which is additive in each of its variables. We recall
that, given an element A in a non-associative ring R, the operator UA on R is defined
by

UA(B) = A(AB + BA) − A2B for all B ∈ R.

In the case that R is in fact associative we see that UA(B) = ABA. Now let R be an
(associative) ring such that 1

2 ∈ R, and letA be a Jordan subring ofR (i.e. an additive
subgroup of R such that

A1• A2 := 1

2
(A1A2 + A2A1)

lies in A whenever A1 and A2 belong to A). Then, for each A ∈ A, the operator
UA on the Jordan ring (A, •) satisfies that UA(B) = ABA for every B ∈ A, where
juxtaposition means the associative product of R.

Throughout this section we assume that 1
2 ∈ �, and (X ,Y , 〈 · , · 〉) will stand for

a pairing over �. Then, since 2 is a central element of �, so is 1
2 , and therefore

L(X ,Y , 〈 · , · 〉), and F(X ,Y , 〈 · , · 〉) are Jordan subrings of L(X).

Lemma 3.1 Let A be in L(X) such that UB(A) = 0 for every B ∈ F(X ,Y , 〈 · , · 〉).
Then A = 0.

Proof By §2.1 (ii), for every (x, y) ∈ X ×Y we have

0 = Ux⊗y(A) = (x⊗ y)A(x⊗ y) = (x⊗ y)(Ax⊗ y) = (〈Ax, y〉 x)⊗ y,

hence 〈Ax, y〉 = 0, and so A = 0. 	

The following corollary will not be applied in what follows, but has its own interest.

Corollary 3.2 Let A be in L(X) such that F(X ,Y , 〈 · , · 〉)• A = 0. Then A = 0.

Proof For each B ∈ F(X ,Y , 〈 · , · 〉) we have

UB(A) = 2B •(B • A) − B2• A = 0,

and so A = 0 thanks to Lemma 3.1. 	

Let B be a ring. Given A, B,C ∈ B, we set

(A, B,C)+ := (A• B)•C − A•(B •C),

and we straightforwardly realize that

[B, [A,C]] = 4(A, B,C)+. (3.1)
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Now let A be a Jordan subring of B. A mapping D : A → B is a Jordan derivation
from A to B if it is additive and the equality

D(A1• A2) = D(A1)• A2 + A1•D(A2)

holds for all A1, A2 ∈ A.

Lemma 3.3 Let A be a Jordan subring of L(X) containing F(X ,Y , 〈 · , · 〉), and let
D : A → L(X) be a Jordan derivation vanishing on F(X ,Y , 〈 · , · 〉). Then D = 0.

Proof Let A be in A, and let B be in F(X ,Y , 〈 · , · 〉). Then

D(B • A) = B •D(A).

But, by §2.1 (ii), we have

[B, A] = BA − AB = 2B • A − 2AB ∈ A + F(X ,Y , 〈 · , · 〉) ⊆ A,

and then

D([B, A]) = 2B •D(A). (3.2)

Therefore, by applying (3.2) twice,

D([B, [B, A]]) = 2B •D([B, A]) = 4B •(B •D(A)). (3.3)

On the other hand, since

D((B, B, A)+) = (D(B), B, A)++ (B, D(B), A)++ (B, B, D(A))+

and D(B) = 0, it follows from (3.1) that

D([B, [B, A]]) = D(4(B, B, A)+) = 4(B, B, D(A))+. (3.4)

Now, using (3.3) and (3.4) we see that

UB(D(A)) = 2B •(B •D(A)) − B2•D(A) = B •(B •D(A)) − (B, B, D(A))+ = 0.

Since B is arbitrary in F(X ,Y , 〈 · , · 〉), it is enough to apply Lemma 3.1 to obtain that
D(A) = 0. But A is arbitrary in A. 	

Proposition 3.4 Let A be a Jordan subring of L(X ,Y , 〈 · , · 〉) containing
F(X ,Y , 〈 · , · 〉), and let D : A → L(X ,Y , 〈 · , · 〉) be a Jordan derivation. Then there
exists a unique derivation D̂ : L(X) → L(X) extending D. Moreover

D̂(L(X ,Y , 〈 · , · 〉)) ⊆ L(X ,Y , 〈 · , · 〉). (3.5)
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Proof Given A ∈ F(X ,Y , 〈 · , · 〉), it follows from Litoff’s Theorem [5, Theorem
4.3.11] that there exists an idempotent P ∈ F(X ,Y , 〈 · , · 〉) such that AP = PA = A,
hence

D(A) = D(P • A) = D(P)• A + P •D(A) ∈ F(X ,Y , 〈 · , · 〉).

Since A is arbitrary in F(X ,Y , 〈 · , · 〉), it follows that

D(F(X ,Y , 〈 · , · 〉)) ⊆ F(X ,Y , 〈 · , · 〉).

Therefore, by Herstein’s theorem [37] (see also [38, Theorem 3.3]), D is a deriva-
tion of F(X ,Y , 〈 · , · 〉). Then, by Proposition 2.8, there exists a unique derivation
D̂ : L(X) → L(X) such that D̂(A) = D(A) for every A ∈ F(X ,Y , 〈 · , · 〉), and
moreover the inclusion (3.5) holds. Now the mapping A → D̂(A)− D(A) is a Jordan
derivation from A to L(X) vanishing on F(X ,Y , 〈 · , · 〉). Therefore, by Lemma 3.3,
D̂ is the unique derivation of L(X) which extends D. 	


Now we can conclude the proof of the main result in this section, namely the
following.

Theorem 3.5 LetA be a Jordan subring of L(X ,Y , 〈 · , · 〉) containing F(X ,Y , 〈 · , · 〉),
and let D : A → L(X ,Y , 〈 · , · 〉) be a Jordan derivation. Then there exists an essen-
tially unique differential operator T on X such that D(A) = [A, T ] for every
A ∈ A. Moreover, for each (x0, y0) ∈ X ×Y with 〈x0, y0〉 = 1, the mapping
x → −D(x⊗ y0)x0 is a representative of T , and (for such a choice of T ) [x0⊗ y, T ]
lies in L(X ,Y , 〈 · , · 〉) for every y ∈ Y , allowing to determine T # as the mapping
y → [x0⊗ y, T ]# y0.

Proof By Proposition 3.4, there exists a unique derivation

D̂ : L(X ,Y , 〈 · , · 〉) → L(X ,Y , 〈 · , · 〉)

extending D. Therefore the proof is concluded by applying Theorem 1.3 and
Remark 2.4 to D̂. 	


As a straightforward consequence of the above theorem (or of Proposition 3.4), we
obtain the following.

Corollary 3.6 Let A be a subring of L(X ,Y , 〈 · , · 〉) containing F(X ,Y , 〈 · , · 〉), and
let D : A → L(X ,Y , 〈 · , · 〉) be a Jordan derivation. Then D is a derivation.

The above corollary is also a direct consequence of the recent paper by Lin [45],
where a complete characterization of weak Jordan derivations of a prime ring into its
maximal left ring of quotients is provided.
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4 Derivations of standard operator rings on real, complex, or
quaternionic normed spaces

4.1 Algebraic preliminaries

The following lemma is straightforward.

Lemma 4.1 Let R be an associative ring, let Z denote the centre of R, and let d be a
derivation of R. Then Z is invariant under d. Therefore d induces a derivation of Z
(namely, the restriction of d to Z, regarded as a mapping from Z to Z) which will be
denoted by dZ .

As always in this paper, � denotes a division ring. As in the above lemma, we
denote by Z the centre of �, and note that, in the current case, Z is a field.

Proposition 4.2 Let X be a left vector space over�, and let T be a differential operator
on X. Suppose that � has characteristic zero and is finite-dimensional over Z, and
that T is Z-linear. Then there exist μ ∈ � and B ∈ L(X) such that T = μIX + B.

Proof Let d be the ring derivation of � associated to T . Since T is Z -linear, it follows
that the ring derivation dZ of Z in Lemma 4.1 is zero. This implies that d is Z -linear.
Therefore, since � has characteristic zero and is finite-dimensional over Z , it follows
from [58, Theorem 2.5] that d is inner, say of the form dμ : λ → [μ, λ] for some fixed
μ ∈ �. Now set B := T − μIX . Then for all λ ∈ � and x ∈ X we have

B(λx) = T (λx) − μλx = λT x + d(λ) x − μλx

= λT x + dμ(λ) x − μλx = λT x − λμx = λBx,

hence B ∈ L(X). But clearly T = μIX + B. 	

Lemma 4.3 Let (X ,Y , 〈 · , · 〉) be a pairing over �. If X is infinite-dimensional, then
there are sequences xn and yn in X and Y , respectively, such that 〈xi , y j 〉 = δi j for
all i, j ∈ N.

Proof For y ∈ Y we set ker(y) := {u ∈ X : 〈u, y〉 = 0}. Starting with any couple
(x1, y1) ∈ X ×Y such that 〈x1, y1〉 = 1, assume that the first n terms of the desired
sequences have been constructed. Then P := ∑n

i=1 xi ⊗ yi and Q := ∑n
i=1 yi ⊗ xi

are linear projections on X and Y , respectively, such that ker(P) = ⋂
1�i�n ker(yi )

and Q(Y ) = lin{y1, . . . , yn}, which implies 〈ker(P), Q(Y )〉 = 0. Since P(X) is
a finite-dimensional subspace of X , and X is infinite dimensional, there exists 0 �=
xn+1 ∈ ker(P). Assume that 〈xn+1, ker(Q)〉 = 0. Then, since 〈xn+1, Q(Y )〉 = 0, we
have 〈xn+1,Y 〉 = 〈xn+1, Q(Y ) + ker(Q)〉 = 0, and hence xn+1 = 0, which is not
possible. Therefore there exists yn+1 ∈ ker(Q) such that 〈xn+1, yn+1〉 = 1. Now we
have 〈xi , y j 〉 = δi j for all i, j ∈ {1, . . . , n + 1}. In this way, the (n + 1)-th terms of
the desired sequences have been constructed. 	


To conclude this subsection, let us explain with more precision some facts on
pairings, sketched in Sect. 1. Let (X ,Y , 〈 · , · 〉) be a pairing over �. Let us say that a
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differential operator S on Y with associated derivation d has an adjoint in X relative to
〈 · , · 〉 if there exists a (unique) mapping S# : X → X such that 〈x, Sy〉 = 〈S#x, y〉 +
d(〈x, y〉) for all (x, y) ∈ X ×Y . Then the set Diff (Y , X , 〈 · , · 〉) of those differential
operators on Y having an adjoint in X relative to 〈 · , · 〉 is a Lie subring of the ring
of all additive operators on Y , and the mapping � : T → T # from Diff (X ,Y , 〈 · , · 〉)
to Diff(Y , X , 〈 · , · 〉) is a bijective Lie anti-homomorphism with inverse mapping the
one S → S# from Diff (Y , X , 〈 · , · 〉) to Diff (X ,Y , 〈 · , · 〉). Moreover, the inclusion
�IX ⊆ Diff (X ,Y , 〈 · , · 〉) holds, and for λ ∈ � we have (λIX )# = IYλ, where IYλ

denotes the mapping y → yλ from Y to Y . Now set

L(Y , X , 〈 · , · 〉) := Diff (Y , X , 〈 · , · 〉) ∩ L(Y ).

