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Abstract

This dissertation comprises three individual papers on various topics in microecono-

metrics, which is the study of econometric theory in the context of problems arising

from e.g. the analysis of cross-sectional data.

In the first chapter, which is joint work with Christoph Breunig, we study a semi-

/nonparametric regression model with a general form of nonclassical measurement

error in the outcome variable. We show equivalence of this model to a generalized

regression model and provide conditions under which the regression function is iden-

tifiable under appropriate normalizations. We propose a novel sieve rank estimator

for the regression function and establish its rate of convergence. We find that our

estimator corrects for biases induced by nonclassical measurement error in Monte

Carlo simulations and an empirical application on belief formation of stock market

expectations with survey data from the German Socio-Economic Panel (SOEP).

The second chapter deals with the estimation of conditional random coefficient

models. Here I propose a two-stage sieve estimation procedure. First, a closed-form

sieve approximation of the conditional RC density is derived where each sieve coef-

ficient can be expressed as conditional expectation function varying with controls.

Second, sieve coefficients are estimated with generic machine learning procedures

and under appropriate sample splitting rules. I derive the L2-convergence rate of

the conditional RC-density estimator and also provide a result on pointwise asymp-

totic normality. The performance and applicability of the estimator is illustrated

using random forest algorithms over a range of Monte Carlo simulations and in an

empirical application studying behavioral heterogeneity in an economic experiment

on portfolio choice.

The third chapter presents a novel and simple approach to estimating a class

of semi(non)parametric discrete choice models imposing shape constraints on the

infinite-dimensional and unknown link function parameter. I study multiple-index

discrete choice models where the link function is known to be bounded between zero

and one and is (partly) monotonic. In the paper I present an easy to implement

and computationally efficient sieve GLS estimation approach using a sieve space of

constrained I- and B-spline basis functions. The estimator is shown to be consistent

and that imposing shape constraints speeds up the convergence rate of the estimator

in a weak Fisher-like norm. The asymptotic normality of relevant smooth functionals

of model parameters is derived and I illustrate that necessary assumptions are milder

if shape constraints are imposed. A Monte Carlo Simulation study shows the finite-

sample properties of the estimator and gains of imposing shape constraints in finite

samples.



Zusammenfassung

Diese Dissertation umfasst drei Aufsätze zu verschiedenen Themen aus dem Bere-

ich der Mikroökonometrie, einem Teilgebiet der theoretischen Ökonometrie, das

sich insbesondere mit Problemen bei der Analyse von Querschnittsdaten befasst.

Das erste Kapitel ist eine gemeinsame Arbeit mit Christoph Breunig und umfasst

semi/nichtparametrische Regressionsmodelle, in denen die abhängige Variable einen

nicht-klassischen Messfehler aufweist. Zunächst werden Bedingungen erarbeitet,

unter denen die Regressionsfunktion bis auf eine Normalisierung identifiziert werden

kann. Zur Schätzung wird ein neuer Schätzer entwickelt, bei dem eine Rang-basierte

Kriteriumsfunktion über einen sieve-Raum optimiert wird und dessen Konvergen-

zrate hergeleitet. Im Rahmen einer Monte Carlo Simulationsstudie wird gezeigt,

dass der Schätzer Verzerrungen durch den nichtklassischen Messfehler korrigieren

kann. Dies wird in einer Anwendung zur Entstehung von Erwartungen am Aktien-

markt auch empirisch illustriert.

Das zweite Kapitel beschäftigt sich mit der Schätzung von bedingten Dichte-

funktionen von zufälligen Koeffizienten in linearen Regressionsmodellen. Es wird

ein zweistufiges Schätzverfahren entwickelt, in dem zunc̈hst eine Approximation der

bedingten Dichte der Regressions-Koeffizienten hergeleitet wird, die durch Funktio-

nen von Kontrollvariablen parametrisiert ist. In einem weiteren Schritt können diese

Funktionen mit generischen Methoden des maschinellen Lernens geschätzt werden.

Des Weiteren wird auch die Konvergenzrate des Schätzers in der L2-Norm hergeleitet

sowie dessen punktweise, asymptotische Normalität. Der Schätzer wird mittels ran-

dom forest Algorithmen angewandt und seine Eigenschaften in Monte Carlo Simu-

lationen untersucht. Zudem wird mit der Methode die Heterogenität von Verhalten

in einem Labor-Experiment zur Portfolio Selektion analysiert.

Im dritten Kapitel wird ein neuer und einfach umsetzbarer Ansatz zur Schätzung

semi(nicht)parametrischer diskreter Entscheidungsmodelle, unter Berücksichtigung

von Restriktionen auf die funktionalen Parameter des Modells, vorgestellt. Die

untersuchten Modelle weisen funktionale Parameter auf, welche allgemein durch

null und eins begrenzt, sowie monoton steigend in einigen Argumenten sind. Zen-

traler Teil der Arbeit ist die Entwicklung eines GLS-Schätzers über einen geeigneten

sieve-Raum, der aus I- und B-Spline Basisfunktionen unter geeigneten Restriktionen

basiert. Es wird gezeigt, dass sich die Berücksichtigung der Restriktionen auf die

funktionale Form positiv auf die Konvergenzrate des Schätzers in einer schwachen

Norm auswirkt und so notwendige Bedingungen für die asymptotische Normalität

semiparametrischer Schätzer einfacher erreichen lässt. Eine Monte Carlo Studie

stellt die Eigenschaften des Schätzers in endlichen Stichproben dar.
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Chapter 1

Nonclassical Measurement Error

in the Outcome Variable

1.1 Introduction

In empirical research, measurement error is a recurring issue. In recent years, much

attention has been given to various forms of measurement error in the covariates of

econometric models, whereas measurement error of the dependent variable is mostly

ignored. In many economic environments, measurement error of the dependent

variable may be driven (in a nonlinear fashion) by the underlying variable. This

nonclassical measurement error implies biased estimation results if not accounted

for.

This paper is concerned with semi-/nonparametric regression models where the

dependent variable of interest Y ∗ is generally not observed and only a possibly

error-contaminated measurement Y is observable. Specifically, Y ∗ satisfies

Y ∗ = g(X) + U, (1.1)

where the unknown function g is of interest given observed covariates X and unob-

servables U . We study the nonclassical measurement error case where E[Y |Y ∗, X] ̸=
Y ∗. Hence, the regression function g does in general not coincide with conditional

expectations of observable variables and we cannot impose g(x) = E[Y |X = x].

Nonparametric identification of our model relies on the availability of covariates

which do not affect the measurement error directly. We impose such type of exclusion

restriction on a subset Z of the vector X = (Z,W ), where W are additional controls.

Under a monotonicity condition on the measurement error mechanism, we show in

this paper that model (1.1) can be reformulated as a generalized regression model

1



2 Nonclassical Measurement Error in the Outcome Variable

of the form

E[Y |X = x] = H(g(x), w),

where H(·, w) is a nonlinear, monotonic function for w in the support of W . Iden-

tification of the function g, up to strictly monotonic transformations, immediately

follows, which allows us to infer on economically relevant quantities such as the

direction and shape of partial effects.

Under scale and location normalization of the unknown link function H, non-

parametric identification of the regression function g is obtained. We highlight that

normalization of the link functionH is equivalent to imposing mild shape restrictions

on the measurement error mechanism. Additionally, our normalization conditions

on the link function do not only naturally extend the classical measurement case

but are also satisfied if there is a range of Y ∗ where measurement error is classical.

Our nonparametric identification results build thus on intuitive assumptions with-

out relying on high-level assumptions such as completeness, see Hu and Schennach

(2008).

We consider a sieve, rank-based minimum distance estimator and establish its

asymptotic properties. We derive the rate of convergence in L2 sense of our estima-

tor. We find that the sieve rank estimator generally suffers from ill-posedness in the

convergence rate as the rank-based criterion function is not continuous in the usual

L2-norm. We develop the theory for the case where W is discrete and provide an

extension to allow continuous controls W using kernel weights in the appendix of

this paper.

We analyze the performance of the estimator in a Monte Carlo simulation study

and in an empirical application using survey data. We apply our estimator to study

belief formation with subjective belief data from the German Socio-Economic Panel

innovation sample (SOEP-IS). Subjective belief data is known to be plagued by sub-

stantial measurement error and it is in general hard to justify that the measurement

error is classical and thus not sensitive to the underlying true individual belief. We

study the impact of an exogenous display of historic stock market returns provided

to survey respondents prior to eliciting their belief on future returns. Applying our

method, we find a monotonic and concave relationship between the historic informa-

tion and stated beliefs indicating that individuals acknowledge the given information

conservatively.

Literature Our work ties into the literature on measurement error in observable

variables of econometric models. The literature on measurement error in covariates
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is extensive, whereas measurement error in the outcome variable has received much

less attention. For a review of models with errors in covariates, see e.g. Chen et al.

(2011) and Schennach (2013). Chen et al. (2005) develop a general way of account-

ing for measurement error in any variable of a class of semiparametric models once

auxiliary data, e.g. from validation samples is available. However, this is hardly the

case in most practical applications. Models focusing on nonclassical measurement

error in the outcome side are rare. Chapter 3 of Abrevaya and Hausman (1999)

considers a semiparametric model with a more simplistic measurement error mech-

anism. Hoderlein and Winter (2010) and Hoderlein et al. (2015) develop structural

models of response error in surveys due to imperfect recall and derive testable im-

plications for econometric analyses. The latter paper focuses on the role of rounding

in individual reporting behavior which is also a more specific form of nonclassical

measurement error.

de Nadai and Lewbel (2016) allows for classical measurement error in the out-

come variable that is correlated with an error in covariates. Abrevaya and Hausman

(2004) consider classical measurement error of the dependent variable in a trans-

formation model. Given we have a precise idea on the form of measurement error,

a sizeable literature is usually available providing different strategies for identifi-

cation. For instance a special case of nonclassical measurement error is selective

non-response in the outcome variable, see e.g. D’Haultfoeuille (2010) or Breunig

et al. (2018) and references therein. A non-nested form of nonclassical measurement

error are Berkson-type errors, see Berkson (1950) and Schennach (2013, section 6.3).

Our identifying assumptions lead us to the literature on generalized regression

models as introduced in Han (1987) or the class of nonlinear index models in Matzkin

(2007). See also the model studied in Jacho-Chavez et al. (2010). Estimation of

such models often proceeds by rank-based estimation strategies, see Han (1987),

Cavanagh and Sherman (1998), Khan (2001), Shin (2010) and Abrevaya and Shin

(2011) which all consider parametric regression models with the exception of Matzkin

(1991b) who studies a nonparametric model with additional shape restrictions on the

link function. A recent contribution studying rank estimators in a high-dimensional

setting is Fan et al. (2020). To the best of our knowledge, we are the first to study

nonparametric M-estimation with rank-based criterion functions and to point out

and illustrate the ill-posedness of the estimation problem. Jureckova et al. (2016)

study a different class of rank estimators in the context of a parametric model with

measurement error in both regressors and outcome. Their the outcome error may

not be nonclassical as in our general notion but can at most depend on observable

regressors.
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The remainder of the paper is organized as follows. In section 1.2 we present

our model setup and give a nonparametric identification result for features of the

mean regression function when there is a form of nonclassical measurement error

in the outcome variable. In section 1.3 we introduce a sieve estimator with a rank

based criterion function and establish its convergence. In section 1.4 we analyze

finite sample properties of the estimator in a Monte Carlo simulation study. Section

1.5 contains an application of our method to belief formation of stock market ex-

pectations. Appendix 1.7.1 provides an extension to weighted sieve rank estimation,

when control variables are continuous. All proofs are postponed to the Appendix

1.7.3.

1.2 Model Setup and Identification

We consider a nonparametric econometric model with measurement error in the

outcome variable. The model we study is

Y ∗ = g(X) + U, (1.2)

where Y ∗ is the scalar, outcome variable, X is a dx-dimensional vector of exogenous

covariates, U is a scalar error term, and g a nonparametric function of interest. The

outcome variable Y ∗ is not observed by the researcher; only an error contaminated

measurement Y is available. We are primarily interested in the case where the error

satisfies E[U |X] = 0 and thus g is the unknown conditional expectation function of

Y ∗ given X. Our identification approach can be readily extended to more general

nonseparable models of the form Y ∗ = m(g(X), U) where m is strictly monotonic

in its first argument.

Throughout the paper, we assume that the regressors X can be decomposed

such that X = (Z ′,W ′)′, where Z has no direct effect on the measurement error

and W are control variables. Also we introduce the notation gw(·) ≡ g(·, w) for the
regression function evaluated at a fixed w in the support of W . We now provide

conditions, which allow for nonparametric identification of gw up a strictly monotonic

transformation.

Assumption 1 (Exclusion Restriction). The observed outcome Y is conditionally

mean independent of Z given Y ∗ and W , i.e., E[Y |Y ∗, Z,W ] = E[Y |Y ∗,W ].

Assumption 1 rules out that Z has a direct effect on the measurement Y in

conditional expectations. Assumption 1 is generally weaker than assuming that the

conditional distribution of Y given (Y ∗, Z,W ) does not depend on Z, which restricts
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Z to have no information on Y that is not captured by (Y ∗,W ). Analogue exclusion

restrictions are commonly imposed in the literature on nonclassical measurement er-

ror in covariates. In Hu and Schennach (2008, Assumption 2 (ii)), the distribution

of the error-contaminated regressor is independent of instruments conditional on the

latent regressor (see also Schennach (2013, section 4.3)). Assumption 1 is less re-

strictive than other exclusion restrictions found in the measurement error literature,

see Ben-Moshe et al. (2017, Assumption 2.1 (iii)).

Conditions similar to Assumption 1 can also be found in the literature on se-

lective non-response, which is a special case of nonclassical measurement error in

the outcome. Individuals either report the outcome truthfully (response indicator

D = 1) or not at all (D = 0) so the observed outcome in this case is Y = DY ∗. See

also Remark 1.2 below. An identifying assumption in D’Haultfoeuille (2010) and

Breunig et al. (2018) is that D ⊥⊥ X | (Y ∗,W ), which is related to Assumption 1.

In the following, we make use of the notation h(Y ∗,W ) = E[Y |Y ∗,W ]. Assump-

tion 1 implies the measurement error model

Y = h(Y ∗,W ) + V,

where E[V |Y ∗,W ] = 0. Consequently, Assumption 1 implies conditional mean

independence of the measurement error V given the regression error U , that is,

E[V |U ] = 0.

Assumption 2 (Monotonicity). For any w ∈ supp(W ), the function h(·, w) is

weakly monotonic and non-constant over the support of Y ∗.

Assumption 2 imposes that the expected observed outcome Y is monotonic in

the latent outcome Y ∗ given W . This is trivially satisfied when the measurement

error is classical, i.e., when h does not depend on W and is the identity. A similar

monotonicity condition has also been imposed in the measurement error model in

Abrevaya and Hausman (1999, Example 3).1 Note that h does not need to be strictly

monotonic which allows to consider models with rounding error in the outcome, see

Hoderlein et al. (2015).A simple example is rounding to the nearest integer, where

e.g. E[Y |Y ∗ = 1.3,W = w] = 1 and E[Y |Y ∗ = 1.5,W = w] = 2 which is in line with

the above weak monotonicity assumption. Settings where the assumption does not

hold can be constructed but appear in general not very plausible in applications. 2

1In our notation Abrevaya and Hausman (1999) consider the error mechanism Y = h(Y ∗, V ),
with ∂yh(Y

∗, V ) > 0, ∂vh(Y
∗, V ) > 0 and V ⊥⊥ (X,U). As we allow for heteroscedasticity in the

measurement error model, condition ∂yh(Y
∗, V ) > 0 may lead to one sided error restrictions.

2Let Y ∗ be the latent income of an individual and Y the income reported to the tax authority.
Assume there is a threshold of 1000$ below which the income is tax-free. An individual with an
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We furhter discuss the plausiblity of Assumption 2 in the context of the application

in section 1.5 in a setting with survey data.

Assumption 3 (Conditional Exogeneity). The conditional independence restriction

Z ⊥⊥ U | W holds.

Assumption 3 imposes a conditional independence restriction of Z and the re-

gression error U . This condition is also known as conditional exogeneity assumption

following White and Chalak (2010). Independence assumptions can be restrictive,

but are often required in the measurement error literature (see, e.g. Hausman et al.

(1991), Schennach (2007), Ben-Moshe et al. (2017, Assumption 2.2)), or when ac-

counting for endogeneity using control functions (see, e.g. Newey et al. (1999)).

We relax such restrictions by imposing independence to hold only conditional on

control variables W . Similar conditions are often employed for identification in the

econometrics literature, see e.g. Chiappori et al. (2015) for nonparametric identifi-

cation in a transformation model. Assumption 3 is also closely related to the special

regressor assumption, see Lewbel (2014) for a review.

Next, we need the following set of regularity conditions. We introduce the nota-

tion supp(V ) for the support of a random vector V .

Assumption 4. For any w ∈ supp(W ): (i) the function gw is continuous; (ii) and

any z1, z2 ∈ supp(Z) such that gw(z1) < gw(z2) there exists u ∈ supp(U) satisfying

h(gw(z1)+u,w) < h(gw(z2)+u,w); (iii) there is at least one variable Z(1) such that

Z = (Z(1), Z(−1)) with fZ(1)|Z(−1),W (z1|z−1, w) > 0 for all (z1, z−1) ∈ supp(Z).

Assumption 4 (ii) is a mild support condition on U conditional on W = w.

The unobservable U must vary sufficiently to shift gw(Z) out of a flat region of

h. The assumption is not required if h is strictly monotonic in its first argument.

Assumption 4 (iii) requires Z to contain at least one continuously distributed variable

with sufficient variation. If Z is scalar then Assumption 4 (iii) may be replaced by

fZ|W (z|w) > 0 for all z ∈ supp(Z). This rules out the case of Z being a discrete scalar

variable. For a nonseparable model Y ∗ = m(g(X), U), Assumption 4 (ii) would need

to be reformulated to satisfying h(m(gw(z1), u), w) < h(m(gw(z2), u), w). This does

not strengthen the Assumption as long as m is strictly monotonic in its second

income of 999$ has no incentive to misreport, yet individuals with an income of 1000$ may profit
from underreporting at the risk of sanctions. Assume there is a share p of types in the population
willing to misreport and 1− p who is not. Assume E[Y |Y ∗ = 1000] = p · 990 + (1− p) · 1000, then
Assumption 2 is violated if p > 10%. Here the group of misreporters must be sizeable and their
average underreporting sufficiently far away from the threshold to break the assumption, making
the example appear rather constructed, as without strong incentives misreporters may report only
slightly below the threshold.
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argument. For nonseparable models without monotonicity of m in the unobserved

U this is a more high-level assumption which can nevertheless be satisfied if U has

large support and a sufficient impact on Y ∗ via the function m.

Under the stated assumptions, now provide establish equivalence to the regres-

sion model (1.2) to a generalized regression model specified by the link function

H(gw(z), w) = E[h(g(z,W ) + U,W ) | W = w]. Below, 1{·} denotes the indicator

function.

Theorem 1.1. Let Assumptions 1–4 be satisfied, then for any w ∈ supp(W ) it holds

E[Y |X = x] = H(gw(z), w), (1.3)

where H(·, w) is strictly monotonically increasing and gw(z) maximizes the function

Q(ϕ,w) = E[Y11{ϕ(X1) > ϕ(X2)} | W1 = W2 = w]. (1.4)

with respect to ϕ which is a generic function sharing the properties of gw. In partic-

ular, the function gw(·) is identified up to strictly increasing transformations.

The model (1.3) falls into the class of generalized regression models studied by

Han (1987), Matzkin (1991b), and Cavanagh and Sherman (1998). Further note

that nonclassical measurement error implies heterogeneous biases for the marginal

effects. When ∂zH(gw(z), w) < 1 we obtain an attenuation bias for the marginal

effect ∂zgw(z) and when ∂zH(gw(z), w) > 1 we get an augmentation bias for ∂zgw(z).

Theorem 1.1 implies identification of features of gw that are preserved under

monotonic transformations. This includes the sign of partial effects, the ratio of two

partial effects3 and properties such as quasi-concavity (-convexity) of the function.

For the remainder of the paper we consider identification and estimation of gw in

the point identified case.

We impose the following restriction on the model and the measurement error

mechanism described by the function H.

Assumption 5. (i) The function gw is additively separable such that there exists

a decomposition Z = (Z1, Z−1) such that gw(Z) = mw(Z1) + lw(Z−1) for some

functions mw, lw. (ii) There exists {z1, z2} ⊂ supp(Z) with gw(z1) ̸= gw(z2) and

E[Y |Z = z,W = w] = E[Y ∗|Z = z,W = w] for z ∈ {z1, z2}.

Assumption 5 (i) imposes an additive separable structure on the regression func-

tion gw. Following the identification statement in Theorem 1.1, mere location and

3Note that for g(z1, z2) it holds that ∂g
∂z1

/ ∂g
∂z2

= ∂H(g)
∂z1

/∂H(g)
∂z2

whenever these quantities and
ratios are well-defined.



8 Nonclassical Measurement Error in the Outcome Variable

scale normalizations are not sufficient to point identify gw. However, for any additive

separable model this is the case, see also Jacho-Chavez et al. (2010). Assumption 5

(ii) restricts the measurement error for at least to realizations of Z. For instance,

one can think of pension information to account for nonclassical measurement error

in labor income survey questions (see Breunig and Haan (2018)). Here, for certain

ranges of labor income (e.g. close to the median) we may assume that the measure-

ment error is of classical form. Assumption 5 (ii) is also in line with normalization

requirements for identification under nonclassical measurement error. For instance,

Assumption 5 of Hu and Schennach (2008) requires some functional of the distri-

bution of the measurement error conditional on the value of the true variable to be

equal to the true variable itself, such as some quantile of Y |Y ∗ = y∗ to correspond

to y∗.

Economic restrictions on the model can also be employed to sufficiently restrict

the function space. We refer to the discussion in sections 3.4 and 4.4 in Matzkin

(2007) where several possible function spaces are discussed that can replace Assump-

tion 5(i). This includes the spaces of functions that are homogeneous of degree one or

so called “least-concave” functions, see also Matzkin (1994). Matzkin (2007) shows

that imposing homogeneity of degree 1 and a location normalization is sufficient

for Assumption 5. Homogeneous functions are frequently encountered in microeco-

nomics. Thus, in applications where the function g has the structural interpretation

of a production or cost function, homogeneity can be a reasonable restriction on the

parameter space.

Corollary 1.1. Let Assumptions 1– 5 (i) be satisfied, then the function gw is iden-

tified up to a location and scale normalization. If 5 (ii) is additionally satisfied then

the function gw is point identified.

Corollary 1.1 establishes identification of the regression function under normal-

ization imposed in Assumption 5. The shape restrictions imposed in Assumption 5

imply a normalization of the unknown, nonparametric link function H, in contrast

to nonparametric generalized regression models, where normalization is typically

imposed on the unknown function of interest.

We neither restrict the support of the observed outcome Y , nor require continuity

in the function h(·, w). Thus, we can also cover cases where the observed outcome

is categorical or has mass points. This likely occurs in survey data as respondents

tend to provide rounded values. The following examples consider a generalization

and special case of model (1.2).

Example 1.1 (Control function approach). We can also motivate the presence of

W in Assumption 3 as a control function. To this end we deviate for a moment
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from our previous notation and introduce the following triangular model

Y ∗ =g(X) + U

X =m(Z, η)

where for simplicity X is a one-dimensional endogenous covariate that may correlate

with the model error U . The function m is strictly monotonic in η and Z is an

instrumental variable satisfying Z ⊥⊥ (U, η). Under additional regularity conditions,

following Imbens and Newey (2009, Theorem 1) it holds that

X ⊥⊥ U | W with

W = FX|Z(X,Z) = Fη(η),

where FV denotes the cummulative distribution function of a random variable V . As

in Assumption 1 we impose E[Y |Y ∗, Z,W ] = E[Y |Y ∗,W ]. Thus, following Theorem

1.1, we obtain identification of the structural function g up to a strictly monotonic

transformation.

Example 1.2 (Selective Nonresponse). Consider a nonresponse model

Y = DY ∗

D = ϕ(Y ∗,W, V ),

for some unknown function ϕ, where the response indicator D ∈ {0, 1} is always ob-

served and Y ∗ is only observed if D = 1. This framework, where the response mech-

anism is mainly driven by the latent outcome Y ∗ has been studied by D’Haultfoeuille

(2010) and Breunig et al. (2018). As long as the conditional mean function h(Y ∗,W ) =

P (D = 1|Y ∗,W )Y ∗ is monotonic in its first argument, the model is in accordance

to Assumption 2. This holds e.g. when the conditional response probability function

is monotonic and the support of Y ∗ is bounded below4. In this case, a complete-

ness condition for nonparametric identification of the conditional selection proba-

bility P (D = 1|Y ∗,W ) (see D’Haultfoeuille (2010) and Breunig et al. (2018)) via

conditional moment restrictions is not required.

4If Y ∗ is bounded below, then Y ∗ can be redefined such that without loss of generality Y ∗ ≥ 0
and monotonicity of h(Y ∗,W ) = P (D = 1|Y ∗,W )Y ∗ follows from taking the derivative.
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1.3 Estimation and Asymptotic Properties

In this section, we introduce a nonparametric sieve M-estimator with a simple, rank-

based criterion function. For simplicity, we consider only the case where W consists

of discrete variables and defer the estimation with continuous W to Appendix 1.7.1.

1.3.1 The Sieve Rank Estimator

Our identification result builds on shape restrictions imposed on the measurement

error mechanism, which imply identified moment conditions. Specifically, for a given

w we have from the identification statement in Theorem 1.1 that the true gw maxi-

mizes the function

Q(ϕ,w) = E[Y11{ϕ(X1) > ϕ(X2)} | W1 = W2 = w].

Based on this population criterion, we now consider a sieve rank estimator, which

implicitly accounts for imposed shape restrictions required for identification.

We propose the following sieve rank estimator

ˆ︁gw = arg max
ϕ∈GK

Qn(ϕ,w) where (1.5)

Qn(ϕ,w) :=
2

n(n− 1)

∑︂
1≤i<j≤n

Yi1{Wi = Wj = w}1{ϕ(Zi) > ϕ(Zj)},

for some K = K(n) dimensional sieve space GK . Here, the dimension parameter

K grows slowly with sample size n. For the special case where W is absent, the

criterion reduces to

Qn(ϕ) =
1

n(n− 1)

n∑︂
i=1

Yi Rank(ϕ(Zi)), (1.6)

where the rank function is defined as Rank(ϕ(Zi)) =
∑︁n

j ̸=i 1{ϕ(Zi) > ϕ(Zj)}. This
is a nonparametric version of the criterion of Cavanagh and Sherman (1998).

The specific choice of GK hinges on the chosen normalization. Under a normal-

ization of the link function H, see Corollary 1.1, we may consider a linear sieve space

GK = {ϕ : ϕ(z) = γ′
wp

K(z)}. Let pK = (p1, . . . , pK) be a K- dimensional vector of

known basis functions such as polynomials, splines or similar. We can in princi-

pal also apply the general sieve estimation technique of Chen (2007) based on the

conditional moment restriction E[Y |X = x] = H(gw(z), w). This would require to

estimate H along with gw and nesting of two sieve spaces. Our estimation strategy
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constructively arises from the identification argument and provides a simple direct

estimate of gw. We also directly leverage the monotonicity condition on H in the

estimation so there is no need to introduce additional shape-constraints.

1.3.2 Convergence Rate

In this section, we derive a rate of convergence of the sieve rank estimator ˆ︁gw given

in (1.5). To keep notation simple, we omit the controlsW entirely from the following

analysis. In this case, estimation amounts to maximizing the criterion in (1.6) from

the previous section over a suitable sieve space.

For the remainder of the paper we consider the centered criterion function

Q(ϕ) = E
[︁
Yi

(︁
1{ϕ(Zi) > ϕ(Zj)} − 1{g(Zi) > g(Zj)}

)︁]︁
(1.7)

where g is the regression function satisfying the model equation (1.2). Centering

does not change the maximizer in the optimization problem and is thus without loss

of generality.

Our analysis builds on a linearization of the nonlinear criterion function Q(·).
The first directional derivative of Q is equal to zero for any arbitrary direction

and hence, we consider the second directional derivative which can be viewed as a

quadratic approximation to the criterion function Q(·). Specifically, we introduce

Q(ϕ− g) :=
∂2

∂τ 2
Q(g + τ(ϕ− g))

⃓⃓⃓
τ=0

denote the second directional derivative of the non-linear functional Q in the direc-

tion ϕ− g. We assume that the functional Q(·) is bi-linear and continuous. Below,

we denote L2(Z) = {ϕ : ∥ϕ∥L2(Z) < ∞} where ∥ϕ∥L2(Z) :=
√︁

Eϕ2(Z).

To account for the potential instability of the estimation problem, we introduce

the sieve measure of ill-posedness

τK = sup
ϕ∈GK

∥ϕ− ΠKg∥L2(Z)

Q(ϕ− ΠKg)

to account for the fact that the criterion function and the L2-norm are generally

not (locally) equivalent. If τK → ∞ as K → ∞ the problem of estimating g is

ill-posed in rate and additional regularization slows down convergence in the strong

L2- norm. In contrast to Chen and Pouzo (2012), we rely on the second directional

derivative in the denominator.

For the following assumption we introduce a local neighborhood of g and define
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the space Gδ
K = {ϕ ∈ GK : ∥ϕ− g∥L2(Z) < δ} with δ > 0.

Assumption 6. (i) A random sample {(Yi, Zi)}ni=1 of (Y, Z) is observed; (ii) there

exists ΠKg ∈ GK such that ∥ΠKg − g∥L2(Z) = O(K−α/dz); (iii) E[U2] < ∞ and

g ∈ L2(Z); (iv) for any ϕ in Gδ
K there exists a constant 0 < η < 1 such that

|Q(ϕ) − Q(ϕ − g)| ≤ η · Q(ϕ − g); (v) the cdf of g(Z) is Lipschitz continuous,

i.e., |Fg(Z)(a) − Fg(Z)(b)| ≤ C|a − b| for some constant C and any a, b; and (vi)

τK
√︁
K/n = o(1).

Assumption 6 (ii) imposes regularity on the regression function g via a sieve

approximation error, see also Chen (2007) for examples. Assumption 6 (iv) is also

known as the tangential cone condition and implies that Q(ϕ) is locally equivalent

to Q(ϕ− g) which is a typical condition required to derive the convergence rate for

sieve estimators; see Chen and Pouzo (2012, Assumption 4.1(ii)) and also Dunker

et al. (2011). Assumption 6 (v) amounts to a local continuity assumption for the

kernel of an empirical process, see e.g. Chen (2007, Condition 3.8). Assumption 6

(vi) restricts the growth of K relative to the sieve measure of ill-posedness τK and

is required for consistency, see Lemma 1.3.

Remark 1.1 (Illustration of Ill-Posedness). To give an insight on the source of

ill-posedness, note that

Q(ϕ) = E
[︁
Yi

(︁
Fg(Zi)|Yi

(g(Zj))− Fϕ(Zi)|Yi
(ϕ(Zj))

)︁]︁
which shows that if there is little variation in the distribution of Fg(Z)|Y for varia-

tions of g then the ill-posed inverse problem becomes more severe. This is further

illustrated by the following lemma where we study a special case for which we can

derive Q analytically and give sufficient conditions for Assumption 6 (iv).

Lemma 1.1. Consider the additive separable model g(Z) = Z1+˜︁g(Z2) with bivariate

Z = (Z1, Z2). Then Assumption 6 (iv) is satisfied if f
′

Z1|Z2
is uniformly bounded away

from zero and f
′′

Z1|Z2
is uniformly bounded above.

The special case outlined in Lemma 1.1 illustrates the behavior of τK. If the

density fZ21|Z22, that is the conditional density of the separable covariate, is flat in

the relevant support, we may encounter the case that the criterion Q is close to zero

for candidate functions that are arbitrarily far away from the true function in the

L2- sense.

We further illustrate this issue in a Monte Carlo simulation study in section

1.4, where we show that the estimation problem becomes more difficult as fZ21|Z22
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becomes more flat. We are now in a position to provide a general rate of convergence

of our sieve rank estimator ˆ︁g.
Theorem 1.2. Let Assumptions 1-6 be satisfied. It holds that

∥ˆ︁g − g∥L2(Z) = Op

(︂
max

{︂
τK

√︃
K

n
, K−α/dz

}︂)︂
The proof of Theorem (1.2) makes use of a representation of second-order U-

processes as empirical processes following Clemencon et al. (2008). To the best of our

knowledge, this is the first convergence rate result for nonparametric M-estimators

with a rank-based criterion function in the presence of ill-posedness.

The next corollary provides concrete rates of testing when the dimension pa-

rameter K is chosen to level variance and square bias under classical smoothness

conditions. We call our model mildly ill-posed if: τk ∼ kγ/dz with γ > 0 and severely

ill-posed if: τk ∼ exp(kγ/d), with γ > 0.5

Corollary 1.2. Let Assumptions 1-6 be satisfied.

