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Abstract: Heterogeneity among interacting units plays an important role in numerous biological and
man-made complex systems. While the impacts of heterogeneity on synchronization, in terms of
structural mismatch of the layers in multiplex networks, has been studied thoroughly, its influence
on intralayer synchronization, in terms of parameter mismatch among the layers, has not been
adequately investigated. Here, we study the intralayer synchrony in multiplex networks, where the
layers are different from one other, due to parameter mismatch in their local dynamics. In such a
multiplex network, the intralayer coupling strength for the emergence of intralayer synchronization
decreases upon the introduction of impurity among the layers, which is caused by a parameter
mismatch in their local dynamics. Furthermore, the area of occurrence of intralayer synchronization
also widens with increasing mismatch. We analytically derive a condition under which the intralayer
synchronous solution exists, and we even sustain its stability. We also prove that, in spite of the
mismatch among the layers, all the layers of the multiplex network synchronize simultaneously. Our
results indicate that a multiplex network with mismatched layers can induce synchrony more easily
than a multiplex network with identical layers.

Keywords: synchronization; multiplex networks; parameter mismatch; master stability function

1. Introduction

The study of complex network theory provides a rich foundation for comprehending
the inherent characteristics and various emergent dynamics within interacting units [1–3].
Over the years, network science has garnered significant interest, due to its practical impor-
tance in modeling a variety of biological, physical, engineering, and social systems that are
prevalent in both society and nature [4–6]. In order to achieve optimal performance, the
constituent units of a network may engage in interactions with other networks through
a variety of coupling mechanisms and interacting patterns. These interactions give rise
to a range of emergent phenomena. Recent studies have uncovered a complex network
structure, called multilayer networks [7–9], that encompasses the structural characteristics
of diverse real-life systems within a unified network framework, providing an accurate
portrayal of numerous interacting complex systems found in nature [10–13]. A particu-
lar instance of a multilayer network is a multiplex network [14–16], wherein each layer
comprises an equal number of constituent units (nodes) that engage in interactions via
intralayer links. Additionally, a node from a given layer is interconnected with its twin
node in all the other layers via interlayer connections.

As the elementary units of a network are usually dynamical systems, subjected to
the impact of the states of other connected units, it is crucial to investigate the interplay
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between the structure and underlying dynamical process of a network [9]. The impact
of these distinct characteristics within networked systems results in the identification of
numerous compelling emergent phenomena [17–19]. Synchronization [20–27], wherein
the system individuals evolve in unison, is one of the fascinating phenomena observed in
dynamical networks, which have attracted a lot of attention in the area of network research.

Diverse forms of synchronization patterns have been detected in multiplex networks with
static or temporal interactions, including—but not limited to—cluster synchronization [28,29],
explosive synchronization [30], chimera states [31], intralayer synchronization [32,33],
interlayer synchronization [34–36], and relay synchronization [37–39]. Recently, the study
of synchronization in multilayer networks has also been extended to include higher-order
interactions [36,40]. In this context, most of these studies on synchronization have been
performed by assuming networks of coupled homogeneous oscillators. Only a few have
considered networks of coupled oscillators with heterogeneity, a common occurrence
in natural systems [41–49]. A study conducted by Plotnikov et al. [45] revealed that
the expansion of heterogeneity within a network of heterogeneous FitzHugh–Nagumo
neurons results in improvement of synchrony. Gambuzza et al. [32] analyzed intralayer
synchronization in a multiplex network comprising two distinct layers of oscillators, where
one layer consisted of detached oscillators, while the other one comprised interconnected
oscillators with a mismatch in intrinsic frequencies. Leyva et al. [34] studied the interlayer
synchronization in multiplex networks with nonidentical connectivity structures of the
layers. Rakshit et al. [41] conducted a study on the relay interlayer synchronization in
multiplex networks that included an impurity, specifically a parameter mismatch in the
local dynamics of the nodes within the relay layers. Despite this, there are many facets of
the relationship between multilayer structure and heterogeneity in oscillators that have not
been thoroughly investigated. In particular, the research of intralayer synchronization in
multiplex networks with heterogeneous layers is in its infancy.

In this article, we try to fill this gap and investigate the intralayer synchrony in
multiplex networks in which the layers are heterogeneous from one other, by means of
parameter mismatch in their local dynamics, although the local dynamics of each node
within a particular layer are identical. Under such broad circumstances, we derive a
condition for the existence of an intralayer synchronous solution. Using the master stability
function approach [50,51], we acquire the necessary condition for this solution to be stable,
and we show that for some particular instances, the problem of stability can be transformed
into a simplified form. We further demonstrate that even though the layers of the multiplex
network are not identical, they exhibit simultaneous synchronization. We investigate the
effect of parameter heterogeneity on the emergence of intralayer synchronization. Our
study demonstrates that the layers can attain synchrony at relatively reduced levels of
coupling strengths, as the mismatch parameter between the layers increases, and that the
area of intralayer synchronization expands. These findings indicate that the introduction
of a mismatch between layers, by altering parameter values in one layer, can enable
synchronization in the other layer at coupling strengths where synchronization would not
occur if the layers were identical.

