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Abstract: The creation of crop type maps from satellite data has proven challenging and is often
impeded by a lack of accurate in situ data. Street-level imagery represents a new potential source
of in situ data that may aid crop type mapping, but it requires automated algorithms to recognize
the features of interest. This paper aims to demonstrate a method for crop type (i.e., maize, wheat
and others) recognition from street-level imagery based on a convolutional neural network using a
bottom-up approach. We trained the model with a highly accurate dataset of crowdsourced labelled
street-level imagery using the Picture Pile application. The classification results achieved an AUC of
0.87 for wheat, 0.85 for maize and 0.73 for others. Given that wheat and maize are two of the most
common food crops grown globally, combined with an ever-increasing amount of available street-
level imagery, this approach could help address the need for improved global crop type monitoring.
Challenges remain in addressing the noise aspect of street-level imagery (i.e., buildings, hedgerows,
automobiles, etc.) and uncertainties due to differences in the time of day and location. Such an
approach could also be applied to developing other in situ data sets from street-level imagery, e.g.,
for land use mapping or socioeconomic indicators.
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1. Introduction

The spatial extent of cropland areas has been mapped extensively since the mid-
eighties, as increasing numbers of satellites have been launched and higher-spatial- and
-temporal-resolution imagery has become available. For example, cropland is provided
as a land cover class in many global land cover products such as GLC-2000 [1], MODIS
land cover [2] and ESA-CCI [3], among many others. More recently, a time series of
higher-resolution cropland extent products has been produced using Landsat [4] at a
30 m resolution, while Sentinel-2 is now also being used for land cover mapping, includ-
ing cropland extent at a 10 m resolution [5]. However, for monitoring food security at
national-to-global scales, spatially explicit crop type maps are urgently needed [6] With
recent advances in analytical methods, data infrastructure and the availability of higher-
resolution imagery, several recent studies have applied machine learning techniques for
crop type recognition. Some of the most successful include support vector machines
(SVMs) [7–9], random forests [9–12], decision trees [12–14], the maximum likelihood clas-
sifier (MLC) [11,15,16], artificial neural networks (ANNs) [11,17] and minimum distance
(MD) [11]. Another example is the work undertaken by Mou et al. in [16], where the
authors proposed a deep recurrent neural network (RNN) for hyperspectral image clas-
sification. The RNN model effectively analyzed hyperspectral pixels as sequential data
and determined information categories via network reasoning. The specific application of

Geographies 2023, 3, 563–573. https://doi.org/10.3390/geographies3030029 https://www.mdpi.com/journal/geographies

https://doi.org/10.3390/geographies3030029
https://doi.org/10.3390/geographies3030029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geographies
https://www.mdpi.com
https://orcid.org/0000-0002-8558-0053
https://orcid.org/0000-0002-2665-7065
https://orcid.org/0000-0001-8743-9777
https://orcid.org/0000-0002-9627-676X
https://doi.org/10.3390/geographies3030029
https://www.mdpi.com/journal/geographies
https://www.mdpi.com/article/10.3390/geographies3030029?type=check_update&version=1


Geographies 2023, 3 564

convolutional neural networks (CNN) in remote sensing for crop type recognition has also
shown excellent performance [13,16,18–24].

Several recent research studies have achieved a higher accuracy in the learning phase
because of the implementation of CNNs. For instance, Cai et al. in [18] introduced a
methodology for the cost-effective and in-season classification of field-level crop types
using common land units (CLUs) from the United States Department of Agriculture (USDA)
to aggregate spectral information based on a time series. The authors built a deep-learning-
based classification model based on deep neural networks (DNN). The research aimed to
understand how different spatial and temporal features affected the classification perfor-
mance. Their experiments also evaluated which input features were the most helpful in
training the model and how various spatial and temporal factors affected the crop type
classification. Castro et al. in [19] explored three approaches to improve the classification
performance for land cover and crop type recognition in tropical areas using an image-
stacking approach in combination with a CNN. Their findings outperformed the traditional
system based on image stacking alone in terms of overall and class accuracy.

