
Microservices to Address the Change
Challenges in Socio-Technical

Evolutionary-Teal Organizations
A Design-Science-Research Approach

Dissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

im Fach Informatik
eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät der
Humboldt-Universität zu Berlin

von
Dipl.-Inf. Johann Sell

Präsidentin der Humboldt-Universität zu Berlin:
Prof. Dr. Julia von Blumenthal

Dekanin der Mathematisch-Naturwissenschaftlichen Fakultät:
Prof. Dr. Caren Tischendorf

Gutachter:

1. Prof. Dr. Niels Pinkwart

2. Prof. Dr. Kurt Schneider

3. Prof. Dr. Jan Mendling

Datum der Disputation: 13. Juli 2023

iii

Acknowledgements

I would like to thank my supervisor, Niels Pinkwart, for providing guidance
and feedback throughout this project.

Thanks also to my wife Johanna and my children, Emily and Sophia, for putting
up with me being sat in the office for hours on end, and for providing guidance
and a sounding board when required.

And to my parents, who set me off on the road to this thesis a long time ago.

Furthermore, I would like to thank the following people, without whom I would
not have been able to complete this research.

Niels Pinkwart, Kurt Schneider and Jan Mendling for taking the time for
assessing the thesis and writing the assessment reports.

The volunteers and employees of Viva con Agua de St. Pauli e.V., especially
Ansgar Holtmann, Dennis Kleber, Ella Monden, Frederik Gottemeyer, Jens
Ottmann, Koray Döver, Mario Dresing, Sindy Rösler, Tobias Kästle, as well
as all members of the crews Berlin and Hamburg.

The research teams at the Humboldt-Universität zu Berlin, especially André
Frochaux, Andreas Lingnau, Eva Sandig, Katarzyna Biernacka, Lily Frey,
Michael Rücker, Mina Ghomi, Nicole Schweikardt, Petra Kämpfer, Raphael
Zender, Sandra Schulz, Sebastian Claus, Sven Strickroth, and Yasmin Patzer.

Mark Kanak for proofreading.

iv

Abstract

The emergence of new types of organizational structures, such as evolutionary-
teal organizations, almost always leads to the development of socio-technical
constructs when it comes to working in collaboration with modern CSCW ap-
plications. A consequence of this is that the social system’s autopoietic change
processes create challenges that compel one to adjust the implementation of
the technical tool to the social system’s new configuration. In particular, with
respect to socio-technical evolutionary-teal organizations, the loosely coupled
self-managed teams with flat hierarchies and independent change processes
lead to several new and unrelated requirements. This being the case, the social
system’s fundamental characteristics are continuously being challenged by the
design of CSCW tools that is naturally fixed to requirements that describe the
needs of the social system at an earlier point in time.
This thesis is structured according to the design science research (DSR)

approach and focuses on the research question (RQ): “How can socio-technical
evolutionary-teal organizations address the challenges of joint optimization and
organizational choice during their autopoietic processes?” For this purpose, the
case study Viva con Agua de St. Pauli e.V. is investigated using a qualitative
ethnographical approach during the DSR cycles. Addressing the RQ, two
artifacts are designed from a technical as well as a social perspective. While
the technical perspective primarily investigates the adjustments of technology,
the social perspective focuses on the management of change in socio-technical
evolutionary-teal organizations.

After introducing the topic and formulating the RQ in Chapter 1, Chapter
2 contextualizes the topics, while Chapter 3 introduces the qualitative method-
ology and discusses the applied aspects of trustworthiness. In Chapter 4, I
describe the case, as well as my ethnographical participation in it. Chapter 5
connects the case to the scientific discourse by presenting a literature review.

In Chapter 6 I propose a microservice platform as an artifact that addresses
the RQ from a technical perspective. The microservice architecture aims at
spreading the responsibility for the software through a heterogeneous ecosystem
of developers. Thus, several new challenges have to be considered, such as a
distributed UI. Furthermore, Chapter 6 depicts a study designed in order to
investigate to what degree the artifact fits with the RQ. Chapter 7 presents the
USMU workshop addressing the RQ from the social perspective. This artifact
strives to intertwine the characteristics of evolutionary-teal organizations with
agile software development and participatory design methods. Furthermore,
the Chapter 7 describes a study that is investigating the suitability of the
artifact with regards to the RQ. Chapter 8 summarizes the thesis.

In my studies, I examine the fact that both artifacts can be used to address
the RQ. Additionally, I was able to identify valuable improvements for both
of my artifacts. Hence, the project follows the lifecycle of a DSR project by
reasoning through the results presented here for its next iteration.

v

Zusammenfassung

Neue Organisationsformen, wie evolutionäre Organisationen, bilden in vie-
len Kooperationsszenarien sozio-technische Konstrukte mit modernen CSCW
Anwendungen aus. Daher erfordern Veränderungen dieser sozialen Systeme
eine kontinuierliche Anpassung der technischen Tools an die neuen sozialen
Konfigurationen.
Diese Dissertation ist als Design Science Research (DSR) Projekt konzip-

iert und addressiert die folgende Forschungsfrage (RQ): “Wie können sozio-
technische, evolutionäre Organisationen die Herausforderungen der joint opti-
mization und des organizational choice während ihrer autopoietischen Verän-
derungsprozesse addressieren?” Die Fallstudie Viva con Agua de St. Pauli
e.V. wurde mittels qualitativer und ethnographischer Methoden im Rahmen
der entsprechenden DSR Zyklen untersucht. Das Forschungsprojekt fokussiert
die Entwicklung von Artefakten indem sowohl eine technische, als auch eine
soziale Perspektive eingenommen wird. Aus dem Blickwinkel der technische
Perspektive wird untersucht, wie Technologie angepasst werden muss, um der
RQ gerecht zu werden. Die soziale Perspektive addressiert die Entwicklung
von Artefakten, um Veränderungen im sozialen System mit Veränderungen
der eingesetzten Technologie zu koordinieren.
In Kapitel 1 wird das Thema motiviert und das RQ eingeführt. Das Kapi-

tel 2 kontextualisiert die Themengebiete, während Kapitel 3 die qualitative
Methodologie und die zugrundeliegenden Gütekriterien diskutiert. Im Kapitel
4 wird die Fallstudie, sowie meine ethnographische Partizipation präsentiert.
Das Kapitel 5 verbindet den Fall mit dem wissenschaftlichen Diskurs.
Das Kapitel 6 führt eine Microservice-Plattform ein, um die RQ aus der

technischen Perspektive zu addressieren. Die Architektur dient der Verteilung
von Verantwortlichkeit für die Software in einem heterogenen Netzwerk von
Entwickler:innen. Dabei müssen diverse neue Herausforderungen beachtet
werden, wie etwa die Verteilung des user interface. Eine Studie untersucht das
Ausmaß, mit dem das Artefakt die RQ beantwortet. Darüber hinaus werden
Verbesserungsmöglichkeiten identifiziert. Kapitel 7 präsentiert den USMU
Workshop, welcher die RQ aus der sozialen Perspektive addressiert. Das Arte-
fakt dient der Verbindung der Charakteristiken evolutionärer Organisationen
mit agiler Software Entwicklung und mit Methoden des partizipativen Designs.
Das Kapitel umfasst ebenfalls eine Studie, die das Artefakt in Relation zur
RQ betrachtet.

Die Studien zeigen, dass beide Artefakte die RQ adressieren. Zudem konnte
ich für beide Artefakte wertvolle Verbesserungsmöglichkeiten aufzeigen. Somit
motivieren die Ergebnisse den nächsten Schritt des Projekts und die vorliegende
Thesis wird Bestandteil des zyklischen Ablaufs eines DSR Projekts.

Author Publications

Bierschenk, Tom, Lily Frey, and Johann Sell (2020). Obtaining Problem
Statements and Transformation into Ideas - Workshop Data Set. doi:
10.5281/zenodo.3766962.

Busch, Melanie et al. (Mar. 2022). “Vision Video Making with Novices: A
Research Preview”. In: Requirements Engineering: Foundation for Software
Quality. REFSQ 2022. Lecture Notes in Computer Science. Ed. by V.
Gervasi and A. Vogelsang. Vol. 13216. Springer, pp. 251–258. doi: 10.
1007/978-3-030-98464-9_19.

Patzer, Yasmin, Johann Sell, and Niels Pinkwart (2016). “Anforderungen und
ein Rahmenkonzept für inklusive E-Learning Software”. In: Tagungsband
der 14. e-Learning Fachtagung Informatik (DeLFI). Vol. 233. Köllen
Druck+Verlag GmbH.

Sell, Johann (2020). Transform Problem Statements into Goals - A brief
Workshop. doi: 10.5281/zenodo.3732399.

Sell, Johann (2021). User Stories made by Users Workshop Analysis Results.
doi: 10.5281/zenodo.5574543.

Sell, Johann (2022a). Documentation of the CSCW microservice architecture
Heureka (0.30.2). doi: 10.5281/zenodo.6544394.

Sell, Johann (Nov. 2022b). Software developers are users of the Heureka
microservice platform. Version 1.0.0. doi: 10.5281/zenodo.7330414.

Sell, Johann (Sept. 2022c). Viva con Agua de St. Pauli e.V. User Stories
created by socio-trechnical walkthroughs. doi: 10.5281/zenodo.7103998.

Sell, Johann and Elias John (2020). User Stories made by Users Workshop
Data Set (Version: 1.0.0). doi: 10.5281/zenodo.3686671.

Sell, Johann, Dennis Kleber, and Frederik Gottemeyer (Nov. 2022). Stream
microservice for the Heureka microservice platform. Version 1.0.0. doi:
10.5281/zenodo.7315333.

Sell, Johann, Dennis Kleber, and Tobias Kästle (Nov. 2022a). Heureka
microservice platform infrastructure services. Version 1.1.0. doi: 10.5281/
zenodo.7315357.

vii

https://doi.org/10.5281/zenodo.3766962
https://doi.org/10.1007/978-3-030-98464-9_19
https://doi.org/10.1007/978-3-030-98464-9_19
https://doi.org/10.5281/zenodo.3732399
https://doi.org/10.5281/zenodo.5574543
https://doi.org/10.5281/zenodo.6544394
https://doi.org/10.5281/zenodo.7330414
https://doi.org/10.5281/zenodo.7103998
https://doi.org/10.5281/zenodo.3686671
https://doi.org/10.5281/zenodo.7315333
https://doi.org/10.5281/zenodo.7315357
https://doi.org/10.5281/zenodo.7315357

viii Author Publications

Sell, Johann, Dennis Kleber, and Tobias Kästle (Nov. 2022b). Heureka
microservice platform infrastructure services. Version 1.0.0. doi: 10.5281/
zenodo.7315347.

Sell, Johann, Dennis Kleber, Jens Ottmann, et al. (Nov. 2022a). Drops
microservice for the Heureka microservice platform. Version 1.1.0. doi:
10.5281/zenodo.7315309.

Sell, Johann, Dennis Kleber, Jens Ottmann, et al. (Nov. 2022b). Drops
microservice for the Heureka microservice platform. Version 1.0.0. doi:
10.5281/zenodo.7315284.

Sell, Johann and Niels Pinkwart (2016). “Rambla: Supporting collaborative
group creativity for the purpose of concept generation”. In: Proceedings of the
22th International Conference on Collaboration and Technology (CRIWG).
Ed. by T. Yuizono et al. Vol. 9848 LNCS. Kanazawa, Japan: Springer,
pp. 81–97. isbn: 9783319447988. doi: 10.1007/978-3-319-44799-5_7.

Sell, Johann and Niels Pinkwart (2018). “Socio-Technical Self-Development
Using A Microservice Architecture”. In: International Conferences e-Health
2018; ICT, Society, and Human Beings 2018; and Web Based Communities
and Social Media 2018. Ed. by Mário Macedo et al. Madrid: IADIS Press,
pp. 261–264. isbn: 978-989-8533-77-7. url: https://iadisportal.
org/digital-library/socio-technical-self-development-using-a-
microservice-architecture.

Völker, Mario, Lily Frey, and Johann Sell (2020). Participatory Design of Us-
ability Requirements for Access Control in an Evolutionary-Teal Organization
Workshop Data Set. doi: 10.5281/zenodo.3736813.

https://doi.org/10.5281/zenodo.7315347
https://doi.org/10.5281/zenodo.7315347
https://doi.org/10.5281/zenodo.7315309
https://doi.org/10.5281/zenodo.7315284
https://doi.org/10.1007/978-3-319-44799-5_7
https://iadisportal.org/digital-library/socio-technical-self-development-using-a-microservice-architecture
https://iadisportal.org/digital-library/socio-technical-self-development-using-a-microservice-architecture
https://iadisportal.org/digital-library/socio-technical-self-development-using-a-microservice-architecture
https://doi.org/10.5281/zenodo.3736813

Contents

1. Introduction 1
1.1. Technical challenge for millennials 2
1.2. Research contribution . 5

2. Background & Terminology 7
2.1. Social Systems . 7
2.2. New forms of organizing . 9

2.2.1. Holocracy . 10
2.2.2. Sociocracy . 10
2.2.3. Evolutionary-teal organizations 10

2.3. Socio-technical systems . 11
2.4. Joint Optimization . 12
2.5. Organizational Choice . 13
2.6. Computer Supported Cooperative Work 14
2.7. Participatory Design . 14

3. Methodology 17
3.1. Design Science Research . 17
3.2. Qualitative research . 18

3.2.1. Aspects of Trustworthiness 20
3.2.2. Ethnography . 23
3.2.3. Case Study . 25
3.2.4. Analysis . 27

3.3. A Naturalistic Design Science Research Approach 30

4. The Case 33
4.1. Viva con Agua de St. Pauli e.V. 34

4.1.1. Social system . 34
4.1.2. Socio-technical characterization 35
4.1.3. Internal social events 37

4.2. My activities in the organization 37
4.2.1. Introducing new internal social events 38
4.2.2. Prolonged engagement 39

4.3. In the context of a DSR project 40

ix

x Contents

5. Systematic Literature Review 43
5.1. Selection of publications . 44

5.1.1. Search Keys . 44
5.1.2. Selection criteria . 45
5.1.3. Selection procedure . 46

5.2. Data extraction . 47
5.3. Results . 48

5.3.1. Social System . 49
5.3.2. Joint Optimization and Organizational Choice 60
5.3.3. Architectures . 66
5.3.4. Guidelines . 75
5.3.5. Architectures and users 78
5.3.6. Architectures and software developers 82

5.4. Discussion . 85
5.5. Conclusion . 87

6. Technical perspective 95
6.1. Socio-technical Requirements 95
6.2. Acceptance criteria . 98
6.3. Microservices as a solution approach 99
6.4. Design of a microservice architecture 102

6.4.1. Dynamic UI Fragment Composition 104
6.4.2. Business Object Event System 106
6.4.3. Shared Session . 110

6.5. Implementation of the microservice architecture 115
6.5.1. One microservice, one application? 117
6.5.2. Non functional services 122
6.5.3. OAuth2 handshake . 125
6.5.4. Integration of systems as microservices 130
6.5.5. Widgets . 134

6.6. Software developers are users 139
6.6.1. Participants . 140
6.6.2. Data generation and conduction 142
6.6.3. Analysis . 143
6.6.4. Results . 145
6.6.5. Limitations & Discussion 168

6.7. Conclusion . 169

7. Social perspective 175
7.1. Adaptation Requirements . 176
7.2. Requirement Engineering Approaches 177
7.3. User stories made by users . 182

Contents xi

7.4. User Story Quality Assessment Tool 187
7.4.1. Questionnaire Q1: Assessment by information and com-

munication technology (ICT) professionals 187
7.4.2. Questionnaire Q2: Assessment by prospective users . . 188
7.4.3. Questionnaire Q3: Assessment of sets by ICT professionals189
7.4.4. Relation between questionnaires and quality criteria . . 189

7.5. User stories constructed in the field 191
7.5.1. Participants . 192
7.5.2. Workshop Design . 192
7.5.3. Data generation . 193
7.5.4. Analysis . 194
7.5.5. Results . 195
7.5.6. Discussion . 200

7.6. Conclusion . 201

8. Closure 205
8.1. General Discussion . 205
8.2. Conclusion . 212
8.3. Outlook . 213

Bibliography 217

A. Appendix 235
A.1. Resources . 235
A.2. List of microservices and software projects 236
A.3. List of widgets . 239
A.4. Insights from the qualitative analysis 241

xii Contents

List of Acronyms

ACM Association for
Computing Machinery

AD Effects of architectures
on software developers

API Application
Programming Interface

AR Architectures

ARM64 Advanced RISC
Machines 64-Bit

ASP Ansprechpartner

ATR Adaptation
Requirement

AU Effects of architectures
on users

BASH Bourne-again Shell

BPMN Business Process Model
and Notation

BYOD Bring your own device

CAPS Collective Awareness
Platforms for
Sustainability and
Social Innovation

CD Corporate Design

CHI Conference on Human
Factors in Computing
Systems

CLI Command Line
Interface

CMS Content Management
System

CN Community Network

CORS Cross-Origin Resource
Sharing

COVID-19 Corona Virus Disease
2019

CRUD Create, Read, Update
and Delete

CSCW Computer Supported
Cooperative Work

CSS Cascading Style Sheets

CSV Comma-separated
Values

DG Design Goal

DSI Digital Social
Innovations

DSR Design Science Research

DSRM Design Science Research
Methodology

DVN Digital Value
Co-creation Network

ERP Enterprise Resource
Planning

GB Gigabyte

GNU GNU’s Not Unix

HCI Human Computer
Interaction

HMW How-Might-We-
Questions

HTML Hypertext Markup
Language

HTTP HyperText Transfer
Protocol

Contents xiii

HU Humboldt-Universität
zu Berlin

I Insight that results from
a qualitative analysis

ICT Information and
communication
technology

ID Identifier

IEEE Institute of Electrical
and Electronics
Engineers

IG Integration Strategies

IM Instant Messenger

IN INVEST criterion

INS Information Service

INVEST Independence,
Negotiable, Valuable,
Estimable, Small,
Testable

IOT Internet of Things

IP Internet Protocol

IS Information System

ISSP Information System
Security Policy

IT Information Technology

JSON JavaScript Object
Notation

JSX JavaScript Extensible
Markup
Language (XML)

KA Criterion introduced by
the Kano model

LAN Local Area Network

LESS Leaner Style Sheets

LI Criterion derived by the
linguistic perspective of
Lucassen, Dalpiaz,
J. M. v. d. Werf, et al.
(2016)

MO Managed Data Object

MS Microservice

MUST Danish acronym for
theories of and methods
for initial analysis and
design activities

NAS Navigational Assistance
Service

NATS Neural Autonomic
Transport System

NGO Non-governmental
organization

NPM Node Package Manager

NWT Netzwerktreffen

OASIS Organization for the
Advancement of
Structured Information
Standards

OES Object Event System

ORQ Overall Research
Question

OS Operating System

OSS Open Source Projects

PHP PHP: Hypertext
Preprocessor

PS Problem Statement

PSS Product-service System

xiv Contents

Q Questionnaire

Q&A Question and Answer

QI Questionnaire item

QUS Quality User Story
Framework

REST Representational State
Transfer

RIA Rich-Internet-
Application

RISC Reduced Instruction Set
Computing

RQ Research Question

SAML Security Assertion
Markup Language

SBT Simple Build Tool

SCBE Social Crowdfunding
Business Ecosystem

SCF Social Crowdfunding

SMS Short Message Service

SNS Social network site

SOTETO Design of technical
Support for a
socio-technical
evolutionary-teal
Organization

SSH Secure Shell

SSO Single Sign-on

STR Socio-technical
Requirement

STS Socio-technical System

STWT Socio-technical
walkthrough

TOS Traffic Organization
Service

UI User Interface

UML Unified Modeling
Language

URI Uniform Resource
Identifier

URL Uniform Resource
Locator

US User Story

USMU User Stories made by
Users

USQA User Story Quality
Assessment Tool

UUID Universally Unique
Identifier

VCA Viva con Agua de St.
Pauli e.V.

VM Virtual Machine

VTS Vessel Traffic Service

WASH Water, Sanitation, and
Hygiene

Wi-Fi Wireless Fidelity

XML Extensible Markup
Language

YAML YAML Ain’t Markup
Language

List of Figures

3.1. Perspectives of the upcoming concept to handle joint optimiza-
tionand organizational choice for socio-technical evolutionary-
teal organizations. 30

3.2. The research agenda describes the different interventions. These
are distinguished by the design science research (DSR) triggers,
created artifacts, research interventions, and workshop concepts. 31

6.1. The microservice architecture consists of several software sys-
tems that are responsible for the management of their data, as
well as its presentation. 103

6.2. The widgets are managed by their corresponding microservices.
In this example the microservices Drops and Waves are either
managing a part of the supporter’s screen. 105

6.3. Hierarchy of the managed data objects. The responsibility for
the managed data objects (MOs) is illustrated by the fictional
MS-A and MS-B. 107

6.4. The Unified Modeling Language (UML) activity diagram de-
scribing OAuth 2 handshake between a microservice and Drops. 114

6.5. The UML components diagram describing the interacting ap-
plications of the Drops microservice. For reasons of clearness,
only a selection of components required to implement the rep-
resentation of the User are sketched. There are several more
components handling the User , Crews or the Organizations of
Viva con Agua de St. Pauli e.V. (VCA). 118

6.6. The technical coupling between the microservices Drops and
Stream visualized by an UML component diagram. 120

6.7. The technical coupling between two fictive microservices A and
B visualized by an UML component diagram. 122

6.8. The fictive microservices A and its environment visualized by
an UML component diagram. 123

6.9. The UML sequence diagram visualizes the OAuth 2 handshake
implemented between Drops and a microservice. 126

6.10. The autocomplete widget implemented by Drops with pixelated
names. It shows one already selected user in form of a removable
tag and the result list of users matching the entered search term.135

7.1. Pattern for a user story. 179

xv

xvi List of Figures

7.3. The first phase of the user stories made by users (USMU) work-
shop. 183

7.2. Pattern for a problem statement. 183
7.5. Pattern for a How-Might-We-Questions (HMW). 184
7.4. The second phase of the USMU workshop. 185
7.6. The third phase of the USMU workshop. 186
7.7. Example axial code CTL . 194
7.8. Example observations O1 and O2 derived from axial code CTL 194

List of Tables

5.1. The keywords from the different topics used to construct the
search keys automatically (STautomatically). 44

5.2. The keywords from the different topics used to construct the
search keys manually (STmanually). 45

5.3. All listed publications have been analyzed and were addressing
the research question (RQ) 1 regarding (1) integration strategies
(IG), (2) architectures (AR), (3) effects of architectures on users
(AU), or (4) effects of architectures on software developers (AD) 55

6.1. Paramters for the autocomplete widget. 136
6.2. Propagated events of the autocomplete widget. 136
6.3. The participants experiences regarding specific programming

languages in relation to their main programming paradigm. . . 141

7.1. Mapping between items of questionnaire Questionnaire (Q)1
and quality criteria for user stories. 190

7.2. Mapping between items of questionnaire Q2 and quality criteria
for user stories. 190

7.3. Mapping between items of questionnaire Q3 and quality criteria
for user stories. 191

7.4. Time table for the two hours workshop implementing the phases
two and three of the USMU workshop aiming to generate user
stories. 193

7.5. Applied time table for the two hours workshop implementing
the phases two and three of the USMU workshop aiming to
generate user stories. 195

A.2. A list of all widgets implemented for the first prototype of the
Heureka! platform. 240

A.3. The insights resulting from the qualitative analysis regarding
the RQs 3 and 4 of Chapter 7 that are addressing the user stories.241

A.4. The insights resulting from the qualitative analysis regarding the
RQs 3 and 4 of Chapter 7 that are addressing the concept of the
USMU workshop. Only codes with at least ten codings are listed,
except Insight that results from a qualitative analysis (I)84 that
has been introduced as a special case. 245

xvii

1. Introduction

Grown up in a world of interconnected personal computers, the digital natives
enjoyed simple and cheap access to a wide range of knowledge resources. Young
people were able to investigate and request everything and anything they had
heard about. In contrast to the subsequent generations, they were the first
generation that was growing up with a library of nearly all of the worlds
knowledge in their fingertips. For these reasons alone, this generation has
shaped a new way of living together and has questioned (and challenged)
established values and norms.

Now, Generation Y (Why?) is entering the workforce, introducing new ways
to collaborate, and compelling organizations to rethink themselves. While
they have been equally involved in volunteering tasks and have shared the
same work ethic and orientation as their Generation X predecessors, they are
naturally use the Internet to solve problems and to address challenges facing
their work organizations (Reisenwitz and Iyer 2009; Pînzaru et al. 2016).

Several names have been introduced to describe the Generation Y, including
(but not limited to) Echo Boomers, Wired Generation, or Millennials (Arora
and Dhole 2019; Pînzaru et al. 2016), to name only a few. While there is no
general agreement about the timespan that applies to millennials, one possible
period is from 1977 to 2000 (Pînzaru et al. 2016). The members of this
new workforce enjoy collaborating in teams, have an innovative spirit that is
leading to new ideas, and are engaged in taking on new challenges by using
new information technology (IT) tools (Arora and Dhole 2019; Karasavvoglou,
Polychronidou, and Horobet 2019; Pînzaru et al. 2016; Reisenwitz and Iyer
2009). Since they have used IT from early childhood, millennials are skilled in
using it and can boast a a huge amount of natural expertise (Karasavvoglou,
Polychronidou, and Horobet 2019; Reisenwitz and Iyer 2009).

The creativity they are focusing on not only requires having an open mind
when it comes to change, but also having the space and flexibility to explore new
ideas and options (Arora and Dhole 2019; Amabile 1983). Yet these creativity-
supporting traits are challenged by a tendency to be impatient and the aim to
create an impact as fast as possible (Arora and Dhole 2019; Reisenwitz and Iyer
2009). Additionally, this generation tends to be geared to multitasking and have
a strong desire to balance work and private life (Karasavvoglou, Polychronidou,
and Horobet 2019; Pînzaru et al. 2016; Reisenwitz and Iyer 2009). Although
they seek out established social structures and working procedures, such as
working in formal hierarchies (Pînzaru et al. 2016), millennials also seek out for
mentors in their direct superiors and bosses (Arora and Dhole 2019; Pînzaru

1

2 CHAPTER 1: INTRODUCTION

et al. 2016; Reisenwitz and Iyer 2009). Nevertheless, the millennials “promise
more than they deliver” (Pînzaru et al. 2016, p. 181) and they question the
directions superiors give. Thus, they are primed to search for guidance, but
expect their expertise to be respected at the same time (Arora and Dhole
2019; Pînzaru et al. 2016). They aim to produce something meaningful and
their work has to make a difference (Arora and Dhole 2019; Karasavvoglou,
Polychronidou, and Horobet 2019; Pînzaru et al. 2016). Therefore, they are
expecting informal flat hierarchy meritocracies to be the foundation of the
transparent companies they want to work for (Pînzaru et al. 2016). Millennials
want to be treated as if their life is part of the organizational goal (Reisenwitz
and Iyer 2009).

Laloux (2014) has introduced the concept of evolutionary-teal organizations
as a new type of corporations and describes three core principles for organizing
corporations in a way that fits the needs of Generation Y (see also Section
2.2.3). Organizations following the evolutionary-teal principles consist of (1)
small self-managed teams that consider (2) their members wholly and (3)
enable them to collaborate in designing the organization’s purpose. Therefore,
the individuals implement their own ideas of management and organization.
Informal flat hierarchy meritocracies are permitted to comprise the structure
of the team-internal microcosm, as well as strong hierarchies, without any
influence onto the other teams.

Due to the fact that evolutionary-teal organizations make it possible for their
members to engage in their work with their whole personality, including using
domain competencies, but also with hobbies, previous experiences, and feelings,
the millennials are able to shape their own personality together with their
role within the organization. Persons with different expertise can become the
mentors of the organizational members, as it is in line with the preferred focus
on mentors of the millennials. Furthermore, the evolutionary purpose allows
the millennials to include their meaningful objectives and ambitions to create a
better world through their work. Therefore, evolutionary-teal organizations are
increasingly being established and members of Generation Y are joining them,
shaping, influencing, and transforming the overall organization concept by
their daily work. As a result, these traits they bring to the table are becoming
solidified within the company architecture and culture.

1.1. Technical challenge for millennials

According to Pînzaru et al. (2016, p. 176) “[millennials] and technology
have become inseparable”. They use many different technical solutions for
communicating with each other. Therefore, decentralized and loosely coupled
teams of millennials often develop a socio-technical system in the meaning of
Kunau (2006, p. 81), as it is introduced in Section 2.3.
The autopoietic social system (see Section 2.1) requires continuously read-

TECHNICAL CHALLENGE FOR MILLENNIALS 3

justing technical implementation, as part of a joint optimization (Di Maio 2014;
Sydow 1985). Likewise, the technical system shapes the acts of communication
in the social system. Joint optimization describes the challenge of always
modifying both the technical and the social part of a socio-technical system.
Changes in the social system will require changes in the technical components,
while the technical system will also compel the social one to adjust itself to
technical limitations. Therefore, the decentralization and intended indepen-
dence in terms of loosely coupled and self managed teams is compromised by a
universal technical solution. At the same time, the development of a technical
solution faces new challenges if software developers not only have to consider
the requirements of a few managers, but also the needs of significant amount
of empowered holistically considered individuals. In particular, members of
Generation Y want to decide by themselves whether or not they are part of
developing technical tools that they have to use during their daily work.

In addition to the challenge of joint optimization, members of the Generation
Y are trying to find their own solutions by using digital systems. Considering
the principle of organizational choice (Trist 2013; Sydow 1985), millennials
will work around the designed system, if it requires them to act in a way that
they do not expect. Organizational choice, on the other hand, describes the
degree of freedom that the people involved in the socio-technical system have
to decide whether or not they will utilize the technical part. In the case of a
socio-technical system, the technical component has become part of the self-
description of the social system in order to perform specific, well-defined acts of
communication. Thus, organizational choice can always question the construct
of a socio-technical system in the sense that choosing not to use the technical
component scrutinizes the tool’s relevance for the self-description. But if the
tool compels the people to use it, the autopoietic self-development of the social
system is restricted. Thus, teams implementing separate management decisions
will result in a set of heterogeneous requirements that have to be implemented
in parallel. Even if the implemented functions will be used by only a small
subset of users. In the end, the social system will not cease self development,
since it is a grounding principle of its nature. Therefore, choosing a fitting
degree of freedom when using the technical component also presents a major
challenge for system designers.

Moreover, since different teams characterize evolutionary-teal organizations,
the self-management applied to the autopoietic character of the social sys-
tem will result in different, team-specific social subsystems. Therefore, the
requirements for the technical components will also differ. System designers
will have to handle the tension between the specific needs of one single team
and the frame an organization has to guarantee as a whole (e.g. transparent
and responsible handling of finances or a fair and respectful collaboration of
its members considering wholeness).

In Chapter 4 I will introduce the case VCA of an socio-technical evolution-
ary-teal organizations. The members of the organization are volunteers aiming

4 CHAPTER 1: INTRODUCTION

to collect donations and raise awareness about the subject of granting access to
clean drinking water for all people worldwide. The spatially separated teams
of volunteers adjust their activities to their local constraints, as well as to the
boundary conditions of being involved as a free time activity. Thus, the loose
coupling between the teams as well as the applied self-management enable the
volunteers to stay engaged. Focusing on their whole personalities opens up
many unseen possibilities and paves the way for new synergies in the context
of the organization’s goal. Nevertheless, such a wholly involvement requires
the third aspect of evolutionary-teal organizations, the evolutionary purpose.
Constantly reshaping the organization’s purpose by the participation of its
members is required and becomes possible due to the opportunity to take up
all involved perspectives.

Next to VCA as an example of an evolutionary-teal organization, other socio-
technical organizations also face the same challenges of joint optimization and
organizational choice. Universities share several similarities with evolutionary-
teal organizations and, nowadays, they have frequently coined socio-technical
characteristics. Research groups are often loosely coupled to each other in
terms of scientific, academic, as well as instructional focus and activities.
In several degrees, such research groups are self-managed (normally by a
professor) and the scientific workers are driven by their own interest. Thus,
they make first attempts at involving their members wholly. Additionally,
academic administrative autonomy implements several alternative possibilities
to connect the constant reshaping of university’s purpose that are open to all
university members.
Likewise, governmental structures of democratic nations share character-

istics with evolutionary-teal organizations. Ministries are self-managed, but
have to cooperate with other ministries, enterprises, and citizens. With their
various perspectives, all parties have to be taken into consideration and should
include themselves. Focusing on the genesis of e-governmental communica-
tion structures, the joint optimization and organizational choice will lead to
similar challenges, such as for socio-technical evolutionary-teal organizations.
Several unrelated or less-related requirements addressing different parties of
a nation result from the autopoietic change, although they may address the
same core challenges, such as authentication or access rights. Although the
aforementioned examples allow one to identify generalizable solutions, varying
governmental perspectives lead to different technical requirements. For example
in Germany the birth of a child requires different acts of communication with
different ministries. Moreover, federalist nations like Germany have varying
approaches for addressing the same legal challenges, depending on the federal
state in question.

All these examples of organizations that share similarities with socio-techni-
cal evolutionary-teal organizations would benefit from an approach to design
technical systems whose evolution is aligned to the autopoietic change of a
social system that has adapted the technical one in terms of a socio-technical

RESEARCH CONTRIBUTION 5

system.
On a personal level, I dealt with autopoietic socio-technical change and its

challenges on several occasions, ranging from when I was at school right through
to my time at the university and also in private contexts. As a volunteer of
VCA, I had to handle this challenge in a long-term collaboration scenario for
the first time, as I describe in more detail in Chapter 4. Therefore, I was highly-
motivated to frame the issue being dealt with here from a scientific perspective
and to find a solution that was not only grounded in the real situation, but
was also developed using rigorous scientific methods. Furthermore, I hoped
to find solutions that are transferable to all the other contexts that I have
experienced.

1.2. Research contribution

Thinking about socio-technical systems (see Section 2.3) requires consider-
ation of joint optimization and organizational choice. As discussed before,
these concepts become a special challenge for socio-technical evolutionary-teal
organizations. In this thesis, I will present a social and technical approach
to support socio-technical evolutionary-teal organizations in their autopoietic
change processes. Both approaches together will contribute to answering the
overall research question (ORQ) of the thesis.

Overall Research Question. How can socio-technical evolutionary-teal or-
ganizations address the challenges of joint optimization and organizational
choice during their autopoietic processes?

The upcoming Chapters through 5 will introduce terms and concepts, my
methodology, the case, and the state of the research discourse with respect to
the ORQ. Nevertheless, preempting the next chapters, socio-technical evolu-
tionary-teal organizations involving millennials often develop socio-technical
constructs with computer supported cooperative work (CSCW) tools as has
also been the case for VCA. Therefore, the Chapter 4 introduces the very
special CSCW tool for the case VCA, while in Chapter 5 the focus of this thesis
is limited to socio-technical evolutionary-teal organizations in a socio-technical
construct with a CSCW tool.

Focusing on CSCW tools, computer scientists are responsible for designing
systems that do not limit the autopoietic change of a social system, even if the
social system has constructed a socio-technical system with the CSCW tool.
This being the case, the ORQ needs to be investigated by computer scientists
from a technological perspective.

Addressing the ORQ, the Chapter 6 introduces a conceptual description of a
possible architecture that supports autopoietic change processes in socio-tech-
nical contexts, taking the characteristics of evolutionary-teal organizations into
consideration. Furthermore, the chapter outlines a prototypical implementation

6 CHAPTER 1: INTRODUCTION

and a qualitative study. The study questions the usefulness of the architectural
approach for decentralized teams of software developers aiming to implement
specific parts of a CSCW tool that is utilized in a socio-technical context.

Thus, the Chapter 6 introduces a software architecture that aims at address-
ing the ORQ. Additionally, by focusing on prospective software developers
that are using the architecture, the chapter describes a human computer inter-
action (HCI) perspective with respect to the architecture and the developers.

Aligned to methods of requirements engineering, Chapter 7 adds a workshop
concept specifically designed to enable teams of evolutionary-teal organizations
to continuously express their needs regarding the technical component. The
concept has also been used by teams of VCA (see Section 4.1) and observational
studies have led to several data publications (Völker, Frey, and Sell 2020;
Bierschenk, Frey, and Sell 2020; Sell 2020; Sell and John 2020) as a basis for a
qualitative evaluation.

Thus, Chapters 6 and 7 present possible solutions addressing the ORQ from
different perspectives, but both have to be understood as being intertwined
with each other. These approaches become relevant for many socio-technical
constructs involving a CSCW tool. Thus, the designed solution contributes
to the recurring occasions of socio-technical tensions in organizational change
processes. In the process, solutions are designed for a very new type of
organization that becomes increasingly relevant due to the characteristics of
the millennials generation that is assuming over responsibility in the workforce.
This thesis is written from a computer science perspective and therefore,

the ORQ is tackled in terms of software architecture, HCI, and requirements
engineering. The proposed solutions can form the basis for CSCW platform
systems used in socio-technical constructs. This technical architecture is
embedded in a social procedure.
The ORQ introduces a complex and interdisciplinary terminology. Terms

like evolutionary-teal organizations and social systems in general, as well as
those of socio-technical systems characterize the basic concepts for my approach
towards the ORQ. Additionally, in the field of computer science, the ORQ
compels one to focus on the field of CSCW tools and special concepts of agile
requirements engineering. As a consequence, the present thesis describes a
solution approach for the ORQ that is informed by understanding the inter-
twining of the used terms and concepts. Chapter 2 thus provides an overview
of the interdisciplinary background knowledge and terminology. Furthermore,
it outlines the relationship between the different concepts.
Chapter 3 characterizes the qualitative research approach that has been

applied to address the ORQ. A qualitative approach compels one to focus
on a real context, which is presented in Chapter 4. Subsequently, Chapter 5
describes the relevant literature for addressing the ORQ, while the Chapters 6
and 7 present the solution approach used. In conclusion, Chapter 8 provides
a recapitulation that explicitly concludes the relationship between the ORQ
and the solutions presented.

2. Background & Terminology

This chapter introduces the theoretical background for the dissertation. It
starts with short discussions and definitions of the terms and concepts used to
describe the ORQ introduced in Section 1.2 and the case.

Research question 1.2 addresses the more abstract concepts of socio-technical
evolutionary-teal organizations, joint optimization, organizational choice, and
autopoietic change. Chapter 4 introduces a practical case that exemplifies
these abstract concepts. The upcoming section visualizes a few formal defi-
nitions, that become a base for my subsequent research and the grounding
understanding of the research context.

So, focusing on evolutionary-teal organizations also mean having to focus on
particular types of social systems. Equally, socio-technical systems implicitly
consist of social systems as well as technical systems. Hence, I will discuss the
basic definition for social systems in Section 2.1, Afterwards, I will become more
detailed about evolutionary-teal organizations in Section 2.2, socio-technical
systems in Section 2.3, joint optimization in Section 2.4, and organizational
choice in Section 2.5. Finally, the topic of my research question requires
focusing on the scientific discourse about CSCW, that is shortly introduced
in Section 2.6, and the discourse about participatory design, introduced in
Section 2.7.

2.1. Social Systems

Starting the discussion about socio-technical systems requires having a com-
mon understanding of social systems. Luhmann (2001) introduces the systems
theory and derives the concept of social systems as a special type of sys-
tems in parallel to organisms, psychological systems, and technical systems.
Consequently, organizations and societies are special types of social systems
comparable only to other types of social systems and therefore not comparable
to technical or psychological systems.
Essentially, systems are a set of elements that are connected to each other

by relations. In contrast to technical systems, the relations of social systems
are built by conditioning of the system. A specific relation will be formed just
if some conditions are fulfilled or explicitly not fulfilled.

Following Luhmann (2001), systems are always contextualized by and aligned
to their environment that is not further defined. Thus, a social system is
constituted and sustained by its difference to its environment. Moreover, the

7

8 CHAPTER 2: BACKGROUND & TERMINOLOGY

existence of this difference is a precondition to allow self-reference by the
system.

Although elements are either part of the system or its environment, relations
can connect elements of the systems with the environment. Thus, the sustain-
ment of social systems is based upon the continuous constitution of elements
and the definition of boundaries between the system and its environment.

A system references itself when all relations between elements reference the
constitution of the system. Thus, the system is constantly reproducing its
constitution. Luhmann (2001) names this effect autopoiesis. Furthermore,
he observed that all elements of systems are fading in time. The relations
between the system’s elements are determined by the concept of connectivity
(“Anschlussfähigkeit”, Luhmann 2001, p. 62). Reproduction of autopoietic
systems compels elements and relations to sustain their connectivity to exist in
future. Consequently, the elements of a current configuration of a system are
required to reproduce themselves to keep the system live. Since the systems
current configuration also constitutes the elements, each configuration changes
the produced elements and therefore, autopoietic systems are under constant
change. Autopoietic systems develop interdependencies to their environment,
since they require information from their environment to determine subsequent
elements during their change processes (Luhmann 2001).
In the special case of social systems, Luhmann (2001) identifies acts of

communication as the elements of the system. Besides, the basal process
to constitute the elements can also be only communication (Luhmann 2001,
p. 192). Luhmann (2001) differs between the information and the message
to characterize the term communication. Furthermore, communication also
includes that the receiver of the message understands the information. Thus,
communication is a self-referential process (Luhmann 2001, p. 198), ensuring
that the receiver has understood the information requires a reaction of the
receiver. Therefore, an act of communication is only complete after the receiver
reacts. The relations between acts of communication are formed by explicit or
implicit references to already existing acts of communications.

Since there are many organizations and social systems that are part of our
society, not all acts of communication can be part of all social systems. Thus,
they have to define their identity to identify the elements required for the
systems constitution. This identity is described by the systems self-description.
Luhmann (2001) introduces the concept of reasonableness (“Zumutbarkeit”,
Luhmann 2001, p. 200) to describe the ability of social systems to select
communication in terms of topics and contributions. While topics are managing
the communication process, contributions have to reference topics.
Summarizing, social systems are subject to autopoietic processes of self-

renewal that are based on the reflexivity of speech. The possibility of relating
acts of communication to each other allow for the continuous change of social
systems.
Glassman (1973, p. 84) views two systems are loosely coupled to each

NEW FORMS OF ORGANIZING 9

other if they “have few variables in common or if the common variables are
weak compared to other variables which influence the system”. Considering
the definition of social systems given by Luhmann (2001), two social systems
are loosely coupled if these systems share only a few acts of communication,
reference only to few equal elements of their shared environment, or if the
shared elements are weak. The terms few and weak are vague and relative
the coupled systems. Additionally, Glassman (1973) uses the term regarding
social systems. Thus, although the term system as introduced by Luhmann
(2001) can be used to address also technical systems, the understanding of a
loose coupling is not directly applicable to technical ones. Nevertheless, I will
use the term of loose coupling regarding social systems throughout the rest
of this dissertation and will briefly discuss the meaning of the terms few and
weak in its context of application. Furthermore, I will also use the term loose
coupling when discussing technical systems, in the sense of aiming at reducing
the number of technical dependencies and their relevance, as I discuss the term
in Chapter 6 in relation to Hilbrich and Lehmann (2022).

2.2. New forms of organizing

Understanding organizations as systems embedded in a continuously changing
environment with the need to adapt new configurations of this environment
faster as a group of leaders can implement it, new forms of organizing arose
during the last decades. Holocracy (Robertson 2015), Sociocracy (Buck and
Endenburg 2012), or evolutionary-teal organizations (Laloux 2014) are a few
examples hereof. Basic tendencies have been formed by grassroot organiza-
tions or open source projects (OSS) initiatives. Former mean organizational
approaches have formed bottom-up and by the personal or ideological moti-
vations of the people participating the social system. Equally, OSS projects
are mostly initiated by persons aiming to implement a version of software
due to their personal needs, but they are willingly to share their resulting
application with the rest of the world. A growing number of participants
comes along with more complex working procedures, as well as the application
of strategies to align the software artifact with the different personal goals.
What all these approaches have in common is that they handle the required
amount of management by themselves. Thus, it determines the purpose of
the joint work, the strategies to address the purpose, as well as to handle the
self-description of the social system. Since these organizations do not start with
a predefined social structure when it comes to self-management aspects, they
all have to negotiate it and this therefore results in totally different approaches.
While some initiatives apply a traditional hierarchy, others may result in basic
democracy ideas.

While grassroot organizations and OSS are no guarantee for resulting demo-
cratic organizations in line with the characteristics of the generation Y, Holoc-

10 CHAPTER 2: BACKGROUND & TERMINOLOGY

racy, Sociocracy, and evolutionary-teal organizations are approaches for gener-
alizing experiences made by specific organizations that have aimed to become
faster and more flexible in their change processes by applying democratic
methods and by softening the formalization of working procedures.

2.2.1. Holocracy

Robertson (2015) introduces the metaphor of an operating system for an
organizational culture. Classifying traditional management approaches as
an older paradigm, Robertson (2015, p. 12) is confident that new business
processes would not “run on it”, like a modern app would not run on MS-DOS,
since the fundamental concepts and principles differ. Thus, Robertson (2015, p.
12) defines Holocracy as “a new social technology for governing and operating
an organization, defined by a set of core rules distinctly different from those of a
conventionally governed organization”. An organization that applies Holocracy
is based on a constitution that defines the structure of the organization with
a special focus on the distribution of authority and roles. Furthermore, it
describes a “decision- making process for updating those roles and authorities”
(Robertson 2015, p. 12), as well as a meeting process aiming to let the people
of the organization stay informed about each other.