2. Mathematical Model

We start by considering a Q-layered multiplex network, each of these layers being
composed of N nodes of d-dimensional dynamical systems. The layers are made of a
fixed set of nodes, and interlayer connections exist between each node of a layer and all
its replicas in the adjacent layers, where the layers are organized in a chain. Then, the
mathematical form of the entire dynamical multiplex network can be described as

V̇m,i = F(Vm,i, φm) + σm
N
∑

k=1
C

(m)
ik G(Vm,i, Vm,k) + σinterΓ

p=m+1≤Q
∑

p=m−1>0
[Vp,i −Vm,i], (1)
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where i = 1, 2, . . . , N; m = 1, 2, . . . , Q. Here, the states of the ith node in layer-m are repre-
sented by the d-dimensional state vector Vm,i. The dynamics of each individual oscillator
are governed by the continuously differentiable evolution function F : Rd ×R→ Rd. We
keep the vector field F as identical for all subsystems in a particular layer, whereas it
is different for different layers, in terms of mismatch in the system parameter φm. The
interlayer inner-coupling matrix Γ expresses the coupling connections between the layers.
G is the intralayer coupling function, which represents the coupling connections within
the layers. The interaction between the nodes within layer-m is controlled by σm, which
is the intralayer coupling strength of layer-m. For the sake of simplicity, we consider the
intralayer coupling strength to be equal in each layer, given by σm = σintra, for all m. On
the other hand, how the information will be conveyed between the layers is determined by
the parameter σinter, called the interlayer coupling strength. Figure 1 represents a schematic
diagram of a two-layer multiplex network, where the local dynamics of the nodes in a
particular layer are identical to one other, while the local dynamics of the nodes in two
different layers are different from one another, in terms of mismatch in the parameter
values of the local dynamics.

Figure 1. Schematic representation of a Q = 2 layered multiplex network with N = 10 nodes in each
layer. The nodes in each layer are identical to one other, while being different for different layers,
by means of parameter mismatch in the local dynamics. To illustrate this, the nodes in layer-1 are
colored in red, and the nodes in layer-2 are colored in blue. Solid black lines portray the intralayer
connections, while dashed black lines show the replica-wise interlayer connections.

The intralayer network configuration of layer-m is encoded by the N-order adjacency
matrix C (m), which describes the interconnections between individual oscillators in layer-
m. Here, C

(m)
ij = 1 if the i-th and j-th node of layer-m are connected, and is equal to

0, otherwise. We consider the connection between the i-th and j-th nodes of layer-m to
be undirected, so that the resulting adjacency matrix C (m) is real symmetric. From the
adjacency C (m), one can obtain the corresponding zero-row-sum real-symmetric Laplacian
matrix L (m), defined as L

(m)
ij = −C

(m)
ij if i 6= j, and L

(m)
ii = ∑N

j=1 C
(m)
ij : that is, the

off-diagonal elements are the negative of the corresponding elements in C (m), and the
diagonal element L

(m)
ii is the sum of the non-diagonal elements in the i-th row of C (m),

which is basically the degree k(m)
i = ∑N

j=1 C
(m)
ij of the i-th node in Layer-m.

3. Results

Throughout this section, we will investigate the occurrence of a particular synchro-
nization phenomenon, called intralayer synchronization, in our multiplex framework (1).
To do so, we first analytically derive the necessary conditions for the existence and stability
of the intralayer synchronous solution.
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3.1. Analytical Results

The multiplex network (1) achieves an intralayer synchronization state when all
the nodes in a particular layer converge to the same time evolution. Then, for layer-m,
there exists a solution Vm,s(t) ∈ Rd, such that ‖Vm,i(t)−Vm,s(t)‖ → 0 as t → ∞ for all
i = 1, 2, . . . , N. Thus, all the nodes in a particular layer-m converge on one other, i.e.,
asymptotically Vm,i(t)→ Vm,j(t) as t→ ∞, although they may have separate trajectories,
layer-wise. Consequently, the intralayer synchronization manifold S intra can be defined as

S intra =
{(

V1,s(t), V2,s(t), . . . , VQ,s(t)
)
⊂ RQd :

Vm,i(t) = Vm,s(t), i = 1, 2, . . . , N; m = 1, 2, . . . , Q; t ∈ R+
}

.
(2)

3.1.1. Invariance Condition

The proposed multiplex network is not always capable of reaching an intralayer syn-
chronous state, because the presence of arbitrarily intralayer connection topologies and
intralayer coupling functions between the unitary dynamical units does not ensure that
the unitary components of a particular layer will progress in unison. Therefore, we take
into account a certain form of the intralayer coupling functions that disappears at the
referred synchronous state, i.e., G(Vm,s, Vm,s) = 0, for all m. This particular type of cou-
pling function is called “synchronization noninvasive couplings” [40,52]. If the intralayer
coupling functions are synchronization noninvasive, then the existence and invariance of
an intralayer synchronous solution can be guaranteed in the multiplex network (1), because
each unitary component of a particular layer follows the same evolution dynamics given
by

V̇m,s = F(Vm,s, φm) + σinterΓ
p=m+1≤Q

∑
p=m−1>0

[Vp,s −Vm,s], m = 1, 2, . . . , Q. (3)

One of the benefits of selecting this particular type of coupling lies in its ability to accommo-
date any arbitrary connection topology between the unitary components within the layers.
Furthermore, it is worth mentioning that our approach, of incorporating synchronization
noninvasive coupling functions, covers a wide range of coupling schemes, including vari-
ous types of coupling functions, such as generalized diffusive coupling functions, electrical
synaptic couplings in neuronal networks, and the diffusive sine couplings used in coupled
Kuramoto oscillators.

Additionally, for the emergence of the intralayer synchronous solution, it is possible to
choose an arbitrary type of coupling function other than the synchronization noninvasive
couplings. However, in this case, to ensure the constancy of the intralayer synchronous
solution, it is necessary to relinquish the unrestricted selection of connection topologies,
and to exclusively choose regular connectivity configurations [33]. Nevertheless, in the
present study, we will only consider the case of synchronization noninvasive intralayer
coupling functions, which guarantee the invariance of an intralayer synchronous solution
with an arbitrary connectivity structure within the layers.