1. Mildly ill-posed case: setting K ∼ ndz/dz+2γ+2α yields

∥ˆ︁g − g∥L2(Z) = Op(n
−α/(2α+2γ+dz)).

2. Severely ill-posed case: setting K ∼ log(n)d/γ yields

∥ˆ︁g − g∥L2(Z) = Op(log(n)
−α/γ).

Both convergence rates are the optimal rates for ill-posed problems. As outlined

in the discussion following Lemma 1.1, the severity of the ill-posedness will generally

depend on the chosen normalization and features of the data.

1.4 Monte Carlo Simulation Study

This section demonstrates how nonclassical measurement errors in the outcome al-

ters mean regression results in finite samples and shows the usefulness of our ap-

proach to correct for such biases. We compare regression function estimates obtained

from simply ignoring the measurement error with our estimator, which accounts for

5If {an} and {bn} are sequences of positive numbers, we use the notation an ≲ bn if
lim supn→∞ an/bn < ∞ and an ∼ bn if an ≲ bn and bn ≲ an.
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the presence of the error. Throughout this section, simulation results are based on

a sample of size of n = 1000 and 1000 Monte Carlo iterations.

We consider the following data generating process

Y ∗ = Z1 + g(Z2) + U

Y = h(Y ∗) + V,

where Z1 ∼ N (1, σ2), Z2 ∼ U [−3, 3] independent of each other, g(·) = sin(·) and

the error terms (U, V ) ∼ N (0, I2). Here, I2 is the 2-dimensional identity matrix

and for the standard deviation of Z1 we choose σ = 1, which will be varied later.

In the above model, g is identified up to a location normalization. Analogously we

could specify a linear or nonlinear function on Z1 and impose an additional scale

normalization on g. The function h in the measurement error equation is chosen as

h(Y ∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q0.7 + b(Y ∗ − q0.7) if Y ∗ > q0.7

Y ∗, if q0.3 ≤ Y ∗ ≤ q0.7

q0.3 − a(q0.3 − Y ∗) otherwise

where q0.3, q0.7 denote the 30%- and 70%-quantile of Y ∗ (determined via numerical

approximation). The setup is analogous to a typical survey data setting with over-

or underreporting in the tails of Y ∗, whereas the center of the distribution is not

affected. The scalars a, b are chosen to vary the magnitude of measurement error.

Figure 1.1 illustrates the effects of the measurement error for the case a = b = 0.5.

We show the realizations of Y and Y ∗ for a specific draw of the data generating

process and plots the function h. We compare the measurement error function h

(depicted as red solid line) with the setup of classical measurement error, which is

captured by the 45◦ line (depicted as black dashed line).

We implement the sieve rank estimator ˆ︁g given in (1.5) using a linear sieve

space with B-spline basis functions of order 3 with 2 interior knots that are placed

according to quantiles of the empirical distribution. Thus we have K = 4. The

elements of the sieve space are normalized at the point (0, 0) which is the correct

value of the true function sin(·) at 0. This normalization can also be rationalized

as utilizing prior knowledge on the measurement error mechanism in the sense of

Assumption 5 (ii). For instance, we can expect that ignoring the measurement

error results in estimates that are close to the true function g in the center of the

distribution of Z2. Figure 1.2 shows the sieve rank estimates ˆ︁g and compares them to

a nonparametric series regression that does not account for nonclassical measurement
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Figure 1.1: Realizations of Y ∗, Y when a = b = 0.5 based on a random draw of size
n = 1000. The red solid line depict the function h and the black dashed line the 45◦

line.

error in the outcome using the same order and the same knot placement as for ˆ︁g.
For the latter estimator the same choice of basis functions and tuning parameters

is adopted. We study different values for a, b amongst which is the severe case

a = b = 0 which essentially implies that at some point the measurements Y are

merely random fluctuations around a constant value6. We observe from the results

in Figure 1.2 that our estimation strategy results in an accurate estimate of g in

any of the cases, whereas ignoring the measurement error yields estimates with a

sizeable bias in the tails of Z2. In the severe setting depicted in the right panel,

ignoring measurement error results in a rather flat estimate which is significantly

different from the sieve rank estimator.

The data generating process chosen here is in line with the model in Lemma 1.1

and thus allows us to study the degree of ill-posedness in the convergence rate of the

estimator. As pointed out in the discussion following Lemma 1.1, the behavior of

the sieve measure of ill-posedness τK is governed by the conditional density fZ1|Z2 .

If the density fZ1|Z2 is flat over the relevant support, τK diverges faster and the

ill-posedness is more severe.

6Additionally we perform Kolmogorov-Smirnov tests to test the null hypothesis that Y and Y ∗

follow the same probability distribution on every drawn sample of the MC study. In the a = b = 0.5
setting we reject the null on a 5% - level only once in 1000 samples and in the a = b = 0 case
we reject the null in 966 cases. Thus in the strong ME setting, Y and Y ∗ have different marginal
distributions in contrast to the mild ME setting, where differences are virtually undetectable.
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Figure 1.2: Estimation results normalized to go through the coordinate (0, 0): Solid
black line is the median of our sieve rank estimator ˆ︁g, solid red line is the median
of a series estimator with same B-splines specification, solid blue line shows true
g(·) function, and dashed black lines are the 0.95 and 0.05 quantiles over all Monte
Carlo rounds.

Table 1.1 below shows mean squared errors of function estimates across different

standard deviations of the separable covariate Z1 which affects the slope of the

density fZ1|Z2 . For small standard deviations, the conditional density fZ1|Z2 , i.e.,

here fZ1 by full independence, will be rather flat over most of the support. For small

standard deviations of Z1, the MSE increases more severely with K as compared

to large standard deviations. This illustrates that the degree of ill-posedness of the

estimation problem is more severe whenever the slope of the density fZ1|Z2 is small.

Additionally we see that this is not the case when the distribution of Z1 is fixed and

the dispersion of Z2 is varied. This confirms that the ill-posedness in this setting is

not driven by the distribution of Z2 in this setting.
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St. Dev. of Z1 Z2 ∼ U [−c, c] MSE(ˆ︁g) for sieve dim.

σ c K = 3 K = 4 K = 5 K = 6

0.5
1 0.02209 0.06843 0.17294 0.52289

3 0.02389 0.05982 0.17068 0.62054

1
1 0.01579 0.04293 0.09087 0.20775

3 0.01807 0.04783 0.08118 0.19650

2
1 0.01489 0.04316 0.09514 0.20622

3 0.01640 0.04580 0.08593 0.19877

Table 1.1: Results for the MSE(ˆ︁g) for varying values of the standard deviation σ of
Z1 and the range c of Z2.

1.5 Application: Beliefs on Stock Market Returns

Subjective beliefs on stock market returns are an important determinant in economic

models that seek to explain stock market participation and portfolio choice, see e.g.

Breunig et al. (2019) and the references therein. Subjective belief data, however, is

known to be prone to a large degree of measurement error, see the discussion and

references in Drerup et al. (2017).

We study the impact of historic return information on subjective beliefs of future

stock market returns. We account for nonclassical measurement error in the outcome

variable by applying our sieve rank method and contrast the results to a model where

we simply ignore measurement error in the outcome.

We use novel data from the innovation sample of the 2017 wave of the German

Socio Economic Panel (SOEP-IS), which contains survey questions on individual

beliefs on future stock market returns. In the interviews, respondents are asked

their expectations on the DAX, Germany’s prime blue chip stock market index, in

one, two, ten and thirty years with respect to the current level. They are asked

to provide a direction of the change (increase or decrease) as well as a percentage

change.

Prior to elicitation of their beliefs, individuals obtain information about historical

DAX returns. Two observations of the time series of yearly DAX returns from 1951

to 2016 are randomly drawn and presented to the respondent. Afterwards they are

asked to report their beliefs on how the DAX changes in the next year (in percentage

points).

In this application, we are interested in the effect of the historical DAX infor-

mation on the individuals expected DAX return in one year. Let Y ∗ denote the

individual true belief on the DAX return in one year and let Z1, Z2 be the two treat-

ment variables, i.e., the randomly drawn historical returns. The reported belief is
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Min. 1. Quant Median Mean 3. Quant. Max.

Y -50.00 1.00 4.00 3.55 7.00 130.00

Z1 -43.94 -6.08 11.36 14.77 29.06 116.06

Z2 -43.94 -6.08 13.99 17.13 34.97 116.06

Table 1.2: Summary Statistics (all units are percentage points)

denoted by Y . We consider the following flexible additively separable model

Y ∗ = g1(Z1) + g2(Z2) + g3(Z1 · Z2) + U, where Z ⊥⊥ U. (1.8)

It is difficult to rationalize a classical measurement error assumption a priori. Vari-

ous forms of nonclassical measurement error may occur in this setting: (i) Respon-

dents may tend to provide rounded values instead of precise beliefs, (ii) respondents

may systematically over- or underreport their beliefs, e.g., individuals with extreme

beliefs may resort to reporting more modest values, or (iii) the reporting may addi-

tionally depend on variables W such as certain cognitive skills or personality traits

like patience or perseverance. Note that by the experimental design Z1, Z2 and

W are credibly fully independent so we subsume any effect of W on Y ∗ in U and

consider an unweighted version of the sieve rank estimator

We now discuss the plausibility of Assumptions 1-3 required for identification.

Assumptions 1 posits that given true beliefs Y ∗ and relevant individual characteris-

tics W , the historic return information Z1, Z2 have no impact on the mean reported

belief. Assumption 2 imposes a mild restriction on the measurement error mecha-

nism in that it requires monotonicty in the reporting of beliefs (in the conditional

mean). Assumption 3 is satisfied as Z1, Z2 are by the experimental setup credibly

fully independent of unobservables U . The data consists of 1084 interviewed per-

sons but 306 people do not respond to the question on beliefs. We removed missing

values and report the summary statistics in Table 1.2.

We estimate functions g1, g2, g3 with our method outlined in (1.6) and contrast

the results to estimates obtained from assuming classical measurement error, i.e.,

from a standard additive-separable, nonparametric regression of Y on Z1 and Z2

with the respective interaction term. We choose a B-Spline basis of degree two

without interior knots for each function estimate. This choice is motivated by a

10-fold cross-validation on the model ignoring the measurement error.

The results are presented in Figure 1.3. Accounting for the measurement error

leads to a concave, symmetric effect of both treatments on the individual beliefs.

When ignoring the possibility of measurement error, results are much more asym-



1.5. Application: Beliefs on Stock Market Returns 19

Figure 1.3: Nonparametric estimates of g(Z1, Z2) = g1(Z1) + g2(Z2) + g3(Z1, Z2).
The first column contains the estimate from our sieve rank estimator and the second
column the estimate from ignoring measurement error.

metric, including convex marginals for the first treatment and flat parts in the

surface. In contrast, our method yields that individuals learn conservatively from

both treatments which is in line with the a priori economic intuition. Note that on

the z-axis that estimates in both columns have been normalized to move through

coordinates (-20,-20,0) and (50,50,1). Functions are evaluated on a grid ranging

from -20 to 50 which corresponds to the 10%- and 90%-quantile of the marginal

distributions of the treatment variables. Summarizing, accounting for possible non-

classical measurement error in the outcome variable delivers function estimates of

belief formation that are more in line with economic intuition.
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1.6 Conclusion

This paper provides new insights on the analysis of regression models with nonclas-

sical measurement error in the outcome variable. Our nonparametric identification

result is based on intuitive assumptions involving shape restrictions on measurement

error functions. This novel result builds on the equivalence of nonclassical measure-

ment models and generalized regression models. We consider a sieve rank estimator

which constructively arises from our identification result and implicitly accounts for

the required shape restrictions. We establish the rate of convergence of the sieve

rank estimator which is affected by a potentially ill-posed inverse problem. The

proposed estimation method is easy to implement and provides numerically stable

results as demonstrated in a finite sample analysis. Finally, we demonstrate the

usefulness of our method in an empirical application on belief elicitation, where we

find measurement error in subjective belief data to be of a nonclassical form.

1.7 Supplemental Material

This Supplemental Material consists of an extension of our sieve rank estimator to

continuous control variables and proofs of our theoretical results. Appendix 1.7.1

provides an extension to weighted sieve rank estimation, when control variables are

continuous. All proofs are postponed to the Appendix 1.7.3.

1.7.1 Extension: Estimation with Continuous W

When W does contain continuous variables, we can simply replace the indicator in

(1.5) with a kernel function to account for the fact that Wi = Wj = w is a null

event. Then estimation can proceed with

ˆ︁gw = arg max
ϕ∈GK

Qn(ϕ,w) where (1.9)

Qn(ϕ,w) :=
∑︂

1≤i<j≤n

YiKs(Wi − w)Ks(Wj − w)1{ϕ(Zi) > ϕ(Zj)}

where Kh is defined as

Ks(Wi − w) =
dw∏︂
l=1

K
(︃
Wl,i − w

sl

)︃

and K : R → R is some kernel function and s ∈ Rdw a vector of bandwidths.

As we move from the original criterion of Cavanagh and Sherman (1998) to
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the conditional version with continuous W the computational complexity of the

maximization problem increases. Ranking is an O(n log(n)) operation whereas the

weighted ranking is performed in O(n2) time. This implies that the conditional

estimation method is not scalable to large data sets and computation time increases

heavily with the sample size.

The following criterion can be used to deal with continuous W and computation

time scales in n.

Qn(ϕ,w) =
∑︂

1≤i<j≤n

KU
s (Wi − w)YiKU

s (Wj − w)1{ϕ(Zi) > ϕ(Zj)}

=
∑︂

i: w−s<Wi<w+s

YiRanks(ϕ(Zi)) (1.10)

with uniform kernel

KU
s (Wi − w) := 1{w − s < Wi < w + s}

which is again equivalent to applying the sieve rank estimator over a subsample of

the data obtained by considering a window of size 2s around w. Weighted rank esti-

mation is studied in Shin (2010) and Abrevaya and Shin (2011) for semiparametric

and additively separable models. An important special case is again the setting

where the function g(·, w) does not vary with w which is the case of g is additvely

separable in a function of Z and W .

Remark 1.2. Assume the function g(Z) does not depend on W . We can consider

the following estimator

ˆ︁g = arg max
ϕ∈GK

Qn(ϕ) where

Qn(ϕ) :=
∑︂

1≤i<j≤n

YiKh(Wi −Wj)1{ϕ(Zi) > ϕ(Zj)}

In contrast to before we consider only those observations in a neighborhood around a

fixed value w but we choose the weights according to which distance any pair (Wi,Wj)

has to each other. Similar to the approach in (3.5) this is associated with increasing

computational complexity as the computation time does not scale with the sample

size.

We thus suggest the following strategy:

First use the criterion in (1.10) to obtain estimates ˆ︁gw across different values

of w ∈ supp(W ). Each is an estimate of g as g does not depend in theory on

w, but estimation results may nevertheless vary for different w. Second, aggregate
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the different estimates ˆ︁gw to one final estimator for g. To this end, we can follow

Chiappori et al. (2015) which discuss the following two ’aggregation’ procedures.

ˆ︁gLS(z) = argmin
q∈R

∫︂
supp(W )

ν(w)[ˆ︁g(z, w)− q]2dw

ˆ︁gLAD(z) = argmin
q∈R

∫︂
supp(W )

ν(w)|ˆ︁g(z, w)− q|dw

where ν is some weighting function with
∫︁
supp(W )

ν(w)dw = 1.

The implementation is simple. Random draws from {Wi}Ni=1 yields a set of dif-

ferent realizations w on which to evaluate the local estimators ˆ︁gw. The LS criterion

takes the average of the local estimators, the LAD criterion takes the empirical me-

dian to aggregate to a final estimator for g. In simulations Chiappori et al. (2015)

find that the latter estimator performs best as for w in the tails of the distribution

of W we may get erratically behaving ˆ︁gw.
1.7.2 Weighted Rank Estimation

In this section we assess the performance of a weighted rank estimator for a setting as

described in Remark 1.2. We consider the following data generating process similar

to Section 1.4,

Y ∗ = Z1 + g(Z2) +m(W ) + U ·W 2

Y = h(Y ∗ +W ) + V · |W |

where g(·) = sin(·), m(·) = cos(·), W = 0.5 ·Z2+0.5 ·U and the remaining variables

as in Section 1.4 with h parameterized by a = b = 0. In this setting there is

correlation between Z2 and W . Further the measurement is additionally affected

by the variable W . This setting is in line with Remark 1.2 as g does not vary with

W , and we implement the procedure outlined at the end of this remark with the

LAD-criterion as aggregating procedure.

In order to calculate an estimate of g for each Monte Carlo sample, we first take

50 random draws of the variable W , calculate ˆ︁gw by maximizing (1.10) for each of

the 50 different realizations w. Finally, we aggregate the results to a final estimate

by taking the sample median over the local estimates ˆ︁gw. We vary the bandwidth

parameter ˜︁s across different experiments. The sample size is n = 1000 and 500

Monte Carlo replications are considered. The following Figure 1.4 shows the results.

If we choose s reasonably small, our estimation procedure is quite close to the

truth and outperforms the standard nonparametric estimator that simply ignores
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Figure 1.4: The blue line is the g(·) = sin(·) function, the solid black line denotes the
median and the dotted lines the respective 0.95 and 0.05 quantiles of the weighted
sieve rank estimator over the Monte Carlo experiments. The red line is the median
of series estimates of g in the model Y = Z1 + g(Z2) +m(W ) + U . Basis functions
are set as in Section 1.4 with K = 4.

the measurement error. Increasing the bandwidth s leads to smaller confidence

bands, but considerably increases the bias of the estimate. However in this strong

measurement error setting, the weighted sieve rank estimator still outperforms the

estimate from ignoring the measurement error.
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1.7.3 Proofs and Technical Results

First, recall that X = (Z,W ) and that gw = g(·, w).

Proof of Theorem 1.1. Proof of (1.3). The exclusion restriction captured in

Assumption 1 implies

E[Y |X = x] = E[h(Y ∗,W ) | Z = z,W = w]

= E[h(g(Z,W ) + U,W ) | Z = z,W = w]

= E[h(g(z,W ) + U,W ) | W = w], (1.11)

where the last equation is due to the conditional exogeneity imposed in Assumption

3. The results follows from strict montonicity of H(gw(z), w) = E[h(g(z,W ) +

U,W ) | W = w] in its first argument, which is due to Assumption 2 and Assumption

4 (ii).

Proof of (1.4). By the law of iterated expectations, the criterion function

Q(ϕ,w) = E[Y11{ϕ(X1) > ϕ(X2)}|W1 = W2 = w] can be rewritten as

Q(ϕ,w) =
1

2
E[H(g(X1),W1)1{ϕ(X1) > ϕ(X2)}

+H(g(X2),W2)1{ϕ(X1) < ϕ(X2)} | W1 = W2 = w],

using E[Y |X] = H(g(X),W ) by equation (1.3). Under Assumption 2, we may

consider the case that holds with h(·, w) weakly monotonically increasing, without

loss of generality. Now the function gw is a maximizer of Q(·, w), which follows by

Q(gw, w) =
1

2
E[max{H(g(X1),W1), H(g(X2),W2)} | W1 = W2 = w]

and using monotonicity of H in its first argument. In particular, m ◦ gw is a max-

imizer of Q(·, w) for any strictly increasing function m (here ◦ denotes function

composition).

It remains to show that gw is a unique maximizer up to strictly increasing trans-

formations. Specifically, we show that for any function ˜︁gw ̸= m ◦ gw for an arbitrary

strictly monotonic transformation m we have that Q(˜︁gw, w) < Q(gw, w). To do so,

consider some arbitrary function ϕ ∈ G that is not a strictly monotonic transforma-

tion of gw. Therefore, there exist z′, z′′ ∈ supp(Z) such that gw(z
′) < gw(z

′′) and

ϕ(z′) > ϕ(z′′). By (1.3), H(·, w) is strictly monotonic and it holds for every w that

H(gw(z
′), w) < H(gw(z

′′), w).
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By continuity of the functions following Assumption 4 (i) the above inequalities hold

in neighborhoods B1 around z′ and B2 around z′′, respectively. By Assumption 4

(iii) these neighborhoods have a strictly positive probability measure. This implies

Q(gw, w)−Q(ϕ,w)

≥1

2
E[H(gw(Z1),W1)−H(gw(Z2),W2)|Z1, Z2 ∈ B1 ×B2,W1 = W2 = w]

× P(Z1, Z2 ∈ B1 ×B2 | W1 = W2 = w) > 0.

Thus, Q(·, w) is only maximized by gw and strictly monotonic transformations of it.

Hence, gw is identified up to a strictly monotonic transformation.

Proof of Corollary 1.1. Under Assumption 5 (i) any candidate regression func-

tion ˜︁gw(Z) = ˜︁mw(Z1) + ˜︁lw(Z−1) must satisfy

˜︁gw(Z) = Mw(gw(Z)) = Mw(mw(Z1) + lw(Z−1) = ˜︁mw(Z1) + ˜︁lw(Z−1)

for a strictly monotonic function Mw. Thus Mw must be linear and gw is identified

up to location and scale transformation. Indeed, given linear and strictly monotonic

transformations, gw is the only maximizer of Q(·, w). Under Assumption 5 (ii) we

have that gw(z1) = E[Y |Z = z1,W = w] and gw(z2) = E[Y |Z = z2,W = w] and

fixing the parameter space to move through both points leads to gw being the unique

maximizer of Q(·, w) over G and thus gw is point identified.

Proof of Lemma 1.1. Let Z1, Z2 be independent copies of Z. Consider the addi-

tive separable case g(Z1) = Z11+˜︁g(Z12) with bivariate Z1 = (Z11, Z12). Analogously

we denote ϕ(Z1) = Z11 + ˜︁ϕ(Z12). The following holds for the criterion Q

|Q(ϕ)| =E[Y1(1{Z11 + ˜︁g(Z12) > g(Z2)} − E[Y11{Z11 + ˜︁ϕ(Z12) > ϕ(Z2)}]

=E[Y1(FZ21|Z22(ϕ(Z1)− ˜︁ϕ(Z21))− FZ21|Z22(g(Z1)− ˜︁g(Z21)))],

as g is the maximizer of Q and with the second equation due to the law of iterated

expectation. Using a second-order Taylor decomposition with directional derivatives

yields for all ϕ in a neighborhood around g

|Q(ϕ)| =Qg(ϕ− g) + E[Y1f
′′

Z21|Z22
(ξ)(˜︁ϕ(Z12)− ˜︁g(Z12) + ˜︁g(Z22)− ˜︁ϕ(Z22))

3]⏞ ⏟⏟ ⏞
=R

,



26 Nonclassical Measurement Error in the Outcome Variable

where ξ is some intermediate variable7 and Qg denotes the directional derivative of

Q at g which is given by

Qg(ϕ− g) =E[Y1f
′
Z21|Z22

(g(Z1)− ˜︁g(Z21))(˜︁ϕ(Z12)− ˜︁g(Z12) + ˜︁g(Z22)− ˜︁ϕ(Z22))
2].

Applying the Cauchy-Schwarz inequality to Qg(ϕ− g) shows that Qg is weaker than

the L2-norm. Further, the remainder term R satisfies

|R| ≤ E

[︄⃓⃓⃓⃓
⃓ f

′′

Z21|Z22
(ξ)

f ′
Z21|Z22

(g(Z1)− ˜︁g(Z21))
(˜︁ϕ(Z12)− ˜︁g(Z12) + ˜︁g(Z22)− ˜︁ϕ(Z22))

⃓⃓⃓⃓
⃓
]︄
·Qg(ϕ−g)

and thus the tangential cone condition in Assumption 6 (iv) is satisfied if the first

factor on the right hand side is bounded between 0 and 1. The lower bound holds

directly and the upper bound is easily satisfied if the δ− neighborhood around g is

chosen sufficiently small and derivatives of the density are bounded away from zero

and infinity, as is condition.

For the proof of the next results, we require some additional notation to deal

with the Hoeffding decomposition of U-statistics, specific function spaces and their

respective envelope functions.

We introduce the empirical criterion Qn(ϕ) that can be denoted as

Qn(ϕ) =
2

n(n− 1)

∑︂
1≤i<j≤n

Γ(Si, Sj, ϕ)

where Si = (Yi, Zi) and which is a second order U-statistic with kernel

Γ(Si, Sj, ϕ) = Yi

(︁
1{ϕ(Zi) > ϕ(Zj)} − 1{g(Zi) > g(Zj)}

)︁
indexed by ϕ ∈ GK making it a second-order U-process. Note that Qn is centered

here which does not affect the optimization. Using the kernel notation, the criterion

function Q given in (1.7) satisfies Q(ϕ) = E[Γ(Si, Sj, ϕ)].

For the asymptotic analysis we make use of the Hoeffding decomposition of a U-

statistic (see e.g. van der Vaart (1998))

Qn(ϕ) = Q(ϕ) + νn(ϕ) + ξn(ϕ) (1.12)

7More precisely ξ = g(Z1)− ˜︁g(Z22) + s[ϕ(Z1)− ˜︁ϕ(Z21) + ˜︁g(Z21)− g(Z1)] for some s ∈ (0, 1).
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with short hand notations

νn(ϕ) :=
1

n

n∑︂
i=1

ν(Si, ϕ),

ν(Si, ϕ) := E[Γ(Si, Sj, ϕ)|Si] + E[Γ(Sj, Si, ϕ)|Si]− 2E[Γ(Si, Sj, ϕ)],

ξn(ϕ) :=
2

n(n− 1)

∑︂
1≤i<j≤n

ξ(Si, Sj, ϕ),

ξ(Si, Sj, ϕ) := Γ(Si, Sj, ϕ)− E[Γ(Si, Sj, ϕ)|Si]− E[Γ(Si, Sj, ϕ)|Sj] + E[Γ(Si, Sj, ϕ)].

This decomposition is frequently deviced in the rank estimation literature to obtain

asymptotic results, see e.g. Sherman (1993). The first summand in the decompo-

sition is a smooth function of the parameter ϕ, νn is an empirical process and ξn a

degenerate U-process, both indexed by the function space GK . Further, we define

the function classes Fν,K = {ν(·, ϕ) : ϕ ∈ Gδ
K} and Fξ,K = {ξ(·, ·, ϕ) : ϕ ∈ Gδ

K}. Let
F ν and F ξ denote respective envelope functions . The envelope function is defined

as any function satisfying |ν(·, ϕ)| ≤ F ν(·).

In this setting, F ν(Si) = |Yi|+ 3E[|Yi|], since

|ν(Si, ϕ)| =|YiE[1{ϕ(Zi) > ϕ(Zj)} − 1{g(Zi) > g(Zj)}|Zi]

+ E[Yj (1{ϕ(Zj) > ϕ(Zi)} − 1{g(Zj) > g(Zi)}) |Zi]

− 2E[Yi (1{ϕ(Zi) > ϕ(Zj)} − 1{g(Zi) > g(Zj)})]|

≤|Yi|+ 3E[|Yi|],

where
⃦⃦
F ν

⃦⃦
L2(S)

≤
√︁
4E[Y 2] =: Cν . In addition we have F ξ(Si, Sj) = 2|Yi| +

2E[|Yi|] as

|ξ(Si, Sj, ϕ)| =|Yi(1{ϕ(Zi) > ϕ(Zj)} − 1{g(Zi) > g(Zj)})

−Yi E[1{ϕ(Zi) > ϕ(Zj)} − 1{g(Zi) > g(Zj)}|Zi]

−E[Yi(1{ϕ(Zi) > ϕ(Zj)} − 1{g(Zi) > g(Zj)})|Zj]

+E[Yi(1{ϕ(Zi) > ϕ(Zj)} − 1{g(Zi) > g(Zj)})]|

and
⃦⃦
F
⃦⃦
L2(S)

≤
√︁

12E[Y 2] =: Cη. By Assumption 6 (iii) we have Cν , Cη < ∞.

Ultimately, we define the bracketing integral J[] of the space Fν,K

J[](1,Fν,K , L
2(S)) =

∫︂ 1

0

√︂
1 + logN[](ϵ ·

⃦⃦
F ν

⃦⃦
L2(S)

,Fν,K , L2(S))dϵ.

and analogously for Fξ,K .
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Proof of Theorem 1.2. We begin by noting that consistency of ˆ︁g in the L2-

norm follows from Lemma 1.3. Due to the consistency result in Lemma 1.3, we may

restrict the function spaces to a local neighborhood around g, i.e. we define the

space Gδ
K = {ϕ ∈ GK : ∥ϕ− g∥L2(Z) < δ} and assume that ˆ︁g ∈ Gδ

K . Further we

introduce the space Gδ,rn
K = {ϕ ∈ Gδ

K : Qg(ϕ − g) > Mrn} where M > 0. It holds

that

P
(︁
Qg(ˆ︁g − g) ≥ Mrn

)︁
≤ P

(︄
sup

ϕ∈Gδ,rn
K

Qn(ϕ) ≥ Qn(ΠKg)

)︄

≤P

(︄
sup

ϕ∈Gδ,rn
K

Q(ϕ) + νn(ϕ) + ξn(ϕ) ≥ Q(ΠKg) + νn(ΠKg) + ξn(ΠKg)

)︄
,

by applying the Hoeffding decomposition (1.12). Due to Assumption 6 (iv) we have

local equivalence of |Q(·)| and Qg(·). Since Q(·) is negative and thus |Q(·)| = −Q(·)
it follows that

P
(︁
Qg(ˆ︁g − g) ≥ Mrn

)︁
≤P

⎛⎝ sup
ϕ∈Gδ,rn

K

(︂
Q(ϕ) + νn(ϕ)− νn(ΠKg) + ξn(ϕ)− ξn(ΠKg))

)︂
≥ −ηQg(ΠKg − g)

⎞⎠
≤P

⎛⎝ sup
ϕ∈Gδ,rn

K

(︂
νn(ϕ)− νn(ΠKg) + ξn(ϕ)− ξn(ΠKg) + ηQg(ΠKg − g)

)︂
≥ inf

ϕ∈Gδ,rn
K

|Q(ϕ)|

⎞⎠
≤P

(︄
sup
ϕ∈Gδ

K

νn(ϕ)− νn(ΠKg) + sup
ϕ∈Gδ

K

ξn(ϕ)− ξn(ΠKg) + ηQg(ΠKg − g) ≥ C2Mrn

)︄
,

where it remains to study the asymptotic behavior of each summand in the last line

separately. Note that both summands on the left hand-side are positive, hence if

supGδ
K
νn(ϕ) is bounded in probability so is νn(ΠKg) and similarly for ξn.

First we study the asymptotic behavior of the empirical process part supϕ∈Gδ
K
νn(ϕ).

Recall the definition Fν,K = {ν(·, ϕ) : ϕ ∈ Gδ
K} with envelope F ν . By applying the

last display of Theorem 2.14.2 of van der Vaart and Wellner (2000) we can conclude

that

E
⃓⃓⃓
sup
ϕ∈Gδ

K

νn(ϕ)
⃓⃓⃓
= E

⃓⃓⃓
sup

ν∈Fν,K

1

n

n∑︂
i=1

ν(Si)
⃓⃓⃓
≤ J[](1,Fν,K , L

2(S)) ·
⃦⃦
F ν

⃦⃦
L2(S)

· n−1/2

where
⃦⃦
F ν

⃦⃦
L2(S)

≤
⃦⃦
F ν

⃦⃦
L∞(S)

≤ Cν < ∞. By Lemma 1.2 (i) and (ii) we have

logN[](ϵ ·
⃦⃦
F ν

⃦⃦
L∞(S)

,Fν,K , L∞(S)) ≤ c0K log(1/ϵ · C−1
ν )
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and ultimately we obtain J[](1,Fν,K , L∞(S)) = O(
√
K) and by Markov’s inequality

supϕ∈Gδ
K
νn(ϕ) = Op(

√︁
K/n).

It remains to analyze the convergence rate of the degenerate U-process supϕ∈Gδ
K
ξn(ϕ).

Similar to Lemma A.1 in Clemencon et al. (2008) we can make use of the following

equality for second-order U-statistics

1

n(n− 1)

∑︂
i ̸=j

ξ(Si, Sj, ϕ) =
1

n!

∑︂
π

1

⌊n/2⌋

⌊n/2⌋∑︂
i=1

ξ(Si, S⌊n/2⌋+i, ϕ) (1.13)

where π is short-hand for all permutations of {1, . . . , n}. Then applying the triangle

inequality to (1.13) leads to

E

[︄⃓⃓⃓
sup
ϕ∈Gδ

K

1

n(n− 1)

∑︂
i ̸=j

ξ(Si, Sj, ϕ)
⃓⃓⃓]︄

≤ E

⎡⎣⃓⃓⃓ sup
ϕ∈Gδ

K

1

⌊n/2⌋

⌊n/2⌋∑︂
i=1

ξ(Si, S⌊n/2⌋+i, ϕ)
⃓⃓⃓⎤⎦

(1.14)

from which we can conclude that for obtaining the convergence rate of the degenerate

U-process on the left-hand side of (1.14) it is sufficient to analyze the convergence

rate of an empirical process with kernel ξ indexed by the function Gδ
K .

