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Abstract: Intermittency represents a certain form of heterogeneous behavior that has interest in
diverse fields of application, particularly regarding the characterization of system dynamics and
for risk assessment. Given its intrinsic location-scale-dependent nature, wavelets constitute a use-
ful functional tool for technical analysis of intermittency. Deformation of the support may induce
complex structural changes in a signal. In this paper, we study the effect of deformation on inter-
mittency. Specifically, we analyze the interscale transfer of energy and its implications on different
wavelet-based intermittency indicators, depending on whether the signal corresponds to a ‘level’- or
a ‘flow’-type physical magnitude. Further, we evaluate the effect of deformation on the interscale
distribution of energy in terms of generalized entropy and complexity measures. For illustration, vari-
ous contrasting scenarios are considered based on simulation, as well as two segments corresponding
to different regimes in a real seismic series before and after a significant earthquake.

Keywords: complexity; deformation; energy transfer; entropy; intermittency; wavelets

1. Introduction

Intermittency, generally understood as the pseudo-periodic occurrence of higher-level
or variation episodes within a certain regular behavior, is considered a phenomenon of
interest in very diverse fields of applications (e.g., seismology, turbulence, hydrology,
astronomy, finance, insurance, epidemiology, etc.). Structural characteristics associated
with such an effect, in relation to the underlying generating process, often constitute a
primary objective in environmental studies, as they provide relevant information for the
detection and prediction of critical events and for risk assessment.

Different manifestations of intermittency have lead to various interpretations and
formal definitions of this concept. These are essentially related to its genesis and, as a
consequence, to the nature of its effects as a certain form of heterogeneous behavior. De-
pending on the domain where such heterogeneities occur, it is common to distinguish
between ‘isolated’ types of intermittency, for heterogeneities in the spatial/temporal do-
main, and ‘non-isolated’ types of intermittency, associated with heterogeneous scaling,
closer to the concept of multifractality (see, for example, [1]). A common feature of these
approaches is then the heterogeneity in the energy distribution of a signal over space/time
and/or scales, noting that both effects can be present in a given signal. This fact justifies
the use of wavelet functions and related tools to analyze intermittency. In particular, in
the context of assessment of a temporal signal, we use the well-known location-scale-
dependent intermittency indicator introduced in [2,3], named as the ‘local intermittecy
measure’, as well as its scale-dependent temporal average, called the ‘flatness factor’ by
Meneveau [4]. The latter is a special case of sparsity wavelet-moment-based measure of
intermittency; see, for instance, [5–7]. Among other contributions of interest in this context,
see, for example, [6,8–13] and references therein.
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Deformation has been used, among other purposes, as an approach to define flexible
classes of nonhomogeneous random fields from homogeneous ones (e.g., [14–16], etc.), or in
image warping techniques as a means to approximate heterogeneously behaved processes
in terms of simpler homogeneous models (e.g., [17,18], etc.). Different aspects of the effect
of space and space–time deformation are analized, for instance, in [19–23].

Information measures play a key role in the assessment of structural complexity of
a signal in diverse fields of application. Different formulations have followed after the
seminal paper by Shannon [24], among which the generalizacions by Rényi [25], under
preservation of extensivity, and Tsallis [26], in a non-extensive context, have had a special
impact. In particular, information measures constitute the basis for construction of certain
forms of complexity measures and interpretations under the notion of diversity [27]; see,
for instance, Refs. [28,29] and references therein.

The main aim of this paper is to study the effect of time deformation on the structure
of intermittecy in a given signal. Formally, deformation is assumed to be defined by a
regular transformation of the time domain in terms of a diffeomorphism with a positive
Jacobian. We distinguish the cases of ‘level’- and ‘flow’-type magnitudes. Specifically,
we analyze local energy transfer between scales due to local contraction/dilation, and its
subsequent implications in the structure of intermittency, particularly in relation to the
above mentioned quantitative indicators. Furthermore, we assess the effect of deformation
on the heterogeneous interscale distribution of energy based on Shannon, Rényi and Tsallis
entropies, as well as in terms of generalized complexity measures.

The remainder of the paper is structured as follows. Section 2 introduces fundamental
preliminary aspects, including wavelet-based quantifiers of intermittency, information mea-
sures and definitions of ‘level’- and ‘flow’-type deformation. In the Section 3, we analyze
the interscale transfer of energy derived from the local contraction/dilation properties of
deformation, and the effect on the intermittency indicators considered. Some illustrative
examples are shown in Section 4, firstly considering simulated signals generated from
an ARMA model structure with Gaussian or Cauchy input noise, and its second-order
integrated ARIMA version, and secondly based on a real data seismic signal contrast-
ing the results for two periods corresponding to different activity regimes. Finally, some
conclusions and open directions for continuing research are commented on in Section 5.