3.1.2. Stability Analysis

Now, the question is whether the intralayer synchronized state sustains its stability or,
conversely, becomes unstable, in response to small perturbations. In order to conduct an
inquiry into this matter, we apply small variations to the synchronous solution, defined as
δVm,i = Vm,i −Vm,s, (i = 1, 2, . . . , N) and (m = 1, 2, . . . , Q). The dynamical Equation (1)
is then linearized, by substituting the expressions for perturbations δVm,i, and utilizing
the Taylor series expansion up to the linear order, which eventually returns the variational
equation, in terms of perturbations, as
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δV̇m,i = JF(Vm,s, φm)δVm,i + σintra
N
∑

k=1
C

(m)
ik [J1GδVm,i + J2GδVm,k]

+ σinterΓ
p=m+1≤Q

∑
p=m−1>0

[δVp,i − δVm,i],
(4)

where JF(Vm,s, φm) is the Jacobian matrix of the function F, evaluated at the synchronous
solution Vm,s, and where J1G and J2G are the partial derivatives of G, with respect to the
first and second variables, respectively, and are evaluated at (Vm,s, Vm,s). The linearized
Equation (4) can be further simplified, using the assumption of the synchronization nonin-
vasive intralayer coupling function. As G vanishes at the synchronous manifold, i.e., its
value is equal to 0, it follows that the total derivative of G also vanishes at the synchronous
manifold. Hence, we have

J1G + J2G = 0. (5)

Using the relation (5) and the definition for Laplacian matrices, one can rewrite the lin-
earized Equation (4) as follows:

δV̇m,i = JF(Vm,s, φm)δVm,i − σintra
N
∑

k=1
L

(m)
ik J2GδVm,k + σinterΓ

p=m+1≤Q
∑

p=m−1>0
[δVp,i − δVm,i]. (6)

We now rewrite the linearized Equation (6) in a block form, by introducing the stack vector
δVm = [δVTm,1, δVTm,2, . . . , δVTm,N ]

T , (m = 1, 2, . . . , Q), yielding

δV̇m = [IN ⊗ JF(Vm,s, φm)− σmL (m) ⊗ J2G]δVm + σinter(IN ⊗ Γ)
p=m+1≤Q

∑
p=m−1>0

[δVp − δVm]. (7)

The above variational Equation (7) contains both the parallel and transverse com-
ponents of the intralayer synchronization manifold. A stable synchronous solution can
be achieved when all the transverse modes asymptotically die out. Hence, to decouple
the transverse modes from the parallel one, we use the following conceptual steps asso-
ciated with the Laplacian matrices of the layers: (i) as all Laplacian matrices L (m) are
real symmetric, they are orthonormally diagonalizable by the associated set of eigenvec-
tors E (m) = {e(m)

1 , e(m)
2 , . . . , e(m)

N }; (ii) due to the zero row sum property, all the Laplacian

matrices share the common least eigenvalue λ
(m)
1 = 0, with the associated eigenvector

e(m)
1 = 1√

N
(1, 1, . . . , 1)T that is aligned along the synchronization manifold; (iii) due to

the non-commutativity property of the Laplacians, the eigenvector sets associated with
distinct nonzero eigenvalues (λ(m)

i > 0, i = 2, 3, · · · , N) are generally different from one
other. However, it is noteworthy that any perturbation of the synchronization manifold
can be expressed as a linear combination of one of these eigenvector sets. This implies that
we can freely choose any of these layer-wise Laplacians as the reference for the basis of the
transverse space, and all other eigenvector sets can be transformed into this basis through
unitary matrix transformations.

Therefore, without loss of generality, we take the set of eigenvectors associated with
the Laplacian matrix of layer-1 as the basis of reference, and we consequently introduce the
new variables ξ(m) = (E (1) ⊗ Id)

−1δVm. This eventually returns a variational equation in
the following form:

ξ̇(m) = [IN ⊗ JF(Vm,s, φm)− σintraΞ(m) ⊗ DG]ξ(m) + σinter(IN ⊗ Γ)
p=m+1≤Q

∑
p=m−1>0

[ξ(p) − ξ(m)], (8)

where

Ξ(m) = E (1)−1
L (m)E (1) =

 0 01×(N−1)

0(N−1)×1 L̃ (m)

 (9)
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is the transformed Laplacian matrix, having a null first row and first column, and L̃ (m) is
an N × N real symmetric matrix with constant entries. Hence, using the above relation (9),
one can eventually decouple the dynamics of parallel and transverse modes, as follows:

ξ̇
(m)
‖ = JF(Vm,s, φm)ξ

(m)
‖ + σinterΓ

p=m+1≤Q
∑

p=m−1>0
[ξ

(p)
‖ − ξ

(m)
‖ ]; (10a)

ξ̇
(m)
⊥ = [IN−1 ⊗ JF(Vm,s, φm)− σmL̃ (m) ⊗ DG]ξ

(m)
⊥ + σinter(IN−1 ⊗ Γ)

p=m+1≤Q
∑

p=m−1>0
[ξ

(p)
⊥ − ξ

(m)
⊥ ], (10b)

where ξ
(m)
‖ represents the state of perturbation modes parallel to the synchronization

manifold, and where the states of perturbation modes across the synchronization mani-
fold are illustrated by ξ