2.2.2. Sociocracy

Routing back to the 1970s, the idea of sociocracy moved from the Netherlands
to the global discourse (Buck and Endenburg 2012; Eckstein 2016; Rios 2011).
Sociocracy aims to enable organizations in self-management by using tools
to support a shared decision making aiming to find a consent. Furthermore,
organizations implementing sociocracy are organized in so called circles. These
circles are groups of people with a common goal and no hierarchy regarding
decision making. Thus, a circle aims to establish consent regarding specific
decisions (Eckstein 2016). Nevertheless, next to decision making, a hierarchy
can still exist. When it comes to the goals of the circles, they are self-organized.
In contrast to circles, the organization itself is still organized in a hierarchy.
That means that circles develop a hierarchy and they are connected by double
linking. One circle higher in the hierarchy names the manager of a lower
circle, but the lower circle names a representative that participates the upper
circle when it comes to decision making. Thus, managers and representatives
participate on two levels of the hierarchy and are therefore part of both decision
making processes. Furthermore, people are be elected for tasks and roles.

2.2.3. Evolutionary-teal organizations

Laloux (2014) introduces the specific type of evolutionary-teal organizations
characterized by three major traits: (1) self-management of small, decentralized

SOCIO-TECHNICAL SYSTEMS 11

teams, (2) a wholly consideration of all organizational members, and (3) the
evolutionary discussed purpose. Hence, the social system consists of several
sub-systems that are loosely coupled to each other, that means they share only
a few common variables (Weick 1976). Furthermore, the self-management of
the teams results in self-descriptions that will probably increasingly differ over
the course of time. Wholeness as a basis for dealing with the organization’s
members means considering not only the professional self of individuals, but
also their personal traits, aims, interests, and potentials. As one example,
software developers involved in open source projects increase their professional
knowledge, as well as their social coordination skills. Thus, it is common sense
to consider their interest in open source development for their professional
lives in different working roles.

Regarding the evolutionary purpose of these organizations, Laloux (2014, p.
56) notes: “Instead of trying to predict and control the future, members of
the organization are invited to listen in and understand what the organization
wants to become, what purpose it wants to serve.” That means that each
member of the organization has to be enabled to bring in his or her own
voice to shape the purpose of the organization. As Luhmann (2001) explains,
the self-description of social systems, including its purpose, is under ongoing
discussion by a sub system. Laloux (2014) mentions that purpose should
and could be an anchor for an organization in decision making processes.
Therefore, this is constantly considered for traditional organizations, but it is
also reshaped by decision makers and that way it has frequently been mixed
with the personal goals of these decision makers. The self-managed teams of
evolutionary-teal organizations that have to consider their members entirely
also have to ensure that the constantly reshaping of their purpose is aligned
with the active members of the organization. Therefore, it is an organizational
property that is shared between all members of the organization.

2.3. Socio-technical systems

Referencing to the system theory of Luhmann (2001), Kunau (2006) introduces
the term structural coupling between an autopoietic system (a) and another
one (b). If the system (b) is in the environment of (a), a structural coupling is
provided, if “(a) adapts its inner structures such that it can relate to system
(b)” (Kunau 2006, p. 46). This definition of a structural coupling between an
autopoietic system and another one in its environment, became the base for
Kunau to introduce a definition for socio-technical systems. Kunau (2006, p.
30) aims to develop “a methodological support for CSCW-systems to integrate
software engineering and organizational change” and therefore, the definition
directly addresses the ORQ introduced in Section 1.2:

“A social system that maintains a structural coupling with a tech-
nical system is called a socio-technical system with respect to this

12 CHAPTER 2: BACKGROUND & TERMINOLOGY

technical system.”
Kunau (2006, p. 81)

Luhmann (2001) uses the term media to characterize three different ways
for conducting communication. First, he refers to speech, which uses acoustic
or optical signs to convey information. Secondly, there is distribution media,
such as writing, print or radio, which expands the scope of communication,
while the third type, symbolic generalized communication media, develops, but
also manages the selection of communication in a social system. Fundamental
values, religion, or art are examples for the third type of media.

Technical tools structurally coupled to social systems will affect the social
system like a distribution media, if it acts as an broker for organizational
structures or processes. Nevertheless, it is addressed by communication itself,
as Kunau (2006, p. 39) notes: “[T]he adoption of the technical system by the
social system is an autopoietic process within the social system and cannot be
engineered from the outside.” Consequently, to establish a structural coupling
between a social system and a technical one, acts of communication as part of
the social system are required. Therefore, Kunau extends Luhmanns concept
of self-descriptions by socio-technical self-descriptions. These are acts of
communication that strive to describe the use of a technical system in a sense
of a media for the social system that way, a structural coupling results.
If the focused social part of a socio-technical system is an organization,

Kunau (2006) names it a socio-technical organization. If the technical system
can be characterized as a CSCW tool, then, as Kunau mentions, the socio-
technical organization has to maintain the socio-technical self-description, since
the autopoietic change will continuously call its use in question. Furthermore,
socio-technical organizations that have established a structural coupling to a
CSCW tool, will implement a communicative use of it. The term communicative
use is also introduced by Kunau (2006) and means that persons communicating
in the sense of Luhmann (2001) are using a focused CSCW system to convey
the information.

2.4. Joint Optimization

In referring to the first observations of socio-technical systems made by the
Tavistock institute in the 1950s, Sydow (1985) identifies the concepts of
joint optimization and organizational choice as being of major importance
when it comes to understanding the dynamics of socio-technical systems.
Joint optimization means that the social and technical subsystems have to be
optimized together. Thus, to improve socio-technical systems, not just one
subsystem has to be focused upon, but both.

Considering the idea of socio-technical self-descriptions of Kunau (2006), the
intertwined optimization process leads to reciprocal interference between the
constitution of the social system and the definition of the allopoietic technical

ORGANIZATIONAL CHOICE 13

system. Although it seems similar to the concept of interpénétration (Luhmann
2001, p. 290), the technical system is created by humans, and therefore by
elements that are external to the system itself. As a consequence, technical
systems cannot reproduce themselves. Thus, they are no autopoietic system
and the term interpénétration cannot be applied here.

Nevertheless, the interfaces of a technical tool shape the way it can be used
by a social system, as already noticed by the researchers of the Tavistock
institute (Sydow 1985, p. 30). This way, by using the technical tool, the
technical system tailors the communication that can be performed by the
social one.

2.5. Organizational Choice

Sydow (1985) noticed that joint optimization requires some degree of freedom
in managing the organization and in staying attached to the communicative use
of a CSCW system. The term organizational choice encompasses the approach
to ensuring this degree of freedom in using the structurally coupled technical
tools for their intended communicative use. Given that the structure of the
performed work is not determined by the used technology, as it would follow
from the technology determinism, such an approach is required to enable joint
optimization (Sydow 1985), as well as to not make the technical tool to a
barrier for autopoietic change.

The Tavistock researchers discussed what degree of freedom it is possible to
apply by focusing different technologies. Whereas traditional production line
machines are more deterministically designed when it comes to the possible
social structures, or, alternatively, are more restrictive with respect to the
possible acts of communication by the terms of Luhmann (2001), modern IT
tools are more flexible. Thus, Sydow (1985) calls for using this flexibility to
design the socio-technical work situation not just task-oriented, but by focusing
the involved “human” (Sydow 1985, p. 31).

Consequently, in order to allow organizational choice, the social system
has to define the requirements (or at least a part of it) with respect to the
technical tools that become part of a socio-technical self-description. Hence,
the social system influences the definition of the technical one and, therefore,
a reciprocal interference exists between both systems. Due to the dynamics of
the autopoietic change processes, this relation has to be continuously reshaped
during a maintenance process, as required by the concept of socio-technical
self-descriptions (see Section 2.3).

14 CHAPTER 2: BACKGROUND & TERMINOLOGY

2.6. Computer Supported Cooperative Work

CSCW is an interdisciplinary research field that is influenced by computer
science, social science, psychology, and economic science. Research in this field
aims to understand social interactions and to design computer systems for the
support of these social interactions (Gross and Koch 2007). A longer discussion
about the definition is provided by Wilson (2018). In its essence, Wilson
(2018, p. 6) focuses on “technology support for groups and teamwork”. As
already mentioned by Gross and Koch (2007), Soden et al. (2021) also mention
the fact that CSCW not only covers the design of collaboration systems, but
their implementation and evaluation. Modern CSCW research includes the
“engineering systems, concretely evaluating or improving the user experience,
and cooperative work” (Soden et al. 2021, p. 459:2).

Thus, by catching up the definition of social systems as provided by Luhmann
(2001), and the one for socio-technical systems, introduced by Kunau (2006), the
underlying understanding of CSCW tools used for this dissertation, considers
these tools to be support systems for all acts of communication covering an
explicitly defined set of social interactions. The set of social interactions is
determined by the social system. Since this dissertation is focused on evolu-
tionary-teal organizations, the support tools are designed for collaboration
processes comparable to business processes. Furthermore, by considering the
evolutionary-teal character of the organization being focused upon, the CSCW
tools need to be aligned to Dourish’s broader understanding of an interactive
system’s value:

“[I]nteractive systems in contemporary society should be under-
stood not simply as instrumental tools to be evaluated for their
efficiency but as cultural objects to be understood in terms of the
forms of expression and engagement that they engender.”

Dourish (2014, p. 16)

2.7. Participatory Design

Participatory design strives to integrate the prospective users of a technology
in the systems design process. Rooting back to the 1070s, it was developed
in several regions of the world in parallel. Ideological changes in the society,
like labor movements that establish more legal rights for workers, feminism
questions established societal structures, or the beliefs that people have a right
to political participation, became the grounds for people to also demand to
participate in the organization of their workplace (Kensing and Greenbaum
2012). In a second step, people were also calling for the opportunity to become
integrated in the design of their work tools, such as upcoming computer
technology.

PARTICIPATORY DESIGN 15

These social trends, ethnographic approaches, and the first steps of action
research in computer science resulted in recognizing the influence of technology
upon its users:

“[I]n designing tools we are designing ways of being”
Winograd and Flores (1986, p. xi)

Participatory design addresses this insight by following six guiding principles
(Kensing and Greenbaum 2012): (1) Equalizing power relations to enable
previously invisible members of an organization to introduce their thoughts.
(2) Democratic practices are used to educate and engage the members of the
organization. (3) Situation-based learning allows to implement change directly
at the workplace. This leads to (4) mutual learning; the designers are therefore
learning about the daily work of the domain experts, while the domain experts
are introduced into design. All this is facilitated by well-chosen (5) tools and
techniques. Finally, participatory design has to trigger (6) alternative visions
about technology. There are several methodology approaches to address the six
principles of participatory design, like MUST Bødker, Kensing, and Simonsen
(2010) or the use-oriented design Bratteteig et al. (2012). This dissertation
also strives to address the six principles by introducing a specific technique
for allowing a socio-technical evolutionary-teal organizations to manage their
autopoietic change.

3. Methodology

Organizations are social systems and thus, I chose to apply a research method-
ology aligned to established social science. This chapter therefore introduces
the concepts of qualitative research, as well as design science research for
organizing research interventions (A. R. Hevner 2007; Drechsler and A. Hevner
2016).

Addressing the ORQ introduced in Section 1.2, I aim to discover the topics
joint optimization and organizational choice in the context of a real orga-
nization, as introduced in Chapter 4. Additionally, the tensions between a
social system and a technical tool that are inherently given in socio-technical
constructs call for both taking the designable technical tool into focus as well
as understanding the social change that encompasses the continuous adaption
of the tool. Therefore, Section 3.1 introduces the DSR approach to manage a
research project. The subsequent Section 3.2 describes the methods themselves
that are applied for capturing the social situations and deriving reasonable
research interventions by means of a transparent analysis. Finally, the Section
3.3 outlines the management of the applied research methods while I was
participating the case, along with the handling of the identified interventions
based on the design science research (DSR) methodology.

3.1. Design Science Research

The scientifically grounded design of artifacts that address challenges of real
world problems can be achieved by applying DSR. Addressing this aim, Peffers,
Tuunanen, Rothenberger, et al. (2007) and Peffers, Tuunanen, and Niehaves
(2018) developed a design science research methodology (DSRM) that supports
researchers in applying DSR. A sequence of six well described activities allow to
setup a goal oriented DSR project. First, (1) the problem has to be identified
and motivated. As a second activity, (2) specific objectives for a solution
have to be derived from the problem, while a (3) possible solution has to be
implemented in a third step. Fourth, the researchers (4) demonstrate the
solution and (5) evaluate it, by the data collected during the demonstration, in
a fifth step. Finally, the solution has to be (6) communicated to an appropriate
audience in a final step.
Addressing the socio-technical characteristic of having two systems that

differ in their nature, I also organize my research around the three design
science cycles introduced by A. R. Hevner (2007) and extended by a fourth

17

18 CHAPTER 3: METHODOLOGY

cycle by Drechsler and A. Hevner (2016).
The relevance cycle connects the environment of a research goal with the

artifact under investigation. The rigor cycle roots the design of artifacts within
a corpus of existing (scientific) knowledge and experiences. Furthermore, the
scientist communicates new insights as results of scientific inquiry to the
research discourse as an activity of the rigor cycle.
The design cycle results in an artifact that incorporates the knowledge

collected during the rigor cycle along with the requirements gathered during
the relevance cycle to address the identified challenge. The change and impact
cycle covers the organizational change and the impact that the designed artifacts
have onto complete business processes and additional material. Furthermore,
it normally comprises the DSR trigger that initiates the research project
(Drechsler and A. Hevner 2016).

Taking ORQ introduced in Section 1.2 and the basic principles of DSR
(A. R. Hevner 2007) into consideration, I can therefore formulate a design
goal (DG) for the DSR project:

Design Goal. The designed artifacts aim to support socio-technical evolution-
ary-teal organizations in addressing the challenges of joint optimization and
organizational choice during their autopoietic processes.

3.2. Qualitative research

I will investigate the autopoietic change processes in an organization to address
the ORQ. Therefore, I need to observe the acts of communication regarding
the socio-technical self-description (see Section 2.1 and 2.3). These acts of
communication will be influenced by the persons involved and they will “actively
construct their own meanings of [communicative] situations” (Cohen, Manion,
and Morrison 2007, p. 167). Flick (2018, p. 4) also notes that “[r]apid social
change and the resulting diversification of life worlds increasingly confront
social researchers with new social contexts and perspectives.” Although Flick
(2018) is arguing about processes like the globalization and migration, the
principles can also be applied to local social structures, like organizations.
Due to the nature of evolutionary-teal organizations aiming to integrate

members wholly and shaping their purpose evolutionarily (see Section 2.2.3),
the persons involved are a key to understand the autopoietic change processes.
Since humans differ in their perception of reality, multiple worldviews, if not to
say realities, that exist side by side, have to be taken into account. Thus, these
different worldviews mutually shape the change process of the organization.
Moreover, also the acts of communication are shaped by their contexts, that
means e.g. the time, the place, but also feelings and sensory impressions of
the humans involved in the specific act. Such influences are also important
for traditional organizations, but it becomes of major importance if all the

QUALITATIVE RESEARCH 19

persons and their individual perceptions of reality play a central role in the
definition of organizational boundaries.

Thus, the positivist idea of “an objective external reality, a passive, neutral
observer, or a detached, narrow empiricism” (Charmaz 2014, p. 13) becomes
difficult to apply for my research focus (see also Denzin and Lincoln 2008, p.
14). Alternatively, I will follow the constructivist or postpositivist approach
“that social reality is multiple, processual, and constructed” (Charmaz 2014,
p. 13). Therefore, the “researcher’s position, privileges, perspective, and
interactions [are] an inherent part of the research reality” (Charmaz 2014, p.
13).

Consequently, my inquiries will be situated in a specific context and by
becoming part of this context, I will influence it, no matter how much effort
I invest in attempting to maintain a distance and remain objective in the
particular situation under investigation. I thus decided to follow the naturalistic
paradigm in the context of an ethnographical research design (Cohen, Manion,
and Morrison 2007; Guba 1981).

Although Guba (1981) already points out that naturalistic inquiry allows to
apply quantitative research, as well as qualitative investigations, I decided to
follow the latter by considering its definition of Denzin and Lincoln (2008):

“Qualitative research is a situated activity that locates the observer
in the world. It consists of a set of interpretive, material practices
that make the world visible. These practices transform the world.
They turn the world into a series of representations, including
field notes, interviews, conversations, photographs, recordings, and
memos to the self. At this level, qualitative research involves
an interpretive, naturalistic approach to the world. This means
that qualitative researchers study things in their natural settings,
attempting to make sense of, or interpret, phenomena in terms of
the meanings people bring to them.”

Denzin and Lincoln (2008, p. 4)

Furthermore, McDonald, Schoenebeck, and Forte (2019) mention that nowa-
days, many contributions to HCI and CSCW research use qualitative analyses
(1/3 of articles presented at the CHI conference and 1/2 at the ACM CSCW
conference between 2016 and 2018). The approach of “qualitative methods
became common as researchers aimed to develop human-centered research
practices” (McDonald, Schoenebeck, and Forte 2019, p. 72:3) to record users’
perspectives.

Denzin and Lincoln (2008) mention that qualitative studies are situated in
a research context. Thus, the research questions have to be contextualized in
the situation. Consequently, the available empirical data also depends on the
context and the possibilities for generating1 more data bounded to it. Thus,

1See Section 3.2.2 for a discussion about the usage of the term generate instead of collect.

20 CHAPTER 3: METHODOLOGY

there is no standardized recipe to perform qualitative inquires. Researchers
often have to combine different approaches or reuse them in a new context to
generate or analyze the empirical data.
Qualitative investigation requires considering various forms of empirical

data, including interviews, observations, case studies, cultural artifacts, but
also personal experiences, life stories, and introspection (Denzin and Lincoln
2008). Thus, “a wide range of interconnected interpretive practices” (Denzin
and Lincoln 2008, p. 4-5) have been developed to derive a meaning of the
investigated situation. In that way, the subject of the research intervention
becomes apparent by combining different empirical data sources with (multiple)
interpretive practices.

Similar to the various forms of qualitative data and its generation, there are
also several methods and methodologies for analyzing data. Denzin and Lincoln
(2008) cite content analysis, statistics, ethnomethodology, phenomenology,
ethnography and many more. Dourish (2014) adds grounded theory and
action research as approaches used by HCI scientists. Most importantly, the
methodologies developed for generating and analyzing data strive to support the
“discovery and verification of theories” (Denzin and Lincoln 2008, p. 14) instead
of general truths as the postivists’ approach of recording and understanding a
particular aspect of objective reality.
My inquiries are based on the assumptions that (1) there are multiple

interrelated perceptions of reality determined by the humans involved in the
acts of communication, (2) I will be part of the investigated situations and
there is no possibility to describe independently ‘what happens’ without
influence, and (3) I will not come up with generalizations or statements that
are independent of their elicitation context (Cohen, Manion, and Morrison
2007; Guba 1981).

Addressing these assumptions, I will discuss the four naturalistic aspects of
trustworthiness (Guba 1981), that I applied for my research interventions, in
the next Section 3.2.1. In the Sections 3.2.2 and 3.2.3 I will outline an approach
to handle the challenges of my assumptions by applying an ethnographical
case study. I structure and control the analysis, as well as the data generation
phases of my inquiries by aligning it to the idea of grounded theory (Charmaz
2014), described in Section 3.2.4.

3.2.1. Aspects of Trustworthiness

Guba (1981) distinguishes the epistemological stances of rationalists and
naturalists regarding the trustworthiness of inquiries, while Dourish (2014)
distinguishes qualitative and quantitative researchers and Denzin and Lincoln
(2008) review the different research approaches of ethnography over the course
of time.
Following the postpositivists, Denzin and Lincoln (2008) mention that

qualitative research strives to understand the world through the lenses of

QUALITATIVE RESEARCH 21

different subjective perspectives. We see the world around us by taking specific
viewpoints showing us one representation of the elements of the world. Thus:

“Objective reality can never be captured.”
Denzin and Lincoln (2008, p. 7)

Furthermore, being a researcher who is also “part of the world that we are
researching [...] we can not be completely objective” (Cohen, Manion, and
Morrison 2007, p. 134). This constructivist perspective is natural to ethnog-
raphers that strive “to understand and account for what arises in the data”
(Dourish 2014, p. 17).

When it comes to naturalistic ethnographers, Guba (1981), Denzin and
Lincoln (2008), and Dourish (2014) dismiss the quality criteria validity, gener-
alizability, reliability, and objectivity as inappropriate. However, others still
attempt to translate these terms into a language of qualitative inquiry, as dis-
cussed by Cohen, Manion, and Morrison (2007) and McDonald, Schoenebeck,
and Forte (2019). They use the term reliability in different cases, like the
replication of results by different coders, different investigations, or by means
of an observation through time. Validity is defined as “the meaning that
subjects give to data and inferences drawn from the data” (Cohen, Manion,
and Morrison 2007, p. 134).

Additionally, naturalistic researchers applying to qualitative research reject
reliability as the ideal of having reproducible research interventions (Cohen,
Manion, and Morrison 2007, p. 148). Reproducibility means to have the same
results by using the same methods and the same sample. It requires “a degree
of control and manipulation of phenomena” (Cohen, Manion, and Morrison
2007, p. 148) and thus, the basic naturalistic assumption of observing unique
situations would be violated. Nevertheless, Cohen, Manion, and Morrison
(2007) define the criteria of reliability for qualitative research “as a fit between
what researchers record as data and what actually occurs in the natural
setting that is being researched” (Cohen, Manion, and Morrison 2007, p. 149).
In contrast to quantitative methodologies, reliability requires “context- and
situation-specificity, authenticity, comprehensiveness, detail, honesty, depth
of response and meaningfulness to the respondents” (Cohen, Manion, and
Morrison 2007, p. 149) for qualitative methodologies.
In the search for alternative quality criteria and terms, Dourish (2014)

discusses the difference between generalization and abstraction:

“Generalization concerns making statements that have import
beyond the specific circumstances from which they are generated.
Abstraction concerns the creation of new entities that operate on
a conceptual plane rather than a plane of actualities and that have
generalized reach through the removal of specifics and particulars.”

Dourish (2014, p. 13)

22 CHAPTER 3: METHODOLOGY

According to Guba (1981), generalizations miss the course of time as es-
sential part of the context of a research intervention: Over time, a previously
generalized truth decays into a historical fact. Again, the naturalistic approach
strives to encapsulate the context of an inquiry, and thus the time constraints
as well. Dourish (2014) points out the fact that observations made in the data
are only an evidence for the “possibility of exactly these occurrences” (Dourish
2014, p. 17). Thus, such observations cannot fit the purpose of generalization
as understood by positivists. Nevertheless, possible abstractions can possible
be detailed and aid in transferring the results of a qualitative investigation to
a new context. “[E]thnographic work often generalizes, but it does so through
juxtaposition – contradistinction, comparison, sequentiality, referenliality, res-
onance, and other ways of patterning across multiple observations” (Dourish
2014, p. 13). Usually, generalization of ethnographic research happens by
assigning it to the corpus of existing literature, instead of judging it by merely
focusing on a single study.
Guba (1981) also considers the approaches of addressing reliability and

validity over the course of a naturalistic and qualitative study as outlined by
Cohen, Manion, and Morrison (2007) and McDonald, Schoenebeck, and Forte
(2019), but he treats them as activities for addressing the quality criteria of
credibility, transferability, dependability, and confirmability. These criteria are
naturalistic approaches towards the scientific values incorporated by validity,
generalizability, reliability, and objectivity.

Guba (1981) describes the approach of credibility as an alternative to the
tying and untying of specific variables that describe parts of the perceptible
world as it is done by rationalists. He argues that describing the world by tied
variables led to abstractions supporting generalizations, but neglects all parts of
the reality that are described by untied variables. Thus, Guba (1981) calls for
capturing the world wholly considering all complexities that are resulting from
the intertwined values assigned to all variables. He suggests addressing such an
understanding of credibility by a ‘prolonged engagement at the site’, ‘persistent
observation’, ‘peer debriefing’, ‘triangulation’, ‘collection of referential adequacy
materials’, and ‘member checks’. After leaving the field, credibility can be
further supported by ‘establishing structural corroboration or coherence’ and
by ‘establishing referential adequacy’.
Credibility coincides with criterion-related validity, the relationship between

the results of a research intervention and external criteria (Cohen, Manion,
and Morrison 2007).
According to Guba (1981), transferability is a required claim, since no

naturalistic research intervention is context-free (see Section 3.2). Thus,
it is required to describe the context of an intervention in order to allow
other researchers to transfer the results of the study to a new context. So,
they become enabled to decide to which degree the results can be applied
by comparing the contexts. Cohen, Manion, and Morrison (2007) calls for
a description of participants and settings. Furthermore, researchers should

QUALITATIVE RESEARCH 23

“identify possible comparison groups, and [...] indicate how data might translate
into different settings and cultures” (Cohen, Manion, and Morrison 2007, p.
137). Therefore, they also use the term comparability.

Naturalistic inquiries require a full description of the investigated situation
itself in order to address ecological validity as introduced by Cohen, Manion,
and Morrison (2007, p. 138): “[A]ccurate portrayals of the realities of social
situations in their own terms, in their natural or conventional settings” are still
required. Thus, results of the interpretive analytical process that are suspected
to be abstractions can be further developed and validated by upcoming research.
According to Dourish (2014) the scientific activity of generalizing the results
of research interventions for ethnographic inquiries is part of the ongoing
discourse represented in the corpus of scientific texts. Thus, Dourish (2014)
argues that the contribution of an ethnographic inquiry lies “in the way in
which it reframes the contexts and questions of design” (Dourish 2014, p. 19).

Naturalistic research has to handle instabilities arising in the data that may
occur during the interpretative process of the researcher or because different
perceptions of reality are captured during the data generation (Guba 1981;
Cohen, Manion, and Morrison 2007). Guba (1981) addresses this challenge with
the idea of dependability and suggests to make such instabilities transparent to
the reader, as well as to demonstrate how the researcher has dealt with such
situations.

The concept of confirmability questions how confirmable the data as well as
the interpretation are. Cohen, Manion, and Morrison (2007) names it construct
validity: Is the articulation of a construct developed by ongoing interpretation
valid? What is the researchers understanding of the construct and does it
matches generally accepted understandings? Guba (1981) suggests to apply
‘triangulation’ and ‘practicing reflexivity’, while Dourish (2014) calls for audit
trails. By being involved in and part of the ongoing situation, as is usually the
case with an ethnographer, I will undoubtedly effect the other persons in the
situation (Dourish 2014).

3.2.2. Ethnography

Ethnography is based on the epistemological stances of anthropology (Dourish
2014; Denzin and Lincoln 2008) and therefore, applying ethnography in turn
means investigating the whole context of a research question or the subject of
a study. Thus, for CSCW tools, not only the tool itself and its effects have
to be focused upon by researchers, but the whole social situation must be
described as well. As a consequence, being an ethnographer means to generate
an understanding of the context (Dourish 2014) that bases on human behavior
investigated by spatial and time bound restrictions. Thus, such investigations
will result in “complex, irreducible, socially situated and unique” (Cohen,
Manion, and Morrison 2007, p. 137) context descriptions. Dourish (2014) adds
that ethnographic inquiries have to focus the coevolvement of the technical

24 CHAPTER 3: METHODOLOGY

tools (e.g. CSCW tools) and their context of usage. Hence, the following
definition of ethnography becomes the base for this thesis:

“Ethnography is an approach to understanding cultural life that
is founded not on witnessing but on participation, with the goal
of understanding not simply what people are doing, but how they
experience what they do.”

Dourish (2014, p. 1)

Rooted in the tradition of ethnographic research with its origins in anthropology,
Dourish (2014) remarks on two major attributes of it: (1) Research using
an ethnographical approach does not collect data, but generates it. Thus,
considering its definition, the researcher’s participation in the situation is part
of the scientific inquiry and the motor that generates data. (2) An essential
part of data generation happens after the ethnographical intervention of the
study. Therefore, Dourish (2014) introduces the concepts of interpretation and
ongoing reflection. In conclusion, Dourish (2014) characterizes ethnography as
a scientific inquiry with an ethnographer as a person in direct proximity to the
situation under investigation and that influences it by action and interaction.
Thus, the ethnographer alters the situation that is being investigated. The
resulting data is generated by all actions and interactions in the situation, but
also by the ethnographers interpretation of the situation and the reflection
about its influence. Consequently, HCI studies take “a more circumscribed,
task-oriented perspective” (Dourish 2014, p. 3) and the ethnographical HCI
researcher has to become a part of the situation, instead of being just an
observer or a witness.
During the evolution of the ethnographical approach, the attention moved

from the experience itself to the “system of meaning” (Dourish 2014, p. 6).
The different actions that occur in the situation of interest and the experiences
made by the ethnographer have to be interpreted regarding their meaning.
Afterwards, they have to be related to each other and, consequently, a broader
insight becomes possible. Dourish (2014) emphasizes that meaning, in the
terms of an ethnographer following the structuralists approach, is derived from
the arrangements of the experiences and by focusing their distinctions.

Geertz (1973, p. 6) defines ethnography by the primary kind of intellectual
work done by the ethnographer: “[A]n elaborate venture in, [...], ‘thick descrip-
tion.’” By using the term thick description, he means that an ethnographer not
only describes an observable situation as an outsider (thin description), but
also constructs the meaning of the observation and gives this meaning bundled
with the observation to the readers of the ethnographical report. Dourish
(2014, p. 8) extends that thick descriptions are characterized by “different
frames of interpretation, layers of meaning, contradictions and elaborations
woven together.”

Hence, the data generation becomes increasingly complex, as was already
indicated by Geertz (1973), since it is intertwined with different layers of

QUALITATIVE RESEARCH 25

conceptional structures. Furthermore Stake (2008) referred to the fact that
thick descriptions are developed by considering relationships between actors,
their charisma, or their interests. Bringing these aspects together requires
to describe transparently the ethnographical work done by the researcher in
terms of interpretation, self-reflection, and the interrelations in the field.

Thus, a possible understanding of the term theory is mentioned by Denzin
and Lincoln (2008, p. 24): “The central task of theory is to make sense out
of a local situation.” Theory is focusing the micro cosmos of the situation
investigated by the ethnographer. Ethnographic descriptions are interpretive
(Geertz 1973) and thus, theories are resulting from the interpretative work of
an ethnographer focusing on specific situations.
The systems approach to meaning is comparable to the understanding

of social systems by Luhmann (2001) that is presented in Section 2.1 and
prepares the ground for this thesis. Participating a socio-technical evolu-
tionary-teal organizations in an ethnographical inquiry setting will allow for
constructing a system of meaning regarding the autopoietic change processes
that are addressing the technical component. Thus, it will be possible to
identify specific problems in the self-transformation of the organization that
are intertwined with the allopietic technical system. Therefore, ethnographic
inquiry can be applied during the relevance cycle of the DSR interventions
(see Section 3.1).

More precisely, various levels of understandings generated by means of an
ethnographical inquiry are used to detail software requirements, but moreover,
as already mentioned by Dourish (2014), the ethnographic approach can sup-
port all interventions of the relevance cycle. Thus, the applied ethnography
in this thesis is “raising questions, challenging perceived understandings, giv-
ing silenced perspectives voice, and creating new conceptual understandings”
(Dourish 2014, p. 15).

3.2.3. Case Study

Section 2.2.3 describes the concept of the investigated evolutionary-teal orga-
nizations focused upon by the ORQ introduced in Section 1.2. Laloux (2014)
characterizes this type of organizations with a detailed analysis of multiple
companies and at least one school that are evolutionary-teal. Thus, he ab-
stracts the basic characteristics of evolutionary-teal organizations from real
examples. In this thesis, I will investigate the socio-technical change processes
that are driven by the autopoietic nature of the social subsystem. Therefore,
I need to apply the abstract characterization that was developed by Laloux
(2014) to a specific case, that is, a real organization. That means that I will
apply the case study approach (Cohen, Manion, and Morrison 2007; Stake
2008).

By focusing on a case study, I will provide abstractions using an example,
aiming to support “researchers to understand other similar cases, phenomena

26 CHAPTER 3: METHODOLOGY

or situations” (Cohen, Manion, and Morrison 2007, p. 253). I will enable
readers of my work to transfer my results, by providing a “rich and vivid
description of events relevant to the case” (Cohen, Manion, and Morrison 2007,
p. 253) and by aligning these event descriptions to my analysis. Furthermore,
I became a member of the organization and therefore an active element of the
investigated situations. Hence, applying the case study approach “is not a
methodological choice but a choice of what is to be studied” (Stake 2008, p.
119). For this thesis, the case is used to support the development of insights
regarding the original ORQ. Thus, I am endeavoring to understand the ORQ
in the context of the case and therefore, I will describe an instrumental case
study according to Stake (2008).

As suggested by Stake (2008, p. 120), I describe the case as a system of
“working parts and purposes” in Chapter 4 to describe its self. In addition to a
general discussion of the organization, its context is also described, as required
by Stake (2008). Moreover, every inquiry will provide a brief description of the
investigated situation (e.g., a working process) including the roles involved and
the relevant events. These specific aspects of the organization will be observed
as part of the ethnographical approach (see Section 3.2.2, described in detail,
and interpreted in order to formulate abstractions.

Stake (2008) asks “[w]hat can be learned about the single case” (Stake 2008,
p. 120) and focuses on the naturalistic generalization of experiential knowledge:
The transfer of experiences a researcher made during the investigation of the
case to readers. During the interpretative process, I will briefly describe
abstractions from the generated data by identifying the local as well as the
foreshadowed meaning the observed occurrences had for the participants.
This interpretation will be aligned to the ORQ. As already mentioned by
Stake (2008), I will continuously interpret the generated data, also citing the
observations: “An observation is interpreted against one issue, perspective, or
utility, then interpreted against others” (Stake 2008, p. 128).
Although Cohen, Manion, and Morrison (2007) and Stake (2008) name

the previously outlined process of abstraction generalization, I will align the
process of interpretation to support transferability by means of the resulting
abstractions. Considering the discussion of generalization in Section 3.2.1, it
would not be possible to describe a general truth by investigating only one
organization. Nevertheless, my thesis aims to describe credible and transferable
results that can be applied to other cases. Moreover, the inquiries in Chapters
6 and 7 are also qualitative investigations, but the number of participants is
much higher than one.

While Chapter 4 takes a more general point of view and describes the initial
environment of my case in the beginning of my interventions, it follows theory-
generating structure described by Cohen, Manion, and Morrison (2007): The
different aspects of the case study are described with the purpose to formulate a
theory and therefore, a chain of arguments should become apparent. Moreover,
the case will be presented at a very detailed level instead of briefly describing

QUALITATIVE RESEARCH 27

many comparative cases to support transferability (Stake 2008). For this thesis,
Chapter 4 mainly introduces the basic concepts and motivates the solution
described in Chapter 6 and 7. The case study aspects that are further focused
in the inquiries presented in Chapters 6 and 7.

3.2.4. Analysis

The previous sections describe the iterative nature of my approach for in-
vestigating the ORQ introduced in Section 1.2. I will apply naturalistic,
ethnographic, and qualitative principles to generate data during a project that
follows the cycles of DSR (see Section 3.1). Still, it is an open question as
to how the data will be analyzed and how the interpretation is performed to
answer the ORQ and its RQs of the prospective chapters.

Current CSCW research that applies qualitative methods are often based on
content analysis or grounded theory (Fiesler et al. 2019). While the content
analysis strives to construct a theoretical understanding of the content of data
(Krippendorff 2012), grounded theory aims at identifying and understanding
actions initiated by humans and social processes. Furthermore, grounded theory
methods fit the iterative nature of DSR to construct a theory grounded in the
data:

“Grounded theory begins with inductive data, invokes iterative
strategies of going back and forth between data and analysis, uses
comparative methods, and keeps you interacting and involved with
your data and emerging analysis.”

Charmaz (2014, p. 1)

Grounded theorists understand the world of their research subjects by applying
a qualitative coding from the beginning of the data generation process to the
point in time, when their understanding does not changes although more data
is added. Thus, a small amount of data is generated in the very beginning and
subsequently, initial analysis results in the preliminary theoretical concepts.
The upcoming phases of data generation and analysis will be aligned to these
concepts that are continuously extended and questioned.

Grounded theory methods are not just a specific, analyzing methodology, but
more “a set of general principles, guidelines, strategies, and heuristic devices”
(Charmaz 2014, p. 3).

Intertwining grounded theory methods for an ethnographic case study with
DSR means analyzing data generated by the researchers participating the
events of the relevance, as well as the change and impact cycles of a DSR
project. The resulting theoretical constructs become the base for the design of
the artifacts addressing a previously identified goal. Following the design of a
solution, its usage becomes the context of the next phase of data generation and
analysis. For this second application of grounded theory methods, researchers
should endeavor to relate the use of the solution to the original goal. The main

28 CHAPTER 3: METHODOLOGY

question here is to what degree the developed theoretical concepts that brace
the design of the solution are applicable to address the originally identified
goal.
Focusing the analysis of data here, the coding processes should be mainly

discussed:
“Coding means that we attach labels to segments of data that
depict what each segment is about. Through coding, raise analytic
questions about our data from the very beginning of data collection.
Coding distills data, sorts them, and gives us an analytic handle
for making comparisons with other segments of data. Grounded
theorists emphasize what is happening in the scene when they code
data.”

Charmaz (2014, p. 4)
Charmaz (2014) explains the grounded theory approach as an inductive process
of generating and analyzing data simultaneously. Furthermore, the researchers
focus on “actions and processes rather than themes and structure [and result
in] inductive abstract analytic categories through systematic data analysis”
(Charmaz 2014, p. 15).

For my research, I will focus the autopoietic change processes that are
coupled to the technical components that are part of the socio-technical self-
description. Considering the DSR project, the performed studies in Chapters
6 and 7 mainly focusing on integration and adaption of the designed technical
and social artifacts by the social system. Although the research intervention
described in Chapter 7 does not allow me to simultaneously conduct data
generation and its analysis, this approach is applied in the inquiry described
in Chapter 6.

In focusing solely upon the analysis of data, I will not claim to be conducting
a grounded theory research; rather, I will be adapting the coding strategies.
According to Charmaz (2014) these strategies are not fixed to the grounded
theory approach: “[R]esearchers can use basic grounded theory strategies
such as coding, memo-writing, and sampling for theory development with
comparative methods because these strategies are, in many ways, transportable
across epistemological and ontological gulfs” (Charmaz 2014, p. 12).

The process of analysis consists of two main activities: (1) An initial coding
is applied (Charmaz 2014, Chapter 5), followed by (2) a focus coding (Charmaz
2014, Chapter 6) to identify abstract concepts. The whole process of analysis
is accompanied by writing memos, as suggested by Charmaz (2014). Thus, the
process of analysis used for this thesis is aligned with grounded theory coding
(Charmaz 2014). Therefore, I also followed the same goal as grounded theory
coding does:

“Grounded theory coding is the process of defining what data are
about.”

Charmaz (2014, p. 111)

QUALITATIVE RESEARCH 29

During the initial coding, very small units of the data are labeled with
a descriptive text, named code (McDonald, Schoenebeck, and Forte 2019;
Charmaz 2014). The codes are an interpretation of the focused unit of data
with respect to the previously formulated research question. These codes label
what happens in the data from my point of view. More precisely, I created
and applied theoretical categories to a unit of data. These categories were
results of the process of relating the data to the original research question
by interpretation. The initial coding phase requires one to remain “open
to all possible theoretical directions indicated by your readings of the data”
(Charmaz 2014, p. 114). Hence, I will occasionally refer to it as open coding.

Subsequently, the focus coding aims to construct new codes “that subsumes
numerous initial codes” (Charmaz 2014, p. 138). For this thesis, I did not
focused specific open codes, that I cited the most relevant for my research
questions, but I coded my initial codes to identify broader concepts. Thus,
I grouped and clustered the open codes by the newly created ones. For this
purpose, I applied different strategies. For the literature review in Chapter
5, as well as for the focus coding described as part of the study presented in
Chapter 6, I clustered the open codes by their thematic distance. If I was able
to relate an open code to an existing group of other open codes (an already
created focus code), I joined the open code and therefore also its meaning to
the focus code representing the group. Consequently, there are open codes
influencing multiple focus codes.
Alternatively, I applied an axial coding to the open codes created in the

context of the study of Chapter 7, as it was introduced by Charmaz (2014,
Chapter 6). During the axial coding, the open codes are ordered, sorted and
categorized in larger categories of “recurring topics or meanings that represent
a phenomena” (McDonald, Schoenebeck, and Forte 2019, p. 72:3). McDonald,
Schoenebeck, and Forte (2019) name these resulting categories themes. During
the axial coding, multiple relevant axes have been defined (aligned to the
research questions) and nominal values on these axes have been assigned to
each initially created open code. In essence, the codes of the open coding have
been coded to bring back a coherent whole. Thus, while the open coding helps
to understand what happens in the data, the axial coding is the tool to define
what the data means (Charmaz 2014). The axial coding is also the process of
examining internal conflicts in the data or its interpretation. Furthermore, it
compels one to align data in conflict to a coherent interpretation, and supports
the corroboration of interpretation by showing up similar units of data and
their “pieces of interpretation”, the assigned codes. Therefore, it supports
the ‘establishing of structural corroboration or coherence’, as required by Guba
(1981).

Additionally, I extended the approach of the grounded theory coding for my
literature review (see Chapter 5) using a content analysis. Thus, I conducted
an open coding to identify concepts addressing my research question, outlined
base categories from the open codes by applying an focus coding, and used

30 CHAPTER 3: METHODOLOGY

Technical Perspective
The decentralized Heureka! archi-
tecture.

Social Perspective
Repeatable collaborative work-
shops, talks, etc.

Figure 3.1.: Perspectives of the upcoming concept to handle joint optimiza-
tionand organizational choice for socio-technical evolutionary-teal
organizations.

these categories for a content analysis of a remaining set of literature. During
the analysis, I focus on the created categories and strive to expand their
meaning with respect to the research question by applying these categories to
the content.
Since codes are language for describing what is happening and what the

data means, the language used shapes my analysis. Terms and phrases used
for my codes are tangible evidences for the influence I have upon my analyses
(Charmaz 2014). Thus, my role as an ethnographer becomes very important
here. My coding procedures have to be aligned to the worldview and the
wording that I adapted through my participation in the investigated situation
and previous engagement in the organization that I focused upon. That does
not mean having a coding process led by the worldviews of the participants,
as this would result in reproductions of these worldviews (Charmaz 2014, p.
127). Instead, I have to understand the perspective of the participants and I
should be able to describe my observations using their language. At any rate,
my influence on the data and its interpretation does not cease before I start
coding. Rather, I “act on [my] data and these actions sustain [my] involvement
with them” (Charmaz 2014, p. 115).

3.3. A Naturalistic Design Science Research
Approach

The concept presented here for addressing the challenges of socio-technical evo-
lutionary-teal organizations has been developed from two different perspectives
(see Figure 3.1): (1) Questioning technical challenges for CSCW tools as
subsystems of socio-technical systems. The technical view results in a basic
architecture and some non-functional requirements. (2) The social perspective

A NATURALISTIC DESIGN SCIENCE RESEARCH APPROACH 31

1. Identify Problem

2. Derive solution

3. Implement

4. Demonstrate

5. Evaluate

6. Communicate

Technical
Perspective

(Chapter 6) Social
Perspective

(Chapter 7)

Case Study

(Chapter 4)

Literature
Review

(Chapter 5)

Publication as
dissertation

Socio-technical
requirements

Heureka
platform

Field Study:
ArchiUse

Adaptation
requirements

USMU
workshop

USMU
field study

Legend: Change &
Impact Cycle

Relevance
Cycle

Design
Cycle

Rigor
Cycle

Figure 3.2.: The research agenda describes the different interventions. These
are distinguished by the DSR triggers, created artifacts, research
interventions, and workshop concepts.

addresses social interaction and management. From this point of view, different
methods for managing the change of a social system have been developed.
The research agenda is illustrated in Figure 3.2 and differentiates between

the DSR trigger, the research requirements, the created artifacts, and concrete
interventions. The term research intervention designates inquiries or their
results that were addressing the original ORQ introduced in Section 1.2. They
also directly influence the living organization VCA due to the naturalistic
approach (see Section 3.2). Thus, although the inquiry mainly addresses
research questions, its implementation also affects the social system and
therefore, it is an intervention. I will also use this term throughout the
upcoming chapters of this thesis.