2. Preliminaries
2.1. Intermittency Wavelet-Based Quantifiers

Wavelet-based techniques constitute a powerful tool for analyzing possible intermit-
tency in a signal, and have been applied in many studies, in particular in the context of
environmental sciences. An interesting related insight was given, for example, in [2,3]. Let
x(t) be a signal with finite total energy,

Ex =
∫ ∞

−∞
x(t)2dt < ∞.

The continuous wavelet transform (CWT) is obtained through convolution between x(t)
and all the possible versions, scaled and translated, of a basic wavelet function ψ. As
interpreted by Meneveau [4], a wavelet transform coefficient W(a, b) can then be seen as
a measure of the ‘correlation’ between the signal x(t) and ψ(t) at scale a and location b.
The total energy of x(t) can be decomposed in terms of the wavelet coefficient energies,
Ew(λ), as

Ex =
∫ ∞

0
Ew(λ)dλ =

∫ ∞

0

(
1

2πCψ

∫ ∞

−∞
|Wx(a(λ), b)|2db

)
dλ

= 2π
∫ ∞

0

Ew(a)
a2 da =

1
Cψ

∫ ∞

0

∫ ∞

−∞

|Wx(a, b)|2
a2 dbda,
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where λ = 2π/a and Cψ =
∫ ∞
−∞

|ψ̂(λ)|2
|λ| dλ < ∞, with ψ̂(λ) =

∫ ∞
−∞ ψ(t)e−iλtdt. That is, a

density for the scale-time distribution of the energy of the signal x(t), through scales a and
locations b, is obtained from the square of Wx(a, b), named ‘scalogram’. Taking into account
that intermittency occurs when the energy is not evenly distributed, Farge (et al.) [2,3]
introduced the so-called ‘local intermittency measure’ (LIM), defined by normalization of
the scalogram with respect to the average local energy observed within each scale:

LIMx(a, b) =
|Wx(a, b)|2

Aveb[|Wx(a, b)|2] . (1)

If LIMx(a, b) = 1 for any a and b, then the energy of the function is equally distributed
in scale and time, and the signal does not exhibit intermittent behavior. On the contrary,
a coefficient LIMx(a, b) > 1 indicates that this given scale-location pair (a, b) contributes
significantly, in relative terms, to the average. Therefore, the LIMx(a, b) map can be seen as
the fundamental analysis of energy information, which can be further explored and pro-
cessed to look for certain patterns or characteristics related to the concept of intermittency
(interscale coherence, recurrence, persistence, event distribution patterns, etc.).

An immediate indicator of intermittency is given by the temporal average of LIM2
x(a, b),

which defines the ‘flatness’ of the wavelet coefficients within each scale a (see [4]):

Fx(a) = Aveb

[
LIM2

x(a, b)
]
=

Aveb
[
|Wx(a, b)|4

]
(Aveb[|Wx(a, b)|2])2 .

The flatness Fx is then a scale-dependent measure of the kurtosis of the input signal. A
relatively high Fx(a) value is taken as a possible indication of intermittency at scale a. Lo-
cally, the condition LIM2

x(a, b) > 3 can be used as a basic criterion to identify those events
contributing to departure from Gaussianity in the distribution of wavelet coefficients. Nicol-
leau and Vassilicos [1] explain that often a signal is interpreted as intermittent when Fx(a)
increases for decreasing a since an intermittent signal displays activity over only a fraction
of time, and this portion decreases with the scale a under consideration. A limitation of
Fx(·) is that it does not discriminate intermittencies of isolated or non-isolated types.

It must be noted that the flatness factor is a special prominent case of general sparsity
wavelet-moment-based measures of intermittency, defined by

µx;p,q(a) =
Aveb[|Wx(a, b)|p]

(Aveb[|Wx(a, b)|q])p/q , p, q ≥ 1, (2)

with Fx(a) corresponding to p = 4, q = 2 (see, for example, [5]).
As often mentioned in the literature, the CWT provides a complete description of

a signal at all scales and locations, and it is then usually adopted when the user wants
to depict the signal behavior at selected scale-space ranges. As is well-known, when an
efficient non-redundant compression of information, yet allowing the signal reconstruction,
is the objective, a particularly interesting alternative is given by the orthogonal discrete
wavelet transform (DWT) (see, e.g., [30]).

