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Abstract: Pure monocular 3D reconstruction is a complex problem that has attracted the research
community’s interest due to the affordability and availability of RGB sensors. SLAM, VO, and
SFM are disciplines formulated to solve the 3D reconstruction problem and estimate the camera’s
ego-motion; so, many methods have been proposed. However, most of these methods have not been
evaluated on large datasets and under various motion patterns, have not been tested under the same
metrics, and most of them have not been evaluated following a taxonomy, making their comparison
and selection difficult. In this research, we performed a comparison of ten publicly available SLAM
and VO methods following a taxonomy, including one method for each category of the primary
taxonomy, three machine-learning-based methods, and two updates of the best methods to identify
the advantages and limitations of each category of the taxonomy and test whether the addition of
machine learning or updates on those methods improved them significantly. Thus, we evaluated each
algorithm using the TUM-Mono dataset and benchmark, and we performed an inferential statistical
analysis to identify the significant differences through its metrics. The results determined that the
sparse-direct methods significantly outperformed the rest of the taxonomy, and fusing them with
machine learning techniques significantly enhanced the geometric-based methods’ performance from
different perspectives.

Keywords: monocular 3D reconstruction; monocular SLAM comparison; monocular VO comparison;
monocular benchmark; 3D reconstruction classification

1. Introduction

Monocular 3D reconstruction is a complex problem that can be solved from multiple
perspectives (commonly requiring combining geometric, probabilistic, and even machine
learning techniques), due to the large amount of information to be processed and the
scale ambiguity problems that pure monocular sensors imply [1,2]. This problem has been
studied in the past three decades to obtain 3D representations of an environment using
a sequence of images as the unique source of information for an algorithm. Previously,
multiple researchers have explored the possibility of addressing this problem by using
diverse hardware like radars, lasers, GPS, INS, cameras, and any possible combination
thereof. Regarding the camera alternative, it can be combined with active or passive
infrared sensors as RGB-D input modalities. It can also be structured as an array of cameras
registering the same objects from multiple angles to allow triangulation. Monocular RGB
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sensors can also be used alone to register a frame sequence from which the algorithm
can process a scene from multiple views [3,4]. This last option is known as monocular
RBG or monocular pure visual input modality, used in monocular Simultaneous Landing
and Mapping (SLAM), Visual Odometry (VO), or Structure from Motion (SFM) to obtain
3D reconstructions of environments and estimate the ego-motion of an agent from such
representations. In recent years, the pure monocular input modality has attracted the
research community’s attention due to the sensors’ low price and availability in most
handheld devices—smartphones, tablets, and laptops. Thus, monocular SLAM, VO, and
SFM systems are not limited as other sensors are (like lasers or radars) to work in a
limited range and have demonstrated the ability to recover precise trajectories and 3D
reconstructions indoors and outdoors.

Simultaneous Localization and Mapping is the process where a robot constructs a map
of its surroundings while concurrently figuring out where it is located within that map. It
involves determining the positions of landmarks and objects near the robot and its position,
commonly utilizing sensors and geometric and Bayesian techniques. Visual Odometry is
the process of incrementally estimating the robot’s ego-motion (location and orientation)
by analyzing the changes between the sequential camera images from the robot, estimating
the robot’s local trajectory rather than obtaining a comprehensive map. VO is commonly
utilized as a front-end in many visual SLAM systems. Structure from Motion refers to a
reduction in the 3D structure from 2D image sequences that show a scene from different
perspectives. It recovers the 3D location of points matched across multiple images and
the camera pose for each image. SFM does not require knowing the camera’s motion in
advance and is utilized in SLAM for initializing new 3D points [5].

As mentioned before, SLAM, VO, and SFM are three disciplines that can be used to
achieve the 3D reconstruction goal. SLAM is a discipline that appeared in the robotics field
motivated by the objective of estimating the environment map from where the trajectory of
a robot can be calculated, which can be used for autonomous navigation, driving, and flying,
among other things. In the computer vision field, multiple systems have been created to
address similar problems: SFM and VO. Structure from Motion specializes in recovering an
environment geometry, while Visual Odometry focuses on calculating the trajectory and
pose of a moving camera. However, it has been demonstrated that instead of solving each
problem separately, the best results have always been obtained by solving and optimizing
both problems simultaneously [3,6–8]. That is why it is common to find VO methods that
include SFM modules to improve their performance and SFM methods that use VO to
improve estimation or optimization tasks. For such reasons, in this study, we aim to identify
the best monocular RGB methods for 3D reconstruction; so, we included methods from
these three disciplines suitable for recovering 3D environment reconstructions.

As a complex problem, pure visual monocular 3D reconstruction has been addressed
from multiple perspectives combining various techniques that can be classified following
different approaches. One early classification is described in the study of [3] defining the
feature-based and appearance-based categories; nevertheless, this approach is unsuitable
for covering all the SLAM, VO, and SFM techniques available nowadays in the state of
the art. A better approach to classify monocular RGB 3D reconstruction systems is the
taxonomy described in [9], considering three classifications covering dense, sparse, direct,
indirect, classic, and machine learning-based proposals. Moreover, the authors listed
42 methods classified following the proposed extended taxonomy. After a careful reading
and analysis of the 42 listed methods, we could identify that many of the existing methods
were not adequately evaluated on large datasets [10–13] or not tested under different motion
patterns and illumination changes [11,14,15] and not tested for indoors/outdoors [16–18];
or the results were not obtained on the same metrics [8,19,20] hindering comparison and
selection. In addition, most of the methods performed comparisons against the currently
available methods from the state of the art, providing results in tables summarizing the
average mean or median of the algorithm execution on a specific scene, but they did not
provide an inferential statistical analysis of the results; thus, the reported differences or
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improvements cannot be considered significant. Moreover, given the fact that before the
extended taxonomy described in [9], there were only general classifications like direct
vs. indirect and sparse vs. dense methods [7,8,21] or the feature-based and appearance-
based classification reported in [3], none of the studies compared their results following
a taxonomy that might allow identifying better the advantages and limitations of direct,
indirect, dense, and sparse methods.

To address the mentioned issues, in this study, we performed a comparison of
ten publicly available SLAM and VO methods following a taxonomy, where the main
contributions are:

• A comparison of 10 SLAM and VO methods, following the main classification de-
scribed in the taxonomy (sparse-indirect, dense-indirect, dense-direct, and sparse-
direct), to identify the advantages and limitations of each method of those classifications.

• A comparison of three machine learning-based methods against their classic geometric
versions to identify whether there are significant improvements in adding neuronal
networks to classic approaches.

• An inferential statistical analysis describing the procedure to identify significant
differences based on the most suitable metrics for testing monocular RGB methods.

We also provide video samples of each algorithm’s execution as Supplementary mate-
rial in the GitHub repository: “https://github.com/erickherreraresearch/MonocularPur
eVisualSLAMComparison accessed on 16 June 2023”, along with all the .txt result files of
each algorithm run for reproducibility.

1.1. Related Works

Following the classification described in [21], there are four main classifications for
the methods that can be used to recover a scene’s 3D geometry using monocular image
sequences as the unique source of information: sparse-indirect, dense-indirect, dense-direct,
and sparse-direct.

1.1.1. Sparse-Indirect Methods

Sparse-indirect methods implement preprocessing steps recovering sparse reconstruc-
tions. MonoSLAM, PTAM, ORB-SLAM, and OpenMVG are the most prominent works
in this classification. MonoSLAM [22] was one of the first real-time monocular SLAM
systems. Its key contributions included using large image patches as features, “active” fea-
ture matching based on uncertainty, and initializing by tracking known targets. However,
MonoSLAM was limited to small workspaces and lacked loop-closing abilities. PTAM [23]
introduced the concept of parallel tracking and mapping threads, with the map optimized
via bundle adjustment over carefully selected keyframes. This configuration achieved
excellent AR tracking in small spaces, but the PTAM lacked loop closing, and the relocal-
ization was view-dependent. ORB-SLAM [24] significantly expanded PTAM’s capabilities
using ORB features for tracking, mapping, and loop closing via DBoW2 place recognition.
The covisibility graphs enabled local mapping, while the pose graphs distributed loop
closures globally. ORB-SLAM also introduced flexible keyframe insertion/deletion policies
to improve mapping during exploration while reducing redundancy. This versatility en-
abled state-of-the-art performance across indoor, outdoor, handheld, and robotics datasets.
OpenMVG is a C++ library that provides an interface to multiple view geometry algorithms
for building complete 3D reconstruction pipelines from images implementing incremental
and global SfM approaches. The OpenMVG SfM pipeline stores camera poses, landmarks,
and observations, providing smooth data flow between OpenMVG modules. Overall, the
OpenMVG enables flexible experimentation and the development of new techniques used
for multiple implementations since 2016; however, it only allows recovering widely sparse
reconstructions, which are unsuitable for many applications.

https://github.com/erickherreraresearch/MonocularPureVisualSLAMComparison
https://github.com/erickherreraresearch/MonocularPureVisualSLAMComparison
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1.1.2. Dense-Indirect Methods

Dense-indirect techniques incorporate preprocessing stages and recover dense depth
maps. Some important prior works that defined this category were Valgaerts et al. and
Ranftl et al. Valgaerts et al. [25] proposed a novel two-step method for estimating the fun-
damental matrix from a dense optical flow. Their key contribution was demonstrating that
accurate epipolar geometry robust estimation was possible using dense correspondence
fields computed by variational optical flow methods. They introduced a joint variational
model that recovered the optical flow and epipolar geometry within a single energy func-
tional, thus improving the results. However, their method was limited by its sensitivity to
large displacements and occlusions. Ranftl et al. [26] presented an approach to estimate
dense depth maps for complex dynamic scenes from monocular video, built on the use of
dense optical flow. The key concept is a motion segmentation stage that decomposes the
scene into independent rigid motions, each with its epipolar geometry enabling moving
objects’ reconstruction. Its method was optimized to work with object scales and geometry
to assemble a globally consistent 3D model determined up to scale. A key difference from
Valgaerts et al. was the explicit handling of multiple independently moving objects and the
recovery of dense depth for fully dynamic scenes. However, Ranftl et al.’s approach still
relied on approximate scene rigidity and the connectivity of objects to the environment.
Valgaerts et al. introduced a dense optical flow for fundamental matrix estimation, while
Ranftl et al. extended dense the geometric reconstruction to complex dynamic scenes.
Both moved from sparse features to dense correspondence fields; in contrast, Ranftl et al.
focused on depth estimation and scene assembly.