The kernel ξ contains non-smooth indicator functions so we cannot apply the

exact same reasoning we used earlier to derive a bound for νn, as ξ(Si, Sj, ϕ) is

not continuous in ϕ. However we can use the fact that ξ(·, ·, ϕ) belongs to a VC-

subgraph family and we can thus derive the complexity bound in Lemma 1.2 (iii).

Recall the definition Fξ,K = {ξ(·, ·, ϕ) : ϕ ∈ Gδ
K} and the associated envelope

function F ξ. Now we apply Theorem 2.14.1 of van der Vaart and Wellner (2000)

E

⎡⎣⃓⃓⃓ sup
ϕ∈Gδ

K

1

⌊n/2⌋

⌊n/2⌋∑︂
i=1

ξ(Si, S⌊n/2⌋+i, ϕ)
⃓⃓⃓⎤⎦ ≤ J[](1,Fξ,K , L

2(S))
⃦⃦
F ξ

⃦⃦
L2(S)

⌊(n/2)⌋−1/2

Applying Lemma 1.2 (iii) we obtain the bound

J[](1,Fξ,K , L
2(S)) ≤

∫︂ 1

0

√︁
1 + c1 + c2K log(1/ϵ)dϵ = O(

√
K)

and by Markov’s inequality that supϕ∈Gδ
K
ξn(ϕ) = Op(

√︁
K/n). Finally, we can con-

clude that

P (Qg(ˆ︁g − g) ≥ Mrn) ≤ P

(︄
sup
ϕ∈Gδ

K

νn(ϕ) + sup
ϕ∈Gδ

K

ξn(ϕ) +Qg(ΠKg − g) ≥ C2Mrn

)︄
.
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with supϕ∈Gδ
K
νn(ϕ) = Op(

√︁
K/n) and supϕ∈Gδ

K
ξn(ϕ) = Op(

√︁
K/n). Consequently,

choosing rn = max{
√︁

K/n,Qg(ΠKg−g)} we see that the right hand side probability

converges to zero as M → ∞. Thus Qg(ˆ︁g − g) = Op(rn). By the definition of the

sieve measure of ill-posedness τK we obtain

∥ˆ︁g − g∥L2(Z) ≤ τKQg(ˆ︁g − g) ≤τKOp

(︂
max{

√︁
K/n,Qg(ΠKg − g)}

)︂
=Op

(︂
τK
√︁
K/n, ∥ΠKg − g∥L2(Z)

)︂
which concludes the proof.

Lemma 1.2. Under Assumption 6 it holds that

(i) sup∥ϕ−g∥∞≤δ |ν(Si, ϕ)| ≤ M1(Si) · δ with E[M1(Si)] < ∞,

(ii) logN[](ϵ,Fν,K , L∞(S)) ≤ c0K log(1/ϵ) for some positive constant c0,

(iii) logN(ϵ,Fξ,K , L
2(S)) ≤ c1 + c2K log(1/ϵ), for positive constants c1, c2.

Proof of Lemma 1.2. Proof of part (i). It holds that

ν(Si, ϕ) =Yi E[1{ϕ(Zi) > ϕ(Zj)} − 1{g(Zi) > g(Zj)}|Zi]

+ E[Yj (1{ϕ(Zj) > ϕ(Zi)} − 1{g(Zj) > g(Zi)}) |Zi]

− 2E[Yi (1{ϕ(Zi) > ϕ(Zj)} − 1{g(Zi) > g(Zj)})]

We make use of the fact that as ∥ϕ− g∥∞ ≤ δ and thus g(z)− δ ≤ ϕ(z) ≤ g(z) + δ

for any z in the support of Z. Following Chen et al. (2003) (p. 1599-1600) we have

that

sup
∥ϕ−g∥∞≤δ

|1{ϕ(Zj) < ϕ(Zi)} − 1{g(Zj) < g(Zi)}|

≤|1{g(Zj) < ϕ(Zi) + δ} − 1{g(Zj) < g(Zi)− δ}|

and thus

|ν(Si, ϕ)| ≤|Yi| · |Fg(Z)(ϕ(Zi) + δ)− Fg(Z)(g(Zi)− δ)|

+ |E[Yi|Zi]| · |Fg(Z)(ϕ(Zi) + δ)− Fg(Z)(g(Zi)− δ)|

+ |E[Yi]| · E[|Fg(Z)(ϕ(Zi) + δ)− Fg(Z)(g(Zi)− δ)|]

≤(|Yi|+ |E[Yi|Zi]|+ |E[Yi]|) · 3δ

where the last inequality follows from Assumption 6 (v), the Lipschitz continuity

for the cdf of g(Z). Define M1(Si) = |Yi| + |E[Yi|Zi]| + |E[Yi]|. From Assumption

6 (iii) follows that E[M1(Si)] < ∞ which concludes the argument.
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We continue with the proof of part (ii). By Lemma 1.2 (i) we have

logN[](ϵ,Fν,K , L∞(S)) ≤ logN[](ϵ,GK , L∞(Z)) ≤ cK log(1/ϵ)

where both inequalities are due to Chen (2007) (pp. 5595 and 5601).

We conclude with the proof of part (iii). We make use of the decomposition

ξ(Si, Sj, ϕ) = ξ1(Si, Sj, ϕ) + ξ2(Si, Sj, ϕ) where ξ1(Si, Sj, ϕ) = Γ(Si, Sj, ϕ) and

ξ2(Si, Sj, ϕ) = −E[Γ(Si, Sj, ϕ)|Si]− E[Γ(Si, Sj, ϕ)|Sj] + E[Γ(Si, Sj, ϕ)].

Following for instance Nolan and Pollard (1987, Lemma 16) we conclude

logN(ϵ,Fξ,K , L
2(S)) ≤ logN(ϵ,Fξ1,K , L

2(S)) + logN(ϵ,Fξ2,K , L
2(S)).

Similar to the proof of part (ii) of Lemma 1.2 we obtain logN(ϵ,Fξ2,K , L
2(S)) ≤

cK log(1/ϵ) for some constant c. Below, we follow Chapter 5 of Sherman (1993) to

establish that Fξ1,K belongs to a VC-subgraph class. To this end define the subgraph

subgraph (ξ1(·, ·, ϕ))

={(si, sj, t) ∈ supp(S)2 × R : 0 < t < yi[1{ϕ(zi) > ϕ(zj)} − 1{g(zi) < g(zj)}]}

={yi > 0}{ϕ(zi)− ϕ(zj) > 0}{t > 0}{t < F ξ1(zi, zj)}{g(zi)− g(zj) < 0}

∪ {yi < 0}{ϕ(zi)− ϕ(zj) < 0}{t > 0}{t < F ξ,1(zi, zj)}{g(zi)− g(zj) > 0}

and introduce the function

m(t, s1, s2; γ1, γ2, π1, π2) := γ1t+ γ2y1 + (g(z1), p
K(z2))

′π1 + (g(z2), p
K(z2))

′π2

with the associated function space

M = {m(·, ·, ·; γ1, γ2, π1, π2) : γ1 ∈ R, γ2 ∈ R, π1 ∈ RK+1, π2 ∈ RK+1}.

Note that M is a finite vector space of dimension 2(K + 2) and the subgraph can

be written as

subgraph (ξ1(·, ·, ϕ)) =
10⋃︂
i=1

{mi > 0} (1.15)

with functions mi ∈ M for any i = 1, . . . , 10. Following e.g. Lemma 2.4 and 2.5 in

Pakes and Pollard (1989) it can be established that subgraph (ξ1(·, ·, ϕ)) belongs to
a VC-class of sets and thus the space Fξ1 is a VC-class of functions. To bound the
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complexity of the space we require the VC-index of Fξ1 which we denote as V (Fξ1) =

V (subgraph(ξ1)). From Pollard (1984, Lemma 18) it follows that V ({mi > 0}) ≤
2(K+2). Applying in van der Vaart and Wellner (2009, Theorem 1.1) to (1.15) then

leads to V (subgraph(ξ1)) ≲ 2(K + 2), so the VC-index of the space Fξ1 increases

with the same order as the sieve dimension K. Now applying van der Vaart (1998,

Theorem 2.6.7) yields

logN(ϵ,Fξ1,K , L
2(S)) ≤ log(C · V (Fξ1)(16e)

V (Fξ1
)(1/ϵ)2V (Fξ1

)−2)

= log(C) + log(2(K + 2))

+ 2(K + 2) log(16e) + 2(K + 2) log(1/ϵ)

and together with logN(ϵ,Fξ2,K , L
2(S)) ≤ cK log(1/ϵ) the stated result follows.

Lemma 1.3. Under Assumptions 1–6 it holds that ∥ˆ︁g − g∥L2(Z) = op(1).

Proof of Lemma 1.3. We need to check the conditions in Lemma A.2 of Chen

and Pouzo (2012). In their notation Qn = Q and

g0(k, n, ϵ) = inf
ϕ∈GK :∥ϕ−g∥L2(Z)≥ϵ

|Q(ϕ)|

Their condition a is thus satisfied and g0(n, k, ϵ) > 0 by the identification result in

Theorem 1.1. Condition b holds by Assumption 6 (ii) and the fact that for large

enough K the following holds

|Q(ΠKg)−Q(g)| ≲ Qg(ΠKg − g) ≲ τ−1
K ∥ΠKg − g∥L2(Z),

and thus Q(ΠKg) − Q(g) = o(1). Next, Condition c is implicitly assumed to hold

and it remains to check condition d which translates as

max{|Q(ΠKg)−Q(g)|, supϕ∈GK
|Qn(ϕ)−Q(ϕ)|}

g0(n, k, ϵ)
= o(1).

Analogous to the empirical process result from (1.13) and (1.14) and the subsequent

proceedings, it holds that supϕ∈GK
|Qn(ϕ)−Q(ϕ)| ≲

√︁
K/n. Then ultimately con-

sider that for any ϵ > 0 there is some ϵ∗ > 0 that is sufficiently small such that the
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local equivalence relation in Assumption 6 (iv) is valid and we can conclude

g0(k, n, ϵ) = inf
GK :∥ϕ−g∥L2(Z)≥ϵ

|Q(ϕ)| ≥ inf
GK :∥ϕ−g∥L2(Z)≥ϵ∗

Qg(ϕ− g)

≥ inf
GK :∥ϕ−g∥L2(Z)≥ϵ∗

τ−1
K ∥ϕ− g∥L2(Z)

≥ τ−1
K ϵ∗.

In summary we require that

max{|Q(ΠKg)−Q(g)|, sup
ϕ∈GK

|Qn(ϕ)−Q(ϕ)|}
/︁
g0(n, k, ϵ)

≲τK max{
√︁

K/n, τ−1
K ∥ϕ− g∥L2(Z)} = o(1),

which follows from the rate restriction in Assumption 6 (vi).
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Chapter 2

Estimation of Conditional

Random Coefficient Models using

Machine Learning Techniques

2.1 Introduction

In recent years microeconometric models aimed at capturing complex heterogeneity

in individual behavior. In particular, it has become relevant to include observed

and/or unobserved heterogeneity when modeling (average) partial effects in regres-

sion models.

An important model that accounts very flexibly for such heterogeneity is the

nonparametric random coefficient model

Y = B0 +B1W,

where (B0, B1) is a vector of p + 1 random variables and W ∈ Rp is a vector of

regressors. Let X be a set of additional control variables that may be related to

(W,B0, B1). B1 is the individual effect of a change in W on Y and the distribution

of B1 reflects the heterogeneity of individual effects in the population.

The model is nonparametric in that it does not impose distributional assumptions

on partial effects B1 and the nuisance B0. The primary goal for this class of models

is to identify and estimate the entire distribution of the vector of random coefficients

(B0, B1) such as the joint density function. The marginal density of the random slope

parameter B1 is of special interest in economic applications as B1 can be interpreted

as an average partial effect of a change in W on the outcome. Its distribution reflects

the heterogeneity of this effect in the underlying population. If W is an exogenous

35
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treatment then the expected value of B1 corresponds to an average treatment effect,

its conditional expectation to a conditional average treatment effect and so on.

A crucial identifying assumption in the literature is full independence of covari-

ates W and random coefficients (B0, B1). This is satisfied if W is randomly assigned,

such as in experimental data settings, and the marginal slope density captures the en-

tire heterogeneity of a partial effect in the population. This knowledge does not allow

to link the heterogeneity to any observable characteristics. For instance, the shape

of the RC-density may vary across observable individual characteristics. Learning

the RC-density conditional on a set of control variablesX provides additional insight

on how the shape of the heterogeneity varies across subpopulations with differing

observable characteristics. This allows to disentangle heterogeneity in observable

and unobservable heterogeneity.

Furthermore, when dealing with observational data there is always room for a

potential dependence between W and control variables X. The random intercept

B0 subsumes the effects of X on Y which violates full independence between W and

random coefficients. In this work the identifying restriction can be weakened to allow

for conditional independence, i.e. B ⊥⊥ W |X, which corresponds to a selection-on-

observables assumption. In most economic applications the set of control variables

X is of considerable size or even high-dimensional and there is generally no prior

knowledge about which variables in X drive heterogeneous partial effects. Modern

Machine Learning (ML) methods allow to deal with large dimensional set of controls

and perform some form of variable selection to identify those elements of X induc-

ing different shapes of heterogeneity. Recently, ML-techniques have proven useful

in relating features of the distribution of partial effects B1 to additional observable

characteristics, such as in the estimation of conditional average treatment effects,

also referred to as heterogeneous treatment effects. In this work, I link the entire

distribution of random coefficients to observable characteristics by studying a condi-

tional random coefficient model. This allows to uncover (i) which variables generally

drive heterogeneity in partial effects and (ii) how the distribution of partial effects

varies across subpopulations with different observable characteristics.

First I begin by providing an identification statement for the conditional RC-

density. Deriving from this identification statement I can formulate a sieve approx-

imation to the RC-density conditional on a fixed value of X. This sieve approxi-

mation has a closed form expression and each sieve coefficient can be expressed as

a conditional expectation function of some nonlinear transformation of Y and W

varying with controls X.
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Generic ML-methods can be used to estimate this set of conditional expectation

functions. Various practical considerations to be outlined later require to orthogo-

nalize both the outcome Y and treatment W using ML technqiues before estimating

the sieve coefficients itself. This requires the use of iterated sample splitting to deal

with nested ML-steps.

Following the outline of the estimation strategy I derive the L2-convergence rate

of the final conditional RC-density estimator. This convergence rate is crucially de-

termined by the asymptotic properties of the ML-methods employed. Assuming that

the slowest ML-estimator used converges at a polynomial rate the L2-convergence

rate of the RC-density estimator is slower by some factor than that of the slowest

ML-estimator employed. The factor hinges on the degree of ill-posedness of the

underlying inverse problem and the overall smoothness of the density.

In addition to the asymptotic properties of the estimator, I introduce a cross-

validation strategy to inform the choice of tuning parameters.

Finally, I apply the estimator to study behavioral heterogeneity in an economic

experiment on portfolio choice. Survey respondents of the german socio-economic

panel (SOEP) are asked to invest an hypothetical monetary amount into a riskfree

asset or into a risky asset with payoff depending on the return of a stock market

index. I study the effect of stock market beliefs on the investment decision with a

random coefficient model. I find a bi-modal RC-density that reflects the presence

of two types in the population. One type complies with economic theory and stock

market beliefs have a positive impact on the amount invested in the risky asset.

For a second type this is not the case and the effect is centered around zero. The

division into types prevails when varying the values of controls. This suggests that

the assignment to types is largely based on unobservable characteristics not in the

data. An exemption here is age, as for a subpopulation of elder respondents the

share of non-compliers is substantially larger.

Related literature Identification and estimation of the nonparametric random

coefficient model is studied in Beran and Hall (1992), Beran and Millar (1994), Be-

ran et al. (1996) and Hoderlein et al. (2010). See also Masten (2017) for a refined

identification result. All of these works operate under the assumption that ran-

dom coefficients and regressors are fully independent. Breunig (2021) considers a

so called varying random coefficient model, where each random coefficient is made

up of a nonparametric function of control variables and an additively separable

random component which is fully independent of controls. Further, the number of

control variables affecting random coefficients is effectively smaller than the number
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of random coefficients itself whereas in the present setting the number of controls is

allowed to be larger. Sieve estimation for random coefficient models is used for the

testing procedure in Breunig and Hoderlein (2018) and in Breunig (2021).

Machine Learning estimation and econometric models have been paired fre-

quently in recent years. Chernozhukov et al. (2015), Chernozhukov et al. (2017)

and Chernozhukov et al. (2020) study estimation and inference on parameters and

linear functionals of parameters in high-dimensional linear models. Thereby high-

lighting the importance of iterated ML estimation and sample splitting for achieving

consistency and asymptotic normality of parameter estimates.

Of particular importance for this work is the estimation of heterogeneous treat-

ment effects using machine learning methods as considered in Wager and Athey

(2018) and Athey et al. (2019), see also the references therein. This is due to the

fact that a heterogeneous treatment effect can be viewed as the conditional expecta-

tion function of a random slope coefficient. In contrast, the conditional RC-density

studied here is informative about the entire distribution of a treatment effect in a

given (sub-)population. This also includes learning the form of unobservable het-

erogeneity which remains otherwise unknown when only the mean of a random

coefficient is studied. Chernozhukov et al. (2019) considers identification and esti-

mation of particular subfeatures of the conditional expectation function of a random

slope.

The theory of the conditional RC density estimate developed here holds for

generic machine learning techniques. However I make use of the causal forest algo-

rithms of Athey et al. (2019) and the popular ML-tool of random forests introduced

by Breiman (2001) in the implementation of the estimator and in the asymptotic

theory. The asymptotic theory of random forest estimators has been studied in Scor-

net et al. (2015), Wager and Walther (2016), Wager and Athey (2018) and Athey

et al. (2019).

The remainder of this paper is organized as follows. Section 2.2 introduces the

main model and discusses identification of conditional RC-densities. Section 2.3

outlines the estimation strategy. Section 2.4 presents the asymptotic properties of

the estimator and section 2.5 asymptotic inference on the conditional RC density

estimates. Section 2.6 addresses auxiliary topics, i.e. marginal density estimation,

variable importance measures and the choice of tuning parameters. Section 2.7 con-

tains a Monte Carlo simulation study. Section 2.8 contains an empirical application

of the estimation procedure using survey data. Section 2.9 concludes.
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2.2 Model Setup and Identification

This paper considers the following random coefficient model

Y = B0 +B1 ·W (2.1)

where B = (B0, B1) consists of two scalar random variables and W is a scalar

regressor of interest to the researcher. Here B1 is the average partial effect of a

change in W on the outcome Y . Within the model framework there exists a vector

of additional covariates X ⊆ Rd that may affect both the random coefficients as well

as the regressor W . The goal of this section is to give conditions under which we

can identify the conditional random coefficient density fB|X=x. That is the random

coefficient density for a given subpopulation with characteristics X = x. Note that

the results of this paper can be readily extended to cover the case where W is

multivariate, though for conciseness, I focus on the scalar W case which is of the

most practical relevance.

The model (2.1) can be interpreted as a reduced form of a more general multi-

variate random coefficient model with the random intercept absorbing all the (het-

erogenous) effects of other covariates on the outcome. Without loss of generality,

the random coefficients satisfy

Bj = gj(X) + Aj, where E[Aj | X] = 0, j = 0, 1 ,

which illustrates that (2.1) nests many popular mean regression models. For instance

it can be viewed as an extension of Robinson (1988) with a random coefficient instead

of a deterministic one.

For obtaining identification the following assumptions are imposed.

Assumption 1. (i) B ⊥⊥ W | X (ii) for every x in the support of X the random

variable W | X = x has full support R.

Assumption 1 (i) requires that the regressor of interest W is independent of

random coefficients conditional on controls X. This restriction allows for some

dependence between B and W and is thereby weaker then the full independence

assumption typically encountered in random coefficient models, see Beran and Hall

(1992), Hoderlein et al. (2010) and Masten (2017). It can also be interpreted as an

exogeneity condition on the regressor W . If W is a (quasi-)experimental interven-

tion then (i), or more precisely the part B0 ⊥⊥ W | X, corresponds to a selection

on observables assumption. It is also one of the main assumptions for identifying

heterogenous treatment effects as in the RC model in section 6 of Athey et al. (2019).
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Assumption 1 (ii) strengthens the common large support restriction from the

random coefficients literature, see e.g. Hoderlein et al. (2010) to also hold conditional

on X = x. The assumption rules out the case where W is a deterministic function

of X and may be problematic if otherwise certain realizations x provide strong

information aboutW . A workaround for this assumptions is provided by the varying

RC model of Breunig (2021). There, however, functional form restrictions on the

random coefficients need to be made, which outlines a tradeoff between the above full

support assumption and further restrictions on the random coefficient model. If this

assumption is violated for some realizations of X then, nevertheless, identification

for different x-values which satisfy (ii) can be established. Masten (2017) discusses

identification in the case of bounded support of the regressor W . Taking this results

into account, the following identification result can be formulated.

Lemma 2.1. If Assumption 1 holds, then for every x in the support of X the density

function fB|X=x is identified. If W | X = x has instead only compact support then

fB|X=x is point identified if and only if the distribution of B | X = x is determined

solely by its moments and all absolute moments are finite.

The proof of Lemma 2.1 immediately follows from extending classical identifi-

cation results for random coefficient models as synthesized in Masten (2017) to the

conditional case.

2.3 Estimation of Conditional Random Coefficient

Densities

This section introduces the estimation strategy for conditional RC-densities. Sub-

section 2.3.1 outlines the principal idea and introduces the main notation whereas

Subsection 2.3.2 is of most practical relevance. It discusses a demeaned random

coefficient model and provides further details on machine learning estimators and

sample splitting rules. Before moving forward the following general notation needs

to be introduced. Let

ϕY |X(t|x) = E[exp(itY ) | X = x]
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denote the characteristic function of Y conditional on X = x. The Fourier transfor-

mation F and the inverse Fourier transformation F−1 are defined as

(Ff)(t) =

∫︂
Rd

exp(it′a)f(a)da

(F−1g)(a) =
1

(2π)d

∫︂
Rd

exp(−ia′t)g(t)dt

for some functions f, g : Rd → R. The operators F : Rd → Cd and F−1 : Cd → Rd

relate the characteristic function of a random variable to its probability density

function, given the latter exists. For some random variable A with density fA it

holds that ϕA(t) = (FfA)(t) and vice versa (F−1ϕA)(a) = fA(a).

2.3.1 A Two-Stage Sieve Estimation Approach

The essential implication of Assumption 1 that will be leveraged for estimation is

the identity

(FfB|X=x)(t, tw) = ϕY |X,W (t|x,w),

which holds for every x in the support of X and t, w ∈ R. The identity in turn

implies the following L2-condition∫︂
R2

⃓⃓⃓
(FfB|X=x)(t, tw)− ϕY |X,W (t|x,w)

⃓⃓⃓2
dν(t)dµ(w) = 0, (2.2)

where v, µ are arbitrary probability measures on R that are discussed later in more

detail. Following Breunig (2021) the L2-criterion in (2.2) can be used to construct

a sieve estimator of the density fB|X=x.

To this end, let qK = (q1, . . . , qK) denote a K = K(n)-dimensional vector of

known basis functions that span the linear sieve space BK = {ϕ(·) = qK(·)′π}. As

fB|X=x is bivariate, qK typically is a tensor product of univariate basis functions,

i.e. qK(b0, b1) = qK1(b0)⊗ qK2(b1) with K = K1 ·K2.

If the characteristic function ϕY |X,W (·|x,w) were known, then a sieve estimator

of the conditional random coefficient density is

˜︁fB|X(·|x) = arg min
ϕ∈BK

∫︂
R2

⃓⃓⃓
(Fϕ)(t, tw)− ϕY |X,W (t|x,w)

⃓⃓⃓2
dν(t)dµ(w),
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which has the following closed form expression

˜︁fB|X(b|x) = qK(b)′Q−1

∫︂
R2

(FqK)(−t,−tw)ϕY |X,W (t|x,w)dν(t)dµ(w) (2.3)

and where

Q =

∫︂
R2

(FqK)(t, tw)(FqK)′(−t,−tw)dν(t)dµ(w). (2.4)

Note that the estimator in (2.3) is not feasible as ϕY |X,W (t|x,w) is not known.

Breunig (2021) proceeds by replacing the unknown characteristic function with a

nonparametric plug-in estimate. A general problem in this setting is the presence

of the possibly large-dimensional set of controls X that cannot be reduced a priori

in most practical applications. Breunig (2021) studies a varying random coefficient

model which puts additional structure on the relationship of random coefficients and

controls and where X is low-dimensional.

Modern Machine Learning (ML-)estimators are well suited for the estimation of

conditional expectation functions like ϕY |X,W (t|x,w) = E[exp(itY )|X = x,W = w]

in the presence of possibly high-dimensional controls X. However, an additional

issue arises in that we would require to perform different Machine Learning steps

over a continuum of values for t.

In order to enable the use of Machine Learning techniques, a different strategy is

needed. Further rearranging of (2.3) yields

˜︁fB|X(b|x)

=qK(b)′Q−1

∫︂
R

∫︂
R
E[(FqK)(−t,−tW ) exp(itY )|X = x,W = w]dν(t)dµ(w)

=qK(b)′Q−1

∫︂
R
E[

∫︂
R
(FqK)(−t,−tW ) exp(itY )dν(t)|X = x,W = w]dµ(w)
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=qK(b)′Q−1

∫︂
R
E[T (W,Y )|X = x,W = w]dµ(w), (2.5)

where the operator T (w, y) :=
∫︁
R(FqK)(−t,−tw) exp(ity)dν(t) is short-hand for

the nonlinear mapping T : W × Y → RK . The operator T can be computed via

numeric integration and thus, I consider it deterministic for the remainder of this

paper. Also for clarification, let T (W,Y ) = (T1(W,Y ), . . . , TK(W,Y )) with functions

Tk : W ×Y → R, for k = 1, . . . , K. Further, define the functions

πk(x,w) = E[Tk(W,Y )|X = x,W = w]

for k = 1, . . . , K with π(x,w) = (π1(x,w), . . . , πK(x,w). A distinguishing feature of

the sieve approximation in (2.5) is that sieve coefficients are the relevant quantity

that varies in X.

Finally, I construct a feasible estimator by replacing Q with a sample mean and

π(x,w) with a vector of Machine Learning estimates. The resulting RC-density

estimator is

ˆ︁fB|X(b|x) = qK(b)′ ˆ︁Q−1

∫︂
R
ˆ︁π(x,w)dµ(w), (2.6)

where ˆ︁π is a generic ML-estimate of the unknown function π and

ˆ︁Q =
1

n

n∑︂
i=1

(FqK)(Ni, NiMi)(FqK)′(−Ni,−NiMi),

where the (Mi, Ni)’s are n Monte Carlo draws from the probability distributions µ

and ν that are specified by the researcher. In general Q can be calculated directly via

numerical methods for most measures µ, ν, however this representation is introduced

here, as we will later consider the case where µ is the distribution of W and use

sample realizations Wi instead of the generated Mi.

Notice that (2.6) is a direct estimate of the closed-form sieve projection in (2.3).

The sieve coefficients can be expressed in terms of different conditional expectation

functions which can in turn be conveniently estimated by generic machine learning

routines even if the set of controls X is high-dimensional.

Choice of weighting measures The choice of the measure µ leaves room for

further simplification of the estimator in (2.6). If we choose fW |X=x as the density

of the weighting measure µ, then it holds that
∫︁
R π(x,w)dµ(w) = E[T (W,Y )|X = x]

and we only need to consider ML-estimation of a conditional expectation function
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and there is no need for additional weighting of this ML-estimator. This does slightly

ease computation and simplifies the asymptotic analysis as asymptotic properties

of ML-estimators of conditional expectation functions are readily available. The

properties of the transformed ML-estimator
∫︁
R ˆ︁π(x,w)dµ(w) used to calculate the

estimator in (2.6) have not been studied explicitly.

A caveat of choosing fW |X=x is that the matrix Q will vary in x, which is prob-

lematic from both the computational as well as the theoretical stance1. A possible

workaround is to orthogonalize W , which I will elaborate on in detail in the next sec-

tion. However, this workaround will slow down the convergence of the RC-density

estimator, as will be shown in section 2.4. Hence, choosing dµ/dw = fW |X=x as

weighting measure is problematic.

In any case, choosing a µ that is related to the distribution of W is appropriate.

ML-estimators like ˆ︁Π(x,w) perform best for points from the center of the distri-

bution and will be less accurate in the tails. Moving forward, I will focus on the

case where dµ(w)/dw = fW (w), which automatically weighs down areas where the

ML-estimates may be less accurate. This respects the finite sample behavior of each

machine learned sieve coefficient and reduces the problem of estimating Q to a sim-

ple sample mean. The additional weighting of the ML-estimate ˆ︁π(x,w) is a minor

issue compared to the difficulties arising from alternative choices for µ.

Following Breunig (2021), I choose ν to follow a lognormal(0, σt) distribution

where σt > 0 is then the second tuning parameter to be chosen by the researcher,

along with K. This particular choice of weighting measure works well in the settings

of Breunig (2021) and also in the simulations and applications in this work. Theo-

retical justifications are given in Breunig and Hoderlein (2018), Breunig (2021) and

in section 2.3, but these do not preclude other choices of weighting distributions.

Choice of sieve basis functions Throughout this paper, I again follow Breunig

(2021) and choose Hermite functions as sieve basis qK .

Hermite functions are a L2-basis and have appealing theoretical properties. They

are eigenfunctions of the Fourier transformation and satisfy Fqk(a, b) =
√
2πik−1qk(a, b).

This property simplifies the computation of the estimator considerably. A drawback

of Hermite functions is that most of the support concentrates around zero even if

K is moderately large. Thus, any moderately sized sieve approximation will fail

to be a good approximation of a density function that is centered away from zero

and/or has a particularly large support. This is a major motivation for considering

1Each of theK2 elements ofQ would need to be estimated by a ML-step. Further the asymptotic
properties of a machine-learned matrix whose dimensions increase with the sample size remain
unclear.
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a demeaned random coefficient model in the next subsection.

2.3.2 Demeaning of Random Coefficients

This section discusses estimation of a demeaned version of the random coefficient

model in (2.1). The reason is that if marginal densities of B0 and B1 are centered

away from zero, estimation of the bivariate density function with a Hermite function

sieve will require a possibly large choice of K and thus prohibitively many ML-steps.

The computational cost associated with each ML-step and the general ill-posedness

of the RC-density estimation problem lead to a strong preference for a coarse choice

of K.

Second, as the random slope density is of particular interest in economics, specific

ML-routines which provide high quality estimates for the conditional expectation

E[B1|X] have already been developed, see Wager and Athey (2018) and Athey et al.

(2019). By demeaning, we can separate estimation of the conditional expectation

from the remaining conditional shape of the RC-density. This enables the use of

ML-tools that are tailored to the specific predictive tasks such as the estimators in

Athey et al. (2019) for the conditional expectation function of B1. Further, these

direct estimators of the conditional expectation will perform better than those one

can infer from an indirect estimate via integrating the entire conditional density

function.

We can reformulate the original RC-model (2.1),

Y − E[Y |X,W ] = A0 + A1 ·W,

where A0 = B0 − E[B0|X] and A1 = B1 − E[B1|X]

and estimate the joint density of the demeaned random coefficients fA|X=x with the

procedure outlined in the previous section. To this end, let β(x) = E[B|X = x]

with β(x) = (β0(x), β1(x)) denoting the conditional expectation of the intercept

and slope, respectively. Further, let m(x,w) = E[Y |X = x,W = w]. Then, the

closed form of the sieve approximation analogous to the previous section is

˜︁fB|X(b|x) = ˜︁fA|X(b− β(x)|x)

= qK(b− β(x))′Q−1

∫︂
R
E[T (W,Y −m(X,W ))|X = x,W = w]dµ(w)

(2.7)
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with

Q =

∫︂
R2

(FqK)(t, tw)(FqK)′(−t,−tw)dν(t)dµ(w).

