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Abstract: Given ε0 > 0, I ∈ ℕ ∪ {0} and K0 , H0 ≥ 0, let X be a complete Riemannian 3-manifold with injectiv-

ity radius Inj(X) ≥ ε0 and with the supremum of absolute sectional curvature at most K0, and let M  X be

a complete immersed surface of constant mean curvature H ∈ [0, H0] with index at most I. For such M  X,
we prove a structure theoremwhich describes how the interesting ambient geometry of the immersion is orga-

nized locally around at most I points ofM, where the norm of the second fundamental form takes on large local

maximum values.
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1 Introduction

Let X denote a complete Riemannian 3-manifold with positive injectivity radius Inj(X) and bounded absolute
sectional curvature. Let M be a complete immersed surface in X of constant mean curvature H ≥ 0; we call M
an H-surface in X. The Jacobi operator of M is the Schrödinger operator

L = Δ + |AM |2 + Ric(N),

where Δ is the Laplace–Beltrami operator onM, |AM |2 is the square of the norm of its second fundamental form,

and Ric(N) denotes the Ricci curvature of X in the direction of the unit normal vector N toM; the index ofM is

the index of L:
Index(M) = lim

R→∞
Index(BM(p, R)),

where BM(p, R) is the intrinsic metric ball in M of radius R > 0 centered at a point p ∈ M, and Index(BM(p, R))
is the number of negative eigenvalues of L on BM(p, R) with Dirichlet boundary conditions. Here, we have

assumed that the immersion is two-sided (this holds in particular ifH > 0). In the case thatH = 0 and the immer-
sion is one-sided, the index is defined in a similar manner using compactly supported variations in the normal

bundle; see Definition 2.1 for details.

The primary goal of this paper is to describe the structure of complete immersedH-surfaces F : M  X (also
called H-immersions) which have a fixed bound I ∈ ℕ ∪ {0} on their index and a fixed upper bound H0 for their

constantmean curvaturesH, in certain small intrinsic neighborhoods of pointswith sufficiently largenorm |AM |
of their second fundamental forms; see Theorem 1.2. When M has non-empty boundary, we will assume, after

a choice of some ε0 ∈ (0, Inj(X)), that there is an upper bound A0 of |AM | in the intrinsic ε0-neighborhood of
the boundary ofM. Theorem 1.2 plays an important theoretical role in understanding global properties of such
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surfaces in much the same way that the local structure theorems of Colding and Minicozzi [7, 8] (for embedded

minimal surfaces) and of Meeks and Tinaglia [21] (for embedded H-surfaces with H > 0) play a fundamental
role in understanding global properties of complete embedded H-surfaces of finite genus, especially in the case
where X = ℝ3. However, we point out that the results in this paper do not depend on the results for embedded
H-surfaces of Colding–Minicozzi and Meeks–Tinaglia; for applications of Theorem 1.2 to the global theory of

finite index H-surfaces in Riemannian 3-manifolds, see [18].
In the sequel, we will denote by BX(x, r) (resp. BX(x, r)) the open (resp. closed) metric ball centered at

a point x ∈ X of radius r > 0. For a Riemannian surface M with smooth compact boundary ∂M, κ(M) = ∫∂M κg
will stand for the total geodesic curvature of ∂M, where κg denotes the pointwise geodesic curvature of ∂M
with respect to the inward pointing unit conormal vector of M along ∂M.

Definition 1.1. For every I ∈ ℕ ∪ {0}, ε0 > 0 and H0 , A0 , K0 ≥ 0, we denote by

Λ = Λ(I, H0 , ε0 , A0 , K0)

the space of all H-immersions F : M  X satisfying the following conditions:

(A1) X is a complete Riemannian 3-manifold with injectivity radius Inj(X) ≥ ε0 and absolute sectional curva-
ture bounded from above by K0.

(A2) M is a complete surface with smooth boundary (possibly empty), andwhen ∂M ̸= 0, there are points inM
of distance greater than ε0 from ∂M.

(A3) H ∈ [0, H0] and F has index at most I.
(A4) If ∂M ̸= 0, then for any ε ∈ (0,∞] we let

U(∂M, ε) = {x ∈ M | dM(x, ∂M) < ε}

be the open intrinsic ε-neighborhood of ∂M. Then |AM | is bounded from above by A0 in U(∂M, ε0).

Suppose that (F : M  X) ∈ Λ and ∂M ̸= 0. For any positive ε1 ≤ ε2 ∈ [0,∞], let

U(∂M, ε1 , ε2) = U(∂M, ε2) \ U(∂M, ε1), U(∂M, ε1 , ε2) = U(∂M, ε2) \ U(∂M, ε1).

When ∂M = 0, we define U(∂M, ε1 ,∞) = U(∂M, ε1 ,∞) as M.

In the next result, wewill make use of harmonic coordinates φx : U → BX(x, r) defined on an open subset U
ofℝ3 containing the origin, taking values in a geodesic ball BX(x, r) centered at a point x ∈ X of positive radius r
less than the injectivity radius of X at x and with a C1,α control of the ambient metric on X; see Definition 2.2 for
details.

Theorem 1.2 (Structure Theorem for finite index H-surfaces). Suppose that ε0 > 0, K0 , H0 , A0 ≥ 0, I ∈ ℕ ∪ {0}, and
τ ∈ (0, π/10] are given. Then there exist A1 ∈ [A0 ,∞) and δ1 , δ ∈ (0, ε0/2], with δ1 ≤ δ/2, such that, for any

(F : M  X) ∈ Λ = Λ(I, H0 , ε0 , A0 , K0),

there exists a (possibly empty) finite collection

PF = {p1 , . . . , pk} ⊂ U(∂M, ε0 ,∞)

of points, k ≤ I, and numbers rF(1), . . . , rF(k) ∈ [δ1 , δ2 ] with rF(1) > 4rF(2) > ⋅ ⋅ ⋅ > 4
k−1rF(k), satisfying the fol-

lowing properties:
(i) Portions with concentrated curvature: Given i = 1, . . . , k, let Δi be the component of F−1(BX(F(pi), rF(i)))

containing pi . Then the following assertions hold:
(a) Δi ⊂ BM(pi , 54 rF(i)) (in particular, Δi is compact).
(b) Δi has smooth boundary and F(∂Δi) ⊂ ∂BX(F(pi), rF(i)).
(c) For i ̸= j,

BM(pi ,
7

5
rF(i)) ∩ BM(pj ,

7

5
rF(j)) = 0.

In particular, the intrinsic distance between Δi and Δj is greater than 3

10
δ1 for every i ̸= j.
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Figure 1: The second fundamental form concentrates inside the intrinsic compact regions Δ i (in red), each of which is mapped through
the immersion F to a surface inside the extrinsic ball in X centered at F(p i) of radius rF (i) > 0, with F(∂Δ i) ⊂ ∂BX (F(p i), rF (i)). Although
the boundary ∂Δ i might not be at constant intrinsic distance from the ‘center’ p i , Δ i lies entirely inside the intrinsic ball centered at p i
of radius 5

4 rF (i). The intrinsic open balls BM(p i ,
7
5 rF (i)) are pairwise disjoint.

(d) It holds

|AM |(pi) = max
Δi
|AM | = max{|AM |(p)


p ∈ M \

i−1
⋃
j=1

BM(pj ,
5

4
rF(j))} ≥ A1;

see Figure 1.
(e) The index Index(Δi) of Δi is positive.

(ii) Transition annuli: For i = 1, . . . , k fixed, let e(i) ∈ ℕ be the number of boundary components of Δi . Then there
exist planar disks𝔻1 , . . . ,𝔻e(i) ⊂ TF(pi)X of radius 2rF(i) centered at the origin in TF(pi)X such that, if we set

Pi,h = φF(pi)(𝔻h), h ∈ {1, . . . , e(i)},

where φF(pi) denotes a harmonic chart centered at F(pi), see Definition 2.2, then

F(Δi) ∩ [BX(F(pi), rF(i)) \ BX(F(pi),
rF(i)
2
)]

consists of e(i) annular multi-graphs¹ Gi,1 , . . . , Gi,e(i) over their projections to Pi,1 , . . . , Pi,e(i), with multiplic-
ities mi,1 , . . . ,mi,e(i) ∈ ℕ, respectively, and whose related graphing function u satisfies

|u(x)|
|x| + |∇u|(x) ≤ τ, (1.1)

where we have taken coordinates x in each of the Pi,h and denoted by |x| the extrinsic distance to F(pi) in the
ambient metric of X; see Figure 2.

(iii) Region with uniformly bounded curvature: |AM | < A1 on M̃ := M \⋃ki=i Int(Δi).
Moreover, the following additional properties hold:
(I) ∑ki=1 I(Δi) ≤ I, where I(Δi) = Index(Δi).
(II) Geometric and topological estimates: Given i = 1, . . . , k, let m(i) := ∑e(i)h=1 mi,h be the total spinning of the

boundary of Δi , let g(Δi) denote the genus of Δi (in the case that Δi is non-orientable, g(Δi) denotes the genus
of its oriented cover²). Then m(i) ≥ 2 and the following upper estimates hold:
(a) If I(Δi) = 1, then Δi is orientable, g(Δi) = 0 and (e(i),m(i)) ∈ {(2, 2), (1, 3)}.
(b) If Δi is orientable and I(Δi) ≥ 2, then m(i) ≤ 3I(Δi) − 1, e(i) ≤ 3I(Δi) − 2 and g(Δi) ≤ 3I(Δi) − 4.
(c) If Δi is non-orientable, then I(Δi) ≥ 2, m(i) ≤ 3I(Δi) − 1, e(i) ≤ 3I(Δi) − 2, and g(Δi) ≤ 6I(Δi) − 8.

1 See Definition 2.3 for this notion of multi-graphs.

2 If Σ is a compact non-orientable surface and Σ̂
2:1

→ Σ denotes the oriented cover of Σ, then the genus of Σ̂ plus 1 equals the number

of cross-caps in Σ.
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Figure 2: The transition annuli: On the right, one has the extrinsic representation in X of one of the annular multi-graphs G in
F(Δ1) ∩ [BX (F(p1), rF (1)) \ BX (F(p1), rF (1)/2)]; in this case, the multiplicity of the multi-graph is 3. On the left, one has the intrinsic
representation of the same annulus (shadowed); there is one such annular multi-graph for each boundary component of Δ i .

(d) χ(Δi) ≥ −6I(Δi) + 2m(i) + e(i), and thus

χ(
k
⋃
i=1

Δi) ≥ −6I + 2S + e,

where

e =
k
∑
i=1

e(i), S =
k
∑
i=1

m(i).

(e) |κ(Δi) − 2πm(i)| ≤ τ
m(i) , and so the total geodesic curvature κ(M̃) of M̃ along ∂M̃ \ ∂M satisfies

|κ(M̃) + 2πS| ≤ τ
2
k,

and so

2πS − τ
2
k ≤

k
∑
i=1

κ(Δi) ≤ 2πS +
τ
2
k. (1.2)

(f) −∫
Δi
K > 3π, and so

− ∫

⋃ki=1 Δi

K = −2πχ(
k
⋃
i=1

Δi) + ∫

⋃ki=1 ∂Δi

κg > 3kπ. (1.3)

(III) Genus estimate outside the concentration of curvature: If M is orientable, k ≥ 1 and the genus g(M) of M is
finite, then the genus g(M̃) of M̃ satisfies

0 ≤ g(M) − g(M̃) ≤ 3I − 2.

(IV) Area estimate outside the concentration of curvature: If k ≥ 1, then

Area(M̃) ≥ 14π
k
∑
i=1

m(i)rF(i)2 ≥ 2π
k
∑
i=1

m(i)rF(i)2 ≥ Area(
k
⋃
i=1

Δi) ≥ kπδ21 .

(V) There exists a C > 0, depending on ε0 , K0 , H0 and independent of I, such that

Area(M) ≥ {
Cmax{1, Radius(M)} if ∂M ̸= 0,
Cmax{1, Diameter(M)} if ∂M = 0,

(1.4)

where
Radius(M) = sup

x∈M
dM(x, ∂M) ∈ (0,∞] if ∂M ̸= 0,

Diameter(M) = sup

x,y∈M
dM(x, y) if ∂M = 0.

In particular, ifM has infinite radius or ifM has empty boundary and it is non-compact, then its area is infinite.
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The proof of the Structure Theorem 1.2 is carried out in Section 5, and it will be done by induction on the index

bound I. In the case I = 0, Theorem 1.2 is obtained by using curvature estimates for stable H-surfaces, and the
arguments in this special case generalize to the case where, for a given I ∈ ℕ, there exists a uniform curvature

estimate for the immersions in Λ = Λ(I, H0 , ε0 , A0 , K0); see Section 5.1. A non-trivial step in the proof of Theo-

rem 1.2 involves an analysis of the local pictures on different scales for a sequence of complete Hn-immersions

Fn : Mn  Xn with Hn ∈ [0, H0] and Index(Fn) ≤ I, such that {sup|AMn |}n is unbounded (these local pictures

are limits of the Fn after blowing up on certain scales). Although non-trivial, this analysis is simpler in the case
I = 1 because in this case there is only one scale for the local pictures of Fn; this case is studied in Section 5.4.
The analysis of these local pictures in the general case is carried out in Section 5.5, and it is based on the lower

bounds obtained by Chodosh and Maximo [6] and Karpukhin [13] for the index of a possibly branched, com-

plete immersed minimal surface Σ inℝ3 with finite total curvature, in terms of its genus, total branching order,
and the number of its ends counted with multiplicity. After coming back to the original scale, these complex-

ity estimates will give upper bounds for the total geodesic curvature of the boundary of the portion M̃ of M
defined in Theorem 1.2 (iii), as well as to give lower bounds in (III) on the genus of M̃ in terms of I and the genus
of M when M is orientable. These geometric and topological bounds are obtained in Sections 5.6 and 5.7. What

this analysis demonstrates is that there is an organized hierarchy-type structure in the geometry of a complete,

immersed H-surface F : M  X near points of large, almost-maximal norm of the second fundamental form of

the immersion, from which the title of the paper is derived; this hierarchy structure of F around such special
points is described explicitly in Section 5.6 and plays an essential role in the proofs of our main results.

A key step in the proof of Theorem 1.2 is to obtain curvature estimates for a large portion of the H-surface
(F : M  X) ∈ Λ in that theorem. These curvature estimates are obtained in Section 5.2 and they are based on

related curvature estimates for stable H-surfaces developed in Section A.
Observe that (1.4) is a lower bound for the area of an H-surface in a Riemannian 3-manifold X, described in

terms of an upper bound for its absolute mean curvature function |H|, a lower bound of the injectivity radius
of X and an upper bound of the sectional curvature of X. This area estimate is proven in Section 5.7 and fol-

lows from a more general area estimate and an intrinsic monotonicity of volume formula for n-dimensional
submanifolds with bounded length of their mean curvature vectors inm-dimensional Riemannianmanifolds X
that have a lower bound for their injectivity radius and an upper bound for the sectional curvature of X. Both
of these auxiliary results are proven in our paper [17], and we include their statements (without proofs) in

this paper for the sake of completeness; see Propositions B.1 and B.3. In Proposition B.4, we state explicit scale

invariant weak chord-arc estimates for finitely branched minimal surfaces of finite total curvature in ℝ3 in
terms of the index and total branching (also proven in [17]); these chord-arc estimates are applied in the proof

of Theorem 1.2 (i).

An important theoretical consequence of the Structure Theorem 1.2 is the existence of compactness results

for H-surfaces of bounded index in X. More specifically, in Section 6 we state and prove some compactness

results for sequences of complete immersions with constant mean curvature in Λ = Λ(I, H0 , ε0 , A0 , K0), as
described in Theorem 1.2, in the particular case that the immersions are defined on connected surfaces without

boundary, the ambient space X is independent of the element in the sequence, and the image of each immersion
in the sequence intersects a fixed compact subdomain of X. In this case, the limit object that we encounter (after
passing to a subsequence) is a complete, possibly finitely branched immersion of constant mean curvature at

most H0 and index at most I.
In regards to the just mentioned compactness results in Section 6, it is worth mentioning the related

paper [3] by Bourni, Sharp and Tinaglia, where they give weak compactness results for a sequence of embedded

CMChypersurfaces in a compact Riemannianmanifold of dimensionmwith 3 ≤ m ≤ 7, provided that their areas
and Morse indices are bounded. As they remark in [3], their results were motivated by the derivation of the

genus-dependent area bounds for triply periodic CMC surfaces properly embedded inℝ3 byMeeks and Tinaglia
in [22]; also the results in [3] and in our present paper are motivated by other recent works [1, 2, 4, 5, 15, 26],

which together help to describe the geometry of finite index CMC surfaces M embedded in closed Riemannian

3-manifolds and relationships between index, area and genus of such an M.
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In [18], we give applications of Theorem 1.2 to understand global properties of immersedH-surfacesM  X
of fixedfinite index I, especially results related to the area and diameter of such anMwhen it is compactwithout

boundary; in particular, we deduce that the area of such anM (resp. the diameter) grows at least linearly (resp.

logarithmically) with the genus.

2 Index of one-sided H-immersions, harmonic coordinates and
multi-valued graphs

In Theorem 1.2, we referred to the index of one-sided minimal immersions, harmonic coordinates and finitely

valued multi-graphs. We will devote this section to give some details about these notions.

Definition 2.1. Given a one-sidedminimal codimension-one immersion F : M  X in aRiemannianmanifold X,
let M̃ → M be the two-sided cover of M and let τ : M̃ → M̃ be the associated deck transformation of order 2.

Denote by Δ̃ and |Ã|2 respectively the Laplacian and squared norm of the second fundamental form of M̃ and

letN : M̃ → TX be a unitary normal vector field. The index of F is defined as the number of negative eigenvalues
of the elliptic, self-adjoint operator Δ̃ + |Ã|2 + Ric(N, N) defined over the space of compactly supported smooth
functions ϕ : M̃ → ℝ such that ϕ ∘ τ = −ϕ.

Definition 2.2. Given a (smooth) Riemannian manifold X, a local chart (x1 , . . . , xn) defined on an open set U
of X is called harmonic if Δxi = 0 for all i = 1, . . . , n.

Given Q > 1 and α ∈ (0, 1), we define (following [11, Definition 5]) the C1,α-harmonic radius at a point x0 ∈ X
as the largest number r = r(Q, α)(x0) so that, in the geodesic ball BX(x0 , r) of center x0 and radius r, there is
a harmonic coordinate chart such that the metric tensor g of X is C1,α-controlled in these coordinates. Namely,
if gij , i, j = 1, . . . , n, are the components of g in these coordinates, then the following assertions hold:
(i) Q−1δij ≤ gij ≤ Qδij as bilinear forms.
(ii) It holds

3

∑
β=1

r sup
y


∂gij
∂xβ
(y)
 +

3

∑
β=1

r1+α sup
y ̸=z

| ∂gij∂xβ (y) −
∂gij
∂xβ (z)|

dX(y, z)α
≤ Q − 1.

The C1,α-harmonic radius r(Q, α)(X) of X is now defined by

r(Q, α)(X) = inf
x0∈X

r(Q, α)(x0).

If the absolute sectional curvature of X is bounded by some constant K0 > 0 and Inj(X) ≥ ε0 > 0, then [11, Theo-
rem 6] implies that, given Q > 1 and α ∈ (0, 1), there exists C = C(Q, α, ε0 , K0) (observe that C does not depend
on X) such that r(Q, α)(X) ≥ C.

Definition 2.3. Let f : Σ  ℝ3 be an immersed annulus, let P be a plane passing through the origin and, let

Π : ℝ3 → P be the orthogonal projection. Given m ∈ ℕ, let σm : Pm → P∗ = P \ {0⃗} be the m-sheeted covering
space of P∗. We say that Σ is an m-valued graph over P if 0⃗ ̸∈ (Π ∘ f)(Σ), the induced map

(Π ∘ f)∗ : H1(Σ) = ℤ→ H1(P∗) = ℤ

satisfies |(Π ∘ f)∗(1)| = m, and Π ∘ f : Σ → P∗ has a smooth injective lift f̃ : Σ → Pm through σm; in this case, we
say that Σ hasmultiplicity m as a multi-graph.

Given Q > 1 and α ∈ (0, 1), let X be a Riemannian 3-manifold and let (x1 , x2 , x3) be a harmonic chart for X
defined on BX(x0 , r), x0 ∈ X, r > 0, where themetric tensor g of X is C1,α-controlled in the sense of Definition 2.2.
Let P ⊂ BX(x0 , r) be the image by this harmonic chart of the intersection of a plane in ℝ3 passing through the
origin with the domain of the chart. In this setting, the notion of m-valued graph over P generalizes naturally
to an immersed annulus

f : Σ  BX(x0 , r),
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where the projection Π refers to the harmonic coordinates. If f : Σ  BX(x0 , r) is an m-valued graph over P
and u is the corresponding graphing function that expresses f(Σ), we can consider the gradient ∇u with respect
to the metric on P induced by the ambient metric of X. Both u and |∇u| depend on the choice of harmonic

coordinates around x0 (and they also depend on Q), but if |u(x)||x| + |∇u|(x) ≤ τ for some τ ∈ (0, π/10] and Q > 1
sufficiently close to 1, then

|u(x)|
|x|
+ |∇u|(x) < 2τ

for any other choice of harmonic chart around x0 with this restriction of Q.

3 Finitely branched minimal surfaces inℝ3 of finite index

In the process of finding local pictures ofH-immersions as in Theorem1.2,wewill find complete, non-flat, finitely

branchedminimal surfaces inℝ3. We will devote this section to obtain some properties of these surfaces which

will be useful in the sequel.

Definition 3.1. Let Σ be a smooth surface endowed with a conformal class of metrics. We say that a harmonic

map f : Σ → ℝ3 is a (possibly non-orientable) branched minimal surface if it is a conformal immersion outside
of a locally finite set of pointsBΣ ⊂ Σ, where f fails to be an immersion. Points inBΣ are called branch points of

f . It is well-known (see, e.g., [23, Theorem 1.4]) that, given p ∈ BΣ , there exist a conformal coordinate (𝔻, z) for
Σ centered at p (where𝔻 is the closed unit disk in the plane), a diffeomorphism u of𝔻 and a rotation ϕ of ℝ3

such that ϕ ∘ f ∘ u has the form
z → (zq , x(z)) ∈ ℂ ×ℝ ∼ ℝ3

for z near 0, where q ∈ ℕ, q ≥ 2, x is of class C2, and x(z) = o(|z|q). The branching order B(p) ∈ ℕ is defined to
be q − 1. The total branching order of f is

B(Σ) := ∑
p∈BΣ

B(p).

The next result is a generalization of thewell-known Jorge–Meeks formula [12] to the case of a possibly branched

and non-orientable complete minimal surface Σ  ℝ3 of finite total curvature and finite branching order. It is
well-known that each of the (finitely many) ends of Σ is a multi-graph of finite multiplicity over the exterior of

a disk in the plane passing through the origin and orthogonal to the extended value of the unoriented Gauss

map of Σ. We will use the term the total spinning of Σ to describe the sum of these multiplicities; for instance,

the classical Henneberg and Enneper surfaces each have one end and total spinning equal to three.

Proposition 3.2. Let Σ  ℝ3 be a complete, finitely connected and finitely branched minimal surface with finite
total curvature, e ends with total spinning S, and total branching order B(Σ). Then

1

2π ∫
Σ

K + S − B(Σ) = χ(Σ) − e = χ(Σ), (3.1)

where K : Σ \BΣ → (−∞, 0] is the Gaussian curvature function and Σ denotes the conformal³ compactification
of Σ. Furthermore, if G : Σ → ℙ2 denotes the extended unoriented Gauss map of Σ, then the degree of G satisfies

deg(G) = 1

2π ∫
Σ

K ≡ χ(Σ) mod 2. (3.2)

In particular,
S − B(Σ) ≡ e mod 2. (3.3)

3 Observe that Σ admits an atlas whose changes of coordinates are conformal or anti-conformal.
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Proof. To prove each of the statements in the above proposition, it suffices to consider the special case that Σ is

connected, which we will assume holds for the remainder of the proof.

We first prove (3.2). Note that the total curvature ∫
Σ
K equals 2π deg(G). First, consider the case that

deg(G) ̸= 0. By [16, Theorem 1], deg(G) ≡ χ(Σ) mod 2, which proves that (3.2) holds in this case. If the degree

of the Gauss map is zero, then the image of the branched immersion is a flat plane, and we can view Σ as

a connected, finitely branched covering of the sphere. Hence, Σ is orientable with even Euler characteristic.

Thus, (3.2) holds in all cases.

Using the Gauss–Bonnet formula in the compact portion of Σ obtained by removing pairwise disjoint disks

around its ends (viewed as points in Σ) and the branch points of Σ, and taking the radii of the removed disks

going to zero, we obtain equation (3.1). Taking classes mod 2 in (3.1) and using (3.2), we obtain (3.3).

We next recall a fundamental lower bound for the index I(f) of a connected, complete, possibly finitely

branched minimal surface f : Σ  ℝ3 with finite total curvature, which is due to Chodosh and Maximo [6]

and to Karpukhin [13]:

3I(f) ≥

{{{{{{
{{{{{{
{

2g(Σ) + 2
e
∑
j=1
(dj + 1) − 2B − 5 if Σ is orientable,

g(Σ̃) + 2
e
∑
j=1
(dj + 1) − 2B − 4 if Σ is non-orientable,

(3.4)

where g(Σ) is the genus of Σ if Σ is orientable (resp. g(Σ̃) is the genus of the orientable cover Σ̃ of Σ if Σ is not
orientable), e and B are respectively the number of ends and the total branching order of Σ, and for each end Ej
of Σ, dj is the multiplicity of Ej as a multi-graph over the limiting tangent plane of Ej .

Inequality (3.4) has not been explicitly stated in the literature, so an explanation is in order. Ros [24] proved

that 3I(f) ≥ 2g(Σ) using harmonic square integrable 1-forms on Σ for a minimal immersion f : Σ  ℝ3 with
finite total curvature, in order to produce test functions for the index operator of f . Chodosh and Maximo

[6, Theorem 1] improved Ros’ techniquewith an enlarged space of harmonic 1-formswhich admit certain singu-

larities at the ends of Σ that take care of the spinning (multiplicity) of each end of such an immersion f , obtaining
a simplified version of (3.4) without the term −2B. Finally, Karpukhin [13, Proposition 2.3 and Remark 2.4]

included the study of branch points, although he made use of the original space of L2(Σ) harmonic 1-forms
considered by Ros. Formula (3.4) is the combined inequality that one can deduce from [6, 13].

Remark 3.3. (i) If Σ is orientable and the index of f is even, then all summands in (3.4), except for the −5 in the
right-hand side, are even. Therefore, the inequality still holds after adding 1 to the right-hand side of (3.4).

(ii) Inequality (3.4) can be expressed in a unified way regardless of the orientability character of Σ, if we use

the Euler characteristic. Recall that if Σ is orientable, then its Euler characteristic is χ = χ(Σ) = 2 − 2g(Σ) − e,
while if Σ is non-orientable, the Euler characteristic of its orientable cover is χ(Σ̃) = 2 − 2g(Σ̃) − 2e, where e
is the number of ends of Σ, and so χ = χ(Σ) = 1 − g(Σ) − e. Thus, (3.4) reduces to

3I(f) ≥ −χ + 2S + e − 2B − 3, (3.5)

where S = ∑rj=1 dj is the total spinning of the ends of f (sometimes we will refer to S as the total spinning
of f ).

Lemma 3.4. Let f : Σ  ℝ3 be a complete, connected, non-flat, finitely branched minimal surface with branch
point setBΣ ⊂ Σ.
(i) If f is stable, then Σ is non-orientable and f(BΣ) contains more than one point.
(ii) If Σ non-orientable with f(BΣ) consisting of at most one point inℝ3, then I(f) ≥ 2; in particular, if Σ has exactly

one branch point, then I(f) ≥ 2.

Proof. Assume that f : Σ  ℝ3 is stable. Also, suppose for the moment that Σ is orientable. Let g : Σ → 𝕊2 be
the Gauss map extended to the conformal compactification Σ = Σ ∪ E of Σ obtained after adding the set E of

its ends. Let C ⊂ Σ be the set of branch points of g. Let Ω(ε) ⊂ 𝕊2 be the complement of the union of a pair-

wise disjoint collection of open ε-disks around the points in the finite set g(E ∪BΣ ∪ C). For ε > 0 sufficiently
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small, the Schrödinger operator Δ + 2 has negative first Dirichlet eigenvalue on Ω(ε), where Δ is the spheri-

cal Laplacian. Since g|g−1(Ω(ε)) : g−1(Ω(ε))→ Ω(ε) is a finite covering, each component of g−1(Ω(ε)) is a smooth,
compact unstable domain. This contradicts that f is stable, which proves that Σ is non-orientable.

Since Σ is non-orientable and f is stable, themain result in [24] implies thatBΣ ̸= 0. To finish the proof of (i),
suppose that f(BΣ) is a single point inℝ3 (say the origin) and we will find a contradiction. The area density of Σ
at the origin is at least B(Σ) + l, where B(Σ) is the total branching order of f and l is the cardinality ofBΣ . Using

the monotonicity formula for minimal surfaces, the total spinning S of the ends of f is at least B(Σ) + l + 1.
Using (3.4), since g(Σ̃) ≥ 0 and e ≥ 1, we have

3I(f) ≥ g(Σ̃) + 2
e
∑
j=1
(dj + 1) − 2B(Σ) − 4

≥ 2S + 2e − 2B(Σ) − 4
≥ 2S − 2B(Σ) − 2
≥ 2l
> 0,

(3.6)

which contradicts that Σ is stable and proves (i) of the lemma.

To prove (ii), assume that Σ is non-orientable and f(BΣ) contains at most one point. If f is unbranched,
then, by [6, Theorem 1.8], the index of f is at least 2. So assume that BΣ ̸= 0. If I(f) = 1, then the calculation

in (3.6) implies l = e = 1, and the total spinning S of the ends of f is B(Σ) + l + 1 = B(Σ) + 2. But this implies that
S − B(Σ) is even and e is odd, which contradicts the last statement of Proposition 3.2. Hence, by (i) of the lemma,
I(f) ≥ 2.