1.1.3. Dense-Direct Methods

Dense-direct techniques work directly with pixel information and can recover dense
depth maps. Some of the main contributions in this field are the Stühmer et al., DTAM,
REMODE, and LSD-SLAM systems. Stühmer et al. [27] proposed one of the first real-time
dense monocular SLAM systems. They introduced a variational framework to estimate
the dense depth maps from multiple images using robust penalizers for both the data
term and the regularizer. The key contributions were integrating multiple images for noise
robustness and an efficient primal-dual optimization scheme. However, their method was
limited to local dense tracking and mapping without global map optimization. The DTAM
system proposed by Newcombe et al. [26] enabled real-time dense tracking and global map-
ping using a single handheld camera. They introduced the concept of dense model-based
camera tracking by aligning live images to the textured 3D surface models synthesized
from the estimated dense depth maps. The depth maps were computed by filtering over
the small-baseline stereo comparisons from video. A key difference from Stühmer et al.
was maintaining a global map with pose graph optimization. The REMODE system of
Pizzoli et al. [28] also performed per-pixel Bayesian depth estimation but introduced a
convex optimization-based smoothing step using the estimated uncertainty to enforce the
spatial regularity. They demonstrated probabilistic updating, allowing online refinement
and error detection. A key contribution was the derivation of a measurement uncertainty
model. However, REMODE was limited to local mapping without global optimization.
The LSD-SLAM of Engel et al. [29], integrated many of these concepts into the first direct
monocular SLAM system capable of performing consistent global semi-dense reconstruc-
tion. The key novelties were the direct alignment on the Sim(3) handling scale drift and
the incorporation of depth uncertainty into tracking. LSD-SLAM reached an outstanding
outdoor performance by enabling large-scale accurate monocular dense reconstruction
in real time. In summary, early works, like Stühmer et al. and DTAM, introduced key
concepts like multiple image integration, probabilistic depth estimation, and variational
optimization, while later methods, like LSD-SLAM, were built on these concepts to en-
able globally consistent mapping and reconstruction, with fully direct approaches finally
demonstrating accurate monocular dense SLAM at scale.
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1.1.4. Sparse-Direct Methods

Sparse-direct techniques work directly on pixel information but do not use all the pix-
els, producing sparser maps using fewer computational resources. The main contributions
from this classification are the DSO, LDSO, and DSM. Direct Sparse Odometry (DSO) was
introduced by Engel et al. [21] as the first direct-sparse VO technique. The DSO operates
directly on image intensities, optimizing the photometric error instead of the geometric
reprojection error. It represents the geometry using inverse depth parametrization and
jointly optimizes all the model parameters in real time using a sliding keyframe window.
The DSO demonstrated superior accuracy and robustness compared to indirect methods
by utilizing edges and intensity variations in featureless areas. However, as a pure visual
odometry technique, the DSO suffers from drift over long trajectories as it marginalizes old
points and keyframes. Gao et al. presented the LDSO [30], extending the DSO to a more
robust VO system by adding loop closure detection and pose graph optimization. The
LDSO adapts the DSO’s point selection to favor repeatable corner features and computes
the ORB descriptors detecting the loop closures using DBoW2. It then estimates the Sim(3)
constraints by minimizing the 2D and 3D errors fusing them with the covisibility graph
from DSO’s sliding window optimization in a pose graph. While reducing the accumulated
drift, the LDSO still lacks a persistent map ignoring the existing information after loop
closures. Zubizarreta et al. introduced Direct Sparse Mapping (DSM) [31], the first direct
sparse monocular SLAM system with a persistent map enabling point reobservations.
The DSM selects active keyframes based on temporal and covisibility constraints using
the Local Map Covisibility Window applying a coarse-to-fine optimization scheme and a
robust cost function based on the t-distribution to handle challenges in converging when
incorporating distant keyframes. The DSM demonstrated increased accuracy in trajectory
and mapping on EuRoC compared to the DSO, LDSO, and ORB-SLAM. The ability to
reuse existing map points resulted in more consistent maps without duplicates. In brief,
the DSO pioneered direct-sparse SLAM and achieved superior odometry compared to the
indirect methods. The LDSO extended it to full SLAM by adding loop closure detection
and correction to reduce drift, while the DSM took a further step creating the first direct
technique with a persistent map, enabling beneficial point reobservations through key
innovations in window selection, optimization, and robustification.

1.1.5. Machine-Learning-Based Approaches

Recently, a new category emerged, adding machine learning modules to the SLAM,
VO, and SFM pipelines. Some of the most prominent approaches are DynaSLAM, SVR-Net,
VOLDOR, DROID-SLAM, SDF-SLAM, CNN-SLAM, CodeSLAM, DeepFactors, MonoRec,
and CNN-SVO. CNN-SLAM [10] was one of the first systems to incorporate CNN-predicted
depth maps into monocular SLAM, overcoming the scale ambiguity issues. It also per-
formed joint semantic segmentation and 3D reconstruction, pioneering multitask learning.
DynaSLAM [32] was one of the first attempts to detect and remove dynamic objects from
the mapping process using a CNN for segmentation and a multiview geometry approach
enabling more robust tracking and mapping in dynamic environments. CodeSLAM [33]
incorporated an encoder–decoder CNN for scene geometry into a compact latent code con-
ditioned on image intensities retaining only nonredundant information for joint geometry
and motion optimization. The CNN-SVO [11] incorporated CNN depth predictions to
initialize the depth filters in SVO, reducing uncertainty and improving mapping. Deep-
Factors [2] was built over the basis of CodeSLAM to formulate dense monocular SLAM
as a factor graph optimization combining the learned depth priors, the reprojection error,
and the photometric error for robust performance. VOLDOR [34] integrated a CNN into
its visual odometry pipeline using log-logistic depth residuals and probabilistic inference,
eliminating the need for feature extraction or RANSAC, enabling real-time performance.
The DROID-SLAM [35] integrated a recurrent neural network to iteratively update camera
poses and estimate depth maps through differentiable bundle adjustment. MonoRec [14]
addressed the alternative to incorporate mask prediction and depth prediction modules
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to enable high-quality monocular reconstruction in dynamic scenes. SDF-SLAM [36] com-
bined classic sparse feature extraction with a CNN for dense depth prediction and semantic
segmentation enabling semantic 3D reconstruction while retaining real-time performance.
SVR-Net [37] integrated a Support Vector Regression network to estimate 3D keypoint
locations, enabling robust tracking in challenging conditions using online learning and
graph optimization for map refinement. In summary, machine-learning-based methods
progressively incorporated deep learning into sparse indirect SLAM systems to improve the
robustness and handle the dynamics, achieving dense reconstruction enabling end-to-end
learning. The key innovations included using CNNs for segmentation, depth prediction,
semantic segmentation, compact scene encoding, and uncertainty modeling.

1.1.6. Comparisons

Regarding comparison studies, an early work that accurately compared monocular
visual odometry systems was the study of [38], comparing the state-of-the-art methods
of that time, DSO, ORB-SLAM, and SVO, on the TUM-Mono benchmark. The authors
found that the DSO system, even being a visual odometry system, outperformed the
SLAM method and the popular SVO. In that study, the authors also tested the photometric
calibration, the motion bias, and the rolling shutter effect, with the available information
provided in the TUM-Mono dataset, finding that the photometric calibration improved
the performance of the direct methods considerably, and the motion bias effect was more
prominent in the indirect method. In contrast, we compared ten methods following a
taxonomy, where the three methods tested in [38] were addressed, exploring the same
photometric calibration, motion bias, and rolling shutter effects by applying the TUM-Mono
dataset. Then in 2020, Mingachev et al. published two comparisons [39,40] testing first the
DSO, LDSO, and ORB-SLAM2 and then the ROS-based methods, DSO, LDSO, DynaSLAM,
and ORB-SLAM2, on the TUM-Mono and EuRoC benchmarks, where the authors verified
the performance of the algorithms implementing an open-source code in their hardware to
determine whether there were improvements in the LDSO and DynaSLAM—updates of
the original DSO and ORB-SLAM2. The authors found that the updates achieved slight
error reductions over their predecessors on both benchmarks, reported as medians of
10 executions of each algorithm in each sequence.

Comparing those studies, we tested ten methods following a taxonomy to test whether
the newer versions improved their previous performance and to identify the advantages
and disadvantages in the entire taxonomy. We also provided a complete inferential statisti-
cal analysis of each method’s performance, not only their median values. In addition, we
included machine-learning-based versions of the classic methods in our comparison. One
of the most recent related works was the study of [41], which explored the state-of-the-art
classification and tested visual and visual–inertial algorithms in the ERoC benchmark. In
that work, the authors briefly overviewed the existing methods and reviewed the classic
classification of direct, feature-based, and RGB-D methods, adding DSO, ORB-SLAM2, and
Vins-Mono methods to their comparison. In contrast, this comparison is focused only on
monocular RGB methods; so, we followed an appropriate taxonomy for monocular RGB
SLAM and VO systems. In addition, we used the TUM-Mono benchmark and its metrics,
which is a broader and more complete benchmark.