(m)
⊥ . Now, as E (1) diagonalizes the Laplacian L (1), then L̃ (1) =

diag{λ(1)
2 , λ

(1)
3 , · · · , λ

(1)
N }; therefore, one can further simplify the dynamics of the transverse

modes as

ξ̇
(1)
⊥i

= JF(V1,s, φ1)ξ
(1)
⊥i
− σintraλ

(1)
i DGξ

(1)
⊥i

+ σinterΓ[ξ(2)⊥i
− ξ

(1)
⊥i

],

ξ̇
(m)
⊥i

= JF(Vm,s, φm)ξ
(m)
⊥i
− σintra

N
∑

k=1
L̃

(m)
ik DGξ

(m)
⊥k

+ σinterΓ
p=m+1≤Q

∑
p=m−1>0

[ξ
(p)
⊥i
− ξ

(m)
⊥i

],
(11)

where i = 2, 3, . . . , N and m = 2, 3, . . . , Q. These transverse error dynamics are the required
master stability equation, as solving the above Equation (11) for the calculation of the Lya-
punov exponents gives the condition for the emergence of stable intralayer synchronization.
The stability of the referred state requires, as a necessary condition, the maximum of these
transverse Lyapunov exponents to be negative.

Note that the master stability equation is not fully decoupled: rather, it is a Q(N− 1)d-
dimensional coupled equation. In general, this master stability equation cannot be further
reduced to a lower dimensional form; therefore, the calculation of the maximum Lyapunov
exponent becomes too expensive. However, there are a few instances in which this intricacy
can be overcome, where the master stability equation can be reduced to (N − 1) numbers
of Qd-dimensional equations. The relevant instances are illustrated below:

1. If the connectivity structure of all the layers is identical, then all of them share the
same Laplacian matrix. Without loss of generality, we choose the Laplacian matrix to
be L (1). Then, the master stability equation becomes

ξ̇
(m)
⊥i

= JF(Vm,s, φm)ξ
(m)
⊥i
− σintraλ

(1)
i DGξ

(m)
⊥i

+ σinterΓ
p=m+1≤Q

∑
p=m−1>0

[ξ
(p)
⊥i
− ξ

(m)
⊥i

],

i = 2, . . . , N, and m = 1, 2, . . . , Q;
(12)

2. If Q = 2, i.e., the total number of layers is two, and the corresponding Laplacian
matrices are L (1) and L (2). Furthermore, suppose that the intralayer connection in
any one layer is globally coupled—for example, say layer-1 is globally coupled—then
the eigenvalues of the corresponding Laplacian matrix L (1) are 0 with algebraic
multiplicity 1 and N with algebraic multiplicity N − 1. Then, in this scenario, the
master stability Equation (11) can be fully decoupled into a low dimensional form,
by projecting the transverse error components onto the basis of eigenvectors of L̃ (2),
which eventually gives the decoupled master stability equation as

ξ̇
(1)
⊥i

= JF(V1,s, φ1)ξ
(1)
⊥i
− σintraNDGξ

(1)
⊥i

+ σinterΓ[ξ(2)⊥i
− ξ

(1)
⊥i

],

ξ̇
(2)
⊥i

= JF(V2,s, φ2)ξ
(2)
⊥i
− σintraλ

(2)
i DGξ

(2)
⊥i

+ σinterΓ[ξ(1)⊥i
− ξ

(2)
⊥i

];
(13)
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3. Using a similar concept as in 2, we can infer that if the connectivity structures of
the layers of our multiplex framework are such that the Laplacian matrix of each
layer is either L (1) or L (2), and L (1) is the Laplacian matrix associated with globally
connected networks, then the master stability equation can be fully decoupled into
a lower dimensional form. For example, we say that the first q1 number of layers
have an identical Laplacian matrix L 1, and that q2(= Q− q1) number of layers have
identical Laplacian matrices L (2). Then, following 2, the master stability equation
can be represented as

ξ̇
(m)
⊥i

= JF(Vm,s, φm)ξ
(m)
⊥i
− σintraNDGξ

(m)
⊥i

+ σinterΓ
p=m+1

∑
p=m−1>0

[ξ
(p)
⊥i
− ξ

(m)
⊥i

],

m = 1, 2, · · · , q1,

ξ̇
(m)
⊥i

= JF(Vm,s, φm)ξ
(m)
⊥i
− σintraλ

(2)
i DGξ

(m)
⊥i

+ σinterΓ
p=m+1≤Q

∑
p=m−1

[ξ
(p)
⊥i
− ξ

(m)
⊥i

],

m = q1 + 1, 2, · · · , Q;

(14)

4. When none of the intralayer connectivity structure is globally coupled but the Lapla-
cian matrices L (1) and L (2) are commutative with each other, then also the master
stability equation can be reduced to a lower dimensional form, because the commuta-
tive Laplacian matrices share the same set of the basis of eigenvectors that diagonalizes
them. Hence, the reduced master stability equation becomes

ξ̇
(m)
⊥i

= JF(Vm,s, φm)ξ
(m)
⊥i
− σintraλ

(1)
i DGξ

(m)
⊥i

+ σinterΓ
p=m+1

∑
p=m−1>0

[ξ
(p)
⊥i
− ξ

(m)
⊥i

],

m = 1, 2, · · · , q1,

ξ̇
(m)
⊥i

= JF(Vm,s, φm)ξ
(m)
⊥i
− σintraλ

(2)
i DGξ

(m)
⊥i

+ σinterΓ
p=m+1≤Q

∑
p=m−1

[ξ
(p)
⊥i
− ξ

(m)
⊥i

],

m = q1 + 1, 2, · · · , Q.

(15)

Therefore, in the above discussed scenarios, for the stability of an intralayer synchro-
nization state, it is sufficient to check the stability of the Qd-dimensional (N− 1) decoupled
transverse error dynamics, instead of the Qd(N − 1)-dimensional coupled system. Then,
the intralayer synchronization state is locally asymptotically stable if the maximum Lya-
punov exponent of these Qd-dimensional systems becomes negative.