Then L(Y , X , 〈 · , · 〉) is a subring of L(Y ), and the restriction of the mapping � above
to L(X ,Y , 〈 · , · 〉) becomes a bijective ring anti-homomorphism from L(X ,Y , 〈 · , · 〉)
to L(Y , X , 〈 · , · 〉). These facts will be applied without notice in the proofs of Corol-
lary 4.11, Proposition 4.12, and Theorem 5.3.

4.2 Themain results

As we already said in Sect. 1, we denote by H the division real algebra of Hamilton’s
quaternions (see for example [18, pp. 176–177 and Theorem 2.6.21] and [31, Chapter
7]). Then the centre of H is equal to R1, and consequently identifies with R. Let ∗
stand for the standard involution of H, and let λ be in H. Then both λ+λ∗ and λ∗λ lie
in R. Actually λ∗λ is a nonnegative real number, and the mapping λ → |λ| := √

λ∗λ
is an absolute value on H. Given λ ∈ H we set Re(λ) := 1

2 (λ + λ∗).
By a left quaternionic normed space we mean a left vector space X over H

endowed with a subadditive mapping ‖·‖ : X → R such that ‖x‖= 0⇔ x = 0, and
‖λx‖ = |λ|‖x‖ for all λ ∈ H and x ∈ X . Analogously right quaternionic normed
spaces are defined. SinceSoukhomlinoff’s pioneering paper [64], quaternionic normed
spaces have been fully discussed in the literature (see [46, 50] and references therein),
and appear naturally in the theory of complex Hilbert spaces [36, 7.5.5]. We note that,
by restricting the scalars, every left or right quaternionic normed space becomes a
normed space over R. Let X be a left quaternionic normed space. Then the set X ′ of
all continuous H-linear mappings from X toH is a vector subspace of the right quater-
nionic vector space X∗ (the algebraic dual of X ), and becomes a right quaternionic
normed space under the norm

‖ f ‖ := sup {| f (x)| : ‖x‖ � 1}.

The right quaternionic normed space X ′ just introduced is called the (topological) dual
of X .

Proposition 4.4 Let X be a left quaternionic normed space. Then the mapping
� : f → Re◦ f becomes a surjective R-linear isometry from the dual X ′ of X to
the dual (XR)′ of XR.
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Proof The facts that Re ◦ f lies in (XR)′ whenever f is in X ′ and that � is R-linear
are clear.

Let x and f be in X and X ′, respectively. Then we have

| f (x)|2 = f (x)∗ f (x) = Re( f (x)∗ f (x)) = Re( f ( f (x)∗x)) = �( f )( f (x)∗x)
� ‖�( f )‖‖ f (x)∗x‖ = ‖�( f )‖| f (x)|‖x‖,

and hence | f (x)| � ‖�( f )‖‖x‖. Since x is arbitrary in X , we deduce that ‖ f ‖ �
‖�( f )‖. But the converse inequality is clear. Therefore, since f is arbitrary in X ′, we
conclude that � is an isometry.

Now let φ be in (XR)′. Take a canonical basis {1, i, j, k} of H, so that i2 = j2 =
k2 = −1, i j = k = − j i , jk = i = −k j , and ki = j = −ik. Define a mapping
f : X → H by f (x) := φ(x) − φ(i x) i − φ( j x) j − φ(kx)k. Then

f (i x) = φ(i x) + φ(x) i + φ(kx) j − φ( j x)k,

i f (x) = φ(x) i + φ(i x) − φ( j x)k + φ(kx) j,

and hence f (i x) = i f (x). Analogously f ( j x) = j f (x) and f (kx) = k f (x).
Therefore, since clearly f is R-linear and continuous, it follows that f lies in X ′.
Finally, since clearly Re ◦ f = φ, and φ is arbitrary in (XR)′, we conclude that � is
surjective. 	


By a left (respectively, right) quaternionic Banach space we mean a left (respec-
tively, right) quaternionic normed space which is a complete metric space relative to
the distance ‖u−v‖. We note that, by restricting the scalars, every left or right quater-
nionic normed space becomes a normed space over R. Therefore, as a byproduct of
Proposition 4.4, we are provided with the following.

Corollary 4.5 The dual of any left quaternionic normed space is a right quaternionic
Banach space in a natural way.

Lemma 4.6 Let X be a left normed space over F, and let x be in X. Then there exists
f ∈ X ′ such that ‖ f ‖ = 1 and f (x) = ‖x‖.
Proof We may suppose that F = H. Then, by the Hahn–Banach theorem applied to
(XR)′, there exists g ∈ (XR)′ such that ‖g‖ = 1 and g(x) = ‖x‖. Therefore, since
the mapping � : X ′ → (XR)′ in Proposition 4.4 is a surjective R-linear isometry, it
is enough to apply that proposition to realize that f := �−1(g) ∈ X ′ satisfies the
conditions in the conclusion of the lemma. 	


We note that Lemma 4.6 above follows from the main result in [64], as well as that
the main result in [64] follows from Proposition 4.4.

By a normed pairing over F we mean any pairing (X ,Y , 〈 · , · 〉), where X is a
left normed space over F, Y is a right normed space over F, and the form 〈 · , · 〉
is continuous. If X (respectively, Y ) is complete, then we say that (X ,Y , 〈 · , · 〉) is
complete on the left (respectively, complete on the right). If (X ,Y , 〈 · , · 〉) is both
complete on the left and complete on the right, then we simply say that it is a Banach
pairing.
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Lemma 4.7 Let (X ,Y , 〈 · , · 〉) be a normed pairing over F, and let T be in
Diff (X ,Y , 〈 · , · 〉). Then there are mappings g : X → R

+
0 and h : Y → R

+
0 such

that ‖T (〈x, y〉 x)‖ � g(x)h(y) for all x ∈ X and y ∈ Y .

Proof Let d denote the ring derivation of F associated to T , and set M := ‖〈 · , · 〉‖.
Let (x, y) be in X ×Y . Then, by (1.2), we have

|d(〈x, y〉)| � |〈T x, y〉| + |〈x, T # y〉| � M(‖T x‖‖y‖ + ‖x‖‖T # y‖).

Therefore, considering (1.1), we obtain

‖T (〈x, y〉x)‖ � |〈x, y〉|‖T x‖ + |d(〈x, y〉)|‖x‖
� M

(‖x‖‖y‖‖T x‖ + (‖T x‖‖y‖ + ‖x‖‖T #y‖)‖x‖)
= M‖x‖(2‖T x‖‖y‖ + ‖x‖‖T # y‖)
� M‖x‖(2‖T x‖ + ‖x‖)max {‖y‖, ‖T # y‖}. 	


Let X be a left normed space over F. As we already said in Sect. 1, we denote
by L(X) the normed subalgebra of the R-algebra L(X) consisting of those opera-
tors in L(X) which are continuous, and by F(X) the ideal of L(X) consisting of
those operators in L(X) whose range is finite-dimensional. The next lemma follows
straightforwardly from the closed graph theorem.

Lemma 4.8 Let (X ,Y , 〈 · , · 〉) be a normed pairing over F complete on the left. Then
L(X ,Y , 〈 · , · 〉) ⊆ L(X).

Remark 4.9 (a) Every additive operator on a vector space X over F is Q-linear, so
such an operator T is R-linear if X is normed and T is continuous. Moreover, additive
operators on a normed space X over F are continuous if (and only if) they are bounded
on some neighborhood of zero. Indeed, since we can regard X as a normed space over
R, it is enough to consider the case that F = R, and then to consult [1, pp. 36–37].

(b) If A is a (possibly non-associative) complex algebra with zero annihilator, and if D
is an additive derivation ofA, then, by [41, Remark 4.2], the equality D(i A) = i D(A)

holds for all A ∈ A. Consequently, R-linear derivations of any complex algebra with
zero annihilator are C-linear. Therefore, by part (a) of the current remark, continuous
additive derivations of any normed algebra over K with zero annihilator are linear. As
a consequence, if d is a continuous ring derivation of K, then d = 0. It is well known
that nonzero derivations of R do exist [71, Chapter II, Section 17].

Now we adapt the argument in the proof of [9, Proposition 3.3] to prove the fol-
lowing.

Theorem 4.10 Let (X ,Y , 〈 · , · 〉) be a normed pairing over F complete on the left, with
X infinite-dimensional, and let T be in Diff (X ,Y , 〈 · , · 〉). Then there exist μ ∈ F and
A ∈ L(X ,Y , 〈 · , · 〉) such that T = μIX + A. As a consequence, T is continuous and,
when F = K := R or C, T is linear.
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Proof Let d denote the ring derivation of F associated to T and, to derive a contradic-
tion, assume that d is discontinuous. Then, by Remark 4.9 (a), d is unbounded on every
neighborhood of zero. Let xn and yn be the sequences in X andY , respectively, given by
Lemma4.3, and note that, replacing xn with ‖xn‖−1xn and yn with yn‖xn‖ if necessary,
we may suppose that ‖xn‖ = 1 for every n ∈ N. Let g : X → R

+
0 and h : Y → R

+
0

be the mappings given by Lemma 4.7, and for n ∈ N set αn := max {1, h(yn)}. Then
there is λn ∈ F such that |λn| � 1

2nαn
and |d(λn)| > 2nαn . Set x := ∑∞

k=1 λk xk . Then
we have

∑
n

1

2nαn
T (λnx) =

∑
n

1

2nαn
λnT x +

∑
n

1

2nαn
d(λn) x .

Therefore, since the series
∑

n
1

2nαn
λnT x converges, and the series

∑
n

1
2nαn

d(λn)x

diverges, it follows that the series
∑

n
1

2nαn
T (λnx) diverges. But this is not possi-

ble because, since λn = 〈x, yn〉, we have T (λnx) = T (〈x, yn〉 x), so ‖T (λnx)‖ �
g(x)h(yn) � g(x)αn (by Lemma 4.7), and so the series

∑
n

1
2nαn

T (λnx) is absolutely
convergent.