Additionally, both identified perspectives, the technical, as well as the social
one, are part of the organization of my research project. Thus, the activities
of the four DSR cycles are covered for each perspective and, consequently,
also two artifacts aiming to address the ORQ are created. My ethnographical
intervention in the case study (see Section 4.1) has triggered the research
project and led to the socio-technical requirements that were focusing the
technical perspective (see Chapter 6). Generally speaking, the challenges that
Viva con Agua faces in the beginning were the DSR trigger. These requirements
and a literature review (see Chapter 5) were the base for the new Heureka!
architecture (see Section 6.4) that has been introduced to support VCA as
Pool2 in their autopoietic change processes. Thus, impressions of activities
from the relevance cycle and the rigor cycle formed the design. A study of the

32 CHAPTER 3: METHODOLOGY

interdependencies between the architecture and the software developers using
it is presented in Section 6.6. I investigated the fitting of the artifact for a
decentralized and loosely coupled ecosystem of software development teams,
as it is demanded by the socio-technical requirements.
Furthermore, the purely technical nature of the response to the original

research question reveals no proper approach to organize the communication
between technically skilled developers and the other people involved in the
socio-technical organization. The volunteers of VCA (see Chapter 4) are form-
ing the requirements regarding the technical solution since they are involved in
the autopoietic change processes of VCA. Therefore, the research project takes
on an additional social perspective. Considering the initial environment of
loosely coupled self-organized teams (see Section 4.1), adaptation requirements
have been identified as an activity of the relevance cycle in Chapter 7. Ad-
dressing the new requirements, a participatory design workshop intervention
has been created, aiming to give the volunteers of VCA a voice regarding
the requirements for the technical system. Thus, the user stories made by
users (USMU) workshop aims to enable the volunteers to participate the
technical design of the used CSCW application as it will be required to enable
autopoietic change. Section 7.5 describes a study of volunteer activities in an
USMU workshop.

4. The Case

In his movie “Modern Times” (1936), Charlie Chaplin uses the fictional “Electro
Steel Corporation” as an example for visualizing industrial exploitation that
was suppressing the human individuality since Henry Ford’s invention of the
classic production line in 1912. In this instance, art creates a new example for
representing the features of a perceived and experienced workplace reality. This
fictional example of a classic Tayloristic organization is used to be targeted
by criticism of the identified attributes of such organizations. The work is
determined by the functionalities of the used machines, the persons involved
become reduced to be users, in best cases, and parts of these machines in worst
cases. Thus, the faultless operation of the machines is more relevant than the
well-being of the humans involved in the organization.

Aside from the criticism of technological determinism in socio-technical
systems (although the term socio-technical systems has been coined later),
Chaplin illustrates the attributes of his subject matter by constructing a thick
and dazzling, if not to say gloomy, abstraction of perceived reality. Such
a construction requires one to see, to understand, and to contextualize the
examples in the real world as a very first step.
As described in Section 3.2.1, I aim to explain the context of my scientific

investigations to allow readers to transfer my results to other contexts, as well
as to support the readers in recognizing the results credibility, dependability,
and confirmability. In other words, I will try to allow the readers to perceive, to
understand, and to contextualize my research subject, as I perceived it. While
Chaplin was focused on the abstraction of his perception to present possibilities
of change, I will show my perception of reality in this chapter supporting the
reader in comprehending my research questions and investigations.
This chapter provides a case description and thus, it will be more story

like, while the upcoming parts in Chapters 6 and 7 will be more scientifically
described. I will describe the organization VCA and its socio-technical context
aiming to support readers in identifying similarities with other organizations,
but also in recognizing the differences. Furthermore, I will add a statement
regarding my own prolonged engagement as part of the organization.
It is important to note here that the organization is not the same as the

case. The context of VCA consisting of my first interventions in the case,
like the socio-technical walkthroughs (STWTs), or other social systems VCA
is collaborating with, are important aspects of the case study. All these
information are required to completely describe the DSR trigger, the initial
environment of the research project.

33

34 CHAPTER 4: THE CASE

4.1. Viva con Agua de St. Pauli e.V.

Viva con Agua de St. Pauli e.V. is an initiative that aims to grant access to clean
drinking water, sanitation and hygiene (WASH) for all people worldwide. The
association describes itself as an All-Profit organization: Everyone who comes
in touch with it should benefit by a cooperation. People living in the global
south benefit from knowledge exchange, hygiene teaching and infrastructure
implementations (like toilets or washbasins). For people in the global north
VCA offers to engage themselves in volunteering actions that are meaningful,
shaped by themselves, aligned to the personalities (existing skills, but also
interests and feelings), and joyful. These volunteers are collecting donations
and raising awareness for the global WASH challenges. In this thesis I refer to
these volunteers as WASH volunteers. Although this characterization was the
starting point of the organization in 2006, it has constantly transformed its
environment and thus, VCA has also gradually broken the borders between
the global south and north. As the initial volunteers started becoming engaged
in the global south itself, they therefore also became WASH volunteers.

4.1.1. Social system

The organization follows the principle of open participation, meaning that
everyone can become a WASH volunteer any time he or she wants to. Therefore,
(1) everyone should be able to engage herself/himself without any obstacle
or barriers given by a formal structure and (2) everyone can stop his or her
engagement at any point in time. Obviously, the organization has to face
multiple challenges regarding their internal organization, responsibility of
and trust in engaged people, as well as decision making. Nevertheless, VCA
addresses the characteristics of the millennials with its organizational principles
of self-management, focus on creative and joyful activities, the possibility to
create meaningful impact as fast as possible, and the provided balance of
volunteering work and private life.

Open participation does not only allow to simply engage oneself, but rather it
compels one to pursue the projects representing the engagement. Thus, WASH
volunteers are responsible for the implementation of their activities. Even
though the social system of VCA bases on the agreement of mutual support,
the individual volunteer is responsible for his or her ideas. This concept of
mutual support is embodied in the conceptual rules named commitment by
the WASH volunteers. If a volunteer commits for a task to implement the
ideas of another volunteers, this is considered as an agreement between the two
volunteers. On the one hand, a volunteer can decide by herself or himself how
much workload he or she can commit for. On the other hand, the concept of
commitment embodies conscious trust and mutual support. Both elements are
the base for the degree of self-management that the organization implements.
As a result of addressing open participation, as well as creative and joyful

VIVA CON AGUA DE ST. PAULI E.V. 35

activities, the work of the volunteers is very diverse. Although there are some
common and well-known events, like volunteers that are collecting donations
at concerts and pop music festivals, the external influences are forcing the
organization to stay flexible and open to changes. There are common and
repeatable tasks, but as a donation collecting organization, VCA is always a
guest at such events and thus stuck to the working procedures of the hosting
parties.

Next to the self-management implemented by the volunteers on an individual
level, VCA consists of a flat hierarchy that additionally enables volunteers
to manage their activities by themselves. The crews of VCA are organiza-
tional units aiming to simplify and shorten decision making processes and
to align the strategic orientation towards the local conditions. Crews are
local associations of WASH volunteers in a specific spatial region. Normally,
around 10 to 50 volunteers form one crew. Such a crew decides which activities
the volunteers mutually pursue and they manage the local administration
(handling of finances, internal education, collaboration with partners, and
the organization of volunteer meetings). By implementing the concept of
loosely coupled crews, VCA was able to decentralize the amount of required
administration, to distribute the responsibility, and to shorten decision-making
processes. Additionally, they empowered the WASH volunteers to assume
responsibility that they can satisfy during their free-time activity. Thus, the
volunteers become part of the process of shaping the organizational goal with
their own interests and capabilities. That way, the organization also follows
the principle of evolutionary purpose that was introduced by Laloux (2014)
for characterizing evolutionary-teal organizations.

4.1.2. Socio-technical characterization

In 2012 Viva con Agua has introduced the CSCW system Pool to handle the
growing number of people that were interested in becoming volunteers and
participate the activities of the organization. Initially, the system was only used
to handle applications of volunteers to participate activities (mostly collecting
donations on concerts), but further features were gradually implemented, like
sending emails to groups of volunteers (attendees of a concert, members of a
crew, etc), or handling finances. Thus, more and more acts of communication
were becoming standardized and only valid by using the technical system Pool.
The organization was becoming a socio-technical organization according to
Kunau’s definition (2006, p. 82, see Section 2.3). Although, the system allows
the organization to constantly grow in the number of volunteers, it also faces
the new challenges of organizational choice and joint optimization (see Sections
2.4 and 2.5).

The launched system has been skillfully implemented by one volunteering
software developer. Even though the system met the initial requirements, very
soon the process of adapting the system created new requirements that one

36 CHAPTER 4: THE CASE

developer had to integrate. The creation of new requirements and readjustment
of existing ones is an inherently given process in socio-technical organizations
when autopoietic social systems transforming their needs regarding the allopoi-
etic technical systems (see Section 2.4). This becomes particularly challenging
for a decentralized and loosely coupled social system, such as VCA. The
amount of requirements is not only driven by the number of involved people,
but also the heterogeneity of the social structure, that is, the diversity of the
crews. Additionally, the principle of organizational choice in a social system
that bases on open participation lead to a heterogeneous degree of adaptation
and usage of the technical tool. Although the system has become part of the
socio-technical self-description (Kunau (2006, p. 82); see Section 2.3) of the or-
ganization, a few crews still did not used the tool. Therefore, existing functions
reveal that there are challenges in the adaptation for parts of the organization.
Those challenges have to be further investigated and accompanied by skilled
consultants. Obviously, the evolution into a socio-technical organization not
only resulted in technical challenges for VCA, but also in challenges the social
system has to face within its change processes.
After a short amount of time, the architecture that has been identified to

implement a specific use case turned out to be lacking flexibility for the new
requirements. Additionally, the volunteering developer left the project. Thus,
bugs were not fixed and an increasing number of workarounds made the project
impossible to manage.
Nevertheless, the tool was already part of the autopoietic change process

of VCA. When VCA started the foundation of the first crews, they required
to channel the communication with such crews. Every crew has to name a
reliable WASH volunteer who is committing herself / himself to communicate
with other crews and the few employees in the central office, named Brun-
nenbüro (the German term for well office). While the organization started
naming the WASH volunteers as supporters1, they also introduced the German
term Ansprechpartner (ASP; English: contact person) for supporters that
have committed themselves to handle the communication with other crews
and the Brunnenbüro. The required task of establishing a reliable means of
communication was cited and evolved into a role that increasingly became
more important for the crews. The ASP became the experienced, reliable
manager of internal affairs and, simultaneously, a consultant for every WASH
volunteer who has been committed to an idea or project. Through the initial
implementation and the extension of the functionality of the Pool system, the
formal and informal descriptions of the roles were also transformed. Although
VCA has replaced the one ASP by four per crew focusing the four different
core topics of VCA (Activities, Network, Finances, and Education) before

1The term supporter is under ongoing interpretation and at the moment of writing this
thesis it already means more than the volunteers involved in joyful activities addressing
water, sanitation, and hygiene (WASH) topics and collecting donations. Therefore, the
thesis uses the term WASH volunteers.

MY ACTIVITIES IN THE ORGANIZATION 37

the Pool was implemented, the technical tool shaped the tasks of the new
roles. Moreover, the Pool has framed the way the communication had to be
performed. For example, the manner in which the financial ASP communicates
the collected donations of a crew to the Brunnenbüro has been gradually more
formalized and fine-tuned using functions implemented in the Pool.

4.1.3. Internal social events

VCA has incorporated three different levels of social events enabling the WASH
volunteers to manage themselves, but also the evolutionary purpose: (1) crew
meetings, (2) regional meetings, and (3) Netzwerktreffen (NWT; English:
network meeting). As the name suggests, the crew meetings are addressed
to all members of a specific crew and are hold normally monthly for a few
hours. These meetings are led by the ASPs of a crew. All events that are
covered by the spatial responsibility of the crew are discussed and managed
here. Moreover, the internal education received slots on crew meetings, as
well as financial transparency reports. In addition to management, education,
and finances, these meetings are also spaces for creativity and a social get
together. Thus, ideas for new events arise during crew meetings and are
initially discussed there. Furthermore, sometimes the crew’s used material is
maintained or created at such meetings.
The regional meetings extend the concept of crew meetings by means of

structured workshops, covering a longer period of time (e.g. a weekend), and
by being addressed to all members of crew in a specific region, although the
number of participants is limited. So, multiple crews participate that are in
close physical proximity. These regional meetings are held twice a year and
are supported by employees. The NWT is hold only once a year and addresses
all WASH volunteers. This is quite similar to the regional meetings, but aims
to support the exchanges covering all VCA crews. Thus, this became the
most important event for the organization itself and can be understood as
a marketplace for discussing and distributing ideas for events, strategies of
self-management, and triggers for change.

4.2. My activities in the organization

The technical and organizational issues of the Pool’s software development
project were the trigger for the design science project that is described in
this thesis. The DG introduced in Section 3.1 unfolds into several detailed
challenges regarding the present case study. The technical architecture has to
be flexible enough to face many heterogeneous requirements in the context of
a CSCW tool aiming to support the collaboration of people. Moreover, the
social system has to consciously integrate the technical tool as an influence
onto their autopoietic change process. Thus, the WASH volunteers have to

38 CHAPTER 4: THE CASE

be able to participate in the design process and also, they have to be aware
of the adaptation of the technical tool. It is not just an empowerment for
expressing needs, because the volunteers are the only ones with the authority
to adapt the technical systems and integrate them into their socio-technical
self-description. Furthermore, they are the ones with the needs. Thus it is not
only the fact that they have to be empowered to express their needs, but also
that the software developers have to be empowered to listen to them.

4.2.1. Introducing new internal social events

Focusing the DG and considering the social perspective, as described in Section
3.1, the established meeting system has to be considered as the base to
implement social interventions to handle the challenges of joint optimization,
as suggested by the Section 4.1.2. Thus, I started to develop participatory
design workshops (see Section 2.7) that have aimed to fit the context of a
regional meeting or the NWT. I adapted the concept of STWT workshops
(Herrmann et al. 2004), since I successfully applied it as preparation for my
diploma thesis (Sell 2015). In collaboration with VCA, I conducted four STWT
workshops in March and April 2016. The results are presented in a catalog of
115 user stories (USs) (Sell (2022c), unfortunately only in German).

The STWT were designed as daily workshops, focusing in each case on one
concrete working process to identify possibilities for supporting the working
process with CSCW tools. The working process was introduced in the begin-
ning, and a visualization of the process was presented. Afterwards, the process
was optimized collaboratively under the auspices of a moderated discussion. In
a second step, the participants of the workshop were asked if the process can be
supported by CSCW tools and if they decided that it seems to be a reasonable
idea, an idea generation phase has been initiated, as suggested by Herrmann
et al. (2004). The resulting ideas have been refined by detailed requirements.
Following the workshop, I transformed the ideas with their attached detailed
requirements into USs that are listed in the catalog Sell (2022c).
The participants of the workshop were experienced, as well as new WASH

volunteers to consider the idea of open participation (see Section 4.1.1) and
to balance the presence of humans that know well established processes with
humans having an open mind that are not stuck to these processes. Additionally,
always employees of VCA and the Humboldt-Universität zu Berlin (HU) were
attending. The invited persons were preselected by one process manager
of VCA focusing persons that were open minded and experts regarding the
addressed working process. The HU were represented by one student assistant
responsible for recording and notes, along with me moderating the workshop.
Thus, by moderating these workshops, I had to reflect as to what degree I
influenced the workshops and their results. Since I participated in the research
interventions as an ethnographer, I always had an influence, as has been
discussed in Section 3.2.2. Thus, I outline my presence and its meaning to the

MY ACTIVITIES IN THE ORGANIZATION 39

DSR project in the next Section 4.2.2 and the upcoming Section 4.3.

4.2.2. Prolonged engagement

In 2013 I was becoming a part of VCA and starting my volunteering activities
as a WASH volunteer in the crew Berlin. After a few donation collection
activities, from 2013 onward, I also attended the NWT annually and became
an ASP for the Berlin crew from 2015 until 2017. Thus, I was familiar with
many established working processes and early in the process, I started to
identify challenges for the collaboration of WASH volunteers. Furthermore, I
adopted the language of the WASH volunteers, including the terms introduced
in Section 4.1.1 and began to understand the worldview of the WASH volunteers
including values, needs, and addressed purposes.
Thus, I was able to take responsibility, after I adapted the concepts of

commitment and open participation. As a consequence, I faced the advantages,
but also the challenges of self-managing and started slowly to adapt the aim of
granting access to clean drinking water for all people worldwide. At the same
time, I recognized that the crew Berlin with which that I was participating,
aimed to balance the idea of applying democratic practices with separated
responsibilities. While spaces for discussions were created, the responsible
persons had the last word in the end. During my participation on events like
the NWT, I discovered that other crews applied totally different managing
approaches. A few crews had a strong hierarchy with only marginal spaces for
discussions, while others aimed to form consensus in the whole crew for each
decision. Consequently, although the crews are united in addressing the same
goals, their different self-management approaches required totally different
working procedures.

In 2014 I were contacting the responsible employees for the technical tool Pool
and asked how I could support the further development of the tool. Afterwards,
I started to implement technical solutions, as for my diploma thesis (Sell and
Pinkwart 2016), and to suggest methods supporting the socio-technical joint
optimization, as the previously mentioned STWT.
The USs that were resulting from the STWT are coined from working

processes that are standardized and generalized for all crews. Such a stan-
dardization was obviously a consequence of the procedure of the STWT and
the invited participants. As a first step an ideal working procedure has been
created by the attending WASH volunteers. Since the WASH volunteers were
mixed from many crews, an ideal standard must have been created. Therefore,
also the created USs must address generalized working procedures.

For my diploma thesis (Sell and Pinkwart 2016) I implemented a prototype
named Rambla to address the US Weiterentwicklung der Ideen zu Konzepten
(engl.: Transforming ideas to concepts) and presented this tool to an interested
audience at the NWT 2016. The feedback I received, was that I mainly needed
to rework the tool to consider the perspectives of the different crews. Although

40 CHAPTER 4: THE CASE

the working processes were redesigned ideally during the STWTs, the tool
was not adaptable by the WASH volunteers, since the ideal working processes
were not implemented in daily routines. I learned that it is not possible to
implement the ideal working processes, although these have been designed by
representatives of the WASH volunteers, because of the contexts of the persons
involved. Focusing collaboration processes that mainly happen in free time,
that were shaped by the idea of open participation (see Section 4.1.1), and
that involves millennials (see Chapter 1) means to accept that the used tools
fit ideally the purposes of its users or will be replaced by other tools.

It was and is still not possible to compel the volunteers to use the proposed
tools. The crews were still working in procedures that are fitting their local
needs, but that were only partly compatible to a CSCW tool that would have
implemented the USs. Also forcing the volunteers to work by the designed
collaboration processes was not possible, since it is a free time activity and
VCA considers open participation. In many meetings (crew meetings, as
well as regional ones or NWTs) the volunteers mentioned to just use other
tools, if the provided one is not ideally and thus, the situation would have
been still the same regarding DG. During one of the STWTs the participants
were discussing a newly proposed functionality to handle applications for
activities. Although no one questions that the proposal would address the
originally identified challenges in the working process, most of the attendees
were rejecting the suggested design of the functionality. After discussing it
for 45 minutes, I renamed the button used to call the function: Instead of
the German term bewerben (engl.: making an application), I used Mitmachen
(engl. participate) and all participants were instantly happy with the solution.
Interesting here was, that the participants were noticeable fast in suggesting
alternative CSCW tools during the 45 minutes discussion instead of suggesting
design improvements. Thus, switching the tool seems to be an attractive
solution for the WASH volunteers.

In the beginning of 2017, I created a concept for a more flexible architecture
by using microservices as a base pattern to enable the crews to integrate
their own functionalities in the CSCW tool (Sell and Pinkwart 2018). I thus
initiated the DSR project to develop a new architecture for the Pool2 together
with VCA. This project, as well as the subsequent SOTETO project3, became
the basis for this thesis.

4.3. In the context of a DSR project

As discussed in Section 4.1.2, VCA does not consciously covers the acts of
communication required to proceed with the software development of the Pool.
Thus, there are no established tasks, working procedures, or organizational

2http://vcv.soteto.net, accessed 2022-05-02
3http://soteto.net/, accessed 2022-05-02

http://vcv.soteto.net
http://soteto.net/

IN THE CONTEXT OF A DSR PROJECT 41

units as part of the social system that are addressing the implementation
tasks in the Pool project. Therefore, it is a major challenge for the DSR
project to initiate and establish a software development project, including
working procedures, as well as managing human experts, and establishing
communication strategies between these experts and the WASH volunteers. As
previously mentioned, I decided to follow the same approach that proved very
successfully for the WASH volunteers and therefore simple to integrate in the
established social structures of VCA: I aim to establish a low-threshold offer
to software developers interested in supporting VCA (see further Chapters 6
and 7). These volunteers are named Pool volunteers in this thesis.
As suggested by Stake (2008), the case study is organized around key

issues that address DG introduced in Section 3.1. These issues are questions
supporting the identification of themes in the data. Thus, key issues will
navigate the researcher through the selection of information in the data (Cohen,
Manion, and Morrison 2007) and may lead to characterizations of the case
that are based on information that occurred only a few times in the data:

“Although it is frequently useful to record typical, representative
occurrences, the researcher need not always adhere to criteria of
representativeness. It may be that infrequent, unrepresentative
but critical incidents or events occur that are crucial to the under-
standing of the case.”

Cohen, Manion, and Morrison (2007, p. 257)

Stake (2008, p. 137) adds that “the researcher decides what the case’s ‘own
story’ is, or at least what will be reported than was learned.” Furthermore,
Cohen, Manion, and Morrison (2007) suggest focusing on the significance of
events instead of their frequency. Aiming to understand “real dynamics of
situations and people” (Cohen, Manion, and Morrison 2007, p. 258), I derived
three key questions from the results of my structured literature review (see
Chapter 5) in order to identify significant events in the generated data. These
questions are introduced as the leading RQs at the beginning of the analyses,
described in Chapters 6 and 7.

Reflecting upon the key issues, it is notable that the investigated case is not
VCA, but its characterization of a socio-technical evolutionary-teal organization.
Thus, VCA is just an embodied example of the case. Nevertheless, VCA makes
the case tangible and therefore its scientific investigation possible. Although
Laloux (2014) identified multiple different organizations that are characterized
as evolutionary-teal (and at least some of them are also socio-technical),
VCA was a major initiator of the DSR project. Thus, it initially preselected
the organization that represented the case for this research project. As a
consequence of reaching this level of abstraction, it is very likely, that the
outcomes of my work can be applied to other socio-technical evolutionary-teal
organizations. Additionally, readers of this thesis have the opportunity to
compare the characteristics of other socio-technical organizations with those

42 CHAPTER 4: THE CASE

of evolutionary-teal ones. Therefore, the abstraction directly supports the
transferability of my results.

Summarizing, the case study research presented in this thesis follows the
conception of Stake (2008):

“Case studies are of value in refining theory, suggesting complexities
for further investigation as well as helping to establish the limits
of generalizability.”

Stake (2008, p. 141)

Embedded in a DSR project, this instrumental case study (see Section 3.2.3)
aims at understanding the DG in the context of the case. Furthermore, the
design cycle is aligned to the description of the case that increasingly becomes
more and more detailed throughout the progress of the investigations. Staying
in touch with the WASH volunteers drives the exploration of the environment
of the upcoming artifacts, as it is required during the relevance cycle. At the
same time, such interactions with the organization compels one to explain
preliminary results and therefore, it becomes the engine for the change and
impact cycle of the DSR project. On account of the back and forth progress of
a DSR project, investigating the case as an ethnographer spans all iterations
of the change and impact cycle, the relevance cycle, and the design cycle.

5. Systematic Literature Review

What is known about socio-technical
evolutionary-teal organizations?

The ORQ introduced in Section 1.2 addresses the matter of joint optimization
and organizational choice in the context of a socio-technical evolutionary-teal
organizations. That being the case, I conducted a systematic literature review
to capture the current scientific discourse in aligning the structural coupling
of CSCW tools to social systems similar or equivalent to evolutionary-teal
organizations. I was interested in social procedures, along with technical
patterns and requirements. Therefore, the review addresses the following RQ:

Research Question 1. How are joint optimization and organizational choice
for socio-technical evolutionary-teal organizations being addressed by current
IT architectures and tools?

The previously introduced definitions guide the selection procedure, as well
as the data extraction process. By applying the definition of socio-technical
system (STS) (see Section 2.3, I restrict my RQ 1 to STS using a CSCW
system as technological component. The literature review has been conducted
in 2020 and therefore, it also provides an outline of scientific discourse in 2020.
The procedural approach of the review was aligned to Kitchenham and Chartes
(2007). Furthermore, it is aligned to Meerow, Newell, and Stults (2016) and
Adil and Ko (2016), because both had the highest number of citations of
the sources I found. Additionally, I considered the research by Manca 2018,
because the authors reviewed social network sites (SNSs) and thus partly
address the scope of RQ 1. I analyzed these reviews with respect to the chosen
methodologies in order to further improve my approach.
The next sections introduce my systematic approach, starting with the

selection of the publications and ends with the data extraction, including
the synthesis of the results. The methodical procedure has been tried during
a pilot study focusing only a few search terms, resources and publications.
Afterwards, the results are presented in Section 5.3 with an attached discussion
of my approach in Section 5.4. The subsequent conclusion focuses on the most
important results for my RQ 1 and cites the open questions that are addressed
by my following Chapters 6 and 7.

43

44 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

5.1. Selection of publications

The selection of publications required for identified relevant search terms and
resources are detailed in the beginning. Afterwards, the criteria for selecting
a publication from the search query results for the purpose of analyzing it
regarding the RQ 1 have to be defined. In the end, the selection had to be
executed, by searching the resources using the search terms and handling the
results.

The resources have been selected according to the experiences of the author.
Please refer to the overview in Appendix A.1.

5.1.1. Search Keys

The search keys are a combination of terms addressing the different topics of
the RQ 1. Thus, a search key consists of a combination of keywords describing
these different topics. I conducted a pilot study addressing the topics social
systems (8 keywords), STSs (6 keywords), and evolutionary-teal organizations
(4 keywords). Afterwards, the search terms were created by combining one
keyword from each topic. Thus, for the pilot study, I had to consider 360
search terms that had to be used for all resources. Since many of the search
terms returned empty result sets for all resources, I decided to reduce the
number of search terms to 30.
Furthermore, I had to recognize that specific aspects of evolutionary-teal

organizations such as wholeness or the evolutionary purpose were not intensively
focused upon by research publications in the field of computer science, since
the pilot study revealed only one publication addressing evolutionary-teal
organizations. I therefore just addressed them roughly by using keywords more
broadly addressing their characteristics, like loosely coupling or self-development.
Table 5.1 presents the used keywords.

Topic Keywords (semantic alternatives)

Social System “evolutionary teal”, “evolutionary-teal”,
“loosely coupled”, “grassroot”, “grass-root”

Socio-technical “socio-technical”, “socio technical”

Question “joint optimization”, “organizational choice”,
“self-development”

Table 5.1.: The keywords from the different topics used to construct the search
keys automatically (STautomatically).

As previously mentioned, a search term has to contain keywords from all
main topics (social systems and STSs), and must also address specific aspects
of the RQ as well, as illustrated by the Question row in Table 5.1. Additionally,
some keywords were semantic alternatives for each other, like evolutionary

SELECTION OF PUBLICATIONS 45

teal and evolutionary-teal. Generating the search terms, only one semantic
alternative has to be selected from each topic to become a valid search term.
For example:

“grassroot” && “socio-technical” && “joint optimization”

would be a valid search term and consists of three keywords. These search terms
were generated automatically afterwards and named STautomatically. Considering
the results of the pilot study, some search terms would return empty lists of
publications. Therefore, the search term set STautomatically has been extended
by STmanually (see Table 5.2), with the intent of increasing the number of
results with more open search terms, since they do not address as many details
of the RQ 1, as the automatically created terms.

Topic Keywords (semantic alternatives)

Social System “evolutionary teal”, “evolutionary-teal”,
“loosely coupled”, “grassroot”, “grass-root”

Socio-technical “socio-technical”, “socio technical”

Table 5.2.: The keywords from the different topics used to construct the search
keys manually (STmanually).

5.1.2. Selection criteria

Aiming to capture the current state of the scientific discourse, I only focus on
peer-reviewed (no unpublished manuscripts or research abstracts) publications.
Furthermore, the authors have to present the research questions and to docu-
ment the whole process of conducting the represented studies. Since I have to
read and analyze the material, it has to be published in English or German
language.

Moreover, the RQ 1 compels one to decide if a publication addresses a STS
that is of interest when it comes to the RQ. Although, I focus the definition
for STS given by Kunau (2006) (see Section 2.3, the terms adapt and relate
to used to define the term structural coupling are open to interpretation and
include a wide range of varying characteristics and behaviors. For example,
publications discussing the economic and political constraints of water infras-
tructure would be included. Thus, I decided to only consider publications
describing a STS with technical components aiming to support cooperation
/ collaboration, coordination, communication, co-existence, communities, or
organization development (names purposes of communication). Additionally, I
will position the meaning of adapt and relate to in concrete terms:

Adapt I will focus on the STS, if the social system constructs / adjust inner
structures to allow and enable the usage of the technical system in the
long run.

46 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

Relate to There are acts of communication that are only performed using the
technical subsystem. This constraint is part of self-description of the
STS, as introduced by Kunau (2006) (see Section 2.3).

Summarizing, I derived the following selection criteria:

1. The publication must present empirical findings (no theoretical studies
and position papers)!

2. The publication must focus a STS! During the selection phase, I docu-
mented one of the following three states for each publication found by
using a search term in one of the resources:
a) YES – If and only if a technical system is described as part of the

STS that is used for one of the previously intended purposes of
communication.

b) MAYBE — If and only if the description suggests that a techni-
cal system is used for one of the previously intended purposes of
communication, although the authors do not mention it explicitly.

c) NO — If and only if there is nothing mentioned with regards to a
technical system used for one of the previously intended purposes
of communication.

3. Formal criteria:
a) The publication has more than four pages.
b) The publication is peer-reviewed.
c) The manuscript was published between 2015 and 2020.
d) The publication is no conference paper or has been published in 2019

or 2020, since a conference papers does not conclude the current
state of the scientific discourse.

e) The publication is no book chapter, since these contributions are
mostly not peer reviewed.

4. The paper has to focus an IT architecture or a specific tool.

5.1.3. Selection procedure

The selection of publications relevant to answer the RQ 1 was performed by a
few steps, considering the search terms, resources, and selection criteria:

1. Search:
a) Search terms were transformed into the query language for the

different resources.
b) Resources have been searched through by the search terms.

DATA EXTRACTION 47

2. Collect:
References and the full texts to the publications in the result sets were
collected using Mendeley (https://www.mendeley.com/, accessed 2021-
09-03). A citation key for each reference to a publication was saved
in a separated meta data sheet. Additionally, the original search term
and the resource was saved as a reference for each citation key. If a
publication’s reference has already been saved in Mendeley, only the
meta data (search term and resource) is saved for the citation key. With
respect to all search terms and resource combinations, the number of
search results have been saved.

3. Check selection criteria:
a) All publications have been checked regarding the fulfillment of the

selection criteria. During this first step, only the title and the
abstract have been considered to decide, if a publication fulfills the
selection criteria.

b) In a second step the introduction and the summary of the publica-
tions that MAYBE focus a STS were investigated to finally decide
if the publication should be selected or rejected.

Since many resources allow for exporting the search results as Bibtex or directly
importing them to Mendeley, I decided to check the selection criteria in the end
of the procedure. I was thus able to ensure the completeness of search results
over the course of time. Filtering the publications regarding the selection
criteria before I saved their references would have require me to split the work
for days and weeks. Thus, I would have also needed to query each search term
on the same resources all the days and therefore, the result set could have
changed.
Before I checked the selection criteria in step 3, I collected a set of 693

publications from the resources. Afterwards, the set of publications that was
focused on for a detailed analysis has been reduced to 34 items.

5.2. Data extraction

I read each selected publication and created a short reading protocol. These
protocols consist of three areas: (1) An assessment area containing (a) a short
conclusion of the relation between the presented study and the RQ 1, as well
as (b) an assessment of the quality of the performed study. Furthermore, I
noted every insight I obtained that was related to my RQ 1 in the (2) insights
area of the protocol and listed all concepts that I detected in the publication
in the (3) concepts area. Such concepts were collected in short phrases, single
words, or acronyms, like CSCW, digital social innovations (DSI), or Online
marketplace. The insights area contains more complex notes, such as the

https://www.mendeley.com/

48 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

definition for Collective Awareness Platforms for Sustainability and Social
Innovation (CAPS) or the required technical support for the four types of
citizen participating social innovation initiatives in the protocol for Angelidou
and Psaltoglou (2017).

Parallel to this, I started an open coding of the publications reading protocols.
Using MaxQDA (https://www.maxqda.com/, accessed 2022-09-04), I aimed
to explicitly explain the relationship between the publications and my research
question. After I completed the open coding for the first 15 publications, I
started a clustering of the generated 1036 codes using MAXMaps (part of
MaxQDA). In the map, I created rectangle frames for each cluster of open
codes. These clusters were created by grouping the open codes regarding their
content-related similarities with regards to the RQ 1. I assigned every cluster
rectangle a short name. Relations between the clusters are identified by codes
that are placed in more than one cluster rectangle. Thus, the clusters can
overlap. Unfortunately, the reading protocols contain many citations and thus,
I cannot publish the analysis due to legal issues.

Subsequently, I created code sets for each cluster and added all open codes
surrounded by the cluster’s rectangle. Each coding in a code set has been
commented by me regarding RQ 1. So, every comment tells what insight the
coding details regarding the research question. Afterwards, I created a memo
for every code set, that wraps all comments regarding the code set in one
coherent text.

As a next step, I aimed to also code the 19 reading protocols for the remaining
selected publications. Thus, I created new codes representing the code sets and
attached the previously written memos. These new declarative codes became
the base for the subsequent content analysis of the 19 remaining protocols.
That means, I used only the declarative codes and after each protocol I refined
the memo of the declarative codes that have been used for the focused paper
protocol. More than one declarative code and memo had to be introduced for
some code sets. For instance, the architecture code set included 200 codes of
the open coding. Thus, I created four new codes representing different aspects
of the memo. The declarative codes were additionally filtered. Some memos
have demonstrated that they provide nearly no insights with respect to the
research question. Therefore, I decided to reject these declarative codes.
After completing the content analysis, the memos of the declarative codes

represented the relation of the selected publications to RQ 1. Hereafter, the
Section 5.3 presents these results.

5.3. Results

The results are aligned to the clusters of open codes that became the deductive
codes during the data extraction process. The section starts with an overview
of the selected publications and the relation between the social systems focused

https://www.maxqda.com/

RESULTS 49

upon by the publications and socio-technical evolutionary-teal organizations.
Afterwards insights regarding the handling of joint optimization and organiza-
tional choice are discussed. Subsequently, architectures used by the authors
of the publications or their subjects to address socio-technical tensions are
described and generic guidelines regarding the implementation of technical
parts of STS are derived.
Furthermore, I discuss the tensions between specific architectures choices

for CSCW tools and the prospective users of the tools, as well as between
architecture choices and the prospective software developers aiming to support
and further develop the CSCW tools.

5.3.1. Social System

In this section I discuss the relationship of the selected articles to the topics
addressed by the RQ 1. Table 5.3 presents an overview about the considered
publications and introduces the addressed social systems of each publication
shortly.

Publication IG AR AU AD

Angelidou and Psaltoglou (2017) – X X –

The publication discusses citizen empowerment during social innovation
processes for sustainable urban development. These social systems are
supported by technical tools to “open the opportunity for individuals to
come together in collaboration” (Angelidou and Psaltoglou 2017, p. 115).
The concept is called DSI.

Baptista et al. (2017) – – X –

The authors have investigated the usage of social media to collect feedback
inside an organization to support the organizations in focusing on the
individual’s contributions to the organizational life. While previous change
strategies are formalized, conceptualized and managed in the top level of an
organization’s hierarchy, social media increases pressure to open up change
processes for informal, bottom-up grassroot activities.

Blaschke et al. (2019) – – – X

Blaschke et al. (2019) introduce digital value co-creation networks (DVNs)
as multi-actor co-creation networks using digital infrastructure to create
digital services addressing the consumer needs. The authors recognize that
such DVNs are highly socio-technically. Furthermore, they focus on loosely
coupled business partners.

Continued on next page

50 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

Publication IG AR AU AD

Brunswicker and Schecter (2019) X X X X

The researchers aim to identify successful strategies for motivating software
developers when it comes to contributing to ongoing platform innovations.
They identify motivating characteristics of technical artifacts and OSS
projects in general.

Bygstad (2017) X X X –

The authors focus on “generativity, that is, the ability of technical and
social elements to interact and recombine to produce or expand new so-
lutions” (Bygstad 2017, p. 181). They derive a set of design principles
considering generativity for lightweight and heavyweight IT by discussing
loosely coupling in (1) a technical dimension, (2) terms of standards, and
(3) terms of the organization. They argue that demonizing centralization
and glorifying decentralization as the solution to all our problems would be
wrong. Hierarchies are highly goal-oriented, what we may desire to keep
for certain institutions. Hence, they call for hybrids and mixtures of social
structures.

Carnemolla (2018) – – X –

The article investigates the interrelations between older persons, their
environment, and internet of things (IOT) technology aiming to support
the older persons in interacting with their surroundings. Thus, aging in
place by the use of technology is investigated.

Crabu and Magaudda (2018) – X X X

Crabu and Magaudda (2018) investigate the “political and cultural frame-
works that move people to participate” (Crabu and Magaudda 2018, p. 150)
the design, developing and maintenance of bottom-up grassroot infrastruc-
ture. The authors focus on design-in-the-making processes of volunteering
people engaging in infrastructure development.

Eli et al. (2016) – – X –

Since Buycott (Eli et al. 2016) is used by a crowd of users contributing data
and scanning products, the social system is not equivalent to evolutionary-
teal organizations. The crowd develops a community of interest regarding
products. Additionally, as also the authors notice, the app suggests that
users are politically activists by participating campaigns.

Continued on next page

RESULTS 51

Publication IG AR AU AD

Fang and J. Zhang (2019) – – X –

Fang and J. Zhang (2019) focus on social Q&A communities and discuss
functions that support fostering the users’ continued participation. Social
Q&A communities are socio-technical constructs by definition and they are
using an online platform supporting the spread of questions and answers as
a technical tool.

Gholami et al. (2017) – X – –

The authors address the transition from legacy software to cloud platforms
in organizational contexts. Thus, the authors are outlining technical and
social consequences resulting from such change processes. These insights
are of interest, since the authors understand “legacy systems [...] as the
unit of analysis, a socio-technical IT artefact [sic!] embedding in business
processes of organisations” (Gholami et al. 2017, p. 101).

Giuffrida and Dittrich (2015) – X X X

Giuffrida and Dittrich (2015) have investigated globally-distributed soft-
ware teams. The authors explain functions of social software that are
supporting such software teams in terms of coordination and communica-
tion. Furthermore, they address OSS, that are often developed by globally
distributed teams of software developers. Additionally, these teams are
mostly coordinated by the use of social software (Giuffrida and Dittrich
2015).

Hovav and Putri (2016) – X X X

The article focuses on information system security policies (ISSPs) of
organizations regarding the principle of bring your own device (BYOD).

Janssen and Helbig (2018) – X – –

Governmental policy making processes moderated by the use of ICT systems
are investigate by Janssen and Helbig (2018). The researchers focused on
the need of the social system to adapt changed and new roles to integrate
and use the ICT tools. The authors were particularly interested in social
media as “a rich source and inspiration for policy makers” (Janssen and
Helbig 2018, p. S104) as part of digital government strategies. Platforms
are introduced to give governments an overview of discussions.

Continued on next page

52 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

Publication IG AR AU AD

Klievink, Bharosa, and Tan (2016) X X X X

Also Klievink, Bharosa, and Tan (2016) focuses government agencies and
political actors aiming to support the digitalization of governance. The
authors focused on development and adoption of platform systems by
“agenda setting, business model creation, benefit redistribution, level playing
field creation, standardization and as a last, resort, subsidization” (Klievink,
Bharosa, and Tan 2016, p. 78).

Kurki and Wilenius (2016) – – – –

Kurki and Wilenius (2016) are investigating organizations managing them-
selves by paradigms of a future society.

Landwehr et al. (2016) X X X –

Landwehr et al. (2016) focuses on communication networks addressing local
disaster management. They focused on an Indonesian tsunami warning
system implemented using twitter tweets.

Lenkenhoff et al. (2018) X X – X

The researchers have analyzed the transformation processes of two case
studies in China and Germany that have developed a new digitalized
product-service system (PSS). These systems allow companies to initiate a
co-creation process for new products in collaboration with their customers
(consumers). It requires many case specific technical adjustments, but also
changes in the business processes of the companies.

Light and Miskelly (2019) – X X X

The MAKERHOOD platform strives to bring makers together in face-
to-face. The meaning of the platform evolved over time from an online
marketing system to a socio-technical meeting platform of makers: “The
platform primarily supports making, selling and networking, not bringing
people together to share goods, however its orientation has promoted a
sharing culture” (Light and Miskelly 2019, p. 607). The authors mentioned
that “relationship-building could not have happened through a platform
that operated remotely; it needed local appropriation of the platform design”
(Light and Miskelly 2019, p. 609).

Continued on next page

RESULTS 53

Publication IG AR AU AD

Y. Lin (2018) – X X –

Y. Lin (2018) investigated the institutional and technological context of
smart governance in China and Western nations. They developed a frame-
work that considers the cultural differences. Smart governance means the
“participation in decision-making, public and social services, transparent
governance, and political strategies and perspectives” (Y. Lin 2018, p. 801)
in the context of smart cities.

Maye (2019) – X – –

Maye (2019) investigates the different characteristics of the smart city
approach and urban food movements. The author acknowledges that the
approaches are intertwined and smart cities ideas can support the urban
food movements. Subsequently, (Maye 2019) addressed challenges for the
social system. The researcher concludes that the decentralized and loosely
coupled management of the urban food movements is the best strategy.

Meelen, Truffer, and Schwanen (2019) – X X –

Meelen, Truffer, and Schwanen (2019) focus on virtual user communi-
ties that are aiming to create innovations in social transition processes.
Particularly, the researchers were interested in the role of the virtual
communities while the innovations are upscaling. (Meelen, Truffer, and
Schwanen 2019) describe digital tinkering in the form of apps for a Tesla
(https://www.tesla.com/, accessed 2022-11-28) screen as an example for
virtual communities.

Mukherjee and Mukoya (2019) – X – –

Mukherjee and Mukoya (2019) describe the peace network CEWERS that
enables citizen in a decentralized participation. It is managed by a flat and
local hierarchy and appropriated ICT tools: “The ICTs and information
helps to not only bring the network members together, it also helps to
execute collective action” (Mukherjee and Mukoya 2019, p. 138).

Muñoz et al. (2015) – X X –

Muñoz et al. (2015) have focused on the ICT based communication between
elder people and their younger family members.

Continued on next page

https://www.tesla.com/

54 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

Publication IG AR AU AD

Nikitina et al. (2020) – X – –

Nikitina et al. (2020) have investigated the idea and concept of the shar-
ing economy in Russia. They identified and characterized socio-technical
initiatives. (Nikitina et al. 2020) identified Uberization as a specific kind
of sharing economy: “[W]orkers instead of selfless participation of citizens
in joint activities” (Nikitina et al. 2020, p. 376). The authors observed
“spontaneously emerging practices of donations and exchanges” (Nikitina
et al. 2020, p. 376). They focus on virtual communities using web platforms
to implement sharing practices. Uberization describes a transition process
to a business-oriented economy that bases on a central company mediating
between consumers. The “consumer see [sic!] it as utilitarian” (Nikitina
et al. 2020, p. 377).

Pekkarinen and Melkas (2019) – – – –

The authors investigate the socio-technical transition in the finish health
care system. The elderly care paradigms shift towards outsourcing services
from the public to private sector by using service vouchers. The patients
are supported in a localized, loosely coupled manner.

Praetorius, Hollnagel, and Dahlman (2015) – X – –

Praetorius, Hollnagel, and Dahlman (2015) have investigated vessel traffic
service (VTS) systems as socio-technical constructs. They compare two
different use cases and outline the different features and architecture styles.
The authors focus on the case of a maritime VTS. Their architecture is
divided in the information service (INS), the traffic organization service
(TOS), and the navigational assistance service (NAS).

Presenza et al. (2019) – X X –

The researchers investigated social crowdfunding business ecosystems
(SCBEs) aiming to support social initiatives to get a funding by a crowdfund-
ing platform. The publication introduces the social crowdfunding (SCF)
platform Meridonare “acting as a hub to enact knowledge sharing and
service provision to a plethora of different actors” (Presenza et al. 2019,
p. 190). These SCF platforms support three categories of activities: “(1)
definition of the social problem; (2) generation of social capital in the com-
munity; and (3) education of potential partners” (Presenza et al. 2019, p.
198).

Continued on next page

RESULTS 55

Publication IG AR AU AD

Rossitto and Lampinen (2018) – – X –

Rossitto and Lampinen (2018) introduces the concept of Hoffice: “a tempo-
rary shared workplace in one’s home” (Rossitto and Lampinen 2018, p. 947).
It uses social media platforms to manage the event. The Hoffice addresses
self-organized work of individuals that are only collaborating in a loosely
coupled fashion. Although the Hoffice members are not necessarily col-
leagues or workers of the same domain, they are required to coordinate their
shared workspace. The Hoffice concept also demonstrates socio-technical
characteristics of a grassroot organization, by having a group of people that
are all allowed to host hoffice events.