4 Almost flat annular H-multi-graphs of bounded multiplicity

For the next lemma, we will need the following notation. For 0 < R1 < R2, we let

𝔸(R1 , R2) = {x ∈ ℝ3 | R1 ≤ |x| ≤ R2}.

Observe that the statement of the next lemma is invariant under homotheties centered at the origin.

Lemma 4.1. Given τ ∈ (0, π/10] and L0 > 0, there exists α1 ∈ (0, τ] such that the following property holds. Take
α ∈ (0, α1], 0 < R1 ≤ R2/2, and a compact immersed annulus Σ ⊂ 𝔸(R1 , R2) with ∂Σ ⊂ ∂𝔸(R1 , R2), satisfying the
following conditions:
(B1) Σ makes an angle greater than or equal to π

2
− α with every sphere 𝕊2(r) of radius r ∈ [R1 , R2] centered at

the origin.
(B2) Given R ∈ [R1 , R2/2], the image of Σ ∩𝔸(R, 2R) through the Gauss map of Σ is contained in the closed

spherical neighborhood of radius α centered at some point v(R) ∈ 𝕊2(1).
(B3) Length(Σ ∩ 𝕊2(R1)) < L0R1.
Then there existsm ∈ ℕ,m ≤ L0+1

2π , such that, for any R ∈ [R1 , R2/2], Σ ∩𝔸(R, 2R) consists of anm-valued graph
with respect to its projection to the plane v(R)⊥ orthogonal to v(R), of a function u that satisfies

|u(x)|
|x| + |∇u|(x) <

τ
2

at every point x in its domain of definition. Furthermore, for each R ∈ [R1 , R2], the following properties hold:
(C1) |Length(Σ ∩ 𝕊2(R)) − 2πmR| < f1(α)R, where f1 = f1(α) ∈ (0, τ] is a function that tends to zero as α → 0.
(C2) The intrinsic distance between the two boundary components of Σ ∩𝔸(R1 , R) is at most√1 + τ2/4(R − R1).
(C3) |Area(Σ ∩𝔸(R1 , R)) − πm(R2 − R21)| < f2(α)(R − R1), where f2 = f2(α) ∈ (0, τ] is a function that tends to

zero as α → 0.
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Proof. The first step in the proof consists of showing that, for τ ∈ (0, π/10] and L0 > 0 given, assertions (C1)
and (C2) hold in the range R ∈ [R1 , 2R1] for some choice ofm ∈ ℕ,m ≤ L0+1

2π , depending on a compact immersed

annulus Σ satisfying (B1)–(B3) provided that 0 < α ≤ α1 and α1 is sufficiently small.

Observe that if 0 < α ≤ α1 < π/4, condition (B2) above for R = R1 implies that Σ ∩𝔸(R1 , 2R1) is a multi-
graph with respect to its projection to the plane v(R1)⊥. We call u the related graphing function, and m ∈ ℕ
its multiplicity. Taking α1 sufficiently small, (B2) guarantees that |∇u| can be made arbitrarily small. By condi-
tion (B1), the almost orthogonality of Σ with spheres 𝕊2(R) with R ∈ [R1 , 2R1] implies that if α1 is sufficiently

small, we have that
|u(x)|
|x| can also be made arbitrarily small. In particular, we have that

|u(x)|
|x|
+ |∇u|(x) < τ

2

in Σ ∩𝔸(R1 , 2R1) if α1 is sufficiently small in terms of τ. Similar arguments show that the length of Σ ∩ 𝕊2(R1)
differs from 2πmR1 by a function of α that tends to zero as α → 0 (in particular, 2πm ≤ L0 + 1 provided that α1
is sufficiently small). Thus (C1) holds in [R1 , 2R1] for some function f1(α) that tends to zero as α → 0.

Regarding the validity of (C2) in the range [R1 , 2R1], given R ∈ [R1 , 2R1] and given a point x ∈ Σ ∩ 𝕊2(R1),
let Πx ⊂ ℝ3 be the plane passing through the origin that contains both v(R1) and x; without loss of generality,
assume Πx is the (x1 , x3)-plane and v(R1) = (0, 0, 1). Let Γ be the component of Σ ∩𝔸(R1 , R) ∩ Πx that passes

through x and note that Γ is a smooth embedded arc that can be parameterized using polar coordinates in Πx
by Γ(r) = (r, θ(r)), r ∈ [R1 , R]. Next assume that α1 is chosen less than or equal to arcsin(τ/2) and we will prove
that (C2) holds. Property (B1) implies that the angle between Γ

(r) and the radial outward pointing unit vector
field ∂r is at most α1, which implies

|Γ(r)| ≤ √1 + sin2(α1) ≤ √1 +
τ2
4
.

Therefore, (C2) holds in [R1 , 2R1].
The second step in the proof consists of demonstrating that (C1) and (C2) hold for every R ∈ [R1 , R2]. To see

this, it suffices to iterate a finite number of times the above arguments replacing R1 by 2R1, 4R1 , . . . , 2kR1, where
k ∈ ℕ is the first positive integer such that 2kR1 > R2/2. Then we conclude that (C1) and (C2) hold in [R1 , R2/2],
and by iterating once again, replacing R1 by R2/2, we get that (C1) and (C2) hold in [R1 , R2].

Finally, (C3) holds for every R ∈ [R1 , R2] by (C1) and the co-area formula.

Remark 4.2. Since the statement of Lemma 4.1 is invariant under rescalings of the ambientmetric, we conclude
that the last lemmaholds ifwe replace the ambient spaceℝ3 by a sufficiently small closed geodesic ball BX(x, R2)
centered at any point x ∈ X of radius R2 ∈ (0, ε0/2) (using harmonic coordinates, see Definition 2.2 and recall
that ε0 > 0 is a lower bound for Inj(X)) in the Riemannian 3-manifold X, with the following changes:
(D1) We replace the notion of Gauss map in hypothesis (B2) of Lemma 4.1 by parallel translation of the unit

normal vector to Σ at a point q ∈ Σ ∩ BX(x, R2) along the corresponding radial geodesic arc joining the
point x to q.

(D2) We replace the upper bound in conclusion (C2) of Lemma 4.1 by √1 + τ2/3 times the extrinsic distance
in X between the two boundary components of [BX(x, R2) \ BX(x, R1)] (here 0 < R1 ≤ R2/2).

Definition 4.3. Fix τ ∈ (0, π/10]. Let δ2 ∈ (0, ε0] be such that Remark 4.2 holds for any choice of extrinsic radii
R1 , R2 with 0 < R1 ≤ R2/2 < R2 ≤ δ2 in X. Fix such R1 , R2, choose τ1 ∈ (0, τ], and let m ∈ ℕ be an integer to be

fixed later. Given x ∈ X, we consider the collection

G(x; R1 , R2 , τ1 ,m)

of multi-graphical (immersed) H-annuli G ⊂ BX(x, R2) \BX(x, R1) (here H ∈ [0, H0]) with multiplicity m(G)≤m,
such that G is “almost flat” in terms of τ1, in the sense that G satisfies the following properties:

(E1) G is an immersed H-annulus in X, whose boundary ∂G ⊂ ∂BX(x, R1) ∪ ∂BX(x, R2) consists of two closed
curves, one on each ambient geodesic sphere, and G is the graph over its projection to a “planar” disk

P = φx(𝔻2R2 ) (this map φx gives harmonic coordinates around x), where𝔻2R2 ⊂ TxX is a planar disk of

radius 2R2 centered at the origin in TxX, of a function u defined on a domain Ω of them(G)-sheeted cover
of the annulus𝔻2R2 \ {0}.
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(E2) Given y in P, denote by |y| the distance to the point x in the ambient metric of X. Then the graphing

function that defines G satisfies

|u(y)|
|y|
+ |∇u|(y) ≤ τ1 in Ω.

Lemma 4.4. In the situation of Definition 4.3, there exist δ3 ∈ (0, δ2] and τ1 ∈ (0, τ] such that, for every r ∈ (0, δ3]
and G ∈ G(x; r/2, r, τ1 ,m), the geodesic curvature function of G ∩ BX(x, 34 r) along its intersectionwith ∂BX(x,

3

4
r)

is everywhere positive and its integral, the total geodesic curvature κ(G), satisfies

|κ(G) − 2πm(G)| ≤ τ
m
. (4.1)

Furthermore, every such graph G is stable.

Proof. Suppose that Gn ∈ G(x; rn/2, rn , τn ,m) has (rn , τn)→ (0, 0). Since τn → 0, the image of the “Gauss map”

of Gn (in the sense of Remark 4.2 (D1)) is arbitrarily small. After rescaling the ambient metric on X by 1/rn ,
we find related multi-graphs G∗n = 1

rn Gn with constant mean curvature (which is arbitrarily small if n is taken
sufficiently large). For n sufficiently large, G∗n is stable (and Gn as well). This implies that there exist δ3 ∈ (0, δ2]
and τ

1
∈ (0, τ] such that, for every r ∈ (0, δ

3
] and G ∈ G(x; r/2, r, τ

1
,m), G is stable.

From this point on, we will additionally assume that rn ∈ (0, δ3] and τn ∈ (0, τ1], while (4.1) fails to hold
for each n. Curvature estimates for stable constant mean curvature surfaces then imply that there exists C > 0
(independent of n) such that the norm of the second fundamental form of the intersection of G∗n with A∗n( 58 ,

7

8
)

is less than C for all n, where

A∗n(
5

8
,
7

8
) :=

1

rn
[BX(x,

7

8
rn) \ BX(x,

5

8
rn)].

Since τn → 0, we conclude that the G∗n ∩ A∗n( 58 ,
7

8
) converge as n →∞ to a flat multi-graph G∗ in ℝ3 over the

annulus of inner radius
5

8
and outer radius

7

8
(and the convergence G∗n → G∗ is smooth in the interior of G∗),

with some multiplicity m∗ at most m (thus the multiplicity m(Gn) of Gn equals m∗ for n large enough). Clearly,
the total geodesic curvature of G∗ along its intersectionwith the sphere ∂𝔹(3/4) is 2πm∗. Since the convergence
of the G∗n to G∗ is smooth in Int(G∗), we have that κ(Gn) = κ(G∗n) converges as n →∞ to 2πm∗, which equals
2πm(Gn) for n large enough. Since

τ
m > 0, inequality (4.1) holds for n large enough, which is contrary to our

hypothesis, and so the lemma is proved.

Definition 4.5. Fix L0 > 0 andm ∈ ℕ,m ≤ L0+1
2π . Let α1 = α1(L0) ∈ (0, τ] be the value given by Lemma 4.1 (recall

that τ ∈ (0, π/10] is fixed). Choose δ3 ∈ (0, δ2] and τ1 ∈ (0, α1] given by Lemma 4.4 such that (4.1) holds for every
G ∈ G(x; δ3/2, δ3 , τ1 ,m).

Observe that both δ3 and τ1 depend on the values of L0 andm. We will describe later how to choose L0 andm in

order to give rise to δ3 and τ1 by Lemma 4.4, in order to define the values of δ1 and δ that appear in Theorem 1.2.

5 The proof of Structure Theorem 1.2

Consider numbers ε0 > 0, K0 , H0 , A0 ∈ [0,∞), I ∈ ℕ ∪ {0}, τ ∈ (0, π/10], and let Λ = Λ(I, H0 , ε0 , A0 , K0) be the
space of CMC immersions given in Definition 1.1.

5.1 The case of uniformly bounded second fundamental form and the proof of
Theorem 1.2 (V) in the general case

Suppose that the norms of the second fundamental forms of all immersions F ∈ Λ are bounded by a constant A1
independent of F (clearly, one can assume A1 ≥ A0). In this case, Theorem 1.2 holds with the choices k = 0 (there
are no radii rF(i) or components Δi), 2δ1 = δ = δ3 (this δ3 is given by Definition 4.5 for (L0 ,m) = (2π + 1, 1)) and
M = M̃, because of the following reasoning.
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(F1) Assertions (i), (ii), (I), (II), and (IV) of Theorem 1.2 are vacuous.

(F2) Theorem 1.2 (iii) holds by assumption and (III) reduces to g(M) = g(M̃).
(F3) We next prove that Theorem 1.2 (V) holds without the assumption that the norms of the second funda-

mental forms of all immersions F ∈ Λ are bounded by a constant A1 independent of F; this will complete
the proof of (V) in the general case. In order to find the constant C = C(ε0 , K0 , H0) > 0 that satisfies (V),
we distinguish two cases.

(F3.A) First, suppose that ∂M ̸= 0. By (A2) in the definition of Λ, there exists a point p0 ∈ Int(M) such that
BM(p0 , ε0) is contained in the interior of M. By inequality (B.5) in Proposition B.3,

Area(M) ≥ Area(BM(p0 , ε0)) ≥ CAε0 , (5.1)

where the constants

r2 = r2(ε0 , K0 , H0) > 0, CA = min{ε0 ,
r2
2

ε0
} > 0

are given by Proposition B.3. Given any y ∈ M such that dM(y, ∂M) ≥ ε0, then (B.4) in Proposi-

tion B.3 gives

Area(M) ≥ Area(BM(y, dM(y, ∂M))) ≥ CA dM(y, ∂M). (5.2)

Define C0 = min{CAε0 , CA} > 0, which only depends on ε0 , K0 , H0 but not on I. We claim that

Area(M) ≥ C0max{1, Radius(M)}, (5.3)

which proves Theorem 1.2 (V), in this case (F3.A): if Radius(M) ≤ 1, then our claim follows

from (5.1). If Radius(M) > 1, then our claim follows from (5.2) since

Radius(M) = sup{dM(y, ∂M) | dM(y, ∂M) ≥ ε0}.

(F3.B) Next assume that ∂M = 0. Since the sectional curvature of X is bounded from above by K0, the
Ricci curvature of X is bounded from above by 2K0. It follows that there exists an

ε1 = ε1(K0 , H0) > 0

such that, for any point x ∈ X, the geodesic spheres of radius at most ε1 are embedded with mean
curvature greater than H0. By the mean curvature comparison principle, for any point p ∈ M,

there is a least one other point q ∈ M such that the extrinsic distance satisfies dX(F(p), F(q)) > ε1,
and hence the intrinsic distance satisfies dM(p, q) > ε1. Define

C1A = min{ε1 ,
r2
2

ε1
} > 0,

where r2 = r2(ε0 , K0 , H0) > 0 is given by Proposition B.3, and let

C1 = min{C1Aε1 , C
1

A}.

Observe that C1A , C1 depend only on ε0 , K0 , H0 but not on I. We claim that

Area(M) ≥ C1max{1, Diameter(M)}, (5.4)

which proves Theorem 1.2 (V), in this case (F3.B).

To prove that (5.4) holds, first note that if Diameter(M) =∞, then M is non-compact and it has

infinite area by Corollary B.2.

Assume now that Diameter(M) <∞. Since M is compact, the Hopf–Rinow theorem ensures that

there exist points p, q ∈ M such that Diameter(M) = dM(p, q). Notice that for n ∈ ℕ such that

Diameter(M) > 1

n , the triangle inequality implies

Diameter(M) − 1n = Radius(M \ BM(q,
1

n )),
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and so

Diameter(M) = lim
n→∞

Radius(M \ BM(q,
1

n ))
. (5.5)

By our choice of ε1 and for n sufficiently large, the point p ∈ M \ BM(q, 1n ) is at distance at

least ε1 from ∂(M \ BM(q, 1n )), and so in this case the restriction of the immersion F : M  X to

M \ BM(q, 1n ) satisfies the hypotheses of Proposition B.3. Therefore, by Proposition B.3 and (5.3)

with C0 replaced by C1,

Area(M \ BM(q,
1

n )) ≥ C1max{1, Radius(M \ BM(q,
1

n ))}. (5.6)

Hence,

Area(M) = lim
n→∞

Area(M \ BM(q,
1

n ))

≥ lim
n→∞

C1max{1, Radius(M \ BM(q,
1

n ))} (by (5.6))

= C1max{1, Diameter(M)} (by (5.5)),

which proves that (5.4) holds.

From (F3.A) and (F3.B), we deduce that Theorem 1.2 (V) holds for the value C = min{C0 , C1}, regardless of
whether or not the norms of the second fundamental forms of all immersions F ∈ Λ are bounded.

In the sequel, we will assume that there is no uniform bound for the norms of the second fundamental

forms of surfaces in Λ.

5.2 Stable pieces of H-surfaces in Λ and their curvature estimate

By Theorem A.1 and with the notation there, there exists a universal constant Cs > 0 such that, given a stable
H-immersion F : M  X,

|AM |(p) ≤
Cs

min{ε0 , dM(p, ∂M), π
2√K0

}
for all p ∈ M. (5.7)

Define Ĉs : (0, ε0]→ (0,∞) by

Ĉs(ε) = 1 +max{A0 ,
2Cs

min{ε, π
√K0

}
}, ε ∈ (0, ε0]. (5.8)

It follows that if F : M  X lies in Λ = Λ(I, H0 , ε0 , A0 , K0) and p ∈ M satisfies |AM |(p) > Ĉs(ε), then

p ∈ U(∂M, ε0 ,∞),

and the intrinsic ball centered at p of radius ε/2 is unstable.

Lemma 5.1. Let F : M  X be an element in Λ and let ε ∈ (0, ε0] be such that sup|AM | > Ĉs(ε). Then there exists
a finite subset {q1 , . . . , qk} ⊂ U(∂M, ε0 ,∞) with 1 ≤ k = k(F) ≤ I such that the following assertions hold:
(i) |AM | achieves its maximum in M at q1, and for i = 2, . . . , k, |AM | achieves its maximum in

M \ [BM(q1 , ε) ∪ ⋅ ⋅ ⋅ ∪ BM(qi−1 , ε)] at qi .

(ii) For each i = 1, . . . , k, |AM |(qi) > Ĉs(ε), and so the pairwise disjoint intrinsic balls BM(qi , ε/2) are unstable.
(iii) |AM | ≤ Ĉs(ε) in M \ [BM(q1 , ε) ∪ ⋅ ⋅ ⋅ ∪ BM(qk , ε)], and so |AM | is bounded on M.

Proof. Since sup|AM | > Ĉs(ε), we can find q
1
∈ M such that |AM |(q1) > Ĉs(ε). In particular, the intrinsic disk

BM(q1 , ε/2) is unstable. We now distinguish two possibilities: if |AM | ≤ Ĉs(ε) on M \ BM(q1 , ε), then |AM | is
globally bounded on M. Otherwise, there exists q

2
∈ M \ BM(q1 , ε) such that |AM |(q2) > Ĉs(ε). In particular,
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BM(q2 , ε/2) is unstable. Observe that BM(q

1
, ε/2) and BM(q2 , ε/2) are disjoint. Again we discuss two possibili-

ties depending on whether or not |AM | ≤ Ĉs(ε) onM \ [BM(q1 , ε) ∪ BM(q

2
, ε)]. In the first case, |AM | is bounded

on M; in the second case, we repeat the argument of finding a point

q
3
∈ M \ [BM(q1 , ε) ∪ BM(q


2
, ε)]

such that |AM |(q3) > Ĉs(ε), BM(q

3
, ε/2) is unstable and the collection {BM(qi , ε/2) | i = 1, 2, 3} is pairwise dis-

joint. Since the index of F is atmost I, we cannot repeat this process of finding pairwise disjoint unstable domains
more than I times, say that we can do it k ≤ I times. Therefore, we conclude that |AM | ≤ Ĉs(ε) in

M \ [BM(q1 , ε) ∪ ⋅ ⋅ ⋅ ∪ BM(q

k , ε)];

in particular |AM | is bounded on M. We next replace q
1
by a maximum q1 of |AM | in M (which occurs in the

compact set BM(q1 , ε) ∪ ⋅ ⋅ ⋅ ∪ BM(q

k , ε)), q


2
by a maximum q2 of |AM | in

W1 = [BM(q1 , ε) ∪ ⋅ ⋅ ⋅ ∪ BM(q

k , ε)] \ BM(q1 , ε),

if |AM | restricted toW1 is greater than Ĉs(ε), and repeat the process to obtain a finite set of points {q1 , . . . , qk}.
Observe that the number k of these points cannot be greater than I. Now the lemma holds.

5.3 Strategy of the proof of Theorem 1.2

Given t ≥ Ĉs(ε0), let Λt be the subset of Λ consisting of those immersions F : M  X such that

sup{|AM |(p) | p ∈ M} > t.

Similar arguments to those in Section 5.1 show that Theorem 1.2 holds for immersions in Λ \ Λt , with the choices
k = 0, A1 = t, 2δ1 = δ = δ3 given by Definition 4.5 for (L0 ,m) = (2π + 1, 1) and M = M̃. So the theorem will be

proven if we show that it holds for immersions in Λt for some large t ≥ Ĉs(ε0).
Observe that if I = 0, then Ĉs(ε0) is a uniform bound for the norm of the second fundamental forms of

surfaces in Λ, and the theorem holds in this case.

The strategy to prove the theorem consists of proving the following two steps.

Step 1. Assertions (i)–(iii) of the theorem hold. This will be proven by induction on I, by analyzing local pictures
of a sequence of immersions {Fn : Mn  Xn}n ⊂ Λ whose second fundamental forms blow up as n →∞. We

will do this in Sections 5.4 and 5.5.

Step 2. If (i)–(iii) of the theorem hold, then (I)–(IV) also hold for a possibly larger choice of A1 (recall that we
proved Theorem 1.2 (V) in (F3) of Section 5.1). For this part, we will verify that the induction argument in step 1

can be carried out so that (I)–(IV) hold for Fn with n large enough. This step will be done in Section 5.7, which
in turn needs some results in Section 5.6.

Our next goal is to complete step 1. Although not strictly needed in the induction process, we first explain

the arguments needed to prove the case I = 1 since they will help clarify why (i)–(iii) of the theorem hold for

I + 1 provided that they hold for I.

5.4 Proofs of Theorem 1.2 (i)–(iii) for I = 1

Assume I = 1. By previous arguments, we can assume that for each n > Ĉs(ε0) there exists an Hn-immersion

Fn : Mn  Xn in Λ such that sup|AMn | > n with Hn ∈ [0, H0]. We will next describe the local picture of any such

sequence {Fn}n around points of concentrated norm of their second fundamental forms. As I = 1, Lemma 5.1
gives that for each n > Ĉs(ε0) there is a point p1(n) ∈ U(∂Mn , ε0 ,∞) where |AMn | achieves its maximum and

|AMn | ≤ Ĉs(ε0) in Mn \ BMn (p1(n), ε0).
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5.4.1 Local pictures around points where |AM| > t, for t sufficiently large

Next we will adapt some arguments in [20] to this immersed setting. Given n > Ĉs(ε0), observe that the (unique)
maximum of the function

hn : BMn (p1(n), ε0)→ [0,∞)

given by

hn = |AMn | dMn ( ⋅ , ∂BMn (p1(n), ε0)) (5.9)

is attained at p1(n). Define λn = |AMn |(p1(n)). Following the arguments at the beginning of the proof of [20, Theo-
rem 1], we have the following assertions:

(G1) λn tends to infinity as n →∞.
(G2) For r > 0 fixed, the sequence of extrinsic balls {λnBXn (Fn(p1(n)), r/λn)}n converges C1,α , α ∈ (0, 1), as

n →∞ to the open ball 𝔹(r) of radius r centered at the origin 0⃗ in ℝ3 with its usual metric, where we
have used harmonic coordinates in Xn centered at p1(n) and identified p1(n) with 0⃗.

(G3) The intrinsic balls λnBMn (p1(n), r/λn) can be considered to be a sequence of pointed immersions with

constant mean curvature Hn/λn (observe that Hn/λn is arbitrarily small for n sufficiently large) and non-

empty topological boundary.

(G4) For n large, the immersed surface λnBMn (p1(n), r/λn) passes through 0⃗ with norm of its second fun-

damental form equal to 1 at this point. Furthermore, the norms of the second fundamental forms of

λnBMn (p1(n), r/λn) are everywhere less than or equal to 1.
(G5) After extracting a subsequence, the λnBMn (p1(n), r/λn) converge C1,α asmappings to a relatively compact

pointedminimal immersion fr : Σ(r)  𝔹(r) that passes through 0⃗, with boundedGaussian curvature and
index at most 1, |AΣ(r)|(0⃗) = 1 and |AΣ(r)| ≤ 1 on Σ(r).

(G6) Defining Σ = ⋃r≥1 Σ(r) and f : Σ  ℝ3 by f|Σ(r)= fr , we produce a complete pointed minimal immersion
with index at most 1, 0⃗ ∈ Σ, |AΣ|(0⃗) = 1 and |AΣ| ≤ 1 on Σ.

Since f is not flat at the origin, the index of f is 1. In this setting, López and Ros [14] proved that if Σ is

orientable, then f is either a catenoid or an Enneper minimal surface. On the other hand, [6, Theorem 1.8] gives

that Σ must be orientable.

We next show that Theorem 1.2 (i)–(iii) hold in this case I = 1with the choice k = 1. Observe that the multi-
plicity of the end of the Enneper surface is m = 3, and the total multiplicity of the ends of a catenoid is 2. This
motivates the choice of L0 in the next paragraph. We next explain how to choose the constants A1, δ1 and δ that
appear in the main statement of Theorem 1.2.

Let α1 = α1(τ) ∈ (0, τ] be the constant given by Lemma 4.1 for L0 = 6π + 1; observe that the length of the
intersection of a catenoid or an Enneper minimal surface with a sphere 𝕊2(R) of sufficiently large radius R is

less than L0R.
We can also pick a smallest R > 0 (only depending on τ) so that the following properties hold:

(H0) The index of f(Σ) ∩ 𝔹(R/3) is 1.
(H1) f(Σ) \ 𝔹(R/3) consists of one or two multi-graphs over its projection to a plane Π ⊂ ℝ3 that passes

though 0⃗; here Π is the limit tangent plane at infinity for f .
(H2) The image through the Gauss map of f of each component Cj of f(Σ) \ 𝔹(R/3) is contained in the spher-

ical neighborhood of radius α1/2 centered at a point v ∈ 𝕊2(1) perpendicular to Π (thus, Cj satisfies
condition (B2) of Lemma 4.1 with R1 = R/3 and α = α1/2).

(H3) f(Σ)makes an angle greater than π
2
− α1

2
with every sphere 𝕊2(r) of radius r ≥ R/3 centered at the origin

(so, Cj satisfies condition (B1) of Lemma 4.1 with R1 = R/3 and α = α1/2).
(H4) The length of each component of the intersection of f(Σ)with any sphere 𝕊2(r) centered at the origin and

radius r ≥ R/3 is less than (L0 − 1

2
)r (hence each component of f(Σ) \ 𝔹(R/3) satisfies condition (B3) of

Lemma 4.1 with R1 = R/3).
Applying the estimate (B.7) in Proposition B.4 with I = 1 and B = 0, we deduce the following assertion:
(H5) By Proposition B.4 (ii), the intrinsic distance in the pullback metric by f from 0⃗ ∈ Σ to any point in the

boundary of f −1(𝔹(R/2)) is at most Ĉ R
2
, where Ĉ is defined there. Observe that (B.6) is not enough to

estimate this intrinsic distance, since it only gives that the intrinsic distance in the pullback metric by f
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from 0⃗ ∈ Σ to the boundary of f −1(𝔹(R/2)) is at most

L̂ R
2
=
√3
2
R.

Definition 5.2. Given r ∈ [R/2, 4R], we denote by Δn(r) ⊂ Mn the connected component of

(λnFn)−1(λnBXn(Fn(p1(n)),
r
λn
))

that contains p1(n).

Properties (H0)–(H5) and the convergence in (G5)–(G6) imply that, for λn large (in particular, for n sufficiently

large), the immersion λnFn satisfies the following properties:
(I0) The index of (λnFn)|Δn(R/2) equals 1.
(I1) (λnFn)(Δn(4R) \ Δn(R/2)) consists of one or twomulti-graphs over their projections toΠ.We let G̃n denote

any of these multi-graphs inside (λnFn)(Δn(4R) \ Δn(R/2)).
(I2) The image of G̃n through the “Gauss map” of λnFn (defined through ambient parallel translation, see

Remark 4.2) is contained in the spherical neighborhood of radius α1 centered at v (here we have identi-
fied ℝ3 with the tangent space to λnXn at Fn(p1(n))).

(I3) G̃n makes an angle greater than
π
2
− α1 with every geodesic sphere S̃(r) in λnXn centered at Fn(p1(n)) of

radius r ∈ [R/2, 4R].
(I4) Length[G̃n ∩ S̃(R/2)] < L0R/2.
(I5) The intrinsic distance in the pullback metric by λnFn on Mn , from p1(n) to any point in the boundary of

Δn(R/2), is at most (Ĉ/2 + 1)R.
Back in the original scale, observe that

Δn(r) ⊂ F−1n (BX(Fn(p1(n)),
r
λn
)) for any r ∈ [R

2
, 4R],

and the following properties hold for n sufficiently large:

(J0) The index of Fn|Δn(R/2) equals 1.
(J1) Fn(Δn(4R) \ Δn(R/2)) is a union of one or two multi-graphs over their projections to Π. We let Gn denote

any of these multi-graphs.

(J2) The image of Gn through the “Gauss map” of Fn is contained in the spherical neighborhood of radius α1
centered at v.

(J3) Gn makes an angle greater than
π
2
− α1 with every geodesic sphere S(r) in Xn centered at Fn(p1(n)) of

radius

r ∈ [ R
2λn

,
4R
λn
].

(J4) It holds

Length[Gn ∩ S(
R
2λn
)] < L0

R
2λn

.