Therefore d is continuous. If F = K, then d = 0 (by Remark 4.9 (b)), so T is
linear, hence T lies in L(X ,Y , 〈 · , · 〉) (as it has an adjoint relative to 〈 · , · 〉), and the
continuity of T follows fromLemma 4.8. Suppose thatF = H. Then, with the notation
in Lemma 4.1, dR : R → R is continuous, so dR = 0 (by Remark 4.9 (b) again), and
so T is R-linear. Therefore, by Proposition 4.2, there exist μ ∈ F and A ∈ L(X) such
that T = μIX + A, with A = T −μIX ∈ L(X ,Y , 〈 · , · 〉) (as A has an adjoint relative
to 〈 · , · 〉), and the continuity of T follows by applying Lemma 4.8 again. 	

Corollary 4.11 Let (X ,Y , 〈 · , · 〉) be a normed pairing over F complete on the right,
with X infinite-dimensional, let A be a Jordan subring of L(X ,Y , 〈 · , · 〉) containing
F(X ,Y , 〈 · , · 〉), and let

D : A → L(X ,Y , 〈 · , · 〉)

be a Jordan derivation. Then there exists B ∈ L(X ,Y , 〈 · , · 〉) such that D(A) =
[A, B] for every A ∈ A. As a consequence, if in fact (X ,Y , 〈 · , · 〉) is a Banach
pairing, then D is continuous.

Proof By Theorem 3.5, there exists a differential operator T on X having an adjoint
T # relative to 〈 · , · 〉 and satisfying D(A) = [A, T ] for every A ∈ A. But T # is
a differential operator on Y having an adjoint (namely T ) relative to 〈 · , · 〉. There-
fore, by the complete-on-the-right version of Theorem 4.10, there exist μ ∈ F and
C ∈ L(Y , X , 〈 · , · 〉) such that T # = IYμ+C . Now T =(T #)# =(IYμ+C)# =μIX+B,
where B := C# lies in L(X ,Y , 〈 · , · 〉). Finally, since D(A) = [A, T ] for every A ∈ A,
we conclude that D(A) = [A, B] for every A ∈ A.

The consequence follows from Lemma 4.8. 	

In the case that F is equal to R or C, the next proposition is known in [47, Theorem

II-4].
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Proposition 4.12 Let X be a left normed space over F, and for (x, f ) ∈ X × X ′ set
〈x, f 〉 := f (x). Then we have:

(i) (X , X ′, 〈 · , · 〉) is a normed pairing over F complete on the right.
(ii) L(X) = L(X , X ′, 〈 · , · 〉).
(iii) F(X) = F(X , X ′, 〈 · , · 〉).
Proof If F = K, then assertion (i) is well known. Suppose that F = H. Then, by
Corollary 4.5, X ′ is a right Banach space over H. Therefore to conclude the proof of
(i) it is enough to show that the form 〈 · , · 〉 is nondegenerate. Let f be in X ′ such that
〈X , f 〉 = 0. Then clearly f = 0. Now let x be in X such that 〈x, X ′〉 = 0. Then, as a
byproduct of Lemma 4.6, we have x = 0. Thus (i) has been proved.

Let F be in L(X). Then F ∈ L(X), and the topological transpose F ′, where
F ′( f ) := f ◦F for every f ∈ X ′, is an adjoint of F relative to 〈 · , · 〉. Therefore
F lies in L(X , X ′, 〈 · , · 〉). Conversely, let F be in L(X , X ′, 〈 · , · 〉). Then, by (i) and
the complete-on-the-right version of Lemma 4.8, F# is continuous. Therefore, for all
x ∈ X and f ∈ X ′ we have

| f (Fx)| = |〈Fx, f 〉| = |〈x, F# f 〉| � ‖F#‖‖ f ‖‖x‖. (4.1)

Let x be in X . Then, by Lemma 4.6, there exists f ∈ X ′ such that ‖ f ‖ = 1 and
f (Fx) = ‖Fx‖. Therefore, by (4.1), ‖Fx‖ � ‖F#‖‖ f ‖‖x‖ = ‖F#‖‖x‖. Since x
is arbitrary in X , we conclude that F lies in L(X). Thus the proof of (ii) has been
concluded.

Assertion (iii) follows straightforwardly from (ii). 	

Proof of Theorem 1.4 Combine Corollary 4.11 and Proposition 4.12. 	


For the reader interested only in associative notions, we emphasize the straightfor-
ward consequence of Theorem 1.4 given by the following.

Corollary 4.13 Let X be an infinite-dimensional left normed space over F, let A be
a standard operator ring on X, and let D : A → L(X) be a derivation. Then there
exists B ∈ L(X) such that D(A) = [A, B] for every A ∈ A. As a consequence, D is
continuous.

Remark 4.14 Let d be a (ring) derivation of R. Then the mapping
dC : a + ib → d(a) + id(b) (a, b ∈ R) is a derivation of C. Similarly, if {1, i, j, k}
is a canonical basis of H, then the mapping

dH : α + βi + γ j + δk → d(α) + d(β)i + d(γ ) j + d(δ)k

(α, β, γ, δ ∈ R) is a derivation of H. Therefore, keeping in mind the existence of
discontinuous derivations ofR (Remark 4.9 (b)), the existence of discontinuous deriva-
tions of F := R, C, or H is assured.

Now let X be a finite-dimensional left normed space over F. Then X = F
m for

some positive integer m, and L(X) = Mm(F) (the ring of all m×m matrices over
F) is the unique standard operator Jordan ring on X . Moreover, given any derivation
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d of F, the mapping dm : (ai, j ) → (d(ai, j )) ((ai, j ) ∈ Mm(F)) is a derivation of
Mm(F). It follows from the above paragraph that the restriction in Theorem 1.4 and
Corollary 4.13 that X is infinite-dimensional cannot be removed.

To conclude this remark, let us incidentally note that derivations of Mm(F) can be
described in terms of derivations of R. Indeed, according to [48, Example 19], each
derivation of Mm(F) decomposes as a sum of an inner derivation of Mm(F) and a
derivation of the form dm for some derivation d of F. (Even, in this result, F can be
replaced with any unital ring; note also that, in the very particular case that F = K, the
result we are reviewing was rediscovered in [62, Theorem 2.2].) Moreover, it is easily
realized that every derivation d of C can be written as d = (d1)C + i(d2)C for suitable
derivations d1, d2 of R. Finally, according to [33, Theorem 3.1] or [34, Theorem 2.1],
each derivation of H decomposes as a sum of an inner derivation of H and a derivation
of the form dH for some derivation d of R.

Definition 4.15 Let X be a nonzero left normed space over F, and let ||| · ||| denote the
norm of X as well as the dual norm on X ′ and the operator norm on the real algebra
L(X). Arguing as in the proof of [18, Proposition 1.4.32], we realize that F(X) is the
smallest nonzero ring ideal ofL(X). Generalizing a notion of Schatten [59, Definition
V.1.3], by a norm ideal of operators on X we mean any nonzero R-algebra idealA of
L(X) endowed with a norm ‖·‖ satisfying the following conditions:

(i) ‖x⊗ f ‖ = |||x ||| ||| f ||| for all x ∈ X and f ∈ X ′ (here x⊗ f has the meaning
given in §2.1 particularized to the case that � = F, Y = X ′, and X is naturally
paired with X ′).

(ii) ‖FAG‖ � |||F |||‖A‖ |||G||| for all A ∈ A and F,G ∈ L(X).

It follows from these conditions that, for A ∈ A, x ∈ X , and f ∈ X ′ with |||x ||| =
||| f ||| = 1, we have

|||Ax ||| = ‖Ax⊗ f ‖ = ‖A(x⊗ f )‖ � |||x⊗ f |||‖A‖ = ‖A‖.

Hence |||A||| � ‖A‖ for every A ∈ A. Therefore, keeping in mind (ii) again, we realize
that (A, ‖·‖) is a real normed algebra.

Corollary 4.16 Let (X , ||| · |||) be an infinite-dimensional left normed space over F, let
(A, ‖·‖) be a norm ideal of operators on X, and let D be a ring derivation ofA. Then
D is R-linear and ‖·‖-continuous.
Proof Clearly A is a standard ring of operators on X . Therefore, by Corollary 4.13,
there exists B ∈ L(X) such that D(A) = [A, B] for every A ∈ A. As a first conse-
quence, D is R-linear. Moreover, by requirement (ii) in Definition 4.15, for A ∈ A

we have ‖D(A)‖ = ‖AB − BA‖ � 2|||B|||‖A‖, and hence D is continuous (with
‖D‖ � 2|||B|||). 	

Remark 4.17 With the notation and requirements in the above corollary, suppose that
actually F = C and that in additionA is a complex subspace ofL(X). Then the above
proof shows that D is C-linear.
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5 Primitive associative normedQ-algebras with nonzero socle

This section is a homage to Rickart, who knew relevant forerunners of Lemmas 5.1
and 5.2, and of Theorem 5.3 below (see [52, Lemma 2.4.4, and Theorems 1.3.3 and
2.4.12]).

Lemma 5.1 LetA be a ring, let X be a faithful irreducible leftA-module, let� denote
the associated division ring of A relative to X, and let us regard X as a left vector
space over �. Suppose that actuallyA is (the ring underlying) an algebra over a field
F. Then X becomes naturally a vector space over F, and F is contained in the centre
of �. Therefore � is an algebra over F, and �IX consists only of F-linear operators
on X.

Proof Since X is an irreducible left module over the ringA, andA is an algebra overF,
it follows from [39, Proposition I.9.2] that X can be regarded in one and only one way
as an irreducible left module over the algebra A, i.e. X is an irreducible left module
over the ring A, and there is a unique multiplication (λ, x) → λx from F× X to X
converting (X ,+) into a vector space over F, and satisfying the bilinearity condition

λ(Ax) = A(λx) = (λA) x for all λ ∈ F, A ∈ A, and x ∈ X (5.1)

(compare [39, Definitions I.9.1 and I.9.3]). Now the first equality in (5.1) reads as that
F is included in �.

Let x be arbitrary in X . Then, by the irreducibility of X , there exists A ∈ A such
that Ax = x . Now let (λ, μ) be in F×�. Then, since λA lies inA, and B(μx) = μBx
for every B ∈ A, we have

μλx = μλAx = μ((λA) x) = (λA)(μx) = λA(μx) = λμAx = λμx .

Therefore, since x is arbitrary in X , we obtain that μλ = λμ. Finally, since (λ, μ) is
arbitrary in F×�, we conclude that F is contained in the centre of �. 	

Lemma 5.2 Let F denote eitherC orH, let X be a left vector space over F, and let ‖·‖
be a norm on X converting X into a real normed space and satisfying ‖λx‖ � |||λ|||‖x‖
for some R-algebra norm ||| · ||| on F and all λ ∈ F and x ∈ X. Then there exists an
equivalent norm on X converting X into a normed space over F.

Proof For x ∈ X , set |||x ||| = sup {‖μx‖ : μ ∈ F such that |μ| = 1}. Then it is
easily checked that ||| · ||| is an equivalent norm on X converting X into a normed space
over F. 	