In our analysis on the effect of deformation in terms of the scalogram and related in-
termittency indicators, we use the CWT to give a complete representation for a ‘continuous’
(in practice, for a finely discretized) scale-space range.

A key aspect in the analysis through wavelets is the choice of the mother wavelet, since
the main objective of this type of analysis is to extract, by convolution, certain characteristics
of interest in the structure of a signal. Therefore, the wavelet function should be selected
depending on the target features to be detected. For example, it is known that the Haar
wavelet is appropriate to identify a sustained change in the signal level, while the Morlet
wavelet is more appropriate to seek concentration in time–frequency of signal energy
(see [31]). This is a complementary issue that does not directly affect to the central lines
and objectives of this study in relation to the effect of deformation on intermittency.
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2.2. Information and Complexity Measures

For a discrete probability distribution p̄ = (p1, . . . , pn), Shannon entropy [24] is
defined as

H( p̄) = −
n

∑
i=1

pi ln(pi) = −E[ln( p̄)].

The minimum and maximum values of H are Hmin = 0 and Hmax = ln(n), respectively,
with Hmin being related to degenerate systems concentrating the probability mass in only
one of the possible states, and Hmax being reached only in the case of equiprobability.

Two important generalizations of Shannon entropy, both based on a deformation
parameter determining a power distortion on the argument distribution, are given by Rényi
and Tsallis entropies.

Specifically, Rényi entropy [25] of order q of the discrete probability distribution p̄ is
defined as

HR
q ( p̄) =

1
1− q

ln

(
n

∑
i=1

pq
i

)
=

1
1− q

ln
(

E[ p̄q−1]
)

(q 6= 1).

As before, the minimum and maximum values of HR
q are HR

q min
= 0 and HR

q max
= ln(n).

On the other hand, Tsallis entropy [26] of order q of the discrete probability distribution
p̄ is defined as

HT
q ( p̄) =

1
q− 1

(
1−

n

∑
i=1

pq
i

)
=

1
q− 1

(
1− E[ p̄q−1]

)
(q 6= 1).

The minimum and maximum values of HT
q are HT

q min
= 0 and HT

q max
= 1−n1−q

q−1 .
Shannon entropy is the limiting case of Rényi and Tsallis entropies as q→ 1.
Whilst Rényi entropy is extensive, meaning that is additive for independent systems,

Tsallis entropy is non-extensive except for q→ 1.
Based on Rényi entropy, a product-type generalized complexity measure can be

defined as
Cα,β( p̄) = eHR

α ( p̄)−HR
β ( p̄), (3)

for 0 < α, β < ∞ (see [32], in the continuous case; see also [29] and references therein).
In the context of this work, these measures provide useful tools for complementary

assessment of the distribution of energy, both within each particular scale and between
different scales. In Section 4, we show, in particular, the effect of deformation on the
interscale distribution of energy obtained from the DWT, considering Shannon, Rényi and
Tsallis entropies normalized by their corresponding maximum value (see, e.g., [11], for the
case of normalized Tsallis wavelet entropy), as well as the above mentioned Rényi-entropy-
based formulation of a product-type complexity measure.

2.3. Deformation

Let x be a signal on [0, T], and let Φ be a deformation of the domain [0, T], subject
to the constraints that it is continuously differentiable with strictly positive derivative Φ′.
This ensures that there is no time reversal, nor time ruptures, nor any local collapse of the
Lebesgue measure on single points. For simplicity, we assume that Φ([0, T]) = [0, T′]. We
distinguish the cases where x represents either a ‘level’- or a ‘flow’-type magnitude, that is,
depending on whether the states represent values that are intrinsic to specific time points
or are accumulated during increasing time periods. In correspondence, we denote x[Φ]
and x[Φ̃] the transformed signals defined on [0, T′], respectively defined by

x[Φ](t′) = x(Φ−1(t′))
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and
x[Φ̃](t′) = x(Φ−1(t′))[Φ′(Φ−1(t′))]−1,

with t′ ∈ [0, T′]. Whilst in x[Φ] the signal is only affected by displacement of the time
points, in x[Φ̃] the contraction/dilation properties of Φ affect the accumulation process and
hence are reflected in the modification of the state values through the local first derivative,
with the latter being smaller than 1 under local contraction, and larger than 1 in the case of
local dilation.

In relation to the formal definition of a transformed random signal by deformation of a
d-dimensional space support, with a distinction between the cases of ‘level’- and ‘flow’-type
magnitudes, see, for instance, [21–23].