Further, define

Π(x) =

∫︂
R
E[T (W,Y −m(X,W ))|X = x,W = w]dµ(w)

Πdm(x) =

∫︂
R
E[T (W,Y − ˆ︁m(X,W ))|X = x,W = w]dµ(w)

with ˆ︁m denoting a generic (ML)-estimator for the unknown functionm. By choosing

dµ(w)/dw = fW (w), an estimator is

ˆ︁fB|X(b|x) = ˆ︁fA|X(b− ˆ︁β(x)|x)
= qK(b− ˆ︁β(x))′ ˆ︁Q−1ˆ︁Πdm(x) (2.8)

where

ˆ︁Q =
1

n

n∑︂
i=1

(FqK)(t, t ·Wi)(FqK)′(−t,−t ·Wi)dν(t) (2.9)

and ˆ︁Πdm(x) is an ML-estimate of Πdm(x). The conditional expectation E[T (W,Y −ˆ︁m(X,W ))|X = x,W = w] can be conveniently estimated with ML methods, but

it remains to construct an estimate for the quantity
∫︁
R E[T (W,Y − ˆ︁m(X,W ))|X =

x,W = w]dµ(w). I suggest to use

ˆ︁Πdm(x) =
1

R

R∑︂
r=1

ˆ︁E[T (W,Y − ˆ︁m(X,W ))|X = x,W = Wr], (2.10)

where ˆ︁E[T (W,Y − ˆ︁m(X,W ))|X = x,W = w] is an ML-estimator of the respective

conditional expectation function and thus ˆ︁Πdm(x) is a sample average of different

predictions from the ML-estimators over a hold-out sample of size R, which has not

been left out of the estimation before. Another possibility that does not rely on

a hold-out sample is to use a leave-one-out ML-estimator. In the applications and

simulation studies I simply calculate (2.10) on the entire sample observations for W .

This is theoretically not valid, yet in simulations there is practically no difference

between using (2.10) on the entire sample for W or an equally-sized hold out sample

of W .
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Therefore, I assume for the remainder of the paper that

ˆ︁Πdm(x) =

∫︂
R

ˆ︁E[T (W,Y − ˆ︁m(X,W ))|X = x,W = w]dµ(w). (2.11)

When studying the asymptotics of (2.11) in the next section, it is implicitly as-

sumed that the rather slow ML-estimators dominate the asymptotic behavior ofˆ︁Πdm, i.e. convergence of the sample mean to the integral is negligible compared to

the convergence of ML-estimators.

The estimator (2.8) nests several ML-estimates and it is therefore apparent that

sample splitting is required to achieve consistency.

A particular requirement is that ˆ︁m is calculated on a different sample than ˆ︁Πdm

which takes ˆ︁m as input.

The use of sample splitting is somewhat mandatory for nested ML-estimators, see

Chernozhukov et al. (2015).

The subsequent paragraph outlines the precise use of sample splitting along with

a concise summary of the estimation procedure.

Estimation Procedure

The sample is (Xi,Wi, Yi) with i = 1, . . . , n. Set tuning parameters K and ν.

Step 1: Calculate ˆ︁β(x) and ˆ︁Q on the full sample.

Step 2: Randomly split the sample in two parts of equal size n/2. The two samples

are referred to as sample D and sample R.

Step 3: Use sample D as training sample to learn ˆ︁m with some ML method.

Step 4: Taking ˆ︁m as given, use sample R to learn ˆ︁Πdm with some ML method.

Then perform cross-fitting, i.e. iterate steps 2-4 a number of M times to obtain

M different estimates ˆ︁Πdm,m(x) for m = 1, . . . ,M . Then aggregate these to a final

conditional RC-density estimate

ˆ︁fB|X(b|x) =
1

M

M∑︂
m=1

qK(b− ˆ︁β(x))′ ˆ︁Q−1ˆ︁Πdm,m(x). (2.12)

The cross-fitting procedure is optional, yet highly recommended as it stabilizes the

estimates considerably.
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In many works linking causal inference with machine learning methods, orthog-

onalization of treatments W is often mandatory to achieve consistent estimation

of causal effects, see e.g. Chernozhukov et al. (2015) or at least desirable for the

performance of machine learning methods, see section 6.1.1. in Athey et al. (2019).

Therefore, this section ends with a brief discussion on how to handle the case of a

demeaned W in the estimation. In the next section, it is shown that orthogonal-

ization of the treatment W is not innocuous in the RC model, as it slows down the

convergence rate of the RC-density estimator.

Remark 2.1. Additional orthogonalization of W leads to a random coefficient model

Y − E[Y |X,W ] = A0 + A1 · (W − E[W |X]),

where A0 = B0 − E[B0|X] + A1E[W |X] and A1 = B1 − E[B1|X]

which does not change the interpretation of the random slope. Define E[W |X =

x] = g(x) and the variable W = W − g(X), then the estimation of g needs to be

taken into account and the following quantities reformulated to

˜︁fA|X(b− β(x)|x)

=qK(b− β(x))′Q−1

∫︂
R
E[T (W,Y −m(X,W ))|X = x,W = w]dµ(w)

with

Q =

∫︂
R2

(FqK)(t, tw)(FqK)′(−t,−tw)dν(t)dµ(w).

Then the estimation procedure needs to be amended. In Step 3, the function g is

estimated additionally by an ML- estimator ˆ︁g. In Step 4, we use sample R to

estimate Q as well, in particular

ˆ︁Q =
1

|R|

|R|∑︂
i=1

(FqK)(t, t · (Wi − ˆ︁g(Xi)))(FqK)′(−t,−t · (Wi − ˆ︁g(Xi)))dν(t)

2.4 Asymptotic Analysis

The following section develops the asymptotic theory of the estimator in (2.12)

with its composite parts in (2.9) and (2.11). Estimation in the orthogonalized

W case outlined in Remark 2.1 is also considered. The following notation is re-

quired. Let λmin(Ω), λmax(Ω) denote the smallest and largest eigenvalues of a ma-

trix Ω. Further, define the L2-norm ∥g∥ =
∫︁
|g(a)|2da and the weighted L2-
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norm ∥g∥ν,µ =
∫︁
|g(t, x)|2dν(t)dµ(x) for a generic, possibly complex-valued func-

tion g. To avoid confusion at some points, ∥·∥E denotes the euclidean norm of a

(complex) vector. PKg denotes the L2-projection on a linear sieve space BK , i.e.

PKg = argminf∈BK
∥g − f∥. The relation an ≲ bn is shorthand for an ≤ C · bn for

some constant C > 0 and sequences an, bn.

The following set of assumptions is necessary.

Assumption 2. (i) supb∈R2∥qK(b)∥ ≲
√
K (ii) the smallest eigenvalue of Q satisfies

λmin(Q) = O(τK) with τK ≥ 0 and τK decreasing to zero and λmax(
∫︁
R2 q

K(b)qK(b)′db) =

O(1) (iii) for any x in the support of X we have that ∥PKfA|X=x−fA|X=x∥ = O(K−α)

for some α > 0 and ∥FfA|X=x −FPKfA|X=x∥v,µ = O(τK∥PKfA|X=x − fA|X=x∥) (iv)∫︁
R t

2dν(t) < ∞ and supx∈X |Πk(x)| ≤ C1 for any k and some C1 > 0 (v) for any x

in the support of X it holds
∫︁
R2∥∇fA|X(a|x)da∥ ≤ C2 for some constant C2 > 0.

Assumption (2) (i) is satisfied for the most commonly employed sieve bases such

as splines, fourier series or wavelets, see e.g. Belloni et al. (2015) as well as for

Hermite functions. Sufficient conditions for Assumptions (ii) and (iii) are given

in Breunig (2021) in the absence of the measure µ in (2.2). With the additional

measure the eigenvalue decay τK will generally depend on µ, i.e. in my preferred

specification on the distribution of W . Simulations show that the decay is faster the

more light-tailed the distribution of W and the smaller its support. Condition (iii)

is a typical assumption on the approximating properties of the basis functions and

the parameter α is solely related to the smoothness of the density functions fA|X=x

as the dimension of the random coefficient vector is not of interest in this analysis.

See e.g. Chen (2007) for a review of approximation properties of various sieve bases

across different smoothness classes. The remaining parts (iv) and (v) are standard

regularity conditions on the density fA|X=x. In particular (iv) imposes that for any

x the L2-projection of fA|X=x has bounded coefficients.

Assumption 3. (i) For any k = 1, . . . , K and fixed x,w assume that

max
{︂
(ˆ︁g(x)− g(x))2, (ˆ︁m(x,w)−m(x,w))2, (ˆ︁β0(x)− β0(x))

2, (ˆ︁β1(x)− β1(x))
2,

(ˆ︁Πdm,k(x)− Πdm,k(x))
2
}︂
= Op

(︁
n−2φ

)︁
(ii) Kτ−1

K log(K) = o(n) (iii) KτK log(K) = o(n1−2φ)

Assumption 3 (i) states an abstract upper bound for the pointwise convergence

rates of various ML-estimates. Thereby, one can abstract from considering different

convergence rates for each ML-estimator by simply focusing on the slowest rate

among those ML-estimators employed. Typically, for any ML-method φ < 1/2.
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Part (ii) is a common rate restriction in the series estimation literature to achieve

that ∥ ˆ︁Q−1 −Q−1∥ → 0, see Belloni et al. (2015). The last part (iii) is an additional

rate restriction that is trivially satisfied if τ−1
K = Kγ with γ > 1, i.e. if the eigenvalue

decay τK is sufficiently fast. It holds more generally if φ is sufficiently small.

In general, the particular convergence rates depend on factors such as the effective

dimension and the smoothness of the conditional expectation function that is to be

estimated. An additional aspect is the proper choice of tuning parameters for any

ML-method that is applied and the precise notion of high-dimensionality, i.e. the

rates at which dim(X) may go to infinity relative to the sample size. In order to

derive these convergence rates, additional restrictions will be required.

Thus, Assumption 3 abstracts from many theoretical and practical details of

the ML-techniques employed. However, the complexity of any given ML-method

makes the joint parameter choice of our model tuning parameters K and σt along

with other parameters of the ML-routines impractical. Therefore, I suppose that

any ML-estimator used has been properly tuned by e.g. data-driven methods to

the prediction task at hand. Thus, the rate in Assumption 3 can be viewed as

the best rate achievable given a set of ML-estimators that are properly tuned to

their respective estimation problem. This abstraction is in line with other works

using generic machine learning techniques such as Chernozhukov et al. (2015) or

Chernozhukov et al. (2019).

Below, I discuss Assumption 3 in the context of regression forests which will be

used in the applied segments of this paper.

Remark 2.2. Suppose estimates for the various functions summarized in Assump-

tion 3 are obtained from applying random forest algorithms. Originally devised by

Breiman (2001), random forests are a popular ML-tool among practitioners and sev-

eral works have since considered the asymptotic properties of random forests. Some

theoretical properties like consistency have been established for various tree-growing

schemes, see e.g. Biau (2012), Scornet et al. (2015) and Wager and Walther (2016),

but the development of theory is ongoing.

For obtaining pointwise results as in Assumption 3 (i) we can invoke Theorem 3.1

in Wager and Athey (2018). From that, it follows for any estimate of a conditional

expectation function that

nφ = n1−b · log(nb)d,
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where b satisfies

bmin := 1−
(︃
1 +

d

π

log(ω)−1

log((1− ω)−1)

)︃−1

< b < 1

and where ω, π are hyperparameters of the forest algorithm, i.e. the regularity pa-

rameter and splitting probability. For additional assumptions to obtain this result,

see Theorem 3.1 of Wager and Athey (2018). Smoothness assumptions on the under-

lying conditional expectation function and other regularity conditions are required.

The result provides a worst-case convergence rate and obtaining optimal rates in

high-dimensional settings remains an open question. The generalized random forest

algorithm of Athey et al. (2019) yields a similar result.

An additional example that will be referred to later is Wager and Walther (2016),

which derive L2-rates under additional sparsity assumptions, for a different class of

random forest algorithms. In their Theorem 4, Wager and Walther (2016) establish

that for any estimate ˆ︁τ(x) of a conditional expectation function τ(x) it holds that

E[(ˆ︁τ(X)− τ(X))2] = O(nlog(ξ)/ log(2ξ)),

where ξ = 1/(1 − 3/(4q)) and q is the effective dimension of the true conditional

expectation function. See their Theorem for more details. They admit a high-

dimensional setting where the number of covariates may grow with the sample size2

but need additional restrictions on minimum effect sizes of some covariates, see in

particular their Assumptions 3 and 4.

The remark above gives convergence rates for random forest estimators of condi-

tional expectation functions. Further, Assumption 3 imposes a convergence rate onˆ︁Πdm,k(x) which is by definition (2.11) itself an average of different random forest es-

timates by averaging over W . Thus its convergence rate can be expected to be faster

then the rate of the random forest estimate ˆ︁E[T (W,Y − ˆ︁m(X,W ))|X = x,W = w]

for any fixed w.

Finally the following convergence rate result holds.

Theorem 2.1. Under Assumptions 1- 3 it holds that∫︂ [︂ ˆ︁fB|X(b|x)− fB|X(b|x)
]︂2

db = Op(τ
−2
K

K

n2φ
+K−α)

2More precisely lim inf d/n > 0
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Here the decay of eigenvalues τK of the matrix Q serves as a measure of ill-

posedness. The estimation of the RC density is known to be an ill-posed inverse

problem which implies a slower convergence rate of estimators, see Hoderlein et al.

(2010) or Breunig (2021). If τK decays polynomially, e.g. τK ∼ K−γ/2 then choosing

K ∼ n
2φ

1+γ+α balances bias and variance and results in the convergence rate∫︂ [︂ ˆ︁fB|X(b|x)− fB|X(b|x)
]︂2

db = Op(n
− α

1+α+γ
2φ).

This shows that the convergence rate φ of the generic machine learning estimators

is slowed down by a factor α/(1+α+ γ) < 1. This loss of speed is increasing in the

eigenvalue decay parameter γ and decreasing in the smoothness parameter α. Note

that the density considered here is bivariate and thus there is no explicit parameter

for the number of random coefficients. IfW is multidimensional, its dimension enters

the factor and further slows down convergence.

This rate result is not sharp in that the convergence rate can be improved for

a given ML-technique. As φ depends on tuning parameters specific to the cho-

sen ML- technique, a joint choice of K and the tuning parameters subsumed in

φ may improve the rate of convergence. However, calculating these exact rates

may prove difficult and in practice, joint tuning of K along with the parameters

of the specific ML-techniques leads to excessive computational costs. Further note

that using the result from Wager and Walther (2016) in Remark 2.2 a rate for

E[
∫︁ [︂ ˆ︁fB|X(b|X)− fB|X(b|X)

]︂2
db] can be derived analogously.

In Remark 2.1, estimation with orthogonalized treatment W is considered. This

is important for some ML estimators applied in causal inference. For the estimation

of β1(x) = E[B1|X = x], Athey et al. (2019) suggest orthogonalization of both

the outcome Y and treatment W to improve the performance of the random forest

routines involved, see section 6.1.1 in Athey et al. (2019). The subsequent Corollary

shows that in the context of random coefficient models orthogonalization of W is

not innocuous, as it slows down the convergence rate of the RC-density estimator.

This is in contrast to Theorem 2.1, where sole orthogonalization of the outcome Y

does not result in a slower rate.

Corollary 2.1. Let Assumptions 1- 3 hold. Consider the orthogonalized W case

outlined in Remark 2.1. Assume additionally that K = o(τ−1
K ), then∫︂ [︂ ˆ︁fB|X(b|x)− fB|X(b|x)

]︂2
db = Op(τ

−2
K

K2

n2φ
+K−α)
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This slower convergence rate is due to the fact, that the ”generated regressor”

W − ˆ︁g(X) appears within Hermite functions qK . As is shown in the proof, the

derivatives of Hermite functions qK diverge in K and thus, an additional K-term

appears in the derivation of the convergence rate. This is a general issue that does

not seem to have been noticed so far. The convergence rate of any Hermite function

sieve estimator of a RC density is slower when a generated regressor enters the sieve

basis functions.

2.5 Inference

This section discusses inference for the conditional RC-density estimator, in partic-

ular, pointwise inference of the conditional RC density function estimate. Asymp-

totic normality of the RC-density estimator follows from asymptotic normality of

ML-estimators linked with theory from the series estimation literature. For random

forests, such asymptotic normality results have been recently provided by Athey

et al. (2019) and Wager and Athey (2018). The main issue is how to establish the

asymptotic covariance of the K different ML-estimators, i.e. to obtain estimates

for E[ˆ︁Πdm,j(x) · ˆ︁Πdm,l(x)] for any pair 1 ≤ j, l ≤ K. This issue can be overcome

by introducing an additional layer of sample splitting. If we split the sample R
on which sieve coefficients are learned into K equally sized subsamples and use a

different subsample for estimating each sieve coefficient, then naturally these esti-

mators are stochastically independent. In that case, the asymptotic variance of each

sieve coefficient can be obtained by resigning to established variance estimators for

the respective ML-method. This approach requires the block size |R|/K to be of

meaningful size in practice, yet, again cross-fitting, i.e. iterated sample splitting and

averaging of estimates stabilizes the results and reduces any losses in efficiency.

More precisely, we need to amend Step 4. of the estimation procedure at the end

of section 2.3.1.

Step 4: Additionally, split R into K subsamples R1, . . . ,RK of size ⌊|R|/K⌋ and

calculate each ˆ︁Πdm,j using subsample Rj.

Introduce the notation rp(n) = nφ. The resulting estimator does not coincide with

the one in the previous section. The convergence rate is similar with the term

rp(n/K) appearing in the convergence rate rather then rp(n) which is due to the

fact that each sieve coefficient is learned on a sample of size n/K. Nevertheless in

implementations the finite sample performance is comparable to the estimator in

the previous section.
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Assumption 4. (i) For each k = 1, . . . , K there exists a non-increasing sequence

σdm,k(x) such that

ˆ︁Πdm,k(x)− Πdm,k(x)

σdm,k(x)

d→ N(0, 1),

where σdm,k(x) ∝ rp(n/K)−1 and mink σdm,k > 0

(ii) maxk σdm,k/mink σdm,k = O(1)

(iii) Define

Σn(x) :=diag (σdm,1(x), . . . , σdm,K(x))

vn(b, x) :=∥qK(b)′Q−1Σn(x)∥E =
√︁

qK(b)′Q−1Σ2
n(x)Q

−1qK(b)

and it holds that

qK(b)Q−1
(︂ˆ︁Πdm(x)− Πdm(x)

)︂
vn(b, x)

d→ N(0, 1)

with vn(b, x) bounded away from zero (iv)
√︁

K/rp(n/K)τ−1
K = o(1).

Assumption 4 (i) establishes asymptotic normality of various ML-estimators.

Such asymptotic normality results are standard for many ML-methods. For (honest)

random forests such results have been established by Wager and Athey (2018).

Asymptotic normality results for different tree-based algorithms are presented in the

references therein and also in Athey et al. (2019). σdm,k is the individual standard

error of the k-th ML step and subsumes both the convergence rate and the residual

standard deviation. Part (ii) of the above assumption imposes that the residual

standard deviation in any of the K ML-regressions is bounded away from zero

and infinity. This assumption can be weakened to allow for standard deviations to

diverge as K grows at the cost of introducing an additional rate parameter that

would require to further strengthen rate restrictions. In Assumption 4 (iii), vn(b, x)

serves as the standard error of the conditional RC-density estimate. It holds that

vn(b, x) ≳
√
Kτ−1

K min
k

σdm,k,

which is bounded away from zero and approaching zero asymptotically under the

rate restriction in (iv) which is required for consistency of the RC-density estimate,

see Theorem 2.1.

Part (i) and (iii) are the most intricate conditions in Assumption 4 and typically

involve additional regularity conditions and restrictions on the growth of K. The
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following Lemma gives conditions such that Assumption 4 (i) and (iii) are satisfied

for honest regression forests.

Lemma 2.2. Assume the following conditions hold: (i) The density fX is bounded

away from zero and infinity (ii) for any k in 1, . . . , K the function Πdm,k(x) is

Lipschitz continuous and also E[Tk(W,Y )2|X = x] is Lipschitz continuous. (iii) for

any k and uniformly in x it holds V ar(Tk(W,Y )|X = x) > 0 and E[|Tk(W,Y ) −
E[Tk(W,Y )|X = x]|2+δ|X = x] < M for some constants δ,M > 0. (iv) K =

o(rp(n/K)c) with c = min{δ/2, 1,−β∗/b} and β∗ = 1 + ϵ − b/βmin < 1. Then, ifˆ︁Πdm,k(x) is an honest random forest estimator in the sense of Theorem 3.1. of Wager

and Athey (2018), then Assumption 4 (i) is satisfied under conditions (i)-(iii). If

additionally condition (iv) and Assumption 4 (ii) are satisfied, then Assumption 4

(iii) holds .

Assumptions (i) to (iii) in the Lemma above are as in Theorem 3.1. of Wager

and Athey (2018) that establishes asymptotic normality of a single (honest) random

forest estimator of a mean regression function. Assumption (iv) is an additional rate

restriction that is needed to achieve asymptotic normality of the sieve coefficient es-

timates. Additional rate restrictions are common in the series estimation literature,

see e.g. Theorem 4.2. (iii) in Belloni et al. (2015) and also appear in Assumption 5

(ii) of Breunig (2021) for an RC-density estimate. Here, the rate restriction is milder

then the one in 4 (ii) if for instance δ > 2 and the convergence rate b is sufficiently

fast such that −β∗/βmin > 1. In this case, the rate restriction in Assumption 4

(iv) that guarantees consistency of the RC-density estimate is already sufficient for

Assumption 4 (iii). If however δ is rather small and the convergence rate b close to

the worst-case βmin, there can be cases, where the rate restriction of Lemma 2.2 is

stronger compared to the one in 4 (ii), especially if the decay of τK is slow.

The following additional assumption is required.

Assumption 5. For any x in the support of X and for any a ∈ R it holds

PKfA|X(a|x)− fA|X(a|x) = o(vn(a, x)).

Assumption 5 is an undersmoothing condition that is standard for pointwise

inference of a series estimator, see Belloni et al. (2015) (4.18). Note that similar

rate restrictions are not needed for ˆ︁β(x), ˆ︁g, ˆ︁m, as these are calculated on a sample

proportional to n and thus, converge at rate rp(n) which is always faster then the

standard error rate vn(b, w). An estimator for vn(b, x) is

ˆ︁vn(b, x) = ∥qK(b− ˆ︁β(x)) ˆ︁Q−1ˆ︁Σn(x)∥E,
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where ˆ︁Σn(x) = diag (ˆ︁σdm,1(x), . . . , ˆ︁σdm,K(x)) and the individual standard error esti-

mates ˆ︁σdm,k(x) are specific to the employed ML-method. For random forests these

can be obtained from applying the infinitisimal jackknife procedure of Efron (2014),

see also the discussion in Wager and Athey (2018). Additional rate restrictions re-

quired for consistent estimation of the standard error vn(b, x) are not required. In

the proof of the subsequent Theorem 2.2 it is shown that ˆ︁vn(b, x) is consistent for

vn(b, x) under the assumptions given so far. The following pointwise asymptotic

normality result holds.

Theorem 2.2. If Assumptions 1-5 are satisfied then,

ˆ︁fB|X(b|x)− fB|X(b|x)
vn(b, x)

d→ N(0, 1)

and further

ˆ︁fB|X(b|x)− fB|X(b|x)ˆ︁vn(b, x) d→ N(0, 1).

This determines the asymptotic normality of the estimator conditional on a given

sample split, i.e. the case M = 1. To handle the cross-fitting case M > 1 and

additional uncertainty due to sample splitting, we can follow the variational inference

approach of Chernozhukov et al. (2019). The idea summarizes as follows.

Suppose there are M different estimates ˆ︁f l
B|X(b|x) for l = 1, . . . ,M . For each

estimate it is possible to construct a (1-α)-confidence interval [L1−α,l, U1−α,l] from

Theorem 2.2 with Ll = ˆ︁f l
B|X(b|x)−c1−α ·ˆ︁vn(b, w) and Ul = ˆ︁f l

B|X(b|x)+c1−α ·ˆ︁vn(b, w)
and c1−α denoting the respective 1−α quantile of the standard normal distribution.

To construct an asymptotically valid 1 − α- confidence intervals for fB|X(b|x),
Chernozhukov et al. (2019) propose [Med({L1−α/2,l}Ml=1),Med({U1−α/2,l}Ml=1)] with

Med denoting the lower median and Med the upper median. The confidence level

of each single interval needs to be discounted to 1−α/2. Chernozhukov et al. (2019)

provide a similar reasoning for constructing adjusted p-values.

2.6 Marginal Densities, Variable Importance Mea-

sures and Cross-Validation

This section addresses additional important aspects for the practical application of

the estimation procedure. First, I discuss how to construct estimates of the marginal

random coefficient density fB. Second, I present a measure of variable importance



2.6. Marginal Densities, Variable Importance Measures and Cross-Validation 57

that assigns an importance score to every variable in X. This is an important

descriptive tool for uncovering which variables in X drive the heterogeneity in con-

ditional RC densities. Lastly, I discuss a cross-validation procedure for a data-driven

choice of tuning parameters.

Estimating marginal RC densities There are various direct estimators for

marginal RC densities in the literature such as the Radon transform estimator of

Hoderlein et al. (2010) or an adaptation of the sieve estimation strategy from Bre-

unig and Hoderlein (2018) and Breunig (2021). The common identifying restriction

is, however, full independence between B and W , which is difficult to maintain in

non-experimental data settings.

Maintaining the weaker conditional independence condition in Assumption 1

(i) estimates of the marginal density can be readily constructed by averaging over

leave-one-out estimates of conditional density estimates ˆ︁f−i,B|X . Here, the estimate

is calculated without using the i-th datapoint (Yi,Wi.Xi). A consistent estimator

for the marginal density is

ˆ︁fB(b) = 1

n

n∑︂
i=1

ˆ︁f−i,B|X(b|Xi).

The estimator ˆ︁fB will inherit its asymptotic properties from the conditional

estimate ˆ︁fB|X which is discussed in the previous section. Thus, the convergence

rate is slower compared to direct marginal RC density estimators making use of

full independence between random coefficients and covariates. To the best of my

knowledge there are, however, currently no alternative estimators for the marginal

random coefficient density that operate under Assumption 1 (i).

Variable Importance Measures The estimation procedure outlined so far yields

consistent estimates of fB|X=x for any given point x. An important question in appli-

cations is to identify those variables in the set of controls X that drive heterogeneity

in conditional RC densities, i.e. a criterion to guide the choice of interesting points

x on which to evaluate the estimate ˆ︁fB|X(b|x).
We focus here on our running example that makes use of regression forests. Note

that for regression forests generally no post-selection inference problems arise as

variable selection is done within in the various ML-steps of the estimation procedure.

The goal is to find points x that reveal interesting heterogeneities to the researcher.

This is analogous to the role of variable importance measures for the causal forests

of Athey et al. (2019).
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For each of the ML-estimators used we can calculate a measure of variable im-

portance that assigns an importance score to each covariate that is normalized to

sum to one. This score is informative on how often a specific variable has been used

for placing splits in the growing of the forest.

First, I focus on the ML-estimates ˆ︁Πdm which constitute the sieve coefficients

and thus, determine the shape of the RC density. For each k = 1, . . . , K let V Ik(Xl)

denote an importance score assigned to covariate Xl ∈ X by the regression forest

estimator ˆ︁Πdm.

To obtain a global measure of variable importance for the shape of the function

fA|X=x we can simply average over K. Thus, define the variable importance of Xl

for the shape of the density as

V Ishape(Xl) =
1

K

K∑︂
k=1

V Ik(Xl).

A measure of variable importance for the conditional expectation of random coeffi-

cients β(x) is directly available by considering the variable importance measure for

causal forests as implemented in the Athey et al. (2019)-package. In contrast to

V Ishape, this measure of variable importance for the center of the density will be

henceforth referred to as V Imean.

Parameter Tuning In this paragraph I propose a cross-validation procedure for

the choice of tuning parameters. Analogous to classical density estimation tuning

parameters are chosen by minimization of the integrated squared error

argmin
K,σt

ISE(K, σt) :=

∫︂
R2

(︂ ˆ︁fB|X(b|x,K, σt)− fB|X(b|x)
)︂2

db,

which is equivalent to minimizing the criterion

J(K, σt) :=

∫︂
R2

ˆ︁fB|X(b|x,K, σt)
2db− 2

∫︂
R2

ˆ︁fB|X(b|x,K, σt)fB|X(b|x)db.

The first part is simply the integrated squared RC density estimate. The second

term is typically estimated via cross-validation. However, it is not possible to observe

realizations of random coefficients. The following Lemma links the second part to

an expression that can be estimated via leave-one-out cross validation.
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Lemma 2.3. Let Assumption 1 hold, then the following identity holds∫︂
R2

ˆ︁fB|X(b|x)fB|X(b|x)db =
∫︂
R
E[V (Y,W )′ ˆ︁Q−1ˆ︁Πdm(X)|X = x,W = w]dw,

where V (y, w) = (V1(y, w), . . . , VK(y, w)) with

Vk(y, w) =
1

2π2

∫︂
qk(b) · |t| · exp[it(y − b′(1, w))]dtdb.

Again, a weighting for w should be considered for practical reasons. Defining

Vk(y, w) =
1

2π2

∫︂
qk(b) · |t| · exp[it(y − b′(1, w))]/fW (w)dtdb,

it is equivalent to consider the integral
∫︁
R E[V (Y,W )′ ˆ︁Q−1ˆ︁Πdm(X)|X = x,W =

w]fW (w)dw in the first equality of Lemma 2.3. Using a plug-in estimate for the

unknown density fW , the function V can be computed and cross-validation used to

estimate the conditional expectation with a machine learning estimator. Here, either

a subsample of observations that has not been used for calculating ˆ︁fB|X can be used

for the prediction task or a leave-one-out estimator for ˆ︁fB|X . Standard practices of

cross-validation apply.

2.7 Monte Carlo Simulations

This section evaluates the finite sample performance of the RC-density estimator

outlined in the earlier sections. The following data generating process is studied

first,

Y = B0 +B1 ·W, with (2.13)

B0 = sin(X1) + A0,

B1 = X2 + 0.5 ·X3 + 0.25 ·X2 ·X3 + A1,

W = 1 +X3 + (1 +X2
3 ) · V

whereA0, V are standard normal random variables andA1 is a mixture of aN(−1.5, 1)

and a N(1.5,
√︁

1/2) random variable with weights 1/2. In this setting, the density

of the random slope B1 is bi-modal and any testpoint X = x solely determines

the center of the density function. The controls X are a p-dimensional vector of

iid standard normal variables. Here, I set p = 10, but as we see from the setup

above, only variables X1, X2, X3 are of importance in this toy model. This reflects
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the common practical problem, that there is a large set of control variables but only

some of them drive the heterogeneity in B1 or may otherwise affect the outcome Y .

Further, I introduce a form of heteroskedasticity in the equation for W , such that we

do not only consider the clean case where orthogonalization removes all dependence

between W and X. There is also some form of dependence between the regressor

W and the random slope B1 as both depend on the regressor X3.

The goal is to estimate the density of the random slope B1 conditional on some

testpoint X = x. Here, I implement the estimator in (2.6) with the algorithm out-

lined at the end of section 2.3. In this settingW , does not need to be orthogonalized.

The other parameters of the estimation problem are chosen as follows. I set

K1 = K2 = 3 and thus, there are a total number of K = 9 basis functions. Hermite

polynomials are used as sieve basis qK and the weighting measure follows a log-

normal law, i.e. µ ∼ lognormal(0, σt) with σt = 1. In practice, when only the slope

parameter is of interest, K1 should be fixed and cross-validation performed to guide

the choice of K2 and σt. Simulations show that K2 is the more relevant parameter

for estimates compared to σt, so sole cross-validation of K2 may be sufficient if

computation time is a concern. To reduce computational effort, parameters in this

simulation study are not chosen via cross-validation and there is no cross-fitting as

well. Therefore M = 1 and the sample is split only once in equally sized parts

R,D of size n/2 and RC-density estimates are computed only once per Monte Carlo

iteration. The testpoint is chosen as x = (0, 0.3, 0, . . . , 0), so the correct density is

centered around 0.3.

All ML estimates are obtained from using honest regression forests, respectively

causal forests for the quantity β1(x), see Wager and Athey (2018) and Athey et al.

(2019), with the implementation taken from the grf-package in R. Each random

forest is tuned using implemented data-driven routines, the number of trees in each

forest is set to 2000, which is the packages default setting. In general, I find that

tuning of internal forest parameters does improve the quality of estimates but is

only of secondary importance for the overall shape of the density estimate.