By an associative normed Q-algebra over K we mean any normed associative
algebra over K such that the set of its quasi-invertible elements is open. Associative
normed Q-algebras have become a classical topic in the theory of associative normed
algebras, whose study goes back to Kaplansky [42] (see [18, Section 3.6.61] for addi-
tional information). Complete normed associative algebras are associative normed
Q-algebras [18, Example 3.6.42], but the converse is not true. Thus, for example,
every (possibly non closed) one-sided ideal of a complete normed associative algebra
is an associative normed Q-algebra.
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Theorem 5.3 Let (A, ‖·‖) be a primitive associative normed Q-algebra over K = R

or C having a nonzero socle. Let F stand for C if K = C, and for R, C, or H if
K = R. Then there exists a normed pairing ((X , ||| · |||), (Y , ||| · |||), 〈 · , · 〉) over F in
such a way that A is a K-subalgebra of L(X ,Y , 〈 · , · 〉) containing F(X ,Y , 〈 · , · 〉),
operators in A are ||| · |||-continuous, and the mapping A → A from (A, ‖·‖) to
(A, ||| · |||) is continuous. Moreover, if the associative normed Q-algebra (A, ‖·‖) is in
fact a complete normed algebra, then the pairing ((X , ||| · |||), (Y , ||| · |||), 〈 · , · 〉) above
is a Banach pairing.

Proof By [39, Section IV.9], there exist a division ring � and a pairing (X ,Y , 〈 · , · 〉)
over � such that A is a subring of L(X ,Y , 〈 · , · 〉) containing F(X ,Y , 〈 · , · 〉). Then,
since A is an algebra over K, it follows from Lemmas 2.2 and 5.1 that X is a vector
space over K, that � is an algebra over K, and that �IX consists only of K-linear
operators on X . Now, by [18, Corollary 3.6.44 (i) and its proof ], there exists a norm
||| · ||| on X converting X into a normed space (occasionally, a Banach space if we are
dealing with the complete normed case) over K, and with the properties that every
operator A ∈ A is ||| · |||-continuous with |||A||| � ‖A‖, and that �IX consists only of
||| · |||-continuous K-linear operators on X . Moreover, a choice of such a norm ||| · ||| on
X can be constructed by taking 0 �= x0 ∈ X , and defining

|||x ||| = inf
{‖A‖ : A ∈ A such that Ax0 = x

}
. (5.2)

On the other hand, since �IX consists only of ||| · |||-continuous K-linear operators
on X , we can convert � into a normed algebra over K (under the operator norm
corresponding to ||| · |||), and apply the Gelfand–Mazur theorem [18, Proposition 2.5.40
and Corollary 1.1.43] to obtain that � = F, with F as in the statement of the theorem.
Now, if K = C, or if K = R and F = R, then (X , ||| · |||) is a left normed (occasionally,
Banach) space over F and the inequality |||A||| � ‖A‖ holds for every A ∈ A. In the
remaining cases (that K = R and F = C or H), it is enough to apply Lemma 5.2 to
realize that, up to an equivalent renorming (we remain calling ||| · ||| the new norm),
(X , ||| · |||) becomes a left normed (occasionally, Banach) space over F and there is
M > 0 such that the inequality |||A||| � M‖A‖ holds for every A ∈ A. Therefore,
in any case, (X , ||| · |||) is a left normed (occasionally, Banach) space over F and there
is K > 0 such that the inequality |||A||| � K‖A‖ holds for every A ∈ A. Thus the
mapping A → A from (A, ‖·‖) to (A, ||| · |||) is continuous. We note that the change
of the norm ||| · |||we have done in some cases could affect equality (5.2), which should
be replaced with a double inequality of the form

K1|||x ||| � inf
{‖A‖ : A ∈ A such that Ax0 = x

}
� K2|||x |||

for somepositive constants K1, K2. Inwhat followswe codify this incidence bywriting
� instead of = in (5.2) and similar places.

In principle,A# has no anynatural norm.Nevertheless, sinceA# is antiisomorphic to
A in a naturalway,we canmove the normofA toA#, anddefine‖A#‖ := ‖A‖ (A ∈ A),
to realize that (A#, ‖·‖) becomes an associative normed Q-algebra (occasionally, a

123



   67 Page 22 of 41 Á. Rodríguez Palacios, M. Cabrera García

complete normed associative algebra) over K.1 Therefore, replacing in the above
paragraph X with Y , (A, ‖·‖) with (A#, ‖·‖), and Lemmas 2.2, 5.1, and 5.2 with
their ‘right’ versions, we realize that there exists a norm ||| · ||| on Y converting Y into
a right normed (occasionally, Banach) space over F, and satisfying

|||y||| � inf
{‖A‖ : A ∈ A such that A# y0 = y

}
(5.3)

for every y ∈ Y , where y0 is a prefixed nonzero element of Y .
Now, to conclude the proof of the theorem, it only remains to show that the form

〈 · , · 〉 is ||| · |||-continuous. But this can be done by arguing as in the proof of [52,
Lemma 2.4.11]. Indeed, let (x, y) be in X ×Y . Then (x⊗ y)2 = 〈x, y〉 x⊗ y, so
|〈x, y〉|‖x⊗ y‖ = ‖(x⊗ y)2‖ � ‖(x⊗ y)‖2, and so |〈x, y〉| � ‖x⊗ y‖. Now let
A, B ∈ A be such that Ax0 = x and B# y0 = y. Then x⊗ y = A(x0⊗ y0)B, and
hence ‖x⊗ y‖ � ‖x0⊗ y0‖‖A‖‖B‖. Taking the infimum over all such A and B,
it follows from (5.2) (with � instead of =) and (5.3) that there exists a positive
constant L (independent of (x, y)) such that ‖x⊗ y‖ � L|||x ||||||y|||. It follows that
|〈x, y〉| � L|||x ||||||y|||. 	


A normed algebra (A, ‖·‖) over K is said to have minimality of norm topology if
every continuous algebra norm on A is equivalent to ‖·‖. The next corollary follows
straightforwardly from Theorem 5.3.

Corollary 5.4 Let A be a primitive associative normed Q-algebra over K = R or C

having a nonzero socle and minimality of norm topology. Let F stand for C if K = C,
and for R, C, or H if K = R. Then there exist a normed pairing (X ,Y , 〈 · , · 〉) over F,
and a K-subalgebra B of L(X ,Y , 〈 · , · 〉) containing F(X ,Y , 〈 · , · 〉) and contained
in L(X), such that A is bicontinuously isomorphic to B endowed with the operator
norm. Moreover, if the associative normed Q-algebra A is in fact a complete normed
algebra, then the pairing (X ,Y , 〈 · , · 〉) above is a Banach pairing.

The next corollary follows from [41, Theorem 4.1]. Nevertheless, the proof we are
going to provide, by combining Corollary 4.11 and Theorem 5.3, has its own interest.

Corollary 5.5 Let (A, ‖·‖)be an infinite-dimensional complete normedprimitive asso-
ciative real or complex algebra with nonzero socle. Then ring derivations of A are
linear and continuous.

Proof Let D be a ring derivation of A. Then representing A as in Theorem 5.3, and
applying Corollary 4.11, we realize that D is linear and ||| · |||-continuous. Now the ‖·‖-
continuity of D follows from a closed graph argument. Indeed, let An be a sequence
in A such that ‖ · ‖-lim n An = 0 and ‖·‖-lim n D(An) = B ∈ A. Then, since the
mapping A → A from (A, ‖·‖) to (A, ||| · |||) is continuous, we have ||| · |||-lim n An = 0
and ||| · |||-lim n D(An) = B. But, since D is ||| · |||-continuous, this implies B = 0. 	


1 This nice idea is taken from the paragraph immediately before [52, Lemma 2.4.11].
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6 Additive derivations of Jordan algebras of a bilinear form

LetR be a non-associative ring. The centre ofR is defined as the subset ofR consisting
of those elements A ∈ R such that

[A,R] = (A,R,R) = (R, A,R) = (R,R, A) = 0,

where, for A, B,C ∈ R, [A, B] := AB − BA and

(A, B,C) := (AB)C − A(BC).

By a derivation of R we mean any additive mapping D : R → R satisfying

D(AB) = D(A)B + AD(B) (6.1)

for all A, B ∈ R. For such a mapping D, one easily check that the equalities
D([A, B]) = [D(A), B] + [A, D(B)] and

D((A, B,C)) = (D(A), B,C) + (A, D(B),C) + (A, B, D(C))

hold for all A, B,C ∈ R. As a consequence, we are provided with the following more
general version of Lemma 4.1.

Lemma 6.1 The centre of a non-associative ring R is invariant under any derivation
of R.

From now on F will denote a field of characteristic different from 2. Let X be a
vector space over F, and let 〈 · , · 〉 be a symmetric bilinear form on X . Then the direct
sum F⊕ X becomes a unital Jordan algebra over F under de product:

(λ + x)(μ + y) := (λμ + 〈x, y〉) + (λy + μx). (6.2)

Such a Jordan algebra will be denoted by J (X , 〈 · , · 〉). It is well known that, if
dim(X) � 2, and if 〈 · , · 〉 is nondegenerate, then J (X , 〈 · , · 〉) is simple, and its
centre is equal to F (see for example [10, Satz VII.3.5]).

Proposition 6.2 Let X be a vector space over F, and let 〈 · , · 〉 be a nondegenerate
symmetric bilinear form on X. We have:

(i) If T is a differential operator on X with associated derivation d : F → F, and if
−T is an adjoint of T relative to the pairing (X , X , 〈 · , · 〉), then the mapping

D(d,T ) : λ + x → d(λ) + T x

is an additive derivation of J (X , 〈 · , · 〉).
(ii) If dim(X) � 2, then every additive derivation of J (X , 〈 · , · 〉) is of the form D(d,T )

for some couple (d, T ) as in assertion (i).
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Proof The proof of assertion (i) is left to the reader.
Suppose that dim(X) � 2, and let D be an additive derivation of J (X , 〈 · , · 〉). We

claim that D diagonalizes relative to the direct sum J (X , 〈 · , · 〉) = F⊕ X . Indeed, F is
invariant under D, as F is the centre of J (X , 〈 · , · 〉) and Lemma 6.1 applies. Now note
that, if x, y ∈ X , then xy ∈ F. Let x be in X . Then x2 ∈ F, hence D(x2) ∈ F. Write
D(x) = λ+ y with λ ∈ F and y ∈ X . Then we have D(x2) = 2D(x)x = 2(λx+ yx).
Therefore, since both D(x2) and yx lie in F, and x ∈ X , we conclude that λx = 0,
and this implies that D(x) ∈ X . Thus, since x is arbitrary in X , we have shown that X
is invariant under D. Now that the claim has been proved, let d denote the restriction
of D to F, regarded as a mapping from F to F, and let T denote the restriction of D
to X , regarded as a mapping from X to X . Then, with the help of (6.1) and (6.2), it
is routine to verify that d is a ring derivation of F, that T is a differential operator
on X with associated derivation d, that −T is an adjoint of T relative to the pairing
(X , X , 〈 · , · 〉), and that D = D(d,T ) in the sense of assertion (i). In this way, assertion
(ii) has been proved. 	


