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Abstract: Multivariate functional data can be intrinsically multivariate like movement trajectories
in 2D or complementary such as precipitation, temperature and wind speeds over time at a given
weather station. We propose a multivariate functional additive mixed model (multiFAMM) and show
its application to both data situations using examples from sports science (movement trajectories
of snooker players) and phonetic science (acoustic signals and articulation of consonants). The
approach includes linear and nonlinear covariate effects and models the dependency structure
between the dimensions of the responses using multivariate functional principal component analysis.
Multivariate functional random intercepts capture both the auto-correlation within a given function
and cross-correlations between the multivariate functional dimensions. They also allow us to model
between-function correlations as induced by, for example, repeated measurements or crossed study
designs. Modelling the dependency structure between the dimensions can generate additional insight
into the properties of the multivariate functional process, improves the estimation of random effects,
and yields corrected confidence bands for covariate effects. Extensive simulation studies indicate that
a multivariate modelling approach is more parsimonious than fitting independent univariate models
to the data while maintaining or improving model fit.
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1 Introduction

With the technological advances seen in recent years, functional datasets are
increasingly multivariate. They can be multivariate with respect to the domain of
a function, its codomain, or both. Here, we focus on multivariate functions with
a one-dimensional domain f = (f (1), ..., f (D)) : I ⊂ R → RD with square-integrable
components f (d)

∈ L2(I), d = 1, ..., D. For this type of data, we can distinguish two
subclasses: One has interpretable separate dimensions and can be seen as several
complementary modes of a common phenomenon (‘multimodal’ data, cf. Uludağ
and Roebroeck, 2014) as in the analysis of acoustic signals and articulation
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processes in speech production in one of our data examples. The codomain then
simply is the Cartesian product S = S (1)

× ... × S (D) of interpretable univariate
codomains S (d)

⊂ R. The other subclass is more ‘intrinsically’ multivariate insofar
as univariate analyses would not yield meaningful results. Consider for example
two-dimensional movement trajectories as in one of our motivating applications,
where the function measures Cartesian coordinates over time: for fixed trajectories,
rotation or translation of the essentially arbitrary coordinate system would change
the results of univariate analyses. For intrinsically multivariate functional data
a multivariate approach is the natural and preferred mode of analysis, yielding
interpretable results on the observation level. Even for multimodal functional data,
a joint analysis may generate additional insight by incorporating the covariance
structure between the dimensions. This motivates the development of statistical
methods for multivariate functional data. We here propose multivariate functional
additive mixed models to model potentially sparsely observed functions with flexible
covariate effects and crossed or nested study designs.

Multivariate functional data have been the interest in different statistical fields
such as clustering (Jacques and Preda, 2014; Park and Ahn, 2017), functional
principal component analysis (FPCAs) (Chiou et al., 2014; Happ and Greven, 2018;
Backenroth et al., 2018; Li et al., 2020), and registration (Carroll et al., 2021;
Steyer et al., 2021). There is also ample literature on multivariate functional data
regression such as graphical models (Zhu et al., 2016), reduced rank regression (Liu
et al., 2020), or varying coefficient models (Zhu et al., 2012; Li et al., 2017). Yet,
so far, there are only few approaches that can handle multilevel regression when
the functional response is multivariate. In particular, Goldsmith and Kitago (2016)
propose a hierarchical Bayesian multivariate functional regression model that can
include subject level and residual random effect functions to account for correlation
between and within functions. They work with bivariate functional data observed
on a regular and dense grid and assume a priori independence between the different
dimensions of the subject-specific random effects. Thus, they model the correlation
between the dimensions only in the residual function. As our approach explicitly
models the dependencies between dimensions for multiple functional random effects
and also handles data observed on sparse and irregular grids on more than two
dimensions, the model proposed by Goldsmith and Kitago (2016) can be seen as a
special case of our more general model class.

Alternatively, Zhu et al. (2017) use a two-stage transformation with basis
functions for the multivariate functional mixed model. This allows the estimation
of scalar regression models for the resulting basis coefficients that are argued
to be approximately independent. The proposed model is part of the so-called
functional mixed model (FMM) framework (Morris, 2017). While FMMs use basis
transformations of functional responses (observed on equal grids) at the start of
the analysis, we propose a multivariate model in the functional additive mixed
model (FAMM) framework, which uses basis representations of all (effect) functions
in the model (Scheipl et al., 2015). The differences between these two functional
regression frameworks have been extensively discussed before (Greven and Scheipl,
2017; Morris, 2017).
Statistical Modelling xxxx; xx(x): 1–24
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The main advantages of our multivariate regression model, also compared to
Goldsmith and Kitago (2016) and Zhu et al. (2017), are that it is readily available
for sparse and irregular functional data and that it allows to include multiple nested
or crossed random processes, both of which are required in our data examples.
Another important contribution is that our approach directly models the multivariate
covariance structure of all random effects included in the model using multivariate
functional principal components (FPCs) and thus implicitly models the covariances
between the dimensions. This makes the model representation more parsimonious,
avoids assumptions difficult to verify, and allows further interpretation of the random
effect processes, such as their relative importance and their dominating modes. As
part of the FAMM framework, our model provides a vast toolkit of modelling options
for covariate and random effects, of estimation and inference (Wood, 2017). The
proposed multivariate functional additive mixed model (multiFAMM) extends the
FAMM framework combining ideas from multilevel modelling (Cederbaum et al.,
2016) and multivariate functional data (Happ and Greven, 2018) to account for
sparse and irregular functional data and different study designs.

We illustrate the multiFAMM on two motivating examples. The first (intrinsically
multivariate) data stem from a study on the effect of a training programme for
snooker players with a nested study design (shots within sessions within players)
(Enghofer, 2014). The movement trajectories of a player’s elbow, hand, and shoulder
during a snooker shot are recorded on camera, yielding six-dimensional multivariate
functional data (see Figure 1). In the second data example, we analyse multimodal
data from a speech production study with a crossed study design (speakers crossed
with words) (Pouplier and Hoole, 2016) on so-called ‘assimilation’ of consonants.
The two measured modes (acoustic and articulatory, see Figure 3) are expected to be
closely related but joint analyses have not yet incorporated the functional nature of
the data.

These two examples motivate the development of a regression model for sparse
and irregularly sampled multivariate functional data that can incorporate crossed or
nested functional random effects as required by the study design in addition to flexible
covariate effects. The proposed approach is implemented in R (R Core Team, 2020) in
package multifamm (Volkmann, 2021). The article is structured as follows: Section
2 specifies the multiFAMM and Section 3 its estimation process. Section 4 presents
the application of the multiFAMM to the data examples and Section 5 shows the
estimation performance of our proposed approach in simulations. Section 6 closes
with a discussion and outlook.