The sample size is n = 1000 and 100 Monte Carlo draws of the model in (2.13)

are performed. The simulation results for ˆ︁fB1|X=x are presented in Figure 2.1. Fig-

ure 2.1 shows a favorable performance of the estimator even for a moderate sample

size and for a coarse choice of K2.
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Figure 2.1: The solid black line denotes the median of the Monte Carlo estimates.
The dotted lines the 95%- and 5%-quantiles. The solid blue line is the correct
density. Key parameters: K2 = 3 and σt = 1

The second data generating process is,

Y = B0 +B1 ·W, with (2.14)

B0 = sin(X1) + A0,

W = 1 +X3 + V · (1 +X2
3 ),

where all random variables are chosen as before and B1 is a mixture distribution like

A1 in the first setting, but now with weights Φ(X2), 1−Φ(X2). In this setting, X de-

termines the entire shape of the density function as opposed to the first setting, where

X only determines the center of the density. For the testpoint x = (0, 0.3, 0, . . . , 0),

the conditional density is again bi-modal, but now the mode on the negative part

of the domain is more pronounced. All parameters and hyperparameters of the

ML-procedures are as before, but now K2 = 7 to illustrate the performance of the

estimator for a more complex model. As the density of B1 is more dispersed com-

pared to the first setting, this increase in complexity can be rationalized. Note that

the support of each of the Hermite basis functions increases with K. This leads

to the suggestion to increase K for highly dispersed densities or to otherwise scale

down Y and W accordingly to control the maximal dispersion of the density. The

simulation results are presented in Figure 2.2. Through a larger number of basis

functions the bias is comparably lower then in Figure 2.3 at the expense of increased

confidence intervals. As there are no shape constraints, we see that density estimates
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Figure 2.2: The solid black line denotes the median of the Monte Carlo estimates.
The dotted lines the 95%- and 5%-quantiles. The solid blue line is the correct
density. Key parameters: K2 = 7 and σt = 1.

can in principal have negative parts. Yet, the method can detect the conditional

density reliably even when the entire shape of the conditional density varies with

X.

2.8 Empirical Application

In this section I apply the estimation strategy outlined before to study heterogeneous

effects of stock market expectations on portfolio choice. I make use of the innovation

sample of the german socio-economic panel (SOEP-IS). Therein, survey respondents

were supplied with a hypothetical amount of 50, 000 Euros and asked to split their

investment among one risk-free and one risky asset with returns paid out one year

later. The risk-free asset is a state claim with a fixed annual interest rate of 4%

whereas the risky asset’s return hinges on the return of the german stock market

index (DAX) within the next year.

This experiment has been previously analyzed in Huck et al. (2015). Economic

theory suggests that stock market expectations and risk preferences are the main

determinants of the portfolio choice task at hand.

The goal is to study the effect of stock market expectations on the investment

in the risky asset. Formulated as a random coefficient model, I study the following
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econometric model,

Yi = B0,i +B1,i ·Wi,

where Yi denotes the individual investment in the risky asset, Wi is the individual

belief on the development of the DAX for the next year and B1,i is the individual

effect of interest. The random intercept B0,i subsumes the effects of other controls

X and further unobservable characteristics on the outcome Yi. The set of controls

Min. 1. Quant Median Mean 3. Quant. Max.

Y (in Euro) 1000 15000 25000 24029 30000 50000
W (in %-points) -50 2 5 4.90 8 130

Table 2.1: Summary Statistics

is quite rich and contains 75 variables including information on socio-demographics

such as gender, age or tertiary degrees as well as self-assessed measures of risk aver-

sion, personality traits or skills in mathematical calculations. Summary statistics

for the main variables are provided in Table 2.1.

In order to apply the estimation method, we need to assume that the conditional

independence restriction of Assumption 1 (i) holds. Applied to the present setting,

this implies that stock market beliefs are exogenous conditional on the set of controls

X. The data is observational and beliefs are self-reported, so we cannot rule out

relations between beliefs and other controls which rules out considering the standard,

unconditional RC model that relies on full independence of random coefficients and

controls.

Further, beliefs W must vary sufficiently in the population to plausibly fulfill the

support restrictions in Assumption 1 (ii), which is the case in this setting.

The analysis begins by choosing the tuning parameters K and σt. As the random

slope is of main interest, I fix K1 = 3 and σt = 1 and vary the choice of K2. Figure

2.6 presents various estimates for different choices of K2 and a suitable choice of K2

can be eyeballed. For most choices of K2, the two modes of the density are centered

as for the case K2 = 5 which thus appears to be a reasonable and coarse choice for

the remainder of this analysis.

Next, I set a testpoint x that corresponds to the medians of the variables in

X. For those individuals with ”median” characteristics X = x, an estimate of

the random slope density fB1|X=x is presented in 2.3 below. Most notable is the

bi-modal shape of the density with one mode centered around zero and another

around 2. Note that variables Y and W have been rescaled such that a value of 2
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Figure 2.3: Estimate of the conditional density fB1|X=x. The tuning parameters
have been chosen as K1 = 3, K2 = 5 (in total K = 15) and σt = 1. M = 100 sample
splits are performed. The testpoint x is chosen as the medians of the variables in
X.

can be interpreted in the following way. A one percentage point increase in beliefs

is associated with investing 1000 Euro (that is 2% of available funds) more into the

risky asset.

Such a bi-modal density corresponds to the existence of two types in the pop-

ulation. For one part of the population, stock market expectations are actually

linked to investment in the stock index as predicted by economic theory. Higher

expectations also lead to a larger investment in the stock index. This does not seem

to be true for a second group in the population, where the marginal effect centers

around zero. This part of the population may follow different, e.g. heuristic decision

rules in their portfolio choice and their stated beliefs do not appear to be a relevant

constituent of the investment decision.

This appearance of types is in line with other results from the portfolio choice

literature such as Drerup et al. (2017). They establish a link between the precision

of subjective beliefs and the predictive power of economic models. Whenever be-

liefs are rather crude and imprecise they are likely not determinants of a rational

portfolio choice. For individuals with such beliefs, economic theory has a rather low

power in predicting their stock market participation. This is in line with my finding

that for some part of the population their stated, subjective beliefs do not seem to

influence their investment decision.
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So far this finding indicates the existence of two, equally-large groups in the

population. One group for which beliefs seem to have an impact on investment

choice and one where it does not. Next, I study heterogeneity of the random slope

densities, i.e. consider estimates of fB1|X=x evaluated at different testpoints x. This

is interesting, because the type distribution may vary across subpopulations with

different observable characteristics X.

To get an idea of which variables may drive the heterogeneity I report a variable

importance measure for the density’s shape and center, as outlined in section 2.6.

The largest variable importance scores among the 75 control variables are reported

in Table 2.2.

”age” ”daxnetto1” ”daxnetto2” ”prisk” ”isb011”

V Ishape 0.052 0.043 0.046 0.035 0.031
V Imean 0.032 0.050 0.049 0.025 0.025

Table 2.2: Variable importance measures for those variables in X with largest scores.

There does not appear to be much variation in densities across different con-

trols. Most importance is given to the age variable followed by ”daxnetto1” and

”daxnetto2”, which are randomly selected information on past annual DAX returns

that were presented to the survey respondents before the investment game. The

other two are a measure of risk-aversion and a measure of self-assessed patience.

Taking these results allows to investigate heterogeneity with respect to age and

the historic information.

Figure 2.4 shows the heterogeneity in random slope densities for different age

groups. Therefore, the conditional density estimate is evaluated at three different

testpoints. The variable age is varied but all other points are set to the respective

sample median value of the variables. The value x is as in Figure 2.3 except that

age is varied. The most prominent descriptive fact is that the type composure in the

population seems to vary with age. For the young and medium aged subpopulations

both types are equal in size. For the elder subpopulation, fewer people behave in

accordance to economic theory.

Next, I also consider heterogeneity with respect to the historic information that

has been displayed to the respondents. Again, there are three testpoints. There

is one testpoint where both historic informations have been very positive (return

of 35%), one where both informations are negative (return of -5%) and one mixed

with a positive first and a negative second information. The results are displayed in

Figure 2.5. Here, there is no apparent or robust heterogeneity with respect to the

historic information. Therefore, we conclude the analysis and do not vary according
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Figure 2.4: Estimate of the conditional density of B1|X = x for three different
testpoints for x. The green line denotes the density for age = 30, the grey line for
age = 49 and the blue line for age = 70. The tuning parameters have been chosen
as in Figure 2.3.

Figure 2.5: Estimate of the conditional density of B1|X = x for three differ-
ent testpoints for x. The blue line denotes the density for x with daxnetto1 =
daxnetto2 = 35, the grey line for daxnetto1 = daxnetto2 = −5 and the green line
for daxnetto1 = 35 and daxnetto2 = −5. The tuning parameters have been chosen
as in Figure 2.3.
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to variables with a lower variable importance score than that of daxnetto2.

The random coefficient analysis suggests the presence of two, roughly equally-

sized types in the population. One group of individuals complies with economic

theory in that their stock market expectation also explains their investment in a

risky asset. A second group seems to follow different decision rules, their beliefs

have no impact on their investment decision. Due to a possible correlation of beliefs

and random coefficients, this finding cannot be inferred from estimating standard,

marginal random coefficient models. Regarding heterogeneity, I find that the mix-

ture of types in the populuation may depend on age but fail to uncover more inter-

esting heterogeneity with the given data. It appears that the main determinants of

type membership are unobservables that are not captured in the given data set.
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Figure 2.6: Estimates of the RC-density for various choices of K2.
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2.9 Conclusion

This paper discusses the estimation of conditional random coefficient densities when

the set of conditioning variables is large. The very general conditional RC model has

rarely been studied in both theory and application. This paper provides a general

sieve estimation strategy for estimating conditional RC densities. The approach

enables the use of generic machine learning methods to estimate sieve coefficients in

the presence of a large dimensional set of control variables. Therefore, the estimator

is applicable in many economic settings in which a continuous treatment variable

is available. Theoretical results of the paper include convergence rate and inference

results for the conditional sieve RC density estimator which combine asymptotic

theories of sieve estimators and machine learning methods, in particular, applying

results on (honest) random forests.

The finite sample properties of the estimator are illustrated in a Monte Carlo

simulation study and an empirical application. The application reveals behavioral

heterogeneity in an experimental portfolio choice task which is in line with recent

empirical findings in the literature.

2.10 Appendix

Proof of Lemma 2.1. Let ϕY |X(t|x) = E[exp(itY ) | X = x] denote the condi-

tional characteristic function of Y given X = x. The following holds

ϕY |X,W (t|x,w) = E[exp(itY ) | X = x,W = w]

= E[exp(it(B0 +B1W )) | X = x,W = w]

= E[exp(i(t, tw)′(B0, B1)) | X = x,W = w]

= E[exp(i(t, tw)′(B0, B1)) | X = x]

= ϕB0,B1|X(t, tw|x),

which is in fact already enough to point identify the probability distribution of

B | X = x. By varying both t and w it is possible to evaluate the characteristic

function of B | X = x at any point in R2. Here, Assumption 1 is required in that

the support of W | X = x is the entire real line R. See the proof of Lemma 1 in

Masten (2017) and the references therein for details.

The main interest in practical applications is in identifying the density function

fB|X=x, which follows from applying the inverse Fourier transform to ϕB0,B1|X=x(t, tw).

The Fourier transformation F and the inverse Fourier transformation F−1 are de-
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fined as

(Ff)(t) =

∫︂
Rd

exp(it′a)f(a)da

(F−1g)(a) =
1

(2π)d

∫︂
Rd

exp(−ia′t)g(t)dt

for some functions f, g : Rd → R and F : Rd → Cd and F−1 : Cd → Rd. The

Fourier transform generally links the characteristic function of a random variable to

its density function, in particular ϕB0,B1|X(t, tw|x) = (FfB0,B1|X=x)(t, tw).

From this, we can infer the following

fB|X(b|x) =
1

(2π)2

∫︂
R2

exp(−ib′s)(FfB|X=x)(s)ds

=
1

(2π)2

∫︂
R2

|t| exp(−ib′(t, tw))(FfB|X=x)(t, tw)dtdw

=
1

(2π)2

∫︂
R2

|t| exp(−ib′(t, tw))(FfB|X=x)(t, tw)dtdw

=
1

(2π)2

∫︂
R2

|t| exp(−ib′(t, tw))ϕB0,B1|X(t, tw|x)dtdw

=
1

(2π)2

∫︂
R2

|t| exp(−ib′(t, tw))ϕY |X,W (t|x,w)dtdw,

which establishes identification of the density function fB|X=x.

Proof of Theorem 2.1. Let ∥·∥E denote the euclidean norm of a (complex-)

vector and define ∥f − g∥ =
∫︁
R2 |f(a) − g(a)|2da and ∥f − g∥ν,µ =

∫︁
R2 |Ff(t, w) −

Fg(t, w)|2dν(t)dµ(w) for arbitrary functions f, g : C2 → R. Consider the following

decomposition

∥ ˆ︁fB|X=x − fB|X=x∥2

≤∥ ˆ︁fA|X=x − fA|X=x∥2 + ∥fA|X=x(· − ˆ︁β(x))− fA|X=x(· − β(x))∥2

≤∥ ˆ︁fA|X=x − ˜︁fA|X=x∥2 + ∥ ˜︁fA|X=x − fA|X=x∥2

+ ∥fA|X=x(· − ˆ︁β(x))− fA|X=x(· − β(x))∥2

=A+B + C.

The proof begins by examining summand B. To this end recall that

PKfA|X=x = arg min
ϕ∈BK

∥ϕ− fA|X=x∥,

which is the L2-projection of fA|X=x on the sieve space BK . It further holds for every
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x ∈ X ,

∥ ˜︁fA|X=x − fA|X=x∥2

≤∥ ˜︁fA|X=x − PKfA|X=x∥2 + ∥PKfA|X=x − fA|X=x∥2

≤τK
−1∥F ˜︁fA|X=x −FPKfA|X=x∥2v,µ +O(K−α)

≤τK
−1
[︂
∥F ˜︁fA|X=x −FfA|X=x∥2v,µ + ∥FfA|X=x −FPKfA|X=x∥2v,µ

]︂
+O(K−α)

≤τK
−1∥FfA|X=x −FPKfA|X=x∥2v,µ +O(K−α)

=O(K−α),

where we have used the link condition ∥FfA|X=x−FΠKfA|X=x∥2v,µ = O(τK∥ΠKfA|X=x−
fA|X=x∥2) and the fact that

˜︁fA|X=x = arg min
ϕ∈BK

∥Fϕ−FfA|X=x∥2v,µ.

Next, consider the first summand A. It holds that

∥ ˆ︁fA|X=x − ˜︁fA|X=x∥2 (2.15)

=∥qK(·)′ ˆ︁Q−1ˆ︁Πdm(x)− qK(·)′Q−1Π(x)∥2

≤∥qK(·)′( ˆ︁Q−1 −Q−1)Π(x)∥2 + ∥qK(·)′( ˆ︁Q−1 −Q−1)(ˆ︁Πdm(x)− Π(x))∥2

+ ∥qK(·)′ ˆ︁Q−1(ˆ︁Πdm(x)− Π(x))∥2

=:I + II + III,

where in the following we consider each term separately. We begin with term III,

where we have

∥qK(·)′Q−1(ˆ︁Πdm(x)− Π(x))∥2

=[ˆ︁Πdm(x)− Π(x)]′Q−1

(︃∫︂
R2

qK(b)qK(b)′db

)︃
Q−1[ˆ︁Πdm(x)− Π(x)]

≲∥ˆ︁Πdm(x)− Π(x)∥2E∥Q−1∥2

≲τ−2
K

[︂
∥ˆ︁Πdm(x)− Πdm(x)∥2E + ∥Πdm(x)− Π(x)∥2E

]︂
≲τ−2

K

[︂
K ·Op(n

−2φ) +Op(K · n−2φ)
]︂

=Op(τ
−2
K

K

n2φ
).

and made use of the sample splitting rule and the convergence rate of ML-estimates

in Assumption 3 (i). Without sample splitting, the behavior of ∥ˆ︁Πdm(x)−Πdm(x)∥E
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cannot be established. The behavior of ∥Πdm(x)−Π(x)∥2E follows from Lemma 2.4

(ii). Next, consider the term I. We have

∥qK(·)′( ˆ︁Q−1 −Q−1)Π(x)∥2

=Π(X)′( ˆ︁Q−1 −Q−1)

(︃∫︂
R2

qK(b)qK(b)′db

)︃
( ˆ︁Q−1 −Q−1)Π(x)

≲∥Π(x)∥2E · ∥ ˆ︁Q−1 −Q−1∥2

≲K ·Op

(︃
Kτ−1

K log(K)

n

)︃
≲op(τ

−2
K

K

n2φ
),

which holds by Assumption 2 (iv) and applying Rudelsons LLN, as in the second

part of Lemma 6.2. in Belloni et al. (2015) to ∥ ˆ︁Q−1 − Q−1∥. The last inequality

holds by the rate restriction in Assumption 3 (iii).

It remains to analyze II. Under the same reasoning as above, we obtain

∥qK(·)′( ˆ︁Q−1 −Q−1)(ˆ︁Πdm(X)− Πdm(X))∥

≲ ∥ˆ︁Πdm(X)− Π(X)∥2E∥ ˆ︁Q−1 −Q−1∥2

≲ Op

(︃
K

n2φ

)︃
·Op

(︃
Kτ−1

K log(K)

n

)︃
≲ op

(︃
τ−2
K

K

n2φ

)︃
and collecting terms we can conclude that A = Op(τ

−2
K K/n2φ). Finally, it remains

to consider C. There exists some τ ∈ (0, 1) such that the following holds

∥fA|X(· − ˆ︁β(X))− fA|X(· − β(X))∥ ≤
∫︂
∥∇fA|X(b− ξ)∥db · ∥ˆ︁β(X)− β(X)∥2E

= Op(1) ·Op(n
−2φ) = op(τ

−2
K

K

n2φ
),

where ξ = β(X)(1 − τ) + τ ˆ︁β(X) and the last bound following from Assumption 2

(v) and 3. This establishes the final result of Theorem 2.1.
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Proof of Corollary 2.1. In the case outlined in the corollary, we have

Q = E

[︃∫︂
R
FqK(−t,−t(W − g(X)))FqK(−t,−t(W − g(X)))′dν(t)

]︃
ˆ︁Q =

R∑︂
i=1

∫︂
R
FqK(−t,−t(Wi − ˆ︁g(Xi))FqK(−t,−t(Wi − ˆ︁g(Xi)))

′dν(t)

˜︁Q = E

[︃∫︂
R
FqK(−t,−t(W − ˆ︁g(X)))FqK(−t,−t(W − ˆ︁g(X)))′dν(t)

]︃
.

The main part is to consider the behavior of ∥ ˆ︁Q−Q∥. It holds that

∥ ˆ︁Q−Q∥ = ∥ ˆ︁Q− ˜︁Q∥+ ∥ ˜︁Q−Q∥

= Op

(︄√︃
Kτ−1

K log(K)

n

)︄
+ ∥ ˜︁Q−Q∥

again by Rudelson’s LLN. For the second part ∥ ˜︁Q − Q∥, it suffices to check the

quantity

||FqK(−t,−t(W − ˆ︁g(X)))FqK(−t,−t(W − ˆ︁g(X))) (2.16)

−FqK(−t,−t(W − g(X)))FqK(−t,−t(W − g(X)))||.

For arbitrary complex vectors a, b, it holds that

∥aa′ − bb′∥ = ∥(a− b)(a− b)′ + (a− b)b′ + b(a− b)′∥

≤ 2 · ∥a− b∥+ 2 · ∥b∥ · ∥a− b∥

and applying this to (2.16) leads to

(2.16) ≤2 · (1 + ∥FqK(−t,−t(W − g(X)))∥)

· ∥FqK(−t,−t(W − ˆ︁g(X))−FqK(−t,−t(W − g(X))∥

≤2 · (1 + ∥FqK(−t,−t(W − g(X)))∥) · ∥DFqK(ξ)∥ · ∥ˆ︁g(X)− g(X)∥,

which implies that

∥ ˜︁Q−Q∥ ≲
√
K ·K ·Op(n

−2φ)
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and thus,

∥ ˆ︁Q−Q∥ = Op

(︄√︃
Kτ−1

K log(K)

n

)︄
+Op

(︃
K3/2

n2φ

)︃
.

The difference to the proof of Theorem 2.1 is only in checking terms I, II and III.

By applying Lemma 2.4 (i), it holds that

III = Op(τ
−2
K

K2

n2φ
)

and further from the rate of ∥ ˆ︁Q − Q∥ above and the rate restriction stated in the

Corollary that

I = op(τ
−2
K

K2

n2φ
).

From III and I it is apparent that II is asymptotically negligible, which leads to the

stated result.

Proof of Lemma 2.2. For any single (honest) random forest predictor ˆ︁Πdm,k(x)

Theorem 1 of Wager and Athey (2018) establishes its asymptotic normality under

the assumptions stated in the Theorem itself. For the proof of Lemma 2.2 it suf-

fices to adapt their steps to the case qK(b)′Q−1(ˆ︁Πdm,1(x), . . . , ˆ︁Πdm,K(x). To simplify

notation for the remainder of the proof, qK = qK(b) and ˆ︁Πdm,k = ˆ︁Πdm,k(x). The

proof proceeds treating ˆ︁Πdm,k as a pure forest estimator. Applying the integration

to obtain the true ˆ︁Πdm,k of (2.11) does not change the derivations, as integration is a

linear, monotonic operator and the theory in Wager and Athey (2018) goes through.

Let
◦ˆ︁Πdm,k denote the Hajek projection of the forest predictor and under a slight

abuse of notation let
◦ˆ︁Πdm = (

◦ˆ︁Πdm,1, . . . ,
◦ˆ︁Πdm,K)

′. In broad steps the proof of Wager

and Athey (2018) proceeds by checking that for a given forest predictor ˆ︁Πdm,k it

holds that

◦ˆ︁Πdm,k − E[
◦ˆ︁Πdm,k]

σdm,k

d→ N(0, 1) (2.17)

E

[︄(︃ˆ︁Πdm,k −
◦ˆ︁Πdm,k

)︃2
]︄
/σ2

dm,k → 0 (2.18)

E[ˆ︁Πdm,k]− Πdm,k

σdm,K

→ 0, (2.19)
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where (A.1) and (A.2) are shown in the proof of Theorem 8 and (A.3) in the proof

of Theorem 1 of Wager and Athey (2018). The quantity σdm,k is in fact the standard

deviation of the Hajek projection.

I follow along their steps and show that the following holds under the Assump-

tions stated in Lemma 2.2:

I :=
qKQ−1(

◦ˆ︁Πdm − E[
◦ˆ︁Πdm])

∥qKQ−1Σn∥
d→ N(0, 1)

II :=E

[︄(︃
qKQ−1

(︃ˆ︁Πdm −
◦ˆ︁Πdm

)︃)︃2
]︄
/∥qKQ−1Σn∥2 → 0

III :=
qKQ−1(E[ˆ︁Πdm]− Πdm)

∥qKQ−1Σn∥
→ 0

which taken together implies that qKQ−1(ˆ︁Πdm−Πdm)/∥qKQ−1Σn∥ is asymptotically

normal.

We need to introduce and adapt some of the notation from the proofs of Wager

and Athey (2018). Let s denote the subsample size used to construct the random

forest from single tree predictors ˆ︁T = (ˆ︁T1, . . . , ˆ︁TK), where ˆ︁Tk = ˆ︁Tk(x;Rk) is a single

tree predictor for the conditional expectation E[Tk(W−ˆ︁g(X), Y − ˆ︁m(X,W ))|X = x]

making use of the data points in the respective sample Rk.

We begin with part I. Plugging in the expression for the Hajek projection of the

random forest on page 53 of the supplemental material of Wager and Athey (2018),

we obtain the identity

qKQ−1(
◦ˆ︁Πdm − E[

◦ˆ︁Πdm]) =
s ·K
n

n/K∑︂
i=1

qKQ−1(E[ˆ︁T |Ri]− E[ˆ︁T ])
where E[ˆ︁T |Ri] = (E[ˆ︁T1|R1,i], . . . ,E[ˆ︁TK |RK,i])

′ and Rk,i is the i-th observation in

sample Rk. Further,

∥qKQ−1Σn∥ =
s ·K
n

⌜⃓⃓⎷n/K∑︂
i=1

qKQ−1V ar(ˆ︁T )Q−1qK

where V ar(ˆ︁T ) = diag(V ar(ˆ︁T1), . . . , V ar(ˆ︁TK)) and which holds from applying the

identity on the last line of page 52 and thus, we can write

I =

∑︁n/K
i=1 qKQ−1(E[ˆ︁T |Ri]− E[ˆ︁T ])√︂∑︁n/K

i=1 qKQ−1V ar(ˆ︁T )Q−1qK
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and establish the asymptotic normality of I by checking Lyapunov’s condition∑︁n/K
i=1 E[|qKQ−1(E[ˆ︁T |Ri]− E[ˆ︁T ])|2+δ](︂∑︁n/K

i=1 qKQ−1V ar(ˆ︁T )Q−1qK
)︂1+δ/2

→ 0, (2.20)

For the numerator, we have by Cauchy-Schwarz

n/K∑︂
i=1

E[|qKQ−1(E[ˆ︁T |Ri]− E[ˆ︁T ])|2+δ]

≤∥qKQ−1∥2+δ ·
K∑︂
k=1

n/K∑︂
i=1

E[|E[ˆ︁Tk|Rk,i]− E[ˆ︁Tk]|2+δ]

≤∥qKQ−1∥2+δ ·K ·
n/K∑︂
i=1

max
k

E[|E[ˆ︁Tk|Rk,i]− E[ˆ︁Tk]|2+δ],

where the last inequality is due to the last display in the proof of Theorem 8. The

denominator satisfies⎛⎝n/K∑︂
i=1

qKQ−1V ar(ˆ︁T )Q−1qK

⎞⎠1+δ/2

≥ ∥qKQ−1∥2+δ ·

⎛⎝n/K∑︂
i=1

min
k

V ar(ˆ︁Tk)

⎞⎠1+δ/2

,

which follows from the last steps of the proof on page 54. Define

k∗ := argmax
k∈K

E[|E[ˆ︁Tk|Rk,i]− E[ˆ︁Tk]|2+δ]

k := argmax
k∈K

V ar(ˆ︁Tk)

k := argmin
k∈K

V ar(ˆ︁Tk),

then following the proof of Theorem 8, one can conclude that

(2.20) ≤K ·
∑︁n/K

i=1 E[|E[ˆ︁Tk∗|Rk∗,i]− E[ˆ︁Tk∗ ]|2+δ](︂∑︁n/K
i=1 V ar(ˆ︁Tk∗)

)︂1+δ/2
·

∑︁n/K
i=1 V ar

(︂ˆ︁Tk

)︂1+δ/2

∑︁n/K
i=1 V ar

(︂ˆ︁Tk

)︂1+δ/2

≤K · rp(n/K)−δ/2

which holds by the last display in the proof of Theorem 8 in the supplemental
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material of Wager and Athey (2018) and Assumption 4 (ii), which further implies

n/K∑︂
i=1

V ar
(︂ˆ︁Tk

)︂1+δ/2

/

n/K∑︂
i=1

V ar
(︂ˆ︁Tk

)︂1+δ/2

= O(1).

Then, (2.20) tends to zero by the rate restriction stated in Lemma 2.2, which es-

tablishes asymptotic normality of I. Now, consider II. By applying Cauchy Schwarz

and the lower bound for sieve variance we obtain

II ≤ ∥qKQ−1∥2

∥qKQ−1Σn∥2
E[∥ˆ︁Πdm −

◦ˆ︁Πdm∥2]

≤ 1

mink σ2
dm,k

K∑︂
k=1

E[(ˆ︁Πdm,k −
◦ˆ︁Πdm,k)

2]

≤K · rp(n/K)−1 → 0,

which holds by the same reasoning as in the beginning of the proof of Theorem 8

in the supplement of Wager and Athey (2018) and by the rate restriction stated in

Lemma 2.2. It remains to consider III. By the same reasoning as before we obtain

III ≤ ∥E[ˆ︁Πdm]− Πdm∥
mink σdm,k

≤
√
K ·maxk E[ˆ︁Πdm,k]− Πdm,k

mink σdm,k

≲
√
K ·

(︂ n

K

)︂ 1
2
β∗

= O

(︄√︄
K

rp(n/K)−β∗/b

)︄
,

where β∗ := 1+ ϵ− b/βmin. The last inequality follows from the Proof of Theorem 1

on page 40 of the supplement of Wager and Athey (2018) and under these conditions

β∗ < 0 and b/βmin > 0. Under the rate restrictions in the Lemma the right hand-side

above converges to zero which concludes the proof.
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Proof of Theorem 2.2. The proof begins with the following decomposition

ˆ︁fB|X(b|x)− fB|X(b|x)

= ˆ︁fA|X(b− ˆ︁β(x)|x)− ˆ︁fA|X(b− β(x)|x)⏞ ⏟⏟ ⏞
I

+ ˆ︁fA|X(b− β(x)|x)− qK(b− β(x))′Q−1Πdm(x)⏞ ⏟⏟ ⏞
II

+ qK(b− β(x))′Q−1Πdm(x)− qK(b− β(x))′Q−1Π(x)⏞ ⏟⏟ ⏞
III

+ qK(b− β(x))′Q−1Π(x)− fA|X(b− β(x)|x)⏞ ⏟⏟ ⏞
IV

and proceeds by checking the individual terms separately.

For I it holds that

I ≤| ˆ︁fA|X(b− ˆ︁β(x)|x)− ˆ︁fA|X(b− β(x)|x)|

≤∥D ˆ︁fA|X(b− β(x)− (1− τ)(ˆ︁β(x)− β(x))∥ · ∥ˆ︁β(x)− β(x)∥

=op(vn(b, w)),

for some τ ∈ (0, 1) by consistency of ˆ︁fA|X and Assumption 2 (v). This is due to the

fact that ∥ˆ︁β(x) − β(x)∥ = rp(n)
−1 as ˆ︁β is calculated on a sample proportional to

n and thus, by the rate of vn(b, w) it always holds that I = op(vn(b, w)). For II, it

holds by Assumption 4 (i) that

II/vn(b, x)
d→ N(0, 1),

For III, we have from Lemma 2.4 (ii) that

III ≲P τ−1
K

√
K ·

√︁
K/n2φ

and thus,

III/vn(b, w) ≲P

τ−1
K

√
K
√︁

K/n2φ

τ−1
K

√
Krp(n/K)−1

=
K

n
= o(1)

and then III/vn(b, x) = op(1). Finally, for IV(︁
PKfA|X(b− β(x)|x)− fA|X(b− β(x)|x)

)︁
= o(vn(b, w))

by Assumption 5 (i) the approximation error is negligible compared to vn.
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For the final part of the statement it remains to show⃓⃓⃓⃓ ˆ︁vn(b, w)
vn(b, w)

− 1

⃓⃓⃓⃓
= op(1),

Let s(b, x)′ = qK(b− β(x))′Q−1 and ˆ︁s(b, x)′ = qK(b− ˆ︁β(x))′ ˆ︁Q−1, it holds that

|ˆ︁vn(b, w)− vn(b, w)| ≤
⃓⃓⃓
∥ˆ︁s(b, x)′ˆ︁Σn(x)∥ − ∥s(b, x)′Σn(x)∥

⃓⃓⃓
≤∥ˆ︁s(b, x)′ˆ︁Σn(x)− s(b, x)′Σn(x)∥

≤∥[ˆ︁s(b, x)− s(b, x)]′ˆ︁Σn(x)∥+ ∥s(b, x)′(ˆ︁Σn(x)− Σn(x))∥

≤max
k
ˆ︁σdm,k · ∥ˆ︁s(b, x)− s(b, x)∥

+max
k

|ˆ︁σdm,k − σdm,k| · ∥s(b, x)∥

by the triangle inequality and the fact that ˆ︁Σn(x),Σn(x) is a diagonal matrix. Fur-

ther,

∥ˆ︁s(b, x)− s(b, x)∥

=∥qK(b− ˆ︁β(x))′ ˆ︁Q−1 − qK(b− β(x))′Q−1∥

≤∥[qK(b− ˆ︁β(x))− qK(b− β(x))]′ ˆ︁Q−1 + qK(b− β(x))′( ˆ︁Q−1 −Q−1)∥

≤∥DqK(b− β(x)− (1− τ)(ˆ︁β(x)− β(x)))∥ · ∥ ˆ︁Q−1∥ · ∥ˆ︁β(x)− β(x)∥

+ ∥qK(· − β(x))∥ · ∥ ˆ︁Q−1 −Q−1∥

≲P

√
Kτ−1

K · rp(n)−1 +
√
K ·

√︂
Kτ−1

K log(K)/n,

Summarizing, by the properties of vn(b, x), we have⃓⃓⃓⃓ ˆ︁vn(b, w)
vn(b, w)

− 1

⃓⃓⃓⃓
≲
maxk ˆ︁σdm,k

maxk σdm,k

· maxk σdm,k

mink σdm,k

· ∥ˆ︁s(b, x)− s(b, x)∥√
Kτ−1

K

+
maxk |ˆ︁σdm,k − σdm,k|

σdm,k∗
· σdm,k∗

mink σdm,k

· ∥s(b, x)∥√
Kτ−1

K

=(1 + op(1)) ·O(1) ·Op

(︂
rp(n)

−1 +
√︁
KτK log(K)/n

)︂
+ op(1) ·O(1)

=op(1)

with the right hand side converging to zero by consistency of ˆ︁σdm,k, the fact that

maxk σdm,k/mink σdm,k = O(1) and the rate restriction in Assumption 4 (ii).
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Proof of Lemma 2.3. By definition of ˆ︁fB|X(b|x) and the last display in the proof

of Lemma 2.1, it holds that∫︂
R2

ˆ︁fB|X(b|x)fB|X(b|x)db

=

∫︂
R2

qK(b− ˆ︁β(x))′ ˆ︁Q−1ˆ︁Πdm(x)

·
[︃

1

(2π)2

∫︂
R2

|t| exp(−ib′(t, tw))ϕY |X,W (t|x,w)dtdw
]︃
db

=

∫︂
R2

qK(b− ˆ︁β(x))′ ˆ︁Q−1ˆ︁Πdm(x)

·
[︃

1

(2π)2

∫︂
R2

|t| exp[−it(y − b′(1, w))]fY |X,W (y|x,w)dydtdw
]︃
db

with the last equality following from plugging in the definition for ϕY |X,W (t|x,w).
Rearranging and using the definition of V (Y,W ) yields,∫︂

R2

ˆ︁fB|X(b|x)fB|X(b|x)db

=

∫︂
R
E[V (Y,W )′ ˆ︁Q−1ˆ︁Πdm(X)|X = x,W = w]dw,

which is the statement of the Lemma.