Now the main result in this section reads as follows.

Theorem 6.3 Let 〈 · , · 〉 be a continuous nondegenerate symmetric bilinear form on
an infinite-dimensional Banach space X over K. Then the additive derivations of the
complete normed Jordan algebra J (X , 〈 · , · 〉) = K⊕ X are precisely the mappings
of the form DA : λ + x → Ax for some A ∈ L(X) such that

〈Ax, y〉 = − 〈x, Ay〉 for all x, y ∈ X . (6.3)

Proof Since linear operators on X are precisely those differential operators on X
whose associated derivation is zero, it follows from Proposition 6.2 (i) that, for each
A ∈ L(X) satisfying (6.3), DA is an additive derivation of J (X , 〈 · , · 〉).

Let D be any additive derivation of J (X , 〈 · , · 〉). Then, by Proposition 6.2 (ii),
D = D(d,T ) for some couple (d, T ) as in Proposition 6.2 (i). But T is a differential
operator on X having an adjoint relative to 〈 · , · 〉. Therefore, by Theorem 4.10, T is
linear and continuous. Now the proof that D = DA, for some A ∈ L(X) satisfying
(6.3), is concluded by taking A = T . 	

Remark 6.4 Let 〈 · , · 〉 be a continuous nondegenerate symmetric bilinear form on an
infinite-dimensional Banach space X over K. Then, as a byproduct of Theorem 6.3,
additive derivations of J (X , 〈 · , · 〉) are linear and continuous.But, consideringRemark
4.9 (b), this is well known [9, Proposition 3.3].

Remark 6.5 Letm be a natural number, and let X be a vector space overK of dimension
m, and let 〈 · , · 〉 be a nondegenerate symmetric bilinear form on X . Then identifying
X with K

m by means of a suitable basis, we have

〈(λ1, . . . , λm), (μ1, . . . , μm)〉 = λ1μ1 + · · · + λpμp − λp+1μp+1 − · · · − λmμm

for a suitable p ∈ {0, 1, . . . ,m} with p = m in the case that K = C (see for example
[40, Section 6.3]). Note that, given any ring derivation d ofK, the mapping d̂ : X → X
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defined by

d̂(λ1, . . . , λm) := (d(λ1), . . . , d(λm))

is a differential operator on X whose associated derivation is d, and that −d̂ is an
adjoint of d̂ relative to 〈 · , · 〉. Now let T be any differential operator on X . Then,
according to [57, Theorem 1.4] (a reformulation of [62, Theorem 2.2] via Fact 1.1),
there exist C ∈ L(X) and a ring derivation d of K such that T = C + d̂ . Therefore,
−T is an adjoint of T relative to 〈 · , · 〉 if and only if −C is an adjoint of C relative
to 〈 · , · 〉. In this way we have proved that the differential operators T on X such that
−T = T # are precisely the operators of the form C + d̂, where C ∈ L(X) satisfies
−C = C#, and d is a ring derivation of K. As a byproduct, there are discontinuous
choices of such operators T , and hence, applying Proposition 6.2 (i), we realize that
there are discontinuous ring derivations of J (X , 〈 · , · 〉). It follows that the restriction
in Theorem 6.3 that X is infinite-dimensional cannot be removed. Anyway, the italized
assertion above, together with Proposition 6.2, provides us with a precise description
of all additive derivations of J (X , 〈 · , · 〉) in the case that m � 2.

§6.6 By a smooth normed algebra we mean a norm-unital normed algebra whose
closed unit ball has a unique tangent hyperplane at the unit. According to [18, Propo-
sition 2.6.2], C is the unique smooth normed complex algebra. However, considering
that the closed unit ball of every nonzero pre-Hilbert space has a unique tangent hyper-
plane at any of its norm-one points, it turns out straightforward that, given an arbitrary
real pre-Hilbert space (X , ( · | ·)), the Jordan algebra J (X ,−( · | ·)) becomes a smooth
normed real algebra under the norm ‖λ + x‖2 := √|λ|2 + ‖x‖2. But, according to
[18,Definition 2.6.4 andTheorem2.6.9], every commutative smooth normed real alge-
bra is of the form (J (X ,−( · | ·)), ‖·‖2) for some real pre-Hilbert space (X , ( · | ·)).
Therefore, in the complete infinite-dimensional case, it follows from Theorem 6.3 that
additive derivations of such an algebra are the mappings of the form λ+ x → Ax for
some A ∈ L(X) which is skew-adjoint relative to the C∗-algebra involution of L(X).

As the next example shows, the restriction of completeness cannot be removed in
the above discussion.

Example 6.7 Let I be any infinite set, let X denote the real vector space of all fam-
ilies (λi )i∈I of real numbers having only a finite number of nonzero terms, and let
( · | ·) : X × X → R be defined by ((λi )|(μi )) := ∑

i∈I λiμi . Then (X , ( · | ·)) is a real
pre-Hilbert space, and hence J (X ,−( · | ·)) is an infinite-dimensional smooth normed
commutative real algebra under the norm ‖λ + x‖2 := √

λ2 + ‖x‖2. Now take a
nonzero derivation d of R, and define a mapping T : X → X by T ((λi )) := (d(λi )).
Then T is a differential operator on X whose associated derivation is d, and −T is an
adjoint of T relative to ( · | ·). Therefore, according to Proposition 6.2 (i), the mapping
D : λ + x → T x is an additive derivation of J (X ,−( · | ·)). However, since T is not
linear, there is no A ∈ L(X) such that D(λ + x) = Ax for every (λ, x) ∈ R× X .

§6.8 J B-algebras are complete normed Jordan real algebras which, roughly speaking,
behave like the self-adjoint parts of C∗-algebras endowed with the Jordan product
A• B = 1

2 (AB + BA). In fact J B-algebras are defined as those complete normed
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Jordan real algebras A satisfying ‖A‖2 � ‖A2 + B2‖ for all A, B ∈ A. J B-algebras
enjoy a deep and complete structure theory, which is nicely collected in the book of
Hanche–Olsen and Størmer [36]. Additional information on J B-algebras can be found
in [18, Section 3.1 and Subsection 3.4.1] and [19, Theorems 5.1.29 (i) and 5.1.38].

In the structure theory of J B-algebras, the so-called J B-spin factors have spe-
cial relevance. To introduce them, consider any real Hilbert space (X , ( · | ·)) with
dim(X) � 2. Then, according to [36, Lemma 6.1.3], J (X , ( · | ·)) is a J B-algebra
under the norm ‖λ + x‖1 := |λ| + ‖x‖. Now, by definition, J B-spin factors are noth-
ing other than the J B-algebras obtained by the procedure just described. Therefore, as
in the case of infinite-dimensional complete smooth normed real algebras, discussed
in §6.6, additive derivations of any infinite-dimensional J B-spin factor are the map-
pings of the form λ + x → Ax for some A ∈ L(X) which is skew-adjoint relative to
the C∗-algebra involution of L(X). This result can be also derived form Remark 6.4
and [66, Example 2.3].

§6.9 Let A be an algebra over K. We say that A is quadratic if it is unital and, for
every a ∈ A, a2 lies in the linear hull of {1, a}. As a consequence of [18, Proposition
2.5.13], the commutative quadratic algebras over K are precisely those of the form
J (X , 〈 · , · 〉) for some vector space X overK, and some symmetric bilinear form 〈 · , · 〉
on X .

J B∗-algebras are defined as those complete normed Jordan complex algebras A
endowedwith a conjugate-linear algebra involution∗ satisfying‖UA(A∗)‖ = ‖A‖3 for
every A ∈ A. C∗-algebras, endowed with the Jordan product A• B = 1

2 (AB + BA),
become examples of J B∗-algebras. Thus, in some sense, J B∗-algebras generalizeC∗-
algebras. Actually, in a very precise sense, J B∗-algebras become the largest possible
generalization of C∗-algebras (see [18, Definitions 3.3.1 and 3.5.29, and Proposition
3.5.31] and [19, Theorem 5.9.9 and Corollary 5.9.12]). Since Wright’s pioneering
paper [69], J B∗-algebras have been studied in depth. The reader is referred to [18,
19, 56] for a full overview of their theory.

From a purely algebraic point of view, quadratic Jordan complex H∗-algebras (see
Definition 7.15 below) and quadratic J B∗-algebras are the same. Indeed, according
to [22, Theorem 2(3)] and [18, Corollary 3.5.7], in dimension � 3 they are of the
form J (X , 〈 · , · 〉), where X is a complex Hilbert space, 〈 · , · 〉 is defined by 〈x, y〉 :=
(x | y
) for all x, y ∈ X , 
 denotes the essentially unique conjugation (i.e. isometric
conjugate-linear involutive operator) on X [36, Lemma 7.5.6], and (λ+ x)∗ := λ+ x


for all λ ∈ C and x ∈ X . In the H∗-algebra case, the inner product is given by
(λ + x | μ + y) := λμ + (x | y), whereas, in the J B∗-algebra case, the norm of the
algebra can be suitably reconstructed from 
 and the inner product of X in such a way
that its topology extends those of C and X .

Now let X and 
 be as above, and for B ∈ L(X) define B
 ∈ L(X) by B
x :=
(Bx
)
. Set 〈x, y〉 := (x | y
) for all x, y ∈ X . Then for A ∈ L(X) satisfying (6.3)
and all x, y ∈ X we have

(x | A∗y) = (Ax | y) = 〈Ax, y
〉 = − 〈x, Ay
〉 = − (x | A
y),
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and hence A∗ = −A
. Since ∗ and 
 commute on L(X), it follows from Theorem 6.3
that, when an infinite-dimensional quadratic Jordan complex H∗-algebra or an infinite-
dimensional quadratic J B∗-algebra is regarded as in the above paragraph, the additive
derivations of the algebra are precisely the mappings of the form λ + x → Ax , where
A ∈ L(X) is skew-symmetric relative to the involutive linear ∗-antiautomorphism τ

of L(X) defined by τ(B) := (B∗)
.
We conclude this section with the following.