3. Deformation and Intermittency: Interscale Transfer of Energy

In order to explain induced heterogeneity and intermittency changes derived from
deformation, we first specifically analyze interscale transfer of energy effects in relation to
local contraction/dilation properties of such transformation. For this purpose, we consider
a simple linear transformation Φ : [0, T]→ [0, T′], defined by Φ(t) = ct, with c > 0 a real
constant, and T′ = cT. Hence, Φ(t) is a contraction for c < 1 and a dilation for c > 1.

We distinguish the cases of deformation on a ‘level’- or a ‘flow’-type signal, according
to the formulations given in Section 2.3.

Recall that wavelet coefficients are obtained by the convolution of the signal with a
given rescaled and translated wavelet function, that is,

Wx(a, b) = 〈x(t), ψab(t)〉 =
1

a1/2

∫ T

0
x(t)ψ

(
t− b

a

)
dt.

Then, the wavelet coefficients of the deformed signal x[Φ] (‘level’ case) are obtained substi-
tuting x[Φ](u) for x(t) in the previous expression:

Wx[Φ](a, b)= 〈x[Φ](u), ψab(u)〉 =
1

a1/2

∫ cT

0
x[Φ](u)ψ

(
u− b

a

)
du

=
1

a1/2

∫ cT

0
x
(u

c

)
ψ

(
u− b

a

)
du=

1
a1/2

∫ T

0
x(t)ψ

(
ct− b

a

)
cdt

=
c

a1/2

∫ T

0
x(t)ψ

(
t−b/c

a/c

)
dt=

c1/2

(a/c)1/2

∫ T

0
x(t)ψ

(
t−b/c

a/c

)
dt

= c1/2Wx

(
a
c

,
b
c

)
,

(4)

where we have used the change of variable u/c = t in the fourth equality. This relation
between the wavelet coefficients of the original and deformed signals indicates that, without
considering the change of domain, there is a transfer of energy from scale a to scale ca. In
fact, averaging the squared wavelet coefficients over b, using the change of variable b′ = b

c ,
and then renaming b′ → b, we get

Aveb

[
W2

x[Φ](a, b)
]
=

1
cT

∫ cT

0
W2

x[Φ](a, b)db =
1

cT

∫ cT

0
(c1/2)2W2

x

(
a
c

,
b
c

)
db

=
1
T

∫ T

0
W2

x

( a
c

, b′
)

cdb′ =
c
T

∫ T

0
W2

x

( a
c

, b
)

db

= cAveb

[
W2

x

( a
c

, b
)]

.

(5)
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Substituting the expressions (4) and (5) in (1), the LIM of the deformed signal is
computed as

LIMx[Φ](a, b)=
W2

x[Φ](a, b)

Aveb

[
W2

x[Φ]
(a, b)

] = cW2
x

(
a
c , b

c

)
cAveb

[
W2

x
( a

c , b
)] =LIMx

(
a
c

,
b
c

)
. (6)

Hence, we can assert that if the deformation has a local effect of dilation (c > 1),
then the relative energy value of scale a/c at location b/c is transferred to the higher scale
a > a/c at location b. On the other hand, if the deformation has a local effect of contraction
(c < 1), there is a transfer of energy from scale a/c at location b/c to the lower scale
a < a/c at location b. Note that, due to the change of measure between the original and the
transformed physical spaces, the total energy is expanded or shortened by deformation
depending on the properties of dilation or contraction, as it can be seen using the changes
of variables a′ = a

c and b′ = b
c :

Ex[Φ]=
1

Cψ

∫ ∞

0

∫ ∞

−∞

|Wx[Φ](a,b)|2

a2 dadb=
1

Cψ

∫ ∞

0

∫ ∞

−∞

c|Wx

(
a
c , b

c

)
|2

a2 dadb

=
c

Cψ

∫ ∞

0

∫ ∞

−∞

|Wx(a′,b′)|2
(ca′)2 cda′cdb′=

c
Cψ

∫ ∞

0

∫ ∞

−∞

|Wx(a′,b′)|2
a′2

da′db′

= cEx.

(7)

For a general deformation Φ, depending on where we have local contraction or dilation
effects, there will be transfers of energy between scales in different directions.