2 Multivariate functional additive mixed model

2.1 General model

Let y∗

i (t) = (y∗(1)
i (t), ..., y∗(D)

i (t))� be the multivariate functional response of unit
i = 1, ..., N over t ∈ I, consisting of dimensions d = 1, ..., D. Without loss of
generality, we assume a common one-dimensional interval domain I = [0, 1] for all
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dimensions, and square-integrable y∗(d)
i ∈ L2(I). Define L2

D(I) := L2(I) × ... × L2(I)
so that y∗

i ∈ L2
D(I). The underlying smooth function y∗

i , however, is only evaluated
at (potentially sparse or dimension specific) points y∗

it = (y∗(1)
it , ..., y∗(D)

it )� and the
evaluation is subject to white noise, that is, yit = y∗

it + εit. The residual term εit reflects
additional uncorrelated white noise measurement error, following a D-dimensional
multivariate normal distribution ND with zero-mean and diagonal covariance matrix
�̃ = diag(σ2

1, ..., σ
2
D) with dimension-specific variances σ2

d. We construct a multivariate
functional mixed model as

yit = y∗

i (t) + εit = µ(xi, t) + U(t)zi + εit

= µ(xi, t) +
q∑

j=1

Uj(t)zij + Ei(t) + εit, t ∈ I,
(2.1)

where

U j(t) = (U j1(t), ..., U jVUj
(t)); j = 1, ..., q,

U jv(t)
ind.c.
∼ MGP

(
0, KUj

)
; v = 1, ..., VUj ; ∀j = 1, ..., q,

Ei(t)
ind.c.
∼ MGP (0, KE) ; i = 1, ..., N, and

εit
i.i.d.
∼ ND

(
0, �̃ = diag(σ2

1, ..., σ
2
D)

)
; i = 1, ..., N; t ∈ I.

We assume an additive predictor µ(xi, ·) =
∑p

l=1 f l(xi, ·) of fixed effects, which consists
of partial predictors f l(xi, ·) = (f (1)

l (xi, ·), ..., f (D)
l (xi, ·))� ∈ L2

D(I), l = 1, ..., p, that are
multivariate functions depending on a subset of the vector of scalar covariates xi.
This allows to include linear or smooth covariate effects as well as interaction effects
between multiple covariates as in the univariate FAMM (Scheipl et al., 2015). Partial
predictors may also depend on dimension-specific subsets of covariates.

For random effects U, we focus on model scenarios with q independent
multivariate functional random intercepts for crossed and/or nested designs. For
group level v = 1, . . . , VUj within grouping layer j = 1, . . . , q, these take the value
U jv ∈ L2

D(I). For each layer, the U j1, ..., U jVUj
present independent copies of a

multivariate smooth zero-mean Gaussian random process. Analogously to scalar
linear mixed models, the U jv model correlations between different response functions
y∗

i within the same group as well as variation across groups. By arranging them
in a (D × VUj) matrix U j(t) per t, the jth random intercept can be expressed in
the common mixed model notation in (2.1) using appropriate group indicators
zij = (zij1, . . . , zijVUj

)� for the respective design.
Although technically a curve-specific functional random intercept, we distinguish

the smooth residuals Ei ∈ L2
D(I) in the notation, as they model correlation within
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rather than between response functions. We write Ev ∈ L2
D(I), v = 1, ..., VE with

VE = N. The Ei capture smooth deviations from the group-specific mean µ(xi, ·) +∑q
j=1 U j(·)zij.
For a more compact representation, we can arrange all U j(t) and Ei(t) together in

a (D × (
∑q

j=1 VUj + N)) matrix U(t) per t, and the group indicators for all layers in a
corresponding vector zi = (z�

i1, . . . , z�

iq, e�

i )� with ei the i-th unit vector. The resulting
model term U(t)zi then comprises all smooth random functions, accounting for all
correlation between/within response functions y∗

i given the covariates xi as required
by the respective experimental design.

Ei and U jv are independent copies (ind. c.) of random processes having multivariate
D × D covariance kernels KE, KUj , with univariate covariance surfaces K(d,e)

E (t, t′) =

Cov
[
E(d)

i (t), E(e)
i (t′)

]
and K(d,e)

Uj
(t, t′) = Cov

[
U(d)

jv (t), U(e)
jv (t′)

]
reflecting the covariance

between the process dimensions d and e at t and t′. We call these auto-covariances
for d = e and cross-covariance otherwise. The multivariate Gaussian processes are
uniquely defined by their multivariate mean function, here the null function 0, and the
multivariate covariance kernels Kg and we write MGP

(
0, Kg

)
, g ∈ {U1, . . . , Uq, E}.

Note that vectorizing the matrix U(t) allows to formulate the joint distribution
assumption vec(U(t)) ∼ MGP (0, KU) with KU(t, t′) having a block-diagonal structure
repeating each KUj(t, t′) for VUj times and KE(t, t′) for N times.

We assume that the different sources of variation U j(t), j = 1, ..., q, Ei(t), and εit

are mutually uncorrelated random processes to assure model identification. Assuming
smoothness of the covariance kernel KE further guarantees that the residual process
Ei(t) can be separated from the white noise εit, removing the error variance from the
diagonal of the smooth covariance kernel (e.g., Yao et al., 2005).

2.2 FPC representation of the random effects

Model (2.1) specifies a univariate functional linear mixed model (FLMM) as given
in Cederbaum et al. (2016) for each dimension d. The main difference lies in the
multivariate random processes that introduce dependencies between the dimensions.
In order to avoid restrictive assumptions about the structure of these multivariate
covariance operators, which would typically be very difficult to elicit a priori or verify
ex post, we estimate them directly from the data. The main difficulty then becomes
computationally efficient estimation, which is already costly in the univariate case.
Especially for higher dimensional multivariate functional data, accounting for the
cross-covariances can become a complex task, which we tackle with multivariate
functional principal component analysis (MFPCA).

Given the covariance operators (see Section 3), we represent the multivariate
random effects in Model (2.1) using truncated multivariate Karhunen-Loève (KL)
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expansions

U jv(t) ≈

MUj∑
m=1

ρUjvmψUjm(t), j = 1, ..., q; v = 1, ..., VUj,

Ev(t) ≈

ME∑
m=1

ρEvmψEm(t), v = 1, ..., N,

(2.2)

where the orthonormal multivariate eigenfunctions ψgm = (ψ(1)
gm, ..., ψ

(D)
gm )� ∈ L2

D(I),
m = 1, ..., Mg, g ∈ {U1, ..., Uq, E} of the corresponding covariance operators with
truncation order Mg are used as basis functions and the random scores ρgvm ∼

N(0, νgm) are independent and identically distributed (i.i.d.) with ordered eigenvalues
νgm of the corresponding covariance operator. Note that the assumption of
Gaussianity for the random processes can be relaxed. For non-Gaussian random
processes, the KL expansion still gives uncorrelated (but non-normal) scores and
estimation based on a penalized least squares (PLS) criterion (see Section 3.2) remains
reasonable.