2. Materials and Methods

For this study, we used a taxonomy, algorithms, benchmarks, and metrics suitable for
the monocular SLAM and VO problems discussed in the following sections.

2.1. Taxonomy

The prior work [6] described a taxonomy based on three classifications in the literature:
direct vs. indirect, dense vs. sparse, and classic vs. machine learning.

• Direct vs. indirect. Indirect methods refer to those algorithms that implement prepro-
cessing steps, like feature extraction or optical flow estimation, before their pose and
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map estimation processes; so, the amount of information that moves into the following
steps is considerably reduced, requiring less computational power but also reducing
the density of the final 3D reconstruction [21]. Indirect methods typically perform their
optimization steps by minimizing the reprojection error due to the feature type of in-
formation that the preprocessing step outputs [41]. On the other hand, direct methods
work directly on the pixel intensity information without requiring preprocessing steps,
implying that the algorithm has more information for estimation tasks allowing one to
obtain denser reconstructions of the scene, requiring more computational power [41].
In addition, direct methods typically perform their optimization steps based on the
photometric error due to the direct pixel availability information.

• Dense vs. sparse. Dense vs. sparse classification refers to the amount of informa-
tion recovered in the final map as a 3D reconstruction [21]. Denser reconstructions
have more definition and continuity in the reconstructed objects and surfaces. In
contrast, sparser reconstructions are typically represented as largely separated point
clouds, where the edges and corners are commonly the only objects that can be
recognized clearly [7].

• Classic vs. machine learning. Classic methods have been proposed in the last three
decades, typically basing their formulation on geometric, optimization, and proba-
bilistic techniques without machine learning. However, in recent years, due to the
impressive advances in artificial intelligence, especially in Convolutional Neural Net-
works (CNN), many techniques have been applied to improve the SLAM or VO
estimation tasks [11,32,36,42]. The methods based on classic formulations enhanced
with machine learning are called Machine-learning-based approaches (ML).

Combining these three classifications in all their possible configurations [9] establishes
the taxonomy: Classic + Dense + Direct, Classic + Sparse + Direct, Classic + Dense +
Indirect, Classic + Sparse + Indirect, Classic + Hybrid, ML + Dense + Direct, ML + Sparse
+ Direct, ML + Dense + Indirect, ML + Classic + Sparse + Indirect, and ML + Hybrid. It
must be mentioned that the hybrid category was added for those methods that efficiently
combine the direct and indirect principles to estimate ego-motion and scene geometry, like
SVO [13] and CNN-SVO [11]. Figure 1 depicts the monocular RGB taxonomy for the SLAM,
SFM, and VO algorithms.
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2.2. Selected Algorithms

In this comparative analysis, we aimed to determine the taxonomy classifications,
limitations, and advantages by exploring as many taxonomy categories as possible. For this
purpose, we selected and implemented five methods of geometric-based classification. Fur-
thermore, we included three machine-learning versions of the selected classic approaches
to test the hypothesis of whether or not the addition of a CNN to classic approaches sig-
nificantly improved the geometric-based methods’ performance. In a previous work [9],
many machine learning approaches were listed available as open-source code [17,19,42–53].
However, during their implementation, we found that many implementations were avail-
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able for multiple input modalities like RBD-D or INS. However, the provided code was not
available for monocular RGB as the unique input source of information, or they required
external and not included modules for their implementation, e.g., [42,43,50,53]; thus, we
could not include those methods for this comparison. Finally, we added two additional
sparse-direct implementations built over the DSO [21] system, given the impressive 3D
reconstruction results that this method demonstrated during evaluations.

In this way, the algorithms selected to perform this comparative study were:

1. ORB-SLAM2. As a sparse-indirect representative, we selected ORB-SLAM2 [54],
widely known as the gold standard of this category, as most of the currently available
sparse-indirect methods are proposals inspired by this algorithm. The original ORB-
SLAM [24] extracts ORB features as preprocessing of multiscale FAST corners with a
256-bit descriptor giving that algorithm information to perform a Bundle Adjustment
for optimization and work in three threads for tracking, local mapping, and loop
closure. In addition, the ORB-SLAM2 incorporates a fourth thread to perform full
Bundle Adjustment after loop closure extending the original method and obtaining
the scene optimal geometric representation. The ORB-SLAM2 is publicly available
as an open source code in [55]; it may be implemented in its C++ version or ROS
version, with minimum additional requirements, Pangolin, OpenCV (tested for 2.4.3
version), Eigen 3 (tested for 3.1.0 version), DBoW2, and g2o, which are included in
the repository.

2. DF-ORB-SLAM. Classic dense-indirect methods available in the literature, like [25,26],
are not available as open-source code for implementation; so, they could not be
considered for this evaluation. Instead, a well-known classic dense-direct version
of ORB-SLAM2 exists, called DF-ORB-SLAM [16], with its code publicly available
on GitHub. The DF-ORB-SLAM algorithm was built based on the ORB-SLAM2
algorithm, allowing the addition of depth map retrieval capabilities and incorporating
optical flow to track the detected points; thus, this algorithm uses a large amount
of information obtained through the input using most of the pixel values for optical
flow estimation. Once the optical flow is estimated, the ORB-SLAM2 performs feature
extraction on the optical flow domain executing the rest of its pipeline. The DF-ORB-
SLAM is publicly available in [16], implemented in Ubuntu 18.04 in its ROS version
using its official build_ros.sh script.

3. LSD-SLAM. The LSD-SLAM [29] is one of the most popular methods of the dense-
direct category, since it has been the basis and inspiration for a lot of the methods
currently available [10,21,56]. The LSD-SLAM not only locally tracks the camera’s
movement but also allows the construction of dense maps through a semi-dense
geometric representation tracking the depth values only in high-gradient areas. The
method has direct image alignment mechanisms and estimation based on the semi-
dense depth map filtering technique [57]. The global depth map is rendered as a
pose graph comprising keyframes represented as vertices that present feature 3D
similarity transformations as edges, adding environment scaling ability and allowing
the accumulated drift to be detected and corrected. Furthermore, the LSD-SLAM
uses an appearance-based loop detection algorithm called FAB-MAP [58], introducing
prominent loop closure candidates that extract their features without reusing any
additional visual odometry information. The LSD-SLAM is publicly available in [59]
and was implemented in Ubuntu 18.04 in its ROS version.

4. DSO. The DSO [21] is widely known as the direct methods’ gold standard due to the
impressive reconstruction and odometry results that it has achieved, inspiring other
implementations and new proposals. The DSO works directly on the pixel intensity
information but applies a point selection strategy to reduce the amount of information
to be processed efficiently, continuously optimizing the photometric error applied
to the last N-frames while optimizing the complete likelihood for the parameters
involved in the model, including poses, intrinsics, extrinsics, and inverse depths,
executing a windowed sparse bundle adjustment. The DSO is publicly available for
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implementation in [60]; its code runs entirely in C++, using minor requirements like
Suitesparse, Eigen3, and Pangolin.

5. SVO. We selected the most commonly known method, SVO [12], for the hybrid clas-
sification. The SVO efficiently combines the advantages of the direct and indirect
approaches by using the feature correspondences obtained on the direct motion esti-
mation for tracking and mapping. This procedure considerably reduces the number of
required features and is only executed when a new keyframe is selected to insert new
points in the map. First, camera motion is estimated by a sparse model-based image
alignment algorithm, where sparse point features are used to estimate the feature cor-
respondences. Next, this information is used to minimize the photometric error. Then
the reprojected points, pose, and structure are refined by minimizing the reprojection
error. The SVO is publicly available in [61] for testing and implementation running
on C++ or ROS. Modern operating systems might find issues during implementation;
so, Ubuntu 16.04 and ROS kinetic were used.

6. LDSO. As an additional sparse direct system, the LDSO [30] was selected as an update
of the DSO algorithm that includes loop-closure capabilities. The LDSO enables the
DSO framework to detect the loop closure by ensuring point repeatability using
corner features to detect loop candidates. For this purpose, the depth estimates for
point features allow the algorithm to compute the Sim(3) constraints, to be combined
with the pose-only bundle adjustment and point cloud alignment and fused with the
relative pose DSO covisibility graph, sliding the window optimization stage. This
way, the LDSO adds the loop closure to the DSO system, including a loop closure
module based on a global pose graph optimization working over the last five to seven
keyframes’ sliding window. The LDSO was made publicly available in [62], and
for this comparison, it was implemented in Ubuntu 18.04 along with OpenCV 2.4.3,
Sophus, DBoW3, and g2o.

7. DSM. Another sparse-direct method we were interested in testing was the DSM [31],
another update made to the DSO to create a complete SLAM system. The DSM
aimed to include scene reobservation information to enhance the precision and reduce
the drift and inconsistencies. In contrast to the LDSO, which considers a sparse
set of reobservations, the DSM builds a persistent map allowing the algorithm to
reuse existing information by a photometric formulation. The DSM uses local map
covisibility window criteria to detect the active keyframes reobserving the same region,
a coarse-to-fine strategy to process that point reobservation information and a robust
nonlinear photometric bundle adjustment technique based on the photometric error
for outlier detection. The DSM open-source code is publicly available in [63], which
was implemented for comparisons on Ubuntu 18.04 with Eigen (v3.1.0), OpenCV
(v2.4.3), and Ceres solver, which were provided in the official repository.