A similar analysis can be developed for x representing a ‘flow’-type signal. In this
case, we obtain the following expressions for x[Φ̃]:

Wx[Φ̃](a, b) = 〈x[Φ̃](u), ψab(u)〉 =
1
c

Wx[Φ](a, b) =
1

c1/2 Wx

(
a
c

,
b
c

)
,

Aveb

[
W2

x[Φ̃]
(a, b)

]
= Aveb

[
1
c2 W2

x[Φ](a, b)
]
=

1
c
Aveb

[
W2

x

( a
c

, b
)]

,

LIMx[Φ̃](a, b)=
|Wx[Φ̃](a, b)|2

Aveb

[
|Wx[Φ̃](a, b)|2

]= 1
c W2

x

(
a
c , b

c

)
1
c Aveb

[
W2

x
( a

c , b
)]=LIMx

(
a
c

,
b
c

)
. (8)

Comparing (6) and (8), we can see that the LIM values coincide in both cases. However,
as is shown below, using the same changes of variables as before, the total energy change
now is

Ex[Φ̃] =
1

Cψ

∫ ∞

0

∫ cT

0

|Wx[Φ̃](a, b)|2

a2 dadb =
1

Cψ

∫ ∞

0

∫ cT

0

|Wx

(
a
c , b

c

)
|2

ca2 dadb

=
1

Cψ

∫ ∞

0

∫ T

0

|Wx(a′, b′)|2
c(ca′)2 cda′cdb′=

1
Cψ

∫ ∞

0

∫ T

0

|Wx(a′, b′)|2
ca′2

da′db′=
Ex

c
.

Hence, when the signal is of ‘flow’-type, the energy is reduced where the deformation
has local dilation properties, c > 1, and enhanced where the deformation has local contrac-
tion properties, c < 1. Note that in the case of a ‘level’-type signal, just the opposite effect
was proved (see (7)).

As introduced in Section 2.1, a global multiscale quantification of intermittency is
given in terms of the flatness coefficient F, which averages squared values of the local
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intermittency measures (LIM) obtained within each single scale. In the case of a ‘level’-type
signal x, and for a deformation Φ(t) = ct as before, using the previous results, we have

Fx[Φ](a) = Aveb

[
LIM2

x[Φ](a, b)
]
=

1
cT

∫ cT

0
LIM2

x[Φ](a, b)db

=
1

cT

∫ cT

0
LIM2

x

(
a
c

,
b
c

)
db =

1
cT

∫ T

0
LIM2

x

( a
c

, b′
)

cdb′

=
1
T

∫ T

0
LIM2

x

( a
c

, b
)

db = Fx

( a
c

)
.

This shows that the shape of the flatness curve is preserved, but on different scales.
For a ‘flow’-type signal x, since the LIM values coincided under both contraction or

dilation, therefore the flatness coefficient values coincide too,

Fx[Φ̃](a) = Aveb

[
LIM2

x[Φ̃](a, b)
]
= Aveb

[
LIM2

x[Φ](a, b)
]
= Fx

( a
c

)
.

Similar results can be obtained, under analogous developments, for the general
sparsity-wavelet-moment-based measures of intermittency (2).

For a general non-linear deformation, with varying contraction or dilation effects, the
local transfer of energy between scales leads, by the Aveb operation involved, to different
values of LIM and flatness coefficients depending on whether the signal is assumed to be
of ‘level’- or ‘flow’-type, as is shown in Section 4.

4. Illustrative Cases

In this section, we study the multiscale effect of deformation on intermittency, first
based on the analysis of several selected simulated scenarios. Secondly, two segments
corresponding to different activity regimes in a real seismic signal are also analyzed and
compared with this purpose.

4.1. Simulated Examples

In this subsection, we first consider two versions of the ARMA(1,1) model

Xt = φ1Xt−1 + εt − θ1εt−1, φ1 = −0.7, θ1 = 0.9, (9)

respectively driven by Cauchy and Gaussian white noise {εt}. Due to the negative first-
order auto-regression parameter, as well as the alternating influence of driving noise inputs
over time, the structure of the model induces fluctuations associated with prevalence of
higher order frequencies in the power spectrum. On the other hand, it is expected that
the random input energy supplied to the system in the heavy-tail Cauchy white noise
case, in contrast with the Gaussian white noise case, leads to the presence of clustered
high-variability episodes in the generated realizations.