Rut and Davies (2018) – X – –

Rut and Davies (2018) investigated food sharing initiatives in Singapore. In
a marginal note, they also discussed the usage of ICT by these initiatives.

Tempini (2017) – X X X

Tempini (2017) focuses value-creation during infrastructure development.

Thomas, Botha, and Greunen (2015) – X X X

Thomas, Botha, and Greunen (2015) have investigated the implemented
coordination support for a south-African e-administration case.

Trencher (2019) – X – X

In the context of smart cities 2.0, Trencher (2019, p. 1) “examines Aizuwaka-
matsu Smart City in Fukushima, Japan to understand to demonstrate how a
smart city can be framed and implemented as a tool for tackling endogenous
social challenges”.

Tyrer (2019) – – X –

Tyrer (2019) investigates the effects of mobile messaging services in edu-
cational contexts. Teacher trainees stay in contact with each other during
their training program: “By having access to a supportive group, they can
share information and resources, alleviate some of their fears and boost
their self-esteem” (Tyrer 2019, p. 1-2).

Table 5.3.: All listed publications have been analyzed and were addressing the
RQ 1 regarding (1) integration strategies (IG), (2) architectures
(AR), (3) effects of architectures on users (AU), or (4) effects of
architectures on software developers (AD) .

56 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

Digital natives (Generation Y) have (1) adapted social media and (2) they
focus on knowledge sharing (see Chapter 1). Thus, the results of Baptista
et al. (2017) directly support the needs of digital natives. Members of an
organization using social media to have a feedback systems should become
“authors of their own workplace and play an active role in the daily” business
(Baptista et al. 2017, p. 6).

The app “Buycott” (Eli et al. 2016) is aimed at users that can be classified
as volunteers. Unfortunately, nothing more can be said with respect to so-
cio-technical evolutionary-teal organizations, since the publication does not
focuses the maintenance of the structural coupling between the evolving social
system and the usage / further development of the app.
Angelidou and Psaltoglou (2017) examine bottom-up and grassroot ap-

proaches of e.g. sensing citizen. The organizations and social systems are
mostly self managed and raised by the voluntary action of interested citizens.
Therefore, these citizens are introducing themselves wholly and by creating a
purpose. Blaschke et al. (2019) introduce the DVN perspective to focus on
loosely coupled business partners.
Social systems surroundings of Q&A systems (Fang and J. Zhang 2019)

cannot be classified as evolutionary-teal, although there are some similarities.
The technical part is a CSCW system. Since the users of online social Q&A
systems normally do not know each other, they only have weak ties and are
loosely coupled to each other. Therefore, the results of Fang and J. Zhang (2019)
are relevant for CSCW systems supporting evolutionary-teal organizations,
although they are no teal organizations by themselves.

Socio-technical evolutionary-teal organizations are very similar to bottom-up
grassroot initiatives as addressed by Crabu and Magaudda (2018): Decentral-
ized and loosely coupled teams or individuals use, and therefore also construct,
a dedicated infrastructure supporting their collaboration. Furthermore, the
case study of Crabu and Magaudda (2018) focuses on volunteers. Furthermore,
members of evolutionary-teal organizations do not follow organization charts
and job descriptions, but continuously redefine their roles and tasks in orien-
tation to their self-development. This is also similar in bottom-up grassroot
initiatives: “[P]articipants in these bottom-up initiatives are entangled in
performing multiple identities during their active involvement in collaborative
settings” (Crabu and Magaudda 2018, p. 170).
Regarding Gholami et al. (2017) nothing can be said about the social

system that has been focused on by the case studies since they are conducting
expert interviews centered on guidelines identified by reviewing a bunch of
literature. Thus, no similarity to evolutionary-teal organizations are observable.
Additionally, the authors do not discuss the maintenance of a structural
coupling, but rather its construction.

Giuffrida and Dittrich (2015) address socio-technical systems. Additionally,
it is now a frequent practice to follow agile principles in software development.
That being the case, similarities to evolutionary-teal organizations can be

RESULTS 57

assumed. Since my considered use case VCA (see Chapter 4) will highly
probably use OSS to construct its technical component and adapts principles
of OSS communities, the results of (Giuffrida and Dittrich 2015) are of further
interest.

Moreover, the volunteers of VCA are participating during their free time and
according to the principle of open participation. Additionally, the organization
lacks the resources to introduce individual devices for all volunteers. As a
consequence, BYOD and connected challenges like ISSP (Hovav and Putri
2016) are very interesting for socio-technical evolutionary-teal organizations
focusing wholly on digital natives.
The policy-making process on a governmental layer (Janssen and Helbig

2018) can possibly adopted for decision-making processes in evolutionary-teal
organizations. The publication focuses on ICT tools used in such processes.
Thus, it is also interesting regarding socio-technical systems, as well as Klievink,
Bharosa, and Tan (2016) by addressing political actions to foster platform
development.
Kurki and Wilenius (2016) connect the theories of Malaska (1999) and

Laloux (2014). They investigate case studies by applying the theories of a
society of intangible needs and evolutionary-teal organizations.

Light and Miskelly (2019) outline a case of an online platform that became
an example of a trust-establishing instance for its users. In so doing, the
users constructed a social system and trust causing from the technical tool
has replaced a technical component to handle financial transactions: “Issues
of trust came up repeatedly in shaping the platform. PAYPAL was used
for transactions while there was an ecommerce function, introducing third-
party credibility” (Light and Miskelly 2019, p. 606). During a phase of
redesigning the platform the authors observed that trust is built between
people through repeated encounter and mutual interest, which turns out, at
these close quarters, to make the financial component of MAKERHOOD’s
digital platform unnecessary (Light and Miskelly 2019, p. 608). Thus, the case
draws an interesting example that might be able to be adapted by designers
of CSCW tools for evolutionary-teal organizations that are also heavily reliant
on trust.
The system addressed by Landwehr et al. (2016) cannot be classified

as a socio-technical system, since no structural coupling has been observed.
Information about an oncoming tsunami will not be spread only using twitter.
But in the case of a disaster, it is very likely, that the social system will adapt
the characteristics of the technical system. Thus, it is very interesting to
investigate if researchers considered that case and how they addressed it.
Y. Lin (2018) follows the idea of supporting communities regarding their

“local challenges and improve city services through collaboration” (Y. Lin 2018,
p. 801). As a consequence, they also address decentralized solutions that
result from cooperation instead of competition. Furthermore, they investigated
“wider collaboration through both top-down and bottom-up approaches” (Y.

58 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

Lin 2018, p. 801). The article addresses smart cities and their implementation
of local smart governments strategies that are also increasingly being used by
bottom-up grassroot initiatives. Therefore, there are similarities between these
social structures and loosely coupled evolutionary-teal organizations.
When it comes to urban food movements, Maye (2019) concludes that

the decentralized and loosely coupled management is the best strategy for
addressing the needs of a smart city. Thus, the city-based development of
technologies is very similar to the loosely coupled crews of VCA: “The smart
city agenda is neoliberal and business led, using ICT and techno-science
innovation as solutions for urban growth but also as realist epistemologies that
visualise cities in very specific ways. The urban food agenda emerges from a
heterogeneous community and grassroots-based movement that is civic and
socially-orientated and increasingly framed through food security discourses”
(Maye 2019, p. 3).

Taking an “overall system perspective on socio-technical innovations” Meelen,
Truffer, and Schwanen (2019, p. 97) identify roles of virtual user communities in
sustainability transition innovations. Thus, by focusing on virtual communities,
loosely coupled persons with weak ties that come together by focusing on the
same topic of interest are addressed. Again, such a social system may not be
classified as an evolutionary-teal organization (since it is no organization at
all), but some similarities can be drawn: Such communities are mostly self-
managed and base on flat hierarchies. Since the participants become part of a
community during their free time, the basic principles of approaching wholeness
and targeting an evolutionary purpose can also be assumed. Therefore, the
applied design choices for the technical artifact, as well as the effects of the
technically supported communication, are of interest when it comes to RQ 1.

The peace network CEWERS, introduced by Mukherjee and Mukoya (2019),
bases on volunteering persons that send “SMS whenever they notice any activity
which could escalate into further violence” (Mukherjee and Mukoya 2019, p.
135) to responding actors, like “international organisations, bi-lateral agencies,
research institutions and NGOs” (Mukherjee and Mukoya 2019, p. 128). Thus,
the used technology aims to support the communication and coordination
between volunteering citizen and acting organizations. The volunteers are
not coupled with each other, but the organizations have to coordinate their
activities. Particularly the introduction of the new tool to the volunteers is of
interest regarding RQ 1.
Muñoz et al. (2015) aims at supporting the communication between elder

people and their younger family members. The authors focus on the “asym-
metry between the media preferences and the interaction time spaces of the
family community members” (Muñoz et al. 2015, p. 141). They introduce a
technical tool to address these asymmetries by transferring messages sent by
one application, like WhatsApp or the Facebook Messenger to another one,
such as email, for example. They thus strive to handle different alternative
implementations of the same use case for the asymmetries in users’ preferences.

RESULTS 59

Furthermore, different teams of socio-technical evolutionary-teal organizations
may prefer different implementation of the same use case and therefore, the
results of Muñoz et al. (2015) become relevant.

Nikitina et al. (2020) discusses the sharing economy in Russia that is based
on grassroot initiatives in the context of a present “authoritarian control”
(Nikitina et al. 2020, p. 381). Thus, the authors address technologies used by
people involved in donating and exchanging goods and therefore establishing
a social system of loose and weak ties in an environment “that inhibits their
development” (Nikitina et al. 2020, p. 381). The self-managing aspects of
such a socio-technical construct addresses the RQ 1, as well as the question in
what degree the personalities of the persons involved are relevant enable the
initiatives to evolve.
Pekkarinen and Melkas (2019) cover new trends in health care that are

focusing on the patients and supporting them in a localized, loosely coupled
manner. Constructing an architecture to address the approach of having
several alternative services for patients is directly addressing the architecture
aspects of the RQ 1. Equally, the challenges faced by adapting the approach
are relevant.

Praetorius, Hollnagel, and Dahlman (2015) discuss the functions and architec-
tural details of VTSs as a speicific type of CSCW tools used in a socio-technical
construct. Although the social system that is focused upon cannot be compared
to evolutionary-teal organizations; the technical details are relevant to possibly
become adapted for the case of evolutionary-teal organizations.
The use case Meridonare, investigated by Presenza et al. (2019), showed

that trust is an essential requirement to motivate potential donors to financially
support a project on a SCF platform (Presenza et al. 2019). Thus, they allow
““to donate time” within its platform, by offering the opportunity for people to
exchange each other’s activities, services, and knowledge, using time instead
of money” (Presenza et al. 2019, p. 197). Furthermore, the developers of
Meridonare have decided to make the history of a project’s initiator visible at
the platform. Thus, they aim to reduce information asymmetries and develop
trust between the users (Presenza et al. 2019).
Hoffice (Rossitto and Lampinen 2018, p. 947) is described by its standard

collaboration processes, regarding technical requirements, but also in terms of
social norms: “[S]hifting the focus towards a grassroots initiative, like Hoffice,
opens up a new set of issues related to workplaces where work relations and
the enterprise of work are guided by values such as trust, support and mutual
care, rather than being organized under narratives of production. The lack of a
managerial and hierarchical work organization that is characteristic of Hoffice
foregrounds an analytical focus on how people make change for themselves
and others” (Rossitto and Lampinen 2018, p. 948).

Thus, Rossitto and Lampinen (2018) describe a socio-technical infrastructure
that consists of grassroot approaches, self-managing small teams, and is based
on trust between the co-workers. Additionally, the social system is loosely

60 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

coupled and the self-managing process involves the adaptation of predefined
roles. The co-workers are not using CSCW systems, just SNS to coordinate
their meetings. These SNS and the wireless fidelity (Wi-Fi) network connec-
tions are the only shared infrastructure. Nevertheless, a structural coupling
can be observed regarding this specific use case. Therefore, socio-technical
systems evolve. The natural focus on self-management, trust, wholeness and
flat hierarchies in home office structures resembles evolutionary-teal organi-
zations. Therefore, the illustrated tools and their usage can draw possible
characteristics that are supportive regarding socio-technical evolutionary-teal
organizations.

Tempini (2017) does not describes a specific social system itself. Nevertheless,
by focusing on social media used by communities of interest, the article
addresses infrastructure that is used in a socio-technical construct with a
loosely coupled social system (weak ties). Tempini (2017) details the case of a
platform introduced to connect patients of specific diseases. Thus, the article
mentions insights regarding the joint optimization of a social system and a
technical component that are intertwined as a socio-technical system.
Thomas, Botha, and Greunen (2015) focus on a case of a decentralized,

loosely coupled and physically distributed collaboration between different
organizations and governmental institutes in South Africa. Additionally, only a
flat hierarchy is described. Equally, Rut and Davies (2018) discuss decentralized
food sharing initiatives in Singapore and their use of ICT tools as well as the
authors examine their efficacy. Trencher (2019, p. 1) addresses “a decentralised,
people-centric approach where smart technologies are employed as tools to
tackle social problems”.
A loosely-coupled community of practice is investigated by Tyrer (2019)

regarding the relationship between different commitments, the usage of the
selected tool to communicate and the motivation to participate a learning
group. Thus, the paper details the effects of the design of the technical tool
for users and their social activities for socio-technical systems.
Members of a community of practice using a communication tool need to

feel secure to develop trust (Tyrer 2019). Equally, participation requires trust.
Thus, the authors identify anonymity as a serious barrier. The participants
opted for a more goal oriented communication without sharing private life
experiences. Participants had to be familiar with the semiotic marks typical
to the groups language to participate the WhatsApp group. WhatsApp had
replaced email as a primary communication channel, because it is more instant
and informal.

5.3.2. Joint Optimization and Organizational Choice

As Blaschke et al. (2019) point out, the design of socio-technical systems is
complex. Moreover, it is not only important to design new technical systems,
but also to understand the social context and history of the existing ones: “It

RESULTS 61

does not appear necessary to design new tools; nevertheless, it is very important
to understand how existing tools are adopted and what the potentials are of their
usage” (Giuffrida and Dittrich 2015, p. 28). Therefore, this section describes
all insights extracted from the body of literature that directly addresses the
concept of joint optimization and organizational choice.

X. Lin, D. Zhang, and Li (2016) emphasize that any socio-technically design
process must aim at the joint optimization of technical and social subsystems
to “maximize its performance” (X. Lin, D. Zhang, and Li 2016, p. 422). Thus,
the “two subsystems have [to have] positive impact on each other and work in
harmony” (X. Lin, D. Zhang, and Li 2016, p. 422).

In the context of collaboration systems, joint optimization can be character-
ized as follows: “The relevant features to guide ICT infrastructure development
should be shaped by the organisational need, context and structure, and vice
versa to anticipate on the changes in work practices, technological develop-
ments and other environmental uncertainty” (Thomas, Botha, and Greunen
2015, p. 537).

Baptista et al. (2017) discuss how social media supports reflexiveness, and
how members are thus enabled to introduce their own personality as a whole.
Furthermore, the members become a part of the evolutionary change of the
organizational purpose. Stage one of the concept of reflexiveness requires
recognizable technology. The organization has to become aware of the new
source of information to trigger the transformative change process. Stage two
implies establishing a reward system to foster social media participation. Stage
three describes the transformation of feedback of the members given via social
media into a reconceptualization of the organization’s culture itself.
Thus, the three stages describe a process of changing the social system

to adapt technical functions. Since it focuses on an organizational culture
and its purpose, the construction of a socio-technical system can be assumed
inherently. Therefore, Baptista et al. (2017) describes the process of joint
optimization by focusing on the effects onto the social system.

Furthermore, the concept of generativity introduced by Bygstad (2017)
directly addresses socio-technical systems and joint optimization, although
it does not merely apply this to challenges of autopoietic transformation
(Bygstad 2017, p. 181): “[G]enerativity, that is, the ability of technical and
social elements to interact and recombine to produce or expand new solutions”.

Pekkarinen and Melkas (2019, p. 247) have stated that “[t]echnology use is
a mosaic that needs to be planned and assembled in broad-based cooperation
to avoid different types of technical incompatibilities”. In particular, they
draw challenges for using technology: “Problems related to technology itself
(who pays for it, who is responsible for its functioning, technology is piloted
too early in development)” (Pekkarinen and Melkas 2019, p. 249). These
requirements are raised by focusing on the technology from a social perspective,
on a micro level, and only roughly outlines it. There are several more social
needs that have to be recognized by focusing on detailed attributes. For

62 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

example, varying user attributes and the social system have to be considered,
such as a willingness to participate (Fang and J. Zhang 2019), consideration
of social protocols (Giuffrida and Dittrich 2015), the design and enforcement
of ISSP (Hovav and Putri 2016), or the radical change of roles throughout the
whole society (Janssen and Helbig 2018).

In the case of social Q&A systems, “commitment, shared language and
shared vision [are a] positive influence on [the user’s] attitude towards continued
participation” (Fang and J. Zhang 2019, p. 101). Thus, designers of technical
systems must consider these aspects to foster the continued participation and
therefore also the adaptation of the system. Fang and J. Zhang (2019, p.
101) identifies “enjoyment in helping others” as one motivating aspect to
foster participation in social Q&A tools for the users answering to questions.
Surprisingly, Fang and J. Zhang (2019) also recognizes economic rewards as
having a negative effect onto the willingness to further participate a social
Q&A tool. The authors mention that this could happen, given the fact that
the participants of their study are mainly involved in grassroot initiatives. In
contrast, social capital (positive virtual representations of reactions to a user’s
content) supports significantly the continued participation of the user in social
Q&A tools.

Giuffrida and Dittrich (2015) notice that the adaptation of software is fostered
by social protocols supporting communication and coordination. Thus, change
in the social system to adapt the changes of a technical support tool requires
to change the social protocols. On the other hand, Giuffrida and Dittrich
(2015) state that the success of a collaboration shapes how social protocols are
established between team members. Therefore, success is another significant
factor in adapting a new technical tool.

Hovav and Putri (2016) describe the introduction of ISSPs in organizations
while also introducing the principle of BYOD: It is a “challenge [.] to motivate
employees to comply with BYOD ISSP. Generally, users’ non-compliance with
ISSP is the largest IS security threat in user-driven IT environment” (Hovav
and Putri 2016, p. 36). If an organization introduces restrictions in the case of
a BYOD policy, the users could perceive this as a “freedom threat that may
reduce an employee’s intention to comply with [the] policies” (Hovav and Putri
2016, p. 47).

Janssen and Helbig (2018) mention the arise of new visions for e-democracy
and e-participation rooted in new personalized applications, mobile devices,
and “government’s improved capability for advanced analytics” (Janssen and
Helbig 2018, p. S99). More and more complex societal problems are faced by
big data analyses that bases on data collected from the social web (Janssen
and Helbig 2018). The aggregation and reporting of the data collected by
new services is a task that introduces new roles and new forms of “connection
and communication” (Janssen and Helbig 2018, p. S103). Additionally, the
tasks associated with existing roles, like current policy-makers, have to change
due to face the new digitalized government. They need to become involved

RESULTS 63

in supporting the discovery of policy solutions instead of just handling their
provision (Janssen and Helbig 2018, p. S104).
Janssen and Helbig (2018) explore existing challenges for governmental

platforms: “[H]ow [should] platforms [...] be governed and how [...] should
[they] operate in ecosystems of many stakeholders” (Janssen and Helbig 2018,
p. S104)? Furthermore, the authors sketch effects of utilizing new technologies
in the process of policy making: “[R]eciving different types and amounts of
feedback, changing the speed at which we deliberate, and improving our ability
to visually represent policy information for informing the public” (Janssen
and Helbig 2018, p. S104). Additionally, they sketch new opportunities
to implement “new openness and participation” (Janssen and Helbig 2018,
p. S104) between governments and its public driven by newly developed
technologies.
Tempini (2017, p. 191) “show[s] that infrastructure development can have

unpredictable consequences for data-based value creation, shaping shared
practices in complex ways and through a web of interdependent situations”.
Thus, the author calls for a joint optimization of data intensive infrastructures
and the practices of using the generated data. Digital infrastructures and
their “data generation, circulation and computation” (Tempini 2017, p. 192)
processes shape the social systems that they support. As well as the usage
of the data shapes the infrastructure itself: “[U]sers [of social media] are
using data directly and indirectly when they engage in social interaction and
self-representation over social media, and their use shapes infrastructure and
data-based organizational processes” (Tempini 2017, p. 192). Furthermore,
(Tempini 2017, p. 207) mentions that “infrastructural innovations introduced
to a complex fabric of data use and reuse processes often have unpredictable
consequences”. Thus (Tempini 2017) implies the creation of new tasks for roles
and business processes (e.g. validation of user generated conditions; adding of
information provided by professional clinician, etc.).
The increased use of new technologies like social media, smartphones, or

crowdsourcing platforms “promotes smart governments and services” according
to Y. Lin (2018, p. 801) and therefore, it “changes [...] government organi-
zations, new relations between governments, the private sector and citizens,
and improvements in the city” (Y. Lin 2018, p. 801). One of the key findings
by the authors is that smart governance is designed by different institutions.
The introduction of e-governance infrastructure leads to “increasingly cross-
sectoral linkage businesses and online administrative approvals to optimize
the processes of government works” (Y. Lin 2018, p. 806). Thus, the new
technology allows businesses to optimize the governmental working procedures.
For example, the integration of urban databases as results from bottom-up
grassroot approaches that leads to cooperation between local governments and
private organizations.
Cloud transitions investigated by Gholami et al. (2017) discusses interde-

pendencies between technical, social system and the managing project in more

64 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

detail. Cloud transition requires modifying components of legacy systems to
interact with each other and the cloud platform APIs (Gholami et al. 2017).
Furthermore, it requires carefully specifing an appropriate distribution and
deployment of the components of legacy systems as cloud services. An ap-
propriate cloud architecture should be “in line with goals and requirements”
(Gholami et al. 2017, p. 108) that have been defined in a plan phase.

Moreover, cloud transition requires splitting legacy systems into seperate
components and having a roll back plan to a legacy system (Gholami et al.
2017). Therefore “computational requirements, servers, data storage and
security, networking and response time, and elasticity requirements” (Gholami
et al. 2017, p. 107) should receive attention. Used legacy systems must
implement session management mechanisms to make them stateless and the
cloud platforms have to choose regarding the maintenance of the incompatibility
between legacy systems and cloud services (Gholami et al. 2017). The legacy
system should be redesigned to handle transient faults in the cloud (Gholami
et al. 2017). The whole process requires to recapture the usage and socio-
technical integration of the legacy systems and to make a plan of transition
steps to communicate with the involved users.

“Non-technical components of the platform are thus still challenging today.”
– This quote of Klievink, Bharosa, and Tan (2016, p. 72) aptly describes the
challenges for socio-technical transitions. Furthermore, the authors extend
these non-technical components by requirements addressing the design of the
software itself: “While the governance structure and information infrastructure
influence a platform’s evolutionary trajectory and differentiation, boundary
resources such as decision rights, taxonomies, and technical protocols serve as
tools for the strategizing around the platforms” (Klievink, Bharosa, and Tan
2016, p. 77).

Light and Miskelly (2019, p. 598) suggest that “[p]latforms are relational
[...], operating in a temporally layered of interdependencies” – meaning in-
terdependencies of people, values, actions, and tools. Thus, changing these
interdependencies imply to consider the effects of all these elements. Light
and Miskelly (2019) also describes a platform system whose original purpose
was to host a sharing culture that subtly changed its purpose to the promo-
tion of makers. Thus, “[t]he platform primarily supports making, selling and
networking, not bringing people together to share goods” (Light and Miskelly
2019, p. 607). Additionally, the originally implemented financial component
of the MAKERHOOD platform has become unnecessary, since it focuses on
sharing communities in spatially small regions. Strictly speaking, the financial
component has been replaced by trust. That means, a technical component has
been replaced by a social norm. Trust between its users has been developed by
“repeated encounter and mutual interest” (Light and Miskelly 2019, p. 607).

Pekkarinen and Melkas (2019) explain the problem for joint optimization of
having “incompatibility of different technological solutions” (Pekkarinen and
Melkas 2019, p. 247) between different actors in the social system. They detail

RESULTS 65

the problem of having a tool for the purpose of patient measuring that does not
works well together with the documentation system in a health care scenario.
Thus, a structural coupling is established between the social system and both
technical tools so that a socio-technical system emerge, but the resulting entire
system has to implement changes in the social part to rectify trouble with the
technical tools.
Moreover, Pekkarinen and Melkas (2019) quote users of smart home tech-

nologies who describe many issues in using different technologies along with
those that are currently commonly used. Furthermore, the required knowledge
for using the technology becomes more complex by having more and more
technology in use. Thus, the “niche and regime technologies will likely collide
more and more” (Pekkarinen and Melkas 2019, p. 247) due to fragmented
technologies and its related competence.

In another domain, Praetorius, Hollnagel, and Dahlman (2015) describe the
maritime conditions for the use of a VTS as crucial factor when adapting the
tools as parts of the working procedure of the users. Thus, systems focusing
on the same purpose implement different or alternative functions for different
local geological conditions. In the cases investigated by Praetorius, Hollnagel,
and Dahlman (2015) the complexity of this local geological conditions and
the organization itself lead to a collaboration system that is “less adaptable
to unforeseen events” (Praetorius, Hollnagel, and Dahlman 2015, p. 9) as a
system that is not that tightly coupled to the organizations social structure and
the surrounding geological conditions. Thus, the case explains that sometimes
not only the social environment of a technical tool has to be considered, if a
socio-technical system evolves.
Tyrer (2019) draws an example of replacing email with a more informal

and instant communication channel in a group of trainee teachers and thus
improves the socio-technical system. Furthermore, it details the gradual
replacement. In a first attempt, the new tool is used by the trainee teachers,
while the trainers still using Email. Missing functions of a specific technology
are replaced by the participants though using alternative systems and tools.
The author examines the socio-technical relationship between trainee teachers’
learning progress and the use of mobile messaging applications for the purpose of
communication: “[T]he WhatsApp practice positively shaped the experiences of
the trainee teachers on their programme” (Tyrer 2019, p. 1). The participants
implemented a collaborative social space by setting up a WhatsApp group.
Thus, the implementation of the technical space alters the social system:
“Trainee teachers, particularly if new to an organisation, can feel isolated and
may not receive the mentoring support they need or desire. The WhatsApp
group provided the emotional crutch craved by many of its participants and,
generally, positively shaped the experiences of the novice practitioners on their
education programme” (Tyrer 2019, p. 17).

The participants expressed new needs regarding privacy, anonymity and the
pressure they felt to respond to messages. These new needs occur directly while

66 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

using the new technical system and should be considered during a redesign of
the tool in order to further support the use case. The participants noted that
they did not use WhatsApp in its intended way, but rather identified other
supportive situations (e.g. as a reminder or an information broadcast) (Tyrer
2019).

Using the communication tool, new roles are established, such as the con-
troller or enforcer, “but this may cause practitioners to feel restricted in their
postings. They may appear to accept these power inequalities but inwardly feel
resentful and withdraw from participation in the group. In this case, although
the incident was resolved, it had clearly not been forgotten and unquestionably
led to tensions” (Tyrer 2019, p. 12). The author thus observed negative effects
on the social relationships between the users that result from the new roles,
introduced as a consequence from joint optimization. Furthermore, being
required to participate the WhatsApp group with the aim of remaining a
member of the learning group that is perceived as an active one also proves a
threat for the concept of organizational choice.

Moreover, Tyrer 2019 observed that the participants did not had the required
know-how to use WhatsApp as it has been intended by the group. That being
the case, the introduction of a simple communication tool also requires that it
is possible to teach required skills (Tyrer 2019). Additionally, language and
literacy practices of a community have to be considered during the design of a
collaboration tool.

Summarizing, the considered literature provides many cases and situations
that can be characterized as a challenge of joint optimization or organizational
choice, but the authors do not contextualize these cases and situations according
to the two concepts. Although social adaptation is discussed and many
approaches for addressing the introduction of technical tools is broached,
the scientific discourse only suggests superficial ideas regarding technical
approaches to address the change initiated by the autopoietic character of social
systems. Mostly, the publications refer to rough non-functional requirements
for technical tools, such as implementing an API or considering an user session
shared by different systems. Therefore, it is still an open question in the
scientific discourse as to how CSCW tools can be technically prepared – that
is, can be designed – in order to allow social systems to follow their own
autopoietic change, even if a structural coupling has been established between
the tool and the social system that uses it.

5.3.3. Architectures

The reviewed articles focus on a variety of ICT tools, such as website, social
media and wikis (Angelidou and Psaltoglou 2017; Giuffrida and Dittrich 2015;
Nikitina et al. 2020; Rut and Davies 2018). Furthermore, some articles
discuss concrete architectures for socio-technical systems that mainly address
the systems openness and interoperability (Angelidou and Psaltoglou 2017;

RESULTS 67

Brunswicker and Schecter 2019). Nikitina et al. (2020) identified several sharing
communities using existing social media technologies as their platform, but
also self-developed forum based website architectures. Rut and Davies (2018)
describes grassroot organizations involved in food sustainability transition using
different ICT tools in conjunction and these tools are technically connected.
Mukherjee and Mukoya (2019) sketch a highly socio-technical architecture

that bases on a very simple technological solution: People send short message
service (SMS) to a central server, thus people having a different role in the social
system become enabled to act in the name of peace: “[N]o complex technologies
have been used, only mobile phones which are anyway domesticated in the lives
of people in the region. This phone allows the registration and transmission of
relevant information in a timely manner to enable early detection of violence.
Further, the CEWERS system allows for the consolidation of information, and
also relays it to those most suited to affect response” (Mukherjee and Mukoya
2019, p. 138). Thus, the architecture simply uses a server-client approach
in implementing a very simple communication support tool. Therefore, it
explains the most basic architecture for a CSCW tool: The use case that is
focused on requires only one specific support system.

Equally, Landwehr et al. (2016) developed a disaster management support
tool. The authors address all people in a specific geographical region, aiming to
create a general-purpose, scalable and extensible web-based system. Addressing
the ease of use, the tool is accessible from smartphones, tablets or computers.
Requirements can be adapted for self-managed teams, taking the members
wholly into consideration. The authors describe the future of disaster mitigation
as system of systems addressing the tension between integration and interaction
(Landwehr et al. 2016).

The most simple architectural pattern observed in the group of literature that
focuses on the choreography of multiple collaboration tools is the uncoupling
of systems. Users interact by social software (e.g. Instant Messaging, Forums,
Blogs, Social Network Sites, etc.) and share information. Giuffrida and Dittrich
(2015) describes the requirement of user generated content for the purpose of
communication and collaboration as unifying base of social software. Thus,
currently uncoupled systems are addressed by the term social software and
used in the same business processes.
Tempini (2017) describes a tool designed to foster interactions between

patients that have a specific disease. The authors describe the architectural
transformation to a platform supporting multiple diseases. The same system
and some special purpose tools regarding specific disease conditions has been
deployed. In the process, patients using the system are separated by their
conditions. The separation is implemented by deploying new instances of the
system. Thus, patients with multiple conditions have to handle multiple system
accounts. Furthermore, the scientific value of the system has been reduced by
such an architecture, since co-morbidities were impossible to detect (Tempini
2017). The resulting architecture of Tempini (2017) limits the accessible digital

68 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

social spaces (forum rooms, etc.) by matching a user’s (patient’s) condition(s).
Addressing this issue, the previously loosely coupled architecture has been

replaced by a very detailed tenants isolation. The architecture has been
redesigned again. The patients and their conditions became loosely coupled.
Also conditions were now user generated content. Implementing conditions
that way has required to modularize the code base and reuse functions of
other diseases. Thus, the modules were independently deployable for new
conditions. A dashboard was used to display the different objects managed by
the individual user. The loose coupling between patients’ conditions and the
systems features (different forums) was implemented by a “web application
simply adapt[ing] navigation shortcuts according to a patient’s conditions”
(Tempini 2017, p. 200). Additionally, the system calculates generated “links
to patients, reports or discussions [...] in the form of clickable scores, icons and
conversation snippets” (Tempini 2017, p. 200-201). The previous architecture
of using one system architecture hosted for one condition lacked required social
functions to achieve the critical mass of users. Although the architecture was
ready to collect data. Tempini (2017) calls this type of architecture a piecemeal
segmentation. The author suggests developing a simple and useful architecture
in the very beginning that is characterized by a decentralized control and
loosely coupling. Thus, the author proposes archiving user growth by a new
infrastructure.

DSI communities are often supported by CSCW systems, but also less
integrated technologies (e.g. online marketplaces) (Angelidou and Psaltoglou
2017). The European commission has introduced the concept of CAPS that
bases on CSCW systems to support DSI. Normally, CAPS are using web
platforms as architectures of socio-technical solutions to merge the functions
of websites, social media, wikis. Angelidou and Psaltoglou (2017) extend this
perspective by introducing human computing as an architectural element to
support bottom-up / grassroot approaches. Also Klievink, Bharosa, and Tan
(2016) note that architectures should be modular and flexible. The authors
advocate using platforms as infrastructures, including inter-organizational
service oriented architecture.
Brunswicker and Schecter (2019) characterizes platforms as a core set of

functionalities offered to software developers that implement solutions for
specific end-user needs. These end-user requirements have to be addressed by
specific apps. Apps should not affect each other, although complete decoupling
in hybrid modular architectures is impossible (Brunswicker and Schecter 2019).
Apps do not have to be “nested within a centralized design hierarchy of a single
digital object” (Brunswicker and Schecter 2019, p. 4-5) – they are “open in the
periphery” (Brunswicker and Schecter 2019, p. 4). That means that they use
the core functionality of the platform with standardized interfaces, but the app
developers can apply their own technology of choice and design decisions. Since
the app integration is coupled to the application programming interfaces (APIs),
the development of apps is loosely coupled to the implementation of the core

RESULTS 69

functionality of the platform. Furthermore, changes in the apps’ code bases
will not affect the platform or another app (Brunswicker and Schecter 2019).

Considering the coordination of a distributed ecosystem of developers, a
digital platform’s architecture should be modular (Brunswicker and Schecter
2019). But too much openness leads to coordination challenges among the
different parties as well as lowering incentives for developers to contribute
(Brunswicker and Schecter 2019). Therefore, platforms should not be too open.

Bygstad (2017) introduces a dichotomy of heavyweight and lightweight
IT. They are distinct by different architecture patterns and there may exist
other types in between. Heavyweight IT characterizes specialized, complex,
and expensive server-client architectures. Whereas lightweight IT is small,
cheap, and deployable by consumer devices (Bygstad 2017). Heavyweight
and lightweight IT should be only loosely integrated in terms of technology,
standardization and organization (Bygstad 2017). Bygstad (2017) suggests
using platforms to connect heavyweight and lightweight IT. Lightweight IT
can be described as a meshwork that grows bottom-up and organically as user
needs change (Bygstad 2017). The author describes a possible architecture
to connect heavyweight and lightweight IT with the term coalition of systems
(Bygstad 2017). Platforms as meshworks should be allowed to grow organically
as user needs change (Bygstad 2017). Additionally, the platforms and its
apps have to be loosely coupled in terms of standards (Bygstad 2017). Light
and Miskelly (2019) extends the idea of platforms by the concept platform of
platforms: The meshing of platforms that means apps of one platform can
be used by users of another platform. Platforms should be meshed ad-hoc
and in a responsive manner, with the result that apps become available in the
moment the relationship between platforms is formed.
Cloud transition literature outlines requirements that can be adapted to

platform systems. Gholami et al. (2017) notice that while legacy systems are
divided into components to support the transition to cloud software, also a
carefully specified appropriate distribution and deployment of the components
has to be ensured for platforms apps. Additionally, “computational require-
ments, servers, data storage and security, networking and response time, and
elasticity requirements” (Gholami et al. 2017, p. 107) have to be considered.
Furthermore, components of former legacy systems that have been moved

to the cloud, should be stateless, synchronizable and implement session han-
dling mechanisms for supporting replicated components that are dynamically
deployed and independently scalable (Gholami et al. 2017). Platforms require
tenant isolation (Gholami et al. 2017) and during the transition, the still-used
legacy systems should be redesigned to handle transient faults in the cloud
(Gholami et al. 2017). In general, apps have to be decoupled from each other
(Gholami et al. 2017, p. 108): “The decoupling of legacy system compo-
nents, enables independent elastic scaling of the components by dynamically
adding/removing more instances of the same component, transparent access
to components, and coping with failures.” Moreover, platforms should provide

70 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

the possibility to add integrators and wrappers for external data of e.g. legacy
systems (Gholami et al. 2017).

Additionally, Gholami et al. (2017) notes that the distribution and deploy-
ment of apps on platforms must be carefully planned. Equally, support for
the replication and synchronization of components wrapped in apps has to be
considered. Additionally, Gholami et al. (2017, p. 109) suggests that platforms
“should be deployed over multiple cloud servers”.

Furthermore, Bygstad (2017) introduces a broader understanding of the term
architecture by discussing a socio-technical architectural concept of BYOD. It
is a possible use case of the dichotomy of lightweight and heavyweight IT: “In
BYOD context, the devices used to perform work are owned by the employees.
However, the accessed resources are owned by the organization (e.g., network,
information)” (Hovav and Putri 2016, p. 35).
Addressing the socio-technical perspective on architectures, Hovav and

Putri (2016) introduce mobile virtualization as a possible solution for security
issues raised by BYOD. Two separated environments are implemented on
mobile devices. Firstly, (1) the corporate environment and secondly, (2)
the private environment. Mobile virtualization requires “a set of universal
standards for VM and loosely coupled architecture [sic!]” (Hovav and Putri
2016, p. 46). Mobile virtualization standards should be an intermediary.
“[M]obile virtualization should enable seamless, transparent personas” (Hovav
and Putri 2016, p. 46). Otherwise, the users will mix their professional and
their private persona. In the end, the authors call for implementing seamless
shifts between roles for users. Summarizing, the concept of BYOD motivates
another architectural pattern of virtualization of using the same hardware
and software basis (e.g. the operating system (OS)) in order to implement
separated sandboxes for different use cases.

Hovav and Putri (2016) demonstrate that the BYOD policy implies effects of
the users response efficacy and the perceived justice. Thus, the authors conclude
that an IT support team is still required “for BYOD as it would promote an
employee’s response efficacy and perceived mutualism justice” (Hovav and Putri
2016, p. 47). The authors mention that more field experiments would need to
be conducted to determine how mobile virtualization has to be designed.

According to the transition to a socio-technical perspective onto architectures,
Crabu and Magaudda (2018) introduces the term inverse infrastructure to
describe bottom-up grassroot movements in relation to the development of
technical infrastructure. These are highly decentralized in technical and
organizational terms.

The previously introduced architectural concepts of having a single, mono-
lithic CSCW application, a set of uncoupled tools, a system of systems, a
platform, or a platform of platforms all have in common that they address the
collaboration of people by supplying CSCW functions. Since socio-technical
organizations always base on a structural coupling to a technical tools support-
ing the communication in its social system (Kunau 2006), focusing on CSCW

RESULTS 71

tools addresses the RQ 1. Thus, the upcoming paragraph more intensively
addresses CSCW platforms.

CSCW platforms

Angelidou and Psaltoglou (2017) note that openness in hardware, software, and
data can foster a broad collaboration between users and the interoperability
between systems. Thus, authors implicitly argue for the architectural concept of
platforms to address the requirements of CAPS. But implementing a platform
used as a CSCW tool, requires to consider specific aspects of CSCW, like
platforms also have to source and accelerate collective awareness (Angelidou
and Psaltoglou 2017).
Presenza et al. (2019, p. 191) notes that SCBEs are using “a complex

bundle of digital technologies”. Thus, also the technical concept of platforms is
used to manage relationships between social initiatives. Presenza et al. (2019)
describes the platform Meridonare that provides different services to project
initiators supporting them in expressing their objectives and ideas, as well as in
supporting the “planning, designing, implementing, promoting and monitoring
[of] the fundraising campaign” (Presenza et al. 2019, p. 195-196). Meridonare
is functional, practical, secure and accessible with respect to the goal of (1)
presenting ideas, (2) bringing many people together to willingly donate, and
(3) supporting them in making a decision for a specific project to donate to.
SCBE is based on “two-way communication [...] and the sustaining community”
(Presenza et al. 2019, p. 199).

Tempini (2017, p. 191) promotes social media platforms that are based on
“[t]he constant updatability of web applications”. Thus, users would be able to
“get to grips with technology, make meaning, discover affordances and invent
workarounds that can later be integrated into the formal offering of the social
media platform” (Tempini 2017, p. 191).

In the context of governmental digitalization, the concept of platforms can
introduce a space for the innovation and expertise of citizen entrepreneurs
(Janssen and Helbig 2018). These citizen entrepreneurs “provide beneficial
services for implementation and evaluation of policy” (Janssen and Helbig
2018, p. S103). Thus, the authors define the term platform from a socio-
technical CSCW perspective: “A platform is much more that [sic!] creating a
simple discussion forum. Platforms interconnect different stakeholder groups
and allow participants to actively observe, report, collect, analyze, provide
and disseminate information through a variety of tools covering the whole
policy-cycle” (Janssen and Helbig 2018, p. S104).

However, at the moment, information management for decentralized govern-
mental processes is described as an “awkward combination of disjointed utensils
[instead of a] well-designed, integrated tool for analysts” (Thomas, Botha, and
Greunen 2015, p. 535). Thomas, Botha, and Greunen (2015) derive the
requirements for information management tools in the context of decentralized

72 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

governmental structure: “The need for better user interfaces, with aggregation
and effective decision making guides, is accentuated. As information exists in
diverse, varied parts on multiple systems, in several geographic locations, and
is not directly controlled, the existing approaches to managing information
and knowledge are deemed too basic for the complexity of the environment”
(Thomas, Botha, and Greunen 2015, p. 535). Making information meaningful
for various users requires having customized and personalized settings basing on
user profiles and also various tools for the data visualization (Thomas, Botha,
and Greunen 2015). Thus, CSCW platforms with the purpose of supporting
the communication between governmental agencies and citizen should offer
a special focus on information visualization. Therefore, appropriate design
patterns must be chosen to bring user interface (UI) elements of different apps
together.
In addition to visualization, platforms need to support the data exchange

between apps (Klievink, Bharosa, and Tan 2016). Thus, the implementation of
platforms requires businesses to co-develop interfaces in terms of visualizations,
as well as for data definitions, as mentioned by Klievink, Bharosa, and Tan
(2016, p. 74): “[D]ata (exchange) standards and interface specifications”. The
authors identified “the fragmentation of data, systems and government requests;
the lack of standards; the information system integration; the high administra-
tive burden; and the errors in data and reporting, hampering the effectiveness
of government processes and the compliance of companies” (Klievink, Bharosa,
and Tan 2016, p. 72) as the main challenges.

Furthermore, due to data security issues, Klievink, Bharosa, and Tan (2016)
do not view the idea of using the same interface by multiple organizations as
realistic. Alternatively, they describe a system of multiple platforms being
“able to access and aggregate data on specific supply chains” (Klievink, Bharosa,
and Tan 2016, p. 74). Additionally, the authors outline basic requirements for
shared services: “message specific sender authentication, syntax and semantics
checks, error handling, [...] and return messages (acknowledgements)” (Klievink,
Bharosa, and Tan 2016, p. 72).

All organizations and organizational units communicating by a platform also
need to use the same language. Otherwise, different data definitions will be
used and different data formats will occur. Therefore, Klievink, Bharosa, and
Tan (2016) argue for a standardization of data in syntax and semantics in the
beginning of a project. Furthermore, visualization of supply chains supports
information sharing by using platforms. Specifically, dashboards facilitate
reporting and sharing of information.

In general, architectures should be modular and flexible (Klievink, Bharosa,
and Tan 2016) to support socio-technical evolutionary-teal organizations.
Equally to Angelidou and Psaltoglou (2017), Klievink, Bharosa, and Tan
(2016) presents a modular and flexible information infrastructure implemented
by loosely coupled web services that are aiming to support future business
processes. The architecture bases on the concept: Store once, report to many.

RESULTS 73

Praetorius, Hollnagel, and Dahlman (2015) briefly discuss the architecture
of two systems used for the same purpose under different geographical con-
ditions. In their research, they learned that different usage environments of
CSCW tools require having differing degrees of structural coupling. Thus, an
appropriate software architecture for the technical part of a socio-technical
organization cannot be designed without focusing on the whole case including
the environment. In their case, Praetorius, Hollnagel, and Dahlman (2015)
propose to separate the different parts of an VTS in sub systems.

Integration Strategies

Focusing on platforms and their interfaces, the publications sketch different
approaches to support the integration of new apps. Brunswicker and Schecter
(2019) mentions that hybrid modular architectures make a complete decoupling
impossible. Thus, a balance must struck between an increased openness of
a platform’s architecture and a decreased number of constraints that imply
a coupling between software developers and the architecture. Too much
openness leads to coordination challenges among the different parties as well
as lower incentives for developers to contribute (Brunswicker and Schecter
2019). Thus, Brunswicker and Schecter (2019) suggests to have a modular,
but not too open architecture for platforms. Bygstad (2017) extends this
discussion by introducing the separation between integration and interaction.
While integration describes a process of constructing one wholly system from
separated elements, interaction means that separated elements communicate
with each other.