(J5) The intrinsic distance in the pullback metric by Fn on Mn , from p1(n) to any point in the boundary of

Δn(R/2), is at most 1

λn (Ĉ/2 + 1)R.
Therefore, given

r ∈ [ R
2λn

,
2R
λn
],

then

Gn ∩ [BX(Fn(p1(n)), 2r) \ BX(Fn(p1(n)), r)]

satisfies hypotheses (B1)–(B3) of Lemma 4.1 with the choices L0 = 6π + 1, inner radius r, outer radius 2r, and
α = α1. Our next step will be demonstrating that the outer radius, for which the hypotheses of Lemma 4.1 hold
for Fn , is bounded from below by some positive constant, independent of the sequence.
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5.4.2 Local pictures have a uniform size

Proposition 5.3. There exists δ4 ∈ (0, δ3] (this δ3 ∈ (0, δ2] was given in Definition 4.5 for the choices L0 = 6π + 1
andm = 3) such that the hypotheses of Lemma 4.1 hold for annular enlargements of the multi-graphs Gn between
the geodesic spheres in X centered at Fn(p1(n)) of radii R1 = R

2λn and R2 = δ4, and with the choice α = τ1 for
hypotheses (B1) and (B2) (this τ1 ∈ (0, α1] was also introduced in Definition 4.5).

Proof. Define rn as the supremum of the extrinsic radii r ≥ 4R/λn such that annular enlargements of the Gn
satisfy conditions (B1)–(B3) of Lemma 4.1 for the choices L0 = 6π + 1, inner radius R1 = R

2λn , outer radius R2 = r,
and α = α1. We will prove the proposition by contradiction, so suppose rn → 0 as n →∞.

Rescale Fn by expanding the ambient metric of Xn by the factor 1/rn centered at Fn(p1(n)) and denote the
resulting sequence of rescaled immersions by

1

rn
Fn : Mn 

1

rn
Xn .

Our goal is to understand the limit of (a subsequence of) { 1rn Fn}n .
Notice that 4R ≤ λnrn must go to infinity as n →∞. Otherwise, 1

rn Fn is rescaled from Fn on the scale of the
second fundamental form, and in that case we have proved that the subsequential limit of the

1

rn Fn is a catenoid
or an Enneper minimal surface, each of whose ends satisfies Lemma 4.1 for every outer radius (see properties

(H1)–(H3) above), contradicting the definition as a supremum of rn .
As λnrn →∞, property (J0) implies that 1

rn Fn has index zero away from the origin for n large; more pre-
cisely, the following property holds:

(⬦) For any s > 0 and for every n ∈ ℕ sufficiently large (depending only on s), the portion of 1

rn Fn(Mn) outside
of the extrinsic ball of radius s centered at Fn(p1(n)) is stable.

By curvature estimates for stable H-surfaces, we deduce that the sequence { 1rn Fn}n has locally bounded second
fundamental form in ℝ3 \ {0⃗}.

Applying Lemma 4.1 (see also Remark 4.2) to
1

rn Fn with α = τ1, we conclude that, for n large, the image

of
1

rn Fn contains an immersed annulus Ωn( 12 , 1) in the annular region

𝔸(
1

2
, 1) = {x ∈ ℝ3


1

2
≤ |x| ≤ 1},

and Ωn( 12 , 1) is an m

-valued graph with respect to its projection to a plane v⊥

1
passing through the origin. The

multiplicitym of this graph does not depend on n after passing to a subsequence; in fact,m = 1 or 3. Similarly,
the plane v⊥

1
is independent of n. Observe that by definition of rn , either Ωn( 12 , 1) makes an angle of

π
2
− τ1

with 𝕊2(1) at some point of Ωn( 12 , 1) ∩ 𝕊
2(1), or the Gaussmap image of Ωn( 12 , 1) contains two points at spherical

distance τ1 apart.
After passing to a subsequence, Ωn( 12 , 1) converges smoothly as n →∞ to an immersedminimal annulus A

in 𝔸( 1
2
, 1) which is a multi-graph of multiplicity m with respect to v⊥

1
, and either A makes an angle of

π
2
− τ1

with𝕊2(1) or the Gaussmap image of A contains two points at spherical distance τ1 apart. In particular, A cannot
be contained in a plane passing through the origin.

Repeating the same reasoning in𝔸(2−k , 2−k+1) for every k ∈ ℕ and using a diagonal argument, we conclude
that (a subsequence of) the

1

rn Fn converge smoothly in𝔸(0, 1) = 𝔹(1) \ {0⃗} to an immersed minimal punctured
disk D∗ that has 0⃗ in its closure, such that A ⊂ D∗. As { 1rn Fn}n has locally bounded second fundamental form in

ℝ3 \ {0⃗}, (a subsequence of) the 1

rn Fn converge smoothly to aminimal immersion D̃ inℝ3 \ {0⃗} such that D∗ ⊂ D̃,
and D̃ is complete away from 0⃗, in the sense that divergent arcs in D̃ either have infinite length or diverge to 0⃗.

Clearly, D̃ has 0⃗ in its closure. Since
1

rn Fn is stable away from the origin, D̃ is stable. In this setting and when D̃
is two-sided, D̃ extends smoothly to a plane passing through 0⃗ (by [19, Lemma 3.3], see also [8]). This contradicts

the fact that A cannot be contained in a plane passing through the origin. In the case that D̃ is one-sided, we can

view D̃ as a branched stable minimal immersion with branch locus at the origin (with finite branching order);

in this setting, Lemma 3.4 (i) gives a contradiction. These contradictions finish the proof of Proposition 5.3.
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Definition 5.4. Consider the δ4 ∈ (0, δ3] given by Proposition 5.3. Then we define

δ := δ4
2
, δ1 =

δ
2
.

We will show that this is a valid choice for the δ1 and δ appearing in Theorem 1.2 in the case I = 1.

We finish this section by showing how to deduce Theorem 1.2 (i)–(iii) in this case of I = 1 (this is part of step 1
in our strategy of proof of Theorem 1.2 explained in Section 5.3). We first explain how to choose the value of

A1 ∈ [A0 ,∞) that appears in the main statement of the theorem. In Section 5.3, we saw that it suffices to prove

Theorem 1.2 (i)–(iii) for immersions in Λt for some large t ≥ Ĉs(δ1/2). Choose t > Ĉs(δ1/2) sufficiently large so

that the following assertions hold:

(K1) It holds

R
t (

Ĉ
2
+ 1) ≤

δ1
10

.

Recall that Rwas defined just before (H0)–(H5) only depending on τ, and Ĉwas given in Proposition B.4 (ii)
as a function of I, B, which in this case, where I = 1 and B = 0, gives Ĉ = 4√3 + 11

2
π; see also (H5).

(K2) For every (F : M  X) ∈ Λ10t , Lemma 5.1 applied to F for ε = ε0 implies that there exists a point

p1 ∈ U(∂M, ε0 ,∞)

such that

|AM |(p1) = max{|AM |(p) | p ∈ M},

and if t is sufficiently large, then the description in (J0)–(J5) holds for F with p1(n) and λn replaced by p1
and |AM |(p1), respectively.

Define A1 = t. Next we will prove Theorem 1.2 (i)–(iii) for immersions in Λt . Given (F : M  X) ∈ Λt ,
define rF(1) to be δ1, and Δ1 to be the component of F−1(BX(F(p1), rF(1)) that contains p1. Let SF( R2t ) denote the
extrinsic geodesic sphere in X centered at F(p1) with radius R

2t . Let q be a point in ∂Δ1. Then

dM(p1 , q) ≤ max

x∈∂Δ1∩F−1(SF ( R2t ))
dM(p1 , x) + dM(Δ1 ∩ F−1(SF(

R
2t ))

, q)

≤
R
t (

Ĉ
2
+ 1) + dM(Δ1 ∩ F−1(SF(

R
2t ))

, q) (by (J5), as |AM |(p1) ≥ t).

By properties (J2)–(J4) and by Proposition 5.3, we can apply Lemma 4.1 to each of the annular portions of Δ1

with the choices R1 = R
2t and R2 = rF(1); observe that

R
2t ≤

R
t (

Ĉ
2
+ 1) ≤

δ1
10
<
rF(1)
2

.

Using Lemma 4.1 (C2) (see also Remark 4.2 (D2)) in the second term of the right-hand side, we get

dM(p1 , q) ≤
R
t (

Ĉ
2
+ 1) +√1 +

τ2
3
(rF(1) −

R
2t )

<
δ1
10
+√1 +

τ2
3
rF(1) (by (K1))

= (
1

10
+√1 +

τ2
3
)rF(1).

Since τ ≤ π/10, we have dM(p1 , q) < 5

4
rF(1). This proves Theorem 1.2 (i) (a).

Assertion (i) (b) follows from the definition of Δ1. Observe that assertion (i) (c) is vacuous because k = 1.
Assertion (i) (d) holds because F ∈ Λ10t andA1 = t. Assertion (i) (e) follows from (J0) (see also (K2)),whichfinishes

the proof of Theorem 1.2 (i). Assertion (ii) follows from Lemma 4.1.
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Next we show (iii). Given q ∈ M̃ = M − Int(Δ1), let γ ⊂ M be an arc joining p1 with q. Let γ1 ⊂ γ be the small-
est subarc of γ that joins p1 with some point q1 ∈ ∂Δ1. By the definition of Δ1, F(q1) is at extrinsic distance rF(1)
from F(p1), and thus

Length(γ) ≥ Length(γ1) ≥ rF(1) = δ1

for every arc γ joining p1 with q. Therefore, dM(p1 , q) ≥ δ1. As q is any point in M̃, we conclude that

M̃ ⊂ M − BM(p1 , δ1).

Hence, Theorem 1.2 (iii) will be proved if we check that |AM | ≤ A1 inM − BM(p1 , δ1). Applying Lemma 5.1 (iii) to
ε = δ1, which is possible since δ1 ≤ ε0 and

sup|AM | ≥ t > Ĉs(
δ1
2
) ≥ Ĉs(δ1),

we conclude that |AM | ≤ Ĉs(δ1) in M − BM(p1 , δ1). Since Ĉs is non-increasing, we have

Ĉs(δ1) ≤ Ĉs(
δ1
2
) < t = A1 ,

and so Theorem 1.2 (iii) holds.

Thus, Theorem 1.2 (i)–(iii) hold in this case I = 1.

5.5 Proofs of Theorem 1.2 (i)–(iii) for I = I0 + 1

Assume that Theorem 1.2 (i)–(iii) hold for I = I0. We will prove that the same assertions hold for I = I0 + 1.
By the arguments in the first paragraph of Section 5.3, we can assume that for each n > Ĉs(ε0) there exists

an Hn-immersion Fn : Mn  Xn in Λ(I0 + 1, H0 , ε0 , A0 , K0) such that sup|AMn | > n. By Lemma 5.1, for each

n > Ĉs(ε0) there exists a finite set

{p1(n), . . . , pm(n)(n)} ⊂ U(∂Mn , ε0 ,∞), m(n) ≤ I0 + 1,

such that the following assertions hold:

(L1) |AMn | achieves its maximum in Mn at p1(n) and, for i = 2, . . . ,m(n), |AMn | achieves its maximum in

Mn \ [BMn (p1(n), ε0) ∪ ⋅ ⋅ ⋅ ∪ BMn (pi−1(n), ε0)]

at pi(n).
(L2) For each i = 1, . . . ,m(n), we have

|AMn |(pi(n)) > Ĉs(ε0),

and so the pairwise disjoint intrinsic balls BMn (pi(n), ε0/2) are unstable.
(L3) |AMn | ≤ Ĉs(ε0) in

Mn \ [BMn (p1(n), ε0) ∪ ⋅ ⋅ ⋅ ∪ BMn (pm(n)(n), ε0)].

5.5.1 Local pictures around points where |AM| > t, for t sufficiently large

Given n > Ĉs(ε0), consider the function hn : BMn (p1(n), ε0)→ [0,∞) given by (5.9). As in the case I = 1, themax-
imum of hn occurs at p1(n). Let λn = |AMn |(p1(n)). Then properties (G1)–(G6) hold with the only change in (G5)
(resp. in (G6)) that fr (resp. f ) has index at most I0 + 1. In the sequel, will use the same notation as in (G1)–(G6).

Unlike what we had in the case I = 1, we do not dispose of a classification result for the possible limit

minimal immersion f in this current setting. Still, we can estimate some aspects of its geometry. Observe that f
has finite total curvature, since it has finite index (see [9] for the orientable case, and see the last paragraph

of the proof of [24, Theorem 17] for the non-orientable case). Therefore, f is proper, and the domain Σ of f has
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finite genus and finitely many ends, each of which is mapped by f to a multi-graph over the exterior of a disk
in a plane ofℝ3 passing through the origin, with finite multiplicity. We will denote by e ≥ 1 the number of ends
of f , and by d1 , . . . , de ≥ 1 the multiplicities of these ends. Hence, ∑ej=1 dj is the total spinning of the ends. Also,
g(Σ) and I(f) will stand for the genus of Σ and the index of f , respectively.

Claim 5.5 (Lower bound for the total spinning plus the number of the ends of f ). It holds
e
∑
j=1
(dj + 1) ≥ 4. (5.10)

Proof. If all ends of f are embedded, then e ≥ 2 (as f is not flat) and dj = 1 for each j = 1, . . . , e. Thus,
e
∑
j=1
(dj + 1) = 2e ≥ 4.

If f has at least one non-embedded end, then the monotonicity formula for minimal surfaces implies that
the area growth of f at infinity is at least that of three planes (again because f is not flat). Therefore, in this case,
∑rj=1 dj ≥ 3 and the claim follows.

Claim 5.6 (Upper bound for the genus of Σ). If Σ is orientable, then 2g(Σ) ≤ 3I(f) − 3. If Σ is non-orientable, then
g(Σ̃) ≤ 3I(f) − 4, where g(Σ̃) is the genus of the orientable cover Σ̃ of Σ.

Proof. This follows directly from equations (3.4) and (5.10), after observing that the total branching order B(Σ)
of f is zero.

Claim 5.7 (Upper bound for the total spinning of f ).

2

e
∑
j=1

dj ≤ {
3I(f) + 3 if Σ is orientable,

3I(f) + 2 if Σ is non-orientable.

Proof. This follows directly from (3.4) since e ≥ 1 and g(Σ) ≥ 0 if Σ is orientable (resp. g(Σ̃) ≥ 0 if Σ is non-

orientable).

Recall that we have fixed τ ∈ (0, π/10]. Suppose α1 = α1(τ) ∈ (0, τ] is the constant given by Lemma 4.1 for

L0 = 3π(I0 + 2) + 1. Observe that the total length Lf (r) of the intersection of f(Σ) with a sphere 𝕊2(r) of
sufficiently large radius r is less than L0r; this follows since for r large, by Claim 5.7,

Lf (r)
r ∼ 2π

e
∑
j=1

dj ≤ π[3I(f) + 3] ≤ π[3(I0 + 1) + 3]. (5.11)

We can also pick a smallest R > 0 (only depending on τ) so that the following properties hold (compare with
properties (H0)–(H5) above):

(H0’) The index of f(Σ) ∩ 𝔹(R/3) is I(f).
(H1’) f(Σ) \ 𝔹(R/3) consists of e multi-graphs over their projections to planes Πj ⊂ ℝ3 passing though 0⃗,

j = 1, . . . , e.
(H2’) The image through the Gauss map of f of each component Cj of f(Σ) \ 𝔹(R/3) is contained in the spher-

ical neighborhood of radius α1/2 centered at a point vj ∈ 𝕊2(1) perpendicular to Πj (thus, Cj satisfies
Lemma 4.1 (B2) with R1 = R/3 and α = α1/2).

(H3’) f(Σ)makes an angle greater than π
2
− α1

2
with every sphere 𝕊2(r) of radius r ≥ R/3 centered at the origin

(so, Cj satisfies Lemma 4.1 (B1) with R1 = R/3 and α = α1/2).
(H4’) The total length of the intersection of f(Σ)with any sphere 𝕊2(r) centered at the origin and radius r ≥ R/3

is less than (L0 − 1

2
)r (hence Cj satisfies Lemma 4.1 (B3) with R1 = R/3).

Applying the last sentence in Proposition B.4 (ii) with I = I0 + 1 and B = 0, we deduce the following property:
(H5’) The intrinsic distance in the pullback metric by f from 0⃗ ∈ Σ to any point in the boundary of f −1(𝔹(R/2))

is at most a(I0)R, where

a(I0) =
Ĉ(I0 + 1, 0)

2
= √6(3I0 + 1)√I0 + 2 +

π
4
(6I0 + 11). (5.12)
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Given r ∈ [ R
2
, 4R], let Δn(r) be the domain insideMn given by Definition 5.2, related to the f, R above. Prop-

erties (H0’)–(H5’) imply that, for λn large, the immersion λnFn satisfies the following properties (compare with
properties (I0)–(I5) above):

(I0’) The index of (λnFn)|Δn(R/2) equals I(f).
(I1’) (λnFn)(Δn(4R) \ Δn(R/2)) can be considered to be a union of e multi-graphs over their projections to

the Πj , j = 1, . . . , e. We denote these multi-graphs by G̃n(1), . . . , G̃n(e).
(I2’) For j = 1, . . . , e, the image of G̃n(j) through the “Gauss map” of λnFn (defined through ambient parallel

translation, see Remark 4.2) is contained in the spherical neighborhood of radius α1 centered at vj (here
we have identified ℝ3 with the tangent space to λnX at Fn(p1(n))).

(I3’) G̃n(j)makes an angle greater than π
2
− α1 with every geodesic sphere S̃(r) in λnXn centered at Fn(p1(n))

of radius r ∈ [R/2, 4R].
(I4’) It holds

Length[G̃n(j) ∩ S̃(
R
2
)] < L0

R
2
.

(I5’) The intrinsic distance in the pullback metric by λnFn on Mn , from p1(n) to any point of the boundary of
Δn(R/2), is at most [a(I0) + 1]R.

Back in the original scale, we have that

Δn(r) ⊂ F−1n (BXn(Fn(p1(n)),
r
λn
)) for all r ∈ [R

2
, 4R],

and the following properties hold for n sufficiently large:

(J0’) The index of Fn|Δn(R/2) equals I(f).
(J1’) Fn(Δn(4R) \ Δn(R/2)) is a union of emulti-graphs over their projections to the Πj , j = 1, . . . , e. We denote

these multi-graphs by Gn(1), . . . , Gn(e).
(J2’) For j = 1, . . . , e, the image of Gn(j) through the “Gauss map” of Fn is contained in the spherical neighbor-

hood of radius α1 centered at vj .
(J3’) Gn(j)makes an angle greater than π

2
− α1 with every geodesic sphere S(r) in Xn centered at Fn(p1(n)) of

radius

r ∈ [ R
2λn

,
4R
λn
].

(J4’) It holds

Length[Gn(j) ∩ S(
R
2λn
)] < L0

R
2λn

.

(J5’) The intrinsic distance in the pullback metric by Fn on Mn , from p1(n) to any point of the boundary of
Δn(R/2) is at most R

λn [a(I0) + 1].
Therefore, given

r ∈ [ R
2λn

,
2R
λn
],

then

Gn(j) ∩ [BXn (Fn(p1(n)), 2r) \ BXn (Fn(p1(n)), r)]

satisfies the hypotheses (B1)–(B3) of Lemma 4.1 with the choices L0 = 3π(I0 + 2) + 1, inner extrinsic radius r,
outer extrinsic radius 2r, and α = α1.

5.5.2 How to proceed if the (first) local pictures fail to have a uniform size

Definition 5.8. Define rn as the supremumof the extrinsic radii r ≥ 4R/λn such that, for all j = 1, . . . , e, annular
enlargements Ĝn(j) of the Gn(j) satisfy conditions (B1)–(B3) of Lemma 4.1 for the choices L0 = 3π(I0 + 2) + 1,
inner extrinsic radius R1 = R

2λn , outer extrinsic radius R2 = rn , and α = α1; see Figure 3.
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0 R
2λn rn

multi-graphical structure in Ĝn(1), . . . , Ĝn(e)

Figure 3: Schematic representation of the extrinsic geometry of the immersion (Fn : Mn  Xn) ∈ Λ = Λ(I0 + 1, H0 , ε0 , A0 , K0) around
a point p1(n) where the maximum of |AMn | in Mn is achieved. Here, λn = |AMn |(p1(n)) tends to infinity and λnFn converges as n →∞ to
the complete minimal immersion f : Σ  ℝ3 with finite total curvature. Horizontal distances in the figure represent extrinsic distances
in Xn measured from Fn(p1(n)). For n large enough and in the range of extrinsic radii between R

2λn and rn ≥ 4R/λn , Fn consists of e
multi-graphical pieces Ĝn(1), . . . , Ĝn(e), where e is the number of ends of f .

Remark 5.9. (i) Unlike what happened in the case I = 1 (Section 5.4), we can no longer ensure that the outer
extrinsic radius rn is bounded from below by some positive constant independent of n (i.e., Proposition 5.3
does not necessarily hold in our setting). The reason for this difference is that in our current situation, the

estimate I(f) ≤ I0 + 1 is not necessarily an equality (as it was when I = 1), and thus, with the notation in the
proof of Proposition 5.3, we cannot ensure that if rn → 0 as n →∞, then 1

rn Fn has index zero away from
the origin for n large.

(ii) If rn → 0 as n →∞ and
1

rn Fn has index zero away from the origin for n large in the sense that property (⬦)
above holds, then the arguments in the proof of Proposition 5.3 lead to a contradiction. Hence we conclude

that one of the two following excluding possibilities holds:

(a) {rn}n is bounded away from zero, with this lower bound being independent of the sequence {Fn}n ⊂ Λ.
In this case, Proposition 5.3 holds, since now δ3 ∈ (0, δ2] is given by Definition 4.5 for the choices

L0 = 3π(I0 + 2) + 1 and m being 1 plus the integer part of
1

2
[3(I0 + 1) + 3]; see equation (5.11) which

estimates the total spinning of f by above, and see also Proposition 5.16 below. In this case, we can

apply Proposition 5.17 below to conclude the proofs of Theorem 1.2 (i)–(iii).

(b) There exists some sequence {Fn}n ⊂ Λ (with associated base points p1(n)) such that rn → 0 and
1

rn Fn
fails to have index zero away from the origin for n large, in the sense that property (⬦) above fails.

Assume that we are in case (ii) (B) above. Roughly speaking, we will show that the immersions
1

rn Fn con-

verge as n →∞ to a possibly finitely branched, complete minimal immersion f2 : Σ2  ℝ3 away from finitely

many points where curvature blows up. Furthermore, Σ2 is finitely connected and its Morse index is at most

(I0 + 1) − I(f1) ≤ I0. This compactness result is delicate and we will divide its proof into the following two steps:
(M1) Describe the behavior of the immersions

1

rn Fn near the origin as n →∞. We will do this in Lemmas 5.10

and 5.11.

(M2) Analyze the global convergence of the
1

rn Fn (after passing to a subsequence) to a complete, finitely

branched minimal immersion f2 : Σ2  ℝ3 with finite total curvature. We will do this in Proposition 5.13.

The proof of the next lemma follows easily from the behavior of the blow-down limit of any of the e ends of the
complete minimal immersion f = f1 : Σ  ℝ3 defined just after (L1)–(L3).

Lemma 5.10. Relabel as e1 = e the number of ends of f1. Suppose rn → 0 as n →∞. Then, after choosing a
subsequence, each of the finite number of extended and scaled multi-graphs

(
1

rn
Fn)
Ĝn(j)

,

considered to be a mapping on an open annulus, converges as n →∞ to a conformal minimal immersion of a
punctured disk

f2,j : 𝔻∗ = {z ∈ ℂ | 0 < |z| < 1}  ℝ3 ,

where j ∈ {1, . . . , e1} refers to the j-th end of f1, with f2,j(𝔻∗) ⊂ 𝔹(1) \ {0⃗}. Furthermore, for each such j, the
following assertions hold:
(i) f2,j extends analytically to a possibly branched minimal disk f 2,j : 𝔻 = 𝔻∗ ∪ {0}  ℝ3 with f 2,j(0) = 0⃗.
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(ii) The branching order of f
2,j at 0 is one less than the multiplicity of the associated sequence of multi-graphs

(
1

rn
Fn)
Ĝn(j)

.

Such multiplicity (which is independent of n large) coincides with the spinning of the associated j-th end of
f1 : Σ  ℝ3.

LetD = {D1 , . . . , De1 } be the set of parameter domains of the associated branchedminimal disks {f 2,1 , . . . , f 2,e1 }
given by Lemma 5.10 (i), and consider the map F∞ : ⋃D  𝔹(1) defined by

F∞|Di= f 2,i , i = 1, . . . , e1 .

Observe that⋃D (disjoint union) can be considered to be a smooth surface. Let S(0) ⊂ ⋃D be the finite set of

centers of the disks Di , i = 1, . . . , e1. Consider the quotient space D̂ of ⋃D where each of the elements in S(0)
identifies to one point that we denote by 0̂ ∈ D̂, and every other point of⋃D only identifies with itself. Let

π : ⋃D→ D̂

be the related quotient map, that is, π|S(0) is the constant map equal to 0̂, and the restriction of π to (⋃D) \ S(0)
is injective. After endowing D̂ with the quotient topology, D̂ is a path-connected topological space and

Ŝ(0) := π(S(0)) = {0̂}. (5.13)

Furthermore, D̂ \ Ŝ(0) is a smooth immersed surface. In what follows, we will at times consider the induced

well-defined continuous map F∞ : D̂  𝔹(1), which we denote in the same way.
The next statement can be viewed as a direct consequence of Lemma 5.10.

Lemma 5.11. In the above situation, the following properties hold:
(i) F∞ restricted to F−1∞ (𝔹(1) \ 𝔹( 12 )) consists of e1 multi-graphs.
(ii) The sequence of immersions 1

rn Fn restricted to the component Δ2,n ⊂ Mn of

(
1

rn
Fn)
−1
(B 1

rn Xn
(0⃗,

1

2
))

that contains p1(n), converges as n →∞ to F∞, where we consider F∞ : D̂  𝔹(1) to be defined on the
quotient space D̂.

(iii) The convergence in (ii) is smooth away from S(0), or from Ŝ(0) when we consider F∞ to be defined on D̂.

Lemma 5.11 describes the convergence of (a subsequence of) the
1

rn Fn in a neighborhood of Ŝ(0), to a family
F∞ : D̂  𝔹(1) of minimal disks branched at the origin, and finishes step (M1) above.

Step (M2) needs two ingredients, which are Lemma 5.12 and Proposition 5.13 below. The first one relies on

the validity of Theorem 1.2 for I = I0 (by the induction hypothesis), while in Proposition 5.13 we will construct
the complete, finitely branched minimal immersion f2 : Σ  ℝ3 of finite total Gaussian curvature, which is the
limit of a subsequence of the

1

rn Fn as a consequence of Lemma 5.12.
We remark that the surfaces Mn and the associated points p1(n) in the next theorem are not the same

surfaces and points that we have been using previously in this section with this notation; so the reader should

keep in mind this abuse of notation when reading the next result.

Lemma 5.12. Consider a sequence

(F̃n : Mn  X̃n) ∈ Λ(I0 , H0 , ε0 , A0 , K0)

such that the following properties hold:
(N1) {maxMn |AF̃n |}n is not bounded from above. In particular, after passing to a subsequence, we can assume

that there exists p1(n) ∈ Mn such that

max
Mn
|AF̃n | = |AF̃n |(p1(n)) > max{n, A1} for every n ∈ ℕ,

where A1 ∈ [A0 ,∞) is given in the statement of Theorem 1.2 for I = I0 (which can be applied by the induction
hypothesis); observe that the existence of p1(n) is guaranteed by Lemma 5.1.
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(N2) In harmonic coordinates centered at F̃n(p1(n)), and hence F̃n(p1(n)) = 0⃗ for all n ∈ ℕ, the metrics on X̃n
converge uniformly in the C0-norm to the flat metric on ℝ3, and the (constant) mean curvatures of the F̃n
converge to zero as n →∞.

Let Δ1(n) be the component of F̃−1n (BX̃n (F̃n(p1(n), rF̃n (1))) described in Theorem 1.2 (i) and let

Δ1(n,
2

3
) = Δ1(n) ∩ F̃−1n (BX̃n(F̃n(p1(n)),

2

3
rF̃n (1))).

Then, after replacing by a subsequence, the following assertions hold:
(i) {rF̃n (1)}n∈ℕ converges to a positive number r ∈ [δ1 ,

δ
2
], where δ1 , δ ∈ (0, ε02 ] are given by Theorem 1.2.

(ii) Let b be the number of boundary components of Δ1(n), which is independent of n. Then the b multi-graphs

F̃n(Δ1(n)) ∩ [BX̃n (F̂n(p1(n)), rF̃n (1)) \ BX̃n(F̂n(p1(n)),
1

2
rF̃n (1))]

described in Theorem 1.2 (ii) converge as n →∞ to b minimal multi-graphs in 𝔹(0⃗, r) \ 𝔹(0⃗, r/2), each of
which satisfies the same estimate (1.1) as the multi-graphs in the sequence that converge to it.

(iii) There exist J ∈ ℕ, J ≤ I0, ε1 ∈ (0, r), and a finite set

Q(n) = {q1(n) = p1(n), q2(n), . . . , qJ(n)} ⊂ BMn(p1(n),
2

3
r) for each n ∈ ℕ,

such that the following assertions hold:
(a) |AF̃n |(qi(n)) > max{n, A1} for all i = 1, . . . , J and for each n ∈ ℕ; compare to Theorem 1.2 (i) (d).
(b) Given i, j ∈ 1, . . . , J with i ̸= j, the intrinsic distance inMn between qi(n) and qj(n) is at least ε1; compare

to Theorem 1.2 (i) (c).
(c) Given s ∈ ℕ, {|AF̃n |}n is uniformly bounded in

BMn(p1(n),
2

3
r) \

J
⋃
i=1

BMn(qi(n),
ε1
3s )

;

compare to Theorem 1.2 (iii).
(d) There exist (not necessarily distinct) points x1 = 0⃗, x2 , . . . , xJ ∈ 𝔹(0⃗, 23 r) (this is the ball inℝ

3 with its flat
metric) such that, when viewed in harmonic coordinates in X̃n centered at p1(n), the points F̃n(qi(n))
converge as n →∞ to xi , for each i = 1, . . . , J.