However, all of these applications require training data on the presence of different
crop types, where a lack of such data is one challenge identified in many research papers.
Many studies collect field-based data as part of the development of a training data set (see,
e.g., [25]), which is costly and often not shared with the broader remote sensing community.
For example, in the study by Wang et al. [20], local farmers contributed by utilizing a mobile
application to take pictures and assign a label according to the crop type as the training
data for crop type mapping. However, these examples are generally limited to small data
sets. Another source of in situ data is from the LUCAS survey, which collects information
at around 300 k locations across Europe [26]. However, the data are only collected every
three years, they cover all land cover and land use types, not just crop types, and the data
collection exercise is costly [27].

More recently, street-level imagery has become available for many areas around the
world, e.g., from Google Street View and Baidu or as crowdsourced contributions through
sites like Mapilllary. However, much of the research involving street-level imagery has
involved applications related to urban areas [28]. In contrast, D’Andrimont et al., (2018) [29]
compared the amount of street-level imagery available for Europe to imagery available
from the LUCAS survey as a potential source of training data, in particular for cropland
mapping. They found that street-level imagery was available within 300 m of a LUCAS
survey point for 9.4% of the EU territory, so it could provide additional training data.
Focusing on the Netherlands, the authors then examined photographs from the Mapillary
database for in situ crop type information. Of the 785 K photographs available, it was
possible to identify some crops and to link these to agricultural parcels. However, the
authors did not attempt to automatically classify the photographs for crop type.

The use of computer vision and the segmentation of street-level photographs is the
subject of an active area of research. For example, Kang et al., (2018) [30] used images from
Google Street View to classify building types, Cao et al., (2018) [31] created a land cover
map of New York from combining street-level and aerial imagery, while a detailed urban
map (of local climate zones) was developed by Cao et al., (2023) [32] using Google Street
View. These and other similar studies are largely focused on the mapping of urban areas or
features and have used pre-trained DL networks such as Places-CNN to first classify the
images. The outputs from the pre-trained network are then often further classified for the
urban features of interest. However, such a pre-trained network that predicts crop types or
features that allow for crop types to be identified does not exist. Moreover, what is also
missing is the crop type labels that would allow for such an existing pre-trained network to
potentially be used.

To fill this gap, the aim of this paper is to determine the feasibility of using a tool
like Picture Pile for the rapid labelling of geo-tagged street-level photographs for crop
types in combination with a CNN utilizing a deep learning architecture [33] to classify
the images. The novelty lies in combining these two tools, where the first provides high-
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quality image labels and the second uses this information for the automatic classification
of street-level photos for crop types. The images were labelled using Picture Pile as part
of the Earth Challenge Food Insecurity crowdsourcing campaign [34] In terms of crop
species of global importance to food security, both maize and wheat (and related wheat
crops) are crucial to meeting the global food demand [35]. Hence, the CNN was trained
to recognize maize and wheat, referred to here as the Maize–Wheat–Other CNN (MWO
CNN). Geo-tagged street-level images are noisy because in addition to maize and wheat,
many objects such as cars, streets, buildings, and people present in the images make
crop type classification more complex. Finally, we present the results from the CNN
model regarding the performance in predicting crop types. Such a trained model could
potentially generate a large in situ training data set on crop types given the large volume of
street-view-level imagery now available. This, in turn, could then be used in classification
algorithms to produce wall-to-wall crop type maps. The model is openly available at:
https://github.com/iiasa/CropTypeRecognition (accessed on 25 August 2023).