Using KL expansions gives a parsimonious representation of the multivariate
random processes that is an optimal approximation with respect to the integrated
squared error (cf. Ramsay and Silverman, 2005), as well as interpretable basis
functions capturing the most prominent modes of variation of the respective process.
The distinct feature of this approach is that the multivariate FPCs directly account
for the dependency structure of each random process across the dimensions. If, by
contrast, for example, splines were used in the basis representation of the random
effects, it would be necessary to explicitly model the cross-covariances of each random
process in the model (cf. Li et al., 2020). Multivariate eigenfunctions, however, are
designed to incorporate the dependency structure between dimensions and allow the
assumption of independent (univariate) basis coefficients ρgvm via the KL theorem
(see, e.g., Happ and Greven, 2018). This leads to a parsimonious multivariate basis
for the random effects, where a typically small vector of scalar scores ρgvm common
to all dimensions represents nearly the entire information about these D-dimensional
processes.

3 Estimation

We use a two-step approach to estimate the multiFAMM and the respective
multivariate covariance operators. In a first step (Section 3.1), the D-dimensional
eigenfunctions ψgm(t) with their corresponding eigenvalues νgm are estimated from
their univariate counterparts following Cederbaum et al. (2018) and Happ and
Greven (2018). These estimates are then plugged into (2.2) and we represent the
multiFAMM as part of the general FAMM framework (Section 3.2) by suitable
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re-arrangement. We can view the estimated ψgm(t) simply as an empirically derived
basis that parsimoniously represents the patterns in the observed data. While their
estimation adds uncertainty, we are not interested in inferential statements for the
variance modes and our simulations (see Section 5) suggest that the estimated
eigenfunctions are reasonable approximations that work well as a basis.

3.1 Step 1: Estimation of the eigenfunction basis

3.1.1 Step 1 (i): Univariate mean estimation
In a first step, we obtain preliminary estimates of the dimension-specific means
µ(d)(xi, t) =

∑p
l=1 f (d)

l (xil, t) using univariate FAMMs. We model

y(d)
it = µ(d)(xi, t) + ε

(d)
it ; d = 1, . . . , D (3.1)

independently for all d with i.i.d. Gaussian random variables ε
(d)
it . The estimation

of µ(d)(xi, t) proceeds analogously to the estimation of the multiFAMM described in
Section 3.2. It is based on the evaluation points of the y∗(d)

i (t), whose locations
on the interval I can vary across dimensions. Model (3.1) thus accommodates
sparse and irregular multivariate functional data and implies a working independence
assumption across scalar observations within and across functions.

3.1.2 Step 1 (ii): Univariate covariance estimation

This preliminary mean function is used to centre the data ỹ(d)
it = y(d)

it − µ̂(d)(xi, t)
in order to obtain noisy evaluations of the detrended functions ỹ∗(d)

i (t) = y∗(d)
i (t) −

µ(d)(xi, t) for covariance estimation. Cederbaum et al. (2016) already find that for this
purpose, the working independence assumption within functions across evaluation
points in (3.1) gives reasonable results. The expectation of the crossproducts of
the centred functions then coincides with the auto-covariance, that is, E

(
ỹ(d)

it ỹ(d)
i′t′

)
≈

Cov
[
y(d)

it , y(d)
i′t′

]
. For the independent random components specified in Model (2.1),

this overall covariance decomposes additively into contributions from each random
process as

E
(
ỹ(d)

it ỹ(d)
i′t′

)
≈

q∑
j=1

K(d,d)
Uj

(t, t′)δvjv′

j
+

(
K(d,d)

E (t, t′) + σ2
dδtt′

)
δii′, (3.2)

using indicators δxx′ that equal one for x = x′ and zero otherwise. The indicator δvjv′

j

thus identifies if the curves in the crossproduct belong to the same group vj of the jth
layer. Using t, t′, and the indicators δvjv′

j
, δtt′, δii′ as covariates and the crossproducts of

the centred data as responses, we can estimate the auto-covariances K(d,d)
U1

, ..., K(d,d)
Uq

,
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and K(d,d)
E of the random processes using symmetric additive covariance smoothing

(Cederbaum et al., 2018). This extends the univariate approach proposed by
Cederbaum et al. (2016). In particular, we also allow a nested random effects structure
as required for the snooker training application in Section 4.1 by specifying the
indicator of the nested effect as the product of subject-and-session indicators. Note
that estimating (3.2) also yields estimates of the dimension-specific error variances
σ2

d as a byproduct.

3.1.3 Step 1 (iii): Univariate eigenfunction estimation
Based on the covariance kernel estimates, we apply separate univariate FPCAs
for each random process by conducting an eigendecomposition of the respective
linear integral operator. Practically, each estimated process- and dimension-specific
auto-covariance is re-evaluated on a dense grid so that a univariate functional
principal component analysis (FPCA) can be conducted. Alternatively, Reiss and
Xu (2020) provide an explicit spline representation of the estimated eigenfunctions.
Eigenfunctions with non-positive eigenvalues are removed to ensure positive
definiteness, and further regularization by truncation based on the proportion of
variance explained is possible (see, e.g., Di et al., 2009; Peng and Paul, 2009;
Cederbaum et al., 2016). However, we suggest to keep all univariate FPCs with
positive eigenvalues for the computation of the MFPCA in order to preserve all
important modes of variation and cross-correlation in the data.

3.1.4 Step 1 (iv): Multivariate eigenfunction estimation
The estimated univariate eigenfunctions and scores are then used to conduct an
MFPCA for each of the g multivariate random processes separately. The MFPCA
exploits correlations between univariate FPC scores across dimensions to reduce the
number of basis functions needed to sufficiently represent the random processes. We
base the MFPCA on the following definition of a (weighted) scalar product

〈〈f , g〉〉 :=
D∑

d=1

wd

∫

I
f (d)(t)g(d)(t)dt, f , g ∈ L2

D(I), (3.3)

for the response space with positive weights wd, d = 1, ..., D and the induced norm
denoted by ||| · |||. The corresponding covariance operators �g : L2

D(I) → L2
D(I)

of the multivariate random processes U jv and Ev are then given by (�gf )(t) =
〈〈f , Kg(t, ·)〉〉, g ∈ {U1, ..., Uq, E}. The standard choice of weights in our applications
is w1 = ... = wD = 1 (unweighted scalar product) but other choices are possible.
Consider for example a scenario where dimensions are observed with different
amounts of measurement error. If variation in dimensions with a large proportion
of measurement error is to be downweighted, we propose to use wd = 1

σ̂2
d

with the

dimension-specific measurement error variance estimates σ̂2
d obtained from (3.2).
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Happ and Greven (2018) show that estimates of the multivariate eigenvalues νgm

of �g can be obtained from an eigenanalysis of a covariance matrix of the univariate
random scores. The corresponding multivariate eigenfunctions ψgm can be obtained
as linear combinations of the univariate eigenfunctions with the weights given by the
resulting eigenvectors. The estimates ψ̂gm are then substituted for the basis functions
of the truncated multivariate KL expansions of the random effects U jv and Ev in
(2.2). Note that for each random process g, the maximum number of FPCs is given
by the total number of univariate eigenfunctions included in the estimation process of
the MFPCA of g. To achieve further regularization and analogously to Cederbaum
et al. (2016), we propose to choose truncation orders Mg for each KL expansion
of the multivariate random processes using a prespecified proportion of explained
variation.