Bygstad (2017) recommends avoiding integration for heavyweight and light-
weight IT, due to the fact that it increases the technical and organizational
complexity. Heavyweight and lightweight IT are different knowledge regimes,
thus a tight integration is not implicitly given, if both are combined (Bygstad
2017): “The practical design implication is that heavyweight and lightweight IT
should be only loosely integrated, both in terms of technology, standardization
and organisation” (Bygstad 2017, p. 191). Therefore, heavyweight IT acts
as a platform for lightweight IT that offers an arena for innovation (Bygstad
2017).

Landwehr et al. (2016) discuss the interoperation level, type of interoperation
and organizational / legal issues that have to be considered. For instance, to
avoid a tight coupling, external data have to be transformed by data supply
pipelines implemented by the components or apps using the data. The comma-
separated values (CSV) format is commonly applied for sharing data in a
loosely coupled system (Landwehr et al. 2016). Thus, platforms require to
develop input-output procedures (Landwehr et al. 2016). Interoperability of
systems has to consider legal rights, e.g. to share only data that is allowed
to share, like aggregated personal data (Landwehr et al. 2016). The author
introduces three different levels of integration of interacting systems: A (1)

74 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

loose confederation, (2) components, or (3) complete integration. Generally,
Landwehr et al. (2016) advises to avoid full integration. Furthermore, the
authors mention that the integration of a data provider is a tight coupling, since
changes to the provider’s API have implications to the stability of new systems
(Landwehr et al. 2016). Considering these types of integration, Landwehr
et al. (2016) propose that a maintaining organization is required, before social
initiatives should transform themselves into socio-technical systems using a
group of integrated software (including fast deployed support tools like social
media).
While Klievink, Bharosa, and Tan (2016) calls for data exchange formats

with general agreement from CSCW perspective, Lenkenhoff et al. (2018)
agrees, since an exchange format is necessary to ensure interoperability and
compatibility between different technologies. The case described by Lenkenhoff
et al. (2018) introduces a digital platform to support the operation of the
smart PSS for a better management of all service-related tasks, apart from
basic supporting systems. Thus, they have decided not to introduce a new
component to the existing system, but a new system that is loosely coupled
to the already existing one. The system already in use interacts with a new,
central big data platform that collects and analysis data from remote machines
and users. In addition to implementation and deployment of the technical tools,
“[t]he company has redesigned its business processes and the organisation to
adjust to new service models and a digital environment” (Lenkenhoff et al.
2018, p. 170).

Klievink, Bharosa, and Tan (2016) suggest implementing loadable business
processes as resources to support organizational transformation without chang-
ing the code of support software. They call for using business process model
and notation (BPMN) in order to integrate the business processes as scripts
composing web services to automatically handle new procedures.

Muñoz et al. (2015) introduces an application that is based on cloud services
and supports the communication in families (between generations). The main
challenge identified by the authors is that of concealing the complexity of
having several data sources (e.g. the Facebook wall) from different providers
(e.g. Facebook) in an understandable user interface. The communication
system described by Muñoz et al. (2015) requires users to have accounts for
external tools like Skype and Google Mail. Furthermore, it transforms the
messages of a specific SNS provider to a format that can be received by the
SNS of the receiving user to implement “particular awareness mechanisms”
(Muñoz et al. 2015, p. 145).

The authentication of users should function without having to continually
enter the user’s credentials for different platforms. Thus, the Skype, Facebook
and e.g. Google accounts have to be managed by the administrator of the
system. Muñoz et al. (2015) work around the Skype authentication by using
the integration features implemented by Skype to start video calls from the
mobile device. The authors use OAuth2 for implementation of the user’s

RESULTS 75

authentication with Google Mail. When it comes to Facebook’s authentication,
Muñoz et al. (2015) uses the same work around as for Skype’s authentication.
Features of a specific SNS are not revealed by the tool implemented by

Muñoz et al. (2015), if the user has no credentials for the SNS. Having
different technological preferences implies to make this preferences visible to
other users (Muñoz et al. 2015). If a user prefers to use email to get in touch,
a Skype call is not appropriate.

Aiming to foster the digitalization of the public sector, Thomas, Botha, and
Greunen (2015) advocate replacing the currently mostly isolated collaboration
tools by loosely coupled and spatially distributed ones. Thus, “a shared
technical infrastructure to support integration and collaboration across a
distributed environment” (Thomas, Botha, and Greunen 2015, p. 535) is
required. The authors call for use of the Internet and “enabl[ing] heterogeneous
information systems and software applications to communicate; exchanging
data accurately, effectively, and consistently, and then to use the information
that has been exchanged in a way that it is meaningful”(Thomas, Botha, and
Greunen 2015, p. 535).

Furthermore, the paradigm of the first generation of smart cities resulted in
a number of apps “designed by citizens [...] and local IT firms” (Trencher 2019,
p. 30). Thus, it is now a “unique approach in the smart city 2.0” (Trencher
2019, p. 32) to adapt existing technologies and to use them to face new societal
needs. But the adaptation of such technologies requires incorporating different
approaches and implementations, together, as the following cases explain.

Y. Lin (2018) outlines the case of an integrated information service platform
for smart cities, that handles the community (collect and share information from
/ between citizen), implements a smart city card for the purpose of residents
authentication, a public service platform to acquire information about the
public services, and the community public management platform. The latter
implements “real-time monitoring of community operation and response to
community affairs, combined with Internet of Things” (Y. Lin 2018, p. 806).
Thus, Y. Lin (2018, p. 806) propose “social media as new platforms to interact
with local governments in urban regeneration and environmental protection.”
This case also calls for a loose confederation of separated systems.

Similarly, Maye (2019) describes a city based development of smart food city
technologies that can be characterized as decentralized and loosely coupled
regarding the supported urban food movements. The author concludes, that the
“most appropriate system [...] [is] flexible, which could include a combination
of systems and technologies dependent on specific city-region characteristics”
(Maye 2019, p. 19).

5.3.4. Guidelines

Angelidou and Psaltoglou (2017) mention that CSCW requirements are hard
to determine for locally oriented businesses and thus also architecture choices

76 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

are hard to made. Therefore, general purpose guidelines would be helpful for
each software development project addressing locally oriented socio-technical
organizations. Although evolutionary-teal organizations are not locally oriented
by definition, Section 2.2.3 discusses some similarities. The literature review
also revealed several general guidelines addressing the RQ 1. Thus, this section
names them and explains the relationship of the guideline to the design of the
technical tool integrated in a socio-technical evolutionary-teal organization.

Platforms should not be too open

As already mentioned in Section 5.3.3, architectures should be designed so
that its openness increases, while the number of constraints decreases that the
developers have to take into consideration (Brunswicker and Schecter 2019).
But too much openness leads to more constraints that have to be considered
by software developers. Thus, they have to coordinate their expenditures
and lowers the motivation for developers to participate (Brunswicker and
Schecter 2019). As a consequence, a certain degree of tension exists between
the openness of a platform and the actual use of this openness. Therefore,
platforms should not be too open (Brunswicker and Schecter 2019).

Loosely coupled implementation

Bygstad (2017) calls for a loosely coupled implementation of heavyweight
and lightweight IT in technical terms, in terms of standards, and terms of
organization (Bygstad 2017). This perspective is extended (implicitly) by
Brunswicker and Schecter (2019), Landwehr et al. (2016), Klievink, Bharosa,
and Tan (2016), Lenkenhoff et al. (2018), Muñoz et al. (2015), Thomas,
Botha, and Greunen (2015), Trencher (2019), Y. Lin (2018), and Maye (2019).
Although most of the articles view taking on socio-technical perspectives and
formulating requirements for loose coupling in both technical and also in social
terms, a technical tool that has to be adapted by a social system in a socio-
technical manner, must be implemented in a loosely coupled style. There are
three relevant points here: (1) It has to use and implement APIs that are
open and usable, (2) it has to accept and send data using standards that are
commonly used by different tools and technologies, and (3) it has to allow
software developers to extend its functionality. Furthermore, Gholami et al.
(2017) suggests incorporating a degree of elasticity (e.g., dynamic up and down
scaling, dynamic resource acquisition and release). Loose coupling is also
addressed in more detail by Landwehr et al. (2016) calling for CSCW systems
should be interoperable - it has to be possible to integrate new systems, like new
social media. Equally, Light and Miskelly (2019, p. 592) assert that it should
be possible to allow developed ICT tools to mesh and scale regarding “to the
physical spaces and activities of their users”. Landwehr et al. (2016) advocate
for avoiding a full integration, as discussed in Section 5.3.3. Additionally,

RESULTS 77

Landwehr et al. (2016) also mention that integration of a data provider is a
case of tight coupling – changes to the providers API have implications to the
stability of new systems.

Balance centralized and decentralized maintenance

In grassroot initiatives architectures are often developed at a local level by
activists with civic motivations (Crabu and Magaudda 2018). When such
initiatives evolve into socio-technical organizations, the structural coupling
forcing the centralized maintenance of basic functionality in order to sustain the
technical base for the social system. Since technological innovation follows an
in-the-making nature (Crabu and Magaudda 2018) and innovation is a driving
force for such initiatives, decentrally organized software developers require
a naturalized process of infrastructure development (Crabu and Magaudda
2018). Thus, the maintenance of the software has to be balanced between
centralization and decentralization (Crabu and Magaudda 2018). Light and
Miskelly (2019) advocates for an infrastructure that is shared between its users.
Thus, they argument for a highly decentralized maintenance of the software to
foster bottom-up approaches of software development.

Apply participatory design methods

Klievink, Bharosa, and Tan (2016) suggest considering social processes and
practices during the software development process of the technical tool intro-
duced in a socio-technical organization. More specifically, Kurki and Wilenius
(2016) proposes applying human-centric approaches to create work environ-
ments. Prospective users have to be asked: “[W]hat do you need for your
daily work” (Kurki and Wilenius 2016, p. 8)? These integrative methods
should address the aim of developing technical tools that “really meet the
needs of the people they will be serving” (Kurki and Wilenius 2016, p. 11).
Also Light and Miskelly (2019) also assert that software development projects
should focus on needs instead of solutions: “Point to a need, rather than
producing a solution” (Light and Miskelly 2019, p. 619). The results can also
serve as a base for the recommendation of Gholami et al. (2017) to plan a
cloud architecture in line with original goals and requirements. In addition
to featuring participatory design methods that accompany and structure the
software development process, new services and functionalities have to be
efficiently mediated between users and providers of ICT services (Light and
Miskelly 2019).

Fairly consider all collaborating businesses

As previously explained, Light and Miskelly (2019) introduced the concept of a
shared infrastructure, that is also described by Blaschke et al. (2019). In that
context, Light and Miskelly (2019) also defines situated-together-ness: Partners

78 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

are aware of being part of something bigger, but no one claims to be this bigger
(organizational or structural). Furthermore, Blaschke et al. (2019) argues for
implementation of control mechanisms and specifying roles for the participating
partners. This allows one to fairly integrate the resources of all partners and
to fairly share economic risks, costs, and revenues (Blaschke et al. 2019).
Additionally, existing knowledge regarding coordination and collaboration
from the scientific CSCW discourse has to be taken into consideration by the
collaborating parties (Light and Miskelly 2019).

5.3.5. Architectures and users

The selected publications do also sketch effects of specific architectural decisions
onto its users and, as already outlined in Section 5.3.4, effects to the architecture
caused by the social system of the users. This section provides an overview
about the insights drawn from the literature and how it has to be considered
for the development of an architecture for a socio-technical evolutionary-teal
organization.
The main objectives of CAPS are sustainability, and social innovation

(Angelidou and Psaltoglou 2017). CAPS are places for social interaction,
but are also referenced by social interactions outside of the system. Thus,
CAPS fulfill all pre-requirements to construct a structural coupling between a
social and a technical system. Additionally, these systems deepen individuals’
understanding of social processes (Angelidou and Psaltoglou 2017).

Furthermore, Angelidou and Psaltoglou (2017) describe social systems that
utilize technology to support their collaboration, instead of addressing their
aims directly. CAPS implement functions to allow individuals to come together
and collaborate. Thus, collective awareness is an important function of CAPS
that calls, according to Angelidou and Psaltoglou (2017), to use online platforms
basing on web technologies.
Rossitto and Lampinen (2018) reveal how the adaptation of technology

functions become standardized (e.g. for each work day a Facebook event
is created). Furthermore, the authors show that low efforts to setup the
technology during the daily life is an essential requirement for the usage of
technology to become adopted by a grassroot initiative the way a socio-technical
system evolves.
According to Giuffrida and Dittrich (2015, p. 28) social software is used

by globally distributed teams to support “metawork to enact and negotiate
coordination mechanisms” as well as “different kinds of communicative gen-
res, e.g., work discussions, knowledge sharing, articulation work, and team
building”. Furthermore, Meelen, Truffer, and Schwanen (2019, p. 107) expand
upon the fact that “the virtual community is able to build bridges between
otherwise geographically isolated user groups”. Thus, the software implements
basic functionality to develop a structural coupling between the social and the
technical system. Using technology mediated communication opportunities

RESULTS 79

to collaborate can emerge that were previously not known. Therefore, “[i]t is
noticeable that the trans-local interactions on the internet forum do not only
concern knowledge sharing but can also result in international collective action,
for example related to charging standards” (Meelen, Truffer, and Schwanen
2019, p. 107).

Presenza et al. (2019) also describe a complex business process introduced
by Meridonare in order to ensure the quality of the fundraising campaigns
supported by the platform. Project initiators have to fulfill many requirements
and will be supported by a mentor. Additionally, the Meridonare platform
is supplemented by professionals assisting the project initiators regarding
newsletters, social media, organization of events and the presentation of the
project itself. Moreover, Meridonare also manages relationships outside the
technical platforms to “other crowdfunding platforms, banks, foundations,
local and national organizations” (Presenza et al. 2019, p. 197). Furthermore,
Presenza et al. (2019, p. 197) insist that platforms like Meridonare “must
pursue the additional goal of stimulating a common culture and shared interests
and values”. Thus, the authors point out that “the platform works as a
community developer” (Presenza et al. 2019, p. 198) and has no organizational
form.
Collective bottom-up infrastructure requires its users to participate and

taking care of the technologies maintenance (Crabu and Magaudda 2018). The
case study of Crabu and Magaudda (2018) focuses on architectures that are
developed at a local level by activists with political motivations. Thus, the
technological choices must be aligned to the skills of its maintaining users: “In
order to ensure the sustainability of the CN, the distributed infrastructure
requires to growth together with technical capabilities of its users base” (Crabu
and Magaudda 2018, p. 163). Consequently, “learning practices and knowledge
sharing are of great relevance in managing innovation activities from below,
and, in more particular, in co-opting new members in the community” (Crabu
and Magaudda 2018, p. 164).

In the case of the “Buycott” app, presented by Eli et al. (2016), the concepts
that have shaped their design have been reproduced. The community of users
adapted these concepts, since the app implicitly communicated them. Thus,
the intention of the software designers has to be considered. This becomes
of special interest for the previously explained case by Crabu and Magaudda
(2018) of a collective bottom-up infrastructure.

However, Brunswicker and Schecter (2019) noticed that, in general, platforms
using apps is a suitable architectural pattern to respond to changing user needs.
Additionally, the design of new CSCW tools requires consideration of the

user from the very outset. Angelidou and Psaltoglou (2017) mention that
matchmaking online platforms must support the sharing citizens (the charac-
teristics of its user). Equally, the aging in place constantly requires focusing
on socio-technical situations, like supporting the communication with relatives
and health professionals, transport, and navigation support (Carnemolla 2018).

80 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

Moreover, roles and responsibilities in the social system changes by the use of
technical tools. For example, Baptista et al. (2017) investigate the use of social
media for feedback loops inside an organization. They determined that such a
use of social media will lead to social systems focusing more on an individual’s
contribution to the organizational life. That means that the individuals will
be enabled to implicitly contribute to the organizational purpose and they
therefore drive the purposes evolution. Additionally, the organizations have
to transform themselves to become able to focus on the individuals entire
contribution. That requires to consider wholeness for the implementation.
Thus, social media functions make it possible for members of an organizations
to participate in a transformative process of change within the organization
itself in order to focus the members wholly and enable them to participate in
the evolution of the purpose by their contributions.

The public government of South Africa, described by (Thomas, Botha, and
Greunen 2015), uses word processors, spreadsheets, and tools to “gather and
analyse information on progress relative to capacity building in municipalities”
(Thomas, Botha, and Greunen 2015, p. 535). The burden of having badly
designed or not appropriate tools is handled by the introduction of new roles
and tasks in a collaborative environment (Thomas, Botha, and Greunen 2015).

In Shanghai an integrated information service platform has been established
to handle “home affairs, public services, business, and life information” (Y. Lin
2018, p. 806). Social media comments on published urban planning are used
to adjust the plans to citizens’ needs (Y. Lin 2018). Bottom-up approaches
are also supported by microblogging and city forums, as shown by Y. Lin
(2018). The case successfully used SNS: “In sum, grassroots participants have
increasingly used social media, SNS and the Internet to communicate, and
interact with the government” (Y. Lin 2018, p. 807).

The concept of BYOD, as it has been mentioned by Bygstad (2017), implicitly
addresses self-management of small teams and wholeness. Lightweight IT can
be described as meshworks that have been growing bottom-up, organically
as user needs changes. Bygstad (2017) detail design principles for a loosely
integrated system of heavyweight and lightweight IT regarding socio-technical
autopoietic change processes. They suggest avoiding integration, since it only
increases the technical and organizational complexity.

IT security, IT privacy, and IT governance are real challenges for lightweight
IT: “After all, meshworks grow by drift and they may drift to places where
we do not want to go” (Bygstad 2017, p. 189). BYOD is especially relevant,
since it supports “employee retention, and reduced operational costs” (Bygstad
2017, p. 35). Additionally, the authors outline the risks introduced by BYOD,
namely: Security issues of consumer devices like malware and data loss. These
have to be addressed by an organizational ISSP, but “[a]n organizational
attempt to control employees’ personal devices could be perceived by the
employee as a freedom threat. Moreover, BYOD ISSPs may be perceived as a
burden and hindrance since they could restrict the way individuals use their

RESULTS 81

own devices” (Bygstad 2017, p. 35).
Furthermore, loosely integrated systems of heavyweight and lightweight IT

create a space that can be used by members of an evolutionary-teal organization
to be part of the autopoietic transformation of the socio-technical system that
satisfies joint optimization (Bygstad 2017).

Discussing the effects of technical tools in a structural coupling with a social
system onto its users, Fang and J. Zhang (2019) demonstrated that many
users leave a social Q&A community after a few questions. Thus, retaining
of users is one of the most essential aspects of designing CSCW tools. One
important aspect here is, that technological preferences of persons of different
ages may influence the effectiveness of the communication process (Muñoz et al.
2015). Additionally, spaces for socializing are restricted by the differences in
the daily lifestyles the communication partners have. For example, older adults
communicate during different time frames than younger adults do (Muñoz
et al. 2015).
Considering the suggestion posited by Klievink, Bharosa, and Tan (2016)

of having loadable business processes for supporting the transformation of a
tools usage without changing the code, a main challenge is the integration of
information systems into social procedures. In particular, the fragmentation
of systems and data poses a challenge. Landwehr et al. (2016) explicitly
collect information for their disaster management from official coordinators.
Thus, working procedures involving such officials might have to be designed.
Additionally, the authors recognize that legal systems and legal rights have
to be considered. Therefore, social media “limit[s] the usage, storage, and
sharing of the data” (Landwehr et al. 2016, p. 35). Thus, Landwehr et al.
(2016, p. 35) suggest to implement sharing functions by considering that “any
historical data to be shared needs to be limited to summary information across
the population, rather than features of individuals”.

Furthermore, users work around problems they are facing during their daily
work in sometimes unorganized ways (Meelen, Truffer, and Schwanen 2019).
Thus, system designers have to investigate the daily work procedures of users
periodically to detect such workarounds. Perhaps, the recorded data has to be
adjusted and the systems functionality has to be reworked. Tempini (2017)
provides an example: A new architecture implementing a separation of patients
with different symptoms led to workarounds of manipulating the symptoms list
of the individuals accounts by the users. Duplicates in the data could split the
community presented by Tempini (2017) and thus, it would reduce the value of
the whole system: “The modularization of the infrastructure codebase tested
the ways in which adaptability can follow from reduction and simplification.
The new, loosely coupled architecture, meant to be the most adaptable version
of the underlying combinatorial system of data structures, was falling short of
serving all kinds of data users: not only analysts, but also patients” (Tempini
2017, p. 203).

Tyrer (2019, p. 1) investigates “the socio-technical interaction between

82 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

[...] mobile messaging application and other communicative practices”. Most
participants “did not consider [the communication system] to impact too
heavily on their privacy” (Tyrer 2019, p. 9). But some “felt a certain pressure
to respond to messages” (Tyrer 2019, p. 9). The authors identified completely
different use patterns in the group of the investigated users: “The frequency of
postings will depend on the time individuals have in their everyday schedules
and the importance they attach to the practice” (Tyrer 2019, p. 9). The
participants used the communication tool as a reminder and for disseminating of
information more rapidly and efficiently. However, some participants only used
the communication tool to read messages, instead of writing some. Thus, they
represented a passive part of the group. Since the purpose of the communication
tool was to support the mutual learning, the passive users caused a degree
of displeasure vis a vis the more active users. The group of trainees became
separated.
Light and Miskelly (2019) connotes the term platform in a socio-technical

manner, by summing up a configuration of people, values, actions, and tools.
The authors observed that some initiatives used simple off-the-shelf network
tools (email, WhatsApp) that are ad-hoc and responsive, like the relations
being formed. The example of MAKERHOOD “was an ecommerce brokering
platform, but that model gave way during its first years as it became obvious
that the platform’s value was not to manage money, but to connect and support
makers, reflecting the founders’ (environmental and social) sustainability goals
emphasizing quality of life and reduced consumption” (Light and Miskelly
2019, p. 605). Thus, it must not only be possible to alter specific functions
must be able to alter, but the whole purpose of platforms, apps, and functions
should also be open for any reinterpretation that is triggered by autopoietic
change.

5.3.6. Architectures and software developers

While the Section 5.3.5 discusses the relationship between users and architec-
tures, this section addresses the connection between software developers and
architectures that are used in a socio-technical setup.

DVNs are multi-actor co-creation networks with the objective of creating
digital services to address consumer needs (Blaschke et al. 2019). Conse-
quently, DVNs describe the creation of digital services in a socio-technically
organized construct. They represent socio-technical service ecosystems that
have similarities to evolutionary-teal organizations, since business actors are
self-managed and intentionally they contribute to the systems purpose. Noth-
ing can be said about the consideration of wholeness with respect to the
organizational members, as well as wether or not an organization also strives
to make it possible for their members to contribute to the system’s purpose.
Organizations require fresh views on IT to design and innovate digital services.
Transparency mechanisms are relevant to motivate software developers to

RESULTS 83

participate (Blaschke et al. 2019). In general, Blaschke et al. (2019) advocates
that organizations have to activate unused potential to change or create digital
services. Lenkenhoff et al. (2018) also advocates for a decentralized service
platform that allows for the establishment of a digital business ecosystem, if
the partners interact with each other.
As already mentioned in Section 5.3.3, Brunswicker and Schecter (2019)

noticed that platforms offer a core set of functionalities to software developers.
Actually, the authors focused the software developers and determined that
“[a]pps which were popular in the past tend to receive more contributions in the
future” (Brunswicker and Schecter 2019, p. 34) and that “there is an inertia
effect, where developers continue to contribute to the same apps they have
worked on previously” (Brunswicker and Schecter 2019, p. 34). Furthermore,
Brunswicker and Schecter (2019) detected that software developers make greater
modifications to an app, if the app has been selected through a coherent search
process.

Nowadays, digital platforms rely on modular architectures to coordinate the
distributed ecosystem of developers (Brunswicker and Schecter 2019). But too
much openness leads to coordination challenges among the different parties as
well as lower incentives for developers to contribute. Thus, Brunswicker and
Schecter (2019) deduce that platforms should not be too open. The developers’
strategy to be coherent with the past allows them to resolve the paradox of
change and achieve generativity within bounds (not the degree of technical
decoupling in the platform’s architecture) (Brunswicker and Schecter 2019).

After software developers decide to participate a software developing project,
it is relevant to ensure an existing shared concept of the technical tool itself,
but also of the social system that adapts the tool. As discussed by Eli et al.
(2016) the app Buycott reproduces the concepts that have shaped their design,
so these concepts become an important factor that manifests the users reality.
Klievink, Bharosa, and Tan (2016) describe private-public information

platforms aiming to transform the governance of public administration by an
outside-in approach. Development and adoption of platforms can be shaped
by the support of government agencies: “The information shared between the
parties includes transactional data (captured by buyer, seller, and intermediate
parties in the supply chain), data on the flow of physical goods, and on
the management of (commercial) risks” (Klievink, Bharosa, and Tan 2016,
p. 74). Additionally, a “lack of standards [...] [implies] high administrative
burden [...] hampering the effectiveness of government processes and the
compliance of companies” (Klievink, Bharosa, and Tan 2016, p. 72). Thus,
the authors describe horizontal standardization of having private organizations
that develop “standards impacting the direct interactions with government
agencies” (Klievink, Bharosa, and Tan 2016, p. 76).

While government agencies own and control a large part of the information
infrastructure, Klievink, Bharosa, and Tan (2016) propose a joint develop-
ment of architecture. The authors propose a network approach instead of

84 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

using hierarchies. Business processes should be loadable resources to support
their transformation without changing the code of support software (Klievink,
Bharosa, and Tan 2016).

Crabu and Magaudda (2018, p. 159) adds the concept of inverse infrastruc-
ture that is characterized by “being bottom-up, self-organized, decentralized,
and emerging as the result of a process of engagement where end-users and
designers substantially overlap”. The proposed architecture addresses the
design, development and maintenance of the bottom-up infrastructure used
by socio-technical grassroot initiatives. In a nutshell, it describes bottom-up
grassroot movements in relation to the development of technical infrastructure.
In terms of evolutionary-teal organizations, decentralized and loosely cou-

pled teams or individuals involved in constructing a shared infrastructure,
characterizes inverse infrastructure. Evolutionary-teal organizations are very
similar to bottom-up grassroot initiatives. But in contrast to evolutionary-teal
organizations, the architectures that are focused are developed at a local level
by activists with political motivations. The technology becomes a non-human
agent “supporting the process of subjectification in a grassroots group” (Crabu
and Magaudda 2018, p. 168). Thus, maintenance of infrastructure elements
“means participating in and taking care of the collective bottom-up infras-
tructure [...] ‘below every antenna there must be an active member of the
community’” (Crabu and Magaudda 2018, p. 168). Thus, commitment is very
important for bottom-up infrastructure and technical systems shape responsi-
bility and participation. Parts of the technical infrastructure are identifying
characteristics of the community members. Inverse infrastructure is highly
decentralized in technical and organizational terms (Crabu and Magaudda
2018). Furthermore, inverse infrastructures enable and support mutual learn-
ing of its users and developers. Processes of engineering infrastructure are
dynamic mutual reconfigurations of the cultural frames of specialists, experts,
and ’lay-experts’ as well as their material artifacts that interact with each
other (Crabu and Magaudda 2018).

The concept of maintenance is extended by the case presented by Tempini
(2017). In the context of the sketched community maintenance is extended by
the moderation of the user generated data.

The maintenance, as well as the initial implementation of software requires
to coordinate work between software developers. Giuffrida and Dittrich (2015)
mentions that software developers of OSS are often using wikis, forums and
instant messengers to coordinate their projects, since social talk should always
be supported.
On a more general level, Bygstad (2017) defines digital infrastructure as a

network of technology, designers, and users. It is kept together by a knowledge
regime. The author identifies platform systems built around one central actor
that controls the ecology as an unbalanced type of platform. The evolution of
digital infrastructure is described by Bygstad (2017) as the interplay between
three self-reinforcing generative mechanisms: “Innovation [...] Adoption [...]

DISCUSSION 85

Scaling [...]” (Bygstad 2017, p. 184). Furthermore, Bygstad (2017) observed
that a transformative process of heavyweight IT involves mainly IT specialists,
while transformation of lightweight IT requires to allowing users to participate.

5.4. Discussion

The approach to conduct the literature review was aligned to Kitchenham and
Chartes (2007). Nevertheless, I extended the procedure by applying an open
and a subsequent declarative coding to align my interpretation of the selected
publications to the principles of qualitative research and to make my process
of interpretation as transparent as possible.
Since evolutionary-teal organizations are a relatively new research area,

concrete search terms were mostly resulting in empty lists of publications.
Therefore, I had to broaden the terms used to construct the search queries
and I ended up in handling 693 publications in the meantime. Many of these
publications were not relevant and had to be rejected by selection criteria
more intensively focusing on them. Thus, the handling of a huge amount of
publications became a challenge during the process of selecting the relevant
ones. I introduced specific reference names for the publications saved in my
Mendeley database. Afterwards, I used these references in additional spread
sheets saving the meta data, like the fulfillment of selection criteria and the
origin search queries and resources.

Furthermore, applying open coding only became possible due to the introduc-
tion of the reading protocols, since they made the amount of work manageable.
Nevertheless, the protocols offered an additional layer of interpretation and
they may hid the original intention of the publications’ authors to the process
of an open coding. However, the process of interpretation is now traceable
through the qualitative analysis procedure.
Since I assumed that the manually generated search keys STmanually are

addressing a broader range of publications, I executed them at first, followed
by the automatically generated search keys STautomatically. In the second step,
I found no additional publications. Due to the nature of the keywords used to
generate the search keys, it can be assumed, that every publication found by
the automatically generated search keys is more directly relevant to my topic
and research question than the others. Nevertheless, since I did not added
a selection criteria representing this relation between both search key sets,
searching through the resources by applying the search terms of STautomatically

could have been avoided.
Furthermore, the possibilities to execute queries depends on the functions

implemented by the resources. As a consequence, the queries had to be
transformed for each resource individually. For example, the Association for
Computing Machinery (ACM) digital library (https://dlnext.acm.org/sea
rch/advanced, accessed 2022-09-12) allows to use wild card signs inside the

https://dlnext.acm.org/search/advanced
https://dlnext.acm.org/search/advanced

86 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

query. The number of search terms has been reduced from 40 to 16, since I
was able to remove the semantic alternatives. On the other side, Springer had
problems with using quotes to force look up for exact matches of a phrase.
Therefore some of the search keys had to be transformed that way, their result
sets are becoming superior sets of previous queries (e.g. “loosely coupled
socio-technical” and “loosely coupled socio technical”).

Moreover, I realized that for Elsevier the Mendeley import was only applicable
for each publication individually. Since such an approach would have increased
the amount of required working time intensively, I used the export to the
BibTeX (http://www.bibtex.org/de/, accessed 2022-09-12) format to save
a bunch of results in one step.
I introduced a detailed definition of STS in Section 2.3. Nevertheless, on

a broader scale, the term STS covers all social systems that are coming in
touch with technical artifacts. Therefore, using the term in search queries on
resources covering a broader range of scientific topics, lead to many publications
not relevant for the RQ 1. Thus, I had to introduce the fourth selection criteria
while I collected the publications and recognized this challenge. Due to my
selection procedure, the change in the set of selection criteria became no
problem. Since I decided to focus only on CSCW systems, I could have simply
used keywords when it came to CSCW tools to construct the search terms.
Equally, the keywords for STS could have been extended by other versions like
“sociotechnical”.

I have to admit that, despite a clear definition, the selection criterion
regarding STS is complicated to verify only by focusing on the title and
abstract. For instance, Borri et al. (2016) describe research regarding learning,
but they have to consider different languages and places. Thus, the abstract
suggests the usage of a CSCW system in the sense of the technical part of a
socio-technical system. I had included publications like Borri et al. (2016)
because it may have to consider a CSCW platform that cannot be avoided.
During the second step of checking the selection criteria the publication has
been rejected, since the authors either did not described a CSCW based STS
nor a STS a all.
In contrast, Narbutaitė et al. (2018) has been rejected due to it does not

address a STS with enough details (next to the point that it is a book chapter).
The authors are describing the usage of learning technologies, but there is not
enough description to judge it to be socio-technical. It is not possible to tell,
if the learning technology has been integrated as part of the self-description
to perform specific acts of communication. Equally, Stäheli (2017) describes
communication using travel maps as technical (analogue and digital) tool, but
it focuses on the different understandings of time and place that have been
produced using travel maps during the last century. Thus, it does not focus on
the socio-technical constructs, but rather the results of the usage. Therefore, I
rejected the publication. In the end, probably there have some publications
been rejected that are fitting the topic, but does not mention (1) empirical

http://www.bibtex.org/de/

CONCLUSION 87

research or (2) the socio-technical construct.
Additionally, two publications (Kurki and Wilenius 2016; Pekkarinen and

Melkas 2019) listed in Table 5.3 revealed no or only marginal insights with
respect to the RQ 1 (please refer to the columns integration strategies (IG),
architectures (AR), effects of architectures on users (AU), and effects of
architectures on software developers (AD) – Kurki and Wilenius (2016) is just
relevant for one identified guideline in Section 5.3.4), even though they were
captured by the selection procedure.

The selected publications considered for this research were published between
2015 and 2020. Since this thesis is being written in 2022, the present literature
review may miss out on relevant publications that have been published from
2020 to 2022.

5.5. Conclusion

In summary, only one article directly addresses evolutionary-teal organizations,
but does not focus on socio-technical aspects. Nevertheless, the other articles
do discuss loosely-coupled systems, whose participating parties are individuals
or organizations. However, some similarities to evolutionary-teal organizations
can be drawn. Furthermore, although they mainly addressing technical tools,
not all these tools are used in socio-technical contexts of having some structural
coupling between the social and the technical system.

Thus, further systematic research focusing on the dynamics of socio-technical
constructs in evolutionary-teal organizations would prove quite interesting.
What has to be considered for the architecture of a technical tool that is used
as a part of a socio-technical system? How does the architecture of a technical
tool influences the ability of a socio-technical system to implement autopoietic
change?

Blaschke et al. (2019), Crabu and Magaudda (2018), Giuffrida and Dittrich
(2015), and Klievink, Bharosa, and Tan (2016) suggest approaches as to how the
maintenance of a CSCW tool used as a technical component by an organization
that consists of decentralized and loosely coupled teams, can be managed. In
conclusion, bottom-up grassroot social systems of software developers should
be assumed to address the needs of the organization. Therefore, I will consider
the Pool volunteers (introduced in Chapter 4) to become a bottom-up grassroot
union of volunteering software developers, teams, and companies. Such an
assumption is in line with the first observations when it comes to the Pool
volunteers.

The articles discuss the relationship between social and technical systems and
formulate objectives that should be fulfilled, but regarding joint optimization
they formulate only a broad view. The concept of organizational choice is not
addressed. Future research should urgently address this gap.
The three stages of the reflexiveness model, introduced by Baptista et al.

88 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

(2017), use social media to collect feedback that is subsequently implementing
as change afterwards. This approach can be generalized to support autopoi-
etic change in socio-technical evolutionary-teal organizations. Additionally,
Bygstad (2017) discusses generativity as a more general model describing
three alternative core mechanisms for implementing change in a technical tool.
But a major questions is still open: What stimulates the generative change
processes for socio-technical contexts? It could prove interesting to combine
both approaches and implement the three steps of the reflexiveness model
before an appropriated generative approach is selected.

Some literature more specifically outlines the relationship between a social
and a technical system: Reducing technical incompatibilities by planning
the cooperation of the responsible persons or organizations (Pekkarinen and
Melkas 2019; Y. Lin 2018; Gholami et al. 2017); using a shared language to
motivate users commitment and ongoing participation (Fang and J. Zhang
2019); changing social protocols to foster adaption of new technical tools or
functions (Giuffrida and Dittrich 2015).

Social systems need to adapt new roles that follow from changes introduced
by new technical functions (Janssen and Helbig 2018; Tempini 2017; Tyrer
2019). Furthermore, when it comes to an evolutionary-teal organization,
BYOD is an interesting principle, but especially for volunteers the ISSP does
not have to become a freedom threat (Hovav and Putri 2016).
From a more technically perspective, the joint optimization has to be pre-

pared by introducing APIs (Gholami et al. 2017) and other technical func-
tionality that is required by the social system (Tyrer 2019). Moreover, the
technical system can shift the whole purpose of a socio-technical system and
thus, some technical functions may become useless (Light and Miskelly 2019).
Yet it is necessary to consider all aspects, not merely just the social and

the technical system, but also all the environment around the socio-technical
constructs, such as the geological conditions that a supported working procedure
is applied to (Praetorius, Hollnagel, and Dahlman 2015). The publications
describe a nominal range of possible architectures. Focusing on the degree
of coupling between different technical subsystems, an ordinal scale can be
applied. The following values have been identified:

1. Uncoupled systems: Several ICT tools, like SNS, instant messenger (IM)
or CSCW software, are used to collaborate (Giuffrida and Dittrich 2015;
Nikitina et al. 2020; Mukherjee and Mukoya 2019; Y. Lin 2018; Maye
2019). These tools are not using any interface to directly exchange data.
Thus, also a loose confederation (Landwehr et al. 2016) of separated
systems is classified as uncoupled systems. Even if their collaborative use
is only intended and required by communication external to the technical
tools.

2. System of systems: Different systems interact with each other by using

CONCLUSION 89

appropriate interfaces to exchange data (Landwehr et al. 2016; Rut and
Davies 2018; Muñoz et al. 2015; Thomas, Botha, and Greunen 2015).

3. Platforms or piecemeal segmentation: Different apps addressing end-user
needs that are enabled to use a core set of functionalities and required
to implement some standardized interfaces, like APIs (Angelidou and
Psaltoglou 2017; Brunswicker and Schecter 2019; Tempini 2017; Klievink,
Bharosa, and Tan 2016; Gholami et al. 2017; Presenza et al. 2019;
Trencher 2019).

4. Platform of platforms or a coalition of systems: Platforms are meshed
together (Bygstad 2017; Light and Miskelly 2019). That way, apps
provisioned by different platforms can be used together.

Interestingly, no article advocates for fully integrated collaboration suites as
described by the complete integration, the third type named by Landwehr et al.
(2016). Yet also the second type been introduced by the Landwehr et al. (2016),
components, seems not to be relevant. Therefore, the investigated tools are
already in line with the guideline of having a loosely coupled implementation.
Furthermore, the concept of virtualization of environments for different

personas of the user (work and private) as described by Hovav and Putri (2016)
can be used as an uncoupling mechanism. It can be implemented additionally,
on all levels of coupled architectures.
The architectures support social systems that have similarities with evo-

lutionary-teal organizations and are mostly used in socio-technical contexts.
Nevertheless, it is still an open question as to which architecture pattern is best
fitting to support the autopoietic change in socio-technical evolutionary-teal
organizations.
Moreover, the articles outline basic requirements needed when making it

possible for a socio-technical system to apply change, such as having only
(1) a loose coupling implemented between different functions (Brunswicker
and Schecter 2019; Bygstad 2017; Tempini 2017; Gholami et al. 2017) or
implementing a modular and flexible architecture (Klievink, Bharosa, and
Tan 2016). Gholami et al. (2017) characterizes the loose coupling as being
stateless, synchronizable and implementing some kind of user session handling.
Synchronization also requires exchanging data between systems by implement-
ing specific code for the purpose of integration and wrapping of data (Gholami
et al. 2017), data standards, and well specified, standardized APIs (Klievink,
Bharosa, and Tan 2016; Lenkenhoff et al. 2018; Thomas, Botha, and Greunen
2015). Muñoz et al. (2015) suggests implementing authentication mechanisms
that allow users to use loosely coupled systems without continuously entering
different credentials.
Angelidou and Psaltoglou (2017) and Muñoz et al. (2015) advocate to

implement (2) appropriate awareness mechanisms. Furthermore, Thomas,
Botha, and Greunen (2015) and Muñoz et al. (2015) propose (3) better user

90 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

interfaces considering the dispersed handling of information that allow to
integrate them. Klievink, Bharosa, and Tan (2016) suggest an architecture
following the principle of store once, report to many.
Although the publications are addressing a part of the outlined challenges

with concrete solutions, it is still an open question as to how some of these
requirements can be addressed with solutions compatible to the autopoietic
change processes in socio-technical evolutionary-teal organization. The first
requirement of implementing a loosely coupled architecture is discussed by
many of the reviewed articles and many additional works can be considered,
such as Ludwig et al. (2009), MacCormack, Baldwin, and Rusnak (2012),
and Peltz (2003), just to name a few. That being said, there are at least two
open questions regarding the authorization and the implementation of meshed
systems communicating using APIs.
Muñoz et al. (2015) implements several authorization mechanisms for

using information and functions of several SNS and IM providers. But what
authorization mechanism is appropriated to become implemented for a CSCW
tool that is continuously extended by several small and self-managed teams
of potentially technical amateurs? Considering the need for standards, the
question is similar to: What is an appropriate authentication mechanism that
still enables an socio-technical grassroot initiative of decentralized software
developers without or just a flat hierarchy to continue the development of the
software by adding special purpose functionality?

Regarding the need for standardized data exchange formats and interfaces,
modern frameworks like OpenAPI (https://www.openapis.org/, accessed
2021-10-06) are solutions that should be taken into account. Considering the
principle of store ones and report to many, the different components of the
software not only have to exchange the data, but also the current state of it,
such as whether or not it is updated or deleted, for example. This is of special
interest, when the system is supposed to be a CSCW tool of loosely coupled
components, so the data may has cross-componential relations (even though
only a few). Accordingly, the following question is still open: How can such a
data exchange become standardized is such a manner that a grassroots initiative
of decentralized software developers is still able to dynamically extend and
alter the functionality of a CSCW tool that is used as a technical component
in a socio-technical evolutionary-teal organization?
Usually, the second requirement of implementing appropriate awareness

mechanisms in a CSCW is addressed by the development of an awareness
pipeline (Gross and Koch 2007). Such a pipeline receives its input from sensors
collecting the awareness information. Subsequently, it filters and aggregates
this information using several steps that have to be designed according to
organizational and legal provisions. Lastly, an awareness system uses indicators
to display the information. Therefore, at least the sensors and indicators have
to be implemented by all components of the CSCW tool and in turn, also
the responsibility for support and maintenance of the awareness mechanism is

https://www.openapis.org/

CONCLUSION 91

distributed to all involved software developers as well. This begs the question:
How can such an awareness pipeline be implemented in a software that is
developed by a grassroot initiative of decentralized software developers?

In much the same way as the second requirement, the third requirement also
has been roughly addressed by the reviewed literature. How can the dispersed
information that is only stored once in different software components displayed
in one uniform interface? This question becomes of special interest, considering
that the different components will be implemented by a grassroot initiative of
decentralized software developers.

Tools used as technical components of socio-technical systems also influence
the social system, as explained in Section 5.3.5. Thus, it starts with referencing
the tool outside itself. In that case the social system initiates the construction
of a structural coupling (e.g. CAPS, Angelidou and Psaltoglou 2017). Systems
like CAPS support individuals in understanding social processes (Angelidou and
Psaltoglou 2017). Giuffrida and Dittrich (2015) provide a case of having support
functions regarding the coordination of a working team and support for the
communication as essential to implement a structural coupling. Furthermore,
Eli et al. (2016) describes how the community of users of the app Buycott
reproduces the concepts in the mind of the developers of the app.

Infrastructure that is created using a bottom-up approach, also encourages
its maintaining users to learn more about the infrastructure and its used
technologies (Crabu andMagaudda 2018). Furthermore, such maintaining users
have to acquire management skills (Crabu and Magaudda 2018) and to confirm
legal restrictions given by organizational terms, if they use their private devices
in daily work contexts (Bygstad 2017). Apart from developing knowledge,
platforms can also become the place where a community is developed (Presenza
et al. 2019) or an organization is transformed by its participating individuals
(Baptista et al. 2017; Thomas, Botha, and Greunen 2015). These tools create
a space to come together and collaborate (Angelidou and Psaltoglou 2017;
Carnemolla 2018). Meelen, Truffer, and Schwanen (2019) noticed that the
collaboration between geographically isolated teams or individuals becomes
possible only after an ICT collaboration tool is utilized. Equally, SNSs are
used to collaborate in smart governmental approaches (Y. Lin 2018).
Consequently, Light and Miskelly (2019) introduces a socio-technical defi-

nition of the term platform that addresses a configuration of people, values,
actions, and tools. The authors investigated a complete configuration of such
a socio-technical platform.
Socio-technical platforms require having loadable business process descrip-

tions as input for CSCW tools to support the social systems autopoietic change
(Klievink, Bharosa, and Tan 2016). Systems that implement fixed business
processes are difficult to change and, consequently, intertwined social business
processes are also difficult to change. Furthermore, Landwehr et al. (2016)
and Tempini (2017) mention that new technical tools may imply new business
processes that have to be designed and aligned to the tool. Moreover, Tyrer

92 CHAPTER 5: SYSTEMATIC LITERATURE REVIEW

(2019) explains how the social system becomes (negatively) affected by different
use patterns and expectations about the usage of a CSCW tool.