2. Materials and Methods
2.1. Crowdsourced Labelling of Street-Level Imagery from Google Street View and Mapillary

A total of 10,776 street-level photographs were selected for use in this study, the major-
ity of which were taken from Google Street View and a small amount taken from Mapillary.
The bulk of the images were from France (Figure 1), as France is both representative of
central European agriculture and provides an openly available land parcel information
database for benchmarking. These images were then placed into the Picture Pile rapid
image classification app [36] and labelled by volunteers. The quality of the images varied
across the data set. There were excellent images that contained very clear, unobstructed
pictures of roadside crops. There were also poorer-quality or noisier images, which con-
tained objects such as cars, houses, etc., in addition to a crop field (Figure 2). Table 1 lists
the total number of images used in this study along with the number of images used in the
model training, test, and validation data sets.
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Figure 2. Typical noisy street-level images containing crop species and additional non-crop objects
such as roads, buildings, vehicles and trees (a–f). These images were classified by the crowd as
(a) maize; (b) maize; (c) wheat; (d) wheat; (e) other and (f) wheat.

Table 1. The total number of classified street-level photographs used in the study, separated by crop
type and usage by the CNN.

Crop Type Total Images Test Training Validation

Maize 3592 359 2873 360
Wheat 3592 359 2873 360
Other 3592 359 2873 360

In order to ensure accuracy of the crowdsourced image classifications, we created a
set of 867 control-point images for the crop types of wheat, maize, sunflower, vineyards,
sorghum, olive trees and other crops. Each of these images was classified between 5 and
8 times by different individuals. If a minimum of 5 classifications agreed, then we marked
that image as a crowdsourced control image. At the end of the campaign, we compared the
crowdsourced results with the Land Parcel Information System (LPIS) of France.

2.2. Development of a Deep Learning Model for Crop Type Detection

CNNs are a popular data mining technique for image recognition, first introduced
by Fukushima [37]. The use of CNNs for object classification has been implemented in
many domains, achieving a high efficiency and accuracy [38–40]. Figure 3 presents the
CNN architecture used in the MWO model. A CNN (and any neural network) requires
what is referred to as hyperparameter tuning. This is the determination of parameters such
as the number of convolution layers (and hence the number of filters applied), the size of
the filter, the stride length and the pooling method. These different settings for the MWO
model are explained in the sections that follow.
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Figure 3. The CNN architecture used in the Maize–Wheat–Other (MWO) model.

In the proposed CNN architecture used in this study, we applied two convolution
layers and the maximum operator for pooling. To arrive at this configuration, we tested
different-sized filters, different stride lengths and different numbers of convolution layers
(from two to a maximum of four due to the computational cost). The final architecture with
the best performance had two convolution layers. Figure 3 shows the first convolutional
output layer with 16 units followed by a second convolutional layer with 32 units. The
experiments also gave better results with a small filter and a smaller stride size. The final
filter size used was a 2 by 2 matrix, and the stride length was set to 2. For our architecture,
we set the total number of hidden units in the dense layer to double the output size of the
last convolution layer, i.e., with 64 units. Finally, we experimented with different loss and
activation functions to find the combination that yielded the best performance, as shown in
Table 2. After experimentation, we chose SOFTMAX as the last activation function and Y
as the loss function to provide the best performance. Taking the output from the last dense
layer as the input, the SOFTMAX function normalizes it into a probability distribution
consisting of K probabilities proportional to the exponentials of the input numbers, where
K is the number of classes (i.e., 3). After applying SOFTMAX, each component will be
in the interval (0,1), and the sum of all the values is equal to 1. Once normalized, they
can be interpreted as probabilities. Therefore, the more significant input components will
correspond to larger probabilities.

Table 2. Different activation and loss functions for the experiments.

Activation Function Loss Function

Relu Mean squared error (MSE)
Identity Poisson

Tanh Mean squared logarithmic error
SOFTMAX Cross entropy

Finally, we experimented with the number of training epochs at which the learning
process is stabilized. We found that this occurred after 15 epochs and therefore used this as
the maximum value.