3.1.5 Step 1 (v): Multivariate truncation order
We offer two different approaches for the choice of truncation orders Mg based on
different variance decompositions (derivation in Supplementary Material A):

E
(
|||yi − µ(xi)|||2

)
=

D∑
d=1

wd

∫

I
Var

(
y(d)

i (t)
)
dt =

∑
g

∞∑
m=1

νgm +
D∑

d=1

wdσ
2
d|I|, (3.4)

and
∫

I
Var

(
y(d)

i (t)
)
dt =

∑
g

∞∑
m=1

νgm||ψ(d)
gm||

2 + σ2
d|I| (3.5)

with |I| the length of the interval I (here equal to one) and || · || the L2 norm.
Multivariate variance decomposition (3.4) uses the (weighted) sum of total variation
in the data across dimensions. We select the FPCs with highest associated eigenvalues
νgm over all random processes g until their sum reaches a prespecified proportion
(e.g., 0.95) of the total variation, thus approximating the infinite sums in (3.4)
with Mg summands. For the approach based on the univariate variance (3.5), we
require Mg to be the smallest truncation order for which at least a prespecified
proportion of variance is explained on every dimension d. This second choice of
Mg might be preferable in situations where the variation is considerably different
(in amount or structure) across dimensions, whereas the first approach gives a more
parsimonious representation of the random effects. Note that both approaches can
lead to a simplification of the multiFAMM if Mg = 0 is chosen for some g. The
simulation results of Section 5 suggest that increasing the number of FPCs improves
model accuracy which is why sensitivity analyses with regard to the truncation order
are recommended.
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proportion of variance is explained on every dimension d. This second choice of
Mg might be preferable in situations where the variation is considerably different
(in amount or structure) across dimensions, whereas the first approach gives a more
parsimonious representation of the random effects. Note that both approaches can
lead to a simplification of the multiFAMM if Mg = 0 is chosen for some g. The
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are recommended.
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3.2 Step 2: Estimation of the multiFAMM

In the following, we discuss estimating the multiFAMM given the estimated
multivariate FPCs. We base the proposed model on the general FAMM framework of
Scheipl et al. (2015), which models functional responses using basis representations.
To make the extension of the FAMM framework to multivariate functional data more
apparent, the multivariate response vectors and the respective model matrices are
stacked over dimensions, so that every block has the structure of a univariate FAMM
over all observations i. This gives concatenated basis functions with discontinuities
between the dimensions. The fixed effects are modelled analogously to the univariate
case by interacting all covariate effects with a dimension indicator. The random
effects are based on the parsimonious, concatenated multivariate FPC basis.

3.2.1 Matrix representation
For notational simplicity we assume that the functions are evaluated on a fixed
grid of time points t = (t(1)�, ..., t(D)�)� with t(d)� = (t(d)

1 , ..., t(d)�
N ) and identical t(d)

i ≡

(t1, ..., tT)� over all N individuals and D dimensions. However, our framework allows
for sparse functional data using different grids per dimension and per observed
function as in the two applications (Section 4). Correspondingly, y = (y(1)�, ..., y(D)�)�

is the DNT-vector of stacked evaluation points with y(d) = (y(d)�
1 , ..., y(d)�

N )� and y(d)
i =

(y(d)
i1 , ..., y(d)

iT )�. Model (2.1) on this grid can be written as

y = �θ + �ρ + ε (3.6)

with �, � the model matrices for the fixed and random effects, respectively,
θ, ρ the vectors of coefficients and random effect scores to be estimated, and
ε = (ε(1)�, ..., ε(D)�)�, ε(d) = (ε(d)

11 , ..., ε
(d)
1T, ..., ε

(d)
NT)� the vector of residuals. We have

ε ∼ N(0, �) with � = diag(σ2
1, ..., σ

2
D) ⊗ INT, the Kronecker product denoted by ⊗,

and the (NT × NT) identity matrix INT.
We estimate θ and ρ by minimizing the PLS criterion

(y − �θ − �ρ)�−1(y − �θ − �ρ)� +
p∑

l=1

θ�

l Pl(λxl, λtl)θl +
∑

g

λgρ
�

g Pgρg (3.7)

using appropriate penalty matrices Pl(λxl, λtl) and Pg for the fixed effects and

random effects, respectively, and smoothing parameters λxl =
(
λ

(1)
xl , ..., λ

(D)
xl

)
, λtl =(

λ
(1)
tl , ..., λ

(D)
tl

)
, and λg. The model and penalty matrices as well as the parameter

vectors of (3.6) and (3.7) are discussed in detail below.
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3.2.2 Modelling of fixed effects
The block-diagonal matrix � = diag

(
�(1), ...,�(D)

)
models the fixed effects separately

on each dimension as in a FAMM (Scheipl et al., 2015). The (DNT × b) matrix �

consists of the design matrices �(d) = (�(d)
1 | ... | �

(d)
p ) that are constructed for the

partial predictors f (d)
l (x, t(d)), l = 1, ..., p, which correspond to the NT-vectors of

evaluations of the effect functions f (d)
l . The vectors of scalar covariates xi are repeated

T times to form the matrix of covariate information x = (x1, ..., x1, ..., xN)�. We use
the basis representations

f (d)
l (x, t(d)) ≈ �

(d)
l θ

(d)
l = (�(d)

xl � �
(d)
tl )θ(d)

l ,

where A � B denotes the row tensor product (A ⊗ 1�

b ) · (1�
a ⊗ B) of the (h × a) matrix

A and the (h × b) matrix B with element-wise multiplication · and 1c the c-vector of
ones. This modelling approach combines the (NT × b(d)

xl ) basis matrix �
(d)
xl with the

(NT × b(d)
tl ) basis matrix �

(d)
tl . These matrices contain the evaluations of suitable

marginal bases in x and t(d), respectively. For a linear effect, for example, the
basis matrix �

(d)
xl is specified as the familiar linear model design matrix x for the

linear effect f (d)
l (x, t(d)) = xβ

(d)
l (t(d)) with coefficient function β

(d)
l (t(d)). For a nonlinear

effect f (d)
l (x, t(d)) = g(d)

l (x, t(d)), the basis matrix �
(d)
xl contains an (e.g., B-spline) basis

representation analogously to a scalar additive model. For the functional intercept,
�

(d)
xl is a vector of ones, and we generally use a spline basis for �

(d)
tl . For a complete

list of possible effect specifications with examples, we refer to Scheipl et al. (2015).
The tensor product basis is weighted by the b(d)

xl b(d)
tl unknown basis coefficients in

θ
(d)
l . Stacking the vectors θ

(d)
l gives θ(d) = (θ(d)�

1 , ..., θ
(d)�
p )� and finally the b-vector

θ = (θ(1)�, ..., θ(D)�)� with b =
∑

d

∑
l b(d)

xl b(d)
tl .