3.1.3. Simultaneous Achievement of Layer-Wise Synchronization

This subsection delves into the concurrent achievement of synchronization across all
the layers. In other words, what we will try to show is that when the layers are connected
to each other (i.e., interlayer coupling strength σinter 6= 0), then, for a specific value of
intralayer strength σintra, either all the layers are in a state of desynchrony or synchrony. To
prove this, here we will go through the method of contradiction.

Therefore, we start with the consideration that for specific values of σintra and σinter
all the layers are in a state of synchrony, except for a particular layer. For the sake of
definiteness, we say that layer-l is in a desynchronized state, i.e., Vm,1 = Vm,2 = · · · = Vm,N ,
for all m but l. Then, at least two nodes, i and j, exist in layer-l, such that

Vl,i 6= Vl,j and V̇l,i 6= V̇l,j. (16)

Now, in layer-(l + 1), the evolution of the ith and jth nodes is given by

V̇l+1,i = F(Vl+1,i, φl+1) + σintra
N
∑

k=1
C

(l+1)
ik G(Vl+1,i, Vl+1,k)

+ σinterΓ
p=(l+2)≤Q

∑
p=l>0

[Vp,i −Vl+1,i],
(17)
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and

V̇l+1,j = F(Vl+1,j, φl+1) + σintra
N
∑

k=1
C

(l+1)
jk G(Vl+1,j, Vl+1,k)

+ σinterΓ
p=(l+2)≤Q

∑
p=l>0

[Vp,j −Vl+1,j].
(18)

According to our assumption, layer-(l + 1) is in synchrony; therefore, for the ith and jth
nodes, Vl+1,i = Vl+1,j. Now, using relation (16), from Equations (17) and (18), we find that
V̇l+1,i 6= V̇l+1,j, due to the fact that the last term of both equations becomes unequal, which
contradicts the fact that layer-(l + 1) is in a state of synchrony, and the desynchrony in
layer-l has spread in layer-(l + 1).

Similarly, one can ascertain that the desynchronized motion in layer-l propagates into
layer-(l − 1). Thus, the propagation of asynchronous motion in layer-l can be observed
in the adjacent layers-(l + 1) and (l − 1). Then, the asynchronous movements of adjacent
layers (l− 1), l, and (l + 1) are likely to transmit to layers (l− 2) and (l + 2) in a brief period
of time. Thus, in the multiplex framework (1), it can be observed that each layer becomes
desynchronized in rapid succession within a brief timeframe, due to the existence of a single
desynchronized layer. Therefore, one can conclude that asynchronous and synchronous
layers cannot coexist in the multiplex network (1) when the layers are connected to each
other (i.e., σinter 6= 0), and synchrony occurs in each layer concurrently.

The obtained result, concerning the simultaneous emergence of synchronization in
all the layers, plays a crucial role in our study, as changes made in one layer will affect the
occurrence of synchronization in all the other layers. Throughout the next section, we will
investigate how mismatch, in terms of system parameters φm in one layer, influences the
emergence of intralayer synchrony in the whole multiplex network (1).

3.2. Numerical Results

Intralayer synchronization in the multiplex framework (1) implies the occurrence of
complete synchrony in each layer. Therefore, in order to quantify the intralayer synchronous

state, we introduce the intralayer synchronization error as Eintra =
1
Q

Q
∑

m=1
Em, where

Em =

〈(
N
∑

i,j=1

‖Vm,j(t)−Vm,i(t)‖
N(N − 1)

) 1
2
〉

T

(19)

quantifies the average complete synchronization error inside layer-m. Here, ‖‖ represents
the standard Euclidean norm, and T is an adequately large interval of time over which
the synchronization error Em is averaged. Em = 0 indicates the emergence of complete
synchrony in layer-m, whereas a nonzero value corresponds to asynchrony. Consequently,
the zero (nonzero) value of Eintra signifies the achievement of intralayer synchronization
(desynchronization) in the multiplex network.

For the sake of simplicity, we first consider Q = 2, i.e., the total number of layers
in the multiplex network is assumed to be two, and the connectivity structures of both
the layers are represented by an Erdős–Rényi (ER) [53] random network, with N = 100
and edge-generating probability prand. The isolated node dynamics in both layers are
represented by chaotic Rössler oscillators [54], with the nodes in a particular layer to be
identical, while they are different in different layers, in terms of system parameters. We
consider the synchronization noninvasive intralayer coupling in all the layers to be linear
diffusive through the first state variable of the Rössler oscillator, and the interlayer coupling
is assumed to be through the second state variable. The evolution dynamics of the multiplex
network can then be expressed as
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ẋ1,j = −ω1y1,j − z1,j + σintra
N
∑

k=1
C

(1)
jk (x1,k − x1,j),

ẏ1,j = ω1x1,j + ay1,j + σinter(y2,j − y1,j),
ż1,j = b + (x1,j − c)z1,j,

ẋ2,j = −ω2y2,j − z2,j + σintra
N
∑

k=1
C

(2)
jk (x2,k − x2,j),

ẏ2,j = ω2x2,j + ay2,j + σinter(y1,j − y2,j),
ż2,j = b + (x2,j − c)z2,j, j = 1, 2, . . . , N,

(20)

where the parameter values are fixed at a = 0.2, b = 0.2, and c = 5.7, for which each
individual oscillator exhibits chaotic dynamics. The isolated node dynamics of the two
layers are different from one other, in terms of the parameters ω1 and ω2, where ω1 = ω and
ω2 = ω + ∆ω, with ∆ω being the parameter of mismatch between the layers. Here, we fix
the value of ω = 1, and the range of ∆ω has been chosen in such a way that each individual
node in the second layer shows chaotic time evolution. Notably, the x coupling induces
synchronization of the bounded type in a single-layer network of Rössler oscillators [50].
Therefore, we choose this coupling configuration to investigate how parameter mismatch
among the layers affects the region of synchronization within each layer, i.e., whether the
bounded region of synchronization expands or shrinks due to the presence of mismatch
among the layers.