Corollary 6.10 Let Z be an infinite-dimensional reflexive real or complex Banach
space. Set X := Z ⊕ Z ′ and 〈z + f , w + g〉 := f (w) + g(z) for all z, w ∈ Z and
f , g ∈ Z ′. Then the additive derivations of J (X , 〈 · , · 〉) are precisely the mappings of
the form

λ + (z + f ) → (Az + B f ) + (Cz − A′ f )

where A : Z → Z, B : Z ′ → Z, and C : Z → Z ′ are continuous linear mappings
such that B ′ = −B and C ′ = −C.

Proof It is clear that 〈 · , · 〉 is a continuous nondegenerate symmetric bilinear form on
X . For the sake of convenience, let us write

J (X , 〈 · , · 〉) = K⊕ X =
{

λ +
(
z
f

)
: λ ∈ K, z ∈ Z , f ∈ Z ′

}
,

〈( z
f
)
,
(

w
g
)〉 = f (w) + g(z), and, for H ∈ L(X), H = (

A B
C D

)
, where A : Z → Z ,

B : Z ′ → Z , C : Z → Z ′ and D : Z ′ → Z ′ are continuous linear mappings such that
H

( z
f
) = (

A B
C D

)( z
f
) = ( Az+B f

Cz+Df

)
. By Theorem 6.3, derivations of J (X , 〈 · , · 〉) are of

the form

λ +
(
z
f

)
→ DH

(
λ +

(
z
f

))
= H

(
z
f

)

for some H ∈ L(X) satisfying

〈
H

(
z
f

)
,

(
w

g

)〉
= −

〈(
z
f

)
, H

(
w

g

)〉
.

Therefore, writing H as a matrix as above, we have

〈(
Az + B f
Cz + Df

)
,

(
w

g

)〉
= −

〈(
z
f

)
,

(
Aw + Bg
Cw + Dg

)〉
,

or equivalently

(Cz)(w) + (Df )(w) + g(Az) + g(B f ) = − f (Aw) − f (Bg) − (Cw)(z) − (Dg)(z).
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Taking f = 0 andw = 0, we obtain g(Az) = −(Dg)(z), and hence D = −A′. Taking
f = g = 0, we get (Cz)(w) = −(Cw)(z), and hence, identifying Z with Z ′′ via the
canonical injection, we see that C ′ = −C . Analogously, taking z = w = 0, we obtain
that B ′ = −B. 	


7 Additive derivations of non-associative H∗-algebras

7.1 Auxiliary results

In what follows R will denote a non-associative ring, and Ad(R) will stand for the
associative ring of all additive mappings from R to R. The centroid of R is defined as
the subring of Ad(R) consisting of those λ ∈ Ad(R) such that

Aλ(B) = λ(AB) = λ(A)B (7.1)

for all A, B ∈ R, and is denoted by �(R). For λ ∈ �(R) and A ∈ R, we write λA
instead of λ(A).

Proposition 7.1 Let D be a derivation of R. Then there exists a derivation d of �(R)

such that D(λA) = λD(A) + d(λ)A for every A ∈ R.

Proof Note that the equalities (7.1) can be read as that a mapping λ ∈ Ad (R) lies in
�(R) if and only if [LA, λ] = 0 and [RA, λ] = 0 for every A ∈ R, where L A and RA

denote the operators of left and right multiplication by A. Note also that the equality
(6.1) is equivalent to [D, LA] = LD(A) for every A ∈ R, or to [D, RA] = RD(A) for
every A ∈ R. These facts will be applied in what follows without notice.

Let A and λ be in R and �(R), respectively. Then

0 = [D, [LA, λ]] = [[D, LA], λ] + [L A, [D, λ]]
= [LD(A), λ] + [L A, [D, λ]] = [LA, [D, λ]],

and analogously 0 = [RA, [D, λ]]. Therefore, since A is arbitrary in R, we realize
that [D, λ] lies in �(R). Thus [D, �(R)] ⊆ �(R) because λ is arbitrary in �(R).
This allows us to consider the mapping d : �(R) → �(R) defined by d(λ) := [D, λ].
Clearly, d is a derivation of �(R). Moreover, for λ ∈ �(R) and A ∈ R we have

D(λA) = λD(A) + [D, λ](A) = λD(A) + d(λ)A. 	


The annihilator ofR is defined as the ideal ofR consisting of those elements A ∈ R

such that AR = 0 = RA, and is denoted by Ann(R). Now, arguing as in the case of
algebras [18, Proposition 1.1.11 (i)], we obtain the following.

Fact 7.2 If R has zero annihilator, then �(R) is a commutative ring.

In what follows F will denote a field, and A will stand for an algebra over F.
Usually, the algebra centroid �A ofA is defined as the set of all linear operators λ on
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A satisfying the equalities (7.1) for all A, B ∈ A. But, regardedA as a non-associative
ring, we may think about �(A) in the sense defined above. To avoid any confusion,
we will say that �(A) is the additive centroid of A.

Proposition 7.3 Suppose that A has zero annihilator. Then the additive centroid of A
coincides with the algebra centroid of A.

Proof The inclusions FIA ⊆ �A ⊆ �(A) are clear. Moreover �A is the set of those
operators in �(A) which commute with all elements in FIA. Therefore, since A has
zero annihilator, it follows from Fact 7.2 that �A = �(A), as desired. 	


A proof of the above proposition, which avoids Fact 7.2, can be found in the
argument of [41, Remark 4.2]. Indeed, let T be in �(A), let A, B be in A, and let λ

be in F. Then

B(T (λA) − λT (A)) = 0 = (T (λA) − λT (A))B.

Therefore T (λA)−λT (A) = 0 because B is arbitrary inA andA has zero annihilator.
The arbitrariness of A ∈ A and λ ∈ F yields T ∈ �A, as desired.

Following [18, Definition 1.1.10], we say that A is central over F if the algebra
centroid of A reduces to FIA. Now, combining Propositions 7.1 and 7.3, we obtain
the following

Proposition 7.4 Suppose that A is central over F and has zero annihilator. Let D be
an additive derivation ofA. Then D is a differential operator on (the vector space of)
A.

The subalgebra of L(A) generated by all operators of left and right multiplication
onA by elements ofA is called the multiplication ideal ofA, and is denoted by I(A).

Fact 7.5 The subring of Ad(A) generated by all operators of left and right multipli-
cation on A by elements of A coincides with I(A).

Proof LetS denote the subset of Ad(A) consisting of all finite sums of products of the
form MA1 · · · MAn , where n ∈ N and, for 1 � i � n, MAi is equal to either L Ai or RAi .
ThenS is a subring of Ad (A) containing all operators of left and right multiplication
on A by elements of A, and is contained in any subring of Ad (A) containing such
operators. ThereforeS is the subring of Ad(A) generated by all operators of left and
right multiplication on A by elements of A. Since clearly S ⊆ I(A) ⊆ L(A), and
S is a subalgebra of L(A) (as λMA = MλA for all λ ∈ F and A ∈ A), the equality
S = I(A) follows. 	

Lemma 7.6 Let D be an additive derivation of A, and let B be in I(A). Then [B, D]
lies in I(A).

Proof The set {C ∈ Ad (A) : [C, D] ∈ I(A)} is a subring of Ad(A) containing the
generators of I(A), and hence, by Fact 7.5, contains I(A). Therefore [B, D] ∈ I(A).

	


123



   67 Page 30 of 41 Á. Rodríguez Palacios, M. Cabrera García

Set M(A) := FIA + I(A). Then M(A) is the so-called multiplication algebra of
A, and is indeed the subalgebra of L(A) generated by IA and all operators of left and
right multiplication on A by elements of A.

Proposition 7.7 Suppose that A is central over F and has zero annihilator. Let D be
an additive derivation of A, and let B be inM(A). Then [B, D] lies inM(A).

Proof Write B = λIA+C with λ ∈ F and C ∈ I(A). By Lemma 7.6, [C, D] ∈ I(A).
Moreover, by Proposition 7.4, [λIA, D] ∈ FIA. Therefore

[B, D] = [λIA, D] + [C, D] ∈ FIA + I(A) = M(A). 	


Direct summands ofA are defined as those idealsB ofA that there is another ideal
C of A satisfying A = B⊕C. Now, arguing as in the case where F = K := R or C,
and derivations are assumed to be linear [19, Lemma 8.1.40], and noticing that both
restrictions are unnecessary in the argument, we obtain the following.

Fact 7.8 Suppose thatA has zero annihilator. Then direct summands ofA are invariant
under any additive derivation of A.

From now on, we suppose that F = K := R or C, and that A actually is a normed
algebra.

Fact 7.9 The inclusion M(A) ⊆ L(A) holds.

Proof L(A) is a subalgebra of L(A) containing the generators of M(A). Therefore
the result follows. 	

Lemma 7.10 Suppose that A has zero annihilator. Let D be an additive derivation of
A, and let F be a family of ideals of A such that

∑
B∈F B is dense in A. We have:

(i) If D is linear on each B ∈ F, then D is linear.
(ii) If actually the normed algebra A is complete, and if D is linear and continuous

on each B ∈ F, then D is linear and continuous.

Proof Suppose that D is linear on each B ∈ F. Then for λ ∈ K, A ∈ A, B ∈ F, and
B ∈ B we have

(D(λA) − λD(A))B = D(λAB) − λAD(B) − λD(A)B

= λ(D(AB) − AD(B) − D(A)B) = 0

(as AB lies in B), and analogously B(D(λA) − λD(A)) = 0. Therefore, since B is
arbitrary in F, and B is arbitrary in B, and

∑
B∈F B is dense in A, we derive that

D(λA) − λD(A) lies in the annihilator of A. Since A has zero annihilator, and λ is
arbitrary in K, and A is arbitrary in A, the proof of (i) is concluded.

Now suppose thatA is complete and that D is linear and continuous on eachB ∈ F.
Then, by assertion (i) just proved, D is linear. Therefore, sinceA is complete, to prove
the continuity of D it is enough to show that D has closed graph. But this can be done
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by arguing as in the last paragraph of the proof of [19, Theorem 8.1.41]. Indeed, let
An be a sequence in A such that lim An = 0 and lim D(An) = A for some A ∈ A.
Then for B ∈ F and B ∈ B we have

0 = lim D(AnB) = lim (D(An)B + AnD(B)) = AB,

and in the same way BA = 0. Therefore, since B is arbitrary in F, and B is arbitrary
in B, and

∑
B∈F B is dense in A, we derive that A = 0. Thus assertion (ii) has been

proved. 	

Lemma 7.11 Let X be a normed space over K, let T be a differential operator on X.
Suppose that there exists a nonzero linear functional f on X (continuity of f is not
required) such that f T is continuous. Then T is linear.

Proof Let d denote the ring derivation of K associated to T . Take x ∈ X such that
f (x) = 1. Then d(λ) = f T (λx)−λ f T x for every λ ∈ K, and hence d is continuous.
Therefore, by Remark 4.9 (b), d = 0. 	