2.3. Evaluation Methods

We evaluated the results from the crowdsourcing exercise using a standard confusion
matrix and the overall accuracy. We evaluated the MWO CNN using three measures of
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accuracy: the precision, which evaluates the number of positive classifications made by
the model that were actually correct; the recall, which measures the amount of actual
positive classifications that were correctly identified by the model [41] and the F1-score,
which combines the precision and recall into an aggregated accuracy measure [42]. We also
assessed the area under the receiver operating characteristic (ROC) curve [41], or the AUC,
where the ROC is a plot of the false-positive rate (or specificity) against the recall. It allows
one to determine how well the model performs across all classifications. We split the data
set into 80% for training, 10% for testing and 10% for validation.

3. Results
3.1. Crowdsourcing

A total of 10,776 street-level images were classified for this study during a crowdsourc-
ing campaign with the intention to create an accurate crop type training dataset. Approxi-
mately 600 people contributed around 76.5 K classifications, with many images classified
multiple times in order to measure agreement. The participants classified the following
crop types: wheat, maize, sunflower, vineyards, sorghum, olive trees and other crops.

Using the crowdsourcing classifications and the parcel information from the official
French 2016–2019 Land Parcel Information System (LPIS), we computed a confusion matrix
to examine the performance of the crowd [43]. Since each image was labelled by more than
one person, we selected a sample of classifications from the database in which a minimum of
eight classifications per location were collected and where there was a majority agreement,
i.e., at least five classifications were of the same crop type. Finally, a total of 2049 images
were used for comparison for an overall accuracy of 98.7%. The final confusion matrix is
shown in Table 3.

Table 3. Confusion matrix with land parcel information in columns and volunteer classifications
as rows.

Wheat-Type Crop Maize Sunflower Vineyard Sorghum Olive Trees Other Crop Total

Wheat-type crop 468 2 0 1 1 0 3 475

maize 2 589 0 0 0 0 0 591

Sunflower 0 1 46 0 0 0 2 49

Vineyard 0 1 0 939 0 0 0 940

Sorghum 0 4 0 0 1 0 0 5

Olive trees 0 0 0 0 0 0 0 0

Other crop 9 1 0 0 0 0 6 16

Total 484 598 46 941 2 0 11 0.986

3.2. MWO CNN

Table 4 shows the overall evaluation results for the MWO CNN, using noisy street-
level images and recognizing three kinds of crop types (i.e., maize, wheat and other). The
overall accuracy was 75.93%. Examining the F1-score (combining precision and recall), we
found that wheat had the highest value (82.04), followed by maize (79.72) and other (64.88).

Table 4. Evaluation results for the MWO CNN by the maize, wheat and other classes.

Crop Precision Recall F1 AUC

Maize 79.18 80.28 79.72 0.85
Wheat 77.67 86.94 82.04 0.87
Other 69.87 60.56 64.88 0.73

Figure 4 depicts the ROC values for each class. The ROC curve shows the trade-off
between the precision and the specificity. As a reference, an ideal classifier should have a
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high precision and a low specificity. The area under the ROC curve (AUC) is a measure of
a classifier’s overall performance, where a value of 1 indicates a perfect classifier (e.g., no
wrong classification in all the test samples) and a value of 0.5 indicates that the classifier
performs no better than random chance. Figure 4 depicts the model outcome; this was more
accurate when classifying pictures of wheat crops, which was the class with the highest
AUC of 0.87. The second-best performance corresponded to the class “Maize”, with an
AUC value of 0.85. As can be seen, the model struggled to classify images of the “Other”
class, but still had values above 0.5.
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Figure 4. The receiver operating characteristic (ROC) curve for the MWO CNN model for maize,
wheat and other classes.

After analyzing the nature of the images corresponding to the other class, we noticed
that many contained non-crop objects and crop types other than maize or wheat. The
similarity between the additional crops and those of interest (i.e., maize and wheat) made it
difficult for the model to distinguish between them. As a result, we achieved a lower AUC
performance of 0.73 for the other class.