Choosing the number of basis functions is a well known challenge in the estimation
of nonlinear or functional effects. We introduce regularization by a corresponding
quadratic penalty term in (3.7). Let θl contain the coefficients corresponding to
the partial predictor l and order it by dimensions. The penalty Pl(λxl, λtl) is then
constructed from the penalty on the marginal basis for the covariate effect, P(d)

xl ,

and the penalty on the marginal basis over the functional index, P(d)
tl . Specifically,

Pl(λxl, λtl) is a block-diagonal matrix with blocks for each d corresponding to
the Kronecker sums of the marginal penalty matrices λ

(d)
xl P(d)

xl ⊗ Ib(d)
tl

+ λ
(d)
tl Ib(d)

xl
⊗ P(d)

tl

(Wood, 2017). A standard choice for these marginal penalty matrices given a B-splines
basis representation are second or third order difference penalties, thus approximately
penalizing squared second or third derivatives of the respective functions (Eilers and
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Marx, 1996). For unpenalized effects such as a linear effect of a scalar covariate, the
corresponding P(d)

xl is simply a matrix of zeroes.

3.2.3 Modelling of random effects
We represent the DNT-vectors U j(t) = (U j(t(1))�, ..., U j(t(D))�)�, E(t) = (E(t(1))�, ...,

E(t(D))�)� with U j(t(d)), E(t(d)) containing the evaluations of the univariate random
effects for the corresponding groups and time points using the basis approximations

U j(t) ≈ �UjρUj = (δUj � �̃Uj)ρUj, E(t) ≈ �EρE = (δE � �̃E)ρE.

The vth column in the (DNT × Vg), g ∈ {U1, ..., Uq, E} indicator matrix δg indicates
whether a given row is from the vth group of the corresponding grouping layer.
Thus, the rows of the indicator matrix δg contain repetitions of the group indicators
z�

ij and e�

i in model (2.1). For the smooth residual, δE simplifies to 1D ⊗ (IN ⊗ 1T).

The (DNT × Mg) matrix �̃g = (�̃
(1)�
g |...|�̃

(D)�
g )� comprises the evaluations of the

Mg multivariate eigenfunctions ψ
(d)
gm(t) on dimensions d = 1, ..., D for the NT time

points contained in the (NT × Mg) matrix �̃
(d)
g . The MgVg vector ρg = (ρ�

g1, ..., ρ
�

gVg
)�

with ρgv = (ρgv1, ..., ρgvMg)
� stacks all the unknown random scores for the functional

random effect g. The (DNT ×
∑

g MgVg) model matrix � = (�U1 |...|�Uq |�E) then
combines all random effect design matrices. Stacking the vectors of random scores
in a

∑
g MgVg vector ρ = (ρ�

U1
, ..., ρ�

Uq
, ρ�

E )� lets us represent all functional random
intercepts in the model via �ρ.

For a given functional random effect, the penalty takes the form ρ�
g Pgρg =

ρ�
g (IVg ⊗ P̃g)ρg, where IVg corresponds to the assumed independence between the

Vg different groups. The diagonal matrix P̃g = diag(νg1, ..., νgMg)
−1 contains the

(estimated) eigenvalues νgm of the associated multivariate FPCs. This quadratic
penalty is mathematically equivalent to a normal distribution assumption on the
scores ρgv with mean zero and covariance matrix P̃

−1
g , as implied by the KL theorem

for Gaussian random processes. Note that the smoothing parameter λg allows for
additional scaling of the covariance of the corresponding random process.

3.2.4 Estimation
We estimate the unknown smoothing parameters in λxl, λtl, and λg using fast restricted
maximum likelihood (REML)-estimation (Wood, 2017). The standard identifiability
constraints of FAMMs are used (Scheipl et al., 2015). In particular, in addition to the
constraints for the fixed effects, the multivariate random intercepts are subject to a
sum-to-zero constraint over all evaluation points as given by, for example, Goldsmith
et al. (2016).
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We propose a weighted regression approach to handle the heteroscedasticity
assumption contained in �. We weigh each observation proportionally to the inverse
of the estimated univariate measurement error variances σ̂2

d from the estimation of
the univariate covariances (3.2). Alternatively, updated measurement error variances
can be obtained from fitting separate univariate FAMMs on the dimensions using the
univariate components of the multivariate FPCs basis. In practice, we found that the
less computationally intensive former option gives reasonable results.

As our proposed model is part of the FAMM framework, inference for the
multiFAMM is readily available based on inference for scalar additive mixed models
(Wood, 2017). Note, however, that all inferential statements do not incorporate
uncertainty due to the estimated multivariate eigenfunction bases, nor in the chosen
smoothing parameters. The estimation process readily provides, amongst other
things, standard errors for the construction of point-wise univariate confidence bands
(CBs).

3.3 Implementation

We provide an implementation of the estimation of the proposed multiFAMM in
the multifamm R-package (Volkmann, 2021). It is possible to include up to two
functional random intercepts in U(t), which can have a nested or crossed structure,
in addition to the curve-specific random intercept Ei(t). While including, for example,
functional covariates is conceptually straightforward (see Scheipl et al., 2015), our
implementation is restricted to scalar covariates and interactions thereof. We provide
different alternatives for specifying the multivariate scalar product, the multivariate
cut-off criterion, and the covariance matrix of the white noise error term. Note
that the estimated univariate error variances have been proposed as weights for two
separate and independent modelling decisions: as weights in the scalar product of the
MFPCA and as regression weights under heteroscedasticity across dimensions.

4 Applications

We illustrate the proposed multiFAMM for two different data applications
corresponding to intrinsically multivariate and multimodal fuctional data. The
presentation focuses on the first application with a detailed description of the
multimodal data application in Supplementary Material C. We provide the data
and the code to produce all analyses in the Supplementary Material (http:
//www.statmod.org/smij/archive.html).

4.1 Snooker training data

4.1.1 Data set and preprocessing
In a study by Enghofer (2014), 25 recreational snooker players split into two groups,
one of which had instructions to follow a self-administered training schedule over
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Shots of Unskilled Players Shots of Skilled Players

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

0.0

0.4

0.8

X

Y

Figure 1 Screenshot of software for tracking (lines) the points of interest (circles) (left), two-dimensional
trajectories of the snooker training data set (grey curves, right). For both groups of skilled and unskilled
participants, three randomly selected observations are highlighted and every line type corresponds to one
multivariate observation, that is, one observation consists of three trajectories: elbow (top), shoulder
(right) and hand (bottom). The start of the exemplary trajectories are marked with a black asterisk with the
hand trajectory centred at the origin

the next six weeks consisting of exercises aimed at improving snooker specific
muscular coordination. The second was a control group. Before and after the
training period, both groups were recorded on high-speed digital camera under
similar conditions to investigate the effects of the training on their snooker shot
of maximal force. In each of the two recording sessions, six successful shots per
participant were videotaped. The recordings were then used to manually locate
points of interest (a participant’s shoulder, elbow, and hand) and track them on
a two-dimensional grid over the course of the video. This yields a six-dimensional
functional observation per snooker shot y∗ = (y∗(elbow.x), ..., y∗(shoulder.y)) : I = [0, 1] →

R6, that is, a two-dimensional movement trajectory for each point of interest (see
Figure 1).