Proposition 7.12 Let A be a topologically simple complete normed central algebra
over K, and let D be an additive derivation of A. Suppose that there exists a nonzero
continuous linear functional f on A such that f D is continuous. Then D is linear
and continuous.

Proof ByProposition 7.4 andLemma7.11, D is linear. LetS(D) denote the separating
space of D. Then S(D) is a closed subspace of A [18, Lemma 1.1.57], and S(D) ⊆
ker( f ), which implies that S(D) �= A. But it is straightforward that the separating
space of any linear derivation of any normed algebra over K is an ideal of the algebra.
Therefore S(D) = 0, as A is topologically simple. Then, by [18, Fact 1.1.56], D is
continuous. 	


Generalized complemented normed algebras over K are defined as those normed
algebras overK having zero annihilator and satisfying the property that all their closed
ideals are direct summands (compare [19, Fact 5.1.2]). For later application, we note
that, as a consequence of [19, Lemma 5.1.1], generalized complemented normed alge-
bras over K are semiprime. Moreover, according to [32] (see also [19, Theorem
8.2.44 (ii)]), if A is a generalized complemented complete normed algebra over K

with zero weak radical, and if {Ai }i∈I stands for the family of its minimal closed
ideals, then for each A ∈ A there exists a unique summable family {Ai }i∈I in A such
that Ai ∈ Ai for every i ∈ I , and A = ∑

i∈I Ai . (For the meaning of the weak radical
of an algebra over K, the reader is referred to [18, Definition 4.4.39].)

Lemma 7.13 LetA be a generalized complemented complete normed algebra over K

with zero weak radical, let {Ai }i∈I stand for the family of its minimal closed ideals,
let A be in A, and let {Ai }i∈I be the unique summable family in A such that Ai ∈ Ai

for every i ∈ I and A = ∑
i∈I Ai . Let D : A → A be an additive derivation. Then

the family {D(Ai )}i∈I is summable in A with sum equal to D(A).
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Proof Let {Bi }i∈I be the unique summable family in A such that Bi ∈ Ai for every
i ∈ I and D(A) = ∑

i∈I Bi . It is enough to show that Bj = D(A j ) for every j ∈ I .
Let j be in I . Then both families {Ai }i∈I \{ j} and {Bi }i∈I\{ j} are summable in A, and
we have D(A) = Bj + ∑

i∈I\{ j} Bi and

D(A) = D(A j ) + D

( ∑
i∈I\{ j}

Ai

)
.

Therefore, since Bj and D(A j ) belong toA j (the latest by Fact 7.8), and
∑

i∈I\{ j} Bi
and D

(∑
i∈I\{ j} Ai

)
belong to B := ∑

i∈I\{ j} Ai (the latest by Fact 7.8 again), and
A j∩B = 0 (by semiprimeness ofA and [19, Fact 6.1.75]), it follows that Bj = D(A j ),
as desired. 	

Proposition 7.14 Let A be a generalized complemented complete normed algebra
over K with zero weak radical, and let D : A → A be an additive derivation. Let F
denote the family of those minimal closed ideals B of A such that the restriction of D
to B is discontinuous. Then F is finite.

Proof Let {Ai }i∈I denote the family of all minimal closed ideals of A. To derive a
contradiction, assume that there exists an infinite sequence in of pair-wise different
elements of I such that, for every n ∈ N, the restriction of D to Ain is discontinuous.
Then, by Remark 4.9 (a), for each n ∈ N there is Bn ∈ Ain such that ‖Bn‖ � 1

2n and
‖D(Bn)‖ � 1. Now let {Ai }i∈I be the family of elements of A defined by Ai := 0
if i �= in for every n ∈ N, and Ain := Bn otherwise. Then, by [21, Proposition
VII.9.18], the family {Ai }i∈I is summable in A. Set A := ∑

i∈I Ai , and note that
Ai ∈ Ai for every i ∈ I . It follows from Lemma 7.13 that the family {D(Ai )}i∈I is
summable inA, and hence, by [21, Corollary VII.9.6 and Proposition VII.9.8], the set
{i ∈ I : ‖D(Ai )‖ � 1} is finite. But this is not possible because ‖D(Ain )‖ � 1 for
every n ∈ N. 	


7.2 Themain result

Definition 7.15 We recall that semi-H∗-algebras are defined as those real or complex
algebras X which are also Hilbert spaces, and are endowed with a conjugate-linear
vector space involution ∗ satisfying

(xy | z) = (y | x∗z) = (x | zy∗) for all x, y, z ∈ X . (7.2)

H∗-algebras are defined as those semi-H∗-algebras whose involution ∗ is an algebra
involution. We remark that, up to the multiplication of the inner product by a suitable
positive number, semi-H∗-algebras become complete normed algebras [18, Lemma
2.8.12 (i)].

Since the pioneering papers of Ambrose [2] and Kaplansky [43] determining asso-
ciative complex and real H∗-algebras, respectively, the study of H∗-algebras into the
most familiar classes of non-associative algebras (such a Jordan [7, 26, 27, 29, 30,
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53, 54], Lie [3, 4, 6, 12, 24, 28, 49, 60, 61, 65], and Malcev algebras [13, 16, 70]),
has attained a complete development, getting in particular the determination of those
H∗-algebras in such classes. Nevertheless, concerning our current goal, we should pay
attention to the approach to (semi-)H∗-algebras from a general non-associative point
of view, such as is done in [6, 14–17, 25, 26, 54, 55, 67]. Anyway, for a full discussion
of the theory of (semi-)H∗-algebras, the reader is referred to [18, Subsection 2.8.2],
[19, Section 8.1], and [23].

From now on, X will denote a semi-H∗-algebra over K. For A ∈ L(X) we denote
by A• the unique operator inL(X) such that (Ax | y) = (x | A•y) for all x, y ∈ X . We
adopt this notation because • is a purelyHilbert-space notion, and hence, a priori, it has
nothing to do with the involution ∗ of X , and moreover the classical symbol A∗ for the
adjoint of A relative to ( · | ·) could be confusedwith the (possibly discontinuous) linear
operator on X defined by A∗x := (Ax∗)∗. Nevertheless, given x ∈ X , the equalities
(7.2) read as that (Lx )

• = Lx∗ and (Rx )
• = Rx∗ . Therefore, since M(X) ⊆ L(X)

(by Fact 7.9), and • is a conjugate-linear algebra involution on L(X) taking the set of
generators of M(X) into such a set, we obtain the following well-known result.

Fact 7.16 M(X) is a •-invariant subalgebra of L(X).

Since topologically simple complex semi-H∗-algebras are central over C [19,
Lemma 8.1.29] and have zero annihilator, we can combine Proposition 7.4, Fact 1.1,
and Propositions 7.7 and 7.12 (in this order) to obtain the following.

Proposition 7.17 Suppose that K = C and that X is topologically simple. Let T be
an additive derivation of X. We have:

(i) T is a differential operator on X.
(ii) The mapping A → [T , A] is a ring derivation of L(X) leavingM(X) invariant.
(iii) If there exists some nonzero element y ∈ X such that the mapping x → (T x | y)

is continuous, then T is linear and continuous.

As for any Hilbert space, given x, y ∈ X , we denote by x� y the continuous linear
operator on X defined by (x� y) z := (z | y) x for every z ∈ X .

Lemma 7.18 Suppose that K = C, that X is topologically simple and infinite-dimen-
sional, and that there exists an operator in M(X) whose range is one-dimensional.
Then additive derivations of X are linear and continuous.

Proof By Fact 7.9, the operator inM(X)whose existence has been assumed should be
of the form x0� y0 for some nonzero x0, y0 ∈ X . Then, since (x0� y0)(x0� y0)• =
(x0� y0)(y0� x0) = ‖y0‖2x0� x0, it follows fromFact 7.16 that x0� x0 lies inM(X).
Moreover, we may suppose that ‖x0‖ = 1. Set Y := M(X) x0. Then Y is a nonzero
ideal of X , so it is dense in X because X is topologically simple. We note that,

for every y ∈ Y , the operator x0� y lies inM(X). (7.3)

Indeed, taking A ∈ M(X) such that y = Ax0, it follows from Fact 7.16 that

x0� y = x0� Ax0 = (x0� x0)A
• ∈ M(X).
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Now let T be any additive derivation of X . Then, by Proposition 7.17 (ii), the
mapping D : A → [T , A] is a ring derivation of L(X) leaving M(X) invariant. On
the other hand, by Proposition 7.17 (i), T is a differential operator on X . Let d denote
the ring derivation of C associated to T , and set S := T − (T x0 | x0)IX . Then S
is a differential operator on X whose associated derivation is d, and satisfies that
(Sx0 | x0) = 0 and that D(A) = [S, A] for every A ∈ L(X). Let (x, y) be in X ×Y .
It follows that

D(x0⊗ y) x = [S, x0⊗ y] x = S((x | y) x0) − (Sx | y) x0
= (x | y)Sx0 + (d((x | y)) − (Sx | y)) x0.

Therefore, taking inner products with x0, we obtain

(D(x0⊗ y) x | x0) = d((x | y)) − (Sx | y). (7.4)

Now note that, considering (7.3) and that M(X) is D-invariant, we have that
D(x0⊗ y) ∈ M(X), and that then, by Fact 7.16, also (D(x0⊗ y))• ∈ M(X). There-
fore, (D(x0⊗ y))•x0 ∈ Y , and (7.4) reads as

(Sx | y) = d((x | y)) + (x | S•y), (7.5)

where S• : Y → Y is the mapping defined by S•y := −(D(x0⊗ y))•x0.
Consider a set copy Ŷ of Y with sum, product by scalars, and norm defined by

ŷ1 + ŷ2 := ŷ1 + y2, λŷ := λ̂y, and ‖ŷ‖ := ‖y‖, respectively, and for (x, ŷ) ∈ X × Ŷ ,
set 〈x, ŷ〉 = (x | y). Then (X , Ŷ , 〈 · , · 〉) is a normed pairing over C, complete on
the left. (In verifying this, the unique point which could be non clear is the one that
〈x, Ŷ 〉 = 0 implies x = 0; but this follows from the fact that Y is dense in X .)
Moreover (7.5) reads as

〈Sx, ŷ〉 = d(〈x, ŷ〉) + 〈x, S# ŷ〉,

where S# ŷ := Ŝ•y. Thus the differential operator S on X has an adjoint relative
to 〈 · , · 〉, and hence, by Theorem 4.10, is linear and continuous. Finally, since T =
S + (T x0 | x0)IX , T is linear and continuous. 	


The proof of the next proposition follows Villena’s argument in the proof of the
main result in [67] (see also [19, Theorem 8.1.41]), with the appropriate changes.

Proposition 7.19 Suppose that K = C and that X is topologically simple and infinite-
dimensional. Let T be an additive derivation of X. Then T is linear and continuous.