4. Discussion

As crop type detection from satellite data has proven challenging due to a lack of
training data, we explored the use of alternative methods for generating in situ data from
street-level imagery. The first part of the method involved using Picture Pile to rapidly label
the images using crowdsourcing. Picture Pile has been used in many different rapid image
classification crowdsourcing campaigns [34], so considerable experience has been gained
in producing a high-quality labelled data set. Hence, a high level of accuracy was achieved
using the crowdsourcing approach (>95%). This rapid labeling approach could be used to
build a very large image data set and then be used to create pre-trained networks such as
those that already exist. The advantage would be that rather than the quite generic features
that are currently identified by these pre-trained networks (e.g., grass), this network could
focus specifically on major crop types.
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We then introduced a deep learning architecture to classify noisy street-level images
according to the following three classes: maize, wheat and other objects. In addition to the
crops of interest, street-level imagery may include objects such as cars, roads, buildings,
trees, people, other crops and more. Because of the nature of the viewing angle for street-
level imagery, automatic classification can prove challenging, as the above-mentioned
objects often obscure the view. This study differs from many others that have used street-
level imagery because they first used a pre-trained classifier to segment the images into
features. These features are then input to a neural network to learn other specific features
of interest, e.g., building types [30] or local climate zones [32]. In contrast, in this study, the
images were fed directly into a CNN and classified by crop type in one system. Moreover,
such an open-source classifier does not currently exist, where much of the focus of street-
level classification to date has been on urban areas [28].

Another limitation in the current approach is that the street-level imagery used here
came from existing sources such as Google Street View and Mapillary opportunistically
and were thus taken at different times of the day and from different geographical locations.
Hence, there were additional uncertainties due to effects of shading, the sun angle, the
camera angle or differences in brightness. However, the CNN model still produced a good
performance despite these uncertainties. While it was not possible to replicate the level of
accuracy achieved with the crowdsourcing approach, the MWO CNN model nevertheless
produced initial results that are still promising (AUC of 0.87 for wheat and AUC of 0.85
for maize).

In the future, the model can be extended to other crop types, so this may improve the
ability of the model to predict the ‘other’ class. Moreover, using a large labelled image set
may help to further reduce these uncertainties and improve the model performance.

These initial results are promising owing to the vast potential of this data as an in situ
data set for crop types. With additional improvements, classified street-level imagery could
provide a powerful training data set for global satellite mapping. Crop type information
combined with the image acquisition dates could be ingested into various global land
products. For example, the World Cereal system for the high-resolution mapping of cereals
and maize globally [44] would greatly benefit from such a model, which currently lacks in
situ data in many parts of the world, particularly from Africa, South America and parts of
Asia. Street-level imagery is increasing in volume, and there are other providers such as
Baidu that have yet to be used in such a context.

5. Conclusions

We here introduced a convolutional neural network (CNN) architecture for a crop-
type-recognition application using deep learning to classify two specific crop types in
street-level images. The architecture demonstrated the application of CNN methods to
recognize maize, wheat and other classes in street-level images.

The MWO CNN model was trained using more than 8000 crowdsourced street-level
images from a Picture Pile campaign over France, where citizens contributed to labeling
more than 10,000 images. The crowdsourced images were classified with an accuracy
of >95%, ensuring that the model was trained on high-quality data. The MWO CNN model
achieved an AUC of 0.87 for wheat and 0.85 for maize, the two most predominant crops
grown globally. The other class achieved an AUC of 0.73. Given the specific viewing angle
of street-level imagery, various non-crop structures impeded the view, which could have
confounded the algorithms. In addition, street-level imagery is an opportunistic form
of data, which is collected infrequently at different times of the day with varying sun
and sensor angles. Nonetheless, this method holds great potential to massively increase
our ability to globally track important crop types as the amount of street-level imagery
continues to increase globally.

Such an approach can also be used to classify other types of in situ features from
street-level imagery, e.g., socioeconomic indicators. Although street-level imagery has
been used in land cover mapping, in particular in the mapping of urban features, land use
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remains a difficult area to classify from remote sensing (satellite) imagery alone. Given
the possibility to recognize different types of land use from street-level images and the
advent of new hyperspectral satellites coming online in the next few years, this may greatly
improve our ability to create detailed land use maps of the world.
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