Figure 1 illustrates, for two simulated realizations of model (9) (left and right plots
respectively correspond to the Cauchy and Gaussian white noise cases), the analysis of
intermittency using the quantifiers introduced in Section 2.1 based on a Haar wavelet.
Specifically, from top to bottom, the simulated realizations, corresponding scalograms,
LIM maps, threshold exceedance set for LIM2

x(a, b) > 3, and F curves are plotted. In the
case where the noise is Cauchy a well-defined interscale coherence of energy concentrations
over time can be observed, and a strong global intermittency behavior is clear from the
F curve. However, when the noise is Gaussian, the behavior is more regular, the LIM
values are similar through scales and locations, indicating that the energy of the function
is homogeneously distributed in time within each scale, and the F curve shows slightly
significant values only for some higher scales.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 1. From top to bottom: (a,b) simulated realizations of model (9), with (a) Cauchy and (b) Gaus-
sian white noise; correspondingly in left and right columns, using Haar wavelet, (c,d) scalogram
W2

x (a, b), (e,f) LIMx map, (g,h) threshold exceedance set for LIM2
x(a, b) > 3, and (i,j) Fx curve.
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As commented at the end of Section 2.1, the wavelet function should be selected
depending on the features to be detected. Figure 2 shows the results of a similar analysis to
Figure 1, now using Morlet wavelet. In this case, the threshold exceedances for LIM2

x show
a somewhat different structure with respect to the previous case, indicating less frequent
concentrations of energy, but during longer time periods, and the F curves are much less
smooth. In what follows, for illustration purposes, all the analyses are only based on a
Haar wavelet.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Cont.
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(i) (j)

Figure 2. From top to bottom: (a,b) simulated realizations of model (9), with (a) Cauchy and (b) Gaus-
sian white noise; correspondingly in left and right columns, using Morlet wavelet, (c,d) scalogram
W2

x (a, b), (e,f) LIMx map, (g,h) threshold exceedance set for LIM2
x(a, b) > 3, and (i,j) Fx curve.

To study the effect of deformation of the time domain (both ‘level’ and ‘flow’ cases are
evaluated) on the distribution of the energy concentrations over time at different scales, we
consider that the signals to be analyzed are observed at times t = 1, 2, . . . , 1024, and, for
simplicity, we apply a smooth deformation with increasing contraction and dilation effects
respectively towards the left and right ends of the continuous time interval [0, 1024], but
preserving the domain. Formally, Φ is defined by its inverse, as

Φ−1(t′) =
0.7× 1024

π
sin
( π

1024
t′
)
+ t′, for t ∈ [0, 1024] (10)

(see Figure 3).

Figure 3. Deformation Φ given by (10).

Firstly, the effect of deformation on a ‘level’-type signal is analyzed based on simu-
lated realizations from ARMA(1,1) model (9) with Cauchy or Gaussian white noise; see
Figures 4 and 5, respectively. Looking at the F curves corresponding to the original signal
and its transformation after deformation for the series with Cauchy noise, it can be seen
that intermittency levels are modified under deformation. A similar effect is observed for
the series with Gaussian noise, though in this case, with the original signal showing slightly
significant values only for some higher scales, its transformation displays intermittency
effects for all scales.

Secondly, we consider series generated from the ARIMA(1,2,1) model obtained by
double integration of ARMA model (9), again with Cauchy and Gaussian white noise, and
study the effect of a ‘flow’-type deformation. In all cases, the F curves have a global decay
for the range of scales considered. Also, a clear increase of intermittency levels is observed
after deformation, as can be seen in Figures 6 and 7, and particularly in the Gaussian noise
case, which does not exhibit intermittency behavior originally.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4. From top to bottom: (a) simulated signal realization x generated from model (9) with Cauchy
white noise, and (b) its (‘level’-type) deformation x[Φ]; correspondingly in left and right columns, (c,d) scalo-
gram W2(a, b), (e,f) LIM map, (g,h) threshold exceedance set for LIM2(a, b) > 3, and (i,j) F curve.



Entropy 2023, 25, 1080 12 of 24

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5. From top to bottom: (a) simulated signal realization x generated from model (9) with Gaussian white
noise, and (b) its (‘level’-type) deformation x[Φ]; correspondingly in left and right columns, (c,d) scalogram
W2(a, b), (e,f) LIM map, (g,h) threshold exceedance set for LIM2(a, b) > 3, and (i,j) F curve.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6. From top to bottom: (a) simulated signal realization x generated from the ARIMA(1,2,1)
model obtained by double integration of model (9) with Cauchy noise, and (b) its (‘flow’-type)
deformation x[Φ̃]; correspondingly in left and right columns, (c,d) scalogram W2(a, b), (e,f) LIM
map, (g,h) threshold exceedance set for LIM2(a, b) > 3, and (i,j) F curve.