In their starting position (hand centred at the origin), the snooker players are
positioned centrally in front of the snooker table aiming at the cue ball. From their
starting position, the players draw back the cue, then accelerate it forwards and hit
the cue ball shortly after their hands enter the positive range of the horizontal x-axis.
After the impulse onto the cue ball, the hand movement continues until it is stopped
at a player’s chest. Enghofer (2014) identify two underlying techniques that a player
can apply: dynamic and fixed elbow. With a dynamic elbow, the cue can be moved in
an almost straight line (piston stroke) whereas additionally fixing the elbow results
in a pendular motion (pendulum stroke). In both cases, the shoulder serves as a fixed
point and should be positioned close to the snooker table.

We adjust the data for differences in body height and relative speed (Steyer et al.,
2021) and apply a coarsening method to reduce the number of redundant data points,
thereby lowering computational demands of the analysis. Supplementary Material
B provides a detailed description of the data preprocessing. As some recordings
and evaluations of bivariate trajectories are missing, the final dataset contains 295
functional observations with a total of 56,910 evaluation points. These multivariate
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functional data are irregular and sparse, with a median of 30 evaluation points per
functional observation (minimum 8, maximum 80) for each of the six dimensions.

4.1.2 Model specification
We estimate the following model

yijht = µ(xij, t) + Bi(t) + Cij(t) + Eijh(t) + εijht, (4.1)

with i = 1, ..., 25 the index for the snooker player, j = 1, 2 the index for the session,
h = 1, ..., Hij the index for the typically six snooker shot repetitions in a session, and
t ∈ [0, 1] relative time. Correspondingly, Bi(t) is a subject-specific random intercept,
Cij(t) is a nested subject-and-session-specific random intercept, and Eijh(t) is the
shot-specific random intercept (smooth residual). The nested random effect Cij(t)
is supposed to capture the variation within players between sessions (e.g., differences
due to players having a good or bad day). Different positioning of participants with
respect to the recording equipment or the snooker table as well as shot to shot
variation are captured by the smooth residual Eijh(t). The white noise measurement
error εijht is assumed to follow a zero-mean multivariate normal distribution with
covariance matrix σ2I6, as all six dimensions are measured with the same set-up. The
additive predictor is defined as

µ(xij, t) = f 0(t) + skilli · f 1(t) + groupi · f 2(t) + sessionj · f 3(t)
+ groupi · sessionj · f 4(t).

The dummy covariates skilli and groupi indicate whether player i is an advanced
snooker player and belongs to the treatment group (i.e., receives the training
programme), respectively. Note that the snooker players self-select into training and
control group to improve compliance with the training programme, which is why
we include a group effect in the model. The dummy covariate sessionj indicates
whether the shot j is recorded after the training period. The effect function f 4(t) can
thus be interpreted as the treatment effect of the training programme.

Cubic P-splines with first-order difference penalty, penalizing deviations from
constant functions over time, with 8 basis functions are used for all effect functions
in the preliminary mean estimation as well as in the final multiFAMM. For the
estimation of the auto-covariances of the random processes, we use cubic P-splines
with first-order difference penalty on five marginal basis functions. We use an
unweighted scalar product (3.3) for the MFPCA to give equal weight to all spatial
dimensions, as we can assume that the measurement error mechanism is similar
across dimensions. Additionally, we find that hand, elbow, and shoulder contribute
roughly the same amount of variation to the data, cf. Table 1 in Supplementary
Material B.3, where we also discuss potential weighting schemes for the MFPCA.
The multivariate truncation order is chosen such that 95% of the (unweighted) sum
of variation (3.4) is explained.
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Figure 2 Dominant mode (ψC1) of the subject-and-session-specific random effect, explaining 27.7% of
total variation and shown as mean trajectory (black solid) plus (+) or minus (−) 2

√
νC1 times the first FPC

(left). An asterisk marks the start of a trajectory. Estimated covariate effect functions for skill (right). The
central plot shows the effect of the coefficient function (solid) on the two-dimensional trajectories for the
reference group (dashed). The marginal plots show the estimated univariate effect functions (solid) with
pointwise 95% CBs (dotted) and the baseline (dashed)

4.1.3 Results
The MFPCA gives sets of five (for C and E) and six (for B) multivariate FPCs that
explain 95% of the total variation. The estimated eigenvalues allow to quantify
their relative importance. Approximately 41% of the total variation (conditional
on covariates) can be attributed to the nested subject-and-session-specific random
intercept Cij(t), 33% to the subject-specific random intercept Bi(t), 14% to the
shot-specific Eijh(t), and 7% to white noise. This suggests that day to day variation
within a snooker player is larger than the variation between snooker players. Note
that these proportions are based on estimation step 1 (see Section 3.1).

The left plot of Figure 2 displays the first FPC for C, which explains about 28%
of total variation. A suitable multiple of the FPCs is added (+) to and subtracted
(−) from the overall mean function (black solid line, all covariate values set to
0.5). We find that the dominant mode of the random subject-and-session-specific
effect influences the relative positioning of a player’s elbow, shoulder, and hand,
thus suggesting a strong dependence between the dimensions. Enghofer (2014) argue
from a theoretical viewpoint that the ideal starting position should place elbow
and hand in a line perpendicular to the plane of the snooker table (corresponding
to the x-axis). The most prominent mode of variation captures deviations from
this ideal starting position found in the overall mean. The next most important
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FPC ψB1 of the subject-specific random effect, which explains about 15% of total
variation, represents a subject’s tendency towards the piston or pendulum stroke
(see Supplementary Material Figure 4). This additional insight into the underlying
structure of the variance components might be helpful for, for example, developing
personalized training programmes.

The central plot on the right of Figure 2 compares the estimated mean movement
trajectory for advanced snooker players (solid line) to that in the reference group
(dashed). It suggests that more experienced players tend towards the dynamic
elbow technique, generating a hand trajectory resembling a straight line (piston
stroke). Uncertainties in the trajectory could be represented by pointwise ellipses,
but inference is more straightforward to obtain from the univariate effect functions.
The marginal plots display the estimated univariate effects with pointwise 95%
confidence intervals. Even though we find only little statistical evidence for increased
movement of the elbow (horizontal-left and vertical-top marginal panels), the hand
and shoulder movements (horizontal centre and right, vertical centre and bottom)
strongly suggest that the skill level indeed influences the mean movement trajectory
of a snooker player. Further results indicate that the mean hand trajectories might
slightly differ between treatment and control group at baseline as well as between
sessions (f 2(t) and f 3(t), see Supplementary Material Figure 8). The estimated
treatment effect f 4(t) (Supplementary Material Figure 7), however, suggests that the
training programme did not change the participants’ mean movement trajectories
substantially. Supplementary Material B.3 contains a detailed discussion of all model
terms as well as some model diagnostics and sensitivity analyses.

4.2 Consonant assimilation data

4.2.1 Data set and model specification
Pouplier and Hoole (2016) study the assimilation of the German /s/ and /sh/
sounds such as the final consonant sounds in ‘Kürbis’ (English example: ‘haggis’)
and ‘Gemisch’ (English example: ‘dish’), respectively. The research question is how
these sounds assimilate in fluent speech when combined across words such as in
‘Kürbis-Schale’ or ‘Gemisch-Salbe’, denoted as /s#sh/ and /sh#s/ with # the word
boundary. The 9 native German speakers in the study repeated a set of 16 selected
word combinations five times. Two different types of functional data, that is, acoustic
(ACO) and electropalatographic (EPG) data, were recorded for each repetition to
capture the acoustic (produced sound) and articulatory (tongue movements) aspects
of assimilation over (relative) time t within the consonant combination.