Proof Suppose that there exists some nonzero element y ∈ X such that the mapping
x → (T x | y) is continuous. Then, by Proposition 7.17 (iii), T is linear and continuous.
Therefore, to conclude the proof of the proposition it is enough to discuss the case
that, for every nonzero y ∈ X , the mapping x → (T x | y) is discontinuous. Actually
we are going to show that this case cannot happen.
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To derive a contradiction, assume that, for every nonzero y ∈ X , the mapping
x → (T x | y) is discontinuous. Then, by Remark 4.9 (a), for every nonzero y ∈ X , the
mapping x → (T x | y) is unbounded on any neighborhood of zero. Moreover, clearly
T is discontinuous, and hence, by Lemma 7.18, the inequality dim A(X) > 1 holds
for every nonzero A ∈ M(X). It follows from [19, Corollary 8.1.34 and Proposition
8.1.38] that there exist sequences yn in X and An inM(X) such that An · · · A1yn �= 0
and An+1 · · · A1yn = 0 for every n ∈ N, and clearly we may suppose that ‖yn‖ =
‖An‖ = 1 for every n ∈ N.

Now, according to Proposition 7.17 (ii), let D denote the ring derivation of M(X)

defined by D(A) := [T , A] for every A ∈ M(X). Then, considering Fact 7.16 and the
above paragraph, we can construct inductively a sequence xn in X with the property
that for every n ∈ N we have ‖xn‖ � 2−n and

|(T xn | An · · · A1yn)| � n +
∣∣∣∣
n−1∑
j=1

(T A•
1 · · · A•

j x j | yn)
∣∣∣∣ + ‖D(A•

1 · · · A•
n)‖

+ ‖D(A•
1 · · · A•

n+1)‖.

Now we consider the element x ∈ X defined by x := ∑∞
j=1 A

•
1 · · · A•

j x j , and for
n ∈ N we write zn := xn+1 + ∑∞

j=n+2 A
•
n+2 · · · A•

j x j . Then we have

(T x | yn) =
n−1∑
j=1

(T A•
1 · · · A•

j x j | yn) + (T A•
1 · · · A•

nxn | yn)

+
(
T

( ∞∑
j=n+1

A•
1 · · · A•

j x j

)
| yn

)

=
n−1∑
j=1

(T A•
1 · · · A•

j x j | yn) + (D(A•
1 · · · A•

n) xn + A•
1 · · · A•

nT xn | yn)

+ (T A•
1 · · · A•

n+1zn | yn)

=
n−1∑
j=1

(T A•
1· · · A•

j x j |yn) + (D(A•
1· · · A•

n) xn |yn) + (T xn |An · · · A1yn)

+ (D(A•
1 · · · A•

n+1) zn | yn) + (T zn | An+1 · · · A1yn)

= (T xn | An · · · A1yn) +
n−1∑
j=1

(T A•
1 · · · A•

j x j | yn)

+ (D(A•
1 · · · A•

n) xn | yn) + (D(A•
1 · · · A•

n+1) zn | yn),

where for the last equality we have used that An+1 · · · A1yn = 0. Therefore, since
‖zn‖ � 1, we obtain
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‖T x‖ � |(T x | yn)| � |(T xn | An · · · A1yn)| −
∣∣∣∣
n−1∑
j=1

(T A•
1 · · · A•

j x j | yn)
∣∣∣∣

− |(D(A•
1 · · · A•

n)xn | yn)|

� |(T xn | An · · · A1yn)| −
∣∣∣∣
n−1∑
j=1

(T A•
1 · · · A•

j x j | yn)
∣∣∣∣

− ‖D(A•
1 · · · A•

n)‖ − ‖D(A•
1 · · · A•

n+1)‖ � n.

Now the impossible fact that ‖T x‖ � n for every n ∈ N is the desired contradiction.	

Corollary 7.20 Suppose that X is topologically simple and infinite-dimensional. Let T
be an additive derivation of X. Then T is linear and continuous.

Proof If K = C, then the result follows from Proposition 7.19.
Suppose that K = R. Then, by [19, Theorem 8.1.88], either X is a topologically

simple complex semi-H∗-algebra, regarded as a real semi-H∗-algebra, or there exists
a couple (Z , 
), where Z is a topologically simple complex semi-H∗-algebra and 


is an isometric involutive conjugate-linear algebra ∗-automorphism of Z , such that
X = {z ∈ Z : z
 = z}. If the first possibility happens, then the result follows by
applying Proposition 7.19 again. Suppose that X = {z ∈ Z : z
 = z} for (Z , 
) as
above. Then, since Z = X ⊕ i X , we may define an additive derivation T : Z → Z by
setting T (x1 + i x2) := T x1 + iT x2 (x1, x2 ∈ X ). By applying Proposition 7.19 once
more, we obtain that T isC-linear and continuous. Therefore, since T is the restriction
of T to X , T is R-linear and continuous. 	


We recall that closed ideals of any semi-H∗-algebra over K are direct summands
[19, Proposition 8.1.13 (i)]. Considering this result, together with [19, Lemma 8.2.18],
we obtain the following.

Fact 7.21 Suppose that X has zero annihilator. Then X is a generalized complemented
complete normed algebra over K with zero weak radical.

Now the main result in this section reads as follows.

Theorem 7.22 Suppose that X has zero annihilator. Let T be an additive derivation
of X. Then there exist T -invariant closed ∗-ideals Y and Z of X such that X = Y ⊕ Z,
T is linear and continuous on Y , Z is finite-dimensional, and T is discontinuous on
Z.

Proof Let M be an infinite-dimensional minimal closed ideal of X . Then, by [19,
Proposition 8.1.13 (iv)–(v)], M is an infinite-dimensional topologically simple semi-
H∗-algebra over K in a natural way. On the other hand, by Fact 7.8, M is invariant
under T , and hence the restriction of T to M can be seen as an additive derivation of
M . It follows from Corollary 7.20 that T is continuous on M .

Let {Mi }i∈I denote the family of all minimal closed ideals of X , and let J stand
for the set of those i ∈ I such that T is discontinuous on Mi . It follows from
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Fact 7.21, Proposition 7.14, and the above paragraph that J is finite, and that Mi

is finite-dimensional whenever i ∈ J . Moreover, by Fact 7.8 and Remark 4.9 (b),
T is linear on Mi whenever i belongs to I \ J . Now set Y := ∑

i∈I\J Mi and
Z := ∑

i∈J Mi . Then Y and Z are T -invariant closed ∗-ideals of X (by Fact 7.8 and
[19, Proposition 8.1.13 (v)]), T is linear and continuous on Y (by Lemma 7.10 (ii)),
Z is finite-dimensional, T is discontinuous on Z , and X = Y ⊕ Z (by [19, Theorem
8.1.16 and Fact 6.1.75]). 	

Fact 7.23 Suppose that X has no nonzero finite-dimensional direct summand. Then X
has zero annihilator.

Proof Let Y be any finite-dimensional subspace ofAnn(X). Then Y is a closed ideal of
X , hence a finite-dimensional direct summand. Therefore Y = 0, as X has no nonzero
such a direct summand. Thus Ann(X) has no nonzero finite-dimensional subspace,
and hence Ann(X) = 0. 	


Combining Theorem 7.22 and Fact 7.23, we obtain the following.

Corollary 7.24 Suppose that X has no nonzero finite-dimensional direct summand.
Then additive derivations of X are linear and continuous.

In relation to the following remark, we note that alternative (so, in particu-
lar, associative) or Jordan semi-H∗-algebras with zero annihilator are H∗-algebras
[19, Proposition 8.1.23 (ii) and Corollary 8.1.80], and that, for associative algebras,
semisimplicity and J -semisimplicity mean the same [18, Definition 4.4.12].

Remark 7.25 (a) As far as we know, even the particularization of Theorem 7.22 to
the case that X is associative (respectively, Jordan) has not been noticed in the liter-
ature. Nevertheless, such a particularization can be easily obtained from previously
known results. Indeed, associative (respectively, Jordan) complex H∗-algebras with
zero annihilator are J -semisimple [19, Corollary 8.1.146] (respectively, [19, Propo-
sition 8.1.145]). Therefore, by [41, Theorem 4.1] (respectively, [9, Theorem 3.5]),
the particularization of Theorem 7.22 to the case that X is complex and associative
(respectively, Jordan) follows. Finally, reducing the real case to the complex one by
means of [19, Proposition 8.1.77], we obtain the associative (respectively, Jordan)
version of Theorem 7.22.

(b) The particularization of Corollary 7.24 to the case that X is alternative follows
from the associative version of that corollary because alternative H∗-algebras over K

with no nonzero finite-dimensional direct summand are associative. Indeed, let X be
an alternative H∗-algebra overKwith no nonzero finite-dimensional direct summand.
Then, by Fact 7.23, X has zero annihilator, and hence, as in the proof of Theorem 7.22,
each minimal closed ideal of X is an infinite-dimensional topologically simple alter-
native H∗-algebra over K in a natural way, and the sum of all minimal closed ideals
of X is dense in X . Therefore, since every infinite-dimensional topologically simple
alternative H∗-algebra over K is associative [11, Theorems 8.2 and 8.4] (see also [19,
pp. 551–552]), we conclude that X is associative, as desired.

(c) Let m be a natural number. Then Mm(K) becomes an H∗-algebra over K under
the inner product ((ai, j ) | (bi, j )) := ∑

i, j ai, j bi, j and the involution (ai, j )∗ := (a j,i ).
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It follows from Remark 4.14 that, even in the associative case, the possibility that the
direct summand Z in Theorem 7.22 be nonzero can happen.

Theorem 7.22 would follow straightforwardly from Fact 7.21 if the following con-
jecture were proved.

Conjecture 7.26 Let X be a generalized complemented complete normed algebra over
Kwith zero weak radical, and let T be an additive derivation of X. Then there exist T -
invariant closed ideals Y and Z of X such that X = Y ⊕ Z, T is linear and continuous
on Y , Z is finite-dimensional, and T is discontinuous on Z.

Conjecture 7.26 above holds if X is associative and commutative. Indeed, in this
case, by [18, Proposition 4.4.65 (ii)], the requirement that X has zero weak radical is
equivalent to the semisimplicity of X , and the Johnson–Sinclair theorem [41] applies.
Nevertheless we do not know if Conjecture 7.26 holds in the case that X is associative
but not commutative (see [18, Remark 4.4.68 (a)]). Anyway, looking at the proof of
Theorem 7.22, and considering [19, Theorem 8.2.44], one can realize that (the general
case of) Conjecture 7.26 is equivalent to the simpler one which follows.

Conjecture 7.27 Let X be an infinite-dimensional topologically simple complete
normed algebra over K with zero weak radical. Then additive derivations of X are
continuous.
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