As the main focus of the present study is to investigate the effect of parameter mis-
match on the occurrence of intralayer synchronization in a multiplex framework, we here
take the connectivity structure of both layers to be identical, i.e., C (1) = C (2), so that
parameter mismatch will only play the role of a difference maker in our investigation.
Therefore, we take the connectivity structure of both layers to be a random network with
N = 100 nodes and edge-generating probability prand = 0.1, and we integrate the sys-
tem (20) for a period of 3× 105 time steps, with the integration step size δt = 0.01, and the
last 105 time units being taken for calculating the average synchronization error.

In order to study the effect of parameter mismatch on the emergence of intralayer
synchronization in a multiplex network, we first investigate the layer-wise synchronization,
by evaluating the synchronization errors E1 and E2 associated with layer-1 and layer-2, for
a fixed value of mismatch parameter ∆ω = 0.1 and for three different values of interlayer
coupling strength σinter. The corresponding results are depicted in Figure 2. The solid and
dashed curves represent the variation of synchronization error E1 and E2, respectively,
as a function of intralayer coupling strength σintra. When the layers are not connected,
i.e., when σinter = 0 (red curves), synchronization in layer-1 and layer-2 emerges at two
different critical intralayer coupling strengths: σ∗intra ≈ 0.06 and σ∗intra ≈ 0.055, respectively.
Due to the absence of interlayer connection and to two different parameter values, the two
layers achieve synchrony at two different values of σintra and, furthermore, layer-2 achieves
synchrony at a comparably lower critical coupling, as compared to layer-1. In the presence
of interlayer connections, i.e., σinter 6= 0, both layers achieve synchrony concurrently. The
blue and green curves in Figure 2 illustrate the variation of the synchronization errors E1 and
E2 for sufficiently lower and sufficiently larger interlayer coupling strengths σinter = 0.001
and σinter = 0.1, respectively. For a smaller value of σinter, both layers achieve synchrony
at exactly the same critical coupling, σ∗intra ≈ 0.058, while, for σinter = 0.1, synchrony
in both layers emerges at an adequately smaller value of intralayer coupling strength,
σ∗intra ≈ 0.01. This affirms our finding that all the layers of multiplex networks synchronize
simultaneously when coupled through interlayer connections. Furthermore, from Figure 2,
we can conclude that the presence of parameter mismatch and sufficient interlayer coupling
between the layers induces an enhancement in intralayer synchronization in multiplex
networks.
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Figure 2. Synchronization errors E1 and E2, corresponding to layer-1 and layer-2, are depicted by
solid and dashed curves as a function of intralayer coupling strength σintra for three different values
of interlayer coupling strengths: σinter = 0 (in red); σinter = 0.01 (in blue); and σinter = 0.1 (in green).
The mismatch parameter is fixed at ∆ω = 0.1. The connectivity probability of both layers is fixed
at prand = 0.1. All the curves are obtained by taking 10 different network realizations and initial
conditions, which are drawn from the phase space of isolated node dynamics.

Proceeding, we evaluate the intralayer synchronization error Eintra as a function of
σintra for different values of mismatch parameter ∆ω and a fixed value of the interlayer
coupling strength σinter = 0.1. Figure 3a delineates the corresponding results, where red,
blue, and magenta curves illustrate the intralayer synchronization transition for three
different values of mismatch parameter ∆ω = 0, ∆ω = 0.02, and ∆ω = 0.1, respectively.
Here, we observe that the intralayer synchronization occurs in a bounded interval I = [α, β],
where α(β) indicates the critical intralayer coupling for the transition from desynchrony
to synchrony (synchrony to desynchrony). For ∆ω = 0, i.e., when both the layers are
identical, the intralayer synchronization error becomes 0 within the range of interval
I ≈ [0.055, 0.215]. In the presence of parameter mismatch (∆ω = 0.02), the intralayer
synchronization occurs for a comparably larger interval of intralayer coupling strength
σintra ∈ I ≈ [0.041, 0.225]. For larger values of parameter mismatch (∆ω = 0.1), intralayer
synchrony emerges even in a wider range of coupling strength I ≈ [0.01, 0.24]. Therefore,
intralayer synchrony on multiplex networks can emerge more easily, due to the introduction
of parameter mismatch among the layers, than on a multiplex network with identical layers.
In other words, due to the parameter mismatch in one layer, the other layer can achieve
synchrony at those values of intralayer coupling strengths at which synchronization is not
possible with identical parameter values. Hence, we can conclude that parameter mismatch
in one layer induces synchronization in another one.