Lemma 2.4. Let Assumptions 2- 3 be satisfied and qK be the Hermite function

basis. The following conditions hold.

(i) If Πdm(x) = E[Tk(W − ˆ︁g(X), Y − ˆ︁m(X,W ))|X = x], it holds that

∥Πdm(x)− Π(x)∥2 = O(K2 · n−2φ).

(ii) If Πdm(x) = E[Tk(W,Y − ˆ︁m(X,W ))|X = x], then

∥Πdm(x)− Π(x)∥2 = O(K · n−2φ).

Proof of Lemma 2.4. The proof begins with case (i). By definitions made earlier,

it holds

∥Πdm(x)− Π(x)∥2

≤
K∑︂
k=1

E
[︁
|Tk(W − ˆ︁g(X), Y − ˆ︁m(X,W ))− Tk(W − g(X), Y −m(X,W ))|2 |X = x

]︁
.
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Then, by the properties of complex numbers and a mean value argument

|Tk(W − ˆ︁g(X), Y − ˆ︁m(X,W ))− Tk(W − g(X), Y −m(X,W ))|2

=[Re(Tk(W − ˆ︁g(X), Y − ˆ︁m(X,W )))− Re(Tk(W − g(X), Y −m(X,W )))]2

+ [Im(Tk(W − ˆ︁g(X), Y − ˆ︁m(X,W )))− Im(Tk(W − g(X), Y −m(X,W )))]2

=∇Re(Tk)(ξ1)
′(ˆ︁g(X)− g(X), ˆ︁m(X,W )−m(X,W ))2

+∇Im(Tk)(ξ2)
′(ˆ︁g(X)− g(X), ˆ︁m(X,W )−m(X,W ))2

for ξj = (W,Y )−τj ·(g(X),m(X,W ))+(1−τj) ·(ˆ︁g(X), ˆ︁m(X,W )), where τj ∈ (0, 1).

Hence,

K∑︂
k=1

∥Πdm(x)− Π(x)∥2

≤
K∑︂
k=1

E
[︁
∥∇Re(Tk)(ξ1)∥2 + ∥∇Im(Tk)(ξ1)∥2|X = x

]︁
· ∥(ˆ︁g(x)− g(x),E[ˆ︁m(X,W )−m(X,W )|X = x])∥2.

Using the definition of Tk along with the eigenfunction property of Hermite functions

that

FqK(−t,−tw) =
√
2πik−1qK(−t,−tw),

we obtain

Re(Tk)(y, w) =

∫︂
R
qK(−t,−tw) · cos(π ·K

2
+ ty)dν(t),

Im(Tk)(y, w) =

∫︂
R
qK(−t,−tw) · sin(π ·K

2
+ ty)dν(t).

Let ξ1 = (ξw, ξy), then we have for the real part

∥∇Re(Tk)(ξ1)∥2 =
∂Re(Tk)(ξ1)

∂w

2

+
∂Re(Tk)(ξ1)

∂y

2

(2.21)

≤
∫︂
R

∂qK(−t,−tξw)

∂w

2

cos(
πk

2
+ tξy)

2t2dν(t)

+

∫︂
R
qK(−t,−tξw)

2 sin(
πk

2
+ tξy)

2t2dν(t)
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≤ sup
b∈R2

∂qK(b1, b2)

∂b2

2

·
∫︂
R
t2dν(t) + sup

b∈R2

qK(b1, b2)
2 ·
∫︂
R
t2dν(t)

≲K,

which is due to the fact that the distribution ν has finite second moments, the

boundedness of Hermite functions and the following property of the derivative of

Hermite functions,

∂qk(b)/∂b =

√︃
k

2
qk−1(b)−

√︃
k + 1

2
qk+1(b).

The argument is analogous for the imaginary part and summarizing

∥Πdm(x)− Π(x)∥2

≲
K∑︂
k=1

2 ·K · ∥ˆ︁g(x)− g(x),E[ˆ︁m(X,W )−m(X,W )|X = x]∥2

≲K2 ·Op(n
−2φ).

The proof for part (ii) is analogous. Here, (2.21) is only the derivative with respect

to y and it immediately follows from (2.21) that

∥∇Re(Tk)(ξ1)∥2 ≲ 1

and thus,

∥Πdm(x)− Π(x)∥2 = O(K · n−2φ),

which concludes the proof.



Chapter 3

A Simple Shape-Constrained

Estimator for

Semi(non)parametric Discrete

Choice Models

3.1 Introduction

Parametric discrete choice models like Logit and Probit are important workhorses

in applied econometrics as well as in the statistical literature on classification.

Distributional assumptions on nuisance parameters and functional form restric-

tions on structural parameters spawned the econometric literature on semiparamet-

ric discrete choice models. The main branch of this literature focuses on relaxing

distributional assumptions on unobservable error terms, while retaining the standard

linear index formulation (X ′β) of the structural part in the model setup.

In this paper, I study a class of discrete choice models, where there is a set of

L mutually exclusive choice alternatives and choice probability functions follow the

form P [dl = 1|X] = G0,l(ϕl,1(X, β0), . . . , ϕl,M(X, β0), where dl is a binary indicator

coding whether alternative l is chosen or not and any element ϕl,j(X, β0) character-

izes an ”index” of the model. The functional form ϕl of the index is considered to

be known, whereas the finite-dimensional parameter β0 is unknown. In such mul-

tiple index models, finite-dimensional parameters β0 are often the main parameter

of interest and the unknown function G0,l is considered a nuisance rendering the

model a semiparametric one. As G0,l is required for identifying partial effects or to

83
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perform predictions, I do not consider it a nuisance and henceforth adopt the term

semi(non)parametric for describing this class of models.

The model setup implies a set of L−1 moment conditions allowing identification

and estimation of the model parameters. For L > 2, the model nests the classical

multinomial choice model for which semiparametric estimation has been considered

by Lee (1995). For L = 2, we have the popular binary choice model results which

has been frequently studied e.g by Klein and Spady (1993). For the L = 2 case,

there are other more general models with more then one index (M > 1) that are

covered by the model setup, like various double-index models, which extend the

binary model to allow for heteroskedasticity [Klein and Vella (2009)], endogeneity

[Blundell and Powell (2004), Rothe (2009)] or sample selection [Klein et al. (2015),

Escanciano et al. (2016)].

The typical procedure in the semiparametric estimation of such discrete choice

models is to estimate G0,l nonparametrically and then to solve for β0 over an em-

pirical criterion function (in many cases maximum likelihood). However, these ap-

proaches generally disregard prior information on the functional form of G0,l. In

any case, the choice model setup implies by definition 0 ≤ G0,l ≤ 1 uniformly and,

depending on the underlying choice model, G0,l is monotone increasing in some of

its indices. For the extended binary model case (L = 2, M > 1), G0,l is monotone in

the first index which determines the mean response, however, not necessarily in the

second index, which is required to control for deviations from the full independence

assumption of regressors and unobservable error terms. For the multinomial choice

model, G0,l is monotone increasing in all indices, provided we assume the underlying

choice model is the popular random utility model with full independence between

regressors and errors, see e.g. Train (2009). Yet, also many other stochastic choice

models usually impose monotonicity in some of the indices, see e.g. Breitmoser

(2018) for different stochastic choice models other than random utility.

This work proposes a computationally simple estimator for both parameters G0,l

and β0, imposing shape constraints in the form of boundedness and monotonicity

on G0,l. The estimation follows a sieve GLS approach and shape constraints are

imposed by considering a constrained I-Spline and B-Spline tensor sieve space. I-

Spline basis functions have the same form as cumulative distribution functions and

are therefore natural candidates for approximating the unknown G0,l. Though these

functions have been suggested in the statistical literature, there appears to be no

econometric work making use of these basis functions yet. This work introduces how

to incorporate these functions in a sieve estimation framework and presents results

on approximation properties and sieve complexity. Imposing both boundedness
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and monotonicity constraints has also an effect on the asymptotic properties of the

estimator. It can be shown that imposing the full set of shape constraints allows for

a smaller bound to the L2-complexity of the sieve space compared to the standard

unconstrained sieve case. This affects the convergence rate of the estimator in a

weak ”Fisher-like” norm that was originally introduced by Ai and Chen (2003).

There, it has been established that a sufficiently fast convergence rate in this weak

norm is required to obtain asymptotic normality of the estimates for β0. For the

weak norm the effects of imposing our set of shape constraints are comparable to

a dimension-reduction on the functions G0,l as the convergence rate only hinges on

the dimensionality of the non-monotonic arguments of G0,l. In the case where G0,l

is monotonically increasing in each of its arguments, like in the binary choice or a

random utility multinomial choice model, the convergence rate in the weak norm can

even reach the parametric rate of
√
n provided the number of choices is sufficiently

limited.

Imposing shape-constraints speeds up the optimal convergence rate in the weak

norm and thereby weakens convergence rate restrictions on the sieve estimator in

the weak norm that are generally required to obtain asymptotic normality of the

estimate of β0 or other smooth functionals of the parameter set. These results are

novel in the context of semiparametric discrete choice models, but relate to results

from the econometric literature that also show how imposing shape constraints af-

fects the convergence rate in some weak norm, see Chetverikov and Wilhelm (2017)

and establishes how shape constraints can have an effect on semiparametric esti-

mators apart from mere improvements in finite samples. The resulting estimator

is computationally attractive, as imposing the shape constraints results in a con-

venient quadratic programming problem. The estimator is thus easy to implement

and computationally cheap. A Monte Carlo simulation study reveals a benefit from

imposing shape constraints in finite samples and in comparison to a benchmark

estimator from the semiparametric discrete choice literature.

Literature This work relates to the literature on semiparametric discrete choice

models, where main attention has been given to the binary choice case and a quite

extensive list of different estimators has accumulated to this day. Prominent exam-

ples are the maximum-score and smoothed maximum score estimators of Manski

(1985) and Horowitz (1992), the single index estimators by (Ichimura, 1993) and

Klein and Spady (1993), as well as the special regressor approach of Lewbel (2014).

In comparison, the case of multiple and ordered choices has been much less ex-

plored. Maximum score estimators for the general multiple case have beeen studied
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by Manski (1975), Fox (2007) and Yan (2014). The approach of Lewbel (2000)

is also applicable to the multinomial case. General semiparametric multiple index

models have been analyzed in Ichimura and Lee (1991) and Lee (1995).

Further, this paper relates to the statistical literature on shape-constrained es-

timation. A review on the role of shape constraints in econometrics is provided by

Matzkin (1994) and Chetverikov et al. (2018). See also Horowitz and Lee (2017),

Blundell et al. (2017), Freyberger and Reeves (2019), Compiani (2021) and the refer-

ences therein for nonparametric estimation by directly imposing shape restrictions.

Breunig and Chen (2023) provide a data-driven methods to conduct optimal test-

ing of shape constraints. Estimation under shape constraints is discussed in Chen

(2007), where various shape-preserving sieve spaces are presented. However, none

of the sieve spaces presented there imposes the set of shape constraints required in

this application, and I-Spline basis functions are not part of the discussion either.

Additionally, many of the shape-preserving sieves, like cardinal B-Spline wavelet

sieves, may be hard to implement practically and have not been applied in practical

economic applications yet.

There is a large literature on nonparametric estimation under monotonicity con-

straints. For a review see the section in Chetverikov and Wilhelm (2017) and e.g.

Delecroix and Thomas-Agnan (2000). The case of semiparametric estimation has

received much less attention, see e.g. Wu and Sickles (2018). Mammen (1991)

shows that the convergence rate of a constrained monotonic estimator, in a strong

norm, is the same as for the unconstrained estimator. Chetverikov and Wilhelm

(2017) consider estimation of a monotonic regression function in the context of a

nonparametric IV model and show that imposing a monotonicity constraint provides

a faster convergence rate in a weaker, truncated L2-norm. Further, they find that

imposing monotonicity is most beneficial in terms of a non-asymptotic error bound

if the function has flat parts, which is the case in our setting where the tails of the

function necessarily tend to 0 and 1, implying flatness over a possibly large region.

For the semiparametric binary choice model Banerjee et al. (2009) have considered

monotonicity constrained estimation of a baseline choice probability function and

how to perform inference on structural parameters without the need to estimate

nuisance parameters.

This paper is organized as follows. Section 3.2 introduces the model framework

and gives examples for discrete choice models from the literature that fit into the

framework. Section 3.3 discusses identification of parameters and outlines the es-

timation strategy. Therein, subsection 3.3.2 provides an overview of I-Spline basis
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functions and their usage for approximating bounded, monotonic functions. Section

3.4 deals with the asymptotic properties of the sieve GLS procedure. The first sub-

section presents properties of the constrained I-Spline sieve space. The subsequent

subsections derive consistency of the estimator in a strong norm, the convergence

rate in a weak norm and asymptotic normality of certain smooth functionals of the

parameter space. In section 3.5 the finite sample performance of the estimator is

analyzed in a Monte Carlo simulation study and section 3.6 concludes.

3.2 Model Framework

Given a finite set of L mutually exclusive choice alternatives, let d = (d1, . . . , dL)

be a vector of binary indicator variables, where dl = 1 if a decision-maker chooses

alternative l and dl = 0 else.

In the most general sense, I analyze shape-constrained estimation in a class of

choice models, where the choice probabilities can be expressed as a multiple-index

model characterized by the following set of moment conditions:

P [dl = 1|X] = G0,l(ϕ1,l(X, β0), . . . , ϕM,l(X, β0)), l = 1, . . . , L− 1. (3.1)

All other observable variables entering the model are summarized in X ∈ RdX . This

typically constitutes the set of exogenous regressors, but may also include auxiliary

variables such as control functions. β0 ∈ B ⊆ Rdβ is a finite dimensional coefficent

vector. Let θ0,l = (G0,l, β0) denote the entire set of parameters associated with

(3.1). The mapping ϕl,m(X, β0) : RdX × B → R is a short-hand notation for the

m-th linear index entering the l-th moment condition of the model. This notation is

chosen to clarify that observables and parameters may be different for each index and

each moment condition depending on the underlying discrete choice model. Since

choice probabilities have to sum up to one, we implicitly impose the normalization

G0,L(·) = 1−
∑︁L−1

l=1 G0,l(·) and thus the set of L− 1 conditional moment restrictions

is sufficient to characterize the model.

Note that any ϕl,m can also encompass known non-linear transformations of

observables and parameters. I do not consider the case where ϕl,m includes additional

nonparametric parameters, though the estimation strategy may be extendable to

more general types of discrete choice models. See Matzkin (1991a) and Matzkin

(1993) for nonparametric identification of the indices in discrete choice models.

Dealing with choice probabilities, it is clear that each G0,l(·) is bounded between

zero and one. Furthermore, it will often be the case that the function is monotone

increasing in some or all of its arguments. The following examples illustrate some
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of the most important models that are covered by the above model setup.

Example 3.1. Multinomial Choice Model

Consider the well known random utility model, see e.g. Train (2009).

Y ∗
il = X ′

ilβ0 + ϵil, l = 1, ..., L

Yi = arg max
l=1,...,L

X ′
ilβ0 + ϵil,

where Xil ∈ Rq denotes the vector of covariates for alternative l, the random utility

Y ∗
il for alternative l is latent, Yi is a multinomial variable indicating an individuals

observed choice and ϵil the scalar error term that is generally assumed to be fully

independent of each regressor. Let dil be the dummy variable indicating whether

individual i chooses alternative l. The following equalities hold

P (dil = 1|Xi) = P (ϵij − ϵil ≤ (Xil −Xij)
′β0, ∀j = 1, . . . , l − 1, l + 1, . . . , L|Xi)

= G0,l((Xil −Xi1)
′β0, ..., (Xil −Xil−1)

′β0, (Xil −Xil+1)
′β0,

..., (Xil −XiL)
′β0)

and imply an L − 1-index model, where the same parameter β0 enters each index,

but where covariates of each index differ across choices. Analogously, it is possible

to include covariates that do not vary across choices, but then the associated finite-

dimensional parameters need to vary across choices.

In the random utility model G0,l, is a joint cdf and thus, the function is mono-

tone increasing in every argument. Parametric multinomial choice models typically

impose the restriction ϵij ⊥ Xik for any pair (j, k) from the choice set, but this is

not required in a general semi(non)parametric model, and error terms may correlate

across choices.

Example 3.2. Binary Choice with Index Heteroskedasticity

Klein and Vella (2009) study the model

d = 1{X ′
1β0 + S(X ′

2γ0)ϵ > 0},

with S(·) : R → R+, some unknown positive scale function. Variables in X1 and

X2 can overlap, but should contain at least one continuous variable not included in

the other one. It is immediate to see that P (d = 1|X1, X2) = G0(X
′
1β,X

′
2γ). In

this case, G0 is still monotone increasing in the first, however, generally not in the

second argument.
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Example 3.3. Binary Choice with Endogeneity The following triangular model

is a special case of the models considered by Blundell and Powell (2004) and Rothe

(2009):

d = 1{X ′β0 + ϵ > 0}

Xe = Z ′π + V,

with X = (Xe, X−e) and Z = (Ze, X−e). Xe are endogenous variables in the

outcome equation in the sense that the condition Xe ⊥ ϵ is violated. Let V =

Xe−Z ′π. In some applications, the triangular model may allow to use V as a control

function to achieve identification. In these settings, the following distributional

exclusion restrictions hold

ϵ |X,Z ∼ ϵ |X, V ∼ ϵ |V,

with ∼ denoting equality in distribution. This implies

P (d = 1|X, V ) = P (−ϵ < X ′β0|X, V )

= P (−ϵ < X ′β0|V )

= G0(X
′β0, V )

= G0(X
′β0, X

e − Z ′π),

and by way of the distributional exclusion restrictions the following moment condi-

tion holds

E(d|X,Z) = G0(X
′β0, X

e − Z ′π),

which is in turn a model covered by our framework. Generally, we have only mono-

tonicity in the first argument of G0 but not in the second. Blundell and Powell

(2004) and Rothe (2009) consider the case of nonparametrically generated regres-

sors i.e E[Xe|Z] = g(Z). The latter paper is explicitly concerned with how a first

step nonparametric regression estimate of the above function affects properties of

estimators of β0. We do not consider nonparametric parameters entering the indices

of the link function or for that matter first stage estimates entering the moment

condition (so called nonparametrically generated regressors), nevertheless, relevant

aspects of our estimation strategy may be extendable to these settings.

The list of models put forward here is not exhaustive. For instance our estimation

approach can also be used in the binary model with sample selection studied by Klein



90 Shape-Constraints in Discrete Choice Models

et al. (2015). Here, it can be used for estimating the probability function P (d =

1|δ = 1, ϕ1, ϕ2), where δ is the selection indicator and ϕ’s are some linear indices.

The structural choice probability function (P (d = 1|ϕ1, ϕ2), so not conditional on

selection δ) can then be recovered using identification at infinity arguments, see Klein

et al. (2015) for details. Furthermore, some of the models discussed in Escanciano

et al. (2016) fit into the model setup if the set of shape constraints we study here

does apply.

3.3 Identification and Estimation Strategy

In this section, I present a sieve GLS estimation strategy that conveniently allows

to impose shape constraints on the nonparametric components of the parameters

entering (3.1). The first subsection briefly discusses identification of the parameter

θ0 from the moment condition (3.1). The second subsection introduces so called I-

Spline basis functions and illustrates their usefulness for imposing all desired shape

constraints on the sieve space. The last two subsections then introduce the estima-

tion strategy, first, from a theoretical and second, from the point of view of practical

implementation.

3.3.1 Identification

Throughout this paper the parameter θ0 = (β0, G0,1, . . . , G0,L−1) is assumed to be

identified from the set of conditional moment restrictions E[ρ(d,X, θ0)|X] = 0,

where ρ is an L− 1 vector of moments with l-element

ρl(d,X, θ0) ≡ dl −G0,l(ϕl,1(X, β0), . . . , ϕl,M(X, β0)).

The parameter space is Θ = B ×
∏︁L−1

j=1 Gj, where the infinite-dimensional param-

eter spaces Gj are to be defined later and B is the space of the finite dimensional

parameter.

We formulate the following abstract identification condition:

Assumption 1. The parameter θ0 is uniquely identified from the conditional mo-

ment restrictions E[ρ(d,X, θ0)|X] = 0, i.e. E[ρ(d,X, θ)|X] = 0 if and only if θ = θ0.

In general, identification conditions vary across discrete choice models. Since I

summarize a class of models that fit into the multiple index model framework implied

by (3.1), identification generally needs to be considered individually, e.g. separately
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for each of the models in section 3.2. There are however general identification ar-

guments for the class of linear multiple index models in Lemma 3 of Ichimura and

Lee (1991). For sufficient conditions for identification see also the discussion in sec-

tion 2.3.1 of Horowitz (1998). Identification conditions typically include that every

linear index ϕl,m(X, β0) contains a continuous explanatory variable with nonzero co-

efficient, which is not contained in any other index ϕl,k(X, β0), k ̸= m. This non-zero

coefficient is normalized to one. Further, each true choice probability function G0,l(·)
needs to be differentiable in each argument and derivatives are not allowed to be

almost surely linearly dependent with the constant function 1. Further, the matrix

of regressors X is assumed to have full rank to rule cases of perfect multicollinearity.

3.3.2 Estimation under monotonicity and boundedness con-

straints

Shape constrained estimation has been substantively studied in the nonparamet-

ric estimation literature. The case of monotonicity constrained estimation has re-

ceived much attention, see the isotonic regression literature like Mammen (1991) in

statistics, and also recent contributions from the econometrics literature, such as

Horowitz and Lee (2017) and Chetverikov and Wilhelm (2017). Typically, mono-

tonicity constrained estimation proceeds by introducing a set of linear constraints

on the derivative of the estimated function over a finite grid of observations. Asymp-

totic theory requires the grid to grow finer with increasing sample size. See Horowitz

and Lee (2017) or also Beresteanu (2004). An alternative is to rearrange the function

estimate ex-post to enforce monotonicity, like in Chernozhukov et al. (2009).

Positivity constrained estimation has received less attention, although the ap-

plications, such as density estimation, are straightforward. In this case, specific

transformations are employed before the estimation to ensure positivity of the esti-

mates. In the context of sieve estimation, Chen (2007) discusses shape-preserving

sieve spaces. Here, examples are given how to impose monotonicity by using mono-

tonic spline wavelet sieves. There are, however, no applications of such a procedure

in the applied literature probably due to the complexity of wavelet basis functions.

In the following, I present a computationally simple way to impose three shape

constraints, i.e. monotonicity, positivity and boundedness from above by one, in a

single estimation step. The procedure does not rely on any finite dimensional grid

on which we enforce the constraints and thus, do not need the additional asymptotic

theory on the grid size as in Horowitz and Lee (2017).

The approach makes use of so called I-Spline basis functions which were put

forward by Curry and Schoenberg (1966) and Ramsay (1988). I-Splines did thusfar
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not appear in econometric contexts but have been applied in the statistics literature

to e.g. estimate bivariate distribution functions, see Wu and Zhang (2012).

We begin by defining M- and I-Spline basis functions and their properties:

Definition 3.1. The following definitions are taken from Wu and Zhang (2012),

which built up on Ramsay (1988). Consider a knot sequence t = (t1, . . . , tn+k) on

the compact, real interval [U,L]:

U = t1 = · · · = tk

tn+1 = · · · = tn+k = L,

ti < ti+k, ∀i.

Given the knot sequence t the i-th M-Spline basis function of order k is defined by

the following recursion:

For l = 1:

Mi(x|1, t) =

⎧⎨⎩ 1
ti+1−ti

, if ti ≤ x ≤ ti+1

0 else.

For l > 1:

Mi(x|l, t) =
l[(x− ti)Mi(x|l − 1, t) + (ti+k − x)Mi+1(x|l − 1, t)]

(l − 1)(ti+l − ti)
.

M-Spline basis functions have the same properties as probability density functions

and thus, are always non-negative and integrate to one.

I-Spline basis functions are then defined as:

Ii(x|l, t) =
∫︂ x

L

Mi(u|l, t)du.

Since I-splines are integrated M-Splines, they share properties of cumulative distri-

bution functions. In particular, they are monotone increasing and bounded between

zero and one and thus, natural candidates for approximating monotone choice prob-

ability functions.

For expositional purpose, assume there is i.i.d data (Yi, Xi) with Xi ∈ X d and X
some compact interval on R. Consider a standard nonparametric mean regression
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model

Y = g(X) + U, E[U | X] = 0, (3.2)

where g(·) is known to be monotone increasing and bounded between zero and one.

We first consider the univariate case d = 1 and use the short hand notation I li(x) ≡
Ii(x|l, t). Since I-Spline basis functions satisfy all our desired shape constraints,

it is intuitive to approximate g(·) with a weighted sum of I-Spline basis functions.

By constraining the weights to be positive and to sum up to at most one, it can be

ensured that the fitted object obeys all shape constraints. The following constrained

series estimator for g(·) can be formulated

min
π

N∑︂
i=1

(yi −
K∑︂
j=1

I lj(xi)πj)
2 s.t. ∀j πj ≥ 0,

K∑︂
j=1

πj ≤ 1. (3.3)

Abstracting for now from the properties of such an estimator, note that it is a

computationally cheap way to impose the shape constraints since this is a quadratic

programming problem, which can be solved very fast by standard software routines.

Further, note that with estimates of πj, we immediately have estimates for the

derivative of the estimated function, making use of the link between I- and M-Spline

functions shown earlier.

Furthermore, there is a link between I- and B-Spline basis functions that allows

to view the constrained series estimator over an I-Spline basis as constrained series

estimator with B-Spline basis functions. As pointed out by Wu and Zhang (2012),

any I-Spline basis function of order l can be expressed as sum of B-Spline basis

functions of order l + 1. Specifically,

I li(x) =
K∑︂

m=i

Bl+1
m (x).

Thus, the following constrained least squares problems yields the same fitted func-

tion as (3.3):

min
α

N∑︂
i=1

(yi −
K∑︂
j=1

Bl+1
j (xi)

′αj)
2 s.t. 0 ≤ α1 ≤ · · · ≤ aK ≤ 1. (3.4)

Consequently, we can thus express any constrained series estimator with I-Spline

basis functions as constrained series estimator with B-Spline basis functions under

a different set of constraints. Theoretical properties of the latter are very well



94 Shape-Constraints in Discrete Choice Models

understood and as presented in section 3.4, approximation properties of B-Spline

sieves carry over to I-Spline sieves. In subsection 3.3.3, we see that in the practical

setting of this estimation problem it is more convenient to enforce the coefficient

constraints on I-Spline sieves compared to the analogous B-Spline sieve formulation.

In the B-Spline case, the optimization problem in (3.4) is no quadratic programming

problem and thus, more difficult to compute.

To estimate general multivariate functions, which are monotone increasing in

each argument, it is straightforward to use the tensor product of I-Spline basis

functions with above constraints on coefficients, see e.g. Chen (2007) for the use of

tensor product sieve spaces for the estimation of multivariate functions.

This exposition ends by showing how to approximate a bivariate function g(x, z)

that is bounded between zero and one, but only monotonically increasing in its first

argument by using basis functions obtained from a tensor product of I- and B-Spline

basis functions. I choose I-Spline functions over the support of x and B-Splines over

z. Then solving

min
π

N∑︂
i=1

(yi −
K1∑︂
j=1

K2∑︂
k=1

I lj(xi)B
l+1
k (z)πjk)

2 s.t. ∀j, k πj,k ≥ 0,

K1∑︂
j=1

K2∑︂
k=1

πj,k ≤ 1

(3.5)

yields a fitted function ˆ︁g(x, z) =∑︁K1

j=1

∑︁K2

k=1 I
l
j(xi)B

l+1
k (z)ˆ︁πjk that satisfies the shape

constraints of g(x, z). Since all coefficients are positive and sum to at most one and

B-Splines are bounded between zero and one, it is clear that the fitted ˆ︁g(x, y) is

between zero and one. Considering the derivative of ˆ︁g(x, y) with respect to the first

argument, we can see that the function again is monotone in x by positivity of B-

Splines. Taking the derivative with respect to y, we see that the sign is determined

by the derivatives of the B-Spline basis functions which are left unrestricted.

The above problem can again be formulated as constrained series estimation with

B-Spline basis. In particular, solving

min
α

N∑︂
i=1

(yi −
K1∑︂
j=1

K2∑︂
k=1

Bl+1
j (xi)B

l+1
k (z)αjk)

2 s.t. ∀j, k 0 ≤ αj,k ≤ 1, (3.6)

αj+1,k − αj,k ≥ 0

provides us with the same minimizer as (3.5).

In the following subsection, I formulate a sieve GLS estimator with an I-Spline

or mixed I-spline/ B-Spline tensor sieve, where shape constraints can be respected
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by imposing linear constraints on the sieve coefficients. The GLS criterion, allows

to implement the estimator as a stepwise (so called profile sieve) procedure, which

makes use of the computational appeal of the constrained series estimation step

introduced in (3.3) and (3.5). This is in contrast to more natural candidate criterion

functions such as sieve maximum likelihood.

3.3.3 Sieve GLS Estimation

We propose the following sieve GLS estimator of θ0:

ˆ︁θ = arg min
θ∈Θc

K

N∑︂
i=1

ρ(di, Xi, θ)
′ Σ(X)−1ρ(di, Xi, θ) (3.7)

with sieve space Θc
K = B ×

∏︁L
j=1 Gc

K,j and generalized residuals

ρ(di, Xi, θ) = (ρ1(di, Xi, θ), . . . , ρL−1(di, Xi, θ)),

ρl(di, Xi, θ) = dil −Gl(ϕl,1(Xi, β), . . . , ϕl,M(Xi, β)),

m(Xi, θ) = E[ρ(di, Xi, θ)|Xi],

where for now Σ(X) is a positive-definite weighting matrix, which is considered to

be known. Further, the following short-hand notation for the indices is applied

ϕ = (ϕ1, . . . , ϕM) with ϕj = ϕj(X, β). Here, the dependency of ϕ on l is implicitly

suppressed, i.e. the fact that any index-function may be specific to the moment

condition (or rather choice probability function) at hand, as it is not relevant for

the formulation of sieve spaces.

It remains to characterize the shape constrained sieve space Θc
K . Typically in

the sieve estimation literature, G0 is assumed to be an element of a smoothness

class Gu such as a Sobolev or Hölder space. Then an appropriate sieve space Gu
K

of dimension K is determined, which can approximate elements of Gu well. The

most convenient choices are finite-dimensional linear sieves consising of polynomial

or spline basis functions.

In this setting, we have additional knowledge on the shape of G0, atop of mere

smoothness properties. G0 is bounded between zero and one and monotonically

increasing in some of its arguments. Thus, we know that G0 belongs to a space

Gc ⊆ Gu. This a priori information on the shape of G0 can be imposed on every

sieve space, so we consider a constrained sieve Gc
K ⊆ Gu

K . Here, an unconstrained

sieve is a standard B-Spline sieve, whereas the constrained sieve is a B-Spline sieve

with constraints on the sieve coefficients or by equivalence a (mixed) I-Spline sieve



96 Shape-Constraints in Discrete Choice Models

with constraints.

In particular, we define

Gc = {G ∈ Gu : 0 ≤ G ≤ 1, DαG ≥ 0 ∀α ∈ M},

where Gu is a smoothness class that will be further specified in the next section

and also the differential operator Dα is introduced there. The set M indicates the

arguments of the function G on which it is monotonically increasing. Specifically

define,

M = {α ∈ {0, 1}M : [α] = 1, α(i) = 1

iff G is non-decreasing in its i-th argument}.

The shape constrained sieve space is then

Gc
K = {G : G =

K∑︂
j=1

pj(ϕ)πj, ϕ = (ϕ1, . . . , ϕM), ∀j πj ≥ 0,
K∑︂
j=1

πj ≤ 1},

where the vector of basis functions p is the tensor product of I-Spline basis func-

tions on those elements of ϕ where the function is monotonic and of B-Spline basis

functions for the remaining arguments. Without loss of generality assume that the

first m arguments of the function are supposed to be monotonic i.e.