Each functional index varies roughly between +1 and −1 and measures how
similar the articulatory or acoustic pattern is to its reference patterns for the first
(+1) and second (−1) consonant at every observed time point (Cederbaum et al.,
2016). Without assimilation, the data are thus expected to shift from positive to
negative values in a sinus-like form (see Figure 3). The dataset contains 707 bivariate
functional observations with differently spaced grids of evaluation points per curve
and dimension, with the number of evaluation points ranging from 22 to 59 with a
median of 35. Note that the consonant assimilation data are unaligned as registration
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Figure 3 Index curves of the consonant assimilation dataset for both ACO and EPG data as a function of
standardized time t (grey curves). For every consonant order, three randomly selected observations have
been highlighted and every line type corresponds to one multivariate observation, that is, one observation
consists of two index curves

of the time domain would mask transition speeds between the consonants, which are
an interesting part of assimilation.

For comparability, we follow the model specification of Cederbaum et al. (2016),
who analyse only the ACO dimension and ignore the second mode EPG. Our specified
multivariate model is similar to (4.1) with i = 1, ..., 9 the speaker index, j = 1, ..., 16
the word combination index, h = 1, ..., Hij the repetition index and t ∈ [0, 1] relative
time. Note that the nested effect Cij(t) is replaced by the crossed random effect Cj(t)
specific to the word combinations. The additive predictor µ(xj, t) now contains eight
partial effects: the functional intercept plus main and interaction effects of scalar
covariates describing characteristics of the word combination such as the order of
the consonants /s/ and /sh/. The white noise measurement error εijht is assumed to
follow a zero-mean bivariate normal distribution with diagonal covariance matrix
diag(σ2

ACO, σ2
EPG). The basis and penalty specifications follow the univariate analysis

in Cederbaum et al. (2016). Given different sampling mechanisms, we also compare
the multiFAMM based on weighted and unweighted scalar products for the MFPCA.

4.2.2 Results
The multivariate analysis supports the findings of Cederbaum et al. (2016) that
assimilation is asymmetric (different mean patterns for /s#sh/ and /sh#s/). Overall,
the estimated fixed effects are similar across dimensions as well as comparable to the
univariate analysis. Hence, the multivariate analysis indicates that previous results for
the acoustics are consistently found also for the articulation. Compared to univariate
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analyses, our approach reduces the number of FPC basis functions and thus the
number of parameters in the analysis. The multiFAMM can improve the model fit and
can provide smaller CBs for the ACO dimension compared to the univariate model in
Cederbaum et al. (2016) due to the strong cross-correlation between the dimensions.
We find similar modes of variation for the multivariate and the univariate analysis as
well as across dimensions. In particular, the word combination-specific random effect
Cj(t) is dropped from the model as much of the between-word variation is already
explained by the included fixed effects. The definition of the scalar product has
little effect on the estimated fixed effects but changes the interpretation of the FPCs.
Supplementary Material C contains a more in-depth description of this application.

5 Simulations

5.1 Simulation set-up

We conduct an extensive simulation study to investigate the performance of the
multiFAMM depending on different model specifications and data settings (over
20 scenarios total), and to compare it to univariate regression models as proposed
by Cederbaum et al. (2016), estimated on each dimension independently. Given
the broad scope of analysed model scenarios, we refer the interested reader to
Supplementary Material D for a detailed report and restrict the presentation here
to the main results.

We mimic our two presented data examples (Section 4) and simulate new data
based on the respective multiFAMM-fit. Each scenario consists of model fits to
500 generated datasets, where we randomly draw the number and location of the
evaluation points, the random scores, and the measurement errors according to
different data settings. The accuracy of the estimated model components is measured
by the root relative mean squared error (rrMSE) based on the unweighted multivariate
norm but otherwise as defined by Cederbaum et al. (2016), see Supplementary
Material D.1. The rrMSE takes on (unbounded) positive values with smaller values
indicating a better fit.

5.2 Simulation results

Figure 4 compares the rrMSE values over selected modelling scenarios based on the
consonant assimilation data. We generate a benchmark scenario (far left boxplots),
which imitates the original data without misspecification of any model component.
In particular, the number of FPCs is fixed to avoid truncation effects. Comparing
this scenario to the two scenarios left and centre illustrates the importance of the
number of FPCs in the accuracy of the estimation. Choosing the truncation order
via the proportion of univariate variance explained (Cut-Off Uni) as in (3.5) gives
models with roughly the same number of FPCs (mean B : 2.8, E : 5) as is used for
the data generation (B : 3, E : 5). The cut-off criterion based on the multivariate
variance (Cut-Off Mul) given by (3.4) results in more parsimonious models (mean
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Figure 4 rrMSE values of the fitted curves yijh(t), the mean µ(xij , t), and the random effects Bi (t) and Eijh(t)
for different modelling scenarios. The three leftmost scenarios correspond to different model specifications
in the same data setting

B : 2.15, E : 4) and thus considerably higher rrMSE values. The increased variation
in the rrMSE values can also be attributed to variability in the truncation orders (cf.
Supplementary Material Figure 19), leading to a mixture distribution. Comparing
the benchmark scenario to more sparsely observed functional data (ceteris paribus)
suggests a lower estimation accuracy for the Sparse Data scenario (right), especially
for the curve-specific random effect Eijh(t) and resultingly the fitted curves yijh(t), but
pooling the information across functions helps the estimation of µ(xij, t) and Bi(t).
In particular, the estimation of the mean µ(xij, t) is quite robust against the increased
uncertainty of these three scenarios. Only when the random scores are not centred
and decorrelated as in the benchmark scenario do we find an increase in rrMSE
values for the mean (Uncentred Scores, far right). This corresponds to a departure
from the modelling assumptions likely to occur in practice when only few levels of
a random effect are available (here for the subject-specific Bi(t)). The model then
has difficulties to correctly separate the intercept in µ(xij, t) and the random effects
Bi(t). The empirical (non-zero) mean of the Bi(t) is then absorbed by the intercept in
µ(xij, t), resulting in higher rrMSE values for both of these model terms. However, this
shift does not affect the overall fit to the data yijh(t) nor the estimation of the other
fixed effects (cf. Supplementary Material Figure 27). Note that the rrMSE values
of the Sparse Data and Uncentred Scores scenarios are based on slightly different
normalizing constants (i.e., different true data) and cannot be directly compared
except for the mean.