8. DynaSLAM. The Dyna-SLAM algorithm [32] is a lighter version of ORB-SLAM2 ex-
ceeded by adding the detection, segmentation, and inpainting of dynamic information
on scenes’ machine learning capabilities. In addition, the Mask R-CNN of [64] was
integrated with the classic sparse-indirect method to detect and segment regions of
each image that potentially belonged to movable objects. The authors also incorpo-
rated a multiview geometry approach calculating backprojections to define the key
point parallax angles to detect additional information the CNN cannot recognize. The
authors reported that this combination contributed to overcoming the ORB-SLAM2
initialization issues; so, it works in dynamic environments. The DynaSLAM is publicly
available in [17], and it was implemented in Ubuntu 16.04 with ROS Kinetic, Cuda 9,
Tensorflow 1.4.0, and Keras 2.0.8.

9. CNN-DSO. In the literature, DSO neuronal methods like D3VO [65], MonoRec [14],
and DDSO [66] can be found. Nevertheless, they are not publicly available, or in
the case of MonoRec, its monocular VO pipeline is not available for testing; so, the
CNN-DSO was selected for this comparison, which is publicly available in [15]. This
method includes a CNN depth prediction module enabling the DSO system to execute
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its estimation modules using additional depth prior information obtained by the
network. The CNN used for this study was the MonoDepth system of [67], a single
image depth estimation network that outputs a depth value for each pixel position by
chains of feature maps processing. The network was built over the ResNet backbone
using a variant of its encoder–decoder architecture. The CNN-DSO requires building
TensorFlow (v1.6.0) from source and MonoDepth from its official repository [68], and
it was implemented in Ubuntu 18.04, with Eigen (v3.1.0) and OpenCV (v2.4.3).

10. CNN-SVO. In the study of [11], an extension of the hybrid method SVO was proposed
by fusing the same Single Image Depth Estimation (SIDE) CNN MonoDepth module
used in the CNN-DSO with the original geometric-based hybrid method. In this case,
MonoDepth was included to add preliminary depth information to the SVO pipeline,
minimizing the uncertainty in the feature correspondence identification steps; then,
the system is initialized, obtaining high uncertainty maps. Then, the SIDE CNN
creates filters to approximate the current values’ mean and variance, considerably
reducing the amount of information separating inliers/outliers in the depth map. The
CNN-SVO is publicly available in [46] and was implemented in Ubuntu 16.04 to allow
the SVO modules to work with ROS Kinetic.

For more information on the taxonomy, definitions, SLAM, VO, and SFM basics, and
further details of the methods described in this review, we encourage the reader to see the
prior works listed in [9].

2.3. Benchmarks

Today, the scientific community has considerably promoted the development of
datasets, including existing open-source datasets even for evaluating complex hardware
setups like visual–inertial systems (i.e., YTU [69], WHUVID [70], and VOID [71]). In this
way, there are several datasets and benchmarks available in the literature for evaluating
RGB SLAM, SFM, and VO systems, like [6,8,72–80]. Nevertheless, only a few are suitable
for pure monocular RGB systems due to the nature of image acquisition, the type of camera
calibration or camera models used, and the format of the provided ground truth. Similarly,
it is safe to say that among the reviewed available datasets, the following can be applied
for monocular algorithms comparison:

• The KITTI dataset in [74] contains 21 video sequences of a driving car, where the
movement parameters are limited to forward driving. The available images have
pre-rectification treatments, and the dataset provides a ground truth obtained through
an assembly of GPS and INS.

• The EUROC-MAV dataset in [75] contains 11 inertial stereoscopic sequences of a
quadcopter flying in different indoor environments providing groundtruth values of
all frames and calibration parameters.

• The TUM-Mono dataset in [6] presents 50 sequences of indoor/outdoor environments
obtained using monocular RBG cameras on monochrome uEye UI-3241LE-M-GL cam-
eras equipped with Lensagon BM2420 (with 148◦ × 122◦ field of view) and Lensagon
BM4018S118 (with 98◦ × 79◦ field of view) sensors. This benchmark includes the pho-
tometric calibration parameters, the ground truth, the timestamps for the execution of
each image sequence, and the calibration file for the vignetting effect in each sequence,
comprising more than 190,000 frames and more than 100 min of video.

• The ICL-NUIM benchmark in [8] has eight sequences in conjunction with its ray-
tracing of two environments, providing the groundtruth values of each sequence and
camera intrinsics; so, no photometric calibration is required. This dataset presents de-
generative and purely rotational motion sequences, which are considered demanding
for monocular algorithms.

As can be noticed, the most complete and largest dataset of the above is the TUM-
Mono, which is why this dataset was applied in this comparison study. It also has the
advantage of being the only dataset that was obtained purely depending on a monocular
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RGB setup, without depending on any additional sensor or source of information as
mentioned in [6,39,40], making it ideal for comparing visual-only SLAM and VO systems.
In addition, this benchmark provides the most complete set of metrics that can be explored
to efficiently compare the selected algorithms in multiple dimensions—discussed in the
following section.

2.4. Metrics

As SLAM, SFM, and VO are ill-posed problems that can be addressed from multiple
perspectives and a wide variety of techniques, comparing the final obtained 3D reconstruc-
tion is not the best alternative for monocular RGB methods because of the different sparsity,
scale, and type of output that each method brings, due to the difficulty of accruing accurate
groundtruth maps [81]. At the same time, trajectories can be acquired using INS, GPS,
LASER, RADAR, LIDAR, and Kinect systems, among others, with acceptable accuracy.
In this way, as discussed in [6], the best way of comparing SLAM and VO algorithms of
diverse nature (see Figures 1 and 2) is by comparing the output trajectory in each algorithm,
because even if the method is focused on reconstruction only, it has been demonstrated
that solving both problems of landing and mapping simultaneously brings the best re-
construction results [3], as the quality of the final reconstruction tightly depends in the
quality of the ego-motion estimation. Hence, the metrics we used for this comparison are
entirely based on ego-motion estimation, which can be effectively compared for all SLAM
and VO algorithms. Among the different metrics for ego-motion available in the literature,
we found that the metrics present in most of the methods listed in [9] were: the absolute
trajectory RMSE (ATE), the relative pose RMSE (RPE), the cumulated trajectory, rotation,
and scale errors, the alignment error, and the alignment RMSE.
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Figure 2. Examples of each indoor algorithm sequence execution seq-01—TUM-Mono dataset.
The implemented methods were: (a) ORB-SLAM2, (b) DF-ORB-SLAM, (c) LSD-SLAM, (d) DSO,
(e) CNN-DSO, (f) LDSO, (g) DSM, (h) DynaSLAM, (i) SVO, and (j) CNN-SVO.

The ATE and RPE are local pose accuracy metrics proposed by [81], commonly applied
along with the EUROC dataset. The relative pose error is a metric for the accuracy of an
estimated trajectory over a defined time interval ∆. In this way, this metric corresponds to
the drift of the estimated trajectory. For a sequence of estimated poses P1, . . . , Pn ∈ SE(3)
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and a ground truth trajectory Q1, . . . , Qn ∈ SE(3), the relative pose error for each
timestamp i is:

Ei :=
(

Q−1
i Qi+∆

)−1(
P−1

i Pi+∆

)
(1)

So, for a sequence of n poses, an m = n−∆ number of relative poses is obtained. Then
the root mean square error (RMSE) for such errors over all the timestamps of the sequence
can be calculated as:

RMSE(Ei:n, ∆) :=

√
1
m∑m

i=1‖trans(Ei)‖2 (2)

where trans(Ei) corresponds to the translational component of the relative pose error Ei.
Many VO or SLAM systems can be evaluated for a timestep interval ∆ = 1, but some
methods work on frames or keyframes windows (like [21,30,63]); thus, different ∆ values
might be appropriate for testing. So, for SLAM systems’ evaluation, it can also be useful to
obtain the RMSE for all the possible time intervals:

RMSE(Ei:n) =
1
n∑n

∆=1 RMSE(Ei:n, ∆) (3)

The ATE was proposed to evaluate the estimated trajectory’s global consistency. The
ATE estimation was achieved by comparing the absolute distances between the estimated
trajectory and the ground truth directly. So, the trajectories are first aligned using Horn’s
method [82] to find the rigid body transformation S to map the estimated trajectory P1:n
into the ground truth trajectory Q1:n; hence, the absolute trajectory error for each timestamp
i can be calculated as:

Fi := Q−1
i SPi (4)

In the same way as RPE, the RMSE for all the timestamps of the translational compo-
nents is calculated as follows:

RMSE(Fi:n) :=

√
1
n∑n

i=1‖trans(Fi)‖2 (5)

Thus, for the [81] benchmark, the RPE combines the translational and rotational errors
elegantly, while the ATE considers only the translational error component. In contrast, for
the TUM-Mono benchmark [6], the authors proposed to benefit from large loop sequences.
This way, instead of using the complete exploring motion pose information, the TUM-Mono
benchmark was built to register the ground truth of each sequence’s first and last 10–20 s,
using the LSD-SLAM [29] method to track only those segments. In this way, the authors
used the accumulated drift for all their metrics, and they demonstrated that the error
registered by each evaluated run was not originated in the SLAM method drift used to
register the ground truth; instead, it came from the accumulated drift by the algorithm
through the entire trajectory. So, any SLAM or VO system can be used to register the start
and end segments’ ground truth. Consequently, the TUM-Mono benchmark aligns the
estimated trajectory with the start and end ground truth segments and measures their
differences. Let p1, . . . , pn ∈ R3 be the estimated tracked positions for the 1 to n frames
and S ⊂ [1; n] and E ⊂ [1; n] be the frame indices corresponding to the start and end
segments for the groundtruth positions p̂ ∈ R3. Then, by aligning the estimated trajectory
with the groundtruth start and end segments, the two relative transformations can be
calculated as:

Tgt
s := argmin

T∈Sim(3)
∑
i∈S

(Tpi − p̂i)
2 (6)

Tgt
e := argmin

T∈Sim(3)
∑i∈E(Tpi − p̂i)

2 (7)
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By these transformations, the accumulated drift can be calculated as:

Tdri f t := Tgt
e

(
Tgt

e

)−1
(8)

The translation, rotation, and scale error components can be extracted as, respectively:

et :=
∥∥∥translation

(
Tdri f t

)∥∥∥
er := rotation

(
Tdri f t

)
es := scale

(
Tdri f t

)
As a result, the authors established the alignment error, which is a metric that equally

takes into account the errors produced by the translational, rotational, and scale effects:

ealign :=

√
1
n∑n

i=1

∥∥∥Tgt
s pi − Tgt

e pi

∥∥∥2

2
(9)

This metric can be computed individually for the start and end segment, but when it
is estimated by combining both intervals, it is equivalent to the translational RMSE when
aligned to the ground truth. Thus, it can also be formulated as follows:

ermse :=

√
min

T∈Sim(3)

1
|S ∪ E|∑i∈S∪E(Tpi − p̂i)

2 (10)

As can be observed, in contrast to the APE and ATE, which only include two met-
rics explaining the rotation and translation effects, the TUM-Mono benchmark analyzes
the SLAM or VO performance method in a more detailed way, providing six metrics ex-
plaining the amount of the accumulated translation, rotation, and scale errors, as well
as determining the performance of the algorithm in the start and end segment to better
identify the initialization and accumulated drift errors, finally calculating the translational
RMSE to visualize the global effects of the combined metrics on the whole evaluated se-
quence. For these reasons, we selected the TUM-Mono and its official metrics to execute a
complete comparison.

3. Results

As mentioned above, the algorithms were selected based on their open-source availabil-
ity and independence from any additional input information source other than a monocular
RGB frame sequence. Following the primary taxonomy described in [9,21], we selected the
classic sparse-indirect system ORB-SLAM2 [54], the classic dense-indirect system DF-ORB-
SLAM [16], the classic dense-direct system LDS-SLAM [29], and the classic sparse-direct
method DSO [21]. Then, we added to this study the currently available ML implemen-
tations of the ORB-SLAM2 [54], DSO [21], and SVO [13], which are the DynaSLAM [32],
CNN-DSO [15], and CNN-SVO [11]. Additionally, the direct proposals derived from the
DSO system were included due to the impressive reconstruction results that this method
showed during experimental evaluation; thus, the LDSO [30] and DSM [31] systems rep-
resenting the addition of loop closure and SLAM capabilities for the DSO system were
selected. Figures 2 and 3 present some examples of the evaluated algorithms’ execution on
the outdoor and indoor sequences of the TUM-Mono dataset.
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3.1. Hardware Setup

All the methods were evaluated on the same hardware platform with the same avail-
able computational and power resources using Ubuntu 18.04 and 16.04 operating systems,
depending on each algorithm’s software requirements. For this evaluation, we selected
readily available and cheap hardware components to assemble a desktop based on the
AMD Ryzen™ 7 3800X processor and the GPU NVIDIA GEFORCE GTX 1080 Ti. The
technical specifications are summarized in Table 1.

Table 1. Specifications of the hardware used during experimentation.

Component Specifications

CPU AMD Ryzen™ 7 3800X, eight cores, 16 threads, 3.9–4.5 GHz.

GPU NVIDIA GEFORCE GTX 1080 Ti. Pascal architecture, 1582 MHz,
3584 CUDA cores, 11 GB GDDR5X.

RAM 16 GB, DDR 4, 3200 MHz
ROM SSD NVME M.2 Western Digital 7300 MB/s

Power consumption 750 W 1

1 The hardware did not reach the max power consumption. The avg. load was close to 600 W during the
experiments.

Additionally, we provide some CPU performance metrics obtained by averaging the
metrics of ten executions of each algorithm over the sequence_01 of the TUM-Mono dataset.
All these CPU usage metrics were obtained using the hardware detailed in Table 1, using
the official codes provided in their repositories and the same dependencies’ versions listed
by each author. The metrics selected to provide an idea of the computational expenses
required by each algorithm were: the overall CPU usage (multicore), the current CPU usage,
the amount of GPU memory required by the algorithm, the amount of RAM used while
running the algorithm, the time that the algorithm required to process the sequence_01 of
the TUM-Mono dataset, and the number of frames per second that the algorithm processed.
The computational expenses associated with each approach to reconstruct the sequence_01
scene are presented in Table 2.
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Table 2. The average CPU usage performance metrics for the ten executions of each algorithm on
sequence_01 of the TUM-Mono dataset.

Method Overall CPU Usage,
Multicore

Current CPU
Usage

GPU
Usage

Memory
Usage

Time
(s) FPS

ORB-SLAM2 1.8472% 16.2374% 1.2376% 9.2147% 128.4571 37
DF-ORB-SLAM 1.9254% 17.4235% 1.7861% 12.4572% 133.1217 36

LSD-SLAM 2.4578% 18.4521% 1.6423% 10.3457% 138.4172 34
DSO 1.2604% 14.6818% 1.8971% 9.3892% 91.2564 52
SVO 1.1286% 10.4589% 1.7852% 8.5316% 87.5241 55

LDSO 1.6909% 15.4717% 3.1588% 14.2962% 99.4758 48
DSM 1.8346% 31.9216% 2.7203% 24.1591% 315.4982 15

DynaSLAM 1.9247% 21.4576% 15.3467% 20.3879% 118.3245 40
CNN-DSO 4.0647% 30.9091% 27.5346% 24.6742% 161.2389 30
CNN-SVO 3.2579% 27.8461% 24.4732% 23.5476% 134.7583 35

As can be noticed in Table 1, the SVO was the fastest algorithm that required fewer
computational resources to be implemented, closely followed by the DSO and ORB-SLAM2.
However, as described in the following sections, the SVO presented strong trajectory loss
issues and poor 3D reconstruction quality; so, it might not be considered the best alternative.
In addition, it can be noticed that adding ML techniques to geometric-based approaches
implied a considerable increase in the CPU, GPU, and memory use.

3.2. Comparative Analysis

As mentioned in Section 2.3, we used the TUM-Mono dataset and benchmark because
it has a complete set of metrics; all its sequences were gathered using only monocular
cameras, and it presents the largest collection of 50 sequences and scenarios that comprise
multiple outdoor and indoor examples. In addition, it must be considered that these
sequences were gathered using a pure monocular handheld camera and were recorded
by a walking person; so, the results presented in this section might not be generalized to
considerably different applications like autonomous driving, flying drones, and medical
exploration applications, among others.

As addressed in the related works [6,54], we followed the authors’ suggestions of
running each sequence of a benchmark five times to create cumulative-error plots and ac-
count for the nondeterministic nature of each system [40]. Nevertheless, authors like [30,32]
performed their experimental comparisons by running each sequence ten times in forward
and backward reproduction directions to better capture the probabilistic behavior of the
algorithms against multiple variations like illumination and dynamic objects. In this way,
we applied this extended approach, given the large variety of algorithms we tested. In total,
we performed ten runs of each of the 50 sequences in forward and backward modalities,
gathering a total of 1000 runs for each method; so, for the ten evaluated algorithms, we
created a database of 10,000 trajectory files saved in .txt format that were processed using
the MATLAB scripts provided in the official repository of the TUM-Mono benchmark [6].

The TUM-Mono benchmark scripts require a specific structure, where each algorithm
must output a .txt file containing all the camera poses registered during each sequence
algorithm execution, where each Pi pose must be in the quaternion format represented
in Equation (1). However, the SVO, CNN-SVO, and DSM algorithms output rotation
and translation matrixes instead of quaternions, which are incompatible with the TUM-
Mono format. In this way, we had to modify the codes of these methods to introduce the
correct output format, following the proposal of Sarabandi and Thomas [83], by applying
Equations (11)–(15) to convert the translation and rotation outputs of the SVO, CNN-SVO,
and DSM to quaternions.

Pi =
(
ti xi yi zi qxi qyi qzi qwi

)
(11)
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Given the rotation matrix:

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33



qx =


1
2
√

1 + r11 + r22 + r33, i f r11 + r22 + r33 > η

1
2

√
(r32 − r23)

2 + (r13 − r31)
2+(r21 − r12)

2

3− r11 − r22 − r33
, otherwise

(12)

qy =


1
2
√

1 + r11 − r22 − r33, i f r11 − r22 − r33 > η

1
2

√
(r32 − r23)

2 + (r12 + r21)
2+(r31 + r13)

2

3− r11 + r22 + r33
, otherwise

(13)

qz =


1
2
√

1− r11 + r22 − r33, i f − r11 + r22 − r33 > η

1
2

√
(r13 − r31)

2 + (r12 + r21)
2+(r23 + r32)

2

3 + r11 − r22 + r33
, otherwise

(14)

qz =


1
2
√

1− r11 − r22 + r33, i f − r11 − r22 + r33 > η

1
2

√
(r21 − r12)

2 + (r31 + r13)
2+(r32 + r23)

2

3 + r11 + r22 − r33
, otherwise

(15)

As reported in [83], the best results that outperformed Shepperd’s rotation to the
quaternion method were achieved for η = 0; so, we set this value to build the trajectory
files for those methods that did not match the evaluation format. In addition, the ORB-
SLAM2, DF-ORB-SLAM, DynaSLAM, SVO, CNN-SVO, and DSM required a different
calibration camera model than that the provided by the benchmark that includes full
photometric data considering the geometric intrinsic calibration, photometric calibration,
and the nonparametric vignette calibration, while the rest of the methods used an ATAN
camera model based on the FOV distortion model of [84] provided in the official PTAM
repository [85]. We used the ROS calibration package [86] to estimate three radial and
two tangential distortion coefficients dcoe f f = (k1 k2 p1 p2 k3), following the formulation of
Equations (6) and (7). The results were also tested and compared with the OpenCV Camera
calibration package [87].