K∑︂
j=1

pj(ϕ)πj =

K1∑︂
j1=1

· · ·
KM∑︂
jM=1

I lj1(ϕ1) . . . I
l
jm(ϕm)B

l+1
jm+1

(ϕm+1) . . . B
l+1
jM

(ϕM)πj1,...,jM ,

where K =
∏︁M

l=1Kl and where we denote K(m) =
∏︁m

l=1 Kl as the sieve dimension

spanning the monotonic parts of the function and K(¬m) =
∏︁M

l=m+1Kl spanning

the remaining arguments. We introduce the constrained, univariate I-Spline sieve

of dimension K

Ic
K = {G :

K∑︂
j=1

I lj(ϕ)πj, ∀j πj ≥ 0,
K∑︂
j=1

πj ≤ 1}

and the univariate B-Spline sieve with positivity and boundedness constraints of

dimension K

Bc
K = {G :

K∑︂
j=1

Bl+1
j (ϕ)αj, 0 ≤ αj ≤ 1}.
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Then, following the definition of tensor sieve spaces of Chen (2007) p. 5573, we have

that

Gc
K = Ic

K1
⊗ · · · ⊗ Ic

K(m)
⊗ Bc

K(m)+1 ⊗ · · · ⊗ Bc
KM

=

(︄
m⨂︂
l=1

Ic
Kl

)︄
⊗

(︄
M⨂︂

l=m+1

Bc
Kl

)︄
.

For the sake of completeness, we also introduce the following constrained B-Spline

sieve space ˜︁Gc
K that is equivalent to Gc

K is denoted as

˜︁Gc
K = {G :

K1∑︂
j1=1

· · ·
KM∑︂
jM=1

Bl+1
j1

(ϕ1) . . . B
l+1
jM

(ϕM)γj1,...jM ,

0 ≤ γj1,...jM ≤ 1 and γj1,...,jl+1,...,jM ≥ γj1,...,jl,...,jM for l ≤ m}.

The following subsection discusses the implementation of the sieve GLS estimator

in a stepwise fashion.

3.3.4 Profile Sieve Procedure

For practical use, I propose the following profile sieve GLS procedure. Σ(X) is

a known weighting matrix. The optimally weighted case and the case, where an

estimate from the data ˆ︁Σ(X) is considered, is omitted for now, but can be readily

incorporated in the procedure, see Ai and Chen (2003) or section 4.2, 4.3 of Chen

(2007). Though the theoretical analysis considers joint estimation of the components

of θ as in (3.7), the implementation of the estimator I suggest here, follows an implicit

two-stage approach.

Step 1 For each β ∈ B calculate the optimal function:

˜︁G(β) = arg min
G∈Gc

K

N∑︂
i=1

ρ(di, Xi, G, β)′Σ(X)−1ρ(di, Xi, G, β). (3.8)

Step 2 Calculate the optimal β given the first stage estimates:

ˆ︁β = argmin
β∈B

N∑︂
i=1

ρ(di, Xi, ˜︁G(β), β)′Σ(X)−1ρ(di, Xi, ˜︁G(β), β). (3.9)

The optimal ( ˆ︁G, ˆ︁β) solving equation (3.7) is then ( ˜︁G(ˆ︁β), ˆ︁β).
This practical implementation rationalizes the use of a GLS procedure and of

the I-Spline formulation of sieve spaces instead of sieve maximum likelihood over



98 Shape-Constraints in Discrete Choice Models

constrained B-Spline sieves, which appears to be the most natural candidate crite-

rion. For each β in Step 1, the optimization problem is a quadratic programming

problem, which can be solved fast by standard software routines. This makes the

evaluation of the criterion function in Step 2 cheap and global search algorithms like

e.g. differential evolution can perform Step 2 effectively. By avoiding the usage of

a log-likelihood procedure, we circumvent additional numerical problems from per-

forming divisions with nonparametric estimates, which are typically corrected by

introducing some sort of trimming, see e.g. the approach of Klein and Spady (1993)

as an example for such maximum-likelihood routines.

Note, that a GLS procedure can nevertheless also provide us with semiparamet-

rically efficient estimates of β, see Chen (2007), so this feature is not exclusive to

maximum likelihood.

3.4 Asymptotic properties

First, some notation needs to be introduced to specify the smoothness class Gu

containing G0. Let Φ = Φ1 × · · · × ΦM be the cartesian product of compact,

real intervals Φ1, . . . ,ΦM . Suppose α = (α1, . . . , αM) is a M -tupel of nonnegative

integers and [α] = α1 + · · ·+ αM . Define the differential operator:

Dα =
∂[α]

∂xα1
1 . . . ∂xαM

M

such that DαG describes the α-partial derivative of G(ϕ1, . . . , ϕM).

Let η be a nonnegative integer, γ ∈ (0, 1] and p = η + γ. A function G on Φ

is called p-smooth if it is η-times continuously differentiable (G ∈ Cη(Φ)) and DαG

satisfies a Hölder condition with exponent γ for all α with [α] = η, i.e. there exists

a constant C such that |DαG(a)−DαG(b)| ≤ C∥a− b∥γ for a, b ∈ Φ.

The space of all p-smooth functions on Φ is denoted by Λp(Φ) . Define the Hölder

space with smoothness p:

Λp
∞(Φ) = {G ∈ Cη(Φ) : sup

[α]≤η

sup
ϕ∈Φ

|DαG(ϕ)| < ∞,

sup
[α]=η

sup
a,b∈Φ,a̸=b

|DαG(a)−DαG(b)|
∥a− b∥γ

< ∞}

Analogously it can be defined as

Λp
∞(Φ) = {G ∈ Cη(Φ) : ∥G∥η,γ < ∞}
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with Hölder norm

∥G∥η,γ = sup
[α]≤η

sup
ϕ∈Φ

|DαG(ϕ)|+ sup
[α]=m

sup
a,b∈Φ,a̸=b

|DαG(a)−DαG(b)|
∥a− b∥γ

.

Hölder spaces can be well approximated by various linear sieve spaces, in partic-

ular, Λp
∞(Φ) on a bounded domain is compact with respect to the sup-norm, see

Freyberger and Masten (2015), also for a much more general discussion on the com-

pactness of prominent smoothness classes based on norm bounds.

In the following, define Gu = Λp
∞(Φ) as the relevant smoothness class. The

parameter space Gc and the corresponding sieve space Gc
K are defined as in the

preceding section. Consider an arbitrary space of function F , where each f ∈ F is

f : ϕ ↦→ f(ϕ). The envelope function is defined as any function such that for any

f ∈ F and ϕ in the support, |f(ϕ)| ≤ F (ϕ). Let N[ ] denote the bracketing number

of the space F , which is the minimum number of δ-brackets required to cover F ,

see e.g. Chen (2007) p. 5594 for more details. Next, we present some properties of

the constrained sieve space Θc
K = Gc

K × B. To this end, let ∥g∥∞ = supϕ∈Φ |g(ϕ)|
denote the sup-norm of some function.

Assumption 2. (i) For any j = 1, . . . ,M , the support Φj is a compact interval on

R (ii) G0,l ∈ Λp
∞(Φ) for any l = 1, . . . , L−1 and (iii) the spline order satisfies l ≥ η.

Lemma 3.1. Under Assumption 2, it holds that (i) Θc
k ⊆ Θc

k+1 ⊆ Θc for any

k = 1, 2, . . . and (ii) for each θ ∈ Θc, there exists ΠKθ ∈ Θc
K such that ∥ΠKθ−θ∥∞ =

O(K−p/d) (iii) if K(¬m) ≥ 1, then N[ ](ϵ,Θ
c
K , L

r(Φ)) = O(K(¬m)), if K(¬m) = 0, then

N[ ](ϵ,Θ
c
K , L

r(Φ)) = O(1) for r ≥ 1.

Properties (i) and (ii) are standard approximating properties of a sieve space

that are required to establish consistency of any sieve estimator, see e.g. Condition

3.2 in Chen (2007). The approximating property (ii) for I-Spline sieves follows from

arguments in Wu and Zhang (2012). Condition (iii) shows that the complexity of

the sieve space, measured by the bracketing number, only increases in the number

of basis functions that span the non-monotonic parts of the function. In the special

case where the function is univariate and non-decreasing, the complexity of the sieve

space is constant and does not increase in the number of basis functions. An example

for that is the case of the binary choice model. This bound is an important property

that impacts the asymptotic results following in this section. We will see that this

property results in a faster convergence rate in a certain weak norm compared to

the case, where no shape constraints are imposed on the sieve space.

The assumptions required for Lemma 3.1 are standard. The support of any index

needs to be compact, which is the case for any linear index if the support of X and
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the parameter space B are compact. Dealing with indices on a non-compact domain

(e.g. via covariates supported on the entire real line) is possible by incorporating a

known strictly monotonic transformation into the formulation of any ϕ that maps

from the real line into a compact set such as e.g. the arctan function. For the mere

result of Lemma 2, part (ii) of Assumption 2 can be weakened as we only need that

the function is η-times continuously differentiable.

There are alternative shape-preserving sieves that are appropriate for approx-

imating nondecreasing bounded functions. Examples are the cardinal B-Spline

wavelet sieves with nondecreasing coefficient sequence in section 2.3.5 in Chen

(2007). However, these sieves are fairly harder to implement and apply in prac-

tice and we cannot easily impose the specific boundedness constraints, which we

require in the discrete choice context.

For deriving the asymptotic properties of the estimates I proceed with the fol-

lowing steps in the next subsections. First, we prove consistency in a strong norm,

i.e. ∥ˆ︁θ− θ0∥c = ∥ˆ︁β − β0∥E +
∑︁L−1

l=1 ∥ ˆ︁Gl −Gl0∥∞ = op(1). Building on this result, we

can derive the convergence rate in a certain ”Fisher-like” weak norm in the second

subsection. Here, the effect of imposing the shape constraints materializes in the

asymptotic analysis. The next subsection shows that under a fast enough conver-

gence rate in the weak norm, we can obtain asymptotic normality of the estimatedˆ︁β and other smooth functionals of the parameter ˆ︁θ such as average partial effects.

For this, we can rely on established theories of Shen (1997), Ai and Chen (2003) or

Chen (2007).

3.4.1 Consistency

We derive consistency of the estimator in the norm

∥ˆ︁θ − θ0∥c = ∥ˆ︁β − β0∥E +
L−1∑︂
l=1

∥ ˆ︁Gl −G0,l∥∞,

with ∥·∥E denoting the euclidean distance of the finite-dimensional parameter vector

and ∥Gl − G0,l∥∞ = supx∈X supβ∈B |Gl(ϕl(x, β)) − G0,l(ϕl(x, β))| for any l. The

following set of assumptions is imposed to obtain consistency of the estimator.

Assumption 3. placeholder

(i) The data Zi = (di, Xi) is i.i.d. across i = 1, . . . , N .

(ii) Any weighting matrix Σ(X) is real and its largest and smallest eigenvalues are

bounded and bounded away from zero, uniformly for all X.
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(iii) for any l = 1, . . . , L − 1 and G ∈ Θc
K, supx∈X supβ∈B∥∇Gl(ϕ(X, β))∥E is

bounded and bounded away from zero and ∥ϕl(X, β1)−ϕl(X, β2)∥E ≤ U(X)∥β1−β2∥E
for some random variable U(X) with E[U(X)] < ∞.

(iv) K → ∞ and K = o(n).

Theorem 3.1. Under Assumptions 1-3, it holds that ∥ˆ︁θ − θ0∥c = op(1).

Assumptions (i), (ii), (iv), along with Assumption 2 and the results in Lemma 3.1

(i), (ii) are standard assumptions for obtaining consistency of sieve M- or minimum

distance estimators, see e.g. Remark 3.3 and 3.4 in Chen (2007). Part (iii) of

Assumption 3 implies that the criterion function is Lipschitz over Θc
K with respect

to the metric ∥·∥c, which is a condition that is also standard, see Condition 3.5M

(ii) and 3.5MD (ii) in Chen (2007). The latter part of the assumption depends on

the underlying discrete choice model and is satisfied in the linear index case, when

regressors have finite expectation. ϕl may include a known nonlinear transformation

if it is also Lipschitz. The rate requirement in (iv) cannot be relaxed in our context.

This is due to the fact that the result on the bracketing entropy of the constrained

sieve space Θc
K in Lemma 3.1 (iii) does not generalize to the case of the consistency

metric ∥·∥c or other metrics that are uniform over the finite dimensional parameter

space B.

3.4.2 Convergence Rate in a Weak Metric

In order to derive asymptotic normality of the parametric components of θ, it is

typically required that the convergence rate of θ is sufficiently fast in some metric

that is locally equivalent to the GLS criterion function. This metric may be weaker

than the consistency metric ∥·∥c. Ai and Chen (2003) have established that this

is the case if the convergence rate in some so called Fisher-like norm is faster than

n−1/4. The Fisher-like norm being weaker than the usual L2 and sup-norms.

I follow their approach and derive the convergence rate in the Fisher-like norm.

The matter is simplified by the fact that we do not have endogenous variables enter-

ing the difference of moment conditions ρ(Z, θ1) − ρ(Z, θ2) in our setting and thus

there is no need for first stage estimates of conditional expectation functions. There-

fore, we are able to rely on general convergence rate results for sieve M-estimators.

However, when deriving the rate, we can make use of the result on constrained sieve

space complexity in Lemma 3.1. Imposing shape constraints reduces the complexity

of the underlying sieve space and if the discrete choice model exhibits monotonically

increasing choice probability functions, this will speed up the rate of convergence in

the Fisher-like norm.
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To begin the exposition, we first need to introduce some necessary terminology.

This is standard and analogous to Ai and Chen (2003) or Chen (2007). Assume

that for any θ1, θ2 ∈ Θ there exists a continuous path θ(τ) = θ1 + τ(θ2 − θ1) with

θ(0) = θ1 and θ(1) = θ2 such that {θ(τ) : τ ∈ [0, 1]} ⊂ Θ.

The directional derivative in direction [θ2 − θ1] evaluated at θ1 is defined as

dρ(d,X, θ1)

dθ
[θ2 − θ1] ≡

dρ(d,X, θ1 + τ(θ2 − θ1)

dτ

⃓⃓⃓
τ=0

and analogously

dρ(d,X, θ̃)

dθ
[θ2 − θ1] ≡

dρ(d,X, θ1 + τ(θ2 − θ1)

dτ

⃓⃓⃓
τ=τ̃

where θ̃ = θ(τ̃) i.e. the directional derivative is evaluated at some θ̃ between θ1 and

θ2.

The following norm will be from now on referred to as (weighted) Fisher-like

norm:

∥θ − θ0∥ :=

⌜⃓⃓⎷E

[︄⃓⃓⃓⃓⃓⃓⃓⃓
dρ(d,X, θ0)

dθ
[θ − θ0]

⃓⃓⃓⃓⃓⃓⃓⃓2
Σ(X)−1

]︄
,

where we make use of the short-hand notation⃓⃓⃓⃓⃓⃓⃓⃓
dρ(d,X, θ0)

dθ
[θ − θ0]

⃓⃓⃓⃓⃓⃓⃓⃓2
Σ(X)−1

=
dρ(d,X, θ0)

dθ
[θ − θ0]

′Σ(X)−1dρ(d,X, θ0)

dθ
[θ − θ0].

Due to the fact that the difference ρ(d,X, θ0) − ρ(d,X, θ) does not depend on the

endogenous variable d we likewise have

∥θ − θ0∥ =

⌜⃓⃓⎷E

[︄⃓⃓⃓⃓⃓⃓⃓⃓
dm(X, θ0)

dθ
[θ − θ0]

⃓⃓⃓⃓⃓⃓⃓⃓2
Σ(X)−1

]︄
,

which will be the preferred notation going onwards.

Furthermore, the following quantities that reflect the least-favorable directions

of the semiparametric estimation problem need to be introduced. Let V denote the

closure of the linear span of the space Θc−θ0 with respect to ∥·∥ where V = Rdβ×Gc
.
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Let

Dwj
(X) =

dm(X, β, h0(·))
dβj

⃓⃓⃓
β=β0

− dm(X, β0, h0(·) + τwj(·))
dτ

⃓⃓⃓
τ=0

=
dm(X, θ0)

dβj

− dm(X, θ0)

dh
[wj]

and Dw = (Dw1 , . . . , Dwdβ
) with w = (w1, . . . , wdβ). For any j = 1, . . . , dβ, let w

∗
j be

the argument that satisfies

inf
wj∈W

E[Dwj
(X)′Σ(X)−1Dwj

(X)]

and

E[Dw∗(X)′Σ(X)−1Dw∗(X)] =

(︃
dm(X, θ0)

dβ
− dm(X, θ0)

dh
[w∗]

)︃
with

dm(X, θ0)

dh
[w∗] =

(︃
dm(X, θ0)

dh
[w∗

1], . . . ,
dm(X, θ0)

dh
[w∗

dβ
]

)︃
.

In order to obtain the convergence rate in ∥·∥, we require the following additional

assumptions.

Assumption 4. (i) ∥∇G0,l(ϕl(X, β0))
′Jϕl

(X, β0)∥L2(X) < ∞ for any l = 1, . . . , L−1.

(ii) E[Dw∗(X)′Dw∗(X)] is finite positive definite and tr
(︂
E
[︂
dm(X,θ0)

dh
[w∗]′ dm(X,θ0)

dh
[w∗]

]︂)︂
is finite. (iii) supx∈X supβ∈B∥∇G0,l(ϕ(X, β))∥E is bounded and bounded away from

zero

Here, Jϕl
(X, β0) denotes the Jacobian of ϕl with respect to β and the operator

tr(·) the trace of a matrix. Assumption 4 are mere smoothness and regularity

conditions on the choice probability functions that are easily satisfied for the cdf-

like functions in the discrete choice setup. Condition (ii) is a standard regularity

condition in semiparametric estimation, see Condition 4.1(ii) in Chen (2007) and

will appear in the asymptotic variance-covariance matrix of ˆ︁β.
Then, the following result for the convergence rate holds.

Theorem 3.2. Under Assumptions 1-4 it follows that

∥ˆ︁θ − θ0∥ = Op

(︄
max

{︄
K−p/M ,

√︃
K(¬m)

n

}︄)︄
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The result follows from applying the general convergence rate result for sieve

M-estimators, Theorem 3.2. in Chen (2007), which itself builds on older results

like Chen and Shen (1998). Imposing the proposed set of shape constraints reduces

the asymptotic variance term from K to K(¬m). In order to obtain consistency

in the first place, we also require by Assumption 3 (iv) that K(m) = o(n). Now,

we can choose K = K
M/(M−m)
(¬m) . Then, balancing bias and variance, we obtain

∥θ−θ0∥ = Op(n
−p/(2p+M−m)) as the optimal convergence rate. Therefore, the optimal

rate in the Fisher-like norm depends only on the dimension of the non-monotonic

parts of the function. If the function has only monotonically increasing arguments,

the asymptotic variance part is of order n−1/2 and the optimal convergence rate may

be the parametric rate. By the rate restrictions given in Assumption 3 (iv) however

the parametric rate will only hold if M < 2p. In a multinomial choice model with

L choices, M = L− 1 and e.g. if ⌊p⌋ = 2, then the parametric rate is only possible

if L ≤ 5.

Generally, shape-constrained estimation does not improve the convergence in rate

in strong norms like sup or L2 norms, see e.g. Mammen (1991) or Chetverikov et al.

(2018). However, for a weak norm like the Fisher-like norm this may be possible, as

illustrated in the nonparametric IV study by Chetverikov and Wilhelm (2017).

3.4.3 Asymptotic Normality of Smooth Functionals of θ

A main interest in semiparametric estimation is inference on the parametric com-

ponents of θ or other economically relevant smooth functionals of θ such as average

partial effects. Ai and Chen (2003) have established asymptotic normality of sieve

minimum distance estimates of β and generalizations to smooth functionals of θ can

be found in e.g. Chen (2007). This section begins with establishing asymptotic nor-

mality of ˆ︁β for which we can directly apply a result for sieve GLS estimators from

section 4.2.2. in Chen (2007). To this end, introduce for some λ ∈ Rdβ , ∥λ∥E = 1,

v∗β = (E[Dw∗
j
(X)′Σ(X)−1Dw∗

j
(X)])−1λ

and v∗h = −w∗v∗β and v∗ = (v∗β, v
∗
h). The following additional assumptions are

required.

Assumption 5. (i) β0 ∈ int(B) (ii) E[Dw∗
j
(X)′Σ(X)−1Dw∗

j
(X)] is positive definite

(iii) there is ΠKv
∗ ∈ Θc

K such that ∥ΠKv
∗ − v∗∥ · ∥θ − θ0∥ = o(n−1/2) (iv) Σ0(X) =

V ar[ρ(Z, θ0)] is positive definite and uniformly bounded over X (v) ρ(Z, θ) is twice

continuously pathwise differentiable with respect to θ ∈ Θc for all ∥θ − θ0∥ = o(1)

(vi) ∥ˆ︁θ − θ∥ = op(n
−1/4)
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These assumptions are analogous to those in Ai and Chen (2003) for the general

sieve minimum distance estimator. The rate restriction in (iii) is easily satisfiable

if we choose ∥ΠKv
∗ − v∗∥ = O(K−p/d), i.e. the same dimension parameter as for

our constrained sieve space. The rate (vi) is a necessary condition in Ai and Chen

(2003) (see their Theorem 3.1) and related literature on semiparametric estimation

(see the references therein) to derive asymptotic normality of ˆ︁β. By our Theorem

3.2, however, this rate is more easily obtainable if one imposes our set of shape

constraints as this will result in a generally faster rate. In many cases, like for the

standard binary choice model, these rate restrictions can even be neglected as the

rate in the Fisher-like norm is already of order
√
n. The following result can be

established.

Theorem 3.3. Under Assumptions 1-5 it holds that

√
n(ˆ︁β − β0) → N(0, V −1

1 V2V
−1
1 )

with

V1 = E[Dw∗(X)′Σ(X)−1Dw∗(X)],

V2 = E[Dw∗(X)′Σ(X)−1Σ0(X)Σ(X)−1Dw∗(X)].

Similar asymptotic normality results can be derived for other smooth functionals

of the parameter vector. In applications, it is often of interest to study the functional

f(θ) = E[∂Gl(ϕl(X, β))/∂Xj] which is the average partial effect of a change in a one-

dimensional covariate Xj given a choice model with parameters θ. The estimated

average partial effects are important objects in economic analyses and will also be of

interest in the next section on Monte Carlo simulations illustrating the finite sample

performance of the constrained sieve GLS estimator. The following results point

out that, just like β0, the average partial effects of discrete choice models under

study here, are also
√
n estimable and asymptotically normal. Under the following

assumptions, we can derive an asymptotic normality result for the average partial

effect of a discrete choice model.

Assumption 6. For each choice l, index i and covariate Xj, it holds that

(i) E[|∂ϕl,i(X, β0)/∂Xj|] < ∞,

(ii) ∥∇ϕl(X, β0)∥L2(X) < ∞,

(iii) ∥∂2G0,l(ϕl(X, β0))/∂ϕ
2
l,i∇ϕl,i(X, β0)L2(X)∥ < ∞,

(iv) |∂ϕl,i(X, β)/∂Xj − ∂ϕl,i(X, β0)/∂Xj| ≤ C1∥β − β0∥E and (v) for the directional

derivative d(∂ϕl,i(X, β0)/∂Xj)/dβ[β − β0] ≤ C2∥β − β0∥E for constants C1, C2 > 0.
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The assumptions are additional smoothness and regularity conditions, extending

to the second derivatives of G0,l and ϕl. Conditions on ϕl are directly satisfied in

the case of linear indices. Then, the following asymptotic normality statement can

be formulated.

Theorem 3.4. Under Assumptions 1-6 it holds for the average partial effect func-

tional f(θ) that

√
n(f(ˆ︁θ)− f(θ0)) → N(0, σ2

v∗f
)

with

σ2
v∗f

= V ar

(︃
dl(Z, θ0)

dθ
[v∗f ]

)︃
and where v∗f is the Riesz representer of the operator df(θ0)

dθ
[θ − θ0] satisfying

df(θ0)

dθ
[θ − θ0] = ⟨θ − θ0, v

∗
f⟩,

with ⟨·, ·⟩ the inner product induced by the Fisher-like norm ∥·∥ on V .

The above Theorem follows from applying general results of Shen (1997), Chen

and Shen (1998) and Chen (2007) and moves along the same lines as Theorem 3.3,

as long as the functional f obeys certain regularity conditions. For practical appli-

cations, a closed form of the Riesz representer v∗f , as is available for the functional

f(θ) = β, would be helpful, though, does not appear to have been derived in the

context of sieve minimum distance estimation of discrete choice models and is left

to future research.

3.5 Monte Carlo Study

In this section, I assess the finite sample performance of the constrained sieve GLS

estimator. The performance is contrasted to the one of a sieve GLS estimator that

does not make use of shape constraints. This allows to single out the effect of

shape constraints on the finite sample performance. Second, I also compare the

estimator to popular parametric and semiparametric benchmark estimators from

the literature.

First, we consider the data generating process,

d = 1{X1 +X2β1 +X3β2 + ϵ ≥ 0},
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with X1 ∼ N(0, 1), X2 ∼ U [−1, 1] and X3 ∼ Poi(2), which is censored at the value

5, making it a censored poisson distribution. The error term ϵ follows a generelized

extreme value (GEV) type I- distribution. Thus, the DGP specifies the popular

binary Logit model. The parameter values are β1 = 1.25 and β2 = −1.8.

First, we compare the performance of the shape constrained sieve GLS estimator

outlined in section 3.3.4 to an analogous sieve GLS procedure that does not make

use of shape constraints. In particular, the constrained sieve GLS makes use of a

constrained I-Spline sieve, whereas the latter uses a standard B-Spline sieve without

any coefficient constraints.

For the experiments, I consider 1000 Monte Carlo replications and vary sample

size and sieve dimension. The I-Spline basis functions are of degree 2 and by the

analogy outlined in section 3.3.3, the B-Spline functions are of degree 3. Throughout

this section only the identity weighted case is considered.

Table 3.1 shows the results of both estimators for the finite-dimensional param-

eter vector β and the average partial effect, which are both estimable at
√
n-rate.

The average partial effect is simple to compute, as by the relation of I- and M-Spline

basis functions outlined in section 3.3.2, estimates of the sieve coefficients are suf-

ficient to provide an estimate of the first derivative of the function. For N = 500,

there are sizeable gains from imposing shape constraints. The MSE of the con-

strained estimates are more then half the size of the unconstrained estimates. The

average bias is an order of magnitude lower. If we increase sample size to 1000, the

results of both approaches become more similar. Yet, both in terms of bias and

MSE, the shape constrained procedure still outperforms the unconstrained one. We

can expect that for smaller sample sizes the gains from leveraging shape constraints

are even more sizeable, whereas for larger sample sizes the differences vanish.

In Table 3.2, we assess the performance of structural quantities that hinge on

the estimation of the functional component, i.e. the cdf of the logistic distribution.

For this we take two coordinates namely (0, 1,−2) and (−1, 3,−3) and estimate the

two predictions and partial effects with respect to X2 at both points. The correct

values are given in the table.

Since the true values are quite small, both bias and MSE are small in absolute

magnitude. For N = 500 the shape constrained estimator outperforms the uncon-

strained one in terms of MSE. This is not the case for the bias in rows 1, 3 and 4,

which is supposedly due to the fact that B-Spline estimates can be negative. This

may lead to lower average biases for B-Spline estimates but in this context the aver-

age bias is not a suitable measure of comparison in rows 1,3 and 4. When focusing on
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N=500 I-Spline B-Spline

K Bias MSE Bias MSE

ˆ︁β1

4 0.004 0.170 0.106 0.317
8 0.028 0.204 0.128 0.359
12 0.052 0.228 0.146 0.426

ˆ︁β2

4 -0.020 0.164 -0.144 0.391
8 -0.049 0.212 -0.159 0.422
12 -0.091 0.262 -0.227 0.610

APE
4 0.000 0.001 -0.077 0.006
8 0.002 0.001 -0.066 0.005
12 0.002 0.001 -0.061 0.004

N=1000 I-Spline B-Spline

K Bias MSE Bias MSE

ˆ︁β1

4 -0.005 0.079 0.030 0.101
8 -0.001 0.085 0.027 0.100
12 0.019 0.093 0.035 0.116

ˆ︁β2

4 0.011 0.074 -0.030 0.103
8 -0.002 0.077 -0.040 0.095
12 -0.025 0.088 -0.044 0.113

APE
4 -0.000 0.000 -0.078 0.006
8 0.001 0.000 -0.066 0.004
12 0.001 0.000 -0.061 0.004

Table 3.1: Shape constrained vs. unconstrained estimation of
√
n-consistent func-

tionals of θ
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the MSE, we again see sizeable gains of imposing shape constraints. These gains are

most pronounced for quantities close to the boundary such as the second prediction

and partial effect. Increasing the sample size to 1000, takes away the differences be-

tween the first prediction and the first partial effect. For the second prediction and

partial effect, there are still sizeable improvements by imposing shape constraints.

So especially for high and low probabilities and partial effects, shape constrained

estimation has its merits. Finally, it remains to compare the estimates to a para-

metric and semiparametric benchmark estimator. The binary Logit is in this case

the correct parametric model to estimate β. An often applied semiparametric es-

timator for the binary model is the kernel quasi-likelihood estimator of Klein and

Spady (1993). Klein and Spady’s method uses a first stage kernel regression of the

outcome dummy on the linear index. Then β is estimated via maximum likelihood

with plug-in nonparametric estimates for the conditional probabilities. A bandwidth

parameter needs to be specified. Here, we choose a time-intensive cross-validation

procedure to specify the bandwidth. The results in Table 3.3 show that the un-

constrained sieve GLS estimator performs similar to Klein and Spady’s estimator.

The shape constrained sieve GLS estimator produces results that are somewhere in

between the correctly specified parametric estimator and unconstrained semipara-

metric estimators. For the parametric components, shape constrained estimation

can be viewed as middleground between the optimal parametric maximum likeli-

hood estimator (which may be hard to attain in practice) and typical unconstrained

semiparametric estimators.

This insight continues to hold for the caseN = 1000 presented in Table 3.4. Here,

we can also see that the unconstrained sieve GLS also outperforms Klein-Spady,

which shows that sieve GLS may generally have favorable finite sample properties

in comparison to computationally more involved kernel approaches.

3.6 Conclusion

This paper presents a novel estimator for a broad class of semi(non)parametric

discrete choice models, where choice probability functions follow a certain multiple-

index form and the model results in a set of moment conditions. The estimator

imposes shape constraints on infinite-dimensional parameters that arise in discrete

choice models, such as boundedness and monotonicity of the choice probability func-

tion. Therefore, it incorporates constrained I-Spline and B-Spline basis function into
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N=500 I-Spline B-Spline

K Bias MSE Bias MSE

Prediction: 8.7%
4 0.017 0.001 0.024 0.002
8 0.005 0.002 0.003 0.002
12 0.002 0.002 0.007 0.003

Prediction: 99.97%
4 -0.059 0.004 -0.134 0.032
8 -0.063 0.005 -0.112 0.028
12 -0.065 0.005 -0.113 0.029

Partial Eff.: 9.94%
4 -0.031 0.002 -0.024 0.003
8 0.008 0.005 -0.001 0.008
12 0.008 0.010 0.011 0.037

Partial Eff.: 0.036%
4 0.008 6.63e-04 0.005 5.99e-03
8 0.009 6.74e-04 0.008 4.50e-03
12 0.009 7.34e-04 0.007 4.00e-03

N=1000 I-Spline B-Spline

K Bias MSE Bias MSE

Prediction: 8.7%
4 0.022 0.001 0.025 0.001
8 0.002 0.001 -0.000 0.001
12 0.001 0.001 0.001 0.001

Prediction: 99.97%
4 -0.059 0.004 -0.129 0.024
8 -0.064 0.005 -0.100 0.018
12 -0.066 0.005 -0.099 0.019

Partial Eff.: 9.94%
4 -0.031 0.002 -0.027 0.002
8 0.007 0.003 -0.005 0.002
12 0.002 0.005 -0.003 0.011

Partial Eff.: 0.036%
4 0.008 3.16e-04 0.005 6.07e-03
8 0.009 3.08e-04 0.008 4.37e-03
12 0.009 3.26e-04 0.008 3.87e-03

Table 3.2: Shape constrained vs. unconstrained estimation of predictions and partial
effects

N=500, K=4 I-Spline B-Spline Logit Klein-Spady

Bias MSE Bias MSE Bias MSE Bias MSEˆ︁β1 0.004 0.170 0.106 0.317 0.007 0.095 0.008 0.278ˆ︁β2 -0.020 0.164 -0.144 0.391 -0.025 0.025 -0.089 0.981

Table 3.3: Sieve GLS vs. Logit and Klein-Spady’s Estimator with cross-validated
bandwidth
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N=1000, K=4 I-Spline B-Spline Logit Klein-Spady

Bias MSE Bias MSE Bias MSE Bias MSEˆ︁β1 -0.005 0.079 0.030 0.101 0.002 0.044 -0.023 0.136ˆ︁β2 -0.011 0.074 -0.030 0.103 -0.014 0.011 -0.011 0.481

Table 3.4: Shape constrained vs. benchmark estimation, N=1000

the well-established sieve estimation framework. Applying a sieve GLS procedure

provides joint estimates of both infinite- and finite-dimensional parameters. Impos-

ing both boundedness and monotonicity constraints results in a faster convergence

rate in a weak Fisher-like norm as opposed to the general case without shape con-

straints. This simplifies existing results on the asymptotic normality of smooth

functionals of the parameter set, as rate restrictions in the weak norm are more

easily satisfiable under shape constraints. This is a novel insight in how shape con-

straints aid in the context of semiparametric estimation apart from an effect on finite

sample properties of an estimator. Also the finite sample performance of the esti-

mator is illustrated in a series of Monte Carlo experiments. Shape-constraints are

shown to be most effective in small samples and for predictions and partial effects

in the boundary of the domain of the infinite-dimensional parameter.
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3.7 Appendix

Proof of Lemma 3.1. We begin the proof with part (i) of the Lemma. Choose

some g ∈ Gc
K with g =

∑︁K
j=1 pj(ϕ)πj. Then g ≥ 0 follows from pj ≥ 0 by the

positivity of I-Splines and B-Splines and the constraint πj ≥ 0 for every j, which is

imposed on the sieve space. Similarly by positivity of basis functions and coefficients

it follows that

K∑︂
j=1

pj(ϕ)πj ≤
K∑︂
j=1

πj

by the fact that pj ≤ 1 uniformly for I-Spline and B-Spline basis functions. Then, by

the constraint
∑︁K

j=1 πj ≤ 1, it follows that g ≤ 1. Next, taking the derivative with

respect to a monotonic argument of g, w.l.o.G. ϕm, we obtain
∑︁K

j=1
∂

∂ϕm
pj(ϕ)πj ≥ 0

by the differentiability and non-decreasing property of I-Spline functions as well as

the positivity of the other I- and B-Spline basis functions in the tensor product

and the constraints on sieve coefficients. From this, we can conclude that for any

g ∈ Gc
K , we have g ∈ Gc, see also the discussion in section 3.3.2. The last property

of (i) follows immediately from the fact that for any g ∈ Gc
K we have g ∈ Gc

K+1

since setting the additional sieve coefficient to zero does not violate the constraints

imposed on the sieve coefficients.