(iv) For s ∈ ℕ large and fixed, and for each i ∈ {1, . . . , J}, there exist δi(s), δi(1, s), ri(n, s) with

0 < δi(1, s) ≤ ri(n, s) ≤
δi(s)
2
< δi(s) <

2ε1
3s

such that the following hold. Let Ai(n, s) be the component of F̃−1n (BX̃n (F̃n(qi(n)), ri(n, s))) that contains
qi(n). Then there exists s0 ∈ ℕ such that for each integer s ≥ s0, there exists N(s) ∈ ℕ so that for n ≥ N(s)
the following assertions hold:
(a) The positive numbers ri(n, s) converge as n →∞ to some ri(s) ∈ [δi(1, s), δi(s)/2].
(b) Ai(n, s) is compact with smooth non-empty boundary and

F̃n(∂Ai(n, s)) ⊂ ∂BX̃n (F̃n(qi(n)), ri(n, s));

compare to Theorem 1.2 (i) (b).
(c) The number ẽi ∈ ℕ of boundary components of Ai(n, s) is independent of n, s, and the restriction of

F̃n to an annular neighborhood of each boundary component of Ai(n, s) is a multi-graph of positive
integer multiplicity mh,i independent of n, s (here h ∈ {1, . . . , ẽi}), whose related graphing function
u = un,s satisfies inequality (1.1) for n, s sufficiently large, where x expresses harmonic coordinates in
BX̃n (F̃n(qi(n)),

ε1
2
); compare to Theorem 1.2 (ii). The union of these annular neighborhoods of ∂Ai(n, s)

can be taken to be
Ai(n, s) \ F̃−1n (BX̃n(F̃n(qi(n)),

ri(n, s)
2
)).
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(d) The F̃n restricted to

Δ1(n,
2

3
) \

J
⋃
i=1

Ai(n, s)

converge smoothly as n →∞ to a minimal immersion

F∞,s : Ms  𝔹(0⃗,
2

3
r)

of a compact surface Ms with boundary, and

F∞,s(Ms) ∩ [𝔹(0⃗,
2

3
r) \ 𝔹(0⃗, 1

2
r)]

consists of the intersection of the limiting multi-graphs appearing in (ii) with 𝔹(0⃗, 2
3
r) \ 𝔹(0⃗, 1

2
r).

(e) The boundary ∂Ms decomposes into J + 1 collections of curves (recall that b is the number of boundary
components of Δ1(n))

{α1 , . . . , αb}, {β1,i(s), . . . , βẽi ,i(s)}i=1,...,J ,

where F∞,s(αh) ⊂ ∂𝔹(0⃗, 23 r) for each h = 1, . . . , b, and F∞,s(βl,i(s)) ⊂ ∂𝔹(xi , ri(s)) for some i = 1, . . . , J
and for every l = 1, . . . , ẽi .

(v) There exists an infinite strictly increasing sequence

S = {s1 , s2 , . . . , sj , . . .} ⊂ ℕ

such that for each j ∈ ℕ and n sufficiently large depending on j,

Ai(n, sj+1) ⊂ Int(Ai(n, sj)) and Index(Ai(n, sj)) = Index(Ai(n, s1)).

In particular, for each j ∈ ℕ and n sufficiently large depending on j, Ai(n, s1) \ Ai(n, sj) is stable.
(vi) For each sj ∈ S defined in (v),

Msj+1 ⊂ Msj and F∞,sj+1 |Ms= F∞,sj .

Then M∞ = ⋃sj∈S Msj is a compact Riemann surface with boundary, punctured in e := ∑Ji=1 ẽi points
{P1,i , . . . , Pẽi ,i}i=1,...,J , and the immersion F∞ : M∞  ℝ3 given by F∞|Ms= F∞,s extends to a finitely branched
minimal immersion

F∞ : M∞ ∪ {P1,i , . . . , Pẽi ,i}i=1,...,J  𝔹(0⃗,
2

3
r)

such that F∞({P1,i , . . . , Pẽi ,i}) = {xi}, i = 1, . . . , J, and the branch points of F∞ are contained in the set
{P1,i , . . . , Pẽi ,i | i = 1, . . . , J}.

(vii) For i ∈ {1, . . . , J} fixed and ε > 0 sufficiently small and fixed, the branching contribution Bi ∈ ℕ ∪ {0} to F∞
from {P1,i , . . . , Pẽi ,i} is Bi = Si − ẽi , where

Si =
ẽi
∑
h=1

mh,i (5.14)

is the total spinning of the boundary curves of F̃n restricted to the component Δ(i, n, ε) of

F̃−1n (BX̃n (F̃n(qi(n)), ε))

containing qi(n) (for n sufficiently large, Si is independent of n). Furthermore,

Si ≤ 3I(Δ(i, n, ε)), (5.15)

where I(Δ(i, n, ε)) is the index of Δ(i, n, ε). So, the total branching of F∞ is at most

J
∑
i=1
(Si − ẽi) ≤ 3I0 − J.
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Proof. Since [δ1 , δ2 ] is compact, after replacing by a subsequence, the sequence {rF̃n (1)}n ⊂ [δ1 ,
δ
2
] given by

Theorem 1.2 converges to a positive number r ∈ [δ1 , δ2 ]. The convergence stated in (ii) of the multi-graphs

F̃n(Δ1(n)) ∩ [BX̃n (F̂n(p1(n)), rF̃n (1)) \ BX̃n(F̂n(p1(n)),
1

2
rF̃n (1))]

to minimal multi-graphs in 𝔹(0⃗, r) \ 𝔹(0⃗, 1
2
r) is standard by curvature estimates for CMC graphs. This gives (i)

and (ii) of the lemma.

We next prove that (iii) holds. To find the finite set Q(n), wewill proceed as follows. Suppose for themoment
that, after replacing by a subsequence, for each s ∈ ℕ, |AF̃n | is uniformly bounded in

BMn(p1(n),
2

3
r) \ BMn(p1(n),

2

3s
r).

In this case, the set Q(n) := {q1(n) = p1(n)} is easily seen to satisfy (iii) of the lemma with the choice ε1 = 2

3
r.

Otherwise, after replacing by a subsequence, there exists an s1 ∈ ℕ and a point

q2(n) ∈ BMn(p1(n),
2

3
r) \ BMn(p1(n),

2

3s1
r)

such that |AF̃n |(q2(n)) > max{n, A1}. If, after replacing by a subsequence, {AF̃n }n is uniformly bounded in

BMn(p1(n),
2

3
r) \

2

⋃
i=1

BMn(qi(n),
2

3s r)

for each s ∈ ℕ, then the set Q(n) := {q1(n), q2(n)} satisfies (iii) of the lemmawith ε1 = 1

2
dMn (q1(n), q2(n)), since

after replacing by another subsequence, F̃n(q2(n)) converges as n →∞ to some x2 ∈ 𝔹(0⃗, 23 r) (note that x2
might be 0⃗). Continuing inductively, we arrive at two sets of points

Q(n) = {q1(n) = p1(n), q2(n), . . . , qJ(n)}, {x1 = 0⃗, x2 , . . . , xJ} ⊂ 𝔹(0⃗,
2

3
r),

satisfying (iii) of the lemma with respect to

ε1 =
1

2
min{dMn (qi(n), qj(n)) | i, j = 1, . . . , J, i ̸= j}.

Here, J ≤ I0 because the index of BMn (p1(n), 23 r) is at most I0. This finishes the proof of (iii) of the lemma.
Regarding (iv), we make the following two observations:

(O1) For each s ∈ ℕ, there is a uniform upper bound A2(s) ≥ A0 on the norm of the second fundamental forms

of the immersions F̃n restricted to
J
⋃
i=1
[BMn(qi(n),

ε1
3s ) \ BMn(qi(n),

ε1
4s )].

This follows from the already proven (iii) (c) of this lemma.

(O2) For each n ∈ ℕ, let F̂n,s be the restriction of F̃n to⋃
J
i=1 BMn (qi(n),

ε1
3s ). Then observation (O1) implies that

for each n ∈ ℕ, F̂n,s lies in the space Λ(I0 , H0 , ε1/(12s), A2(s), K0).
We next apply Theorem 1.2 to

F̂n,s ∈ Λ(I0 , H0 ,
ε1
12s , A2(s), K0),

which is possible by the induction hypothesis, from where one has a corresponding constant Â1(s) ≥ A1 that
replaces the previous constant A1 andwhere the choice of τ is the same as previously considered. Assume that n
is chosen sufficiently large, so that, given i = 1, . . . , J, the point qi(n) satisfies that the maximum of the norm

of the second fundamental form of F̂n,s in BMn (qi(n),
ε1
3s ) is achieved at qi(n), with value greater than 10Â1(s)

(by Theorem 1.2 (i) (d)). Another consequence of Theorem 1.2 applied to F̂n,s is that, for n large and for each

i = 1, . . . , J, we have associated positive numbers

δi(s), δi(1, s), rF̂n,s (i, s)
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with δi(1, s), δi(s), rF̂n,s (i, s) playing the respective roles of the related numbers δ1 , δ, rF(i) in Theorem 1.2,

where

0 < δi(1, s) ≤ rF̂n,s (i, s) ≤
δi(s)
2
< δi(s) <

2ε1
3s

for all n. (5.16)

We also have a Δ-type domain Δi(qi(n), rF̂n,s (i)) defined by Theorem 1.2 (i), that is, Δi(qi(n), rF̂n,s (i)) is the com-
ponent of

F̂−1n,s(BX̃n (F̂n,s(qi(n)), rF̂n,s (i)))

containing qi(n), so that the conclusions of Theorem 1.2 hold for these δi(s), δi(1, s), rF̂n,s (i, s), Δi(qi(n), rF̂n,s (i)).
In particular,

Δi(qi(n), rF̂n,s (i)) ⊂ BMn(qi(n),
ε1
3s ),

F̂n,s[∂Δi(qi(n), rF̂n,s (i))] ⊂ ∂BX̃n (F̂n,s(qi(n)), rF̂n,s (i)). (5.17)

We next check that the domains and numbers

Ai(n, s) := Δi(qi(n), rF̂n,s (i)), ri(n, s) := rF̂n,s (i)

satisfy (iv) (a)–(e) stated in the lemma. Assertion (iv) (a) follows directly from (5.16), and assertion (iv) (b) fol-

lows from (5.17). Regarding (iv) (c), since Ai(n, s) is compact, its boundary has a finite number ẽi(n, s) ∈ ℕ of

components. By Theorem 1.2 (ii), each boundary component of Ai(n, s) admits an annular neighborhood which
is a multi-graph of positive integer multiplicity mh,i(n, s) ∈ ℕ (the index h parameterizes the set of boundary
components of Ai(n, s)). The fact that both the number of such boundary components and the multiplicities

mh,i(n, s) can be considered to be independent of n, s (after passing to a subsequence in n) follows from the fact

that themh,i(n, s) are bounded independently of n, which in turn can be deduced from the following inequality

(see Theorem 1.2 (II) (a)):

mh,i(n, s) ≤ 3 Index(Ai(n, s)) ≤ 3 I0 for all n.

Now, the rest of properties stated in (iv) (c) of the lemma are direct consequences of Theorem 1.2 applied to F̂n,s .
The convergence statement in (iv) (d) follows from standard curvature estimates for CMC immersions. The

last sentence in (iv) (d) follows from the uniqueness of the limit as n →∞ of the F̃n restricted to

Δ1(n,
2

3
) \

J
⋃
i=1

Δi(qi(n), rF̂n (i))

and from the already proven (ii) of this lemma. Assertion (iv) (e) holds by construction, which finishes the proof

of (iv) of the lemma.

Regarding (v), choose s
1
= 1 and s

2
∈ ℕ, s

2
> 1, such that ε1

3s
2

< δi(1, 1). Assuming s1 , . . . , s

j defined, choose

sj+1 ∈ ℕ such that
sj+1 > s


j and

ε1
3sj+1
< δi(sj , 1).

This inequality implies that Ai(n, sj+1) ⊂ Int(Ai(n, sj )), and so

Index(Ai(n, sj+1)) ≤ Index(Ai(n, sj )).

Since Index(Ai(n, s1)) is finite, there exists j0 ∈ ℕ such that

Index(Ai(n, sj )) = Index(Ai(n, sj0 )) for all j ≥ j0 .

Now label sj = sj+j0 for each j ∈ ℕ, and (v) of the lemma is proved.
By (iv) (d), for each j ∈ ℕ the restrictions of F̃n to

Δ1(n,
2

3
) \

J
⋃
i=1

Ai(n, sj)
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converge smoothly as n →∞ to a minimal immersion

F∞,sj : Msj  𝔹(0⃗,
2

3
r)

of a compact surfaceMsj with boundary. Since Ai(n, sj+1) ⊂ Int(Ai(n, sj))we haveMsj+1 ⊂ Msj for each j, and by
the uniqueness of the limit we have F∞,sj+1 |Ms= F∞,sj for each j.

By a standard diagonal argument in n and sj , the map

F∞ : M∞ = ⋃
sj∈S

Msj  𝔹(0⃗,
2

3
r),

given by F∞|Msj
= F∞,sj for each j ∈ ℕ, is a minimal immersion with finite area, defined on a surface M∞ of

finite genus: the bound on the genus of M∞ is the same bound as on the genus of the surface Δ1(n), which, by
Theorem 1.2 (II), is atmost 6I(Δ1(n)) − 8 ≤ 6I0 − 8 if the index satisfies I(Δ1(n)) ≥ 2; if I(Δ1(n)) = 1, then the genus
of Δ1(n) is zero. Observe thatM∞ has at least J annular ends, and the number e of these ends ofM∞ is finite (at

most 3I0 − 1 by Theorem 1.2 (II)). Furthermore, the image by F̂∞ of these ends of M∞ is {x1 , . . . , xJ} ⊂ 𝔹(0⃗, 23 r).
By regularity results in [10], M∞ is a compact Riemann surface with b boundary components, punctured in

e := ∑Ji=1 ẽi points, and we can denote the set of ends of M∞ by

{P1,i , . . . , Pẽi ,i}i=1,...,J ,

in such a way that the immersion F∞ extends to a finitely branched minimal immersion

F∞ : M ∪ {P1,i , . . . , Pẽi ,i}i=1,...,J  𝔹(0⃗,
2

3
r) (5.18)

such that F∞({P1,i , . . . , Pẽi ,i}) = {xi}, i = 1, . . . , J, and, by construction, the set of branchpoints of F∞ is contained
in the set

{P1,i , . . . , Pẽi ,i | i = 1, . . . , J}.

This proves (vi) of the lemma.

Finally, we prove (vii). Observe that the branching order B(Ph,i) ∈ ℕ ∪ {0} of F∞ at Ph,i equals

B(Ph,i) = mh,i − 1, (5.19)

where mh,i ∈ ℕ is the multiplicity defined in (iv) (c) above. By adding this in the set {P1,i , . . . , Pẽi ,i}, we deduce
that the branching contribution Bi ∈ ℕ ∪ {0} to F∞ from this set is Bi = Si − ẽi , where

Si =
ẽi
∑
h=1

mh,i ,

and thus (5.14) is proved. Finally, estimate (5.15) for the total spinning of Δ(i, n, ε) (for a sufficiently small ε > 0)
follows from Theorem 1.2 (II). This finishes the proof of the lemma.

We now come back to (M2) above. Using the notation in Lemma 5.11, suppose, after choosing a subsequence,

that the
1

rn Fn restricted to Δ2,n converge to a family

F∞ : D̂  𝔹(1) (5.20)

of minimal disks branched at the origin as described in Lemmas 5.10 and 5.11. Thus, the desired (global) limit

f2 : Σ2  ℝ3 of the 1

rn Fn is already constructed in a neighborhood of Ŝ(0) in D̂ (see equation (5.13)), where

a non-trivial part of the index of
1

rn Fn is collapsing (namely, this collapsing index is I(f1) > 0); since the remain-
ing index of

1

rn Fn is at most (I0 + 1) − I(f1) ≤ I0, we are allowed to apply Lemma 5.12 to
1

rn Fn . We next make this

paragraph and the previously alluded to global convergence in (M2) rigorous.

Proposition 5.13. In the situation above, let F̃n : Mn  X̃n be 1

rn Fn : Mn  1

rn Xn . Then, after replacing by a sub-
sequence, there exist R0 ≥ 10, ε2 ∈ (0, δ1] and a collection of points

Q2(n) = {q1(n) = p1(n), q2(n), . . . , qJ(n)} ⊂ BMn (p1(n), R0), J ≤ I0 ,
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such that the following assertions hold:
(i) For any R > R0, {|AF̃n |}n is uniformly bounded in BMn (p1(n), R) \ BMn (p1(n), R0).
(ii) dMn (qi(n), qj(n)) ≥ ε2 for each n ∈ ℕ and i ̸= j ∈ {1, 2, . . . , J}.
(iii) For each i ∈ {1, 2, . . . , J} and m ∈ ℕ with 1

m < ε2,

|AF̃n |(qi(n)) > n = max{|AF̃n |(x) : x ∈ BMn(qi(n),
1

m )}
,

and there exists A2(m) > 1 such that |AF̃n | < A2(m) in

BMn (p1(n), R0) \
J
⋃
i=1

BMn(qi(n),
1

m )
.

(iv) There exist (not necessarily distinct) points x1 = 0⃗, x2 , . . . , xJ ∈ 𝔹(0⃗, R0) (here 𝔹(0⃗, R) denotes the ball cen-
tered at the origin with radius R > 0 in ℝ3 with its flat metric) such that, when viewed in harmonic coordi-
nates in X̃n centered at F̃n(p1(n)), the points F̃n(qi(n)) converge as n →∞ to xi , for each i = 1, 2, . . . , J.

(v) For almost all R > R0 and for m sufficiently large, the F̃n restricted to

BMn (p1(n), R) \
J
⋃
i=1

BMn(qi(n),
1

m )

converge smoothly as n →∞ to a minimal immersion F∞,m,R : Mm,R  𝔹(0⃗, R) of a compact surface with
boundary Mm,R . Furthermore,

Mm,R ⊂ Mm+1,R and F∞,m+1,R |Mm,R= F∞,m,R

whenever R > R > R0.
(vi) Define

Σ
∗
2
:= ⋃

m∈ℕ
R>R0

Mm,R , f ∗
2
: Σ
∗
2
 ℝ3 , f ∗

2
|Mm,R= F∞,m,R .

Then Σ∗
2
is a (possibly disconnected) open Riemann surface and f ∗

2
is a minimal immersion. Furthermore,

the conformal completion Σ2 of Σ∗2 has the structure of a compact Riemann surface, Σ2 \ Σ
∗
2
= S(f2) ∪ E2 is

a finite set, and f ∗
2
: Σ
∗
2
 ℝ3 extends through S(f2) to a finitely branched, complete minimal immersion

f2 : Σ2 = Σ∗2 ∪ S(f2)  ℝ
3

with finite total curvature, where the following properties hold:
(a) S(f2) is the disjoint union of the finite set

S(0⃗) = {P1,1 , . . . , Pe1 ,1} ⊂ f −12 ({x1 = 0⃗})

that appears in Lemma 5.11, together with the closely related finite sets

S(xi) = {P1,i , . . . , Pbi ,i} ⊂ f −12 ({xi}), i = 2, . . . , J.

Furthermore, the set of branch points of f2 is contained in S(f2) and its branch locus (image) is contained
in {x1 = 0⃗, x2 , . . . , xJ} ⊂ 𝔹(R0).

(b) The set of ends of f2 is E2 = {E1 , . . . , Ee2 }.
(c) The map F∞ given in (5.20) coincides with f2 in a neighborhood of S(x1 = 0⃗) in Σ2.

(vii) The total branching order B(f2) of f2 can be estimated from above as follows:

B(f2) ≤ 3[I0 + 1 − Index(f1)] − J ≤ 3I0 − 1. (5.21)

(viii) The following properties hold for some R > 3R0:
(a) The index of f −1

2
(𝔹(R/3)) is I(f2) (compare to property (H0’) above).
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(b) f2(Σ2) \ 𝔹(R/3) consists of e2 multi-graphs over their projections to planes Πj ⊂ ℝ3 passing though 0⃗,
j = 1, . . . , e2 (compare to property (H1’)). Furthermore, each of these end representatives contains no
non-trivial geodesic arcs with boundary points in the boundary of Σ2 \ f −12 (𝔹(R/3)).

(c) The image through the Gauss map of f2 of each component Cj of f2(Σ2) \ 𝔹(R/3) is contained in the
spherical neighborhood of radius α1/2 centered at a point vj ∈ 𝕊2(1) perpendicular to Πj , where
α1 = α1(τ) ∈ (0, τ] is the constant given by Lemma 4.1 for L0 = 3π(I0 + 2) + 1 (therefore Cj satisfies
Lemma 4.1 (B2) with R1 = R/3 and α = α1/2, compare to (H2’)).

(d) f2(Σ2) makes an angle greater than π
2
− α1

2
with every sphere 𝕊2(r) of radius r ≥ R/3 centered at the

origin (so Cj satisfies Lemma 4.1 (B1) with R1 = R/3 and α = α1/2, compare to (H3’)).
(e) The total length of the intersection of f2(Σ2) with any sphere 𝕊2(r) centered at the origin and radius

r ≥ R/3 is less than (L0 − 1

2
)r (hence Cj satisfies Lemma 4.1 (B3) with R1 = R/3, compare to (H4’)).

(f) For all n ∈ ℕ, the component Δ2,n(R/3) of

F̃−1n (BX̃n(F̃n(p1(n)),
R
3
))

that contains p1(n) has index at least I(f1) + I(f2) + (J − 1), and if J = 1, then I(f2) > 0. In particular,
I(Δ2,n(R/3)) > I(f1).

Proof. Recall the notation and statement of Lemma 5.11. By assumption, the F̃n restricted to Δ2,n converge to
F∞ given by equation (5.20). Since the restriction of F∞ to F−1∞ (𝔹(1) \ 𝔹( 12 )) consists of e1 multi-graphs (here e1
is the number of ends of f1), we have that F̃n(Δ2,n) is graphical in the region

BX̃n (F̃(p1(n)), 1) \ BX̃n(F̃(p1(n)),
1

2
),

and thus the surfaces

Mn = Mn \ [Δ2,n ∩ F̃−1n (BX̃n (F̃(p1(n))),
1

2
)]

have uniform curvature estimates in a fixed sized ε
0
-neighborhood of its boundary (for some ε

0
∈ (0, ε0]). Let

Fn : Mn  X̃n be the restriction of F̃n toMn . For all n ∈ ℕ, we can consider Fn to be an element in a fixed related
space Λ


except that the index of the immersions in

Λ
 = Λ(I0 , H0 , ε0 , A0 , K0)

is at most I0. By induction, we can suppose that Theorem 1.2 holds for the subspace Λ

.

The construction of the finite set

{q2(n), . . . , qJ(n)} ⊂ BMn (p1(n), R0), J ≤ I0 ,

appearing in the statement of the proposition, follows exactly the same arguments used to prove the existence of

the related set Q(n) given in Lemma 5.12 (iii). Similarly, (ii)–(iv) of the proposition can be deduced from the same

reasoning as (iii) (b)–(d) of Lemma 5.12 respectively; in particular, we use the number δ1 ∈ (0, ε0/2] defined in
Lemma 5.12 (i) in order to find ε2 ∈ (0, δ1] satisfying (ii) of the proposition. We leave the details to the reader.

The existence of the number R0 ≥ 10 and (i) of the proposition follow from the fact that the number J of
sequences

{q1(n) = p1(n)}n , . . . , {qJ(n)}n

around which the second fundamental form of F̃n fails to be bounded, is finite (at most I0 + 1 by Lemma 5.1).
Assertions (v) and (vi) of the proposition also follow with small modifications from the proof of (iv) (d)

and (vi) of Lemma 5.12, where one also uses the fact that a completeminimal surface inℝ3 with compact bound-
ary and finite index has finite total curvature (see [9] for this result when the surface is orientable, and see the

last paragraph of the proof of [24, Theorem 17] for the non-orientable case). The proof of (vii) of the propo-

sition follows from the same arguments that proved Lemma 5.12 (vii); observe that the index of f2 is at most
(I0 + 1) − Index(f1).

The proofs of (viii) (a) and of the first statement of (viii) (b) are clear after taking R > 0 sufficiently

large, since f2 has finite total curvature. The second statement of (viii) (b) follows from the fact that, for
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R > 0 sufficiently large, the collection of ends f −1
2
(ℝ3 \ 𝔹(R/3)) of f2 is foliated by the simple closed curves in

{f −1
2
(∂𝔹(R)) | R ≥ R/3)}, each of which has positive geodesic curvature. The proofs of assertions (viii) (c)–(e)

also follow from previous considerations (compare to (H2’)–(H4’)).

To finish the proof of the proposition, we check that (viii) (f) holds. First, suppose that J = 1. In this case, the
sequence { 1rn Fn}n converges smoothly (up to a subsequence) to f2 in a neighborhood of ∂𝔹(1). This implies, by
construction of rn (see Definition 5.8), that f2 is not flat in any neighborhood of ∂𝔹(1). In particular, f2 is not flat
and the image of its branch locus is the origin. Then, by Lemma 3.4 (i), f2 has positive index.

Regardless of the value of J, and by the already proven (viii) (a) of this proposition, the index of f −1
2
(𝔹(R/3))

is I(f2). Since the index of a compact minimal surface with boundary remains the same after removing a suffi-

ciently small neighborhood of a finite subset of its interior, we deduce that, for m sufficiently large, the index

of

f −1
2
(𝔹(R/3)) \ [𝔹(0⃗, 1m )

∪ (
J
⋃
i=2
𝔹(xi ,

1

m ))]
(5.22)

is also equal to I(f2). Let Δ2,n(R/3) be the component of F̃−1n (BX̃n (0⃗, R/3)) that contains p1(n). By the convergence
in (v) of the proposition, for m ∈ ℕ sufficiently large, the index of

Δ
∗
2,n(R/3) := Δ2,n(R/3) \ [BMn(p1(n),

1

m )
∪ (

J
⋃
i=2

BMn(qi(n),
1

m ))]

is equal to the index of the surface in (5.22). Observe that for n sufficiently large and m large and fixed, that

index of BMn (p1(n), 1

m ) is equal to the index I(f1) of f1, and each of the balls in the pairwise disjoint collection

{BMn(p1(n),
1

m ), BMn(q2(n),
1

m ), . . . , BMn(qJ(n),
1

m )}

is unstable. Then, if we denote by I(S) the Morse index of a surface S, we get (after replacing by a subsequence)

I(Δ2,n(R/3)) ≥ I(Δ∗2,n(R/3)) + I(BMn(p1(n),
1

m ))
+

J
∑
i=2

I(BMn(qi(n),
1

m ))

= I(f2) + I(f1) +
J
∑
i=2

I(BMn(qi(n),
1

m )).

(5.23)

If J = 1, then the last sum is empty and (5.23) gives

I(Δ2,n(
R
3
)) ≥ I(f2) + I(f1) > I(f1),

as desired. Finally, if J ≥ 2, then we estimate each I(BMn (qi(n), 1

m )) ≥ 1, and so (5.23) gives

I(Δ2,n(
R
3
)) ≥ I(f2) + I(f1) + (J − 1).

This completes the proof.

Lemma 5.14. With the notation of Proposition 5.13, consider the partition of S(f2) ⊂ Σ2 by the subsets

S(f2 , i) = S(xi), i = 1, . . . , J,

introduced in (vi) (a) of that proposition. Define the quotient space Σ̂2 of Σ2 where each of the elements in S(f2 , i)
identifies to one point, whichwe denote by Ŝ(f2 , i) ∈ Σ̂2, i = 1, . . . , J, and every other point of Σ2 only identifies with
itself. Let

π : Σ2 → Σ̂2

be the related quotientmap, that is, π|S(f2 ,i) is the constantmap equal to Ŝ(f2 , i), and the restriction of π to Σ2 \ S(f2)
is injective. After endowing Σ̂2 with the quotient topology, the following assertions hold.
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(i) Σ̂2 is a path-connected topological space and

Ŝ(f2) := π(S(f2))

consists of J elements in Σ̂2.
(ii) Σ̂2 \ Ŝ(f2) is a smooth Riemannian surface that induces a metric space structure dΣ̂2 on Σ̂2.
(iii) The restriction of f2 to Σ2 \S(f2), considered to be a subset of Σ̂2, extends to a continuousmapping f̂2: Σ̂2→ℝ3.
(iv) Let p = Ŝ(f2 , 1) (so f̂2(p) = 0⃗). Given a point q ∈ f̂ −12 (𝔹(R)) different from p, where R > 0was defined in Propo-

sition 5.13 (viii), there is an injective continuous path αp,q : [0, 1]→ Σ̂2 of least length joining p to q satisfying
the following assertions:
(a) f̂2 ∘ αp,q is a piecewise smooth curve in ℝ3 with image in the ball 𝔹(R).
(b) αp,q([0, 1]) \ Ŝ(f2) consists of j1(q) ≤ J smooth geodesic arcs in Σ̂2 \ Ŝ(f2), each of which has length less

than ĈR, where Ĉ = Ĉ(I0 , B) > 0 is defined in Proposition B.4 (ii) and B is the total branching order of f2
(recall that B ≤ 3I0 − 1 by (5.21)).

(c) In particular, as j1(q) ≤ J ≤ I0, then (compare to (H5’) above)

d
Σ̂2
(p, q) < I0ĈR. (5.24)

Proof. The path-connectedness of Σ̂2 follows immediately from the fact that, for all R > R0 (this R0 is defined in
Proposition 5.13), BMn (p1(n)), R) is path-connected with S(f2) ⊂ BMn (p1(n)), R0) and because the projection of
a continuous path in Σ2 to Σ̂2 is a continuous path. This proves that (i) holds. The proofs of (ii) and (iii) follow from

the definition of the quotient space Σ̂2 and the fact that the composition of continuous mappings is continuous.