For each undistorted pixel at (xu, yu) coordinates, its position in the distorted image
is (xd, yd):

xu = xd
(
1 + k1r2 + k2r4 + k3r6)

yu = yd
(
1 + k1r2 + k2r4 + k3r6) (16)

xu = xd +
[
2p1xdyd + p2

(
r2 + 2x2

d
)]

yu = yd +
[
p1
(
r2 + 2y2

d
)
+ 2p2xdyd

]
,

(17)

where r is the distorted radius rd =
√

x2
d + y2

d. As suggested in [6], to make a fair compari-
son based on the accumulated drift over the aligned start and end sequences, we disabled
the loop closure for the SLAM methods ORB-SLAM2, DF-ORB-SLAM, DynaSLAM, LDSO,
and DSM. Figure 4 presents each algorithm’s cumulative error plots for the translational,
rotational, and scale errors. These graphs depict the number of runs for each error type
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below a certain x-value. Hence, the methods close to the top left corner were better because
they reached a determined error value after more executions.
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As can be seen in Figure 4, the sparse-direct methods (DSO, LDSO, and DSM) achieved
the best overall performance, followed by the sparse-indirect method (ORB-SLAM2), the
dense-indirect method (DF-ORB-SLAM), and the hybrid method (SVO); the dense-direct
method (LDS-SLAM) showed the worst performance. The ORB-SLAM2 and SVO CNN
versions showed an important improvement over their classic versions. At the same
time, the CNN-DSO did not outperform the DSO in accumulated translation, rotation,
and scale metrics but remained close to the performance of the DSO. Finally, it must be
mentioned that the large error observed in the LSD-SLAM, SVO, and CNN-SVO methods
can be attributed to the severe initialization and relocalization problems that the algorithms
presented during the evaluations in the TUM-Mono dataset.

As mentioned, the alignment error considers the translation, rotation, and scale errors
equally. Therefore, it is equivalent to the translational RMSE when aligned to the start and
end segments (the first and last 10–20 s of each sequence), for which the ground truth is
available. The cumulated alignment error for each algorithm is presented in Figure 5.
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Figure 5 shows that the ORB-SLAM and DynaSLAM performed slightly better than the
sparse direct methods for start-segment alignment errors. However, on the end segment,
the cumulative drift effect was lower on the sparse-direct methods ratifying the results
observed in Figure 4. In addition, it can be noticed that the CNN-DSO performed better
than the DSO, suggesting that integrating the Single Image Depth Estimation (SIDE) CNN
improved the DSO bootstrapping by adding the prior depth information, whereas the
end-segment performance of both algorithms was similar. Moreover, the addition of the
Mask R-CNN in DynaSLAM was used to remove scenes’ moving objects information and
did not represent a clear improvement in algorithm performance in the start segment, but,
as shown in Figure 5, the benefits of adding the CNN can be observed over the end segment
by the reduction in the accumulated drift. Additionally, for the hybrid approaches, the
addition of the MonoDepth CNN made a paramount contribution in helping to overcome
SVO loss of trajectory issues. Similar to the results in Figure 1, the overall alignment error
results suggest that the sparse-direct methods performed better, followed by the sparse-
indirect, dense-indirect, hybrid, and finally the dense-direct, reaching a threshold error in
around 50 runs.

As suggested by [6], we examined the dataset motion bias for each algorithm by
running each method ten times forwards and ten times backward in such modalities and
combining both to visualize how much each algorithm is affected. This situation allowed
us to consider the importance of evaluating the SLAM and VO methods in large datasets,
covering as many environments and motion patterns as possible. The dataset motion bias
for each method is presented in Figure 6.
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Figure 6. The dataset motion bias for each method was evaluated by running all sequences forwards
and backward, as well as their combination (bold).

In Figure 6, it can be noticed that the DSO, LDSO, and SVO were not seriously af-
fected by motion bias. In contrast, different motion patterns considerably affected the
ORB-SLAM2, DynaSLAM, and DF-ORB-SLAM. This can be observed in the performance
differences when running forwards versus backward. This behavior provides a reference
for the consistency and robustness of each algorithm for using them in different environ-
ments or applications. It can be observed that the CNN-DSO on forward-only modality
outperformed its classic version, but it suffered from a larger motion bias effect affecting its
overall performance; while DynaSLAM and CNN-SVO outperformed their classic versions
and presented less motion bias effect, representing an additional robustness improvement
over their classic versions.
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Figure 7 shows the color-coded alignment error for each of the 50 TUM-Mono se-
quences for each run forward and backward to observe which specific sequences were
challenging for each algorithm.
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The first row of Figure 7 presents the sparse-direct methods, DSO, CNN-DSO, LDSO,
and DSM, demonstrating an outstanding performance compared to the rest of the evaluated
methods belonging to different taxonomy classifications placing the sparse-direct methods
as the best alternative for the Visual Odometry, SLAM, and 3D reconstruction tasks. It
can be noticed that the CNN-DSO performed worse than the original DSO algorithm in
sequences 13 and 22 but outperformed the DSO in sequence 39. The LDSO performance
was close to the DSO, but it presented a better trajectory in some forward sequences and
overcame the DSO in sequence 21. The DSM performed similarly to the rest of the sparse-
direct approaches but occasionally presented trajectory loss issues affecting the overall
performance. Furthermore, the DynaSLAM considerably outperformed the ORB-SLAM2,
especially in challenging sequences like 18, 19, 21, 22, 23, 27, 28, 38, 39, and 40, among others,
where the ORB-SLAM commonly failed. However, it occasionally presented trajectory loss
and initialization issues. The ORB-SLAM2 optical flow implementation performed slightly
worse on forwards and considerably worse on backward, especially in scenes 21, 22, 38, 39,
40, 46, 48, and 50. In contrast, the CNN SVO version considerably reduced the RMSE in
most sequences compared to the SVO but still constantly failed in the outdoor sequences
21 and 22, showing random initialization and trajectory loss issues. As reported in [21], the
SVO and LSD-SLAM methods had the worst results over the whole dataset, which was
why Engel et al. [21] did not include these methods in their study. However, we think it is
vital to report such results and the errors attributed to these algorithms’ commonly known
initialization and trajectory loss errors over the sequences of the TUM-Mono dataset.

The results processed on the TUM-Mono benchmark for the cumulative translation
error et, rotation error er, scale error e′s, start-segment alignment error es

align, end-segment
alignment error ee

align, and the translational RMSE eRMSE were gathered in a database
defining the method as the categoric variable. The statistical results were processed using R
programing language. First, we removed the blank observations for the executions, where
each algorithm became lost or could not initialize; so, the Mahalanobis distances were [88]
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as a multivariate data cleaning technique to detect and remove the outlier observations. A
22.4577 cut score based on the χ2 distribution for a 99.999% interval was set up detecting
344 outlier observations ending with a database of 8860 observations.

Then, each dependent variable’s normality and homogeneity assumptions were veri-
fied to select the appropriate statistical test for comparisons. For example, for the translation
error, the p-values of 2.2 × 10−16 for the DSO, LDSO, CNN-DSO, DSM, DynaSLAM, ORB-
SLAM2, DF-ORB-SLAM, CNN-SVO, SVO, and LSD-SLAM methods were obtained in the
Lilliefors (Kolmogorov–Smirnov) normality test; so, the sample did not reach the normality
assumption. We applied Levene’s test obtaining a p-value of 2.2 × 10−16 for the homogene-
ity assumption; so, the sample did not meet the homogeneity assumption. The rest of the
dependent variables had similar assumptions verification results; thus, it was concluded
that the sample was not parametric. Hence, the Kruskal–Wallis test was selected as the
general test, with the Wilcoxon signed rank as a pairwise post hoc test. Figure 8 and Table 3
present the results obtained by applying the differences tests.
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Appl. Sci. 2023, 13, 8837 21 of 32

Table 3. Medians and Kruskal–Wallis comparisons for each algorithm’s translation, rotation, and
scale errors.

Method Translation Error Rotation Error Scale Error

Kruskal–Wallis
general test

χ2 = 3582.9
pvalue = 2.2× 10−16

χ2 = 2278.4
pvalue = 2.2× 10−16

χ2 = 2419.1
pvalue = 2.2× 10−16

DSO 0.8064585 a 0.8800369 b 1.064086 ab

LDSO 0.7892125 a 0.9135608 ab 1.061302 ab

CNN-DSO 0.7980411 a 0.9618528 a 1.058849 a

DSM 0.8519143 b 1.1117710 c 1.064615 b

DynaSLAM 1.7473504 c 1.5730542 d 1.126499 c

ORB-SLAM2 2.8738313 d 2.3585843 e 1.260155 d

CNN-SVO 1.6248001 c 1.4159545 d 1.086399 e

DF-ORB-SLAM 3.6423921 e 3.4940400 f 1.238232 f

SVO 5.4819407 f 3.3772024 f 1.343603 g

LSD-SLAM 9.1403348 g 14.9621188 g 2.044298 h

Means with different letters in the same column differ significantly according to the Kruskal–Wallis test and
pairwise Wilcoxon signed rank test for pvalue ≤ 0.05.