Entropy 2023, 25, 1080 14 of 24

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 7. From top to bottom: (a) simulated signal realization x generated from the ARIMA(1,2,1)
model obtained by double integration of model (9) with Gaussian noise, and (b) its (‘flow’-type)
deformation x[Φ̃]; correspondingly in left and right columns, (c,d) scalogram W2(a, b), (e,f) LIM
map, (g,h) threshold exceedance set for LIM2(a, b) > 3, and (i,j) F curve.
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Finally, a complementary analysis for intermittency is performed focusing on the
assessment of temporal heterogeneities in the scale distribution of energy. For this purpose,
as mentioned in Section 2.2, normalized wavelet entropy (Shannon, Rényi, Tsallis) is used
to measure the degree of local structuring of a signal, based on sliding windows of size
128, with sliding step equal to 1. That is, for each time interval, entropy is calculated based
on the distribution of relative energy values on the different scales, hence providing an
indicator of possible structural changes over time.

Figure 8 shows the wavelet entropy values based on the original and deformed ‘level’-
type signals displayed in Figures 4 and 5. It can be observed that, in both cases (Cauchy
and Gaussian white noise), there is a high degree of structuring reflected in low values
of wavelet entropies for the original signals, while either contraction or dilation effects of
deformation induce an increase in entropy values (similar in shape, but different in level,
for Shannon, Rényi and Tsallis entropies), indicating a higher homogeneity of the interscale
energy distribution.

(a) (b)

(c) (d)

(e) (f)
Figure 8. (a,b) Shannon entropy, (c,d) Rényi entropy of order q = 3, and (e,f) Tsallis entropy of order
q = 3, displayed in blue color for original signal generated from model (9) with (a,c,e) Cauchy and
(b,d,f) Gaussian white noise, and in red color for the corresponding (‘level’-type) deformation.
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However, there are clear differences between both scenarios corresponding to Cauchy
or Gaussian white noise. For the original signals, the entropy values are locally more
sensitive to the sliding steps, although showing a more stable average level, in the Cauchy
case. Furthermore, deformation enhances the intermittency effects of extremal inputs
from the Cauchy white noise through the ARMA model, noticeable in the heterogeneous
structure of the entropy curves.

An analogous analysis is performed under the ARIMA(1,2,1) model, based on the
realizations displayed in top plots of Figures 6 and 7, respectively, for the Cauchy and
Gaussian white noise cases. Figure 9 shows the corresponding values of Shannon, Rényi
and Tsallis entropies, which reflect a significantly smoother local behavior according to the
nature of the signals. In these cases, the entropy values remain at a similar level for the
original and deformed signals, except for the period where mixed contraction and dilation
effects from deformation are present within the window.

(a) (b)

(c) (d)

(e) (f)
Figure 9. (a,b) Shannon entropy, (c,d) Rényi entropy of order q = 3, and (e,f) Tsallis entropy of order
q = 3, displayed in blue color for original signal generated from the ARIMA(1,2,1) model obtained
by double integration of model (9) with (a,c,e) Cauchy and (b,d,f) Gaussian white noise, and in red
color for the corresponding (‘flow’-type) deformation.
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4.2. Analysis of a Real Seismic Signal

In this subsection, as an example with the aim of illustrating the interest of the aspects
discussed above in a real situation, we consider the seismic signal (as it was registered in
Granada, Spain) comprising the earthquake that happened on 6 April 2009, with epicenter
near L’Aquila (Italy), with magnitude 6.3 on the Ritcher scale (see Figure 10).

Figure 10. Seismic signal of L’Aquila earthquake (6 April 2009).

Since it is expected that the dynamics of the system differ before and after the earth-
quake, we select two segments for comparative analysis, respectively, beginning at 01:29:00
(segment 1, before) and 11:24:03 (segment 2, after). Figure 11 illustrates the analysis of
intermittency, in terms of the scalogram, LIMx map, and Fx curve. It can be observed
that these indicators display different structural characteristics for both subperiods. In
particular, the LIM2

x(a, b) excesses over threshold 3 depict clear local concentrations, with a
certain degree of interscale coherency, in the aftershock segment. This is globally reflected
in the much larger values of the flatness factor for this subperiod, which indicates a higher
degree of intermittency after the earthquake.

Given the intrinsic nature of the signal, a ‘level’-type deformation according to
Equation (10) is applied.

The structural differences between both periods are maintained when the deformation
is applied, as can be observed in Figures 12 and 13. In general terms, the values of the F
curves increase after deformation. While this effect is moderated for segment 1, yet with
flatness values becoming larger than threshold 3 for most scales, there is a drastic increase
for segment 2, particularly enhanced at lower scales.