The existence of the embedded minimizing geodesic αp,q joining p to q is standard, where αp,q \ Ŝ(f2) con-
sists of a finite number j1(q) ≤ J of open geodesic arcs that have least-length joining their endpoints; the reason
that there are at most J such arcs in αp,q follows from the fact that if there is more than one such geodesic arc

in αp,q , then each such arc contains a point of Ŝ(f2) \ {p}. Clearly, f2 ∘ αp,q is a piecewise smooth curve inℝ3 and
its image is contained in𝔹(R) by the second statement in (viii) (b) of Proposition 5.13, which completes the proof
of (iv) (a).

Since αp,q is injective, length-minimizing and only fails to be smooth at points in Ŝ(f2), we have that

αp,q([0, 1]) \ Ŝ(f2) consists of j1(q) ≤ J smooth geodesic arcs in Σ̂2 \ Ŝ(f2). Assertion (iv) (b) follows directly from
Proposition B.4 (ii) (note that I(f2) ≤ I0 by Proposition 5.13 (viii) (f) since I(f1) > 0)). As j1(q) ≤ J and J ≤ I0 by
Proposition 5.13, then (iv) (c) is proved.

5.5.3 Finding an s0-th local picture with a uniform size

Recall that in Definition 5.8we introduced rn in terms of λ1,n := λn , and a certain R > 0 given in terms of the limit
immersion f1 so that hypotheses (B1)–(B3) of Lemma 4.1 hold for annular portions of the Fn with the choices
L0 = 3π(I0 + 2) + 1. We now proceed in a similar manner replacing f1 by f2 and Fn by F̃n = 1

rn Fn . Assertions
(viii) (b)–(e) of Proposition 5.13 for f2 are similar to properties (H1’)–(H4’) for f1. Recall that these properties (H1’)–
(H4’) produce related properties (I1’)–(I4’) for λnFn and n ∈ ℕ large. In particular, we found e1 multi-graphical
annuli G̃n(1), . . . , G̃n(e1) in (λnFn)(Δn(4R) \ Δn(R/2)); see property (I1’). We now set λ2,n = 1

rn for each n ∈ ℕ,
which tends to ∞ as n →∞ by Remark 5.9 (ii) (B). Reasoning analogously, as we did with the first limit f1,
Assertions (viii) (b)–(e) of Proposition 5.13 produce corresponding properties (I1’)–(I4’) for λ2,nFn and n ∈ ℕ
large. In particular, we find e2 multi-graphical annuli G̃2,n(1), . . . , G̃2,n(e2) in (λ2,nFn)(Δn(4R) \ Δn(R/2)) (this
R > 0 is now introduced in Proposition 5.13 (viii)).

Definition 5.15. Define r2,n as the supremum of the extrinsic radii r ≥ 4R/λ2,n such that annular enlargements
Ĝ2,n(j) of the G̃2,n(j) satisfying conditions (B1)–(B3) of Lemma4.1 for the choices L0 = 3π(I0 + 2) + 1, inner extrin-
sic radius R1 = R

2λ2,n , outer extrinsic radius R2 = r2,n , and angle α = α1.

As we did in Remark 5.9, we next discuss whether or not r2,n tends to zero as n →∞. If {r2,n}n is bounded
away from zero with this bound independent of the sequence {Fn}n ⊂ Λ, then Proposition 5.16 below holds
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with s0 = 2. Otherwise, we repeat the process in steps (M1) and (M2) above for the sequence
1

r2,n Fn and find

a complete, finitely branched minimal immersion f3 : Σ3  ℝ3 with finite total curvature which is a limit of

(a subsequence of) the λ3,nFn , where λ3,n = 1

r2,n for each n ∈ ℕ. This process of finding scales {λs,n}n and limits fs
(s = 1, 2, . . .) must stop after a finite number s0 of times (s0 ≤ I0 + 1), because each time we apply the process
we find Δ-type components in (a subsequence of) {Fn}n with strictly larger index by (viii) (f) of Proposition 5.13,
but the index of each Fn is at most I0 + 1. This implies that rs0 ,n is bounded away from zero, with the lower

bound being independent of the sequence {Fn}n ⊂ Λ. In this setting, the discussion in Remark 5.9 (ii) (I) implies
that Proposition 5.3 holds for the scale of fs0 : Σs0  ℝ3. More precisely, we have the following proposition.

Proposition 5.16. There exists δ4 ∈ (0, δ3] (which was given as δ3 ∈ (0, δ2] in Definition 4.5 for the choices
m = 3(I0 + 1) + 3 and L0 = 3π(I0 + 2) + 1) such that the hypotheses of Lemma 4.1 hold for annular enlargements
Ĝs0 ,n(j) of the multi-graphs G̃s0 ,n(j) (here j = 1, . . . , es0 with es0 being the number of ends of fs0 ) between the
geodesic spheres in X centered at Fn(p1(n)) of extrinsic inner radius Rs0/(2λs0 (n)) and extrinsic outer radius δ4,
and with the choice α = τ1 for hypotheses (B1) and (B2) (this τ1 ∈ (0, α1] was also introduced in Definition 4.5).

With Proposition 5.16 at hand, we define

δ := δ4
2
, δ1 =

δ
2
, (5.25)

where δ4 ∈ (0, δ3] is given by Proposition 5.16. We are now ready to achieve the main goal of Section 5.5.

Proposition 5.17. Assertions (i)–(iii) of Theorem 1.2 hold in the case I = I0 + 1 for immersions in Λt , for some
t ≥ Ĉs(δ1/2) sufficiently large.

Proof. The idea is to adapt appropriately the arguments at the end of Section 5.4.2 (after Definition 5.4). Pick

a smallest Rs0 > 0 so that (H0’)–(H4’) hold with f replaced by fs0 and with the same value L0 = 3π(I0 + 2) + 1
(also see (viii) (b)–(e) of Proposition 5.13 for the particular case s0 = 2). In particular, (H5’) can be also adapted
to fs0 after applying the estimate (B.7) in Proposition B.4 with I = I0 + 1 and B = B(fs0 ) (this is the total branching
order of fs0 , which satisfies B(fs0 ) ≤ 3I0 − 1 by (5.21)). Equivalently, we can adapt (iv) (c) of Lemma 5.14 to fs0 and
conclude the following estimate:

(H5”) Given R ≥ Rs0 , the intrinsic distance in the pullbackmetric by fs0 from 0⃗ ∈ Σs0 to any point in the boundary
of f −1s0 (𝔹(R)) is at most a(I0)R, where a(I0) > 0 can be bounded from above depending only on I0. In fact,

a(I0) ≤ I0Ĉ(I0 , B(fs0 )),

where Ĉ is defined in Proposition B.4 (ii).
Define Δs0 ,n(Rs0 ) ⊂ Mn as the component of

(λs0 ,nFn)−1(λs0 ,nBX(Fn(p1(n)),
Rs0
λs0 ,n
))

that contains p1(n). Reasoning as when we deduced (I5’) from (H5’) and (J5’) from (H5’), we have the following

adaptation of (J5’) to this setting:

(J5”) The intrinsic distance in the pullback metric by Fn on Mn , from p1(n) to the boundary of Δs0 ,n(Rs0/2), is
at most (R/λs0 ,n)[a(I0) + 1] (here a(I0) is introduced in (H5’)’ above).

Take t large enough such that:
(K1’) It holds

Rs0
t [a(I0) + 1] ≤

δ1
10

.

(K2’) The description in (J1’)–(J5’) holds for Fn , where e = es0 is the number of ends of fs0 and L0 = 3π(I0 + 2) + 1.
Define A1 := t and rF(1) := δ1.
Given (F : M  X) ∈ Λt , take a point p1 ∈ U(∂M, ε0 ,∞) where the maximum of |AM | in M is achieved.

Define Δ1 to be the component of F−1(BX(F(p1), rF(1)) that contains p1; see Figure 4.
Next we prove Theorem 1.2 (i) (a) in the case I = I0 + 1 for Δ1. Let q be any point in ∂Δ1. Then, arguing

similarly to the case I = 1, we have, using SF(
Rs0
2t ) to denote the extrinsic geodesic sphere in X centered at F(p1)
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0

∆1

R
2λs0

multi-graphs

Ĝs0(1), . . . , Ĝs0(es0)

rF (1) = δ4/4 δ4

Figure 4: Schematic (non-proportional) representation of the extrinsic geometry of an immersion (F : M  X) ∈ Λt around a point p1
where the maximum of |AM | in M is achieved. Here, λs0 > 0 is a large number (λs0 ≤ max|AM |) that is the scale of the local picture fs0
of F around p1 that appears in Proposition 5.16. Horizontal distances in the figure represent extrinsic distances in X measured
from F(p1); for example, Δ1 has its boundary at extrinsic distance rF (1) from F(p1). In the range of extrinsic radii between R

2λs0
and δ4

(where δ4 is fixed and given by Proposition 5.16), F consists of es0 multi-graphical annuli Ĝs0 (1), . . . , Ĝs0 (es0 ), where es0 is the number
of ends of fs0 . A similar representation holds around relative maxima p j+1 of |AM | in M \ (Δ1 ∪ ⋅ ⋅ ⋅ ∪ Δ j).

with radius
Rs0
2t , that

dM(p1 , q) ≤ max

x∈∂Δ1∩F−1(SF (
Rs0
2t ))

dM(p1 , x) + dM(Δ1 ∩ F−1(SF(
Rs0
2t )), q)

≤
1

t [a(I0) + 1]Rs0
+ dM(Δ1 ∩ F−1(SF(

Rs0
2t )), q) (by (J5”))

≤
1

t [a(I0) + 1]Rs0
+√1 +

τ2
3
(rF(1) −

Rs0
2t )
(by Lemma 4.1)

≤
δ1
10
+√1 +

τ2
3
rF(1) (by (K1’))

= (
1

10
+√1 +

τ2
3
)rF(1)

<
5

4
rF(1) (because τ ≤

π
10
).

This proves that Theorem 1.2 (i) (a) holds in the case I = I0 + 1 for Δ1. To find the remaining Δ2 , . . . , Δk
and the related rF(2), . . . , rF(k) that appear in the main statement of Theorem 1.2, we will apply the induction

hypothesis to the restriction of F to M \ Δ1, as an element in a collection

Λ
 = Λ(X, I0 , H0 , ε0 , A


0
), (5.26)

specified as in Definition 1.1, for some choices of ε
0
, A

0
that we will explain later.

First, observe that the restriction of F toM \ Δ1 is anH-immersionwith smooth boundary and index atmost

(I0 + 1) −
s0
∑
j=1

I(fj) ≤ (I0 + 1) − s0 ≤ I0 ,

that is, condition (A2) in Definition 1.1 for Λ

holds for the upper index bound I0.

Next we will explain how to choose the remaining parameters ε
0
, A

0
that determine Λ


in order to apply

the induction hypothesis to F|M\Δ1 as an element in Λ.
By Proposition 5.16, the following property holds:

(P1) Let Δ̃1 be the component of F−1(BX(F(p1), δ4)) that contains p1. Then the intersection of F(Δ̃1) with
the region of X between the extrinsic spheres ∂BX(F(p1),

Rs0
2t ) and ∂BX(F(p1), δ4) consists of es0 multi-

graphical annuli Ĝs0 (1), . . . , Ĝs0 (es0 ).



W.H. Meeks, III and J. Pérez, Hierarchy structures in finite index CMC surfaces  35

In particular, the intrinsic distance between the two boundary curves of each Ĝs0 (h), h ∈ {1, . . . , es0 }, is greater
than or equal to the following positive number independent of F:

ε1 := δ4 −
Rs0
2t

. (5.27)

Observe that, taking δ4 smaller if necessary (this does not affect the validity of Proposition 5.16), we can assume
δ4 ∈ (0, ε0]. Now, define ε0 = ε1.

Property (P1) implies that the following property holds:

(P2) The second fundamental form of F is uniformly bounded (independently of (F : M  X) ∈ Λt) in

Δ1 ∩ F−1(BX(F(p1), δ) \ BX(F(p1),
Rs0
t ))

by a constant A1 > 0 independent of F. Define A0 = max{A0 , A1}.
With the above choices, it follows that the restriction of F to M \ Δ1 lies in the collection Λ


introduced

in (5.26). By the induction hypothesis (with the same choice of τ, recall that we are proving Theorem 1.2 (i)–(iii)

by induction on I), we can find A
1
∈ [A

0
,∞), δ

1
, δ ∈ (0, ε0] (independent of F) with δ1 ≤ δ/2, and a possibly

empty finite collection of points

PF|M\Δ1
= {p

1
, . . . , pk} ⊂ U(∂(M \ Δ1), ε


0
,∞) k ≤ I0 , (5.28)

and related numbers

rF(1) > 4r

F(2) > ⋅ ⋅ ⋅ > 4

k−1rF(k), (5.29)

with

{rF(1), . . . , r

F(k)} ⊂ [δ


1
,
δ

2
]

and satisfying Theorem 1.2 (i)–(iii).

Finally, define

A1 = max{t, A1}, δ = min{δ4
2
, δ}, δ1 = min{

δ4
4
, δ

1
} (5.30)

PF = {p1 , p2 = p1 , . . . , pk+1 = p

k} ⊂ U(∂M, ε

0
,∞), (5.31)

rF(1) =
δ4
4
, rF(2) = rF(1), . . . , rF(k + 1) = r


F(k), (5.32)

where δ4 is the number defined in Proposition 5.16, and t was defined just after (J5”); observe that we do not
lose generality by assuming that rF(1) > 4rF(1). Also notice that the points p1 , . . . , pk+1 belong to U(∂M, ε0 ,∞)
(compare to (5.31) and to the statement of Theorem 1.2): the reason for this is that |AF(pj)| > A0 ≥ A1 for each
j = 1, . . . , k + 1.

Now, it is clear that Theorem 1.2 (i)–(iii) hold for I = I0 + 1with the exception of the first statement of (i) (c)
for i = 1 and j ∈ {2, . . . , k + 1}, which we prove next. To conclude that

BM(p1 ,
7

5
rF(1)) ∩ BM(pj ,

7

5
rF(j)) = 0,

first note that
7

5
rF(1) =

7

20
δ4 <

1

2
δ4 ,

and hence it suffices to show that BM(pj , 75 rF(j)) does not intersect

F−1[BX(F(p1), δ4) \ BX(F(p1),
δ4
2
)].

Arguing by contradiction, suppose that there exists a point q ∈ BM(pj , 75 rF(j)) such that

F(q) ∈ BX(F(p1), δ4) \ BX(F(p1),
δ4
2
).
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Then

ε
0
≤ dM(pj , ∂Δ1) (by (5.28) and (5.31))
≤ dM(pj , q) + dM(q, ∂Δ1)

<
7

5
rF(j) + dM(q, ∂Δ1) (because q ∈ BM(pj ,

7

5
rF(j)))

≤
7

5
rF(j) +
√1 + τ2/3δ4

4
(by (C2) of Lemma 4.1)

<
7

20
rF(1) +

√1 + τ2/3δ4
4

(by (5.29))

=
1

4
(
7

20
+√1 +

τ2
3
)δ4 (by (5.32)),

where in the fourth line we have used that F(∂Δ1) ⊂ ∂BX(F(p1), δ4/4) and F(q) ∉ BX(F(p1), δ4/2). Hence it
suffices to show that the inequality

δ4 −
Rs0
2t

(5.27)

= ε1 = ε0 <
1

4
(
7

20
+√1 +

τ2
3
)δ4

leads to a contradiction. Manipulating the last inequality, it is clearly equivalent to

[1 −
1

4
(
7

20
+√1 +

τ2
3
)]δ4 <

Rs0
2t

(K1’)

≤
δ1
10

5

a(I0) + 1
(5.25)

=
δ4
8

1

a(I0) + 1
.

Therefore,

BM(p1 ,
7

5
rF(1)) ∩ BM(pj ,

7

5
rF(j)) = 0

for i = 1 and j ∈ {2, . . . , k + 1}. This completes the proof of Proposition 5.17.

Recall that the domains Δ1 = Δ1(n) ⊂ Mn are defined in the proof of Proposition 5.17 and each such domain is

geometrically the component of p1 = p1(n) in the preimage by F = Fn of an extrinsic ball in X = Xn centered at
Fn(p1(n)) of a small radius rF(1) = δ1 independent of n. For future referencing in the definition of “the hierarchy
structure of Δ1” appearing in the next section, we make the following definition.

Definition 5.18. Suppose that the number of ascending levels s0 ∈ ℕ in the construction of Δ1(n) satisfies s0 > 1.
In this case, for each i ∈ {2, . . . , s0}, we define the following related sets:
(i) Q2(n) ⊂ Mn (defined in Proposition 5.13), which satisfy the following properties:

(a) Q2(n) contains p1(n) and its finite cardinality is independent of n and at most I.
(b) The norms of the second fundamental forms of the immersions

1

rn Fn : Mn  1

rn Xn have local maxima
at points in Q2(n) that are blowing up as n →∞.

(c) The points in Q2(n) stay at a uniform distance atmost R0,2 (this is the constant R0 appearing in themain
statement of Proposition 5.13) from the points p1(n) in the metric ofMn induced by

1

rn Fn : Mn  1

rn Xn ,
and these points stay at a uniform distance greater than some ε2,2 > 0 (called ε2 > 0 in Proposition 5.13)
from each other.

For i ∈ {3, . . . , s0}, Qi(n) ⊂ Mn are the similarly defined finite sets in Mn with related positive numbers

R0,i , ε2,i , with respect to rescalings of the immersions Fn : Mn  Xn . Furthermore, for i ̸= i ∈ {2, . . . , s0},
Qi(n) ∩ Qi (n) = {p1(n)}, and so each of the sets Qi(n) contains the point p1(n).

(ii) The set S2 ⊂ Σ2 is defined in Proposition 5.13 (vi) (a) (it was called S(f2) there). For i ∈ {3, . . . , s0}, the sets
Si ⊂ Σi are defined in a similar manner.

5.6 Counting index, genus and total spinning for local hierarchies

In Section 5.5, we have explained a process of going “up” in finding scales and limits with center p1(n), so that
after s0 ≤ I0 + 1 steps, we finish the “ascending” process and define the final Δ-piece containing p1(n) (called Δ1
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in the proof of Proposition 5.17). Throughout this ascending process, we have found other points occurring

inside Δ1 where the second fundamental form can blow up; we will refer to these blow-up points as q-points
in Δ1 (these q-points lie in the sets Qi(n) ⊂ Mn described in Definition 5.18 (i) and produce corresponding sets

Si ⊂ Σi , i = 2 . . . , s0, described in Definition 5.18 (ii)). It is crucial to remark that the compact piece Δ1 = Δ1(n)
occurs in a sequence of immersions Fn : Mn  Xn , while its topological and geometric structure also depends
on the complete, possibly branched minimal surfaces which are limits obtained after blowing up Δ1(n) around
its q-points.

In order to understand the structure of the piece Δ1 (i.e., to prove the estimates in Theorem 1.2 (II)–(IV)),

we must analyze how the related Δ-pieces around these q-points affect the geometry of Δ1. This analysis will be
done by going “down levels” in Δ1: we will first analyze the q-points in Qs0 (n), i.e., those q-points occurring at
the level of the limit fs0 (this is the top level of the piece Δ1 in the language introduced in Section 5.6.1 below), and
subsequently go to lower levels which occur at every q-point not being aminimal element in the sense of Defini-
tion 5.21 below. The notion of hierarchy of Δ1 (Definition 5.23) will encompass all q-points at different levels and
the related Δ-type pieces around them. The way that this hierarchy affects some quantities appearing in Theo-

rem 1.2 (II)–(IV) (like index, genus, number of boundary components, total spinning along the boundary etc.)

is encoded in Theorem 5.27 below, which is an inequality that generalizes the Chodosh–Maximo estimate (3.5)

to the new framework of hierarchies. Although it is premature at this point for the reader to fully understand

what is meant by a hierarchy, we suggest that the reader frequently checks his/her developing understanding of

this concept by referring to the schematic Figure 5 below, which represents a particular example of a hierarchy;

also see Example 5.19 and Example 5.24 (iii) for further explanations of this example.

In the remainder of this section, |X|will denote the number of elements of a finite set X, and if X is a topolog-
ical space with finitely many connected components, then #c(X) will denote the number of these components.

5.6.1 The hierarchy associated to a Δ-type piece

Let {Fn}n be a sequence in the space Λ = Λ(I0 , H0 , ε0 , A0 , K0) with second fundamental form not uniformly

bounded. Let Δ = Δ(n) be the connected, compact surface that arises around an initial blow-up point p(n) ∈ Mn
for n large (this is a Δ-piece, in the language of thefirst twoparagraphs of Section 5.6). Recall that the construction
given in Section 5.5 performs finitely many blow-ups centered at the p(n), giving rise to s0 stages (fi , Si , {λi,n}n),
i = 1, . . . , s0, described in (S1) and (S2) below.
(S1) fi : Σi  ℝ3 is a (possibly finitely disconnected) completeminimal surface inℝ3withfinite total curvature

that passes through the origin, possibly with a finite number of branch points and possibly with non-

orientable components. Moreover, Σ1 is connected and f1 : Σ1  ℝ3 is unbranched and non-flat, but for
i = 2, . . . , s0, fi could have flat components with or without branch points, in the sense that the image set
of the related branched immersion lies in a flat plane (which could fail to pass through the origin).

(S2) Si ⊂ Σi is a finite subset (S1 = 0) and {λi,n}n ⊂ ℝ+ is a sequence diverging to∞ such that the following

assertions hold (see Section 5.5.3):

(a) {λi,nFn}n converges to fi in Σi \ Si as n →∞.
(b) {λi,nFn}n fails to have bounded second fundamental form around each point of Qi(n) (this is the set

introduced in Definition 5.18, which gives rise to Si).

(c) λi,n/λi+1,n →∞ as n →∞ for each i = 1, . . . , s0 − 1.
Because of properties (S2) (a) and (b), we will refer to Si as the singular set of convergence of λi,nFn to fi .

Example 5.19. We will illustrate the above description with an example based on Figure 5. The blue circle

around Δq1,1 represents a compact Δ-piece of λ1,nFn based at the blow-up points q1,1(n) ∈ Mn which resem-

bles arbitrarily well (for n large) the intersection of the first stage limit f1 : Σ1  ℝ3 introduced in (S1) with

a ball of large radius centered at the origin; the ascending blue straight line segment connecting the blue circle

around Δq1,1 with the red circle around Δq1 represents a component W 1 of the second stage limit f2 : Σ2  ℝ3

which contains at least one point in S2 obtained as a blow-down limit (by scale λ2,n/λ1,n → 0) of the Δ-piece Δq1,1
in λ2,nFn . In fact, each end of f1 is a multi-graph outside of a ball of some finite multiplicitym1 ∈ ℕ, such an end
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∆q2 ∆q3
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Figure 5: Schematic representation of a hierarchyH(Δ) with four levels (top level in red, other levels in blue, green and purple.

produces a branch point for f2 of multiplicity m1 − 1, and the number of leaves of f2 passing through the image
of such a branch point is at least equal to the number of ends of f1. The red circle around Δq1 represents a com-
pact Δ-piece of λ2,nFn which resembles arbitrarily well (for n large) the intersection of f2(Σ2)with a ball of large
radius centered at the origin; the ascending red straight line segment connecting the red circle around Δq1 to the

black circle around Δ represents a component W1 of the third stage limit f3 : Σ3  ℝ3 which contains a point
in S3 obtained as a blow-down limit (by scale λ3,n/λ2,n → 0) of the Δ-piece Δq1 inside λ3,nFn . Similarly to before,
each end of f2 is a multi-graph outside of a ball of some finite multiplicity m2 ∈ ℕ, this end produces a branch
point for f3 of multiplicitym2 − 1, and the number of leaves of f3 passing through such a branch point is at least
equal to the number of ends of f2. The black circle around Δ represents the final compact Δ-piece of λ3,nFn , i.e.,
Proposition 5.16 holds with s0 = 3 for this ”ascending” linear subgraph starting at Δq1,1 and finishing at Δ. If we
start ascending from Δq1,2 instead of from Δq1,1 , we will find again s0 = 3 (although the stage limits are different
than before, since the rescaling is centered at a different blow-up sequence in Mn), but if we start ascending

from Δq2 (resp. from Δq3,1,1 ), we will find s0 = 2 (resp. s0 = 4). BothW 1 and the T-shaped polygonW

2
connecting

the blue circles around Δq1,1 , Δq1,2 with the red circle around Δq1 represent that Σ2 has two components, each

one with its own number of ends, and that each of these ends possibly produce branch points in S3 as explained

above. We will continue with explaining aspects of this Figure 5 in Example 5.20.

We now come back to the general description with the notation in (S1)–(S2) and in Definition 5.18. The hier-
archy H(Δ) of Δ decomposes into finitely many levels, which are defined recursively as follows, starting from
whatwewill call the top level ofH(Δ). There exists a possibly disconnected complete, branchedminimal immer-
sion fT : ΣT  ℝ3 (the subindex T stands for top, in the notation in (S1)–(S2) we have fT = fs0 ), such that the

convergence of portions of suitable expansions λT(n)Fn = λs0 ,nFn of Fn to fT is smooth away from a finite sin-

gular set of convergence ST ⊂ ΣT (ST could be empty), and the second fundamental forms of λT(n)Fn fail to be
bounded around (extrinsically) each point q ∈ ST; suppose that such a point q corresponds to a sequence {q(n)}n
with q(n) ∈ QT(n) ⊂ Mn for n ∈ ℕ sufficiently large. This means that {λT(n)Fn(q(n))}n converges to fT(q) (in
harmonic coordinates of radius R0,T centered at Fn(p1(n)), where R0,T is defined in Definition 5.18 (i) (c)) and

lim
n→∞

sup{|AλT(n)Fn |(x) : x ∈ BλT(n)Xn(Fn(q(n)),
1

m )} = lim
n→∞
|AλT(n)Fn |(q(n)) =∞,

for each m ∈ ℕ sufficiently large. Moreover, the following assertions hold:

(T1) fT is unbranched away from ST.

(T2) The number of ends e(ΣT) of ΣT (resp. the total spinning at infinity S(fT) of fT) equals the number of
boundary components of Δ (resp. total spinning S(Δ) of Δ along ∂Δ):

e(ΣT) = #c(∂Δ) := e(Δ), S(fT) = S(Δ). (5.33)

LetWT be the set of components of ΣT.
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We next make a similar quotient space of the abstract surface ΣT of this branched immersion fT as the one
in Lemma 5.14, thereby defining a quotient space Σ̂T of ΣT, a related quotient map π : ΣT → Σ̂T, and a singular

set

ŜT = π(ST)

defined as in Lemma 5.14. Observe that |ŜT| = |QT(n)| (which is independent of n). Given q ∈ ŜT, let

ST(q) = π−1(q) ⊂ ST .

Thus, every point in ST(q) identifies to the point q in Σ̂T, and every other point of ΣT only identifies with itself.
After endowing Σ̂T with the quotient topology, Σ̂T becomes a path-connected metric space, and fT : ΣT → ℝ3

induces a well-defined continuous map, denoted also by fT : Σ̂T → ℝ3 with a slight abuse of notation. Observe
that Σ̂T \ ŜT has the induced structure of a (smooth) Riemannian surface, and that Σ̂T is a topological surface in
a small neighborhood of a given point q ∈ ŜT if and only if ST(q) consists of a single point. Also, the restriction
of fT to Σ̂T \ ŜT is a minimal immersion with finite total curvature in ℝ3, which is complete away from its limit

point set ŜT in Σ̂T .

Example 5.20. As announced in Example 5.19, we continue to explain some aspects in Figure 5. The red com-
ponent W1 of Σ3 connects to the red circles around Δq1 , Δq2 , meaning that W1 contains at least two distinct

points in S3 which lead to two distinct points q1 , q2 ∈ Ŝ3. The blue componentW 2 of Σ2 connects to the red cir-
cle around Δq1 and to the blue circles around Δq1,1 , Δq1,2 , meaning that W 2 contains at least two distinct points
in S2 which produce distinct points q1,1 , q1,2 ∈ Ŝ2, in contrast to the blue component W 

1
of Σ2, whose points

in S2 only give rise to one point in Ŝ2, namely q1,1.

We now return to the general situation. Given q ∈ ŜT, for all n sufficiently large we can find a related compact,

connected piece Δq = Δq(n) ⊂ Mn satisfying Proposition 5.13 (viii) (f) for F̃n = λT(n)Fn .
The index of Δq is strictly less than the index of Δ. This is clear in the case that ŜT \ {q} ̸= 0. In the case that

ŜT = {q}, we have that fT cannot be flat, since this corresponds to the case J = 1 in Proposition 5.13 (viii) (f). Thus,
we can apply Lemma 3.4 to conclude that fT is not stable, which gives

Index(Δ) ≥ Index(ΣT) + Index(Δq) > Index(Δq).

For different points q, q ∈ ŜT, the corresponding compact domains Δq(n) , Δq(n) ⊂ Mn are disjoint.

Let

VT = VT(n) = {Δq = Δq(n) ⊂ Mn | q ∈ ŜT}.

Given q ∈ ŜT, letWT(q) be the (finite) set of components of ΣT such that eachW ∈WT(q) contains at least one
point of ST(q) = π−1(q). We can choose a finite collection Dq of sufficiently small (possibly branched) stable
minimal disks in ΣT centered at the points in ST(q) such that
(U4) For each componentW of ΣT, it holds I(W) = I(W \⋃q∈ŜT

Dq).
(U5) The set

Vc
T
:= ⋃

q∈ŜT

Dq ⊂ ΣT (5.34)

is contained in the limit as n →∞ of λT(n)VT(n).
Let

Σ
c
T
= ΣT \ Vc

T
. (5.35)

Property (U4) implies that the index I(ΣT) = I(ΣcT). Note that the number of components is #c(ΣT) = #c(Σ
c
T
), since

removing an interior disk from a connected surface does not disconnect it.