The other way around, also the technical tool is shaped by the social system
that is using it. As already mentioned before, Eli et al. (2016) describes the
app Buycott that has been unintentionally designed to reproduce the software
developers mindset. Thus, the technical artifact is highly influenced by the
social system of its developers. Brunswicker and Schecter (2019) mentions
that platforms using apps are in general suitable to respond to changing user
needs. Furthermore, Bygstad (2017) illustrates the fact that in the contexts
of BYOD, an architecture should be a meshwork of different devices that are
loosely coupled and never be fully integrated.
Again, technical systems require an appropriate awareness mechanism im-

plemented to become adapted by the social one. This fact compels use of web
technologies and base the technical tools on online platforms (Angelidou and
Psaltoglou 2017). Grassroots initiatives require having technical tools that
require minimal efforts to setup the tools in day to day life in order to evolve
into a socio-technical system (Rossitto and Lampinen 2018; Light and Miskelly
2019). Additionally, the choice of appropriate technology requires considering
the users wholly, e.g. according to demographic aspects, such as their age
(Muñoz et al. 2015).

Klievink, Bharosa, and Tan (2016) call for ICT experts to design systems
aligned to base characteristics of social systems, like to autopoietic change.
Also Meelen, Truffer, and Schwanen (2019) and Tempini (2017) suggest adjust-
ing a system’s functionality periodically with workarounds that have arisen,
introduced by changes in business processes. Since legal systems have to be
considered, Landwehr et al. (2016) suggests designing social media to only
share collective summaries and no individual data.
There are still many open questions: How to introduce a new tool to a

social system that a structural coupling evolves? How can the influence of
a technical tool (and its software developers) onto the mindset of the users
become identified? And how to handle this influence? How can users be
supported by acquiring the technical and management skills to maintain their
own tools? How can the ability of the social system to apply autopoietic
change be assured without impediment by the technical tools architecture (e.g.
loadable business processes)? How to wholly consider prospective users? These
questions have to be addressed by future work.

DVNs (Brunswicker and Schecter 2019) and inverse infrastructure (Crabu
and Magaudda 2018) are cases of self-managed social systems of ICT experts
involved in developing software used by their own socio-technical system as
technical component. Nevertheless, the literature does not addresses software
developers focusing on CSCW tools used by socio-technical systems that these
developers are not also participating as members of the social system.
Addressing the software developers, Lenkenhoff et al. (2018) argue for

decentralized service platforms whose apps advertise for themselves in the

CONCLUSION 93

way they were found by interested software developers using coherent search
strategies Brunswicker and Schecter (2019).
A software’s architecture should be modular, but not too open to allow a

modern coordination through a distributed ecosystem of software developers
(Brunswicker and Schecter 2019).

Furthermore, according to the observations by Eli et al. (2016), the mental
concepts of the software developers have to be considered by the adapting
social system. Public government agencies have to become open for horizontal
standardization initiated by software developers in order to form a convergence
between different approaches (Klievink, Bharosa, and Tan 2016). Thus, public
agencies should reuse data, that has been developed by private sector businesses.
Crabu and Magaudda (2018) noticed the importance of commitment for

inverse infrastructure. Moreover, responsibility and participation by individuals
with respect to the technical components of the socio-technical system are
shaped by the tool itself. Furthermore, inverse infrastructure reflects the
decentralization of the social system in the technical architecture (Crabu and
Magaudda 2018). Inherently, mutual learning is applied.

Additionally, for socio-technical systems, the maintenance of the software may
imply moderating data (Tempini 2017). That being the case, new roles have to
be considered. On a more general level, Bygstad (2017) comprises this aspect
with the definition of digital infrastructure: A network of technology, designers,
and users, kept together with a knowledge regime. Therefore, maintenance
includes new roles and possibly the users of tools as well. Light and Miskelly
(2019) names socio-technical infrastructure and derives the concept of platform
of platforms.

Considering a network of software developers, similar to inverse infrastruc-
ture, DVNs, or digital infrastructure, it remains an open question as to how
ICT experts have to be considered. The concept of platforms and platforms of
platforms has been discussed before and I have outlined additional research
questions. How does a CSCW architecture have to be designed to enable
software developers to deploy new functions that they have developed by
themselves? How are commitment, participation and responsibility ensured for
ICT workers developing a CSCW tool that is used as a technical component
of a socio-technical organization that these workers are no part of? How can
new roles that are implicitly shaped by new technical functions adapted by the
social system? The required communication between individuals participating
the socio-technical system and the software developers have to become part
of the system itself. Yet how would this be managed? On a more general
level, this question not only addresses roles, but also the whole resulting knowl-
edge regime as it is described by digital infrastructures and socio-technical
infrastructures.

6. Technical perspective

The DG introduced in Section 3.1 of this thesis addresses the tensions resulting
from the socio-technical character of the focused evolutionary-teal organization.
Consequently, although the chapter describes a technical solution, I will address
a research question and use a wording that are both, shaped socio-technically.
Therefore, the Section 6.1 derives socio-technical requirements from a research
question. These requirements aiming to align the technical design of the
artifact to the social system of the software developers. The subsequent parts
of the chapter will show the tight subordination of the technical design to
these requirements. Nevertheless, the socio-technical requirements also imply
that specific social constructs are presumed and have to be sustained to enable
the observations made in Section 6.6. Furthermore, I will continue using the
term loose coupling in this chapter. A discussion about this term in contrast
to the more technically shaped term dependencies is provided in Section 6.3.
This chapter describes the technical solution that addresses the DG. I

introduce the requirements that resulted from the case and the literature
review in Section 6.1 and derive some acceptance criteria for the technical
solution in Section 6.2. Subsequently, I outline the basic concepts for the
solution in Section 6.3 and 6.4, as well as their implementation in 6.5. The last
Section 6.6 details a qualitative study investigating, if the solution addresses
the acceptance criteria and thus, if the solution is a low-threshold offer for
Pool volunteers, as I have called for in Section 4.3.

Parts of this chapter were published by Sell and Pinkwart (2018). Further-
more, some explanations were published in the documentation of the prototype
that was published as a data set1 (Sell 2022a).

6.1. Socio-technical Requirements

The Chapter 4 introduces VCA and its context, which involves the common-
alities to other organizations, as well as differences compared to other social
systems. Section 4.1.2 describes the increasing socio-technical interweaving
of the social system with the technical tool Pool and also the challenges that
resulted for such socio-technical evolutionary-teal organization: (1) Lacking
expertise – the recruited expertise in evolutionary-teal organizations is al-
ways aligned with the organizational purpose and administrative effort is

1The documentation is accessible by http://doc.soteto.net, accessed 2022-05-13.

95

http://doc.soteto.net

96 CHAPTER 6: TECHNICAL PERSPECTIVE

reduced as much as possible (Laloux 2014). Thus, VCA by focusing on WASH
projects, had no or just a little software development expertise in house. (2)
Diverse heterogeneous requirements – the decentralized structure of having self-
managed teams led to several unrelated or less related technical requirements.
As discussed in Section 4.1.2, finding standardized and generalized solutions
would have implied also standardizing and generalizing the working procedures.
Although such an approach seems to be useful in some specific cases (e.g.
handling finances), it would break down the idea of applying self-management
and therefore also the self-management of upcoming challenges that compel
the social system of a crew to transform itself. Furthermore, by being an
all-profit organization (see Section 4.1), (3) only limited financial resources
are available to handle the software development project.

These three challenges directly affect the autopoietic change of socio-technical
organizations. Furthermore, they immediately influence the joint optimization
of both subsystems, since (1) and (3) limit the scope of applicable change and
(2) expand the scope that needs to be considered for aligning the technical
change to the social one. Due to the explanations in Section 4.1.2, as well as
the discussions about the classifications of technical components in a socio-
technical system that are provided in Section 2.3 and 2.6, I focus CSCW tools
as technical parts in my upcoming research. Thus, my RQ for the technical
perspective to address the DG introduced in Section 3.1, is:

Research Question 2. How can a socio-technical evolutionary-teal organi-
zation maintain and further develop its incorporated technical CSCW tool?

According to A. R. Hevner (2007), the relevance cycle of a DSR project should
aim to derive the socio-technical requirements (STRs) from the investigated
situation to mark out the criteria the artifact has to fulfill that results from the
design cycle. Applying the RQ 2 to the case led to the following requirements
that I have already published in an article (Sell and Pinkwart 2018):

Socio-technical Requirement 1. Software developers should be able to im-
plement support for complete working procedures of only a few crews.

Socio-technical Requirement 2. Software developers should be able to re-
place functions for just a few crews that are used to support a working procedure.

Socio-technical Requirement 3. The architecture should allow several soft-
ware developers to implement new functions without having the need to com-
municate with other developers.

Socio-technical Requirement 4. The architecture must be designed to con-
sider non-functional requirements for the context of a CSCW tool used by an
organization, like having a uniform corporate design and only one account per
member.

SOCIO-TECHNICAL REQUIREMENTS 97

The STR 1 addresses the loosely coupled social system of having decentralized
and self-managed crews. New technical support may only fit the requirements
for a few crews. So, the possibility of adding support for complete work
processes fot only a few crews is needed. Moreover, adding new support
for work processes directly addresses the technical aspect of socio-technical
platforms (see Section 5.5). Klievink, Bharosa, and Tan (2016) call for having
loadable business processes. Although the empowerment of software developers
in implementing new support functions does not compel one to have loadable
resources, it tackles the same challenge and implies more creative freedom.

Furthermore, in some cases, crews need to adjust the technical support for
specific working procedures in order to address its own social change. For
example, the Berlin crew introduced the role of the assistant financial ASP
in order to reduce the amount of time required to move the donations to the
VCA bank account. Therefore, several persons needed access to the financial
support functions implemented in the Pool. For technical functions such as
the handling of finances, the improvement of the technical implementation
should be handled by one responsible team of software developers. But other
imaginable technical support of less legal value should be replaceable for specific
crews in order to reduce the dependency between VCA and software providers.
Thus, by striving to reduce the dependency, STR 2 directly addresses the
challenges (2) and (3).

Moreover, the literature presented in Chapter 5 advocates the use of flexible
technical tools that can be influenced by the social system that is utilizing it
(Eli et al. 2016; Brunswicker and Schecter 2019; Bygstad 2017, see Section
5.5). Periodically, the system’s functionality must be aligned to workarounds
that have occured (Meelen, Truffer, and Schwanen 2019; Tempini 2017, see
also Section 5.5). Rossitto and Lampinen (2018) and Light and Miskelly (2019)
have written that grassroot initiatives require tools with a low effort setup to
adapt them in a socio-technical meaning. Thus, the ability to add and replace
functions, as required by STR 1 and STR 2, follows the suggestions made by
other authors.

The Chapter 4 introduces VCA, the WASH volunteers, and the lacking work
resources to technically implement the Pool software. Although the STRs
sketch needs derived from RQ 2 regarding the social system of the WASH
volunteers, it is still an open question who should implement the technical
functions. The WASH volunteers already invest a lot of their free time for
activities addressing the goals of VCA and it cannot be assumed that WASH
volunteers are also technical experts able to implement software.

Thus, the architecture of the Pool has to invite software developers to
implement functions for VCA in order to enable the formation of the Pool
volunteers (see Section 4.3). Addressing STR 3 by the design of the new
architecture would support this.
A decreased number of acts of communication that involve software devel-

opers implementing specific functions for the new Pool means reducing the

98 CHAPTER 6: TECHNICAL PERSPECTIVE

effort in terms of time invested by these developers. Furthermore, it implicitly
compels the reduction of the technical coupling between the software artifacts
that the developers are dealing with. While the first advantage addresses the
characteristics of the social system being pursued by Pool volunteers that is
aligned to the successful characteristics of the social system of WASH volun-
teers, the second implication takes the results of the literature review (see
Section 5.5) into account. The reviewed publications call for platform systems
with well-defined interfaces.

Consequently, the STR implies some requirements for the social system:
Such a community differs from Open Source communities by the motivation
that is not to help themselves and others, but to acquire new skills, and
investigate ideas with a huge number of users (see Section 5.5). Thus, it is
quite likely that it is too much effort to take the time to learn a new technology.
Therefore, the project strives to construct a decentralized, loosely coupled
social system of software developer. In line with open participation, each one
focuses on small parts of the technical system. Thus, a dynamic integration
of developing teams without the need for training of specific technologies or
cumbersome bureaucracy is required.

An architecture that allows for establishing a community of software devel-
opers, referred to as Pool volunteers, would allow support of the decentralized
autopoietic change processes of a socio-technical evolutionary-teal organization.
They can implement requirements of single crews without changing the whole
system.
Nevertheless, the last STR 4 addresses the characterization of having an

organization in focus. Since the RQ 2 focuses on a socio-technical evolution-
ary-teal organizations, the technical tools also have to enable the principle of
open participation. Thus, they should not add barriers for WASH volunteers
to participate, either by being unable to identify the tool as associated to the
organization or by introducing new hierarchies, aligned to the administration
of the technical tools, like being required to request multiple accounts.

6.2. Acceptance criteria

Following the principles of DSR as outlined by A. R. Hevner (2007), there is a
requirement to evaluate the artifact that was created during the design cycle
by interventions during the rigor cycle. These interventions should ask to what
extent the artifact meets the requirements that were formulated in Section 6.1.
Thus, I formulate the following acceptance criteria:

1. Support for complete work procedure of only a few crews can be added.

2. Software developers can replace the existing technical support for working
procedures on behalf of single crews.

MICROSERVICES AS A SOLUTION APPROACH 99

3. No technical barriers for the formation of a distinct community of de-
velopers does occur during the software development of new support
functions. Barriers that have to be addressed successfully are:
a) Minimize the time to learn new technologies.
b) Developers are only loosely coupled.
c) The community of developers is decentralized. No central manage-

ment is required.
d) Each developer focuses on small parts of the technical system and

participates in terms of open participation.
e) Developers can implement new functions without changing the

whole system.
f) Dynamic integration of developing teams without the need for

cumbersome bureaucracy is possible.
g) Also developers with few experiences in software architecture con-

sider the principles of loose coupling and high cohesion.

Summarizing, I will investigate the fit for the designed artifact in supporting
the decentralized and self-managed teams of an evolutionary-teal organization
during their autopoietic change. Also I investigate its usability for a decen-
tralized and loosely-coupled ecosystem of software development teams. I use
the term usability in an unfamiliar way here, because it normally addresses
the effectiveness, efficiency and satisfaction perceived by a user aiming to
accomplish a goal through using a computer software (DIN EN ISO 9241-11
2018). Nevertheless, I focus on the effectiveness, efficiency, and satisfaction of
software developers trying to implement new services for the VCA use case on
the basis of the artifact designed in my DSR project.
Due to the nature of having my DSR project aligned to the principles of

a naturalistic and qualitative methodology (see Chapter 3), the conducted
study is not asking whether or not, the designed artifact completely fulfills the
previously named criteria, but rather to what extent it fulfills them. Thus, the
study strives to identify improvements of the artifact that would support the
artifact in addressing the acceptance criteria.

Therefore, the next Section 6.3 introduces one possible solution to address
the STR 1, 2, 3, and 4, as well as the RQ 2. The concrete design and
implementation are outlined in Section 6.4 and 6.5.

6.3. Microservices as a solution approach

Considering the results of the literature review in Chapter 5, I approach the
research question 2 by introducing a loosely coupled architecture of microser-
vices (Newman 2015). A microservice is a stand-alone application running in

100 CHAPTER 6: TECHNICAL PERSPECTIVE

one process and implements a strong cohesion regarding a bounded context
(Dragoni et al. 2017; Namiot and Sneps-sneppe 2014; Newman 2015; Viennot
et al. 2015). Furthermore, such a service constantly communicates with other
services using lightweight technologies, like RESTful webservices (Rodriguez
2008). A set of such microservices is named a microservice architecture (New-
man 2015; Zimmermann 2017; Dragoni et al. 2017). Such architectures force
the designer to minimize communication between microservices (loose coupling)
and to implement related behavior inside the same scope (high cohesion).

Such a microservice architecture is a technical approach to implement plat-
forms as a pattern for digital infrastructures and socio-technical infrastructures
(see Section 5.5).

The previously introduced definition of microservices follows the architec-
tural style, as it is discussed by Hilbrich and Lehmann (2022). Furthermore,
the present thesis is striving to apply the characteristics of a microservice
architecture following the architectural style to implement a software process
model similar to DevOps to address the challenges of the socio-technical change.
The thesis consequently strives to apply the definition for the slice service
style (Hilbrich and Lehmann 2022). The design decisions for the microservice
platform are therefore aligned to the pitfalls for microservice based software
projects as identified by Hilbrich and Lehmann (2022) and the requirements
described in Section 6.1.

Hilbrich and Lehmann (2022, p. 42) define the slice service style according
to the encapsulation of the “concerns of the system [...] to service (slices)
that deliver the functionality to end-users” and the approach to reduce the
number of dependencies between slices to a minimum. Thus, by using the
term dependencies, they characterize the variables may technically be shared
by different slices or microservices more precisely. The term loose coupling,
that is used by the previous definitions and that I have introduced in Section
2.1, derived from social science, is therefore more manageable to operate.
Consequently, I will adopt this understanding of the term loose coupling as
having only a few and weak dependencies between two microservices to describe
technical coupling between software artifacts. Nevertheless, I will still proceed
in using the term loose coupling, since my thesis is written from a socio-technical
perspective and it catches the similarity between the social system and the
technical solution. This similarity directly addresses the original challenge
occurring from the tension between the autopoietic change processes and the
joint optimization in socio-technical constructs.
The first statement of Hilbrich and Lehmann (2022) demands to explicitly

formulate and address the goal of scalability. Although, this is not directly
required by the requirements of Section 6.1, scalability is indirectly required to
address STR 3. Moreover, the STR 3 calls for software developers taking the
whole responsibility for their services in terms of testing or documentation, as
also detected by Hilbrich and Lehmann (2022) in their second pitfall.

The third pitfall requires independent services that apply “self-repairing in

MICROSERVICES AS A SOLUTION APPROACH 101

case of failures” (Hilbrich and Lehmann 2022, p. 40). This pitfall is not directly
addressed by the designed prototype in this thesis. It would be interesting to
investigate in which degree the striven loosely coupled social system of software
developers naturally leads to focused scopes including the failures.

The fourth statement regarding typical pitfalls urges to evaluate the decision
to apply a microservice architectural style. Traditional apps, as they are known
from platforms like Facebook, Instagram, Slack, or Trello, are introduced to
allow additional functions, but not to replace existing ones. Thus, the hard
separation between core application and apps has to be softened due to STR
2. Furthermore, it should be possible to replace all core functions with new
implementations. Thus, for the case of VCA apps become loosely coupled:
They become microservices.

In their fifth statement Hilbrich and Lehmann (2022) considers the pitfall
of having unmanaged and implicit dependencies. The authors address the
pitfall by ensuring the services’ independence. The designed prototype in this
thesis, considers this pitfall, by constantly questioning the loose coupling of
the microservices and high cohesion of the implemented functions of a specific
service. Although these terms are derived from older definitions, they are
valuable to explicitly name and address the prevention of unmanaged and
implicit dependencies, as will be outlined in this chapter by continuously
discussion the loose coupling of the implementation. Additionally, addressing
this pitfall is also implicitly required by the requirement 3 and the ongoing
discussion of the coupling by UML component diagrams presents an approach
to address the seventh pitfall highlighted by Hilbrich and Lehmann (2022).
Although the technical prototype in this chapter does not compel any software
developer to adapt the component diagrams, a beneficial coupling in the loosely
coupled social system of software developers would be the commitment to
sketch such diagrams for each microservice.

Equally, the eighth pitfall of missing abstractions is dealt with in the expla-
nations in Section 6.5.1 and the UML component diagrams.
Since microservices are loosely coupled to each other, it intuitively seems

to be possible that every software developer chooses a technology of their
choice. But loose coupling does not mean no coupling and therefore, it is
required to introduce the concepts of the dynamic UI fragment composition
(see Section 6.4.1), the object event system (OES) (see Section 6.4.2), and the
shared session (see Section 6.4.3).
Moreover, the three concepts also address the sixth statement made by

Hilbrich and Lehmann (2022) that requires avoiding code duplicates. They
are approaches for answering the questions raised in Section 5.5. The dynamic
UI fragment composition addresses the integration of information distributed
over the microservice network (Thomas, Botha, and Greunen 2015; Muñoz
et al. 2015) and therefore, it directly supports the implementation of the
store once, report to many principle, proposed by Klievink, Bharosa, and Tan
(2016). Furthermore, having a fragmented UI as described by the proposed

102 CHAPTER 6: TECHNICAL PERSPECTIVE

concept, reduces the coupling of the microservices to well-defined integration
procedures, as mainly demanded by the reviewed articles in Chapter 5. The
OES further supports the exchange of data using representational state transfer
(REST) APIs, but also by lifecycle management of the data by implementing
a messaging standard to allow the microservices to inform other microservices
about newly created data, updates of data, and the deletion of data. Thus, it
also strives to address the requirement (1) that was derived from the literature
review in Section 5.5. The requirement (1) from Chapter 5 is also addressed
by the shared session concept. It describes how the user session is hold by
only one user session provider that manages its state. All other microservices
can synchronize their user session with the session provider, as required by
Gholami et al. (2017).
Microservices spread responsibility for maintenance and support among

different teams. Thus, it supports the management of a growing complexity
and delegates systems modularity from a technical implementation to an
organizational layer. Thus, the modularity represented in organizational
structures supports independent development and deployment (Dragoni et
al. 2017). Implementing a loose coupling between different parts of the
software implies the need to reduce the number of shared variables of a part
A that have to be considered by software developers of the part B of a tool.
Thus, it addresses STR 1. Furthermore, the concept of microservices allows
for deployment of various parallel microservices, that implement alternative
support functions for a specific working procedure. Therefore, the concept
addresses STR 2.
Moreover, a microservice architecture allows for different programming

paradigms, languages, and database technologies for different parts of the
system (Dragoni et al. 2017; Namiot and Sneps-sneppe 2014; Viennot et al.
2015). Thus, software developers with wide ranges of expertise can contribute
to the new system. Consequently, coordination dependencies of software
developers are restricted. Implicitly, the required acts of communication
between software developers implementing different parts of the tool is also
limited. The microservice architecture also addresses STR 3. This also
requires using known and established technologies to implement the previously
introduced concepts of the dynamic UI fragment composition, the OES, and
the shared session.

6.4. Design of a microservice architecture

Figure 6.1 visualizes the intended microservice architecture, by using blue
balls to represent the microservices and arrows to indicate the communication
between them. Furthermore, the microservice architecture of the Pool2 is
visualized by a dashed blue line enclosing all microservices that are forming
the system. The laptop represents an user agent that is communicating with

DESIGN OF A MICROSERVICE ARCHITECTURE 103

Pool2

DROPS

STREAM BLOOB

WAVES

Figure 6.1.: The microservice architecture consists of several software systems
that are responsible for the management of their data, as well as
its presentation.

different microservices, exemplified in Figure 6.1 by two black arrows. Alterna-
tively, also an UML component diagram could have been chosen to visualize
the architecture here. In the upcoming Sections, I will show more detailed
UML component diagrams representing specific parts of the architecture. How-
ever, for the purpose of an introduction, the visualization by the blue balls is
more comprehensible and clear. UML component diagrams would require to
introduce more details here. The blue balls are a more abstract representation.

Figure 6.1 presents the cohesion cluster of the functional requirements imple-
mented for the Pool2 project as four different microservices. The Pool2 replaces
the old tool Pool and its architectural base – the newly created microservice
platform – is named Heureka!. Mainly, these functional requirements were
derived from the original implementation of the tool Pool (see Section 4.1.2)
by a system analysis. Afterwards, the detected needs were listed and clus-
tered to identify possible boundaries to separate several microservices that
would be loosely coupled and characterized by a high cohesion. The following
microservices were identified: Drops handles the user profiles, while stream
implements functions to support the handling of finances. Bloob implements
communication functions and waves focuses om the original main functionality
of the Pool – the activities and events of the WASH volunteers.

As mentioned by STR 4, a microservice architecture implies some challenges
regarding the non-functional requirements that are not occurring in classic

104 CHAPTER 6: TECHNICAL PERSPECTIVE

monolithic architectures, like the synchronization of the user session between
the microservices (see Section 6.4.3). Other questions are: How to implement
the communication between microservices? How to ensure the usage of a
common corporate design (CD) without implementing duplicate code? How to
implement awareness functions, as it is typical for CSCW applications (Gross
and Koch 2007)?
These questions are discussed by the upcoming Sections, as well as some

master theses, that were conducted during the SOTETO project that has
framed the Heureka! project2. Schulze (2021) has based on the prototype of
the Heureka! platform to develop a decentralized awareness component for
CSCW tools that are basing on a microservice architecture. Thus, she has
developed a software artifact to extend Heureka! that way, it also addresses the
requirement (2) of Section 5.5. Bellafkir (2021) has investigated gamification in
socio-technical evolutionary-teal organizations by implementing and extending
the waves microservice, while Ottmann (2019), Candrowicz (2021), and Greb
(2021) have extended the Heureka! platform by special purpose microservices
supporting the WASH volunteers.
Technically, the main challenge here was implementing the loose coupling

between the microservices, that is, the minimization of dependencies, and to
ensure the characteristics of an ideal CSCW tool used by a social system in
a socio-technical manner. Thus, the tension between the STR 3 and STR 4
has to be balanced. The architecture has the goal minimizing the number
of dependencies that require to initiate acts of communication between the
software developers and to ensure the implementation of a coherent CSCW
tool at the same time. I therefore strive to implement an architecture that
considers the insights derived from the literature in Chapter 5. No reviewed
publication has detailed a technical system that was explicitly designed to
address the STRs 1, 2, 3, and 4, as well as the outlined tension. Therefore,
the architecture presented in this section takes on these challenges.

6.4.1. Dynamic UI Fragment Composition

Considering the STR 3, the microservice architecture is primarily intended for
the distribution of responsibility within the social system of software developers,
the Pool volunteers. The introduction of a central UI is not expediently, aiming
to implement loose coupling and high cohesion of the software artifacts. Hence,
the responsibility for microservices’ UIs should also be distributed between
the software development teams. Nevertheless, STR 4 and the basic principles
of HCI have to be considered and implemented. The use case of a coherent
organization like VCA compels one to consider a CD.
Addressing this aim, microservices must implement software artifacts, the

widgets, as described in this concept. Moreover, additional non-functional
2http://soteto.net/, accessed 2022-09-26

http://soteto.net/

DESIGN OF A MICROSERVICE ARCHITECTURE 105

DROPS WAVES
User U

Event E

Figure 6.2.: The widgets are managed by their corresponding microservices.
In this example the microservices Drops and Waves are either
managing a part of the supporter’s screen.

requirements must be considered by every microservice developer. Supplemen-
tary, new social procedures and protocols have to ensure the alignment of the
microservice implementations to the outlined concept.
The Heureka! architecture is implemented as a Rich-Internet-Application

(RIA) to address the requirements of the Pool2. It will be possible to use the
system on the desktop, but also on a mobile device in the browser. Thus, client
technologies are limited to hypertext markup language (HTML), cascading
style sheets (CSS) and JavaScript. Thus, the outlined solution is based on (1)
a shared CSS and (2) widgets. The shared CSS allows to jointly use design
elements and layout descriptions. Consequently, it enables a common CD. Its
delivery and integration is described in Section 6.5.2.

Widgets support the reuse of UI elements by various services. For example,
many services will need to select users using the UI. Users are managed by the
microservice Drops and thus, also the UI elements handling users should be
implemented by Drops. Next to maintenance issues, also a CD and a consistence
user experience will be supported by the concept of widgets. Also general
and global elements, like the navigation or central, static content (impress or
header) can become implemented as widgets. Furthermore, the architecture
considering widgets directly supports the concepts of loose coupling and high
cohesion regarding the UI, since the dependency between the providing and
the pulling microservice is reduced to the interface of the widget, instead of a
code duplicate.
Addressing the STR 2, reusable UI elements allow software developers to

focus on the interfaces of these widgets to sustain the referential integrity for
microservices using such widgets. Equally, only the widgets’ interfaces have
to be focused on completely integrating new microservices in existing user
interfaces. Therefore, it also supports the STR 1.
The general idea of widgets is outlined in Figure 6.2. Microservices’ devel-

opers are able to integrate specific UI elements that implement functions in a
high degree of cohesion to other services with only a minimal effort. Widgets
can be integrated just by using a uniform resource identifier (URI) specific to
the widget. The concept follows the idea of transclusions, originally introduced

106 CHAPTER 6: TECHNICAL PERSPECTIVE

by Nelson (1965). Transclusions allow for the reusing of parts of a document
(S. Kochuguev, Maslov, and R. Kochuguev 2016). Its general idea does not
prohibit behavior of the cited elements, therefore its adaption can solve the
issue of interacting fragments (Kolbitsch and Maurer 2006; S. Kochuguev,
Maslov, and R. Kochuguev 2016). In the case of the widgets, the providing
microservices are the source for the URIs and by a GET call, the user interface
element is delivered. These user interface elements are not just static content,
but implement dynamic behavior.

Section 6.5.5 provides implementation details, addressing parameterization,
return values, and side effects. Since HTML, CSS, and JavaScript can be used,
a static content, as well as dynamic behavior, can be implemented.

6.4.2. Business Object Event System

The dispensation of responsibility through a heterogeneous and loosely cou-
pled network of software developers that is mediated by a loosely coupled
microservice architecture implicitly requires also having a clear assignment of
responsibility for business objects. A microservice is responsible for several
MOs that may have to be transmitted to other microservices. The concept of
the OES describes the exchange of MOs. It is premised on RESTful webser-
vices as primarily implemented by microservice architectures (Dragoni et al.
2017) and a message broker system.

REST uses HyperText transfer protocol (HTTP) verbs to implement the
elementary operations of the CRUD principle (Create, Read, Update and
Delete). Thus, in order to create an instance, a POST request is sent, while
GET requests call for instances and updates use PUT requests (as well as the
parallel creation of multiple instances). An HTTP request using the descriptive
verb DELETE denotes calls aiming to delete data (Rodriguez 2008).

RESTful Webservices are stateless: Requests contain all required information
to answer the them. Responses can include links to other resources, if required.
Consequently, responses can be cached. Additionally, webservices are using
URIs following a directory structure: A hierarchy of (sub-)paths is extending a
root node and query strings should be avoided. Moreover, the data should be
human readable, using formats like XML, JavaScript Object Notation (JSON)
or both in parallel (Rodriguez 2008).
With respect to the expected loose coupling of the Heureka! architecture,

the communication between microservices should be choreographed, rather
than orchestrated (Nikaj and Weske 2016; Nikaj, Mandal, et al. 2016). Thus,
only a direct communication channel between two microservices is required.
It results a network of microservices and only directly communicating nodes
describe dependencies between each other.

Although the basic requirements are addressed just by implementing RESTful
webservices, there are still some open challenges. First of all, the software
developers of a microservice have to decide what data should be accessible

DESIGN OF A MICROSERVICE ARCHITECTURE 107

through a REST API. The subsequent subsection introduces required terms
to allow the software developers to communicate about the selection of data
that is made accessible to developers of other microservices. Additionally, the
exchange of data also raises the question as to how changes in the shared data
are communicated through the microservices. The last subsections of this
section describe a suggestion to address this issue.

Selection of data

Supporting software developers in deciding which data should be provided
by RESTful webservices, fig. 6.3 introduces a categorization of the MOs: (1)
Owned MOs that are saved and managed by the microservice itself and (2)
pulled MOs that were received from other microservices. Only the first category
is relevant, since the loose coupling of microservices imply that pulled MOs
should not be saved in database for a further distribution. The owned MOs
can be further separated in (1.1) pushed MOs and (1.2) internal MOs. Only
the type (1.1) of the pushed MOs is relevant for other microservices.

In some special cases, additional attributes for pulled MOs are created and
managed. Since the provision of such additional information for pulled MOs
would imply to implement and manage additional REST endpoints, it would
also imply increasing the degree of coupling in the network of microservices.
Thus, data extensions is not allowed for pulled MOs.

Responsibility of MS-A

Responsibility of MS-B

MS-A

MS-B

MO used by
MS-A

Owned MO

Internal MO Pushed MO
via API

Pulled MO
from MS-B

Figure 6.3.: Hierarchy of the managed data objects. The responsibility for the
MOs is illustrated by the fictional MS-A and MS-B.

Escalation guideline

The previous remarks describe the basic dispensation of responsibility for
business objects. Nevertheless, the alignment of a CSCW tool to changes of
the social system requires to handle altered attributes of the objects. This

108 CHAPTER 6: TECHNICAL PERSPECTIVE

section defines a few rules that are applicable if the state of a pushed or a
pulled MO changes. The rules describe who has to become active and what
has to be done.
Subsequently, the cases 1, 2, 3, 4, 5, and 6 are distinguished to describe

different operations carried out on pushed and pulled MOs. A rule is given for
every case.

Case Extension of a pushed MO.

Rule Attributes can be added to the pushed MOs if the version number is
increased. Furthermore, previous versions must be still accessible by
the previous version numbers.

Escalation case 1: Extension of a pushed MO

Case Attributes of a pushed MO are altered.

Rule Attributes can be altered to the pushed MOs if the version number is
increased. Furthermore, previous versions must be still accessible by
the previous version numbers.

Escalation case 2: Attributes of a pushed MO are altered

Case Attributes of a pushed MO are removed.

Rule Attributes can be removed if the version number is increased. Further-
more, previous versions must be still accessible by the previous version
numbers.

Escalation case 3: Attributes of a pushed MO are removed

Case Extension of a pulled MO.

Rule A collaboration process with the developers of the providing microser-
vices must be initiated. If the extension is also required by other services,
a new requirement for the providing microservices must be created. If
this is not the case, the new requirement has to be implemented as an
internal MO by the receiving microservice.

Escalation case 4: Attributes of a pulled MO are extended

The escalation cases 1 to 3 describe changes that software developers of
a microservice (MS) A could implement for pushed MOs. By considering

DESIGN OF A MICROSERVICE ARCHITECTURE 109

Case Attributes of a pulled MO are altered.

Rule A collaboration process with the developers of all receiving microservices
must be initiated. If the change is accepted by the developers of multiple
receiving microservices, a new requirement for the providing microservice
must be formulated and a new version must be released. If the change
is only required by the microservice that was originally initiating the
collaboration process, a solution has to be implemented as an internal
MO by this microservice.

Escalation case 5: Attributes of pulled MO are altered

Case Attributes of a pulled MO are not required anymore.

Rule A collaboration process with the developers of all receiving microservices
must be initiated. If the attributes are also not required anymore by
the developers of all receiving microservices, a new requirement for the
providing microservice must be formulated and a new version must be
released. If the change is only required by the microservice that was
originally initiating the collaboration process, it should ignore the not
required attributes.

Escalation case 6: Attributes of pulled MO are not required anymore

the rules, conflicts with developers of other microservices that are pulling
the MOs will be avoided. Thus, the versioning of data formats allows the
software developers to remain responsible for the robustness of their systems.
Microservices will not be harmed by changes implemented in others.
The escalation case 4 is directly motivated by the grounding assumption

that MOs should not be dispersed through different services. While the
escalation cases 1 to 3 were formulating rules for software developers that are
responsible for the changed MOs, the escalation cases 5 and 6 describe rules
for the developers using the data objects managed by others. The rules for
the pushed MOs describe technical solutions for the coordination challenges
of the software developers. In contrast, the rules for the pulled MOs require
initiating an explicit coordination by means of a negotiation including the
software developers of the other microservices using a pulled MO.

Thus, a socio-technical solution is presented here, that strives to reduce the
coupling between software developers without disposing it. While communi-
cation is bypassed in some cases, it is explicitly required by others. In this
way, the software developers are brought together in groups if a particular
case may be relevant for more of them, instead of requiring a reduction in the
communication to the two parties of the responsible team and the initiators of
the request.

110 CHAPTER 6: TECHNICAL PERSPECTIVE

Life cycles of business objects

If the data provided by a microservice was altered, other services may have to
react. For example, user accounts are often associated with other data objects.
If a user deletes or deactivates his or her account, it is required for other
microservices to become informed to delete the corresponding associations.
Thus, the OES is introduced as an additional communication layer. A

modern message broker is used to broadcast to services that have subscribed for
specific data objects, if these were altered. The messages describe the affected
data as well as the operation (DELETE or UPDATE). Afterwards, receiving
microservices can request the data object again, to update all references or to
delete them.

1 {
2 " sender ": " microservice -uuid",
3 " action ": "action -id",
4 " object ": "object -uuid",
5 "type": "object -type",
6 " timestamp ": 123456789
7 }

Listing 6.1: Format of the OES messages.

The listing 6.1 describes the message format. While the attribute sender
identifies the providing microservice, action describes the altering operation.
The action can take four different values: delete , update , deactivated
or activated . In difference to deactivated , delete describes the complete
erasing of the object. Thus, it will not be possible to request the data object
again. deactivated means that the object is still saved in the database,
but not actively used anymore. The action activated is used to reactivate
deactivated objects. The attribute object identifies the addressed object using
an universally unique identifier (UUID). The type serves to contextualize
the object by giving a classification. The unix timestamp marks the time the
operation was executed.
Since the selected message broker Neural Autonomic Transport System

(NATS) (https://nats.io/, accessed 2022-06-21) implements a publish-sub-
scriber mechanism, microservices that are providing data does not need to save
the microservices requesting for data objects. Therefore, the microservices can
subscribe and unsubscribe themselves for messages regarding relevant data.
For this case, the degree of coupling between the microservices is reduced to
the technical artifact of the message broker.

6.4.3. Shared Session

Supporting groups during their collaborative work implies to consider multiple
users that are explicitly not separated to each other, as required by STR 4 as

https://nats.io/

DESIGN OF A MICROSERVICE ARCHITECTURE 111

well. Moreover, supporting the four basic needs for CSCW tools, awareness
for other users, as well as communication, coordination, and cooperation,
requires identification of the users. This essential requirement for CSCW tools
also applies to the Heureka! platform that bases on microservices. A unique
authentication for every microservice implies a lot of challenges: There are
more possible error sources, maintenance becomes difficult to apply, and a
user needs to enter his or her credentials every time the user switches between
microservices. The latter is serious usability issue and can hinder the tool’s
adaption. Therefore, the Heureka! architecture implements an OAuth 2 (see
https://oauth.net/2/, accessed 2022-05-18) provider that can be used to
share a user’s session between microservices.

The microservice Drops implements secured session handling and an OAuth
2 provider that trusts all microservices that are deployed as a part of the
Heureka! infrastructure (identified by being part of the same secured virtual
network). Therefore, it implements an OAuth 2 handshake using the grant
type authorization code (see https://oauth.net/2/grant-types/author
ization-code/, accessed 2022-05-18) that redirects to an OAuth client with
an authorization code without asking the users permission. The OAuth client
must be part of the internal microservice network to receive an access token .
Thus, the users data is saved without asking for the user’s permission each
time the user switches between microservices. Since Drops does not implement
the original authorization code workflow, there is no way to receive an access
token from without the internal microservice network.

Authentication of microservices is a critical security challenge for Heureka!
architecture. Drops can trust a microservice if, and only if, the microservice
is deployed by the organization hosting the Heureka! architecture. Without
question, microservices can implement security issues, but since the Heureka!
architecture addresses socio-technical organizations, the clean implementation
of microservices needs to be ensured during a quality assurance process prior
to deployment. All microservices are deployed using a virtual network at one
server, so no external communication (using the internet or at least a local
area network (LAN)) is needed. Thus, authentication is implemented using a
naive microservice id and secret combination. This combination is send only
for requesting the access token.

Choice of authentication technology

In 2022 there are several alternative technologies to implement authorization
and identity management. Systems implemented by the Java programming
language (https://www.java.com/, accessed 2022-06-24) can use the Spring
Security framework (https://spring.io/projects/spring-security, ac-
cessed 2022-06-24), while software developers using Ruby on Rails (https:
//rubyonrails.org/, accessed 2022-06-24) can implement interfaces to the
Devise framework (https://github.com/heartcombo/devise, accessed

https://oauth.net/2/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/authorization-code/
https://www.java.com/
https://spring.io/projects/spring-security
https://rubyonrails.org/
https://rubyonrails.org/
https://github.com/heartcombo/devise

112 CHAPTER 6: TECHNICAL PERSPECTIVE

2022-06-24). Both frameworks are bound to their technology, either Java or
Rails, and therefore they are not applicable to the use case of a microservice
architecture aiming to allow the usage of different programming technologies
for different services.

Alternatively, services that are already implemented to represent users exist,
and which also handle their authentication and security, like Amazon Cognito
(https://aws.amazon.com/de/cognito/, accessed 2022-06-24), Firebase
Authentication (https://firebase.google.com/docs/auth, accessed 2022-
06-24) or 0Auth (https://auth0.com/, accessed 2022-06-24. The first system
is proprietary bound to Amazon (https://www.amazon.de/, accessed 2022-06-
24), the second to Google (https://www.google.de/, accessed 2022-06-24),
and the last one to the 0Auth company. They force to save the user data
on hardware owned by these companies. Due to data security concerns, such
an approach was rejected by WASH volunteers during discussion while I was
involved in the case.

An alternative to these proprietary systems is the open source tool Keycloak
(https://www.keycloak.org/, accessed 2022-06-24). It implements many
more features as are required in the present case, but also allows for requesting
authenticated users by the OpenID Connect or the Security Assertion Markup
Language (SAML) 2.0 protocol. In its current version 18.0.1 (at the moment
of writing), it would be a great project to replace the authentication service
implemented in the Drops backend prototype. In 2017, when the implemen-
tation of the Drops prototype started, the focus was on implementing a high
cohesion in the service’s functions and therefore, the social system had to be
represented by the service as well as the users.

Moreover, these systems are just management tools implementing different
standards to handle the authentication across systems. These standards are
OAuth 2 (https://oauth.net/2/, accessed 2022-06-24), OpenID Connect
(https://openid.net/connect/, accessed 2022-06-24), or SAML 2.0 (https:
//aws.amazon.com/de/identity/saml/, accessed 2022-06-24). These
protocols are implementing a Single Sign-on (SSO), the one time authentication
across different systems, in various ways.
The industry standard OAuth 2 is directly focusing on web and desktop

applications, as well as mobile phones. Several well-known platforms are using
the OAuth 2 protocol and implementing an OAuth 2 provider, like Google,
Facebook (https://www.facebook.com/, accessed 2022-07-07), or Twitter
(https://twitter.com/, accessed 2022-07-07). OAuth 2 differs between the
client, the resource owner, and the provider. The client is the application that
a resource owner may grant access to his or her personal data. The provider
implements an authorization server handling the authentication of the client
and a resource server that is holding the data of the resource owner (see §1.2,
RFC 6749).

The OpenID Connect framework extends the OAuth 2 protocol by additional
functions to manage the clients, the sessions, and the logout event across all

https://aws.amazon.com/de/cognito/
https://firebase.google.com/docs/auth
https://auth0.com/
https://www.amazon.de/
https://www.google.de/
https://www.keycloak.org/
https://oauth.net/2/
https://openid.net/connect/
https://aws.amazon.com/de/identity/saml/
https://aws.amazon.com/de/identity/saml/
https://www.facebook.com/
https://twitter.com/

DESIGN OF A MICROSERVICE ARCHITECTURE 113

systems. I was facing the same challenges while I implemented the prototype
of the Heureka! platform, but when I started implementing the prototype in
February 2017, no standard libraries for Play 2.4 were available. Therefore,
I decided to implement an OAuth 2 provider instead of an OpenID Connect
provider for my prototype.

SAML 2.0 is an alternative to OAuth 2 that was ratified as an Organization
for the Advancement of Structured Information Standards (OASIS) standard
in 2005. It is designed to handle the passing of information about a principal
(usually an user) between an authority and consumer. In the case of SAML
2.0, the consumer normally identifies the application that requests the user
information, while the authority holds the user information. SAML 2.0 uses
XML to structure the communication and exchange the data. Although SAML
2.0 seems to be quite similar to OAuth 2, it differs in its goal. Whereas
SAML 2.0 has the objective of sharing information about the user’s virtual
representation (the account data) between different systems, OAuth 2 is an
authentication protocol that allows users to accurately decide which clients
get access to which resources.

Ultimately, OAuth 2, OpenID Connect, and SAML 2.0 are useful technologies
that address the goal of my platform of implementing a SSO that is not bound
to a specific technology. Allowing a free choice of technology implies the
support for as many of these three technologies as possible, but for the purpose
of a prototype, I have selected OAuth 2, since it was supported by the chosen
web framework Play 2.4 and I was familiar with it.

Adaption of the OAuth 2 handshake

Drops allows the user to initiate a server session. An encrypted HTTP cookie
is used to store all information needed to identify the user on server side. Addi-
tionally, Drops implements an OAuth 2 provider. Thus, another microservice
is able to REDIRECT to Drops in order to request an authorization code.
Figure 6.4 illustrates the communication flow of the OAuth2 handshake

by a UML activity diagram. A more detailed explanation is provided in
Section 6.5.3 by means of a UML sequence diagram. The client initiates the
OAuth2 handshake between a microservice and Drops, when the client has
no established session with the microservice, but sends an HTTP request to a
secured resource. Instead of denying the access, the microservice can response
to the original request by a HTTP REDIRECT moving the client to a specific
Drops endpoint.