To validate the acquired result, we proceed through the linear stability analysis of
the intralayer synchronous solution, by evaluating the maximum Lyapunov exponent
transverse to the synchronization manifold, as discussed in Section 3.1.2. Therefore, we
evaluate the maximum transverse Lyapunov exponent Λintra, whose negative values for
varying coupling strengths indicate the region of a stable synchronous solution. As we
have assumed the connectivity structure in both layers to be identical, the calculation of
Λintra can be done by solving the master stability Equation (12). In Figure 3b, we plot the
curves of Λintra as a function of the intralayer coupling strength σintra for the same set of
values taken for the evaluation of Eintra in the upper panel. The red, blue, and magenta
curves illustrate the variation of Λintra for three different values of mismatch parameter
∆ω = 0, 0.02, and 0.1, respectively. As observed, the curves of Λintra remain negative
in the same bounded region I = [α, β], for which the value of the synchronization error
is 0. Thus, our observation regarding the enhancement in the region of occurrence of
intralayer synchronization with the introduction of a parameter mismatch between the
layers is validated analytically, using the linear stability analysis.
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Figure 3. (a) Variation of intralayer synchronization error as a function of σintra for three different
values of mismatch parameter ∆ω = 0 (in red), ∆ω = 0.02 (in blue), and ∆ω = 0.1 (in magenta),
respectively. The interlayer coupling strength is fixed at σinter = 0.1; (b) the maximum Lyapunov
exponent Λintra as a function of σintra for the same set of mismatch parameter values taken in the
upper panel. The dashed horizontal black line represents the 0 line. In both the upper and lower
panel, the network connectivity probability is taken to be prand = 0.1.

Thereafter, to scrutinize the complete scenario of intralayer synchronization in a wider
range of parameter values, we evaluate Eintra by simultaneously varying the intralayer and
interlayer couplings, σintra and σinter, respectively, for two different values of mismatch
parameter ∆ω. The corresponding result is illustrated in Figure 4, where the color bars
indicate the variation of Eintra, with the deep blue region representing the domain of syn-
chronization. In the absence of mismatch (∆ω = 0), i.e., when both the layers are identical,
intralayer synchronization emerges within a bounded region of coupling strength, where
the left and right bound of the interval indicates the critical intralayer coupling strengths
for the transition from desynchrony to synchrony and from synchrony to desynchrony,
respectively. Furthermore, these left and right critical points for the emergence of synchrony
are almost identical, independent of the value of σinter, i.e., the occurrence of intralayer
synchrony for identical layers is almost independent of the interlayer connections (see
Figure 4a). On the other hand, in Figure 4b, when a mismatch is introduced (i.e., ∆ω = 0.1),
the area of synchrony increases along with the increasing value of interlayer coupling σinter.
Here, the critical coupling for the transition from desynchrony to synchrony decreases
with increasing values of σinter, up to σinter ≈ 0.055. Beyond that, the critical coupling
for the achievement of intralayer synchronization is almost identical, independent of the
value of σinter. In addition, the critical coupling for the transition from synchrony to desyn-
chrony increases with increasing σinter. Therefore, due to the introduction of a mismatch
between the layers, the multiplex network can achieve intralayer synchrony for those pairs
of (σintra, σinter), where the intralayer synchronization is forbidden for multiplex network
with identical layers, or, in other words, mismatch introduced in one layer induces syn-
chronization in another, because of the simultaneous occurrence of layer-wise synchrony.
This eventually results in an enhancement of the area of intralayer synchronization.
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Figure 4. Variation of intralayer synchronization error Eintra as a function of σintra and σinter for two
different values of mismatch parameter ∆ω = 0 (a) and ∆ω = 0.1 (b), respectively. For both the
subfigures, in the white region the system becomes unbounded. The color bars indicate the variation
of intralayer synchronization error Eintra, where the 0 value of Eintra represents the emergence of
intralayer synchrony. The connectivity probability in both the layers is fixed at prand = 0.1.

Until now, the results we have discussed have been for multiplex networks with fixed
intralayer connectivity structure, i.e., the value of edge-joining probability prand is fixed.
But, prand is one of the most important parameters in our study, as it indicates how densely
the nodes within the layers are connected to one other. Therefore, we now investigate the
combined effect of mismatch and layer-wise connectivity density. In Figure 5, we evaluate
the variation of the intralayer synchronization error, by simultaneously varying σintra and
prand for the identical parameter, i.e., ∆ω = 0 (Figure 5a) and mismatch parameter with
∆ω = 0.1 (Figure 5b), while keeping the interlayer coupling strength fixed at σinter = 0.1.
As observed, the region of synchronization enhances in the presence of the mismatch
parameter, compared to the scenario where no mismatch among the layers is considered:
in other words, due to the introduction of mismatch among the layers, intralayer synchro-
nization emerges for those connectivity probabilities at which the multiplex network with
identical layers is unable to achieve synchrony.

Figure 5. Variation of intralayer synchronization error Eintra as a function of intralayer coupling
strength σintra and edge-generating probability prand for two different values of mismatch parameter
∆ω = 0 (a) and ∆ω = 0.1 (b), respectively. In both the subfigures, the region in white indicates the
unbounded region. The color bars indicate the variation of intralayer synchronization error Eintra,
where the 0 value of Eintra represents the emergence of intralayer synchrony. The interlayer coupling
strength is fixed at σinter = 0.1.
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Now, in order to show the generality of the acquired results in the framework of mul-
tiplex networks, we consider Q = 3, i.e., the multiplex network is composed of three layers
organized in a chain, and the connectivity structure of all the three layers are represented,
as previously, by an Erdős–Rényi (ER) random network, with N = 100 and edge-generating
probability prand. The isolated node dynamics in both layers are represented by chaotic
Rössler oscillators, with the nodes in a particular layer being identical, while they are
different in different layers, in terms of system parameters. Once again, we consider the
synchronization noninvasive intralayer coupling in all the layers to be linear diffusive
through the first state variable of the Rössler oscillator, and the interlayer coupling is
assumed to be through the second state variable. Then, the evolution dynamics of the
multiplex network can be represented as