Definition 5.21. If ST = 0 in the situation above, then ΣT consists of a single non-flat, connected, unbranched

minimal surface with finite total curvature. In this case, we say that the hierarchyH = H(Δ) of Δ is trivial (with
no levels) and that Δ is aminimal element.

If ST ̸= 0, then we define the top level of Δ = Δ(n) (for n large) as the triple (ŜT ,VT ,WT). In this case, we can
apply for each q ∈ ŜT the above description to the corresponding compact domain Δq (exchange Δ by Δq), which
produces the triple (ŜT(q) ,VT(q) ,WT(q)) associated to Δq with top level T(q). As before, we have two cases.
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∙ If ŜT(q) = 0 for a point q ∈ ŜT, then the hierarchy of Δq is trivial and Δq is called a minimal element. For
instance, in Figure 5, the minimal elements are Δq2 , Δq1,1 , Δq1,2 , Δq3,1,1 , which have associated numbers of

stages s0(q2) = 2, s0(q1,1) = s0(q1,2) = 3, s0(q3,1,1) = 4; observe that the number of stages is not defined for
the Δq-pieces which are not minimal elements.

∙ If ŜT(q) ̸= 0, we say that the corresponding top level (ŜT(q) ,VT(q) ,WT(q)) of Δq is a level of the hierarchyH(Δ)
different from its top level, and proceed recursively. Let us denote by L ∈ ℕ ∪ {0} the number of these levels
ofH(Δ) (different from its top level); see Figure 5 for the schematic representation of a hierarchyH(Δ)with
four levels.

Remark 5.22. (i) Observe that the notion of level only makes sense provided that ŜT ̸= 0.
(ii) This recursive process of assigning levels to Δ (not being aminimal element) is finite, since each Δq has non-

zero index, which can be realized by a compact unstable domain inMn for n large, and the related compact
unstable domains for different q-points in the same level of Δ can be taken pairwise disjoint (recall that the
index of Fn was assumed to be less than or equal to some bound I0 independent of n).

(iii) This recursive process of assigning levels to Δ (not being aminimal element) is finite. In fact, it follows from

the arguments used to prove Proposition 5.13 (viii) (f) that the index increases each time we add a level, and

so L + 1 ≤ I(Δ).

Definition 5.23. We define the singular set Ŝ as the union of all singular sets ŜT(q) for singular points of previ-
ously defined levels (including ŜT). Similarly, we let S be the union of all ST(q) for singular points of previously

defined levels. Let V ⊂ Mn be the union of {Δ} together with all compact pieces Δq for singular points of levels
ofH(Δ), and letW be the union of all components of related limit surfaces ΣT(q) for singular points of previously

defined levels (including ΣT). We define the hierarchyH(Δ) of Δ = Δ(n) (for n large) as the triple (Ŝ,V,W); and
the number L ∈ ℕ ∪ {0} associated to Δ (see Definition 5.21) is called the number of levels ofH(Δ). IfH(Δ) is non-
trivial, a compact domain Δq ∈ V (here q ∈ Ŝ) is called a minimal element of H(Δ) if the hierarchy associated
to Δq is trivial (recall that ifH(Δ) is trivial, we called Δ itself a minimal element).

Example 5.24. (i) Ŝ = 0 if and only if ŜT = 0, if and only if the hierarchy of Δ is trivial. In this case,

W =WT = {ΣT}, VT = 0, V = {Δ}, L = 0,

and Δ is a minimal element.

(ii) The simplest case of a non-trivial hierarchy H(Δ) is that having just one single singular point in its top

level (i.e., Ŝ = ŜT = {q}) and where Δq has one boundary curve. In this example, VT = {Δq}, V = {Δ, Δq},
WT consists of a single, non-flat (non-flatness of this single component of WT follows from the proof of

Proposition 5.13 (viii) (f)), connected, complete minimal surface ΣT with finite total curvature and a unique

branch point at q with branching order at least two,W = {Σ1 , ΣT}, where Σ1 is a non-flat, connected, com-
pleteminimal immersion (no branch points)with finite total curvature, the number of levels is L = 1, and Δq
is a minimal element.

(iii) See Figure 5 for an example of a hierarchy with four levels. In this example,

ŜT = {q1 , q2 , q3}, ŜT(q1) = {q1,1 , q1,2}, ŜT(q3) = {q3,1}, ŜT(q3,1) = {q3,1,1}.

Theminimal elements of this hierarchy are Δq2 , Δq1,1 , Δq1,2 , Δq3,1,1 . The surface ΣT has two (possibly) branched

components W1 ,W2, and the set of branch points of W1 is contained in {q1 , q2}, while the set of branch
points ofW2 is contained in {q2 , q3}. Observe that in this example Δq2 has at least two boundary components
(for n large), one component which corresponds to the boundary of a possibly branched minimal disk in
the limit branched minimal surface W1 and another component which corresponds to the boundary of

a possibly branched minimal disk in the limitW2.

We can equip V with the following partial order: given Δ

, Δ
 ∈ V, we set Δ ⪯ Δ if Δ ⊆ Δ. Thus, Δq ⪯ Δ for

every q ∈ Ŝ, and Δq ∈ V is a minimal element ofH(Δ) precisely when Δq is minimal with respect to the partial
order ⪯.

The set V decomposes into

V = Vm ∪ Vnm
, (5.36)
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where

Vm = {Δ ∈ V | Δ is a minimal element} and Vnm = V \ Vm
.

Note that each non-minimal element Δq ∈ Vnm
with q ∈ Ŝ creates a level of H(Δ) below it with respect to ⪯

(namely, its top level (ŜT(q) ,VT(q) ,WT(q))). Assuming thatH(Δ) is non-trivial, all levels ofH(Δ) except for the top
one are created this way; hence,

L = |Vnm| ifH(Δ) is non-trivial.

Also, observe that |Ŝ| + 1 = |Vm| + |Vnm| regardless of whether or not Δ is a minimal element. In particular,
|Ŝ| ≥ L.

Definition 5.25. We define the excess index associated to the subset of minimal elements of Δ by

I∗(H) = ∑
Δ∈Vm

(I(Δ) − 1) ∈ ℕ ∪ {0}. (5.37)

This abstract model of the hierarchyH(Δ) produces a “decomposition” of the compact domain Δ = Δ(n) ⊂ Mn
for n ∈ ℕ large into compact pieces (in the sense that each piece is a compact surfacewith boundary inside Δ, the
union of the pieces is Δ and the pieces only intersect along their boundaries): these pieces correspond to the Δq
with q ∈ ŜT (observe that Δq = Δq(n) is contained in Mn), together with a (finitely connected) compact surface

W(n) ⊂ Δ(n) which is the closure of Δ \ (⋃q∈ŜT
Δq). Observe that, after suitable rescaling by some λT(n) ∈ ℝ+

diverging to∞, the λT(n)W(n) converge as n →∞ to the components of the surface Σ
c
T
defined in (5.35).

The cardinality |V| is less than or equal to the index of Δ, since the collection {Δq | q ∈ V} is pairwise disjoint
and each Δq has positive index (see Remark 5.22).

Definition 5.26. We define

{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{
{

S = ⋃
q∈Ŝ

π−1(q)

W(∂ = 1) is the set of componentsW ∈W such that |W ∩ S| = 1,
Wf

is the set of flat components inW,

Wt =W(∂ = 1) ∩Wf
is the set of trivial components inW,

Wnt =W \Wt
is the set of non-trivial components inW,

Wnt,f
is the set of non-trivial flat components inW,

Wnt,nf =Wnt \Wnt,f
is the set of non-trivial, non-flat components inW,

W(∂ > 1) =W \W(∂ = 1) is the set of componentsW ∈W such that |W ∩ S| > 1.

(5.38)

We will also need the following decomposition ofWnt,nf
:

Wnt,nf =Wnt,nf (∂ = 1) ∪Wnt,nf (∂ > 1), (5.39)

where

Wnt,nf (∂ = 1) =Wnt,nf ∩W(∂ = 1) (resp.Wnt,nf (∂ > 1) =Wnt,nf ∩W(∂ > 1)).

In turn, the following decomposition ofWnt,nf (∂ > 1) will be useful:

Wnt,nf (∂ > 1) =Wnt,nf,or(∂ > 1) ∪Wnt,nf,no(∂ > 1), (5.40)

where the super-index “or” (orientable), “no” (non-orientable) refers to the orientability character of each

component.

In this paragraph, we indicate how the notion of hierarchy arises in the proof of the Structure Theorem 1.2.

,we used the notion of “ascension with s0 stages” associated to a sequence of points p1(n) ∈ Mn with sufficiently

large norm of its second fundamental form, which created a compact piece Δ = Δ1, defined just after (K2’). This
is the first step in constructing the hierarchyH(Δ), and in the previous sections we have proven the following
partial result related to Theorem 1.2: For any

(F : M  X) ∈ Λ = Λ(I, H0 , ε0 , A0 , K0),
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there exists a (possibly empty) finite collection of points

PF = {p1 , . . . , pk} ⊂ U(∂M, ε0 ,∞), k ≤ I,

numbers rF(1), . . . , rF(k) ∈ [δ1 , δ2 ] with rF(1) > 4rF(2) > ⋅ ⋅ ⋅ > 4k−1rF(k) and related domains {Δ1 , . . . , Δk} sat-
isfying assertions (i)–(iii), (I) and (V) of Theorem 1.2, with respect to some constant A1 = A1(Λ) ∈ [A0 ,∞). It
remains to prove that A1 = A1(Λ) ∈ [A0 ,∞) can also be chosen sufficiently large so that (II)–(IV) of Theorem 1.2

also hold for each Δ = Δi , i = 1, . . . , k. Otherwise, for some i = 1, . . . , k, at least one of (II)–(IV) of the theorem
fails to hold for Δ = Δi; without loss of generality, assume that Δ = Δ1. In this case, we may consider F|Δ : Δ  X
to be an element in Λ

 = Λ(I, H0 , δ1/3, A1 , K0) (regarding the bound A1 of the second fundamental form of F|Δ
in the

δ1
3
-neighborhood of its boundary, see the two paragraphs just after Definition 5.4). The failure of the

Structure Theorem to hold for Δ, no matter how large one chooses A1, leads to a sequence

(Fn : Δ(p1(n))  Xn) ∈ Λ(I, H0 ,
δ1
3
, A1 , K0),

where the norm of the second fundamental form of Fn has a maximum value greater than n at p1(n) ∈ Δ.
By our previous arguments, after replacing by a subsequence, (Fn : Δ(p1(n))  Xn) leads to the creation of a

hierarchyH(Δ) for Δ = Δ(n). It is this hierarchy that we are referring to in the statement of Theorem 5.27 below.

The notion of the hierarchyH(Δ) has a good behavior with respect to proving properties by induction on
the number L of levels, which will be themethod of proof of Theorem 5.27 below. Observe that the truncation of

a hierarchyH(Δ)with L ≥ 1 levels by simply deleting its top level is again a hierarchy, with the only difference
that the role of Δ is played by the disjoint union of the compact pieces Δq with q ∈ ŜT. To simplify the notation
in the next statement, we will denote again by Δ this disjoint union, and so we will no longer assume that Δ is

connected; by hierarchy of such a disconnected Δ, wemean the union of the hierarchies of the components of Δ.

Theorem 5.27. Let Δ be as described previously and let it be finitely connected. Then the index I(Δ) of Δ can be
estimated from below by

6I(Δ) ≥ −χ(Δ) + 2S(Δ) + e(Δ) + C(H), (5.41)

where χ(Δ) is the Euler characteristic of Δ, e(Δ) = #c(∂Δ) is the number of boundary components, S(Δ) is the total
spinning of Δ along its boundary, and the “correction term” C(H) is the following non-negative integer, which
depends on the complexity of the hierarchyH of Δ:

C(H) = 3I∗(H) + |Ŝ| − L + |Wnt,f | + 2|Wnt,nf (∂ = 1)| + 3|Wnt,nf,or(∂ > 1)|, (5.42)

where Ŝ is the singular set of the hierarchyH and L ≥ 0 is the number of its levels. Furthermore, if Δ is connected
and has a trivial hierarchy, then I∗(H) = I(Δ) − 1, C(H) = 3I(Δ) − 3, and so (5.41) reduces to the Chodosh–Maximo
estimate (3.5).

Remark 5.28. If Δ is orientable, the relation χ(Δ) = 2#c(Δ) − 2g(Δ) − e(Δ) allows us to write (5.41) as

6I(Δ) ≥ 2g(Δ) + 2S(Δ) + 2e(Δ) − 2#c(Δ) + C(H). (5.43)

Proof of Theorem 5.27. First, observe that the functions I(Δ), χ(Δ), S(Δ), e(Δ) are additive on components of Δ.
The same holds for C(H), with the understanding that adding components of Δ also adds the number of levels as
well as the other terms appearing in (5.42). Therefore, (5.41) holds if it holds for connected Δ. The proof of (5.41)

will be carried out by induction on the number L ≥ 0 of levels ofH(Δ).
Suppose first that Δ is connected and its hierarchyH is trivial. In this case, L = 0 and

|Ŝ| = |Wnt,f | = |Wnt,nf (∂ = 1)| = |Wnt,nf,or(∂ > 1)| = 0.

Hence, C(H) = 3I∗(H) = 3I(Δ) − 3, which reduces (5.41) to (3.5). This argument also proves the last statement in
the theorem.

By the principle of mathematical induction, assume that L > 0 is the number of levels of Δ and that (5.41)
holds for (possibly disconnected) Δ


if its hierarchyH has less than L levels. Without loss of generality, we will

assume that Δ is connected. Since L > 0, we have thatH(Δ) is non-trivial, ŜT ̸= 0 and VT ̸= 0.
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By (5.36), the set VT can be written as the disjoint union

VT = Vm
T
∪ Vnm

T
, (5.44)

where Vm
T
= VT ∩ Vm

and Vnm
T
= VT ∩ Vnm

.

In the first paragraph after Definition 5.25, we explained that, for n large, Δ = Δ(n) can be decomposed

into the compact pieces Δq with q ∈ ST and finitely many compact connected domainsW(n) whose indices are
independent of n and satisfy

I(W(n)) = I(W),

for some componentW ∈W ∩ ΣT. This equality, together with (5.44), leads us to the inequality

I(Δ) ≥ I(Vm
T
) + I(Vnm

T
) + I(ΣT). (5.45)

To estimate the first term in the right-hand side of (5.45), we will apply (3.5) to each of the components Δq ∈ Vm
T

(observe that the total branching number B in (3.5) vanishes in our setting), so we get

6I(Vm
T
) = 3I(Vm

T
) + 3I(Vm

T
)

≥ −χ(Vm
T
) + 2S(Vm

T
) + e(Vm

T
) − 3#c(Vm

T
) + 3I(Vm

T
) (by (3.5))

= −χ(Vm
T
) + 2S(Vm

T
) + e(Vm

T
) + 3I∗(Vm

T
) (by (5.37)).

(5.46)

Since the number of levels of the hierarchy for each compact piece Δq with q ∈ Vnm
T

is less than L, we can
estimate the second term in the right-hand side of (5.45) by the induction hypothesis. Hence,

6I(Vnm
T
) ≥ −χ(Vnm

T
) + 2S(Vnm

T
) + e(Vnm

T
) + C(Vnm

T
), (5.47)

where C(Vnm
T
) is the sum of the correction terms C(H) with H varying in the hierarchies of all compact

pieces Δq with q ∈ Vnm
T
.

To estimate the third term in the right-hand side of (5.45), we will apply (3.5) to each of the components

of ΣT, so we get

3I(ΣT) ≥ −χ(ΣT) + 2S(fT) + e(ΣT) − 2B(ΣT) − 3#c(ΣT) + #c(Σ
f
T
), (5.48)

where #c(Σ
f
T
) is the number of flat components of ΣT (see Remark 3.3 (i)).

Thus,

6I(Δ) ≥ 6I(Vm
T
) + 6I(Vnm

T
) + 3I(ΣT) + 3I(ΣT) (by (5.45))

≥ −χ(Vm
T
) + 2S(Vm

T
) + e(Vm

T
) + 3I∗(Vm

T
)

− χ(Vnm
T
) + 2S(Vnm

T
) + e(Vnm

T
) + C(Vnm

T
)

− χ(ΣT) + 2S(fT) + e(ΣT) − 2B(ΣT) − 3#c(ΣT) + #c(Σ
f
T
) + 3I(ΣT) (by (5.46)–(5.48)).

Since

B(ΣT) = S(VT) − e(VT) = [S(Vm
T
) − e(Vm

T
)] + [S(Vnm

T
) − e(Vnm

T
)],

the right-hand side of the last expression can be written as

− χ(Vm
T
) + 3e(Vm

T
) + 3I∗(Vm

T
) − χ(Vnm

T
) + 3e(Vnm

T
) + C(Vnm

T
)

− χ(ΣT) + 2S(fT) + e(ΣT) − 3#c(ΣT) + #c(Σ
f
T
) + 3I(ΣT).

By using

χ(Δ) = χ(Vm
T
) + χ(Vnm

T
) + χ(ΣT) − e(Vm

T
) − e(Vnm

T
), e(VT) = e(Vm

T
) + e(Vnm

T
)

and (5.33), we can rewrite the last displayed expression as

− χ(Δ) + 2S(Δ) + e(Δ) (5.49)

+ 2e(VT) − 3#c(ΣT) + 3I(ΣT) + #c(Σ
f
T
) (5.50)

+ 3I∗(Vm
T
) + C(Vnm

T
). (5.51)

We next analyze the terms in (5.50).
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First, note that e(VT) = #c(∂ΣcT), where Σ
c
T
is the surface defined in (5.35). With this in mind, we denote by

Wc
T
the set of components of Σ

c
T
and obtain the equation

2#c(∂ΣcT) − 3#c(Σ
c
T
) + 3I(ΣT) = ∑

W c∈Wc
T

(2#c(∂W c) − 3 + 3I(W c)). (5.52)

We will analyze the sum in the right-hand side of (5.52) attending to the following partition of Wc
T
(compare

to (5.38) and (5.39)):

(Q1) W
c,t
T
is the subset of trivial components inWc

T
.

(Q2) W
c,nt
T
(∂ = 1) is the subset of components inWc

T
that have one boundary curve and are non-trivial. Equiv-

alently, it is the subset of components inWc
T
that have one boundary curve and are not flat.

(Q3) W
c,nt,f
T

is the subset of components inWc
T
that have more than one boundary curve and are flat.

(Q4) W
c,nt,nf
T
(∂ > 1) is the subset of components inWc

T
having more than one boundary curve and which are

not flat.

For the case (Q1), we have the equation

∑
W c∈Wc,t

T

(2#c(∂W c) − 3 + 3I(W c)) + #c(Σ
f
T
) = ∑

W c∈Wc,t
T

(2 − 3 + 0) + |Wc,t
T
| + |Wc,nt,f

T
|

= −|Wc,t
T
| + |Wc,t

T
| + |Wc,nt,f

T
|

= |Wc,nt,f
T
|.

(5.53)

Regarding the case (Q2), for elements W c ∈Wc,nt
T
(∂ = 1) we will estimate I(W c) ≥ 1 (observe that this

inequality holds even ifW c
is non-orientable, by Lemma 3.4 (ii)). Therefore,

∑
W c∈Wc,nt

T
(∂=1)

(2#c(∂W c) − 3 + 3I(W c)) = ∑
W c∈Wc,nt

T
(∂=1)

(2 − 3 + 3I(W c)) ≥ 2|Wc,nt
T
(∂ = 1)|. (5.54)

The cases (Q3) and (Q4) deal with the subsetWc
T
(∂ > 1) of components inWc

T
having more than one bound-

ary curve. For those, we will show the following estimate.

Lemma 5.29. In the situation above,

∑
W c∈Wc

T
(∂>1)
(2#c(∂W c) − 3) ≥ |ŜT| − 1. (5.55)

Let Yc denote the set of components W c ∈Wc
T
(∂ > 1) which have boundary curves on at least two different

components of Vc
T
(defined in (5.34)).

(i) If |ŜT| = 1 and equality in (5.55) holds, thenWc
T
(∂ > 1) = 0 (equivalently,Wc

T
=Wc,t

T
∪Wc,nt

T
(∂ = 1)).

(ii) If |ŜT| > 1 and equality occurs in (5.55), then Yc =Wc
T
(∂ > 1),W c has exactly two boundary components for

eachW c ∈ Yc , and |Yc| = |ŜT| − 1 (see Figure 6).

Proof. Observe that the left-hand side of (5.55) is the sum of a possibly empty set of positive integers, where

we declare this sum to be zero if this set of positive integers is empty (equivalently, if Wc
T
(∂ > 1) = 0). Recall

that ŜT ̸= 0. If |ŜT| = 1, then the right-hand side of (5.55) is zero, and hence the inequality (5.55) holds in this

case. If moreover equality holds in (5.55), thenWc
T
(∂ > 1) = 0, and so (i) of the lemma holds. Hence it remains

to prove (5.55) and assertion (ii) of the lemma assuming that |ŜT| > 1.
Let Y be the set of components W of ΣT such that π(W) contains at least two points in ŜT. Observe that

Y ⊂Wnt ∩W(∂ > 1) and that
W ∈ Y if and only if W ∩ Σc

T
∈ Yc .

Therefore,

∑
W c∈Wc

T
(∂>1)
(2#c(∂W c) − 3) ≥ ∑

W∈Y
(2#c(∂[W ∩ ΣcT]) − 3). (5.56)
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∆q1
∆q2 ∆q3

W c
1 W c
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∆q4
∆q5

W c
4W c

3

Figure 6: Schematic representation of the top level of a hierarchyH(Δ) where equality occurs in (5.55). Here, ŜT = {q i | i = 1, . . . , 5},
VT = {Δqi | i = 1, . . . , 5}, Yc =Wc

T(∂ > 1) = {W
c
1 ,W

c
2 ,W

c
3 ,W

c
4}, and Δq1 , Δq5 both have one boundary curve, while the Δqi (i = 2, 3, 4) have

two boundary components each.

Since Σ̂T is path-connected and we are assuming that |ŜT| > 1, for every pair of points q, q ∈ ŜT there exists
an embedded path γ : [0, 1]→ Σ̂T with γ(0) = q, γ = q. In particular, γ contains an embedded open subarc with
beginning point q and ending point q ∈ ŜT \ {q} such that, for some component W(q) of Y, we can view this

open subarc as being contained in the interior of π(W(q)) \ ŜT. In particular, q ∈ π(W(q)). Since this holds for
every q ∈ ŜT, we deduce that

ŜT ⊂ π( ⋃
W∈Y

W).

AlthoughW(q)might be non-unique, we will use the axiom of choice to assign a map

q ∈ ŜT → W(q) ∈ Y such that q ∈ π(W(q)).

For q ∈ ŜT, let
ŜT(W(q)) = π(W(q)) ∩ ŜT .

Thus, |ŜT(W(q))| ≥ 2 for each q ∈ ŜT.
Notice that, for each q ∈ ŜT(W(q)),W(q) ∩ ΣcT contains at least one boundary curve in ∂Dq (recall thatDq

was defined right before (5.34)). Hence,

#c(∂[W(q) ∩ ΣcT]) ≥ |ŜT(W(q))|. (5.57)

We will construct l ∈ ℕ points q1 , q2 , . . . , ql ∈ ŜT such that

qi+1 ∈ ŜT \ [
i
⋃
j=1

ŜT(W(qj))] and |ŜT(W(q1)) ∪ ⋅ ⋅ ⋅ ∪ ŜT(W(ql))| = |ŜT|.

Choose an arbitrary q1 ∈ ŜT with a relatedW(q1) ∈ Y. Since |ŜT(W(q1))| ≥ 2,

2#c(∂[W(q1) ∩ ΣcT]) − 3 ≥ 2|ŜT(W(q1))| − 3 (by (5.57))

= (|ŜT(W(q1))| − 1) + (|ŜT(W(q1))| − 2) (by (5.57))
≥ |ŜT(W(q1))| − 1.

(5.58)

If

|ŜT(W(q1))| = |ŜT|,

then l = 1 in our construction of points, and (5.55) follows from (5.56) and (5.58).

Suppose

|ŜT(W(q1))| < |ŜT|.

Since Σ̂T is path-connected, there exists a shortest embedded arc α1 in Σ̂T from π(W(q1)) to the finite set

ŜT \ ŜT(W(q1)) with one of its end points being some q2 ∈ ŜT \ ŜT(W(q1)) and its other end point in ŜT(W(q1)).
In particular,

|ŜT(W(q1)) ∩ ŜT(W(q2))| ≥ 1.
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Note that

2

∑
i=1
(2#c(∂[W(qi) ∩ ΣcT]) − 3) ≥

2

∑
i=1
(2|ŜT(W(qi))| − 3) (by (5.57))

=
2

∑
i=1
|ŜT(W(qi))| +

2

∑
i=1
(|ŜT(W(qi))| − 3)

= |ŜT(W(q1)) ∪ ŜT(W(q2))| + |ŜT(W(q1)) ∩ ŜT(W(q2))| +
2

∑
i=1
(|ŜT(W(qi))| − 3)

= (|ŜT(W(q1)) ∪ ŜT(W(q2))| − 1)

+ (|ŜT(W(q1)) ∩ ŜT(W(q2))| − 1) +
2

∑
i=1
(|ŜT(W(qi))| − 2).

(5.59)

If

|ŜT(W(q1)) ∪ ŜT(W(q2))| = |ŜT|,

then l = 2 in our construction of points, and (5.55) follows from (5.56) and (5.59).

If

|ŜT(W(q1)) ∪ ŜT(W(q2))| < |ŜT|,

then there exists a shortest embedded arc α2 in Σ̂T from π(W(q1)) ∪ π(W(q2)) to the finite set

ŜT \ [ŜT(W(q1)) ∪ ŜT(W(q2))]

with one of its end points being some

q3 ∈ ŜT \ [ŜT(W(q1)) ∪ ŜT(W(q2))]

and its other end point in ŜT(W(q1)) ∪ ŜT(W(q2)). In particular,

|[ŜT(W(q1)) ∪ ŜT(W(q2))] ∩ ŜT(W(q3))| ≥ 1.

Note that

3

∑
i=1
(2#c(∂[W(qi) ∩ ΣcT]) − 3) ≥

3

∑
i=1
(2|ŜT(W(qi))| − 3) (by (5.57))

=
3

∑
i=1
|ŜT(W(qi))| +

3

∑
i=1
(|ŜT(W(qi))| − 3)

= (


3

⋃
i=1

ŜT(W(qi))

− 1) + (|[ŜT(W(q1)) ∪ ŜT(W(q2))] ∩ ŜT(W(q3))| − 1)

+ (|ŜT(W(q1)) ∩ ŜT(W(q2)| − 1)) +
3

∑
i=1
(|ŜT(W(qi))| − 2).

(5.60)

If



3

⋃
i=1

ŜT(W(qi))

= |ŜT|,

then l = 3 in our construction of points, and (5.55) follows from (5.56) and (5.60).

If



3

⋃
i=1

ŜT(W(qi))

< |ŜT|,

then we repeat the above process finitely many times (because ŜT is finite), finding points q1 , . . . , ql ∈ ŜT such
that


(
j−1
⋃
i=1

ŜT(W(qi))) ∩ ŜT(W(qj))

≥ 1 for each j = 2, . . . , l,
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and



l
⋃
i=1

ŜT(W(qi))

= |ŜT|.

Then

l
∑
i=1
(2#c(∂[W(qi) ∩ ΣcT]) − 3)

≥
l
∑
i=1
(2|ŜT(W(qi))| − 3) (by (5.57))

=
l
∑
i=1
|ŜT(W(qi))| +

l
∑
i=1
(|ŜT(W(qi))| − 3)

= (


l
⋃
i=1

ŜT(W(qi))

− 1) +

l
∑
j=2
(

(
j−1
⋃
i=1

ŜT(W(qi))) ∩ ŜT(W(qj))

− 1) +

l
∑
i=1
(|ŜT(W(qi))| − 2).

(5.61)

As |⋃li=1 ŜT(W(qi))| = |ŜT|, inequality (5.55) follows from (5.56) and (5.61).

If equality in (5.55) occurs, then equality in (5.56) implies that Yc =Wc
T
(∂ > 1), or equivalently,

Y =WT(∂ > 1) =W(∂ > 1) ∩ ΣT :=WT \ [Wt
T
∪Wnt

T
(∂ = 1)].

Since the right-hand side of (5.56) must be equal to the left-hand side of (5.61), we deduce that

Y = {W(qi) | i = 1, . . . , l}

and that equality holds in (5.57) for each i = 1, . . . , l. Since the third sum in the right-hand side of (5.61) vanishes,

we conclude that |ŜT(W(qi))| = 2 for each i = 1, . . . , l. Finally, |Yc| = |ST| − 1 because 2#c(∂[W ∩ ΣcT]) − 3 = 1 for
eachW ∈ Y. This completes the proof of Lemma 5.29.

We continue proving Theorem 5.27. We can estimate (5.50) as follows:

2e(VT) − 3#c(ΣT) + 3I(ΣT) + #c(Σ
f
T
)

= ∑
W c∈Wc

T

(2#c(∂W c) − 3 + 3I(W c)) + #c(Σ
f
T
) (by (5.52))

≥ |Wc,nt,f
T
| + 2|Wc,nt

T
(∂ = 1)| + |ŜT| − 1 + ∑

W∈WT(∂>1)
3I(W) (by (5.53)–(5.55)).