Regarding the wavelet entropy analysis of the interscale relative energy distribution,
it is interesting to note, as can be seen in Figure 14, that both periods, before and after
the main seismic shock, show a very different behavior in agreement with the degree
of structuring of the signal. For segment 1, the normalized entropy values are closer to
the maximum, denoting a certain uniformity of the energy distribution, slightly affected
by deformation. On the other hand, for segment 2, the entropy values are much lower,
displaying temporal variations, and in this case deformation has a clear effect similarly as
discussed for the simulated signals analyzed in Section 4.1. A clear distinction between
both periods in relation to the intrinsic interscale energy distribution structure, as well
as regarding the effect of deformation, can be also observed in Figure 15 based on the
generalized complexity measure (3).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 11. From top to bottom: (a) segment 1, (b) segment 2 of seismic signal; correspondingly in
left and right columns, (c,d) scalogram W2

x (a, b), (e,f) LIMx map, (g,h) threshold exceedance set for
LIM2

x(a, b) > 3, and (i,j) Fx curve.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 12. From top to bottom: (a) segment 1 of seismic signal, and (b) its (‘level’-type) deformation;
correspondingly in left and right columns, (c,d) scalogram W2

x (a, b), (e,f) LIMx map, (g,h) threshold
exceedance set for LIM2

x(a, b) > 3, and (i,j) Fx curve.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 13. From top to bottom: (a) segment 2 of seismic signal, and (b) its (‘level’-type) deformation;
correspondingly in left and right columns, (c,d) scalogram W2

x (a, b), (e,f) LIMx map, (g,h) threshold
exceedance set for LIM2

x(a, b) > 3, and (i,j) Fx curve.
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(a) (b)

(c) (d)

(e) (f)

Figure 14. (a,b) Shannon entropy, (c,d) Rényi entropy of order q = 3, and (e,f) Tsallis entropy of order
q = 3, displayed in blue color for original seismic signal with (a,c,e) segment 1 and (b,d,f) segment 2,
and in red color for the corresponding (‘level’-type) deformation.

(a) (b)

Figure 15. Cont.
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(c) (d)

Figure 15. Rényi-based generalized complexity under selected (α, β) values, for (a,b) original seismic
signal x, (a) segment 1 and (b) segment 2, and (c,d) for the corresponding (‘level’-type) deforma-
tion x[Φ].

5. Conclusions

In this paper, we study the effect of time deformation on the structure of signals
displaying an intermittent behavior. Regarding the nature of the signal, we distinguish the
cases of ‘level’- and ‘flow’-type magnitudes. Specifically, under a wavelet-based approach,
we analyze the interscale transfer of energy derived from local contraction or dilation
properties of deformation, and its implications on well-known intermittency quantifiers
such as the ‘local intermittency measure’ (LIM) and ‘flatness factor’ (F). Furthermore,
variations in the heterogeneous interscale distribution of energy are assessed using Shannon,
Rényi and Tsallis entropies, as well as the Rényi-entropy-based product-type generalized
complexity measure.

In relation to the underlying generating random process, for an illustration based on
simulation, we consider different scenarios regarding the dynamics dependence structure
(ARMA, for a ‘level’-type magnitude, and its ARIMA second-order integrated version,
for a ‘flow’-type magnitude), and the random inputs marginal distribution (Gaussian and
Cauchy). In addition, as an example based on real data, we select two segments from
a seismic series, respectively, before and after a big earthquake, hence corresponding to
contrasting systemic activity regimes, and compare the effect of deformation on their
intermittency behavior.

We must emphasise that our methodological approach is essentially empirical, in the
sense that the wavelet-based analysis and extraction of information by different indicators
is performed on observed or simulated signal data, which can be seen as realizations of
a random system. Although we do not address any inferential objective in this paper,
it is implicit that a researcher can potentially use this analytical approach under such
perspective; for instance, in the case of repeated observations, or under model-based
conditional simulation.

We can also identify, as a result of this work, some significant directions on which
research can be continued. Among them, here we mention: dual determination of scale-
dependent deformation functions representing the intermittency characteristics of a given
signal; consideration of stochastic deformation (in particular, from covariate effects); sen-
sitivity with respect to the deformation parameter q in generalized entropy measures
(Rényi, Tsallis), and its potential usefulness for detecting intermittency levels from the
inter/intrascale distribution of energy; extension and interpretation of results in terms
of diversity and considering alternative complexity measures; intermittency analysis of
spatial or spatiotemporal signals; risk analysis, e.g., using quantile-based risk measures
(see, for example, [33]), on loss functions defined in terms of intermittency indicators, with
projection, for instance, to identification of recurrence, persistency or clustering patterns;
derivations under the perspective of multifractal analysis (see, for example, [34–36]).
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