If the client has not already established a user session with Drops, the default
login workflow can be initiated by Drops. After a session was established or if
there has already been a session indicator in the HTTP request, Drops can
validate the identifier (ID) of the microservice that was attached to the uniform
resource locator (URL), when the microservice has redirected the client. If the
client ID is invalid, an error message must be shown to the user. Otherwise,

114 CHAPTER 6: TECHNICAL PERSPECTIVE

MicroserviceDrops

Client requests any page from MS

MS redirects client to Drops

Drops Login

Validate MS ID

Show error page

Generate authorization code

Drops redirects client to MS’s
OAuth2 endpoint

MS requests access token
from Drops via a REST call

MS requests user data from
Drops via a REST call using

the access token

MS initiates user session

HTTP request with no session

HTTP redirect (incl. MS ID)

no Drops session

Drops
session

exists

MS ID is invalid

HTTP
response

MS ID
is valid

HTTP
redirect

HTTP response
incl. user session

Figure 6.4.: The UML activity diagram describing OAuth 2 handshake between
a microservice and Drops.

Drops generates the authorization code and redirects the client back to the
original microservice OAuth 2 endpoint. The endpoint’s URL was encoded in
the redirecting URL and saved in the Drops database. Furthermore, it takes
the generated authorization code as an URL parameter.
Using the authorization code , the microservice is allowed to request an

OAuth 2 access token from Drops by calling a RESTful endpoint provided by

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 115

Drops. Afterwards, the user’s data can be requested by using the access token
at an additional RESTful endpoint. Receiving the user data, the microservice
can establish its own user session by using its built in methods and frameworks.

OAuth Message broker

After a successful OAuth 2 handshake, a microservice can establish its own
session with the user’s client. Thus, the Heureka! platform holds multiple
sessions for one user and therefore, these sessions have to be kept synchronized.
Updates of the user information must be cascaded, as well as the logout event.
For this purpose, the Heureka! infrastructure hosts a message broker system
and the OAuth 2 provider, Drops, publishes the events described by Listings
6.2, 6.3, and 6.5. Furthermore, the microservices become informed about new
users, since Drops also publishes the creation of users (see Listing 6.4).

1 type: LOGOUT
2 body: UUID of user

Listing 6.2: The format of the message send to the message broker by Drops
in the case of a user’s logout.

1 type: user. UPDATE
2 body: UUID of user

Listing 6.3: The format of the message send to the message broker by Drops
in the case a user updates its data.

1 type: user. CREATE
2 body: UUID of user

Listing 6.4: The format of the message send to the message broker by Drops
in the case a new user was created.

1 type: user. DELETE
2 body: UUID of user

Listing 6.5: The format of the message send to the message broker by Drops
in the case a user was deleted.

6.5. Implementation of the microservice architecture

The following sections describe the implementation of the dynamic UI fragment
composition (see Section 6.4.1), the business OES (see Section 6.4.2), and the
shared session (see Section 6.4.3).

116 CHAPTER 6: TECHNICAL PERSPECTIVE

Basically, the several challenges of the Heureka! architecture are addressed
by well-known and established technologies for enabling various software de-
velopers to participate. The exchange of data between services is imple-
mented using RESTful webservices, while the event message broker NATS
(https://nats.io/, accessed 2018-02-10 is used to inform about updates.
The shared session is implemented by an OAuth 2 handshake (see Section
6.5.3) and the different technologies of the microservices are enclosed by Docker
(https://www.docker.com/, accessed 2022-07-07) containers. Thus, there
were already existing libraries and frameworks for the chosen technologies
available for many programming languages and computer environments back
in 2017. Therefore, the choice of technologies directly support acceptance
criteria 3a.
Since I am striving to design a platform to connect several services imple-

mented by different software developers using different technologies, the choice
of technology for the implemented prototype should be irrelevant as well. Thus,
the prototype is implemented by technologies up to date back in 2017 and
that I was familiar with. I have chosen the Scala web framework Play 2.4
(https://www.playframework.com/documentation/2.4.x/Home, accessed
2022-07-07 – Play 2.7 https://www.playframework.com/documentation/
2.7.x/Home, accessed 2022-07-07 for later microservices) to implement the
backend systems and vue.js (https://vuejs.org/, accessed 2022-07-07) for
the frontend parts of the microservices.
Thus, I am using JavaScript XML (JSX) (https://reactjs.org/docs

/introducing-jsx.html, accessed 2022-06-23) to implement the frontend
elements. JSX allows to implement the required HTML, CSS, and JavaScript
for a reusable frontend element in one place. Therefore, it encapsulates the
required code for a specific functionality and supports to ensure a high cohesion
in the code. Furthermore, JSX allows to call elements implemented as JSX
elements by a tag syntax as known from HTML. Thus, the elements became
black boxes and it inherently supports the concept of loose coupling between
code segments.

Furthermore, the microservices implemented for the prototype are not just
one service, as discussed in the upcoming Section 6.5.1, and since the whole
application is conceptualized as RIA, the communciation between frontend
and backend systems is based on Ajax (WHATWG 2022b). A list of all
implemented software projects can be found in appendix A.2. Additionally,
the program code of the software was published by Sell, Kleber, and Kästle
(2022a), Sell, Kleber, Ottmann, et al. (2022), and Sell, Kleber, and Gottemeyer
(2022).

Using RESTful APIs in conjunction with Ajax calls as well as disjoint
backend and frontend systems, enable to implement stateless and standardized
APIs. By implementing the concepts of the dynamic UI fragment composition,
the OES, and the shared session, the system handle its synchronization, as
required by Section 5.5 to realize a loose coupling between the different parts

https://nats.io/
https://www.docker.com/
https://www.playframework.com/documentation/2.4.x/Home
https://www.playframework.com/documentation/2.7.x/Home
https://www.playframework.com/documentation/2.7.x/Home
https://vuejs.org/
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 117

of a platform. Furthermore, the reviewed literature demands better user
interfaces considering dispersed information. The Section 6.5.5 shows an
implementation for the dynamic UI fragment composition aspect of widgets
(see Section 6.4.1). Therefore, the Heureka! platform also serves this request
of Chapter 5. The implementation of the required appropriated awareness
mechanisms (see Section 5.5) is addressed by the master thesis of Schulze
(2021).

6.5.1. One microservice, one application?

Even though it is quite common and follows the definition for a microservice
given by Dragoni et al. 2017; Namiot and Sneps-sneppe 2014; Newman 2015;
Viennot et al. 2015 to implement one service as one monolithic application,
such a limitation conflicts with the socio-technical scope of this dissertation.
Since different technical parts of a socio-technical collaboration system have
to be implemented, up-to-date architectures of RIAs should be considered
(Vicente, Etcheverry, and Sabiguero 2021; Ma et al. 2019). Thus, the core
microservices developed for VCA itself consist of at least two applications:
(1) a backend server system and (2) a frontend client application. While
the first handles the connection to the database, OAuth 2 integration, OES
and implements some RESTful interfaces for data exchange, does the client
application implements a modern user interface considering requirements like
the widgets. In the end, all microservices consist of multiple (at least two)
different software projects.

In addition to the two basic projects, there are several more possibly required
applications needed in order to implement a complete microservice. At first,
all widgets can be isolated as distinguished software projects and repositories,
since they have their own deployment flow and versioning using Node Package
Manager (NPM) (see Section 6.5.5). Furthermore, some plugins were imple-
mented to simplify the setup of backend applications. Those plugins are also
separated from the core backend systems for the purpose of deployment and
generalization of requirements.

The UML component diagram in Figure 6.5 outlines the microservice Drops
including its subsystems and the components required to handle the business
object User . The microservice itself is just a conceptual framework clustering
of its subsystems. Only the subsystems are implemented and deployed. Thus,
the microservice is merely indicated by a gray frame.

The backend system drops implements the REST APIs that are used by the
frontend application arise to implement a presentation of the user. Furthermore,
the widget vca-widget-user implements several reusable UI components (only
one is outlined in Figure 6.5) following the principle of the UI fragment
composition, as presented in Section 6.4.1. These widgets are used by arise
and can become integrated by other microservices. The software code for all
subsystems of the microservice Drops is published as data publication by Sell,

118 CHAPTER 6: TECHNICAL PERSPECTIVE

«microservice» Drops

«subsystem» drops

«component»
User REST API

«component»
OAuth 2 provider

«component»
User service

«subsystem» arise

«component»
Users view

«subsystem» vca-widget-user

«component»
Users list

«subsystem» play2-oauth-client

«component»
OAuth 2 client

«component»
OES service

«component»
Session Service

«queue»
NATS message broker

Figure 6.5.: The UML components diagram describing the interacting applica-
tions of the Drops microservice. For reasons of clearness, only a
selection of components required to implement the representation
of the User are sketched. There are several more components
handling the User , Crews or the Organizations of VCA.

Kleber, Ottmann, et al. (2022).
Indicating that the widgets, as well as the REST API are used by other

microservices, the related provided interfaces are delegated in Figure 6.5 outside
the scope of the microservice’s frame. Since there is no real implementation of

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 119

the microservice’s frame, no port was sketched here. The implementation of
a widget’s interface is described in Section 6.5.5. In the context of an UML
component diagram, a provided or required interface with regards of a widget
means, that the widget is made available to other developers and can be loaded
into a JavaScript application by either a JavaScript call or a declarative JSX
statement (see further Section 6.5).
Equally, the OAuth 2 handshake can be initiated by all other microser-

vices. Thus, the provided interface, as well as its required companion used to
implement the handshake (see Section 6.5.3), are delegated outside the Drops.
The Drops microservice is extended by the play2-oauth-client plugin (see

data publication Sell, Kleber, Ottmann, et al. 2022) for the Scala / Play 2.7.x.
(https://www.playframework.com/documentation/2.7.x/Home, accessed
2022-05-30) web framework that proceeds the OAuth 2 handshake for a Scala
/ Play 2.7.x. application. Software developers programming with Scala / Play
2.7.x and the plugin can use the provided interface of the session service to
protect their application’s endpoints.

Addressing the requirements of the OES (see Section 6.4.2), the microservice
architecture is using a NATS message broker (https://nats.io/, accessed
2022-06-09) to exchange information about the lifecycle of business objects.
Thus, the User service component requires an interface that has to be provided
by the NATS service to send lifecycle messages for the user objects to other
microservices, like the LOGOUT event (see Section 6.4.2). Considering the usage
of the play2-oauth-client as plugin for other microservices, it also requires a
NATS interface to read the lifecycle messages.

Consequently, Figure 6.5 visualizes the loose coupling between the microser-
vice Drops and the NATS message broker. In the case of Drops, two subsystems
require an interface to NATS, for other microservices, normally only one in-
terface is required. Additionally, the message format has to be considered by
the different services. Thus, taking the socio-technical perspective, software
developers implementing another microservice than Drops are only coupled in
terms of using the provided interface of the NATS service and relying on the
implementation of the agreed message format by the software developers of
Drops. These are only a few shared variables and due to the publish-subscriber
principle implemented by the NATS interface, these variables are also weakly
required to run the microservice.

The UML component diagram in Figure 6.6 visualizes the technical coupling
between the microservices Drops and Stream on a more abstract level than the
diagram in Figure 6.5. Regarding Drops, only the backend subsystem (named
drops in Figure 6.5) and the widget component (named vca-widget-user in
Figure 6.5; implementing multiple widgets) are considered in Figure 6.6. The
Stream service is visualized by the stream-backend and the stream-frontend, the
code for both was published as data publication (Sell, Kleber, and Gottemeyer
2022).

The stream-frontend uses widgets that are implemented by Drops’ widget

https://www.playframework.com/documentation/2.7.x/Home
https://nats.io/

120 CHAPTER 6: TECHNICAL PERSPECTIVE

«microservice» Drops «microservice» Stream

«queue»
NATS message broker

«subsystem»
Widget

«subsystem»
Backend

«subsystem»
Frontend

«subsystem»
Backend

Autocomplete widget

Crew name widget

REST APIs

Interfaces for the

OAuth 2 handshake

User OES

Crews OES

User OES

Crews OES

Finance OES

Figure 6.6.: The technical coupling between the microservices Drops and
Stream visualized by an UML component diagram.

service. Thus, an interface for the autocomplete widget, as well as for the crew
name widget are required and these widgets are provided by Drops’ widget
service. Consequently, the degree of coupling between Drops and Stream can
be quantified by counting the number of used widgets. Users are relevant for
the UI of nearly all functions of a well-designed CSCW application and hence,
other services will have a number of dependencies to the Drops service. On the
downside, no widgets implemented by the Stream service that are required by
Drops. Accordingly, by catching the degree of coupling in the number of used
widgets, it has to be evaluated for every microservice on its own. Furthermore,
it depends on the number of working procedures the managed business object
is relevant for.
If the used widgets are framed as the variables in the sense of coupling

between the technical services, additionally to their number, the meaning of
weakness is relevant to assess the degree of coupling as loose. Again, considering
a socio-technical perspective onto the coupling of software components, their
software developers have to be considered. The required effort to maintain, to
integrate, and the communicative effort to request changes to a widget have
to be examined to assess any weaknesses.

As described in Section 6.5.5, widgets are just HTML, CSS, and JavaScript.
Thus, they can be integrated in each RIA. In terms of integration, the copy
of code should be avoided, because otherwise, the widgets would not be
maintainable. Therefore, Section 6.5.5 outlines two different approaches with
different use cases. No matter with approach is chosen, the integration only

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 121

requires a view lines of code in HTML markup.
The maintenance of a widget requires two steps at a maximum: (1) The

software developers of the microservice that provides the widget have to modify
the widget’s code and publish the new version of the widget to the NPM registry.
Afterwards, (2) the software developers of the microservice that uses the widget
have to increase the version number of the widget before pulling it. Thus, the
maintenance of widgets is as simple as their integration.
The communicative effort is a more complex challenge, since the software

developers of microservices should know about all existing widgets, they should
become informed after a new version of a used widget is available, and they
should be able to request improvements of widgets, mention detected bugs,
and request for complete new widgets of microservices.

Considering these technical details, I formulate the working hypothesis 1:

Hypothesis 1. Widgets are weak variables in terms of a socio-technical cou-
pling.

Drops and Stream provide a RESTful API, as outlined in Figure 6.6. Due to
the implementation of widgets, the services does not exchange data using the
REST APIs and therefore, they do not require the API of the other service.
Therefore, these services does not implement any coupling here.

Nevertheless, RESTful APIs are a well-known concept and often used in
science and business applications (Rodriguez 2008; Pautasso 2014; Garriga
et al. 2016; Nikaj and Weske 2016). Additionally, I assume that the concept of
widgets will address many use cases that are normally approached by RESTful
APIs. Therefore, I will formulate the working hypotheses 2 and 3:

Hypothesis 2. RESTful APIs are well known to software developers and
therefore a weak variable in terms of a socio-technical coupling.

Hypothesis 3. Widgets are more often applied to use cases than RESTful
APIs in the present microservice architecture.

Figure 6.6 details all required and provided interfaces for the OAuth 2
handshake (see Section 6.4.3), although the stream-backend is using the play2-
oauth-client, since the plugin implements and uses the interfaces.

Regardless of the plugin, the OAuth 2 handshake follows merely the OAuth
2 protocol (https://oauth.net/2/, accessed 2022-06-13). Next to many
existing client libraries in many different languages (see https://oauth.net/
code/, accessed 2022-06-2022), I formulate the working hypothesis 4:

Hypothesis 4. The OAuth2 handshake is simple to implement and therefore
a weak variable in terms of a socio-technical coupling.

As already introduced in Figure 6.5, the NATS message broker provides
information about data updates. Aside from users, the Drops microservices

https://oauth.net/2/
https://oauth.net/code/
https://oauth.net/code/

122 CHAPTER 6: TECHNICAL PERSPECTIVE

also manages the business objects representing the crews. Therefore, it sends
lifecycle information regarding the crews through the NATS service. Since
Drops does not listens to lifecycle information about business objects managed
by Stream, there are no such business objects annotated at Drops’ required in-
terface. Stream sends information about business objects representing finances
and listens for users and crews.

«microservice» MS A «microservice» MS B

«queue»
NATS message broker

«subsystem»
Widget

«subsystem»
Backend

«subsystem»
Frontend

«subsystem»
Frontend

«subsystem»
Backend

«subsystem»
Widget

Widgets of A used by B

Widgets of B used by A

REST API of A used by B

REST API of B used by A

MOs OES of MS A MOs OES of MS B

Figure 6.7.: The technical coupling between two fictive microservices A and B
visualized by an UML component diagram.

Figure 6.7 illustrates two fictive microservices A and B focusing on all
possible couplings. Apparently, microservices are directly coupled in terms
of their RESTful APIs and the widgets. They are indirectly coupled by the
NATS message broker connection. Although nearly all microservices would
have to implement an OAuth 2 client, it is not required and always addresses
the coupling between a microservice and Drops. Therefore, it is not visualized
in Figure 6.7.

6.5.2. Non functional services

According to the concept of dynamic UI fragment composition (see Section
6.4.1) every microservice needs to use some centralized UI elements, like a

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 123

shared CSS library or a corporate navigation. Thus, the Figure 6.8 illus-
trates support systems that were introduced to address these non functional
requirements and that are not considered as microservices in the previously
approaches sense.

«microservice» MS A

«support-system»
Dispenser

«support-system»
heureka-widget-navigation-2021

«support-system»
vca-widget-base

«queue»
NATS message broker

«subsystem»
Frontend

«subsystem»
Backend

«subsystem»
Widget

The navigation widget receives the menu

entries from a Dispenser REST API.

Basic styles

are provided

as a CSS file.

A global menu is

provided as a widget

for all MS.

Basic UI elements,

like shapes or tags,

are provided by a

widget collection.

It is usable by front-

end implementations

and other widgets.

MOs OES of MS A

Figure 6.8.: The fictive microservices A and its environment visualized by an
UML component diagram.

The Dispenser service (see appendix A.2) provides a common CSS file as
well as storing and managing the menu entries required to render a global
menu. The shared CSS mainly focuses on non-functional requirements. Thus,
the CSS can be integrated by other microservices just by adding the reference
to the shared CSS file. The CSS follows the guidelines regarding modular
CSS (https://css-tricks.com/css-style-guides/, accessed 2022-05-16
and http://cssguidelin.es/, accessed 2022-05-16), is implemented as a
pattern library in leaner style sheets (LESS) (http://lesscss.org/, accessed

https://css-tricks.com/css-style-guides/
http://cssguidelin.es/
http://lesscss.org/

124 CHAPTER 6: TECHNICAL PERSPECTIVE

2022-05-16) to support maintenance and further development.

The global menu’s scope spans the set of all microservices. Consequently,
also other menus applied to only a subset of the microservices can be imagined.
The Dispenser is also implemented to handle such an approach by allowing
for the definition of the scope of a set of menu entries. The prototypical
implementation differs between the global menu and the login menu. While
the first one is shown by Drops and Stream after a user has logged into the
system successfully, the second one is shown, when no session was initiated.

These two cases are not differentiated by the microservices themselves, but
rather the heureka-widget-navigation-2021 (see appendix A.2) implementation.
The provided UI elements either represent the menu for a logged in user
or the menu if no user was logged in. A microservice’s frontend can load
the menu widget and the widget itself determines which menu has to be
loaded. Furthermore, the heureka-widget-navigation-2021 implements a widget
representing a common footer menu.

On the basis of this implementation, the deployment of a new microservice
or an microservice’s updated version does not require maintaining the code for
a globally used menu, but becomes a matter of creating or altering database
entries of the service Dispenser. Therefore, the coupling between a microser-
vice’s software developing team and the developing team of the globally used
menu as well as the teams that are responsible for other microservices using
the global menu is reduced to the challenge of keeping the database of the
Dispenser service consistent with the set of deployed services. Consequently,
it becomes a weak variable in socio-technical terms.

The vca-widget-base implements several widgets representing reoccurring
elements of a CSCW system’s UI. Next to different styles for tags, it implements
a frame and a box used to organize content on a page. Thus, these basic
elements can be reused by all microservices to align the style through the set
of microservices and avoid duplicated software code.

Due to consistency, the Figure 6.8 also describes the NATS message broker
that has already been introduced in Section 6.5.1.

Although all of these services are required to address the original DG intro-
duced in Section 3.1, the number of services increases and the whole application
becomes difficult to deploy. Supporting software developers in handling this
challenge will aid in adapting the new platform, since software developers are
compelled to deploy the whole system for their own development. Therefore,
the heureka command line interface (CLI) (see appendix A.2) can be used
to setup the required environment. It enables to pull the code and start the
required services. Furthermore, it always deploys a documentation service (see
appendix A.2) that aims at supporting software developers in getting in touch
with the platform system.

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 125

6.5.3. OAuth2 handshake

Setting up the OAuth 2 handshake requires two steps: (1) The new microservice
needs to be registered at Drops as an OAuth 2 client. The administrator of the
deployed Heureka! architecture has the access rights to add the microservice to
the Drops database. (2) The new microservice needs to implement the OAuth
2 client part of the handshake. For the sake of convenience, I have adapted the
wording used in RFC 6749 for this thesis. Thus, Drops acts as the resource
and authorization server (the OAuth 2 provider), while another microservice
will be the OAuth 2 client, and the user’s browser is the user agent.

The OAuth handshake solely implements the exchange of user data. It does
not implements a user’s session with his or her agent for the new microservice.
Thus, after implementing the OAuth handshake, the new microservice will
have to request the user’s data. Afterwards, the user session can be initiated
by the standard libraries of the chosen technology. The implementation simply
removes user’s consent query of the user for sharing the personal data, as
specified in §1.3.1 in RFC 6749. Therefore, existing OAuth 2 client libraries
can still be used without additional code work.

Setup a microservice as OAuth 2 client in Drops

Even though Section 6.5.1 revealed that there are normally a cluster of systems
cumulating to one microservice, only one OAuth client has to be registered
for one microservice. No matter how many systems are part of the new
microservice. Drops represents an OAuth 2 client by an ID , a secret , a
redirect URL , and a grant type .
The ID is an unique identifier, such as the microservice’s name, for example.

The secret must be known only to Drops and the new microservice. The
endpoint used by Drops to redirect the users client back (see the UML sequence
diagram in Figure 6.9), if the authorization code was successfully created, it is
identified by the redirect URL . The chosen grant type defines the possible
authorization workflow between Drops and the microservice. The implemented
prototype of Drops only allows the authorization code workflow.

Protocol

RFC 6749 defines multiple possible interactions between clients and OAuth
provider. A general workflow is defined in §1.2 of the protocol.

The UML sequence diagram in Figure 6.9 shows the adaptation of the RFC
6749 protocol, named OAuth 2 handshake in this thesis. The sequence diagram
starts with an initial request (1) from the user agent to the microservice. If the
user agent does not identify a user session that is known to the microservice,
it has to redirect the user agent to the OAuth 2 client implemented by the
microservice ((2) and (3)). Since the prototype of Drops implements the
authorization code as authorization grant (see §1.3.1, RFC 6749), the client

126 CHAPTER 6: TECHNICAL PERSPECTIVE

redirects the user agent (4) to an endpoint implemented by Drops, requesting
an authorization code (5).

If the user agent does not identify a valid user session for Drops, the OAuth
2 provider either redirects the user agent to the login page (see UML ac-
tivity diagram in Figure 6.4) or response with an failure encoded in JSON.
Otherwise, Drops will validate the requesting microservice, generates an au-
thorization code, and redirects the user agent back to the OAuth 2 client with
the authorization code attached ((6) and (7)). Using this code, the service
is able to request an access token from Drops ((8) and (9)) that can be used
to query information about Drops’ currently logged in user ((10) and (11)).
Afterwards, the microservice is able to create its own user session. The OES is
used (see Section 6.4.2) to handle the synchronization of this additional user
session with Drops’ session.
Although Drops acts as OAuth 2 provider and therefore incorporates the

authorization server and the resource server, querying the access token is not
omitted and still required due to stay compatible with OAuth 2 client libraries.

User agent Microservice Drops

1: Initial Request

2: Redirect to OAuth handler

3: Request OAuth handshake

4: Redirect to Drops

5: Request authorization code

6: Redirect to microservice, generated code attached

7: Sending authorization code

8: Query access token

9: Receive access token

10: Query User instance

11: Receive User instance

12: Reply to initial request, user session attached

Figure 6.9.: The UML sequence diagram visualizes the OAuth 2 handshake
implemented between Drops and a microservice.

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 127

Endpoints

Listing 6.6 names the endpoints of Drops required to implement an OAuth
2 client. The first endpoint in Listing 6.6 is used to initially request an
authorization code. Drops needs to identify the origin and decide whether
or not it is a known microservice. For this purpose, adding the ID of the
microservice and the redirect URL is required in the query string. Furthermore,
a state can be attached that will be returned to the microservice, to encode
some context information, like the current page of the user. Additionally,
the optional Boolean parameter ajax encodes, if the response should be
JSON encoded in any case (including the case no user is currently logged in).
Otherwise, Drops will redirect to the login page, if the user agent holds no
valid user session.

1 drops. authorization .code = ${drops.url.base }/ oauth2 /code/
get? client_id =${ID}& response_type =code&state=${
context_string }& redirect_uri =${ redirect_uri }& ajax=false

2 drops. access .token = ${drops.url.base }/ oauth2 / access_token
3 drops.get. profile = ${drops.url.base }/ oauth2 /rest/ profile ?

access_token =${drops. access .token}

Listing 6.6: Drops endpoints to implement the OAuth 2 handshake. The
${drops.url.base} is a placeholder for the host and potentially
path to the deployed Drops microservice.

The access token endpoint (line 2 in Listing 6.6) expects the grant_type ,
client_id , client_secret , redirect_uri , and code as query parameters.
While the grant_type has to be authorization_code , the next three parameter
identify the microservice and have to be equivalent to the microservice’s OAuth
client, that is saved by Drops. The code parameter has to contain the received
authorization code.
Finally, requesting the profile information requires holding a valid access

token that has to be attached to the request in line 3 of listing 6.6 as a query
parameter.

Moreover, the microservice has to implement endpoints taking an authoriza-
tion code as a value of a parameter and initiating the request for an access
token. Drops appends the authorization_code to the given redirect URL.
The software developers of a microservice are thus free to design the URLs
aligned to their technology. Example endpoints would be https://ms.de/ or
https://ms.de?code= . While the first example takes the code as part of the
path, the latter expects the code as a query parameter with the name code .

If a frontend application using REST calls to communicate with a backend
system, also implements the OAuth 2 client, the parameter ajax has to be set
to true to receive JSON in all cases (success and failure). Thus, the OAuth 2
client can handle the response by itself.

128 CHAPTER 6: TECHNICAL PERSPECTIVE

If the microservice runs on another port than the Heureka! platform, Drops
will throw some Cross-Origin Resource Sharing (CORS) errors (https://deve
loper.mozilla.org/de/docs/Web/HTTP/CORS/Errors, accessed 2022-06-16).
The issue can be solved by adding the domain name and the chosen port to
the allowed origins array of the Drops backend. Alternatively, it can be added
to the configured server names. Both approaches are explained in more detail
by the readme file of the Heureka! CLI project, referenced in the appendix
A.2.

Example

Listing 6.7 implements an example controller for the Play2 framework (https:
//www.playframework.com/, accessed 2022-06-16) and is written in Scala
(https://www.scala-lang.org/, accessed 2022-06-16).

1 package controllers
2
3 import javax. inject ._
4
5 import models . AccessToken
6 import play.api._
7 import play.api.libs.json.Json
8 import play.api.mvc._
9 import play.api.libs.ws._
10 import play.api. Configuration
11
12 import scala. concurrent . ExecutionContext
13 import scala. concurrent . ExecutionContext . Implicits . global
14
15 class HomeController @ Inject () (ws: WSClient ,conf :

Configuration) extends Controller {
16
17 /**
18 * Create an Action to render an HTML page with a welcome

message .
19 * The configuration in the ‘routes ‘ file means that this

method
20 * will be called when the application receives a ‘GET ‘

request with
21 * a path of ‘/‘.
22 */
23 def index = Action {
24 Ok(views.html.index("Your new application is ready."))
25 }
26
27 def login = Action {
28 val url = conf. getString ("drops.url.base").get + conf.

getString ("drops.url.code").get +
29 conf. getString ("drops. client_id ").get
30 Redirect (url)

https://developer.mozilla.org/de/docs/Web/HTTP/CORS/Errors
https://developer.mozilla.org/de/docs/Web/HTTP/CORS/Errors
https://www.playframework.com/
https://www.playframework.com/
https://www.scala-lang.org/

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 129

31 }
32
33 def receiveCode (code: String) = Action .async {
34 val url = conf. getString ("drops.url.base").get + conf.

getString ("drops.url. accessToken ").get
35 val clientId = conf. getString ("drops. client_id ").get
36 val clientSecret = conf. getString ("drops. client_secret "

).get
37
38 val accessToken = ws.url(url). withQueryString (
39 " grant_type " -> " authorization_code ",
40 " client_id " -> clientId ,
41 " client_secret " -> clientSecret ,
42 "code" -> code ,
43 " redirect_uri " -> "http :// localhost :8080/ endpoint ?

code="
44).get ().map(response => response . status match {
45 case 200 => AccessToken (response .json)
46 case _ => println (response . status);throw new

Exception
47 // Todo: throw meaningful exception

considering the returned error message and status code!
48 })
49
50 accessToken . flatMap (token => {
51 val url = conf. getString ("drops.url.base").get + conf

. getString ("drops.url. profile ").get
52
53 ws.url(url). withQueryString (
54 " access_token " -> token. content
55).get ().map(response => response . status match {
56 case 200 => Ok(
57 Json.obj(" status " -> " success ", "code" -> code , "

token" -> token.content , "user" -> response .json)
58)
59 case _ => Ok(
60 Json.obj(" status " -> "error", "code" -> code , "

token" -> token.content , "response - status " -> response .
status)

61)
62 })
63 })
64 }
65 }

Listing 6.7: An example controller implemented using Play2 framework and
written in Scala.

130 CHAPTER 6: TECHNICAL PERSPECTIVE

6.5.4. Integration of systems as microservices

Deploying an already implemented system as a microservice in the Heureka!
platform using technologies that software developers are familiar with only
requires a few steps, and is rendered in this subsection. At the very beginning,
a microservice environment has to be locally deployed on the developer’s
work computer that is very similar to the production environment that is
subsequently deployed at the servers. Just like a production system, the
integration of a new microservice requires having access to (1) the APIs of the
already existing microservices, and (2) the NATS message broker. Moreover,
at the local system the developer has access to (3) the microservice routing
proxy to add the new service to the architecture.
Afterwards, software developers have to decide which widgets are required

to extend the UI of the new microservice and which APIs are required to
connect to. Subsequently, the CSS should be integrated to use its classes
for the purpose of following the CD. Additionally, the navigation connecting
all microservices may become integrated in the UI. In some cases, this step
can be omitted when implementing a stand-alone application using parts
of the data saved by the platform. Equally, the OAuth 2 handshake must
be implemented if the new microservice requires working with authenticated
users of the platform. Lastly, the new microservices must be integrated in
the deployment setup of the platform and its documentation must become
available to other microservices’ developers.

Initially, the platform’s environment can be deployed by using the Heureka!
CLI. The CLI can be cloned from the software repository referenced in
appendix A.2. Its readme file explains the steps to set the platform up, as
well as to deploy a new microservice. After going through these steps, the
local application can be started as part of the microservice configuration. The
software developers will have access to the internal docker network, although
they are not deploying the new applications using docker.

Integration in the architecture

The two main challenges in integrating a new service are (1) implementing a
shared session (see Section 6.4.3) and developing UI elements that are reusable
by other services (see Section 6.4.1).
Currently, the shared session challenge is addressed by the OAuth 2 hand-

shake. Section 6.5.3 explains how to integrate into the shared session by the
OAuth 2 handshake, while Section 6.5.5 introduces the implementation of
reusable UI elements and also there usage.

The UI can be implemented by the technologies that the software developers
are familiar with. That being the case, developers will therefore not be
limited and can utilize the framework of their choice. It is merely necessary
to understand and use the existing widgets to extend the UI of the new

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 131

microservice by elements provided by the other microservices. Additionally, a
basic CSS can be used to style a microservice’s interface the same way as the
rest of the application.

Basic styling

Additionally, the shared CSS can be used by adding the line in Listing 6.8 to
the HTML files requiring the reference to the CSS.
1 <link rel=" stylesheet " type="text/css" media =" screen " href=

"/ dispenser /css/vca.css">

Listing 6.8: The HTML code to integrate the shares CSS

There exist more complex page elements required to replicate the CD,
including not only CSS, but also a specific HTML markup or JavaScript
behavior. These are delivered as widgets by vca-widget-base (see appendix
A.2).

Available APIs

After setting up a local environment, a current microservice configuration is
running at the developers computer, including drops and arise (see appendix
A.2). Most important for the development of a new microservice is the usage
of the drops API (see readme file of the drops code repository referenced
in appendix A.2) in order to execute an OAuth 2 handshake (see Section
6.5.3) and possibly read users as well as their social structure. Using the
default development configuration of a newly created microservice, the Drops
API will be available at 172.3.0.2:9000 from the internal docker network
or at localhost:9000/drops sending requests through the NGINX (https:
//www.nginx.com/, accessed 2022-06-16) proxy.

As mentioned before, the NATS message broker is used by the Heureka!
microservice configuration to exchange messages between the services. It is
available at 172.3.150.1:4222 from the internal network or at localhost:4222
sending requests through the nginx proxy.

Showing the navigation

On a next level, a navigation may also be designed according to a given CD,
but it implements a more complex behavior and requires access to additional
information, such as the views that are available to the currently logged in
user, for example. Therefore, it is outsourced to the widget library heureka-
widget-navigation-2021 (see appendix A.2) implementing a tighter coupling
with Dispenser to query information. The navigation in the default layout
is displayed as part of the header and as part of the footer. These widgets
can be integrated into the page that is rendered by the new application. See

https://www.nginx.com/
https://www.nginx.com/

132 CHAPTER 6: TECHNICAL PERSPECTIVE

Section 6.5.5 for a detailed explanation. Listing 6.9 illustrates an example of
the navigation widgets integrated in an example application implemented by
using vue.js (https://vuejs.org/, accessed 2022-06-16).

1 <template >
2 <div id="ms -frontend -app">
3 <WidgetTopNavigation />
4 <div id=" content ">
5 <router -view/>
6 </div >
7 <WidgetBottomNavigation />
8 </div >
9 </ template >
10
11 <script >
12 import { WidgetTopNavigation , WidgetBottomNavigation }

from ’heureka -widget -navigation -2021 ’;
13 import ’heureka -widget -navigation -2021/ dist/heureka -

widget -navigation -2021. css ’
14
15 export default {
16 name: ’ms -frontend -app ’,
17 components : { WidgetTopNavigation ,

WidgetBottomNavigation }
18 }
19 </ script >
20
21 <style lang="less">
22 #ms -frontend -app {
23 -webkit -font - smoothing : antialiased ;
24 -moz -osx -font - smoothing : grayscale ;
25 color: #2 c3e50;
26 flex: 1;
27 display : flex;
28 flex - direction : column ;
29 min - height : min - content ;
30 }
31 # content {
32 flex -grow: 1;
33 flex - shrink : 0;
34 display : flex;
35 overflow : auto;
36 }
37 </ style >

Listing 6.9: An example for the integration of the navigation widgets.

Integration in the navigation

As mentioned before, the navigation is more complex, since all microservices
need to include the addresses for their different views. Adding such addresses

https://vuejs.org/

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 133

to the menu, requires altering a few JSON files cloned from the Heureka!
CLI (see appendix A.2). This will create the paths (see Listing 6.10) for the
JSON files configuring the navigation entries. Since the Dispenser service
is implemented to handle the entries for multiple menus (see Section 6.5.2),
also different configuration files are required. The GlobalNav.json configures
the menu after a successful login. Thus, in order to add menu entries for
the pages of a new microservice, the GlobalNav.json must be altered. The
noSignIn.json has to be edited, if the menu entries should be available without
an established user session. Subsequently, the navigation must be reloaded by
calling GET http://<your-host>/dispenser/navigation/init .

1 <path -to -heureka -console >/ microservices /ms -<name >/. docker -
conf/ navigation / GlobalNav .json

2 <path -to -heureka -console >/ microservices /ms -<name >/. docker -
conf/ navigation / noSignIn .json

Listing 6.10: Paths to the JSON files configuring the menu entries.

Deployment as a microservice

The setup of a new microservice as part of the Heureka! architecture is described
in the readme file of the Heureka! CLI (see code repository for the CLI
referenced in appendix A.2). There is no need to run new applications as
docker containers. The new microservice can just be deployed on distinct ports
and the NGINX must be configured to point on these ports. If any additional
service is required (e.g. database), it has just to be setted up as a docker
container and a connection must be initiated by its internet protocol (IP)
address.
Thus, every hard coded HTTP call must be considered at least for the de-

ployment in a production environment, when the new application is deployed
as docker container. If there are some calls addressing the localhost , these
have to replaced, since localhost addresses the docker container of the appli-
cation newly deployed in a docker container. Furthermore, addressing other
microservices requires using the internal IP address of the docker containers
deploying these other microservices. Subsystems of a new microservice that
are deployed in addition to the web server of the new application should also
be deployed as docker containers having an internal IP address. Additionally,
software developers must consider the fact that the microservice will be avail-
able behind a specific path configured in the NGINX proxy of the Heureka!
platform. For some frameworks, configuring the path name as a value of a
specific deployment variable is required, often named base path . If this is
required and it is not properly configured, when the application is deployed as
service available to an NGINX path, usually a whitescreen will be displayed.

134 CHAPTER 6: TECHNICAL PERSPECTIVE

Integration in documentation

A decentralized software project also requires one to decentralize the software’s
documentation. Thus, the developers of a microservice are also responsible to
document the code and to make the documentation available. The first place
to address this issue should be the code repositories and the readme files of
the microservice’ subsystems to document specific functions of the services.
How-To’s and any other more general documentation, should be added as a
Markdown (https://www.markdownguide.org/basic-syntax/, accessed
2022-06-16) file to the pages directory of the documentation repository (see
appendix A.2) of the Heureka! CLI project. The documentation uses the
GRAV content management system (CMS) (https://getgrav.org/, ac-
cessed 2022-06-16) to generate the documentation. Thus, also the images and
the languages directories in the repository are used and could be filled with
content.

6.5.5. Widgets

There are several already implemented UI elements that can be viewed as
complete small software pieces – named widgets, as introduced in Section 6.4.1.
A widget is an HTML element or a small set of HTML elements with optional
CSS or JavaScript. It implements functions that are in high cohesion with
the services purpose. Therefore the service is responsible for the definition,
delivery, and maintenance of the widget. Such a special-purpose UI element
is used by other services and its delivery takes up the idea of transclusions
(embedded directly, using its URI).

Since they are complete and implement the required interfaces needed to
integrate them, it is not necessary to implement their functionality in code that
is only owned by a microservice using the widget. Furthermore, reworking a
widget’s functionality or user interface design is not recommended. If a different
style or functionality is required, either the REST APIs of the corresponding
backend subsystems of microservice should be used to implement an specific
user interface or the change should be communicated to the responsible software
developers.

Existing widgets

The vca-widget-base, the heureka-widget-navigation-2021, and the vca-widget-
user (see appendix A.2) are the widget projects implementing one or more
reusable UI elements. A list of all widgets is given in Table A.2 in appendix
A.3. More details can be found on http://doc.soteto.net/technical-
documentation/widgets, accessed 2022-06-16.
All required technical details for a widget are documented in the related

software projects’ readme files. The widgets allow data binding and event

https://www.markdownguide.org/basic-syntax/
https://getgrav.org/
http://doc.soteto.net/technical-documentation/widgets
http://doc.soteto.net/technical-documentation/widgets

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 135

Figure 6.10.: The autocomplete widget implemented by Drops with pixelated
names. It shows one already selected user in form of a removable
tag and the result list of users matching the entered search term.

propagation, but also nesting of UI elements by using so called slots (https:
//vuejs.org/guide/components/slots.html, accessed 2022-06-20). These
technical functions are aligned to the components of vue.js and that are known
from frameworks implementing declarative component-based programming
models as vue.js (https://vuejs.org/, accessed 2022-06-16) or React (https:
//reactjs.org/, accessed 2022-06-17).

As an example for a widget, Listing 6.11 illustrates the usage of the auto-
complete widget that is implemented by the microservices Drops. The Figure
6.10 shows a screenshot of the widget. Since the widgets of Drops are imple-
mented by using vue.js, the JSX tags that represent a widget are replaced by
valid HTML either while the using application is built or while the user agent
executes the JavaScript code. Table 6.1 describes the parameters that can be
passed to the widgets, while Table 6.2 gives an overview about its propagated
events.

1 <WidgetUserAutocomplete placeholder ="Enter user name ..." />

Listing 6.11: An example for the usage of the autocomplete widget for users,
implemented by the vca-widget-user project, that is part of the
MS Drops.

Although Listing 6.11 provides a simple way to use the widget, its interfaces,
as described in Tables 6.1 and 6.2 have to be considered. While the types
of parameters and events are primitive, the interfaces will not prove to be
complicated for software developers to handle. But in the case of more complex
parameter or event types, developers that are using a widgets are required
to know these types and represent them or at least a projection the objects
can be mapped to. Due to the nature of JavaScript, some UI developers of a
microservice M1 may interact with the event data and parameters as black
boxes, thus receiving the data from a widget M2A

and passing them to a
widget M2B

, both implemented by the same microservice M2. That would
shunt responsibility to the developers of microservice M2, but also compels

https://vuejs.org/guide/components/slots.html
https://vuejs.org/guide/components/slots.html
https://vuejs.org/
https://reactjs.org/
https://reactjs.org/

136 CHAPTER 6: TECHNICAL PERSPECTIVE

Parameter Type Optional Default Description

placeholder String optional No de-
fault
value

The placeholder for the in-
put field.

preselection Array
of user
objects

optional [] Used to pass all already se-
lected users. They will be
shown as removable tags.

Table 6.1.: Paramters for the autocomplete widget.

Event Type

vca-user-selection An array of selected user objects.

Table 6.2.: Propagated events of the autocomplete widget.

them to not require the objects by business logic of M1. Furthermore, it may
raises the issue that M1 is not able to detect a failure state of its UI. Generally,
the interface of widgets is as complex as the interface of REST APIs, since
they also require one to know the endpoint and the parameters, as well as the
structure of the results of a request.
Since JSX is used to implement the widgets, slots can also be used, in

addition to parameters and events as interfaces. The autocomplete widget does
not implements any slots, but other widgets do, such as the VCA box, which
is implemented by the vca-widget-base project (not part of any microservice).

How to implement a widget

Implementing a widget means developing an UI element that is reusable by
other microservice developers. For this thesis, the approach is limited to
reusable UI elements for websites using HTML as markup language, CSS
as styling language and JavaScript to implement behavior of the defined
UI elements. All widgets implemented for the present prototype are vue.js
(https://vuejs.org/, accessed 2022-06-16) applications, since it supports
the thesis’ core concept of decomposed UI elements as its own core concept.
Furthermore, vue.js advertises itself with versatility, thus it can be used to
implement a library of UI elements, as this thesis aims to do. Alternative
technologies, like React or plain HTML, CSS, and JavaScript are also possible
to use.
The widgets are implemented by using the Vue CLI (https://cli.vuejs.

org/, accessed 2022-06-17), Vuex stores (https://vuex.vuejs.org/guide/,
accessed 2022-06-20), and by avoiding globally imported components, since

https://vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://vuex.vuejs.org/guide/

IMPLEMENTATION OF THE MICROSERVICE ARCHITECTURE 137

they will possibly not be available in the library. Exporting the components
as library requires an additional file ./src/lib.js with a content similar
to Listing 6.12. By extending the package.json with the Listing 6.13, the
vue-cli-service will build the library.

1 import WidgetA from ’./ components / widget_a ’
2 import WidgetB from ’./ components / widget_b ’
3
4 WidgetA . install = function (Vue , options) {
5 Vue. component (’widget -a’, WidgetA)
6 }
7
8 WidgetB . install = function (Vue , options) {
9 Vue. component (’widget -b’, WidgetB)

10 }
11
12 // Install by default if using the script tag
13 if (typeof window !== ’undefined ’ && window .Vue) {
14 window .Vue.use(WidgetA)
15 window .Vue.use(WidgetB)
16 }
17
18 export default WidgetA
19 const version = ’__VERSION__ ’
20 // Export all components too
21 export {
22 WidgetA
23 WidgetB
24 }

Listing 6.12: The code for a library file to export the widgets.

Furthermore, the distribution and deployment of the widgets is handled by
modern technologies, like NPM (https://www.npmjs.com/, accessed 2022-05-
17 – see Listing 6.14). Thus, it is possible to receive the widgets by calling an
URI (see Listing 6.15), as described before, but also by integrating it during
the build time of a modern RIA. While using the URI to load the widgets
during or after the page load of the website is time intensive, but prevents
versioning issues, the integration during the build time will led to a much
faster website loading, but requires the handling of different versions of the
widget by software developers of the microservices that are using the widgets.