ẋ1,j = −ω1y1,j − z1,j + σintra
N
∑

k=1
C

(1)
jk (x1,k − x1,j),

ẏ1,j = ω1x1,j + ay1,j + σinter(y2,j − y1,j),
ż1,j = b + (x1,j − c)z1,j,

ẋ2,j = −ω2y2,j − z2,j + σintra
N
∑

k=1
C

(2)
jk (x2,k − x2,j),

ẏ2,j = ω2x2,j + ay2,j + σinter(y1,j + y3,j − 2y2,j),
ż2,j = b + (x2,j − c)z2,j,

ẋ3,j = −ω3y3,j − z3,j + σintra
N
∑

k=1
C

(3)
jk (x3,k − x3,j),

ẏ2,j = ω3x3,j + ay3,j + σinter(y2,j − y3,j),
ż3,j = b + (x3,j − c)z3,j, j = 1, 2, . . . , N,

(21)

where the parameter values are fixed at a = 0.2, b = 0.2, and c = 5.7, for which each
individual oscillator exhibits chaotic dynamics. From Equation (21), it is clear that layer-2
is adjacent to both layer-1 and layer-3, while layer-1 and layer-3 are connected through the
interlayer links only by layer-2. The isolated node dynamics of the layers are different from
one other, in terms of the intrinsic parameters ω1, ω2, and ω3, where ω1 = ω, ω2 = ω +∆ω,
and ω3 = ω + 2∆ω, with ∆ω being the parameter of mismatch between the layers. Here,
we fix the value of ω = 1, and the range of ∆ω has been chosen in such a way that each
individual node in the second and third layers exhibits chaotic time evolution.

To study the effect of parameter mismatch on the occurrence of intralayer synchroniza-
tion in the three-layered multiplex network (21), we again take the connectivity structure
of all the layers to be identical, i.e., C (1) = C (2) = C (3), so that the mismatch parameter
will only play the role of difference maker in our investigation. Therefore, we consider
the connectivity structure of each layer to be a random network, with N = 100 nodes and
edge-generating probability prand = 0.1, and we evaluate the intralayer synchronization
error Eintra as a function of σintra for different values of ∆ω, and a fixed value of interlayer
coupling strength σinter = 0.1. The corresponding results are delineated in Figure 6a, where
the red, blue, and magenta curves represent the intralayer synchronization transition for
three different values of mismatch parameter ∆ω = 0, ∆ω = 0.05, and ∆ω = 0.1, respec-
tively. It can be seen that the intralayer synchronization occurs in a bounded interval,
I = [α, β], for all the three values of the mismatch parameter. However, the region of syn-
chronization widens as the amount of mismatch increases, through increasing the value of
∆ω. We further verify the acquired result by evaluating the maximum Lyapunov exponent
Λintra transverse to the intralayer synchronization manifold S intra. In Figure 6b, we plot
the curves of Λintra as a function of σintra for the same set of parameter values for which
Einta has been calculated. Clearly, the curves of Λintra remain negative in the same bounded
region I for which the value of Eintra is 0. Thus, our observation regarding the enhance-
ment in the region of occurrence of intralayer synchronization, with the introduction of a
parameter mismatch between the layers of the multiplex network, holds true also for the
three-layered multiplex network.
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Figure 6. (a) Variation of intralayer synchronization error as a function of σintra for three different
values of mismatch parameter ∆ω = 0 (in red), ∆ω = 0.05 (in blue), and ∆ω = 0.1 (in magenta),
respectively. The interlayer coupling strength is fixed at σinter = 0.1; (b) the maximum Lyapunov
exponent Λintra as a function of σintra for the same set of mismatch parameter values taken in the
upper panel. The dashed horizontal black line represents the 0 line. In both the upper and lower
panel, the network connectivity probability is taken to be prand = 0.1.

4. Conclusions

We have investigated the intralayer synchronization phenomenon in multiplex net-
works where the layers are different from one other, in terms of parameter mismatch in
the intrinsic dynamics of unitary components, while the intrinsic dynamics of each unitary
component of a particular layer are identical. Based on the assumption of synchronization
noninvasive coupling functions (which is, however, necessary for the emergence of an
intralayer synchronous solution), we derived a necessary condition for the referred solution
to be stable, using the master stability function approach. We further uncovered that,
despite the layers being nonidentical, all the layers of the multiplex network synchronize
simultaneously when connected through interlayer connections. Using the paradigmatic
chaotic Rössler oscillators to describe the intrinsic dynamics of individual components of
the layers, we showed that the layers can achieve synchrony at comparably lower values of
coupling strengths, with an increasing value of mismatch parameter between the layers. In
addition, we found that the area of intralayer synchronization becomes wider with the in-
creasing value of the mismatch parameter, which was analytically validated by performing
the stability analysis of the synchronous solution. Our study also revealed that, due to the
introduction of a mismatch between the layers, through changing the parameter values
in one layer, the other layer can achieve synchrony at those values of coupling strengths
at which synchronization is forbidden when the layers are identical, i.e., heterogeneity
enhances synchrony.

Thus, we have provided a significant contribution to the investigation of intralayer
synchronization in multiplex networks subject to layer mismatch, even though many
areas of further research are still unexplored. In particular, here, we have considered
the heterogeneity among different layers, by means of constant parameter mismatch in
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the intrinsic dynamics of individual elements of the layers. Therefore, consideration of
adaptive mismatch procedure with various intralayer and interlayer coupling schemes is
of special interest for future research. We here provided the numerical results only for a
small mismatch in system parameters, which show that parameter mismatch enhances
intralayer synchronization. However, the question remains: does it hold true even with a
very large mismatch in parameters? Therefore, another intriguing area of future research
is to investigate the effect of a sufficiently large parameter mismatch on the emergence of
intralayer synchronization. We believe that our study can provide a better understanding of
the impact of parameter mismatch among the layers of multiplex networks in the emergence
of different kinds of synchronization behavior.
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