Our simulation study thus suggests that basing the truncation orders on the
proportion of explained variation on each dimension (3.5) gives parsimonious
and well-fitting models. If interest lies mainly in the estimation of fixed effects,
the alternative cut-off criterion based on the total variation in the data (3.4)
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allows even more parsimonious models at the cost of a less accurate estimation
of the random effects and overall model fit. Furthermore, the results presented
in Supplementary Material D show that the mean estimation is relatively stable
over different model scenarios including misspecification of the measurement error
variance structure or of the multivariate scalar product, as well as in scenarios
with strong heteroscedasticity across dimensions. In our benchmark scenario, the
CBs cover the true effect 89 − 94% of the time but coverage can further decrease
with additional uncertainty, for example, about the number of FPCs. Overall, the
covariance structure such as the leading FPCs can be recovered well, also for a
nested random effect such as in the snooker training application. The comparison
to the univariate modelling approach suggests that the multiFAMM can improve the
mean estimation but is especially beneficial for the prediction of the random effects
while reducing the number of parameters to estimate. In some cases like strong
heteroscedasticity, including weights in the multivariate scalar product might further
improve the modelling.

6 Discussion

The proposed multivariate functional regression model is an additive mixed
model, which allows to model flexible covariate effects for sparse or irregular
multivariate functional data. It uses FPC based functional random effects to model
complex correlations within and between functions and dimensions. An important
contribution of our approach is estimating the parsimonious multivariate FPC basis
from the data. This allows us to account not only for auto-covariances, but also
for non-trivial cross-covariances over dimensions, which are difficult to adequately
model using alternative approaches such as parametric covariance functions like the
Matèrn family or penalized splines, which imply a parsimonious covariance only
within but not necessarily between functions. As a FAMM-type regression model,
a wide range of covariate effect types is available, also providing pointwise CBs.
Our applications show that the multiFAMMs can give valuable insight into the
multivariate correlation structure of the functions in addition to the mean structure.

An apparent benefit of multivariate modelling is that it allows to answer
research questions simultaneously relating to different dimensions. In addition, using
multivariate FPCs reduces the number of parameters compared to fitting comparable
univariate models while improving the random effects estimation by incorporating
the cross-covariance in the multivariate analysis. The added computational costs
are small: For our multimodal application, the multivariate approach prolongs the
computation time by only 5% (104 vs. 109 minutes on a 64-bit Linux platform).

We find that the average point-wise coverage of the point-wise CBs can in some
cases lie considerably below the nominal value. There are two main reasons for this:
One, the CBs presented here do not incorporate the uncertainty of the eigenfunction
estimation nor of the smoothing parameter selection. Two, coverage issues can arise
in (scalar) mixed models, if effect functions are estimated as constant when in truth
they are not (e.g., Wood, 2017; Greven and Scheipl, 2016). To resolve these issues,
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further research on the level of scalar mixed models might be needed. A large body
of research covering CB estimation for functional data (e.g., Goldsmith et al., 2013;
Choi and Reimherr, 2018; Liebl and Reimherr, 2019) suggests that the construction
of CBs is an interesting and complex problem, also outside of the FAMM framework.

It would be interesting to extend the multiFAMM to more general scenarios
of multivariate functional data such as observations consisting of functions with
different dimensional domains, for example, functions over time and images as
in Happ and Greven (2018). This would require adapting the estimation of the
univariate auto-covariances for spatial arguments t, t′. Exploiting properties of
dense functional data, such as the block structure of design matrices for functions
observed on a grid, could help to reduce computational cost in this case. Future
research could further generalize the covariance structure of the multiFAMM by
allowing for additional covariate effects. In our snooker training application, for
example, a treatment effect of the snooker training might show itself in the
form of reduced intra-player variance (cf. Backenroth et al., 2018). Ideas from
distributional regression could be incorporated to jointly model the mean trajectories
and covariance structure conditional on covariates.
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Enghofer T (2014) Überblick über die Sportart
snooker, Entwicklung eines Muskeltraining
und Untersuchung dessen Einflusses auf
die Stoßtechnik [Overview of snooker
as a sport, development of a muscular
training programme, and analysis of
this training programme’s influence on
the Snooker shot]. Unpublished thesis.
Technische Universität München.

Goldsmith J and Kitago T (2016) Assessing
systematic effects of stroke on motor control
by using hierarchical function-on-scalar
regression. Journal of the Royal Statistical

Society: Series C (Applied Statistics), 65,
215–36.

Goldsmith J, Greven S and Crainiceanu C
(2013) Corrected confidence bands for
functional data using principal components.
Biometrics, 69, 41–51.

Goldsmith J, Scheipl F, Huang L, Wrobel J,
Gellar J, Harezlak J, McLean MW, Swihart
B, Xiao L, Crainiceanu C and Reiss, PT
(2016) refund: Regression with Functional
Data. URL https://cran.r-project.org/web/
packages/refund/refund.pdf (last accessed
25 October 2021).

Greven S and Scheipl F (2016) Comment. Journal
of the American Statistical Association, 111,
1568–1573.

Greven S and Scheipl F (2017) A general fram-
ework for functional regression modelling.
Statistical Modelling, 17, 1–35, 100–115.

Happ C and Greven S (2018) Multivariate
functional principal component analysis for
data observed on different (dimensional)
domains. Journal of the American Statistical
Association, 113, 649–59.

Jacques J and Preda C (2014) Model-based
clustering for multivariate functional data.
Computational Statistics & Data Analysis,
71, 92–106.

Li C, Xiao L and Luo S (2020) Fast
covariance estimation for multivariate
sparse functional data. Stat, 9, e245.

Li J, Huang C, Hongtu Z and Alzheimer’s
Disease Neuroimaging Initiative (2017) A
functional varying-coefficient single-index
model for functional response data. Journal
of the American Statistical Association, 112,
1169–81.

Liebl D and Reimherr M (2019) Fast and
fair simultaneous confidence bands for
functional parameters. arXiv preprint
arXiv:1910.00131.

Liu Y, Yan B, Merikangas K and Shou H
(2020) Graph-fused multivariate regression
via total variation regularization. arXiv
preprint arXiv:2001.04968.

Morris JS (2017) Comparison and contrast of
two general functional regression modelling

Statistical Modelling xxxx; xx(x): 1–24



326 Alexander Volkmann et al.

Statistical Modelling 2023; 23(4): 303–326

24 Alexander Volkmann et al.

frameworks. Statistical Modelling, 17,
59–85.

Park J and Ahn J (2017) Clustering multivariate
functional data with phase variation.
Biometrics, 73, 324–33.

Peng J and Paul D (2009) A geometric approach
to maximum likelihood estimation of the
functional principal components from
sparse longitudinal data. Journal of Comp-
utational and Graphical Statistics, 18,
995–1015.

Pouplier M and Hoole P (2016) Articulatory and
acoustic characteristics of German fricative
clusters. Phonetica, 73, 52–78.

R Core Team (2020) R: A Language and
Environment for Statistical Computing.
R Foundation for Statistical Computing,
Vienna, Austria. URL https://www.R-
project.org (last accessed 25 October 2021).

Ramsay JO and Silverman BW (2005) Functional
data analysis, 2nd edition. Springer Science
& Business Media.

Reiss PT and Xu M (2020) Tensor product splines
and functional principal components.
Journal of Statistical Planning and
Inference, 208, 1–12.

Scheipl F, Staicu A-M and Greven S (2015)
Functional additive mixed models. Journal
of Computational and Graphical Statistics,
24, 477–501.
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