As presented in Figure 8 and Table 3, the sample identified significant differences
between the implemented algorithms. By observing the translation error, it can be noticed
that the DSO, LDSO, and CNN-DSO methods achieved the most significant performance
of the ten evaluated algorithms; despite the DSO performing at 2.18% and 1.05% worse
than the DSO and CNN-DSO in this metric, the difference was not significant among
them. The DSO, LDSO, and CNN-DSO achieved significantly lower errors than the dense-
direct method DSM. The feature-based methods performed significantly worse than the
sparse-direct methods, where the DynaSLAM achieved a significantly better performance
than the ORB-SLAM2 and DF-ORB-SLAM, reaching a 39.19% and 52.02% translation error
reduction, respectively. The CNN-SVO performed slightly worse than the DynaSLAM, but
the difference was not significant, while it significantly outperformed its classic version
achieving a 47.57% translation error reduction. The LSD-SLAM performed substantially
worse in terms of the translation error metric among the ten algorithms.

Regarding the rotation error, the DSO and LDSO achieved significantly better results
than the rest of the algorithms. Although the DSO showed an average rotation error reduc-
tion close to 3.66%, the difference was not significant. The DSO performed significantly
better than its neuronal version in the accumulated rotation error metric. The LDSO per-
formed around 5.02% better than the CNN-DSO, but the difference was not significant.
The DSM performed significantly worse than the rest of the sparse-direct methods. The
feature-based methods performed worse than the sparse-direct methods in the rotation
error metric, where the DynaSLAM achieved a better performance than the ORB-SLAM2
and DF-ORB-SLAM, showing an average error reduction close to 33.30% and 54.97%, re-
spectively. The CNN-SVO performed better than the DF-ORB-SLAM, SVO, and LSD-SLAM
in terms of the rotation error metric, significantly outperforming its classic SVO version
showing a 58.07% average reduction in the rotation error. The LSD-SLAM performed
significantly worse than the other methods in the rotation error metric.

For the scale error metric, the sparse-direct methods, DSO, LDSO, and CNN-DSO,
performed significantly better, where the CNN-DSO showed the best performance by an
average 0.49% and 0.23% reduction compared to the DSO and LDSO, but the difference was
not significant. The DSM performed significantly worse than the CNN-DSO. The feature-
based methods performed significantly worse than the sparse-direct methods on the scale
error metric, where the DynaSLAM achieved the significantly best performance and an
average reduction of 10.60% and 9.02% compared to the ORB-SLAM2 and DF-ORB-SLAM.
The CNN-SVO performed significantly better than the feature-based methods, SVO and
LSD-SLAM, exhibiting a 19.14% average error reduction compared to its classic version,
SVO. Again, the LSD-SLAM performed worst in the scale error metric.
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Similarly, the Kruskal–Wallis test was applied as general test, with the Wilcoxon signed
rank test, for statistical comparison among the ten methods for the start- and end-segment
alignment errors and the overall RMSE. Figure 9 and Table 4 present the results obtained
by applying the differences tests.
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Table 4. Medians and Kruskal–Wallis comparisons for the translation errors of each algorithm.

Method Start-Segment
Alignment Error

End-Segment
Alignment Error RMSE

Kruskal–Wallis
general test

χ2 = 4575.7
pvalue = 2.2e× 10−16

χ2 = 3718
pvalue = 2.2× 10−16

χ2 = 530.78
pvalue = 2.2× 10−16

DSO 0.003974759 a 0.004184367 a 0.1950799 ab

LDSO 0.007925665 b 0.008009198 b 0.1944492 a

CNN-DSO 0.008987173 b 0.006199582 c 0.2083872 ab

DSM 0.015794222 c 0.015537213 d 0.2167750 b

DynaSLAM 0.004286919 a 0.005516179 e 0.2389837 cd

ORB-SLAM2 0.004311949 a 0.005102672 e 0.3165024 e

CNN-SVO 0.067201999 d 0.062036008 f 0.2373532 c

DF-ORB-SLAM 0.053360456 e 0.084420570 g 0.3643844 e

SVO 0.108150349 f 0.117753996 h 0.3642558 e

LSD-SLAM 0.158469383 g 0.190127787 i 0.3507099 d

Means with different letters in the same column differ significantly according to the Kruskal–Wallis test and
pairwise Wilcoxon signed rank test for pvalue ≤ 0.05.

Figure 9 and Table 4 show many significant differences between the ten compared
methods on the alignment error and RMSE metrics. Regarding the start-segment alignment
error, the DSO, DynaSLAM, and ORB-SLAM methods outperformed the rest of the algo-
rithms. Despite the DSO slightly reducing the average start-segment alignment error by
around 7.28% and 7.81% compared to the DynaSLAM and ORB-SLAM2, the differences
were not significant. The rest of the sparse-direct methods, LDSO, CNN-DSO, and DSM,
performed significantly worse than the DSO by an average of 49.84%, 55.77%, and 74.83%,
respectively, in the start-segment alignment error metric. For the feature-based methods,
the DynaSLAM and DSO performed significantly better than the DF-ORB-SLAM, while
the DF-ORB-SLAM achieved an error significantly lower than the CNN-SVO, SVO, and
LSD-SLAM. When comparing the CNN-SVO with its predecessor SVO, the difference was
significant, where the neural version reduced the start-segment alignment error by an
average of close to 37.86%. The LSD-SLAM achieved the worst start-segment alignment
error of the ten methods, significantly.

By observing the end-segment alignment error, it was found that the sparse-direct
methods significantly outperformed the rest of the compared methods. The DSO signif-
icantly outperformed all the evaluated methods, including the rest of the sparse-direct
methods, the LDSO, CNN-DSO, and DSM, reducing the average alignment error by around
47.85%, 32.50%, and 73.06%, respectively. In the sparse-indirect category, the DynaSLAM
and ORB-SLAM2 performed significantly better than the DF-ORB-SLAM, but even though
the ORB-SLAM2 reduced the average end-segment error by approximately 7.49%, the dif-
ference was not significant. The CNN-SVO end-segment alignment error was significantly
lower than the error of the SVO, reducing this metric by approximately 47.31%. The LDSO
performed significantly worse than the rest of the methods.

For the RMSE metric, the sparse-direct methods performed significantly better than the
rest, where the LDSO achieved RMSE values around 0.32% and 6.68% lower than the DSO
and CNN-DSO; the differences were not significant. The LDSO performed significantly
better than the DSM, with an average RMSE around 10% lower. In the feature-based
classification, the DynaSLAM performed significantly better than the ORB-SLAM2 and
the DF-ORB-SLAM, reducing the RMSE metric by approximately 24.49% and 34.41%,
respectively. For the hybrid methods, the CNN-SVO performed significantly better than the
SVO, reducing the RMSE by around 34.83%. As with the rest of the metrics, the LSD-SLAM
performed significantly worse than the other methods in terms of the RMSE metric.

Finally, in Figure 10, we present the sample trajectories obtained by the three over-
all best methods evaluated in this comparison study. To exemplify the behavior of the
algorithms in different environments, we selected the sequence seq-02 of the TUM-Mono
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dataset as an example for indoors and the sequence seq-29 as an example for outdoors. In
addition, we provide video samples of the execution of each algorithm as supplementary
material in the GitHub repository: “https://github.com/erickherreraresearch/Monocula
rPureVisualSLAMComparison accessed on 16 June 2023”, along with all the .txt result files
of each algorithm run for reproducibility.
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and hybrid methods (c,f). The top row displays the results for the indoor sequence seq-02, and
the bottom row displays the results for the outdoor sequence seq-29. The solid lines represent the
trajectory estimated by each algorithm; the dashed lines represent the aligned ground truth.

As depicted in Figure 10, the algorithm’s observed behavior ratified this comparative
analysis of quantitative results. On the top row, for the indoor sequence, it can be noticed
that the sparse-direct methods outperformed the other evaluated methods starting and
ending their trajectory pretty close to the ground truth. The indirect methods behaved com-
pletely differently, where the system constantly lost the trajectory, accumulating drift and
obtaining the wrong scale measures concatenated erroneously when the system achieved
relocalization. The DynaSLAM represents an important contribution to the ORB-SLAM2
system because it estimated the trajectory better than the rest, closing the trajectory close
to the ground truth, while the rest of the indirect systems lost their trajectories. On the
other hand, the hybrid methods performed considerably worse indoors; so, many of the
algorithms’ runs did not complete the full frame sequence, and the algorithm typically
finished its trajectory pretty far from the end-segment ground truth. In the bottom row of
Figure 10, it can be noticed again that the sparse-direct methods outperformed the rest of
the evaluated systems, with an appropriate bootstrapping in the start segment and a small
amount of accumulated drift in the end segment.

In Figure 10e, similar to indoors, the indirect methods suffered from trajectory loss
issues despite the fact that the relocalization module typically was able to continue the
system execution, accumulating a critical amount of drift during relocalization, making the
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estimated trajectory end far from the groundtruth end segment. In the hybrid methods, the
SVO suffered from similar issues to the indirect methods. However, it can be noticed that
the CNN version of the SVO improved its performance outdoors, differently from indoors,
which can be explained because the added CNN MonoDepth module was trained in the
Cityscapes dataset, which was mainly trained from outdoor sequences.

4. Discussion

In the previous studies of [39,40], the authors compared the DSO, LDSO, ORB-SLAM2,
and DynaSLAM algorithms on the same TUM-Mono benchmark, and their findings mostly
matched what we observed during this evaluation. However, we extended their study
considerably by implementing six additional methods following the taxonomy described
in [9] and performed an appropriate statistical analysis to determine the significant differ-
ences in each system’s performance. Thus, we could observe the classification advantages
and limitations for classic geometric-based approaches. The classic approaches can be
classified as sparse-indirect, dense-indirect, dense-direct, sparse-direct, and hybrid. For
the sparse-indirect, we selected its gold standard, ORB-SLAM2, and we can report that,
in our experience, it is an excellent method that demands low computational power and
has an average performance not being the best but still working well outdoors. Its main
limitations are its poor indoor performance and large drift and scale error accumulation
during relocalization. We believe the ORB-SLAM2 has achieved high popularity due to its
low computational power consumption and ease of implementation.