Next, we consider part (ii). Define ΠKg analogous to the definition of Ag in the

proof of Lemma 0.2 in Wu and Zhang (2012), see p. 4 before equation (0.3) in their

supplementary material. The proof of Lemma 0.2 can be readily extended from the

bivariate to the general multivariate case and can be applied to our setting with

ΠKg =

K1∑︂
j1=1

· · ·
KM∑︂
j1=1

g(ϵ
(1)
j1
, . . . , ϵ

(M)
jM

)Bl+1
j1

. . . Bl+1
jM

,

where ϵ
(1)
j1
, . . . ϵ

(M)
jM

are sequences as defined in (0.5) and (0.6) of the proof of Lemma

0.2 for each dimension. The definition needs to be extended to the general multi-

variate case, i.e. for the first sequence we have

ϵ
(1)
j1

=

⎧⎨⎩u1 +
(l−1)(ul+1−ul)

l
, if j1 = 1, . . . , l

ui, if j1 = l + 1, . . . , K1

where {uj1}K1
j1=1 is the knot sequence of the B-Spline approximating the first dimen-

sion of ΠKg. Thus, the function g(ϵ
(1)
j1
, . . . ϵ

(M)
jM

) constitutes the sieve coefficients of

ΠKg. As g ∈ Gc, we have 0 ≤ g ≤ 1 resulting in all sieve coefficents of ΠKg being
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positive and bounded by 1. Further, w.l.o.g let g be monotonic in its first argument,

then we have g(ϵ
(1)
j1+1, . . . , ϵ

(M)
jM

) ≥ g(ϵ
(1)
j1
, . . . , ϵ

(M)
jM

) for any j1 by monotonicity and

the fact that the sequence {ϵ(1)j1
}K1
j1=1 is increasing. Therefore, we can conclude that

ΠKg ∈ ˜︁Gc
K , which is the constrained B-Spline sieve defined on p. 10 in this paper,

which is equivalent to the space Gc
K .

Applying Lemma 0.2. then yields

∥g − ΠKg∥∞ ≤ C|T |η sup
[α]≤η

sup
ϕ∈Φ

|DαG(ϕ)|

for some constant C > 0 and |T | as defined in Lemma 0.2. Assumption 2 (ii) and

the fact that |T | = O(K−1/d) is sufficient to establish part (ii).

Finally, it remains to consider part (iii), for which we follow the tensor product

definition of Chen (2007) pp. 5573. The space Gc
K is a tensor product of I-Spline

sieves with monotonicity and positivity and boundedness constraints and B-Splines

with positivity and boundedness constraints. In particular Gc
K = Ic

Km
⊗Bc

K(¬m)
and

thus,

N[ ](ϵ,Gc
K , L

r(Φ)) ≤ N[ ](ϵ/2, Ic
Km

, Lr(Φ)) ·N[ ](ϵ/2,Bc
K(¬m)

, Lr(Φ))

following Lemma 9.25 (ii) in Kosorok (2008). This Lemma can be applied since

any function in the respective tensor sieve spaces is bounded by 1. The constrained

I-Spline sieve space is a subset of the monotone function space outlined in Theorem

2.7.5 of van der Vaart and Wellner (2000) and satisfies for some constant C

logN[ ](ϵ, Ic
Km

, Lr(Φ)) ≤ C(1/ϵ).

This yields

logN[ ](ϵ,Gc
K , L

r(Φ)) ≤ 2C/ϵ+ logN[ ](ϵ/2,Bc
K(¬m)

, Lr(Φ))

≤ 2C/ϵ+ C0 ·K(¬m) log(2/ϵ) = O(K(¬m))

for some constants C,C0 > 0 where the bound for the bracketing number of Bc
K(¬m)

follows e.g. from Chen (2007) p.5595.

Proof of Theorem 3.1. For consistency, it suffices to check the conditions of the

general consistency result in Lemma A.2 in Chen and Pouzo (2012). In our setting,

we have Qn(θ) = E[ρ(Z, θ)′Σ(X)−1ρ(Z, θ)]. There is no dependency on n in our case
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as I do not incorporate additional penalties in the model setup, yet we stick to the

notation of Chen and Pouzo (2012). It holds that

Qn(θ)−Qn(θ0)

=E[ρ(Z, θ)′Σ(X)−1ρ(Z, θ)− ρ(Z, θ0)
′Σ(X)−1ρ(Z, θ0)]

=E[(ρ(Z, θ)− ρ(Z, θ0))
′Σ(X)−1ρ(Z, θ)

+ ρ(Z, θ0)
′Σ(X)−1(ρ(Z, θ)− ρ(Z, θ0))]

=E[(ρ(Z, θ)− ρ(Z, θ0))
′Σ(X)−1ρ(Z, θ)]

=E[[G0(ϕ(X, β0))−G(ϕ(X, β))]′Σ(X)−1[G0(ϕ(X, β0))−G(ϕ(X, β))]]

whereG0 and ϕ are quantities such that the l-th element ofG0(ϕ(X, β0))−G(ϕ(X, β))

corresponds to G0,l(ϕl(X, β0)) − Gl(ϕl(X, β)). The third equality follows from the

identifying condition E[ρ(Z, θ0)|X] = 0 and the fourth equality from the identity

ρ(Z, θ) = ρ(Z, θ0)+G0(ϕ(X, β0))−G(ϕ(X, β)) along with the identifiying condition.

As the lowest eigenvalue of Σ(X) is bounded away from zero by Assumption 3, (ii)

we have for some constant c > 0

Qn(θ)−Qn(θ0) ≥c · ∥G0(ϕ(X, β0))−G(ϕ(X, β))∥2L2(X).

Define

g(K,n, ϵ) := inf
θ∈Θc

K :∥θ−θ0∥≥ϵ
∥G0(ϕ(X, β0))−G(ϕ(X, β))∥2L2(X).

Then, let (G⋆
K , β

⋆
K) be the argument such that

g(K,n, ϵ) = ∥G0(ϕ(X, β0))−G⋆
K(ϕ(X, β⋆

K))∥2L2(X)

which is guaranteed to exist by the compactness of the finite dimensional sieve space

Θc
K . Let ΠKθ0 = (ΠKG,ΠKβ0) as in Lemma 3.1(ii). Hence, it holds that

g(K,n, ϵ) =∥G⋆
K(ϕ(X, β⋆

K))− ΠKG(ϕ(X,ΠKβ0))∥2L2(X)

+ ∥ΠKG(ϕ(X,ΠKβ0))−G0(ϕ(X, β0))∥2L2(X)

+ 2∥G⋆
K(ϕ(X, β⋆

K))− ΠKG(ϕ(X,ΠKβ0))∥2L2(X)

· ∥ΠKG(ϕ(X,ΠKβ0))−G0(ϕ(X, β0))∥2L2(X)

By the approximation properties in Lemma 3.1 (ii) and the rate in 3 (iv), we have

∥ΠKG(ϕ(X,ΠKβ0))−G0(ϕ(X, β0))∥L2(X) = o(1) and as ΠKθ, (G
∗
K , β

∗
K) ∈ Θc

K , it also
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holds that ∥G⋆
K(ϕ(X, β⋆

K)) − ΠKG(ϕ(X,ΠKβ0))∥2L2(X) ≤ 1. Further, there exists a

constant c(ϵ) such that ∥G⋆
K(ϕ(X, β⋆

K))−ΠKG(ϕ(X,ΠKβ0))∥L2(X) ≥ c(ϵ) > 0. This

follows from the same reasoning as the NPIV example following Theorem 3.1. in

Chen and Pouzo (2012). Summarizing,

lim inf
n→∞

g(K,n, ϵ) = c(ϵ)2,

which satisfies Condition a of Lemma A.2. in Chen and Pouzo (2012).

Condition b is satisfied by the sieve approximation properties in Lemma 3.1

(ii) and continuity of ρ. Condition c is trivially satisfied in this model setup. For

Condition d we require that

ˆ︁cn ≡ sup
θ∈Θc

K

1

n

n∑︂
i=1

ρ(d,Xi, θ)
′Σ(X)ρ(d,Xi, θ)− E[ρ(d,X, θ)′Σ(X)ρ(d,X, θ)]⏞ ⏟⏟ ⏞

:=fρ(Zi,θ)

= op(1).

Define Fρ,K := {fρ(·, θ) : θ ∈ Θc
K} with envelope function F ρ. A necessary and

sufficient condition to obtain uniform convergence over sieves is Condition 3.5 MD

(i), (ii) in Chen (2007) with (i) having been already discussed. By Assumption 3 (ii)

and the fact that each element of ρ(Z, θ) is uniformly bounded by 1 for all θ ∈ Θc
K

it follows for any θ1, θ2 ∈ Θc
K that

|fρ(Z, θ2)− fρ(Z, θ1)|

≤|(ρ(Z, θ2)− ρ(Z, θ1))
′Σ(X)ρ(Z, θ2) + ρ(Z, θ1)

′Σ(X)(ρ(Z, θ2)− ρ(Z, θ1))|

+ E[|(ρ(Z, θ2)− ρ(Z, θ1))
′Σ(X)ρ(Z, θ2) + ρ(Z, θ1)

′Σ(X)(ρ(Z, θ2)− ρ(Z, θ1))|]

≤c1(∥ρ(Z, θ2)− ρ(Z, θ1)∥E + E[∥ρ(Z, θ2)− ρ(Z, θ1)∥E])

for some constant c1 > 0. For any element in the above vector we have ρl(Z, θ2) −
ρl(Z, θ1) = G1,l(ϕl(X, β1)) − G2,l(ϕl(X, β2)) and thus, by way of the multivariate

Taylors Theorem for any δ > 0 and ∥θ2 − θ1∥c ≤ δ,

|ρl(Z, θ2)− ρl(Z, θ1)| ≤ sup
x∈X

sup
β∈B

|G1(ϕl(X, β))−G2(ϕl(X, β))|

+ sup
x∈X

sup
β∈B

∥∇G2,l(ϕ(X, β))∥E · ∥(ϕl(X, β2)− ϕl(X, β1))∥E

and by Assumption 3 (iii), it holds that

sup
θ1,θ2∈Θc

K :∥θ1−θ2∥c≤δ

|ρl(Z, θ2)− ρl(Z, θ1)| ≤ C1(X)∥θ2 − θ1∥c
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for some C1(X) with E[C1(X)] < ∞ and ultimately

sup
θ1,θ2∈Θc

K :∥θ1−θ2∥c≤δ

|fρ(Z, θ2)− fρ(Z, θ1)| ≤ C2(X)∥θ2 − θ1∥c

for some C2(X) with E[C1(X)] < ∞. Therefore Condition 3.5MD (ii) is satisfied

and it remains to check Condition 3.5MD (iii) logN(δ1/s, θcK , ∥·∥c) = o(n) which

holds for standard linear sieves such as B-Splines, whenever K = o(n), see Chen

(2007) p.5595. This corresponds to our Assumption 3 (iv).

Then following Lemma A.2. of Chen and Pouzo (2012) consistency follows when-

ever

max{ˆ︁cn, ∥ΠKθ − θ0∥∞} = o(1),

which is the case under the rates in Assumption 3 (iv) and the results from Lemma

3.1 (ii).

Proof of Theorem 3.2. The proof follows from applying the general conver-

gence rate result for sieve M-estimators in Theorem 3.2 of Chen (2007). Some as-

sumptions of Theorem 3.2 are implicitly mentioned in the beginning of the exposition

on p. 5594 and need to be verified first. It is required that the estimator is consistent

in some strong metric, which is in our case ∥ˆ︁θ−θ0∥c = o(1) (following from our Theo-

rem 3.1) and that the metric in which the convergence rate is to be derived is weaker

compared to the consistency metric, i.e. ∥θ− θ0∥ ≲ ∥ˆ︁θ− θ0∥c1. in our case. Further,

the convergence rate metric needs to be locally equivalent to the criterion function

in the sense that ∥θ − θ0∥ ≍ E[ρ(Z, θ)′Σ(X)ρ(Z, θ) − ρ(Z, θ0)
′Σ(X)ρ(Z, θ0)]

1/2 for

θ ∈ Θc, which satisfy ∥θ − θ0∥c = o(1).

We begin the proof by showing the latter property. First, note that

E[l(θ)− l(θ0)] =E[ρ(Z, θ)′Σ(X)ρ(Z, θ)− ρ(Z, θ0)
′Σ(X)ρ(Z, θ0)]

=E[(ρ(Z, θ)− ρ(Z, θ0))
′Σ(X)(ρ(Z, θ)− ρ(Z, θ0))]

+ 2E[(ρ(Z, θ)− ρ(Z, θ0))Σ(X)ρ(Z, θ0)]

by the law of iterated expectation and the identifying condition in Assumption 1.

Further, by Assumption 3(ii) and Assumption 1 the second term in the summation

1If {an} and {bn} are sequences of positive numbers, we use the notation an ≲ bn if
lim supn→∞ an/bn < ∞ and an ≍ bn if an ≲ bn and bn ≲ an
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is zero and thus

E[l(θ)− l(θ0)] = E[(ρ(Z, θ)− ρ(Z, θ0))
′Σ(X)(ρ(Z, θ)− ρ(Z, θ0))]

and again by Assumption 3(ii)

E[l(θ)− l(θ0)]
1/2 ≍ ∥m(X, θ)∥L2(X)

Hence, it suffices to establish that ∥m(X, θ)∥L2(X) ≍ ∥θ − θ0∥ for ∥θ − θ0∥c = o(1),

which we now consider.

Therefore, the directional derivatives defined in Chapter 3.4.2 can be detailed to

dm(X, θ0)

dθ
[θ1 − θ0] =

(︃
dm1(X, θ0)

dθ
[θ1 − θ0], . . . ,

dmL−1(X, θ0)

dθ
[θ1 − θ0]

)︃
,

where the l-th element of the vector is of the form

dml(X, θ0)

dθ
[θ1 − θ0]

=−∇G0,l(ϕl(X, β0))
′Jϕl

(X, β0)(β − β0) +G0,l(ϕ(X, β0)−G0,l(ϕ(X, β)).

Further, for each l we have for the approximation error

∥ml(X, θ)− dml(X, θ0)

dθ
[θ − θ0]∥L2(X)

=∥G0,l(ϕl(X, β))−Gl(ϕl(X, β)) +∇G0l(ϕl(X, β0))
′Jϕl

(X, β0)(β − β0)∥L2(X)

≤∥∇G0,l(ϕl(X, β0))
′Jϕl

(X, β0)(β − β0)∥L2(X) + ∥G0,l(ϕl(X, β0))−Gl(ϕl(X, β0))∥L2(X)

+ ∥G0,l(ϕl(X, β))−G0,l(ϕl(X, β0))∥L2(X) + ∥Gl(ϕl(X, β0))−Gl(ϕl(X, β))∥L2(X)

≲∥β − β0∥E + ∥Gl −G0,l∥

by the fact that in our model ∥Gl − G0,l∥ = ∥G0,l(ϕl(X, β0)) − Gl(ϕl(X, β0))∥L2(X)

and the other bounds following from Assumptions 2 (ii), 3 (iii) and 4(i). Under

Assumption 4 (ii) we can invoke Lemma B.1 in Ai and Chen (2003) and obtain that

both ∥β−β0∥E = O(∥θ−θ0∥) and ∥Gl−G0l∥ = O(∥θ−θ0∥) and thus for all θ ∈ Θc
K

∥ml(X, θ)∥L2(X) ≲ ∥θ − θ0∥.

Further, by the same trick as in the proof of Proposition 3.2 in Ai and Chen (2003)
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it holds for some constants C,C1 > 0 that

∥θ − θ0∥ ≤∥m(X, θ)∥L2(X) + C(∥β − β0∥E + ∥Gl −G0l∥)

≤∥m(X, θ)∥L2(X) + C1(∥m(X, (G0, β))∥L2(X) + ∥m(X, (G, β0))∥L2(X))

≲∥m(X, θ)∥L2(X)

for any θ ∈ Θc
K with ∥θ − θ0∥c = o(1), where the second inequality follows from

Assumption 4(iii). This yields the claimed local equivalence of ∥θ−θ0∥ and E[l(θ)−
l(θ0)]

1/2 for θ ∈ Θc
K with ∥θ − θ0∥c = o(1).

Now we can proceed by checking the remaining conditions for Theorem 3.2 of

Chen (2007). Condition 3.6 is our Assumption 3 (i). For Condition 3.7 we need that

for some constant C > 0

sup
θ∈Θc

K :∥θ−θ0∥≤δ

E[(ρ(Z, θ)′Σ(X)ρ(Z, θ)− ρ(Z, θ0)
′Σ(X)ρ(Z, θ0))

2] ≤ Cδ2.

In our case, we find that

E[(ρ(Z, θ)′Σ(X)ρ(Z, θ)− ρ(Z, θ0)
′Σ(X)ρ(Z, θ0))

2]

=E[m(X, θ)Σ(X)−1ρ(Z, θ)2 +m(X, θ)Σ(X)−1ρ(Z, θ0)
2

+m(X, θ)′Σ(X)−1ρ(Z, θ)ρ(Z, θ)′Σ(X)−1m(X, θ)]

≤C E[∥m(X, θ)∥2E]

=C∥m(X, θ)∥2L2(X) ≲ ∥θ − θ0∥2

with the first inequality holding for some constant C > 0 by Assumption 3 (ii) and

the fact that ρ(Z, θ0) and ρ(Z, θ) are uniformly bounded in Z as well as for θ ∈ Θc
K .

The last inequality holds by the local equivalence of ∥θ − θ0∥ and ∥m(X, θ)∥L2(X).

It remains to check Condition 3.8, which states that for each δ > 0 there exists

a random variable U(X) and some s ∈ (0, 2) such that

sup
θ∈Θc

K :∥θ−θ0∥≤δ

∥m(X, θ)∥E ≤ δsU(X)

with E[U(X)γ] < ∞ for some γ ≥ 2.

By the same reasoning as earlier and from Assumption 4 (ii) there exists a C(X)
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with E[C(X)] < ∞ such that

|ml(X, θ)|

≤|∇G0,l(ϕl(X, β0))
′Jϕl

(X, β0)(β − β0)|+ |G0,l(ϕl(X, β0))−Gl(ϕl(X, β0))|

+ |G0,l(ϕl(X, β))−G0,l(ϕl(X, β0))|+ |Gl(ϕl(X, β0))−Gl(ϕl(X, β))|

≤C(X)∥β − β0∥E + sup
x∈X

|G0,l(X, β0)−G0,l(X, β0)|.

By Lemma 2 in Chen and Shen (1998) and Assumption 2 (ii) we have that

sup
x∈X

|G0,l(X, β0)−G0,l(X, β0)|

≲∥G0,l(X, β0)−G0,l(X, β0)∥2p/2p+1

L2(X)

=∥G0,l −Gl∥2p/2p+1 ≲ ∥θ − θ0∥2p/2p+1,

with the last inequality again following from Lemma B.1 in Ai and Chen (2003).

Ultimately,

sup
θ∈Θc

K :∥θ−θ0∥≤δ

∥m(X, θ)∥E ≤ sup
θ∈Θc

K :∥θ−θ0∥≤δ

⌜⃓⃓⎷L−1∑︂
l=1

ml(X, θ)2

≤ sup
θ∈Θc

K :∥θ−θ0∥≤δ

⌜⃓⃓⎷L−1∑︂
l=1

C(X)∥θ − θ0∥2

which establishes the claim of Condition 3.8. As all necessary conditions are satisfied,

we can apply Theorem 3.2 of Chen (2007) and obtain

∥ˆ︁θ − θ0∥ = Op(max{δn, ∥θ0 − ΠKθ0∥}),

where δn is the bracketing integral for the function space Fn = {l(Z, θ) − l(Z, θ0) :

∥θ − θ0∥ ≤ δ, θ ∈ Θc
K} and defined as follows

δn = inf{δ ∈ (0, 1) : 1/
√︁

(n)δ2
∫︂ δ

bδ2

√︂
logN[](w,Fn, ∥·∥2)dw ≤ const.}.

By Chen (2007) p. 5595, we have logN[](w,Fn, ∥·∥2) ≤ logN(w1/s,Θc
K , ∥·∥) ≤

N[](w
1/s,Θc

K , ∥·∥) with the last inequality from e.g. Kosorok (2008) Lemma 9.18.

Then, by Lemma 3.1 (iii) we have

δn ≲
√︁

K(¬m)/
√
n,
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which then establishes the result stated in our Theorem 3.2.

Proof of Theorem 3.3. In order to proof Theorem 3.3 we need to check if As-

sumptions 4.1 and 4.2 in Chen (2007) are satisfied. Assumption 4.1(i) is our As-

sumption 5 (i) and 4.1(ii) is our 4(ii), 4.1(iii) is our 5(iii). Assumption 4.2 (i) holds

by Assumption 3(ii) and 5 (iv). 4.2(ii) is our 5(v). Assumption 4 (iv) is satisfied

by our Assumption of i.i.d data, the model setup and the identification condition in

Assumption 1.

For checking Condition 4.2’ in Chen (2007) a more detailed assessment is neces-

sary. The condition requires that for δn = o(1)

sup
θ̄∈Θc

K :∥θ̄−θ0∥≤δn

µn

(︂
ρ(Z, θ̄)Σ(X)

dρ(Z, θ̄)

dθ
[ΠKv

∗]

− ρ(Z, θ0)Σ(X)
dρ(Z, θ0)

dθ
[ΠKv

∗]
)︂

=op(n
−1/2)

In our case we have

sup
θ̄∈Θc

K :∥θ̄−θ0∥≤δn

µn

(︂
ρ(Z, θ̄)Σ(X)

dρ(Z, θ̄)

dθ
[ΠKv

∗]

− ρ(Z, θ0)Σ(X)
dρ(Z, θ0)

dθ
[ΠKv

∗]
)︂

= sup
θ̄∈Θc

K :∥θ̄−θ0∥≤δn

µn

(︂
ρ(Z, θ̄)Σ(X)ΠKv

∗(ϕ(X, β̄))

− ρ(Z, θ0)Σ(X)ΠKv
∗(ϕ(X, β0))

)︂
= sup

θ̄∈Θc
K :∥θ̄−θ0∥≤δn

µn

(︁
ρ(Z, θ̄)Σ(X)(ΠKv

∗(ϕ(X, β̄))− ΠKv
∗(ϕ(X, β0)))

)︁
+

µn

(︁
m(X, θ))Σ(X)ΠKv

∗(ϕ(X, β0))
)︁

and we have already provided arguments that both functions indexing the empirical

process are Lipschitz with respect to ∥·∥. This follows for the first summand by

Assumption 3(iii) and the boundedness of ρ and Σ and for the second summand

analogous to the verification of Condition 3.8 in the proof of Theorem 3.2, where we

established m(X, θ) ≲ ∥θ − θ0∥. Using this Lipschitz property, we can invoke e.g.

the last display of Theorem 2.14.2 in van der Vaart and Wellner (2000) and obtain

that both empirical process are of order Op(δn/n
−1/2), which establishes the claim

of Condition 4.2’ as δn = o(1). Finally, we need to check for Condition 4.3’, which
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reads as

E

[︄
ρ(Z, ˆ︁θ)Σ(X)

dρ(Z, ˆ︁θ)
dθ

[ΠKv
∗]

]︄

=E

[︃
dρ(Z, θ0)

dθ
[ΠKv

∗]Σ(X)
dρ(Z, θ0)

dθ
[ˆ︁θ − θ]

]︃
+ o(n−1/2).

For the difference, we have

E

[︄
ρ(Z, ˆ︁θ)Σ(X)

dρ(Z, ˆ︁θ)
dθ

[ΠKv
∗]

]︄
− E

[︃
dρ(Z, θ0)

dθ
[ΠKv

∗]Σ(X)
dρ(Z, θ0)

dθ
[ˆ︁θ − θ]

]︃
=I + II,

where,

I = E

[︄
(m(X, ˆ︁θ)− dm(X, θ0)

dθ
[ˆ︁θ − θ0])

′Σ(X)
dm(X, ˆ︁θ)

dθ
[ΠKv

∗]

]︄
,

II = E

[︄
dm(X, θ0)

dθ
[ˆ︁θ − θ0]

′Σ(X)(
dm(X, ˆ︁θ)

dθ
[ΠKv

∗]− dm(X, θ0)

dθ
[ΠKv

∗])

]︄
.

First consider I. By Cauchy-Schwarz and the Assumptions on Σ(X),

|I| ≤ ∥(m(X, ˆ︁θ)− dm(X, θ0)

dθ
[ˆ︁θ − θ0]∥E · ∥dm(X, ˆ︁θ)

dθ
[ΠKv

∗]∥E,

where the first factor has for each element l

ml(X, ˆ︁θ)− dml(X, θ0)

dθ
[ˆ︁θ − θ0]

= ˆ︁Gl(ϕl(X, β0))− ˆ︁Gl(ϕl(X, ˆ︁β)) +∇G0,l(ϕl(X, β0))Jϕl
(X, β0)(ˆ︁β − β0)

=O(∥ˆ︁β − β0∥E)

by multivariate Taylors Theorem and Assumptions 4 (iii), 5 (iii), (iv) and the already

frequently invoked Lemma B.1 of Ai and Chen (2003). This yields

∥(m(X, ˆ︁θ)− dm(X, θ0)

dθ
[ˆ︁θ − θ0]∥E = O(∥ˆ︁θ − θ0∥2).

For the second factor, we have ∥dm(X,ˆ︁θ)
dθ

[ΠKv
∗]∥E = Op(1) by the equality

dm(X,ˆ︁θ)
dθ

[ΠKv
∗] =

ΠKv
∗(ϕl(X, ˆ︁β)). This yields |I| = o(n1/2) by the rate restriction in Assumption 5
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(vi). Lastly, consider II. Again,

|II| ≲ ∥ˆ︁θ − θ0∥ · ∥
dm(X, ˆ︁θ)

dθ
[ΠKv

∗]− dm(X, θ0)

dθ
[ΠKv

∗]∥E

and it remains to analyze the behavior of the second factor. Here, for the l-th

element,

dml(X, ˆ︁θ)
dθ

[ΠKv
∗]− dml(X, θ0)

dθ
[ΠKv

∗]

=ΠKv
∗(ϕl(X, ˆ︁β))− ΠKv

∗(ϕl(X, β0)).

Thus, as ΠKv
∗ ∈ Θc

K and by Assumption 3 (iii), the term is bounded by ∥β − β0∥
and therefore

|II| ≲ ∥ˆ︁θ − θ0∥2,

which results in the claim of Condition 4.3’ under the rate restriction in Assumption

5 (vi).

Proof of Theorem 3.4. Again it suffices to check whether the conditions are

satisfied to invoke a general result for asymptotic normality of smooth functionals

of θ such as Theorem 4.3 in Chen (2007). It suffices to check if the functional, in this

case f(θ) = E[dGl(ϕl(X, β))/dXj], satisfies Condition 4.1 (i) and (ii) in Chen (2007).

The remaining conditions have already been checked in the Proof of Theorem 3.3

for the context of sieve GLS estimation, as the results do not hinge on the particular

form of the Riesz representer v∗.

In the case of the average partial effect functional, we have

f(θ0) =E[∇G0,l(ϕl(X, β0))∂ϕl(X, β0)/∂Xj]

=E

[︄
M∑︂
i=1

∂G0,l(ϕl(X, β0))

∂ϕl,i

∂ϕl,i(X, β0)

∂Xj

]︄
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and for the directional derivative

df(θ0)

dθ
[θ − θ0] =E

[︄
M∑︂
i=1

(︄
∂2G0,l(ϕl(X, β0))

∂ϕ2
l,i

∇ϕl,i(X, β0)
′(β − β0)

+
∂Gl(ϕl(X, β0))

∂ϕl,i

− ∂G0,l(ϕl(X, β0))

∂ϕl,i

)︃
∂ϕl,i(X, β0)

∂Xj

]︃
+ E

[︄
M∑︂
i=1

∂G0,l(ϕl(X, β0))

∂ϕl,i

d(
∂ϕl,i(X, β0)

∂Xj

)/dβ[β − β0]

]︄
.

Condition 4.1 (i) requires that there is some w > 0 such that for any θ ∈ Θc with

∥θ − θ0∥ = o(1), we have

|f(θ)− f(θ0)−
df(θ0)

dθ
[θ − θ0]| = O(∥θ − θ0∥w).

In our setting,

|f(θ)− f(θ0)−
df(θ0)

dθ
[θ − θ0]|

=

⃓⃓⃓⃓
⃓E
[︄

M∑︂
i=1

(
∂Gl(ϕl(X, β))

∂ϕl,i

− ∂Gl(ϕl(X, β0))

∂ϕl,i

)
∂ϕl,i(X, β0)

∂Xj

+
∂Gl(ϕl(X, β))

∂ϕl,i

(
∂ϕl,i(X, β)

∂Xj

− ∂ϕl,i(X, β0)

∂Xj

)

]︃
− E

[︄
M∑︂
i=1

∂2G0,l(ϕl(X, β0))

∂ϕ2
l,i

∇ϕl,i(X, β0)
′(β − β0)

∂ϕl,i(X, β0)

∂Xj

]︄

− E

[︄
M∑︂
i=1

∂G0,l(ϕl(X, β0))

∂ϕl,i

d(
∂ϕl,i(X, β0)

∂Xj

)/dβ[β − β0]

]︄⃓⃓⃓⃓
⃓

≲∥β − β0∥E ≲ ∥θ − θ0∥

by the additional conditions in Assumption 6.

Part (ii) of Condition 4.1 assumes that ∥df(θ0)
dθ

[θ − θ0]∥ < ∞ for θ ∈ Θc and in

our case, by the form of the directional derivative of f(·) above, we obtain,⃓⃓⃓⃓
df(θ0)

dθ
[θ − θ0]

⃓⃓⃓⃓
≲ ∥β − β0∥E + ∥∇Gl(ϕl(X, β0))−∇G0,l(ϕl(X, β0))∥L2(X).

By the fact that Gl, Gl,0 ∈ Λp
∞(Φ), first derivatives are Hölder continuous and by As-

sumption 4 (iii), we obtain sup∥θ−θ0∥>0 |
df(θ0)
dθ

[θ−θ0]|/∥θ−θ0∥ < ∞, which establishes

the claim of Condition 4.1.
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dung der angegebenen Hilfen und Hilfsmittel angefertigt habe.

Ich bezeuge durch meine Unterschrift, dass meine Angaben über die bei der Ab-

fassung meiner Dissertation benutzten Hilfsmittel, über die mir zuteil gewordene
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