(5.62)

In order to bound from below the last sum in (5.62), note that ifW ∈WT(∂ > 1), then eitherW is flat (and

then I(W) = 0), or W is orientable and non-flat (in which case we estimate I(W) ≥ 1), or W is non-orientable

with |W ∩ ST| = 1 and #c(∂[W ∩ Σc]) > 1 (in which case we estimate I(W) ≥ 2 by Lemma 3.4 (ii)), or else W is

non-orientable with |W ∩ ST| > 1 (in which case we estimate I(W) ≥ 0). Therefore, setting

W∗
T
= {W ∈WT | W is non-orientable, |W ∩ ST| = 1, #c(∂[W ∩ ΣcT]) > 1},

W
nt,nf,or
T
(∂ > 1) =Wnt,nf,or(∂ > 1) ∩WT ,

we deduce that

∑
W∈WT(∂>1)

3I(W) ≥ 6|W∗
T
| + 3|Wnt,nf,or

T
(∂ > 1)|. (5.63)

Using that |W∗
T
| ≥ 0, from (5.62) and (5.63) we get the following estimate from below for (5.50):

2e(VT) − 3#c(ΣT) + 3I(ΣT) + #c(Σ
f
T
) ≥ (|ŜT| − 1) + |W

c,nt,f
T
| + 2|Wc,nt

T
(∂ = 1)| + 3|Wnt,nf,or

T
(∂ > 1)|. (5.64)

By the additivity in components of the correction term C(H) defined in (5.42), we canwrite C(H) as the sum
of C(Vnm

T
) plus the terms in (5.42) that are added in the top level, that is,

C(H) = C(Vnm
T
) + [3I∗(Vm

T
) + (|ŜT| − 1) + |W

c,nt,f
T
| + 2|Wc,nt

T
(∂ = 1)| + 3|Wnt,nf,or

T
(∂ > 1)|]. (5.65)
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Thus, (5.64) and (5.65) give

2e(VT) − 3#c(ΣT) + 3I(ΣT) + #c(Σ
f
T
) ≥ C(H) − C(Vnm

T
) − 3I∗(Vm

T
). (5.66)

By (5.66), the sum of (5.50) and (5.51) is at least C(H). Adding this last inequality with (5.49), we obtain (5.41), as
desired. This completes the proof of Theorem 5.27.

Definition 5.30. Observe that, given q ∈ Ŝ, the compact piece Δq has itself a hierarchy (Ŝq ,Vq ,Wq), whose
related sets are subsets of the corresponding ones for the hierarchy of Δ, i.e., Ŝq ⊂ Ŝ,Vq ⊂ V andWq ⊂W. Clearly,

the hierarchy of Δq has strictly less levels than the hierarchy of Δ. We defineO(H) ∈ ℕ ∪ {0} to be the number of
levels inHwhich consist of one Δq-piece (equivalently, the number of levels inHwhose singular set is unitary)

ifH is non-trivial. IfH is trivial, we let O(H) = 0.

For instance, the hierarchy given in Example 5.24 (ii) has O(H) = 1, and the one in Example 5.24 (iii) (given by
Figure 5) has O(H) = 2.

Corollary 5.31. Let Δ,H be as in Theorem 5.27, with H non-trivial. If Δ is non-orientable, then inequality (5.41)
holds after replacing C(H) by the following correction term:

Cno(H) := C(H) + 6|W∗| ≥ 3I∗(H) + |Ŝ| − L + 2O(H) ≥ L, (5.67)

where W∗ is the set of components W ∈W which are non-orientable with |W ∩ S| = 1 and #c(∂(W \ Vc)) > 1;
here Vc = ⋃q∈S Dq andDq was defined just before (5.34).

Proof. In passing from (5.63) to (5.64) in the derivation of the correction term C(H) of (5.41), we neglected to keep
the term 6|W∗

T
| of (5.63). If we include this term (which can only be non-zero provided that Δ is non-orientable),

then previous calculations in the derivation of C(H) imply that inequality (5.41) holds after replacing C(H) by
C(H) + 6|W∗|.

Next we prove both inequalities in (5.67). Both inequalities are additive in the levels of the hierarchy, so it

suffices to prove that each levelH ofH satisfies

Cno(H) ≥ 3I∗(H) + |Ŝ(H)| − 1 + 2O(H) ≥ 1, (5.68)

where Cno(H), I∗(H), |Ŝ(H)|, O(H) denote the related numbers referred just to the level H, for instance
Ŝ(H) ̸= 0 is the singular set of the levelH, Cno(H) is given by

Cno(H) = 3I∗(H) + |Ŝ(H)| − 1 + |Wnt,f
H | + 2|W

nt,nf
H (∂ = 1)| + 3|W

nt,nf,or
H (∂ > 1)| + 6|W∗(H)|, (5.69)

and O(H) takes the value 1 if |Ŝ(H)| = 1, and 0 if |Ŝ(H)| ≥ 2.
We will prove that (5.68) holds by considering two mutually exclusive cases.

(a) Suppose that |Ŝ(H)| ≥ 2. In this case, the second inequality in (5.68) clearly holds. SinceO(H) = 0, the first
inequality also holds.

(b) Suppose now that |Ŝ(H)| = 1. Thus, O(H) = 1 and at least one of the terms |W∗(H)|, |Wnt,nf
H (∂ = 1)| or

|Wnt,nf,or
H (∂ > 1)| is positive, which proves that the first inequality in (5.68) holds. The second inequality also

holds since

3I∗(H) + |Ŝ(H)| − 1 + 2O(H) ≥ 2O(H) = 2.

Hence, (5.68) holds and the corollary is proved.

In order to state and prove the orientable version of Corollary 5.31, we will need the following lemma (compare

to Lemma 5.29).

Lemma 5.32. Let Δ andH be as in Theorem 5.27, withH non-trivial. If Δ is orientable, then

∑
W c∈Wc

T
(∂>1)
(2#c(∂W c) − 3 + 3I(W c)) + |Wc,nt,f

T
| ≥ 2(|ŜT| − 1). (5.70)

Let Yc be defined as in Lemma 5.29.
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(i) If |ŜT| = 1 and equality in (5.70) holds, thenWc
T
(∂ > 1) = 0 (equivalently,Wc

T
=Wc,t

T
∪Wc,nt

T
(∂ = 1)).

(ii) If |ŜT| > 1 and equality occurs in (5.70), then Yc =Wc
T
(∂ > 1),W c has exactly two boundary components for

eachW c ∈ Yc , |Yc| = |ŜT| − 1, and every component in Yc is flat.

Proof. If |ŜT| = 1, then (5.70) clearly holds aswell as (i), by the same reason as in the proof of Lemma 5.29. Assume
that |ŜT| > 1. Since Yc ⊂Wc

T
(∂ > 1),

∑
W c∈Wc

T
(∂>1)
(2#c(∂W c) − 3 + 3I(W c)) + |Wc,nt,f

T
| ≥ ∑

W c∈Yc
(2#c(∂W c) − 3 + 3I(W c)) + |Wc,nt,f

T
∩ Yc|, (5.71)

with equality if and only if

W
c,nt,f
T
⊂ Yc =Wc

T
(∂ > 1).

Suppose thatW c ∈ Yc has l ≥ 2 boundary curves. IfW c
is non-flat, then it makes a contribution of at least 2l

to the right-hand side of (5.71) (note that I(W c) ≥ 1 becauseW c
is orientable and non-flat). On the other hand,

if W c
is flat, then it makes a contribution of at least 2l − 2 to the right-hand side of (5.71). Thus, the right-hand

side of (5.71) takes on its smallest possible value precisely when every component of Yc is flat. In this case, we

get the next lower estimate for the right-hand side of (5.71) with equality if and only if every component of Yc

is flat:

∑
W c∈Yc
(2#c(∂W c) − 3 + 3I(W c)) + |Wc,nt,f

T
∩ Yc| ≥ ∑

W c∈Yc
(2#c(∂W c) − 3) + |Yc|. (5.72)

Finally, a calculation similar to the one used to prove Lemma 5.29 demonstrates that the minimum value of the

right-hand side of (5.72) occurs precisely when Yc satisfies the second statement in Lemma 5.29; in particular,

|Yc| = |ŜT| − 1 in this case. Applying (5.55), we have

∑
W c∈Yc
(2#c(∂W c) − 3) + |Yc| ≥ |ŜT| − 1 + |Yc|, (5.73)

with equality if and only if |Yc| = |ŜT| − 1 by Lemma 5.29 (ii), in which case the right-hand side of (5.73) equals
2(|ŜT| − 1). This completes the proof of (5.70). Assertion (ii) of Lemma 5.32 concerning Yc follows as well from
the above discussion. Now the proof of Lemma 5.32 is finished.

Corollary 5.33. Let Δ and H be as in Theorem 5.27. If Δ is orientable, then inequality (5.41) holds after replac-
ing C(H) by the following correction term:

Cor(H) = 3I∗(H) + 2(|Ŝ| − L) + 2|Wnt,nf (∂ = 1)| + 3|Wnt,nf,or(∂ > 1)|. (5.74)

Furthermore, the new correction term satisfies

Cor(H) ≥ 3I∗(H) + 2(|Ŝ| − L) + 2O(H) ≥ 2L. (5.75)

Proof. The argument is very similar to the one for proving Corollary 5.31, sowewill only focus on the differences
and use the same notation. We first check that

6I(Δ) ≥ −χ(Δ) + 2S(Δ) + e(Δ) + Cor(H), (5.76)

where Cor(H) is given by equation (5.74). The proof of this fact proceeds exactly as in the proof of (5.41) for the
correction term C(H), except in the estimate in (5.64) one uses Lemma 5.32 to obtain

2e(VT) − 3#c(ΣT) + 3I(ΣT) + #c(Σ
f
T
) ≥ 2(|ŜT| − 1) + 2|W

nt,nf
T
(∂ = 1)| + 3|Wnt,nf,or

T
(∂ > 1)|.

This completes the proof that, for Δ orientable, (5.76) holds.

We next prove (5.75) holds. IfH is trivial, then |Ŝ| = L = O(H) = 0 and

Cor(H) = 3I∗(H) (5.37)= 3I(Δ) − 3.
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Consequently, equality holds in the first inequality of (5.75), while the second inequality reduces to 3I(Δ) − 3 ≥ 0,
which holds since I(Δ) ≥ 1. Suppose in the sequel thatH is non-trivial. By additivity, we can reduce the proof to

proving that each levelH ofH satisfies

Cor(H) ≥ 3I∗(H) + 2(|Ŝ(H)| − 1) + 2O(H) ≥ 2, (5.77)

where

Cor(H) = 3I∗(H) + 2(|Ŝ(H)| − 1) + 2|Wnt,nf
H (∂ = 1)| + 3|W

nt,nf
H (∂ > 1)|.

First, suppose that |Ŝ(H)| ≥ 2. In this case, the second inequality in (5.77) clearly holds. Since O(H) = 0 in
this case, then the first inequality in (5.77) also holds.

Suppose now that |Ŝ(H)| = 1, and so O(H) = 1. The second inequality in (5.77) holds because I∗(H) ≥ 0
and 2(|Ŝ(H)| − 1) + 2O(H) = 2. The first inequality also holds because in this case

2|Wnt,nf
H (∂ = 1)| + 2|W

nt,nf
H (∂ > 1)| ≥ 2 = 2O(H).

Hence, (5.77) holds and the corollary is proved.

Proposition 5.34. Let Δ andH be as in Theorem 5.27, with Δ connected.
(i) If I(Δ) = 1, thenH is trivial, Δ is orientable, g(Δ) = 0, and (e(Δ), S(Δ)) ∈ {(2, 2), (1, 3)}. In particular, equality

in (5.41) holds.
(ii) IfH is trivial and Δ is orientable, then 2g(Δ) ≤ 3I(Δ) − 3, 2e(Δ) ≤ 3I(Δ) + 1 and 2S(Δ) ≤ 3I(Δ) + 3.
(iii) If H is trivial and Δ is non-orientable, then I(Δ) ≥ 2, S(Δ) ≥ 3, g(Δ) ≤ 3I(Δ) − 4, 2e(Δ) ≤ 3I(Δ) − 2, and

2S(Δ) ≤ 3I(Δ) + 2.
(iv) IfH is non-trivial with L > 0 levels, then S(Δ) ≥ 2 and I(Δ) ≥ 1 + L.
(v) If H is non-trivial with L > 0 levels and Δ is orientable, then g(Δ) ≤ 3I(Δ) − L − 3, e(Δ) ≤ 3I(Δ) − L − 1 and

S(Δ) ≤ 3I(Δ) − L.
(vi) If H is non-trivial with L > 0 levels and Δ is non-orientable, then g(Δ) ≤ 6I(Δ) − L − 7, 2e ≤ 6I − L − 3 and

2S(Δ) ≤ 6I(Δ) − L − 1.

Proof. Suppose I(Δ) = 1. Then the non-flat limit minimal immersion f1 : Σ1  ℝ3 found in Section 5.5.1 has

index 1, and Proposition 5.3 implies that the hierarchyH of Δ is trivial. Furthermore, [6, Theorem 1.8] ensures

that f1 must be two-sided, and since the index of f1 is one, f1(Σ1) is either a catenoid or an Enneper minimal

surface [14]. In particular, g(Δ) = 0 and (e(Δ), S(Δ)) ∈ {(2, 2), (1, 3)}. This proves (i).
To prove (ii) and (iii), suppose thatH is trivial. By Theorem 5.27, inequality (5.41) can be written as

3I(Δ) ≥ −χ(Δ) + 2S(Δ) + e(Δ) − 3.

After replacing χ(Δ) by 2 − 2g(Δ) − e(Δ) provided that Δ is orientable (resp. by 1 − g(Δ) − e(Δ) if Δ is non-

orientable), we get

3I(Δ) ≥ 2g(Δ) + 2e(Δ) + 2S(Δ) − 5 if Δ is orientable,

3I(Δ) ≥ g(Δ) + 2e(Δ) + 2S(Δ) − 4 if Δ is non-orientable.

We next discuss on the orientability character of Δ. If Δ is orientable, the estimates from above for each of

g(Δ), e(Δ), S(Δ) in (ii) of the proposition follow from a straightforward computation using two of the inequal-

ities g(Δ) ≥ 0, e(Δ) ≥ 1, S(Δ) ≥ 2, and e(Δ) + S(Δ) ≥ 4. If Δ is non-orientable (in particular, I(Δ) ≥ 2 by (i) of this
proposition) and we additionally suppose that S(Δ) = 2, then the area growth at infinity of f1 is that of two
planes, which prevents f1 from having self-intersections by the monotonicity formula for area; therefore, f1 is
properly embedded in ℝ3, which contradicts that Δ is non-orientable. Therefore, S(Δ) ≥ 3 provided that Δ

is non-orientable. Now similar arguments to those in the orientable case show that the upper estimates for

g(Δ), e(Δ), S(Δ) in (iii) of the proposition hold.
Next suppose thatH(Δ) is non-trivial with L > 0 levels. This implies that we can find L + 1 blow-up limits

fi : Σi  ℝ3 , i = 1, . . . , L + 1,
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of suitable rescalings {λi,nFn}n of the original sequence {Fn}n as in (S2) above (centered at possibly different

points where the second fundamental form of Fn blows-up). Since the index increases each time, we add a level
(by Proposition 5.13 (viii) (f)), and thus we deduce that I(Δ) ≥ L + 1. Since the total spinning of f1 is at least two,
the monotonicity formula implies that S(Δ) ≥ 2. This completes the proof of (iv).

We finish by proving (v) and (vi), so continue assuming thatH(Δ) is non-trivial with L > 0 levels, and sup-
pose that Δ is connected. In the case that Δ is orientable, we apply Corollary 5.33 with the estimate for the

correction term Cor(H) given in (5.75), obtaining

3I(Δ) ≥ −1
2
χ(Δ) + S(Δ) + 1

2
e(Δ) + L = g(Δ) + S(Δ) + e(Δ) − 1 + L, (5.78)

where for the equality we have used that χ(Δ) = 2 − 2g(Δ) − e(Δ).
In the case that Δ is non-orientable, we apply Corollary 5.31with the estimate for the correction term Cno(H)

given in (5.67), obtaining

6I(Δ) ≥ −χ(Δ) + 2S(Δ) + e(Δ) + L = g(Δ) + 2S(Δ) + 2e(Δ) − 1 + L, (5.79)

where for the equality we have used that χ(Δ) = 1 − g(Δ) − e(Δ).
With inequalities (5.78) and (5.79) at hand, each of the estimates fromabove for g(Δ), e(Δ), S(Δ) in (v) and (vi)

of the proposition follows from a straightforward computation using two of the inequalities g(Δ) ≥ 0, e(Δ) ≥ 1,
S(Δ) ≥ 2 (which holds by (iv)), and e(Δ) + S(Δ) ≥ 4. This completes the proof of the proposition.

5.7 Proofs of Theorem 1.2 (I)–(IV)

Next we will focus on the second step in our strategy of proving Theorem 1.2, see Section 5.3.

Assertion (I) of Theorem 1.2 follows from the fact that Δ1 , . . . , Δk are pairwise disjoint (by the already proven

Theorem 1.2 (i) (c)).

We next prove (II). The inequality 2 ≤ m = S(Δ) for the total spinning of the boundary of Δ = Δi follows
since each local picture of any element F ∈ Λ has at least either two embedded ends, or one immersed end of

Enneper type, with spinning number at least 3; also see Proposition 5.34 (iv). Assertion (II) (a) was proven in

Proposition 5.34 (i).

Now assume that Δ is orientable and I(Δ) ≥ 2. Then Proposition 5.34 (ii) and (v) give that

S(Δ) ≤ max{1
2
(3I(Δ) + 3), 3I(Δ) − L} ≤ max{1

2
(3I(Δ) + 3), 3I(Δ) − 1} = 3I(Δ) − 1,

e(Δ) ≤ max{1
2
(3I(Δ) + 1), 3I(Δ) − L − 1} ≤ max{1

2
(3I(Δ) + 1), 3I(Δ) − 2} = 3I(Δ) − 2,

g(Δ) ≤ max{1
2
(3I(Δ) − 3), 3I(Δ) − L − 3} ≤ max{1

2
(3I(Δ) − 3), 3I(Δ) − 4} = 3I(Δ) − 4,

where L ≥ 1 is the number of levels of the hierarchy of Δ provided this hierarchy is non-trivial. This proves (II) (b)
of Theorem 1.2. Assertion (II) (c) can be proven in the same way, using (iii) and (vi) of Proposition 5.34 (the fact

that I(Δ) ≥ 2 follows from (iii) and (iv) of Proposition 5.34); we leave the details to the reader.

The inequality

χ(Δi) ≥ −6I(Δi) + 2m(i) + e(i)

in Theorem 1.2 (II) (d) follows directly from (5.41): observe that the multiplicity of the multi-graph associated to

each boundary component (resp. the number of boundary components) of Δ = Δi is m(i) (resp. e(i)) with the
notation of Theorem 1.2.

The inequality

|κ(Δi) − 2πm(i)| ≤
τ

m(i)
in Theorem 1.2 (II) (e) follows from themulti-graphical structure proven in Theorem 1.2 (ii) and fromLemma 4.4.

As for the second inequality in Theorem 1.2 (II) (e),

|κ(M̃) + 2πS| =

−

k
∑
i=1

κ(Δi) + 2π
k
∑
i=1

m(i)

≤

k
∑
i=1
|κ(Δi) − 2πm(i)| ≤

k
∑
i=1

τ
m(i) ≤

τ
2
k.
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Equation (1.2) follows directly from the last inequality, since

κ(M̃) = −
k
∑
i=1

κ(Δi).

To finish the proof of Theorem 1.2 (II), it remains to demonstrate (II) (f), whichwe do next. Choose aminimal

element Δq in the hierarchyH(Δ) = (Ŝ,V,W) ofH, with q ∈ Ŝ. Then Δq = Δq(n) is a connected compact surface
with boundary inside Mn , and for n large enough, a certain rescaling of Δq(n) resembles arbitrarily well the
intersection with a large ball of a connected, complete, non-flat minimal immersion f : Σ  ℝ3 with finite total
curvature (see property (S1) above). As the total curvature of this limit immersion f is a negative multiple of 4π
when Σ is orientable, and it is at least −2π if Σ is non-orientable with the value −2π implying that f is stable (see
[17, item 1 in the discussion in Section 3]), and the total curvature is invariant under rescaling, we deduce that

− ∫
Δq(n)

K > 3π

for n large enough. When we ascend one level inH(Δ) ofH passing from Δq to some Δq ∈ V with q ∈ Ŝ and
Δq ⪯ Δq , then a similar description holds for Δq (n) with n large, with the difference that the related complete
minimal surface f  : Σ  ℝ3 with finite total curvature associated to Δq (n) may be flat, finitely disconnected
and finitely branched, and the convergence of suitably rescaled portions of Δq (n) to a compact portion of f (Σ)
is away from finitely many points of f(Σ), of which at least one corresponds to f (q). Since

− ∫
Δq (n)

K = − ∫
Δq (n)\Δq(n)

K − ∫
Δq(n)

K

and the first integral is either close to zero or larger than 3π for n large, we deduce that

− ∫
Δq (n)

K > 3π

for n sufficiently large. Iterating this process finitely many times, we get that −∫
Δ
K > 3π, as desired. Adding

up this last inequality in Δ1 , . . . , Δk and using the Gauss–Bonnet formula, we deduce that inequality (1.3) holds.

Now the proof of Theorem 1.2 (II) is complete.

We next prove Theorem 1.2 (III). Suppose that the genus g(M) of M is finite and that k ≥ 1.
Elementary surface topology of orientable surfaces implies that if Σ is a possibly disconnected orientable

surface (possibly with boundary) and Δ is a compact, possibly disconnected, smooth subsurface in the interior

of Σ, then the genus g(Σ) of Σ, the genus g(Δ) of Δ and the genus g(Σ̃) of Σ̃ = Σ \ Δ satisfy the following inequality:

g(Σ) ≤ g(Σ̃) + g(Δ) + #c(∂Δ) − #c(Δ), (5.80)

with equality if and only if each component of Δ does not disconnect the component of Σ that contains it.

Applying (5.80) to M with Δ = ⋃ki=1 Δi gives

g(M) ≤ g(M̃) + g(
k
⋃
i=1

Δi) + #c(
k
⋃
i=1

∂Δi) − k. (5.81)

Hence,

g(M) − g(M̃) ≤
k
∑
i=1
[g(Δi) + e(Δi) − 1]. (5.82)

If a domain Δi has trivial hierarchy, then (5.41) reduces to (3.5), and thus

3I(Δi) ≥ −χ(Δi) + 2S(Δi) + e(Δi) − 3 = 2g(Δi) + 2e(Δi) + 2S(Δi) − 5,

where for the equality we have used that χ(Δi) = 2 − 2g(Δi) − e(Δi) as Δi must be orientable. Therefore, in this
case

g(Δi) + e(Δi) − 1 ≤
3

2
I(Δi) − S(Δi) +

3

2
. (5.83)
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If Δi has non-trivial hierarchy with Li ≥ 1 levels, then (5.76) and (5.75) imply

6I(Δi) ≥ −χ(Δi) + 2S(Δi) + e(Δi) + 2Li = 2g(Δi) + 2e(Δi) + 2S(Δi) + 2Li − 2.

Thus, in this case

g(Δi) + e(Δi) − 1 ≤ 3I(Δi) − S(Δi) − Li ≤ 3I(Δi) − S(Δi) − 1. (5.84)

Now (5.83) and (5.84) give the common upper bound estimate

g(Δi) + e(Δi) − 1 ≤ max{
3

2
I(Δi) +

3

2
, 3I(Δi) − 1} − S(Δi). (5.85)

The functionmax{ 3
2
I(Δi) + 3

2
, 3I(Δi) − 1} has the value 3 if I(Δi) = 1, and the value 3I(Δi) − 1 if I(Δi) ≥ 2. Hence,

max{
3

2
I(Δi) +

3

2
, 3I(Δi) − 1} ≤ 3I(Δi)

in all cases. Therefore, since it also holds that S(Δi) ≥ 2 for all i, inequality (5.85) gives

g(Δi) + e(Δi) − 1 ≤ 3I(Δi) − S(Δi) ≤ 3I(Δi) − 2 for all i = 1, . . . , k. (5.86)

From (5.82) and (5.86), we deduce that

g(M) − g(M̃) ≤
k
∑
i=1
(3I(Δi) − 2) ≤ 3I − 2k ≤ 3I − 2, (5.87)

which gives the desired inequality in Theorem 1.2 (III).

To finish the proof of Theorem 1.2, it remains to demonstrate (IV), which we do next. Suppose k ≥ 1. Asser-
tion (IV) will be proven in three steps.

(R1) Area(Δi) ≤ 2πm(i)rF(i)2 provided that the constant A1 ∈ [A0 ,∞) given in the main statement of Theo-

rem 1.2 is sufficiently large.

We will assume i = 1 in order to use the notation introduced in Section 5.5; the cases i ∈ {2, . . . , k} are similar.
Recall from property (P1) above (and with the notation there) that the intersection of F(Δ̃1) between the

extrinsic spheres

∂BX(F(p1),
Rs0
2t ) and ∂BX(F(p1), δ4)

consists of es0 multi-graphical annuli Ĝs0 (1), . . . , Ĝs0 (es0 ). Also recall (first paragraph after property (K2’)) that Δ1
was defined as the component of F−1(BX(F(p1), rF(1)) that contains p1, where rF(1) = δ1 = δ4/4 and δ4 is given
by Proposition 5.16.

For j = 1, . . . , es0 , define
Ĝs0(j,

Rs0
t , rF(1))

to be the portion of F(Δ1) ∩ Ĝs0 (j) between ∂BX(F(p1), Rs0/t) and ∂BX(F(p1), rF(1)). Thus,

es0
⋃
j=1

Ĝs0(j,
Rs0
t , rF(1)) = F(Δ1) \ BX(F(p1),

Rs0
t ).

Therefore,

Area(Δ1)
πm(1)rF(1)2

=
Area[Δ1 ∩ F−1(BX(F(p1), Rs0/t))]

πm(1)rF(1)2
+

es0
∑
j=1

Area(Ĝs0 (j, Rs0/t, rF(1))
πm(1)rF(1)2

. (5.88)

Observe that for t sufficiently large (equivalently, for A1 sufficiently large, see equation (5.30)), the extrinsic

radius Rs0/t becomes arbitrarily small (because Rs0 is independent of t), and so the first term of the right-hand

side of (5.88) also becomes arbitrarily small for A1 sufficiently large. Regarding the second termof the right-hand

side of (5.88), observe that

es0
∑
j=1

Area(Ĝs0 (j, Rs0/t, rF(1))
πm(1)rF(1)2

≈
Area[fs0 (Σs0 ) ∩ 𝔹(0⃗, trF(1)]
m(1)Area(𝔻(0⃗, trF(1)))

, (5.89)
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where fs0 : Σs0  ℝ3 is the complete, finitely branched minimal immersion with finite total curvature defined
in the paragraph just before Proposition 5.16 (with the notation there, λs0 ,n = 1/rs0 ,n plays the role of t in our
current notation), and the symbol ≈means arbitrarily close for t large (to check this, rescale the ambient metric
of X around F(p1) by the factor t and use either property (S2) (a) or else the adaptation of Proposition 5.13 after
replacing f2 by fs0 ). Now, themonotonicity formula forminimal surfaces inℝ3 implies that the quotient in (5.89)
is less than or equal to 1 (and arbitrarily close to 1 provided that t is large enough). Therefore, (5.88) ensures that
if t is sufficiently large, we have

Area(Δ1)
πm(1)rF(1)2

≤ 2,

which proves property (R1).

(R2) πδ2
1
≤ Area(Δi) provided that A1 is sufficiently large.

Using the notation of the already proven Theorem 1.2 (ii), it clearly suffices to prove that

Area(
e(i)
⋃
h=1

Gi,h) ≥ πδ21

provided that A1 is sufficiently large. Recall from Theorem 1.2 (ii) that Gi,h is an annular multi-graph (of multi-

plicity mi,h) over its projection Ωi,h to Pi,h = φF(pi)(𝔻h) and the boundary of Gi,h consists of two curves, each

one lying on one of the extrinsic spheres ∂BX(F(pi), rF(i)/2) and ∂BX(F(pi), rF(i)). Observe that the quotient

Area(⋃e(i)h=1 Gi,h)

Area(⋃e(i)h=1 Ωi,h)

is invariant under rescaling of the ambient metric centered at F(pi). Arguing similarly to (5.89) and with the

notation there, we have that for t sufficiently large,

Area(⋃e(i)h=1 Gi,h)

Area(⋃e(i)h=1 Ωi,h)
≈
Area[fs0 (Σs0 ) ∩ (𝔹(0⃗, trF(i)) \ 𝔹(0⃗, trF(i)/2)]

e(i)πt2[rF(i)2 − rF(i)2/4]
≈ m(i).

Therefore,

Area(
e(i)
⋃
h=1

Gi,h) ≈ m(i)Area(
e(i)
⋃
h=1

Ωi,h)

≈ m(i)π[rF(i)2 −
rF(i)2

4
]

= m(i)3π
4
rF(i)2

≥ m(i)3π
4
δ2
1

≥ πδ2
1
,

where in the last equality we have used that m(i) ≥ 2.
(R3) Area(M̃) ≥ 14π∑ki=1 m(i)rF(i)2.
We continue using the notation of (R1). Recall that for t sufficiently large, F(M) contains es0 annularmulti-graphs
Ĝs0 (1), . . . , Ĝs0 (es0 ) in

BX(F(p1), δ4) \ BX(F(p1),
Rs0
2t ),

es0 is the number of ends of fs0 , and

[Ĝs0 (1) ∪ ⋅ ⋅ ⋅ ∪ Ĝs0 (es0 )] ∩ BX(F(p1), rF(1))

is contained in Δ1. Observe that the disjoint union

[Ĝs0 (1) ∪ ⋅ ⋅ ⋅ ∪ Ĝs0 (es0 )] \ BX(F(p1), rF(1))
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is contained in M̃. A similar situation holds around each of the relative maxima p2 , . . . , pk ∈ PF of |AM | (in
the sense of Theorem 1.2 (i) (d)), which produces corresponding annular multi-graphs inside M̃ which will be

denoted by

[Ĝs0 (1, 1) ∪ ⋅ ⋅ ⋅ ∪ Ĝs0 (1, es0,1 )] \ BX(F(p1), rF(1)) ‘around’ p1 ,
.
.
.