For the dense-indirect category, we selected the DF-ORB-SLAM, an ORB-SLAM2
open-source implementation with an additional optical flow estimation module that allows
the ORB-SLAM2 to work with more image information. In this case, we observed that
the optical flow module increased the computational cost of the algorithm and slightly
reduced the occurrence of trajectory loss issues. However, adding image information for
feature extraction also introduced noise in the estimation steps, significantly increasing
the translation, rotation, scale error metrics, and RMSE. For dense-direct approaches, we
selected their gold standard, the LSD-SLAM, one of the first proposed direct methods. In
this case, we found that the performance was significantly the poorest of all the evaluated
methods. This situation could be due, in particular, to the frequent initialization errors and
trajectory loss in most of the benchmark sequences matching what Engel et al. reported
in their study [21]. For the sparse-direct classification, we selected the most iconic VO
system, the DSO. This system significantly outperformed the methods of the rest of the
classic classifications by a large margin, demonstrating an impressive performance indoors
and outdoors. The DSO was slightly outperformed by its neuronal version on the scale
metric and slightly outperformed by the LSDO in the translation and RMSE metric, but
the differences were not significant. This behavior lets us conclude that even its LDSO,
CNN-DSO, and DSM extensions do not significantly outperform the DSO, and this method
can still be considered a great avenue for future work, improvements, and contributions.

Additionally, it must be mentioned that, in contrast to what was reported in [31], the
DSM method did not outperform its predecessor, the DSO, in the TUM-Mono dataset,
even after implementing a complete SLAM pipeline to extend the DSO. We believe the
DSM is a robust system that can contribute to the sparse-direct category. However, the
authors used the extended pinhole radial-tangential camera model instead of the complete
photometrical camera calibration provided in the original DSO, including the intrinsic,
photometric, and nonparametric vignette calibration. As reported in [40], this situation
considerably contributed to the correct execution of the algorithm and allows it to obtain
the best results. Then, for the hybrid approaches, we tested the SVO, which combines
direct and indirect formulation paradigms in its pipeline. The SVO was second to last in
our comparison, being significantly outperformed by most of the methods in this study,
only performing significantly better than the LSD-SLAM, in line with what was reported
in [21]. However, with this analysis, we could observe that it at least performed better than
the dense-direct method. The SVO is also a popular method in the robotics research field.
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We believe that this is caused by its early appearance in 2014, low computational power
requirement, and open-source availability for implementation with C++ or ROS.

For machine learning classification, there are many ML implementations available in
the literature [2,10,14,20,32–36,65,66,89–95], and many of them include open source code
implementations [2,17,19,42,44–53,96]. Nevertheless, most methods were formulated to
work with more than one input mode, like RBD-D or INS, and their code implementations
did not include monocular running instructions or did not include their monocular RGB
pipeline, e.g., [2,42,53]. Other open-source code implementations required additional
external information for running, like optical flow or feature extractors, that were not
included as open source, e.g., [50]. For such reasons, we selected three ML versions of
the classic approaches of the DSO, ORB-SLAM2, and SVO: CNN-DSO, DynaSLAM, and
CNN-SVO. Therefore, we concluded that the CNN-SVO significantly outperformed its
predecessor in all the metrics, the DynaSLAM significantly outperformed the ORB-SLAM2
in all the metrics except for the end-segment alignment error where the difference was
not significant, and the CNN-DSO significantly outperformed its classic version only in
the rotation error metric. Here, we can mention that in contrast to what is reported in the
CNN-DSO official repository [15], where the algorithm was evaluated in the first eleven
sequences of the KITTI dataset, after testing the algorithm in a larger dataset indoors,
outdoors, and a large variety of motion patterns, the CNN-DSO only slightly outperformed
the DSO in the scale error metric, but the observed difference was not significant, while
the DSO still outperformed it in rotation and in the start- and end-segment alignment
error metrics. In addition, during the evaluation, it was observed that the algorithm
introduced a considerable number of outlier points in the obtained 3D reconstruction.
Thus, we can point out that machine learning studies are making vital contributions to
enhancing the monocular VO, SLAM, and 3D reconstruction systems. Table 5 summarizes
the observed advantages and limitations of the evaluated methods based on the experience
of implementing and running the algorithms.

Table 5. Practical advantages and limitations of the evaluated methods.

Method Category Advantages Limitations

ORB-SLAM2 [54] Classic sparse-indirect
Low computational cost. Multiple input
modes. Ease of implementation.
Robustness to multiple environments.

Trajectory loss issues.
Accumulation of drift while
relocalizing. Sparse 3D
reconstruction.

DF-ORB-SLAM [16] Classic dense- indirect Low computational cost. Reduction in
trajectory loss issues.

Introduction of noise for trajectory
estimation. Accumulation of drift
on relocalization. Sparse 3D
reconstruction. Significant
reduction in the performance of
ORB-SLAM2.

LSD-SLAM [29] Classic dense-direct

Low computational cost. More detailed
3D reconstruction, but with the presence
of outliers. More information in the final
3D reconstruction.

Poorest performance of the
evaluated methods. Initialization
issues. Trajectory loss issues.

DSO [21] Classic sparse-direct

Low computational cost. Ease of
implementation. More detailed and
precise 3D reconstruction. Robust to
multiple environments and motion
patterns. Best performance of all methods
in most of the metrics.

Requirement for a specific
complex camera calibration.
Slightly, but not significantly,
lower performance than the
LDSO in the translation and
RMSE metrics.
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Table 5. Cont.

Method Category Advantages Limitations

SVO [13] Classic hybrid

Low computational cost. Good
documentation and open-source
availability for implementation in diverse
configurations.

Frequent trajectory loss issues.
Initialization issues. Critical
execution errors due to the
absence of a relocalization
module.

LDSO [30] Classic sparse-direct

Low computational cost. Similar to DSO,
detailed and precise 3D reconstruction.
Ease of implementation. Loop closure
module. Slightly but not significantly
better performance than the DSO in
translation and rotation error. Best
performance in the translation and RMSE
metrics (compared to DSO), but without
considerable difference.

Requirement of a specific complex
camera calibration. Significantly
worse performance than the DSO
in the end-segment error metric.

DSM [31] Classic sparse-direct

Detailed and precise 3D reconstruction.
Robust execution in most of the
environments and motion patterns.
Complete and interactive GUI.

Requirement of more
computational capabilities than
the rest of the sparse-direct
methods. Significant
underperformance compared to
most of the sparse-direct methods.

CNN-DSO [15] ML sparse-direct

Detailed and precise 3D reconstruction.
Robust to multiple environments and
motion patterns. Best performance in
scale error metric.

Presence of outliers in the 3D
reconstruction. Significantly
better performance in the rotation
error metric by the DSO. Difficult
to implement. Specific hardware
requirement.

DynaSLAM [32] ML sparse-indirect

Multiple input modes. Ease of
implementation. Robustness to multiple
environments. Ability to detect, segment,
and remove information of moving
objects. Especially recommended for
dynamic environments. Fewer trajectory
loss issues than ORB-SLAM2.

Accumulation of drift while
relocalizing. Sparse 3D
reconstruction. Increase in
complexity over the ORB-SLAM2.
Specific hardware requirement.

CNN-SVO [11] ML hybrid

Considerable reduction in the trajectory
loss issues compared to the SVO.
Initialization issues. Reduction in the
number of execution issues compared to
the SVO. Improved performance over the
ORB-SLAM2 in the rotation, translation,
scale, and RMSE metrics. Significant
improvement over its classic version in
all the metrics.

Considerable presence of outliers
in the 3D reconstruction.
Imprecise and sparser 3D
reconstruction. Complex
implementation. Specific
hardware requirement.

5. Conclusions

In this article, the most representative open source monocular RGB SLAM and VO
available implementations were tested following a taxonomy to determine the advantages
and limitations of each method and classification, providing the reader a guide to correctly
select the method that fits their needs or to select a path to make future contributions to
the tested methods and classifications. After experimentation, it can be concluded that the
monocular SLAM and VO methods need to be evaluated on larger datasets in a large variety
of environments, motion patterns, and illumination conditions to be effectively compared
with the state of the art, as demonstrated in this study for methods like the DSM, CNN-DSO,
and DF-ORB-SLAM that did not match the expected results on the TUM-Mono dataset.
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The sparse-direct category of the taxonomy achieved the significantly best results
among all the ten methods in the translation, rotation, scale, and RMSE metrics outputting
the most detailed and precise 3D reconstructions of the tested methods. At second best,
the sparse-indirect category achieved good ego-motion estimation but output sparser 3D
reconstructions that might not be suitable for many applications, presenting trajectory
loss issues and evidencing worse performance indoors. Additionally, by including three
machine learning-based methods and comparing them with their classic versions, we can
conclude that the integration of machine learning significantly improves the performance
of the SLAM or VO systems and should be considered as a future research direction to
overcome the limitations of each system. Integrating CNN information for the estimation
steps contributes to mitigating monocular systems’ commonly known scale ambiguity issue.
This behavior was demonstrated in each ML method’s significant scale error reduction
compared to their classic versions.

Through experimentation, refs. [6,40] concluded that the great majority of the align-
ment error originated in the accumulated drift, independent from the noise in the ground
truth that can be registered with any SLAM or VO, which allows using all the metrics
using the ground truth of only the start and end segments. We agree and confirm that
this conclusion allowed us to compare a wide variety of methods coming from different
configurations and classifications that output trajectories in different scales and orientations,
which can be efficiently compared after the proposed benchmark alignment method.
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