[Ĝs0 (k, 1) ∪ ⋅ ⋅ ⋅ ∪ Ĝs0 (k, es0,k )] \ BX(F(pk), rF(k)) ‘around’ pk ,

all pairwise disjoint. Therefore,

Area(M̃) ≥
k
∑
i=1

Area[(Ĝs0 (i, 1) ∪ ⋅ ⋅ ⋅ ∪ Ĝs0 (i, es0,i )) \ BX(F(pi), rF(i))]. (5.90)

Given i ∈ {1, . . . , k} and h ∈ {1, . . . , es0 ,i}, we call Ωi,h the projection of Ĝs0 (i, h) \ BX(F(pi), rF(i)) to the corre-
sponding ‘disk’ Pi,h defined as in Theorem 1.2 (ii). Arguing as in (R2), we have

Area[(⋃
es
0,i

h=1 Ĝs0 (i, h)) \ BX(F(pi), rF(i))]

Area(⋃
es
0,i

h=1 Ω

i,h)

≈
Area[fs0,i (Σs0,i ) ∩ (𝔹(0⃗, tδ4) \ 𝔹(0⃗, t rF(i))]

es0 ,i πt2[δ24 − rF(i)2]
≈ m(i),

where fs0,i : Σs0,i  ℝ3 is the corresponding complete, finitely branchedminimal surface of finite total curvature
obtained as a local picture around F(pi), and es0,i is the number of its ends.

Therefore,

Area[(
es
0,i

⋃
h=1

Ĝs0 (i, h)) \ BX(F(pi), rF(i))] ≈ m(i)Area(
es
0,i

⋃
h=1

Ω

i,h)

≈ m(i)π[δ2
4
− rF(i)2]

= 15m(i)πrF(i)2 .

From this and (5.90), we conclude directly inequality (R3), which completes the proof of Theorem 1.2 (IV).

6 Sequential compactness results in Λ for X fixed

Fix I ∈ ℕ ∪ {0}. An important consequence of the statement andproof of the Structure Theorem1.2 is that certain

sequences of immersions in Λ = Λ(I, H0 , ε0 , A0 , K0) have natural limits that are finitely branchedH-surfaces for
some H ∈ [0, H0]. A special case of this behavior applies to the following situation. Suppose that {Fn : Mn  X}n
is a sequence in Λ with common ambient space X, theMn are connected with empty boundary, and the norm of

the second fundamental forms of Fn are sufficiently large so that the points p1(n) ∈ Mn defined in Theorem 1.2

exist and the sequence of points Fn(p1(n)) = xn converges to x ∈ X. If in addition the norms of the second fun-
damental forms of the Fn are uniformly bounded, then a subsequence of the Fn converges smoothly on compact
balls inMn centered at p1(n) to a complete immersed surface F∞ : Σ  X ∈ Λ of constant mean curvature with
a special point p1(∞) ∈ Σ with F∞(p1(∞)) = x. The next theorem proves that a similar result holds when the

norms of the second fundamental forms of the Fn at p1(n) diverge to∞ as n →∞. However, while the complete
limit mapping F∞ : Σ  X in this case is smooth and defined on a limit Riemann surface Σ, the convergence is

not smooth at a non-empty finite set BΣ ⊂ Σ of points and F∞ may have a finite set of branch points that form

a subset ofBΣ , where the total branching order is at most 3I and the index of F∞ is at most I − 1.

Theorem 6.1. Given I ∈ ℕ ∪ {0} and τ ∈ (0, π/10], let Λ = Λ(I, H0 , ε0 , A0 , K0) be as given in Definition 1.1. Let
Fn : Mn  X be a sequence of Hn-immersions in Λ with Mn connected with empty boundary, and with the supre-
mum of the norms of their second fundamental forms |AFn | greater than the constant A1 = A1(Λ) given in Theo-
rem 1.2, and let PFn = {p1(n), . . . , pk(n)(n)} be the associated non-empty set of (distinct) points given in the state-
ment of the same theorem, with k(n) ≤ I. Without loss of generality and after passing to a subsequence, we can
assume that both k(n) = k and Index(Fn) = I ≤ I do not depend on n, and that limn→∞ Hn = H∞ ∈ [0, H0].
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Suppose that the points Fn(p1(n)) converge as n →∞ to a point x1 ∈ X and the norms of the second funda-
mental forms of Fn at the points p1(n) are unbounded. Let k ∈ {1, . . . , k} be the cardinality of the set of points
in PFn which do not diverge intrinsically from p1(n), i.e., after replacing by a further subsequence and possibly
re-indexing,

lim
n→∞

dMn (p1(n), pj(n)) =
{{
{{
{

dj ∈ [
14

5
δ1 ,∞) if 2 ≤ j ≤ k ,

∞ if k + 1 ≤ j ≤ k,

where δ1 > 0 is defined in Theorem 1.2 and d2 ≤ . . . ≤ dk . For each i ∈ {1, . . . , k}, let Δi(n) ⊂ Mn be the com-
pact subdomain described in Theorem 1.2 (i) that contains the point pi(n). Then, after replacing by a further
subsequence, the following assertions hold:
(i) For each i ∈ {1, . . . , k}, the points Fn(pi(n)) converge as n →∞ to a point xi ∈ X, where x1 is previously

defined in the hypotheses of this theorem, and the numbers rFn (pi) converge to some ri ∈ [δ1 , δ/2], where
δ ≥ 2δ1 is defined in Theorem 1.2.

(ii) For each i ∈ {1, . . . , k}, the Hn-multi-graphical immersions

Fn|Δi(n)\F−1n (BX (pi(n),rFn (i)/2))

converge, as n →∞, to a finite collection of ei immersed compact H∞-annular multi-graphs in

BX(xi , ri) \ BX(xi ,
ri
2
),

where ei ∈ ℕ is the number of boundary components of Δi(n), and the multiplicity of each of these multi-
graphs is at most 3 Index(Δi(n)) ≤ 3I. Let

FA∞ : A  BX(xi , ri) \ BX(xi ,
ri
2
)

denote these explicit limit immersions, whereA is a finite number of compact annular Riemannian surfaces.
(iii) There exists a partition {1, . . . , k} = B ∪ U such that {|AFn |(pi(n))}n is bounded (resp. unbounded) if i ∈ B

(resp. i ∈ U). Thus, we may assume that, after replacing by a further subsequence, |AFn |(pi(n)) > n for each
i ∈ U.

(iv) For each i ∈ B, the restrictions Fn|Δi(n) converge as n →∞ to an H∞-immersion

F i∞ : Σi  BX(xi , ri)

for some compact Riemannian surface Σi with boundary diffeomorphic to Δi(n) for n sufficiently large. In
this case, F i∞ has its image boundary in ∂BX(xi , ri) and its image in BX(xi , ri) \ BX(xi , ri/2) consists of the ei
multi-graphs described in (ii).

(v) For each i ∈ U, there exists a finitely connected, finitely branched H∞-immersion

F i∞ : Σi  BX(xi , ri),

where as in the previous case, Σi is compact with smooth non-empty boundary and such that we can iden-
tify F i∞ restricted to (F i∞)−1[BX(xi , ri) \ BX(xi , ri/2)] with the multi-graphs in (ii). Furthermore, there is a
finite setBΣi ⊂ (F i∞)−1[BX(xi , r1/2)] satisfying the following properties:
(a) The set of branch points of F i∞ is contained inBΣi .
(b) There exist a positive integer J(i) ≤ Index(Δi(n)) ≤ I and a finite set of points

Qi(n) = {q1(i, n), . . . , qJ(i)(i, n)} ⊂ Int(Δi(n))

with q1(i, n) = pi(n) and such that, for each j ∈ {1, . . . , J(i)}, we have |AFn |(qj(i, n)) > n for all n ∈ ℕ.
(c) For any ε > 0 sufficiently small, the restrictions of Fn to Δi(n) \⋃q∈Qi(n) BMn (q, ε) converge smoothly as

n →∞ to F i∞ restricted to Σi \⋃b∈BΣi
BΣi (b, ε), and the following assertions hold:

∙ For n sufficiently large, the number of boundary curves of⋃q∈Qi(n) BMn (q, ε) coincides with the car-
dinality ofBΣi .
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∙ The restriction of F i∞ to ⋃b∈BΣi
BΣi (b, ε) is a finite collection of branched H∞-disks, each of which

can viewed as a multi-graph in X with associated finite multiplicity S∞(b) ∈ ℕ and branch point
image at F i∞(b). Hence, the branching order of F i∞ at a given point b ∈ BΣi is equal to S∞(b) − 1.

(d) (Quotient space after collapsing of some points inBΣi .) For each j ∈ {1, . . . , J(i)}, there exists a non-empty
subsetBΣi (j) ⊂ BΣi which arises from the limits of points in ∂BMn (qj(i, n), ε) as n →∞ and ε → 0. After
identifying all points inBΣi (j) to a single point, and identifying every point of

J(i)
⋃
j=1
(Σi \BΣi (j))

with itself, we define a quotient space Σ̂i and a related quotient map πi,j : Σi → Σ̂i . Then the map F i∞
induces a continuous map F i∞ : Σ̂i → BX(xi , ri), so that the immersions Fn|Δi(n) converge to

F i∞ : Σ̂i → BX(xi , ri).

(vi) There exists a Riemann surface Σ and a conformal branched H∞-immersion F∞ : Σ  X satisfying the fol-
lowing properties:
(a) There is a conformal embedding

f :
k

⋃
i=1

Σi → Σ

of the disjoint union ⋃k


i=1 Σi such that, for any i ∈ {1, . . . , k}, we have F i∞ = F∞ ∘ (f|Σi ), where the map-
pings F i∞ are defined in (iv) and (v) above. Under conformal identification via f , henceforth consider
⋃k



i=1 Σi to be contained in Σ.
(b) The set of branch points of F∞ is contained in

⋃
b∈BΣi

BΣi ⊂
k

⋃
i=1

Σi ,

and so it is described in (v) above.
(c) F∞ can be viewed to be the limit of the immersions Fn in the following sense. F∞ restricted to Σ \⋃k



i=1 Σi
is the limit in balls of Mn centered at the points p1(n) of the immersions

Fn : Mn \
k
⋃
i=1

Δi(n)  X,

and F∞ restricted to⋃k


i=1 Σi is the limit of Fn restricted to⋃
k
i=1 Δi(n), as described in (iv) and (v) above.

(d) The norm of the second fundamental form of F∞ restricted to Σ \⋃k


i=1 Σi is bounded by A1, where A1 is
described in the first paragraph of the statement of this theorem.

Proof. Assume that Theorem 1.2 holds for I with associated constants δ1 , δ, A1. The fact that k(n) and Index(Fn)
are independent of n after passing to a subsequence, follows trivially since they are bounded positive integers.
Similar arguments give the convergence of Hn to H∞ ∈ [0, H0] and also (i). The convergence of Hn-multi-graphs

in (ii) is also standard, as they have uniform curvature estimates coming from the stability. Assertion (iii) is

also standard by an induction argument in k and a diagonal argument. Items (iv), (v) and (vi) follow from an

adaptation of the proof of Proposition 5.13.

Corollary 6.2. Given I ∈ ℕ ∪ {0} and τ ∈ (0, π/10], let Λ = Λ(I, H0 , ε0 , A0 , K0) be as given in Definition 1.1. Let
Fn : Mn  X be a sequence of Hn-immersions in Λ where all of the Mn are connected and X is compact. Then,
given base points qn ∈ Mn , a subsequence of the Fn converges to a branched H-immersion F∞ : Σ  X of index at
most I, where the convergence as n →∞ takes place in the intrinsic balls BMn (q(n), i), i ∈ ℕ, and this convergence
is described in Theorem 6.1.

Remark 6.3. Consider a sequence Fn : Mn  X of complete Hn-immersions in the space Λ as described in the

statement of Theorem 6.1, with limit branched H∞-immersion F∞ : Σ  X described in (vi) of the theorem.
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(i) If F∞ has a branch point at some q ∈ Σ of branching order l ∈ ℕ, then (vi) (b) implies

q ∈ ⋃
b∈BΣi

BΣi ⊂
k

⋃
i=1

Σi .

The proof of the theorem gives that there are blow-up points q(n) ∈ Mn that yield, under blowing-up, a limit

complete, possibly finitely branched minimal surfaceM inℝ3 with finite total curvature and such that one
of the ends E of M has multiplicity l + 1; such an end is not embedded, and there are portions of the Fn
converging to E which fail to be injective. Hence, the existence of branch points for the limit branched

immersion F∞ implies that, for n large, the sequence Fn restricted to⋃k


i=1 Δi(n) is not injective. In particular,
if Fn is injective for all n ∈ ℕ, then any limit F∞ : Σ  X given by the theorem has no branch points.

(ii) Assume that F∞ has at least one branch point. By Theorem 6.1 (v), every branch point b of F∞ lies in some

setBΣi for some i ∈ U, and the branch order of F∞ at b is equal to S∞(b) − 1. Adding this along the setBF∞
of branch points of F∞, we get that the total branching order of F∞ is at most

∑
b∈BF∞

[S∞(b) − 1] ≤ 3I − 1.

A Curvature estimates for stable H-surfaces

Rosenberg, Toubiana and Souam [25, Main Theorem] proved that there exists a universal constant Cs > 0 such
that, for any K0 ≥ 0 and any complete Riemannian 3-manifold (Y, g) of absolute sectional curvature at most K0,
every stable two-sided H-immersion F : M  Y in satisfies

|AM |(p) ≤
Cs

min{dM(p, ∂M), π
2√K0

}
. (A.1)

Observe that the above curvature estimate fails to hold when the H-immersion is minimal and one-sided;

a counterexample can be constructed whenever a complete flat 3-manifold Y admits a complete, non-totally

geodesic, stable one-sided minimal surface without boundary; see Remark A.2 for examples. The next theorem

is an adaptation of (A.1) that includes curvature estimates for the case of one-sided minimal surfaces in Y ; see
also [24, Corollaries 9 and 10].

Theorem A.1 (Curvature estimate for stable H-surfaces). There exists Cs ≥ 2π such that, given K0 > 0 and a com-
plete Riemannian 3-manifold (Y, g) of bounded sectional curvature |K| ≤ K0, for any connected, immersed, one-
sided, stable minimal surface M  Y and for any p ∈ M,

|AM |(p) ≤
Cs

min{InjY (p), dM(p, ∂M), π
2√K0

}
. (A.2)

Let Cs := max{Cs , Cs }, where Cs is defined by (A.1). Given ε0 > 0 and K0 ≥ 0, if X is a complete Riemannian
3-manifold with injectivity radius at least ε0 and bounded sectional curvature |K| ≤ K0, and F : M  X is a stable
H-immersion, then

|AM |(p) ≤
Cs

min{ε0 , dM(p, ∂M), π
2√K0

}
. (A.3)

Proof. Clearly, the validity of (A.2) implies that (A.3) holds. Also observe that by Remark A.2, any Cs > 0 that
satisfies (A.2) must be at least 2π. In particular, Cs ≥ 2π. In fact, Cs ≥ Cs > 2π; see Remark A.2.

We next prove the existence of a universal constant Cs satisfying (A.2) by contradiction. Since (A.2) is

invariant under rescaling, by scaling the ambient Riemannian metric by
√K0

π , we may assume that there exists

a sequence {Mn  Yn}n of one-sided, stable minimal surfaces with boundary, immersed in complete Riemann-
ian 3-manifolds (Yn , gn) with absolute sectional curvature |KYn | ≤ π2, and points pn ∈ Mn such that for all

n ∈ ℕ,
|AMn |(pn) ⋅min{InjYn (pn), dMn (pn , ∂Mn),

1

2
} ≥ n. (A.4)
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Consider the open geodesic disk Dn ⊂ Mn of center pn and radius dMn (pn , ∂Mn). Let p∗n ∈ Dn be amaximum

of the continuous function

fn : Dn → ℝ, fn(x) = |AMn |(x) ⋅min{InjYn (x), dDn (x, ∂Dn),
1

2
}.

After passing to a subsequence, we can assume that one of the following three cases occurs for all n ∈ ℕ:
(I) min{InjYn (p

∗
n), dDn (p∗n , ∂Dn), 12 } = InjYn (p

∗
n).

(II) min{InjYn (p
∗
n), dDn (p∗n , ∂Dn), 12 } = dDn (p∗n , ∂Dn).

(III)min{InjYn (p
∗
n), dDn (p∗n , ∂Dn), 12 } =

1

2
.

Suppose that case (III) holds. Since InjYn (p
∗
n) ≥

1

2
, [25, Lemma 2.2] implies that

the injectivity radius function of BYn(p∗n ,
1

2
) restricted to BYn(p∗n ,

1

8
) is at least

1

8
. (A.5)

Applying [25, Theorem 2.1] to the choices M = BYn (p∗n , 12 ), Λ = π
2
, Ω = BYn (p∗n , 1

10
), Ω(δ) = BYn (p∗n , 18 ), i =

1

8
, we

conclude that every point x ∈ BYn (p∗n , 1

10
) admits harmonic coordinates centered at x and defined on the geo-

desic ball BYn (x, ε0) for some ε0 > 0 independent of x and n, and the metric gn is C1,α-controlled in the sense of
Definition 2.2 in terms of a constant Q > 1 which is also independent of n ∈ ℕ.

Let λn = |AMn |(p∗n), which tends to∞ as n →∞ because

1

2
|AMn |(p∗n) = fn(p∗n) ≥ fn(pn)

(A.4)

≥ n. (A.6)

Define Bn = (BYn (p∗n , 1

10
), λ2ngn). The sequence of 3-manifolds {Bn}n converges C1,α to ℝ3 with its standard

metric, and the harmonic coordinates in Bn centered at p∗n converge as n →∞ to the usual harmonic coordi-

nates centered at the origin.

Consider the sequence of immersed, one-sided, stable minimal surfaces

Δn = (BMn(p∗n ,
1

10
), λ2ngn)  Bn .

Observe that the intrinsic distances in Δn from p∗n to the boundary of Δn diverge to∞. We claim that the Δn have

uniformly bounded second fundamental form: Take x ∈ BMn (p∗n , 1

10
). Since x ∈ Dn because we are in case (III),

we have

|AMn |(x) ⋅min{InjYn (x), dDn (x, ∂Dn),
1

2
} = fn(x) ≤ fn(p∗n) =

λn
2
,

or equivalently,

|AΔn |(x) ⋅min{InjYn (x), dDn (x, ∂Dn),
1

2
} ≤

1

2
. (A.7)

Observe that InjYn (x) ≥
1

8
by (A.5). Also, dDn (x, ∂Dn) ≥ 2

5
because x ∈ BMn (p∗n , 1

10
), BMn (p∗n , 12 ) ⊂ Dn and by the

triangle inequality. Hence, the minimum in the left-hand side of (A.7) is at least
1

8
, from which we deduce that

|AΔn |(x) ≤ 4, and our claim is proved.

Therefore, after passing to a subsequence, the Δn converge to a completeminimal surface S immersed inℝ3

with bounded second fundamental form; see the arguments at the beginning of Section 5.4 for details.

We claim that S is stable. If S is two-sided, this is standard; see, e.g., [25, p. 636]. We next give a different

argument that is valid regardless of whether S is one- or two-sided. Stability of S in the one-sided case amounts
to show that

∫

S̃

|AS̃|
2ϕ2 ≤ ∫

S̃

|∇ϕ|2 (A.8)

for every compactly supported smooth function ϕ ∈ C∞
0
(S̃) defined on the two-sided cover S̃ of S that is anti-

invariant; see Definition 2.1. Given such a function ϕ, we can view ϕ for n sufficiently large as a compactly

supported smooth function ϕn defined on the two-sided cover Δ̃n of Δn that is anti-invariant, and thus, by the
stability of Δn , we have

∫

Δ̃n

(|A
Δ̃n
|2 + RicB

n
(Nn , Nn))ϕ2n ≤ ∫

Δ̃n

|∇ϕn|2 , (A.9)
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where RicB
n
denotes the Ricci curvature of Bn and Nn is a unit normal vector to Δ̃n in Bn . The C1,α convergence

of the metrics λngn to the flat metric onℝ3 allows us to take limits in (A.9) as n →∞ to obtain (A.8), and thus S
is stable.

The desired contradiction (which proves (A.2) in the case that (III) holds) comes from the fact that there are

no complete stable non-flat minimal surfaces in ℝ3; see Ros [24, Theorem 8].

Next we will explain how to reduce case (I) to case (III). If case (I) holds, then we have InjYn (p
∗
n) ≤

1

2
. Let

μn = 1/ InjYn (p
∗
n). Define Y n = (Yn , μ2ngn) and Mn = (Mn , μ2ngn). Note that InjY 

n
(p∗n) = 1, the absolute sectional

curvature of Y n is less than or equal to π2/μ2n ≤ π2, which implies thatwemay use the upper estimate K0 = π2 (in
other words, (Mn , Y n) is a possible counterexample to (A.2) under the normalization introduced in the second
paragraph of this proof), and so

π
2√K0

= 1

2
. Observe that (Mn , Y n) lies in case (III) because

dM
n
(p∗n , ∂Mn) = μn dMn (p∗n , ∂Mn) ≥ 1,

and so

min{InjY 
n
(p∗n), dM

n
(p∗n , ∂Mn),

1

2
} =

1

2
.

If we check that

|AM
n
|(p∗n) ⋅min{InjY 

n
(p∗n), dM

n
(p∗n , ∂Mn),

1

2
}→∞, (A.10)

then we will find a contradiction as we did in case (III). To see this, observe that two times the left-hand side

of (A.10) can be written as

|AM
n
|(p∗n) = |AM

n
|(p∗n) ⋅ InjY 

n
(p∗n) = |AMn |(p∗n) ⋅ InjYn (p

∗
n) = fn(p∗n) ≥ n →∞,

which finishes the proof in case (I). Similar reasoning reduces case (II) to case (III), which completes the proof

of Theorem A.1.

Remark A.2 (Lower bound estimates for Cs and Cs ). We claim that π and 2π are lower bounds for Cs and Cs ,
respectively. To see this, consider the Scherk doubly periodic minimal surface M(θ) in ℝ3, θ ∈ (0, π

2
], and

its non-orientable, embedded quotient surface M̂(θ) with total curvature −2π in the flat quotient manifold

Y(θ) = T2θ ×ℝ where Tθ = ℝ
2/ Span{w1(θ), w2(θ)}, where

w1(θ) =
π
2
(

1

cos(θ/2) , 0, 0), w2(θ) =
π
2
(0,

1

sin(θ/2) , 0).

Here, the oriented cover M̃(θ) of M̂(θ) is conformally (ℂ ∪ {∞}) \ {e±iθ/2} with Weierstrass data

g(z) = z, ω = i dz
Π(z ± e±iθ/2)

.

Straightforward calculations show that, at z = 0 in (ℂ ∪ {∞}) \ {e±i π4 } viewed as a point of M̂(θ), the absolute
Gaussian curvature is given by |K|(0) = 16 and this point is the unique maximum of |K| on M̂(θ). On the other
hand, the injectivity radius of Y(θ) (at every point) equals π

4 cos(θ/2) , which has amaximum value of
π

2√2
at θ = π

2
.

Therefore, for any θ ∈ (0, π
2
] we have

|AM̂(θ)| ⋅ InjY(θ) ≤ |AM̂(π/2)|(0) ⋅ InjY(π/2) = |4√2|
π

2√2
= 2π.

Hence the constant Cs in the above theorem must be at least 2π.
The standard fundamental region Q for M̂( π

4
) in ℝ3 is a vertical graph bounded by four vertical lines and

|AQ|(0) ⋅ dQ(0, ∂Q) = 4√2
π

2√2
= 2π,

so the constant Cs in (A.1) also must be at least 2π. In fact, Cs can be seen to be strictly greater than 2π by

consideration of the intersection ofM(θ)with a ball of radius slightly larger than π
2√2

. Therefore, the constant Cs
given in the theorem above must also be greater than 2π.
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Next consider the translational quotient of H of a helicoid in ℝ3 such that H is an embedded, one-sided,

stable minimal surface in Y = ℝ3/(πℤ)with finite total curvature −2π. Let p ∈ H be any point on the axis of H.
Then

|AH | ⋅ InjY ≤ |AH(p)| ⋅ InjY (p) = |√2|
π
2
=

π
√2

.

The slab-type regionW ofH bounded by two straight lines insideH at distance π apart is stable, and the function
p ∈ W → |AW |(p)dW (p, ∂W) has amaximumvalue at themid point of the segment obtained by intersecting the

axis of H withW . Hence,

|AW |(p) ⋅ dW (p, ∂W) ≤ |AW |(0) ⋅ dW (0, ∂W) = |√2|
π
2
=

π
√2

.

The above curvature estimates for M̂( π
2
), Q, H andW lead us to ask the following question.

Question A.3. If M is a complete, one-sided, stable minimal surface in a complete flat 3-manifold Y , does the
following inequality hold?

|AM(p)| ⋅ InjY (p) ≤ 2π for all p ∈ M.

More generally, does setting Cs = 2π work in Theorem A.1?

These questions are also motivated by the result by Ros [24] that the only complete non-flat stable minimal

surface in a quotient of ℝ3 by a rank one (resp. two) group of translations is a quotient of the Helicoid (resp.
quotients of the Scherk doubly periodic minimal surfaces) with total curvature −2π.

B Some results from another paper by the authors

In this section, we state, for the readers convenience, some results from [17] that we frequently apply in the

proofs of the present paper.

Proposition B.1 (Intrinsic monotonicity of area formula [17, Proposition 2.4]). Let BX(x0 , R1) denote a closed geo-
desic ball in an m-dimensional manifold (X, g), where 0 < R1 ≤ InjX(x0), and suppose that Ksec ≤ a on BX(x0 , R1)
for some a ∈ ℝ. Given H0 ≥ 0, define

R0(a, H0) =

{{{{{{
{{{{{{
{

1

√a
arc cot(

H0

√a
) if a > 0,

1/H0 if a = 0 (if H0 = 0 we take R0(0, 0) =∞)
1

√−a
arc coth(

H0

√−a
) if a < 0 (if H0

√−a
≥ 1 we take R0(a, H0) =∞),

(B.1)

and let
r1 = r1(R1 , a, H0) = min{R1 , R0(a, H0)}.

Suppose that M is a complete, immersed, connected n-dimensional submanifold of X and x0 ∈ M is a point
such that, when ∂M ̸= 0, then dM(x0 , ∂M) ≥ R1 and the length of the mean curvature vector H⃗ of M restricted to
BX(x0 , R1) is bounded from above by H0. Then the following properties hold:
(i) If M is compact without boundary, then there exists y ∈ M such that the extrinsic distance from x0 to y is

greater than or equal to r1.
(ii) The n-dimensional volume A(r) of BM(x0 , r) is a strictly increasing function of r ∈ (0, r1].
(iii) For all r ∈ (0, r1] when r1 ̸=∞ or otherwise, for all r ∈ (0,∞),

A(r) ≥
{
{
{

ωnrne−nH0r if a ≤ 0,

ωnrne−nr(H0+ 12 fa(r1)r) if a > 0,
(B.2)

where ωn is the volume of the unit ball in ℝn and, given a > 0, the function fa : [0, π/√a)→ ℝ is defined by

fa(t) =
1

t2
[1 − t√a cot(√at)], t ∈ [0, π

√a
).
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Corollary B.2 ([17, Corollary 2.6]). Let R1 > 0, a ∈ ℝ and H0 ≥ 0, and suppose that X is a complete Riemannian
m-dimensional manifold with injectivity radius at least R1 > 0 and Ksec ≤ a. IfM  X is a complete, non-compact
immersed n-dimensional submanifold with empty boundary and the mean curvature vector H⃗ of M satisfies
|H⃗| ≤ H0, then M has infinite volume.

Proposition B.3 ([17, Proposition 2.7]). Given R1 > 0, a ∈ ℝ and H0 ≥ 0, there exists r2 = r2(R1 , a, H0) ∈ (0, r1]
(here r1 is given by Proposition B.1) such that, if X is a complete Riemannian 3-manifold with injectivity radius at
least R1 > 0 and Ksec ≤ a, and if M  X is a complete, connected immersed surface with boundary, whose mean
curvature vector H⃗ satisfies |H⃗| ≤ H0, then for all p ∈ Int(M) we have

Area[BM(p, r)] ≥ 3r2 whenever 0 < r ≤ min{r2 , dM(p, ∂M)}. (B.3)

Furthermore, given ε0 > 0 define

CA = min{ε0 ,
r2
2

ε0
}.

If p ∈ M satisfies dM(p, ∂M) ≥ ε0, then

Area[BM(p, dM(p, ∂M))] ≥ CA dM(p, ∂M) (B.4)

and
Area[BM(p, ε0)] ≥ CAε0 , (B.5)

We finish this summary of auxiliary results taken from [17] with the following scale-invariant weak chord-arc

type estimate for branched minimal surfaces of finite index in ℝ3.

Proposition B.4 ([17, Proposition 4.1]). Given I, B ∈ ℕ ∪ {0}, let f : (Σ, p0)  (ℝ3 , 0⃗) be a complete, connected,
pointed branched minimal surface with index at most I and total branching order at most B. Given R > 0, let ΩR
denote the component of f −1(𝔹(R)) that contains p0. Then the following scale-invariant estimates hold and depend
only on I, B:
(i) For any p ∈ ΩR ,

dΩR (p, ∂ΩR) < L̂R, (B.6)

where

L̂ = √ 1
2
(3I + 2B + 3).

(ii) If f is injective with image being a plane, then the distance between any two points of ΩR is less than or equal
to 2R. Otherwise, given points p, q in ΩR ,

dΩ2R (p, q) < ĈR, (B.7)

where
Ĉ = Ĉ(I, B) = 8L̂3 + 2πL̂2 − 20L̂ − π

2
.

In particular, ΩR ⊂ BΣ(p, ĈR) for every p ∈ ΩR .
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