Additionally, every widget requires a documentation describing the parame-
terization, the behavior, possible return values and side effects. Supporting
the decentralized and loosely coupled management of the project, widgets have
to be deployed using semantic versioning (http://semver.org/, accessed
2022-05-16).

https://www.npmjs.com/
http://semver.org/

138 CHAPTER 6: TECHNICAL PERSPECTIVE

1 " scripts ": {
2 ...
3 " prepublish ": "npm run lib",
4 "lib": "vue -cli - service build --target lib --name vca -

widget -base src/lib.js"
5 ...
6 }

Listing 6.13: The extension of the package.json to build the library

Vue components (https://vuejs.org/guide/essentials/component-
basics.html, accessed 2022-06-17) are the code base for widgets. One
project can export a number of widgets. They can be implemented as different
components and tested by importing them in the App component. A project
should have one component representing a specific widget. If a widget requires
more than one component, a container component should be implemented.
Thus, a widget should be implemented as a component that maybe uses other
components. The set of components representing the widgets will be exported
as library to allow the integration as detailed in Listing 6.14 and 6.15.

1 import { Widget } from ’widget -lib ’;

Listing 6.14: The import of widgets into another JavaScript application.

1 <script src="widget -lib/dist/ widget .js"></ script >

Listing 6.15: The import of widgets into another microservice’s HTML markup.
If also specific CSS is needed, an additional line to import the
CSS is required.

While Listing 6.14 illustrates the import of widgets by using the ECMAScript
2015 import statement (ECMA International 2015, p. 282), the Listing 6.15
details the import using the HTML <script> tag. In case of the latter, the
widget “will be fetched in parallel to parsing and evaluated as soon as it is
available (potentially before parsing completes)” (WHATWG 2022a), while
the former can be used the same way, but also to load the widget during the
build time of a using web application. Since both approaches can be useful,
they are both supported.
Therefore, the different strategies imply a different coupling between the

microservice projects. Calling the widgets while the website is loading implies
a technical coupling that causes the boundaries of the microservices to become
visible to the users. Integrating the widgets in the build time leads to a tighter
coupling between the microservices developers and thus impedes addressing
STR 3.

https://vuejs.org/guide/essentials/component-basics.html
https://vuejs.org/guide/essentials/component-basics.html

SOFTWARE DEVELOPERS ARE USERS 139

6.6. Software developers are users

The Heureka! architecture addresses the original DG introduced in Section 3.1,
by different layers of interfaces. A microservice has to respect the CSS libraries
provided by parts of the platform implementing non-functional requirements.
Furthermore, software developers should be encouraged to use widgets provided
by other microservices and to provide some by themselves. They should use
RESTful APIs and the OES to exchange data and use the OAuth 2 provider
to implement a shared session, a shared authentication.
Therefore, I made the decision to perform a usability investigation, but

taking the perspective of the software developers as users of the platform during
the implementation of new microservices. By identifying issues in using the
platform as a software developer, I am able to sketch the next required steps
in upcoming cycles of the DSR project to approach the RQ 2 and therefore
also the DG.

Unfortunately, the study was planned for the end of the year 2020 and due
to COVID-19 and the resulting restrictions on the public life, VCA had to
adjust the prioritization of their projects. Furthermore, the establishment of
new communities, as would have been required for the Pool volunteers, was
very difficult to address. Therefore, the study was conducted by requesting
students of the Humboldt-Universität zu Berlin to become participants. I will
further discuss the characteristics and commonalities between students and
Pool volunteers in Section 6.6.1.
Initially, the participants received (1) the documentation of the Heureka!

architecture and (2) a test system they could use. Furthermore, they received
(3) sets of user stories in order to choose one of these sets as their functional
requirements for the microservice. For one semester, the students have to focus
on this set of user stories and try to implement a running microservice that
addresses the requested features. The participants were supported by having
(a) periodic meetings with me as a supervisor as well as a WASH volunteer,
(b) access to the documentation, and (c) access to a specific Q&A forum,
moderated by me.
Addressing the research question 2, the students will be observed, while

they implement specific new functions that became integrated as microservices
into the Heureka! environment. Next to the field notes resulting from the
observations, also filled questionnaires and additional field material will be
collected, as discussed in Section 6.6.2.
Afterwards, I will apply grounded theory coding to the generated data

(see Section 6.6.3) to develop hypotheses regarding my research question.
Additionally, this implies that the given material is improved during the
study’s progress. The results in Section 6.6.4 describe what was observed in
the field regarding the RQ 2, while the discussion and limitations in Section
6.6.5 are contextualizing the results. In Section 6.7 a short conclusion is
given, as well as a future outlook. Although the outline of this section follows

140 CHAPTER 6: TECHNICAL PERSPECTIVE

well-known patterns of scientific publications, the subsections consist of thick
descriptions as recommended by Guba (1981).

The generated data, as well as the code set, the codings, and the memos
are published as a data set (Sell 2022b).

6.6.1. Participants

The study was conducted by inviting bachelor and master students of the
computer science institute of the Humboldt-Universität zu Berlin. A short
discussion of the reasons and the limitations for the replacement of Pool
volunteers by students, is given in Section 6.6.5. The students participating
this study are of two different groups. The first group were eleven students
of the computer science bachelor program taking a semester project course,
given by me as a supervisor. The second group consists of five students of the
computer science master program working at their study project. One of the
master students did not completed the project.

During a semester project, the students have to apply the theoretical knowl-
edge for a practical project. It thus becomes possible for them to have a few
new experiences. The framework of the semester project for the study was
designed to empower the students to address a real world problem on their
own. They would have to work in a team and apply basic knowledge regarding
software architectures, middleware and computer networks by implementing a
web application addressing a given user story and integrating the application
in the Heureka! platform afterwards. Eleven bachelor students were divided in
two groups, the first one had six members, while the second one had five.
The study project of the master students focused on the scientific work.

Students have to handle challenges of a scientific project by working with
literature and convincing scientific methods. The students participating in
this study were aiming to integrate an existing complex tool in the Heureka!
architecture and had to address the diverse occurring challenges by latest
scientific approaches, researched from up-to-date publications. While the
bachelor students had to work in groups, the master students had to work on
their own.
Subsequently, I will characterize the participants to support researchers

aiming to transfer the results of this study to other settings. Unfortunately, it
was not possible to collect data from the master students, but the bachelor
students can be characterized as follows. The students have basic skills
regarding software development, but most of them are lacking web development
experiences. An initial questionnaire regarding the software development
experience that based on the questionnaire used by Siegmund, Kästner, Liebig,
et al. (2014) to develop the five-factor model, was applied to the participants.
On an ordinal 5-Point Likert scale (5 = very experienced, 4 = experienced, 3
= average experienced, 2 = inexperienced, and 1 = very inexperienced), the
students noted to be average experienced regarding the paradigms of object-

SOFTWARE DEVELOPERS ARE USERS 141

orientation (Median = 3,5), imperative (Median = 3), and logical programming
(Median = 3), as well as inexperienced in functional programming (Median =
2).

These observation is confirmed by the experiences with specific programming
languages, as presented in Table 6.3. Particularly, the languages that are the
base for well-used web frameworks (Stack-Overflow 2021) are not or only on
an average level known to the students: JavaScript, PHP, Python, and Java.

Programming
Language

Main paradigm Median

Java object-oriented average experienced (3)

C imperative inexperienced (2)

Haskell functional very inexperienced (1)

Prolog logical inexperienced – average
experienced (2.5)

JavaScript imperative and object-
oriented

inexperienced (2)

PHP imperative and object-
oriented

very inexperienced (1)

Scala functional and object-
oriented

very inexperienced (1)

Python object-oriented inexperienced – average
experienced (2.5)

Go object-oriented very inexperienced (1)

Table 6.3.: The participants experiences regarding specific programming lan-
guages in relation to their main programming paradigm.

Additionally, the sample of bachelor students was relatively young (M =
24.5, SD = 6.08) and ten of eleven were from Generation Y, while one was
of the Generation Z (see Chapter 1). Additionally, the participants did not
know each other and thus, the groups were builds from strangers. They were
self-organized and got only a few instructions to consider. To sum up, by
focusing on the participants, the results are applicable for other settings if
the software developers in these settings are young, inexperienced in web
development, and do not know each other.

142 CHAPTER 6: TECHNICAL PERSPECTIVE

6.6.2. Data generation and conduction

In the beginning of the course, the bachelor students were assembled in small
groups aiming to select a user story set from a given catalog of stories. The
user stories had been conducted during a number of STWTs conducted with
WASH volunteers to gather requirements regarding the CSCW tool Pool2.
In addition to the user stories catalog, the students also received a glossary
supporting them in understanding the VCA terms used by WASH volunteers.
Both, the user stories catalog and the glossary are published as a data set (Sell
2022c).

Since user stories are not complete, the bachelor students needed to make
design choices during the semester that would be closely coordinated with
a product owner. For the purpose of the study, I took this role, since I was
engaged in a prolonged engagement in VCA.

Although the bachelor students had to implement CSCW functions to address
the chosen user stories initially, they knew that the main task was integrating
the resulting microservice in the Heureka! architecture. The master students
directly started with the integration of the microservice.
The data collection was closely aligned with the course sessions. Every

Thursday, the bachelor students had a four hours session with me as the
supervisor, as well as the product owner. These sessions started with an Q&A
forum to discuss relevant challenges and problems. Afterwards, the groups
had time to work together and being supervised through the collaboration.
An equally organized session was held for the master students on Fridays.
Additionally, the supervisor suggested the bachelor groups and the master
students to find more time slots a week to work on their projects.
Due to the COVID-19 pandemic the meetings were held online. Thus, the

meetings were be recorded to analyze them. Additionally, the Q&A forum
implemented by the accompanying Moodle (https://moodle.com/, accessed
2022-08-06) course was aimed to be another source of data. Since the data is
collected during the semester, also the analysis can happen in steps during the
semester.
The first session with the bachelor students was conducted on 2021-04-15,

and the first with the master students was held on 2021-05-04. The bachelor
students had twelve sessions with me as the supervisor and the product owner.
The master students had ten sessions.

The Moodle course suggested that the students to split their group work into
two phases: (1) The implementation phase, covering five supervised sessions,
focusing on the implementation of the required functions in a new microservice
to address the user stories. (2) The integration phase, also covering five
supervised sessions, aiming to integrate the newly created microservice in
the Heureka! architecture. Additionally, the first session aimed to group the
students, while the last session were reserved for the final presentations.

Following each supervised session, I filled out a weekly meeting protocol that

https://moodle.com/

SOFTWARE DEVELOPERS ARE USERS 143

was paraphrased into a memory record protocol and a supervising protocol
afterwards. The weekly meeting protocol was a record of notes directly taken
after the session and has focused on (a) the coupling between developers,
(b) the management of the groups, (c) any bureaucratic burdens, (d) time
consumption, and (e) the replacement of microservices. Additionally, anything
that seems relevant in the context of the RQ 2 was recorded. The memory
record protocol directly focuses on the DG introduced in Section 3.1 and
the supervising protocol aimed to gather my influence as a supervisor to the
behavior of the students. During the semester, the differentiation between the
protocols became inconsequential and thus, the paraphrasing was rejected.
Additionally, all emails received during the semester were collected, the

received ones, as well as the sent emails. Furthermore, the issue tracker of
the bachelor students groups were exported from the GitLab hosted by the
Humboldt-Universität zu Berlin. If required, issues created by the students in
the Heureka! issue tracker were also exported for the purpose of analysis.
At the end of the semester, the final presentations were also held using

video conferencing tools. I recorded the presentations and the videos were
transcribed afterwards.

Due to scheduling challenges, the last final presentation of the master students
was conducted on 2021-09-21 and thus, on that date the data generation by
directly working with software developers was completed. The intervention
resulted in different types of data: (1) The weekly protocols describing the
coordination and organization of the work as well as problems, challenges, and
failure or success experiences made by the participants. (2) The emails and issue
tracker contents that were additions to the weekly protocols containing more
details and allowed more direct paraphrases of the participants (although a few
exact quotes are also contained in the protocols). (3) The final presentations
involving concluding and coherent explanations from the students presenting
experiences from their personal perspectives.
Since the first type of data is highly influenced by my interpretation and

my wording, I strive to support the credibility of my study by collecting data
through (2) and (3) as referential material to ensure the protocols adequacy.
Additionally, this section describes the process of the study very detailed and
thus forms an important part of the audit trail, as suggested by Guba (1981),
in supporting dependability. It will be further discussed in the next Section
6.6.3.

6.6.3. Analysis

The data collection was accompanied by an open coding in the terms of
Charmaz (2014) (see Section 3.2.4). At the end of each week, the collected
protocols, as well as the emails and issues were coded by focusing on the RQ 2
in conjunction with the acceptance criteria outlined in Section 6.2. So, I was
continuously asking for the documented statements and actions, what does it

144 CHAPTER 6: TECHNICAL PERSPECTIVE

means in the context of the research question and the acceptance criteria, as
forced by Dourish (2014, p. 17). For example, I have coded one segment of the
data with the code authentication-identified-by-students , meaning that
the participants identified the authentication as a required part to focus upon
for the integration. By addressing the integration, the students mentioned a
challenge that addresses the acceptance criteria 3 and the deployment of new
functions (see RQ 2). These open codes always consist of a name (in-vivo, if
possible) and a memo with detailed description of its meaning. I took a longer
break between 21-09-2021 and 20-07-2022, after I completed the open coding
of the weekly generated data and the open coding of the final presentations to
support the confirmability of my interpretation. Since the final presentations
are conclusions of the experiences the participants made during the semester,
the interpretation should result in similar insights.

As a consequence, I started my analysis by focusing on (1) coupling between
developers, (2) the management of the groups, (3) the bureaucratic barriers
introduced by the technology, (4) the time consumption, and (5) the possibility
of replacing existing functions with newly implementations. Considering the
evolution of issues in case studies during a study, introduced by Stake (2008,
p. 127), I shifted my focus to (1) - (3) during the course of time, since (4)
and (5) were difficult to see in the data. For example, (4) required to ask
the participants for the invested time and thus, adequate answers required a
traceable time management of them, as it cannot be ensured for students.

After I completed the open coding, I proceeded with an focus coding accord-
ing to Charmaz (2014) (see Section 3.2.4). It meant to identify the open codes
most relevant to answer the RQ 2, to relate them to other open codes, and to
formulate the abstract meaning of the resulting code cluster with regards to
the RQ and the acceptance criteria. Thus, I created new focus codes applied
to the data segments coded by the open codes that are clustered by the focus
code. The memos of the focus codes formulate the relations between the data
segments and their meaning for the RQ. Thus, the memos are text segments
used by the results and discussion section (see Sections 6.6.4 and 6.6.5).

The focus coding was let by the following guiding questions:

1. How was the construction of new microservices limited by technical
conditions?

2. How was the integration of new microservices limited by technical condi-
tions?

3. How does the existing Heureka! architecture influenced the design deci-
sions of the microservice developers?

Additionally, I aimed to focus on four factors:

1. Time required to learn

SOFTWARE DEVELOPERS ARE USERS 145

2. Coupling between software developers

3. Central management

4. Dynamic integration of developing teams without the need for cumber-
some bureaucracy is possible

The guiding questions (1) and (2) address the acceptance criteria (1) and
(2), since the identification of limitations for the construction or integration
of new microservices is the first step to identify possible improvements of the
designed artifact and therefore, to initiate the next cycle of the DSR project.
Since the Heureka! platform should allow for implementation of alternative
microservices, it should have no or only limited influence to the design of new
microservices. Thus, the guiding question (3) addresses the acceptance criteria
(1) and (2). Furthermore, the Heureka! platform should not become a barrier
itself. Therefore, the guiding questions (1), (2), and (3) address the acceptance
criteria (3) in general. Particularly, acceptance criteria (3.e) is supported by
the guiding questions, because every identified limitation and dependency may
mean requiring changes in the code base of Heureka! in order to allow for the
implementation of new microservices.
Factor (1) measures compliance with the acceptance criteria (3.a), factor

(2) with acceptance criteria (3.b), factor (3) with criteria (3.c), and factor (4)
with criteria (3.f).

6.6.4. Results

In the rest of the section, I will highlight a key phrase for each observations
made regarding the research question by being styled bold and italic.
Regarding the first guiding question, I observed that participants’ lack

of knowledge posed a real challenge in constructing the new microservices.
The students decided to attempt using several technologies they were not
familiar with. The Heureka! platform requires the use of web technologies
and therefore, basic concepts should be known to software developers. In the
role of the supervisor, I had to explain the concepts of HTTP and HTML to
several students. Furthermore, the supervisor had to consult the students in
choosing a web technology to implement their own microservices. Nevertheless,
the participants invested some effort in choosing a technology. Afterwards,
they had “a huge learning curve” (cited from on participant and translated
from the German term “super viel”) when it came to these technologies, such
as NPM or GitLab. In the case of NPM, the students mentioned that the
handling of dependencies were overwhelming and costs a lot of effort. In the
end, the students felt the handling of NPM as wobbly and shaky. Particularly,
the hot reloading was very error prone. Hot reloading is a commonly applied
approach to patch parts of a running JavaScript application in the case its

146 CHAPTER 6: TECHNICAL PERSPECTIVE

code was changed by a software developer and is therefore very useful during
the process of implementing software.
Furthermore, one student noticed that handling of asynchronous commu-

nication between the JavaScript frontend and the database was newly and
challenging. One student recounted that the entirety of web development
requires a lot small steps before a result is apparent. Additionally, the students
had to deal with various alternative web technologies, for example in in one
case, where the students selected react.js and were looking for examples at
Arise, developed in vue.js.

One student aimed to integrate the existing enterprise resource planning
(ERP) tool ERPnext and detected unknown network communication initiated
by a part of ERPnext. Thus, the student had to analyze the Docker container
that was a black box beforehand. In the end, the student mentioned that
parts of ERPnext were turned off to run the tool on the new port without
errors. Another student focusing on the existing ERP Metasfresh contacted
the Metasfresh community forum to get help.
As a consequence, the students had trouble understanding the Heureka!

documentation. In one case, the student misunderstood a section about the
setup of the required Heureka! databases. Instead, the student ended up
reading about the setup of the required databases for a new microservice and
was totally confused in the end. Another student tried to log into the system
locally deployed on their working computer by using the account created in
a remote test system on a university server. Thus, the concept of different
domains and their meaning was unfamiliar to the student. In a different case, a
student asked if REST APIs have to be used to implement the communication
between a web server and its database. So, the purpose of REST APIs were
unknown. Moreover, the students were not able to handle the results of Ajax
requests, since they did not considered the asynchronous nature of the requests
and were unaware of how to use handler functions. That being said, they
ended up being able to solve the problem by themselves. In another case,
students were working with plain JavaScript, CSS, and HTML and were thus
asking for a framework with minimal support regarding browser compatibility.
Additionally, a student mentions problems with react.js since the student did
not have much experiences with JavaScript. Group 2 ran into problems, since
the new react.js technology had to be adapted by every group member.
Furthermore, the students basic assumptions were challenging threats to

deal with the new concept of a microservice architecture, like in one case, a
student asked if they had access rights to directly read from the database of
the given microservice Drops. Instead of focusing on the given interfaces of
a REST API and widgets, the student tried to implement a tight coupling
between his/her new service and Drops’, because it was crystal clear that they
would require an access right to read the database.

Nevertheless, although a few students were familiar with all required concepts,
the knowledge gap in the group of participants was still too challenging.

SOFTWARE DEVELOPERS ARE USERS 147

Some students simply were not able to follow the instructions that the more
experienced members of the group passed on.
Additionally, the construction of a new microservice was influenced by

lacking functions. The participants of the study focused on the available
functions at the very beginning. At first, a student mentioned that the existing
microservices were unclear after reading the documentation. The two groups
were explicitly asking “where the users are coming from”. Furthermore, another
student mentions that he/she was interested in potentially missing functions
required to implement his/her new microservice. Thus, he/she implicitly
searched for functions that were not in a high cohesion with the functions
implemented by his/her new microservice. Moreover, the documentation failed
to explain all implemented functions. These issues were fixed in a new version
of the documentation.
In a more precise case, the participants lacked a role to implement the

authorization restrictions required for their use case. Drops associated a few
basic roles to the users (supporter, employees, and admin). They added the
role Autoren (German term for authors) to the authorization implemented by
the session management of their chosen technology. Thus, they did not change
any code in Drops, but extended the users model that is managed by Drops
by the new role. Furthermore, the students identified a missing awareness
interface.
Moreover, the students faced run-time environment incompatibili-

ties with their chosen web technology, like problems with the hot reloading of
their JavaScript applications. These problems are not relevant to access the
Heureka! platform, but are an observed answer to the first guiding question.

Since the study was designed to focus on students as they approach integrat-
ing newly created microservices, the most observations were made regarding
the second guiding question that focused on the limitations of the integration.
Lacking prior knowledge of the participants became a major influ-

ence. The students noticed that they were facing a steep learning curve, since
some had no practical or theoretical knowledge about web development. One
group was intensively asking very basic questions about the communication
between server and client (e.g. HTTP requests). One student mentioned
only having minimal experiences in reading the documentation. Therefore, it
was difficult to start working with it and the architecture at the same time.
Another student had to learn about the system environments. He/she was
unaware that the ports 80 and 443 have to be free to start a web server in a
default configuration. He/she was obviously confused by the error message.
Another student faced problems in the frontend, because the local storage of the
browser would not work after calling the system as an integrated microservice.
It turned out that he/she had used hard coded domains pointing to another
port and therefore the user agent was unable to associate the requested local
storage.
Furthermore, although the idea was to use Heureka! as a black box, its

148 CHAPTER 6: TECHNICAL PERSPECTIVE

requirements simply raised new questions, such as “What Docker is?”. The
participants said they had read additional documentation regarding Docker.
In the end, one student remarked that he/she had learned a lot about Docker
and NGINX, since the first part of semester was devoted to handling its
configuration. In one case, a student mentioned that their own database
docker container was not automatically restarting. The supervisor suggested
using the parameter restart: unless-stopped for the Docker configuration of
the container. And there was also a situation in which a student remarked that
the new microservice calling a Heureka! URL by using the domain localhost
had received an unexpected result. A call addressing localhost from a Docker
container does not address the whole Heureka! system, but rather the container
the calling microservice is hosted on.

As mentioned above, the students lacked the required knowledge about web
development and thus the integration by focusing on the frontend interfaces,
mainly in terms of the widgets, posed a hurdle to overcome. One students
tried to use JSX to integrate a widget in an index.html file. Thus, it would
not become interpreted by JavaScript and the HTML parser of the user agent
would throw an error. In another situation, one student remarked that he/she
did not know how to pass an array of users selected through a widget to
another function afterwards. Other students mentioned the JavaScript events
described by documentation, but they did not know how to catch or fire them.
Next to technical issues, the students also faced conceptual challenges. A

student asked what the term “stand alone implementation” of a microservice
means (“Sollen bspw. Komponenten wie das User Management direkt mit
berücksichtigt werden?”). Thus, he/she was implicitly unable to conceive
of a service running alone and without the rest of Heureka! architecture.
Another student asked if he could use vue.js version 3 even if the widgets are
implemented using vue.js version 2. Thus, a technical binding was assumed,
although the whole prototype was designed to have no or only very few technical
dependencies. In an additional case, the students implemented a microservice
that considers users as participants. The students asked where the participants
were coming from. Thus, they either failed to associate the users with the
Drops service or they did not know how to retrieve the data from Drops; in
other words, they did not know the interfaces Drops describes. Nevertheless,
they were also able to acquire required knowledge, as in the case of one student
aiming to implement the OAuth 2 handshake who was intensively reading the
OAuth 2 specification RFC 6749. He/she had to learn about the wording used
in the documentation, but managed to implement the handshake in the end.
During the final presentation, one student mentioned that he/she learned a
lot about HTTP and OAuth, since the knowledge was required to implement
the OAuth handshake. Nevertheless, another student called for an OAuth
handshake from outside the deployed domain. The supervisor remarked that
such an approach is already possible, since it is the nature of OAuth to permit
domain independent authentication.

SOFTWARE DEVELOPERS ARE USERS 149

The participating students expressed misleading presuppositions about
the Heureka! platform. One student mentioned that he/she aimed to imple-
ment a backend system that directly accesses the Drops database. Another
one noticed that both groups of students were striving to add a calendar
microservice.

In one situation, a student asked for the best way to implement a check of
the users login status in the frontend to handle predictable error states of the
user widget, implemented by Drops. The supervisor mentioned that a technical
tighter coupling is implemented between the microservices if the backend service
is using an endpoint of Drops to identify the users login status and handle the
predictable state of the Drops widget. The student suggested that there would
still be a coupling and the supervisor made reference to the responsibility
of software developers. Using another microservices MSA endpoints in the
frontend will lead to required updates if the software developer team of the
MSA changes these endpoints. The student understood and acknowledged
that a consistent state of the whole system is assumed.
A student mentioned that “in reality” (translated from German “in der

Realität”) there is always only one UI service and mostly also only one database.
Another one had the idea of integrating different microservices by implementing
one main UI, including menu and footer, and multiple iFrames including the
contents of the different microservices.

The students assumed a similar architecture as other modular systems they
were familiar with, like Moodle. Such incorrect assumptions can lead to design
decisions that would result in serious integration issues. More precisely, if
students are asking, if two calendar services can be added in parallel, the
student assumes an integration barrier, if two microservices are addressing
similar use cases. That assumption is misleading in the purpose of the platform,
since acceptance criteria 2 directly requires allowing multiple microservices
addressing similar, but not equal use cases. Otherwise, the crews were not
able to adjust their required support to their local circumstances.

Equally, assuming to directly alter the existing parts of the Heureka! platform,
like databases, will result in serious incompatibilities when the microservice is
supposed to become deployed on a live server, with live data. Additionally, it
implements a coupling next to the provided interfaces and therefore, it would
result in a more tight coupling.

The student aiming to check the login state of the user is right in assuming
the most important authority regarding the user’s login state is Drops, but
fails to estimate the increased degree of coupling between the microservices, if
he/she would directly request the state of the user from Drops. Nevertheless,
the microservice may could avoid to implement a session management by itself,
but it implicitly requires to ensure the endpoints of the backend by referencing
to Drops and would thus result in a tighter coupling. The discussion between
the supervisor and the student demonstrates that handling a small coding
challenge in the design of a new microservice requires to consciously respect

150 CHAPTER 6: TECHNICAL PERSPECTIVE

the concept of loose and tight coupling, as well as high cohesion. Furthermore,
the participant did not considered it by him-/herself.

The students calling for a central UI service implicitly argue for a rejection
of the dynamic UI fragment composition concept and for adapting approaches
that are well known to handle the UI in a microservice environment. Therefore,
they also suggested rejecting the distributed responsibility for the platforms
UI. Unfortunately, the alternative approach of having one UI service does
not address the original DG introduced in Section 3.1 and the socio-technical
requirements.
Students were confused due to the usage of the name Pool2 and

Heureka! at the same time. They tried to find the difference. Additionally,
the usage of identifiers for variables that are sensitive to VCA, like the role
name supporter for the purpose of authorization was confusing for the students.
The participants did not know about the term supporter , used by
VCA for the WASH volunteers.

Although using different names to address the software and the deployed
instance of the software would be only a minor issue, it also had potential to
become a barrier preventing people from integrating their software. The usage
of the case sensitive variable value for the purpose of authorization requires the
software developers to acquire basic knowledge about the internal structure of
VCA. Such an effort can become an additional barrier.

Students discussed specific instances of a problem that had been
already solved abstractly by the existing concepts. In one case, the
students were discussing, if the user data (managed by Drops) should become
part of their REST API. Although their REST API manages calendar objects.
Furthermore, they tried to present a list of users by using the Drops REST
API to print a list of users, although their exist a widget to do so. In other
cases, students strived to get direct access to the Drops database.
Since the student did not apply the concept of widgets as well as the

OES concept, they approached the integration in a much more basic and
challenging way. Moreover, implementing other approaches, like handling the
user representation by their own code or passing the complete user objects
through the REST API of the new microservice, would break the concept of
implementing a loose coupling limited to a specific set of interfaces without
the need for code duplication, as well as the aim to implement a high cohesion.

In some occasions, the students were not able to identify all interfaces
required for the integration. In particular, one group failed to consider the
widgets integration. Another group aimed to get access to the Drops database
instead of using the provided REST API. Thus, the students had additional
work to do for the purpose of integration. One participant invests six to eight
hours to restructure the database of the new microservice to integrate the
participants IDs.
Without the the concepts of the REST API, the widgets, or the OAuth

handshake requires implementing more complicated solutions with a high

SOFTWARE DEVELOPERS ARE USERS 151

likelihood of implementing a coupling in addition to the interfaces that were
originally focused upon and overlooking the high cohesion in the code of the
new microservice. This being the case, the software developers using the
Heureka! platform should become familiar with these concepts before starting
any implementation work.

Nevertheless, in other occasions, the students understood the concept of the
Heureka! platform in such a way that they identified specific functions
by themselves that have to be considered for the purpose of inte-
gration. The students focused on the OAuth 2 handshake and scrutinized
the REST API design of their new microservices by themselves.
In fact, while the OAuth 2 handshake is a required interface for their

microservices, it is promising to observe that the students were also focusing
on the interfaces that are provided by their new microservice. Thus, the new
software was not just a consuming element of the platform, but became a
living part of it.
Interestingly, other groups were identifying the required steps of the inte-

gration by example. So, one group mentions doing the integration the same
way, as it was done for Drops and Arise. Another student intended to connect
Drops as a first approach for starting the integration.

Furthermore, the participants aimed to implement a form field that allows
the user to search for other users. The students conclude that they should
to integrate the vca-user-widget. They expect an array of users as a result
that can be used by another function. One group asked for a microservice
implementing an awareness pipeline. Thus, they requested an interface that
they assumed to be required, that not exists at the moment. So, their approach
in integrating the new microservice uncovers lacking functions.

Although the participants applied different strategies to initiate the integra-
tion, by example or by focusing on the documentation, they were able to dive
into it and identify the first steps. Moreover, the dynamic process of designing
a CSCW tool fitting the social system emerges: The end users requested
functions implying completely new non-functional requirements that have to
be addressed by the platform. Consequently, the software developers were able
to identify them. Afterwards, these new requirements must be communicated
to the software developers community.

On several occurrences, the participating students were not reading
the documentation. At first, students thought that they had to alter existing
parts of the Heureka! platform instead of implementing a new microservice.
Several times during the project, the students asked for database access instead
of the REST API documentation. Furthermore, they asked for well documented
information, like the interface definitions of the widgets, the OAuth 2 handshake
or its example, the schema definition of an API, or how new menu entries
can be created to make the microservice accessible for end users. One time, a
student faced CORS errors and the supervisor had to explicitly reference to
the documentation of how to integrate a microservice regarding the NGINX

152 CHAPTER 6: TECHNICAL PERSPECTIVE

proxy.
During the projects, several students mentioned to start focusing on the

documentation, since they are diving into the integration part of the project at
that moment of time. This approach could result in additional effort to redesign
the microservice for the purpose of integration, as one student mentioned that
he/she has invested about six hours of work to integrate the ID of the users as a
reference to the database of the new microservice. Another student mentioned
that he/she has read the widgets documentation before he/she was starting
designing the microservice, to know what the frontend possibly could send to
the backend.
Although the acceptance criterion (3.a) demands minimizing the required

time to learn new technologies, the case clearly highlighted the fact that not
reading the documentation may result in more time needing to be invested.
Thus, although the software developers should focus their new microservice in
the beginning, they should also be invited to read the documentation initially.
I was able to identify many possibilities for improving the documentation.

Nevertheless, the students were able to address the challenges they
were facing during the integration by using the documentation.
They adapted solutions implemented for Drops and Arise, and after being
confused they admitted reading the documentation more intensively. Some
participants were directly using the appropriated parts of the documentation,
like one who was aiming to start the integration and had a look at the article
with the name “How to create a new microservice”.

Due to issues in the Heureka! platform documentation, the partic-
ipants ran into problems, while attempting to integrate their newly created
microservices.
The Heureka! CLI requires publicly accessible repositories. This has to be

considered by all microservice developers aiming to integrate their service and
thus it should be part of the documentation. This aspect is not typical for
technical documentations, but it addresses the socio-technical dimension of a
documentation. The next reader should become a user in the role of a software
developer and therefore also know how to be a writer of the documentation.
The participants of the study commented that reading such a significant

amount of documentation requires a lot of time. Approaches of the HCI
research, like Think-Alouds or Card Sorting, could be applied to identify
possible improvements. One student mentioned, that the different microservices
“were fading in the documentation”. He/she called for more clearly separated
microservice descriptions, focusing on their interfaces in terms of the REST
API and widgets. One student commented, that the features of the existing
microservices were unclear after reading the documentation. Furthermore, the
OAuth handshake was discussed very intensively by one group of students and
they only understood it completely after a long explanation by the supervisor.
They acknowledged that they had not read the documentation intensively.
Nevertheless, one student commented that two different pieces of documentation

SOFTWARE DEVELOPERS ARE USERS 153

(Heureka! documentation and the GitHub README files) were difficult to
use, since it was complicated to search for specific parts.

One student mentioned two different technical issues that both were confusing
for him or her: (1) An image was missing that explains the system and (2)
the documentation missed a hint how to register a user, if no email server is
configured. Additionally, they found a few mistakes in the documentation of
the OAuth handshake. One endpoint was deprecated and the error messages
were missing. Likewise, the Open API document for Drops was lacking a
few parameters. Since the Heureka! platform strives to integrate several
different applications by forwarding through an NGINX proxy, domain specific
challenges, like CORS errors that may occur should be introduced to the
reader. Moreover, the deployment of new applications in the docker network
is missing. Thus, a developer would have to invest a lot of time to figure
this out. A student supposes that the registration of a new account does
not work properly, since no confirmation mail was received. In the end, no
email was received, since no email server is configured at the localhost. One
student tried to create an admin account by using the CLI before an account
was created by using the web interface. The documentation should explicitly
explain the order of such activities, if it is required. One student has installed
docker-compose (https://docs.docker.com/compose/, accessed 2022-07-26)
from normal repositories and thus, it was the wrong version number. Another
student mentioned that the required version number of Docker is missing.
Consequently, the documentation should list the required version numbers and
link to installation guides, if required. Moreover, the students were questioning
detailed explanations for the setup of the Heureka! CLI on different operating
systems.

Regarding the shared CSS, the students did not find the documentation. One
student asked where the documentation of the Dispenser system as the CSS
provider is. Also the documentation of the widgets became a challenge. For
example, I failed to document the HTTP call https://localhost/dispenser/
navigation/init to re-initiate the navigation, after the corresponding JSON
was reworked. One student realizes that the navigation has to be reinitialized:
“Ah, you have to newly initialize it!” but reinitialized the Heureka! setup. At
that moment in time, the Heureka! CLI did not call the endpoint to initialize
the menu automatically. Thus, he/she became confused. Moreover, while the
students added their entries to the JSON files of Dispenser configuring the
menu entries, they asked: “What is this ‘permission’?” and referenced to an
attribute in the JSON file used to name the roles allowed to have access to
the menu entry.

In another case, all OAuth handshakes always were running into an HTTP
redirect to arise and the success case is not there. The supervisor observed that
the problem only occurs when the user was not logged in. Thus, the supervisor
suggests, that the AJAX parameter for the initial OAuth handshake call to
Drops was missing. During one of the weekly sessions, the supervisor had to

https://docs.docker.com/compose/
https://localhost/dispenser/navigation/init
https://localhost/dispenser/navigation/init

154 CHAPTER 6: TECHNICAL PERSPECTIVE

explain the usage of the Access Token and the user data. He/she explains the
session handling is placed in the microservice and the flow of the handshake.
This was unclear for the students.

In spite of all the named problems, one student mentioned that he/she
just followed the instructions and the only occurring error was to have two
NGINX instances (one of Heureka!, one of the microservice) running on the
same port. This was solved by changing the ports and joining the NGINX
instances. Another one acknowledged that the README file of Drops and the
documentation of Heureka! were helpfully to implement the OAuth handshake.

While the more detailed problems were solved during a rework of the docu-
mentation, it becomes obvious how important the documentation is for the
participants of the study to proceed the integration of their microservices.
Nevertheless, it must be considered that study participants were students and
therefore mostly inexperienced software developers.
The participants were first implementing the new microservice and inte-

grating it into the Heureka! platform as a second step. Still, one student
assumes that the integration phase is well fitting to solve existing and known
issues of the new microservice. Regarding the order of the different steps
of integration (shared session, dynamic UI fragment composition,
docker and NGINX, OES), the participants followed very differ-
ent approaches. One group were starting by a carefully examination of the
documentation, while the next group focuses on the OAuth 2 handshake as a
first step of the integration. Another student has started with focusing on the
REST API of Drops. Nevertheless, the students identified the next steps by
themselves. Furthermore, the students also considered the integration of the
new microservices in the menu mostly closely associated with integrating the
navigation widget.
A student aiming to integrate the much more complex tool Metasfresh

ERP (https://metasfresh.com/, accessed 2022-07-25) that is deployed
using multiple Docker containers by itself, started with deploying Metasfresh’s
Docker containers behind the NGINX proxy of Heureka!. All participants
started the NGINX integration of their microservices. Particularly, complex
microservices required more time regarding the NGINX integration. Equally,
nearly all students were integrating the Docker containers.
Additionally, one group aimed to implement awareness functions, as they

are common to modern CSCW applications. They asked by themselves, if
they have to do so, or if awareness is managed by another service. Thus,
they adapted the concepts of loose coupling and high cohesion and applied it
correctly.

Only once, a student did not know what integration task had to be focused in
the next steps. The supervisor suggested to take a look into the documentation
article. Afterwards, the student mentioned that they now knew the next steps.

One student cited the steps for integrating a microservice into the Heureka!
architecture: Backend, Frontend, OAuth handshake, showing up data in

https://metasfresh.com/

SOFTWARE DEVELOPERS ARE USERS 155

frontend (translated from German). Hence, according to the microservice’s
system design, the student split the task of deploying the microservice’s
docker container as well as the NGINX integration into two tasks focusing
on the backend and the frontend application. Furthermore, he/she did not
differed between Docker and NGINX regarding the integration, yet the OAuth
handshake and “showing up the data in the frontend” are explicitly named.
Nevertheless, another student subdivided the goal of integration the new

microservice in the Heureka! platform by the same steps: (1) Integration in
Docker und network, (2) authentication of the user, and (3) integration in the
frontend. A participant adds that the frontend integration as the last part
means to integrate the microservice in the menu. He/she defined that the
integration in Docker and network means that it must be deployable from the
Heureka! CLI. Another one notes that integration means to have a configured
NGINX directing the request to the microservices correctly.

Me as the supervisor suggests several times, to implement first and integrate
afterwards. Furthermore, I suggested to start the integration by focusing
on the widgets. Thus, I influenced the chosen ordering on a higher level.
Interestingly, the majority of the participants focused the Docker integration in
the beginning, followed by using NGINX as a proxy. Afterwards, they aimed
to integrate the OAuth handshake, followed by the navigation as the third
and the widgets as the fourth step. Therefore, the groups facing timing issues
were mostly not able to integrate the widgets.

A new microservice has to be deployed to become integrated. Creating
the deployment setup in the context of the rest of the Heureka!
platform was a serious integration threat. One group of students has
created a git patch to add their microservice and altered the Heureka! CLI
at several lines of code to do so. A second group was not able to set up the
Heureka! CLI at all. One student mentioned that the setup of the architecture
was very laborious, since so many files had to be changed. The student noticed
that he/she was not able to do it alone. One group was trying to replace the
Heureka! CLI with their own docker compose file and a small Bourne-again
shell (BASH) script to reduce complexity. A particular student mentioned that
he/she had run Heureka! CLI, collected the BASH output and implemented
his/her own shell integrating the new microservice. This shell was shared with
the team of software developers.
Another student invested one to two hours to think about the integration

of the docker containers and if he/she should move functions of the Heureka!
CLI to a GitLab runner. For example, ERPnext (https://erpnext.com/,
accessed 2022-07-26) is deployed by a complex docker-compose file. Just
copying the YAML file and the .env file into the Heureka! configuration file
was not successful. Thus, the integration has required to make a detailed
join of the docker configuration files and redefining IP addresses, as well as
NGINX directives. The participant annotates that the merge of Heureka!
and ERPnext means merging the file system directories and the YAML files

https://erpnext.com/

156 CHAPTER 6: TECHNICAL PERSPECTIVE

(referencing to the docker compose YAML files). But that approach was also
very time consuming. In the same way, another student approached merging
the docker-compose files of Metasfresh and Heureka!. In the end, the student
had to deploy all docker containers as part of the same virtual docker network
pool-network . Nevertheless, the student assumed that the merge of the IP
areas of ERPnext and Heureka! leads to communication issues. Therefore,
he/she concluded that a tightly coupling is implemented, if a program comes
with its own network configuration and thus, the developer has to merge this
configuration with the one of Heureka!.
Additionally, students noticed that the microservices must be in the same

Docker network, to allow data sharing. Otherwise, the communication becomes
vulnerable to man-in-the-middle attacks, that means a third party would
become able to read the exchanged data, during the data transfer. According
to one student the configuration of the docker network was difficult, although
the initial setup using the Heureka! CLI was very simple.
Additionally, the required prior knowledge was challenging. One group

started to focus on the integration, although they were still unable to cre-
ate Docker images for their microservice application. Working around the
knowledge gap, the supervisor suggests to use the dev new environment of the
Heureka! CLI (Sell, Kleber, and Kästle 2022b), since it allows for focusing on
the other aspects of the integration without Docker. Repetitively, the students
aimed to deploy the newly created microservice as part of the Heureka! environ-
ment accessible via HTTP request, that means ’behind’ the NGINX proxy and
focused the docker configuration files for this purpose. Thus, the supervisor
had to point their attention to the NGINX configuration. Equally, a student
was confused because although all docker containers were running, he/she was
still facing a white-screen problem in Metasfresh (https://metasfresh.com/,
accessed 2022-07-26). Again, it was difficult for the student to identify the
problem of the setup and to point to its origin (the misconfigured base path
required for the NGINX proxy). In another case, a student mentioned that
their own database docker container is not automatically restarting. The su-
pervisor suggests to use the parameter restart: unless-stopped at the docker
container’s configuration.
Furthermore, a reoccurring issue was a number of randomly selected con-

tinuously restarting docker containers. Although the issue was resolved easily
enough by completely deleting the containers and starting the Heureka! envi-
ronment again, it was challenging to detect and mostly the students did not
knew what to do. Certainly, this must be considered a docker bug, since official
images run into such a fail state as well. In the very beginning of the study,
one student completely rejected a specific tool for the purpose of integration,
since it had no official docker image.
Despite all the aforementioned challenges, most students completed the

integration in the Docker and network layer. The microservice can be started
by using the command up .

https://metasfresh.com/

SOFTWARE DEVELOPERS ARE USERS 157

In addition to Docker and the Heureka! CLI, the students faced several
integration challenges associated with NGINX as a proxy server .
At first, the integration in the NGINX configuration requires to edit three
different files in the Heureka! CLI and the students had problems figuring out
which parts needed to be edited. One student created a git patch to solve the
issue. Although it was described in the README file of the Heureka! CLI
project, the students had problems.
Students aiming to integrate very complex applications like existing ERP

tools additionally faced the challenge of either joining different NGINX con-
figurations or joining the NGINX of Heureka! with other web servers, such
as Apache (https://httpd.apache.org/, accessed 2022-07-25). Depending
on the technology, the participants intended to merge existing NGINX con-
figurations with the one of Heureka! ’s NGINX or use the Heureka! NGINX
as a proxy for existing Apache setups. Although setting up the NGINX as
a proxy for other web servers is more simple than a merge, joining the con-
figurations lead to reduced latencies for end users. Thus, both possibilities
have their (dis)advantages. Unfortunately, one student concedes that the
NGINX configuration of ERPnext is to complexly configured to integrate it
to the NGINX configuration of Heureka!. Several times, the required NGINX
upstream directives were incorrectly declared. In one case, a participant had
trouble using the already declared upstream directives of the given ERP tool.
Thus, the student concluded that the integration in the sense of a merge of the
networks of two distinct tools by merging the NGINX configurations imple-
ments a tightly coupling between these tools, if the stand-a-lone configuration
is complex enough. He/she acknowledged that the growing tightly coupling
by merging the configurations lead to a more complicated update process. As
an example, he/she explained that the merge of the IP areas of ERPnext and
Heureka! leads to communication issues. As a summary, the student’s view
can be paraphrased as follows: A tightly coupling is implemented if a new
tool comes with its own network configuration and thus, the developer has to
merge this configuration with the one of Heureka!.

Additionally, the participants faced the issue of configuring a base or public
path for their frontend applications frequently. The Heureka! NGINX routes
the different applications by adding different base paths in front of the appli-
cation’s path of the URL. Thus, the applications need to know these paths
to send correctly configured redirecting HTTP responses. In some cases the
configuration of the applications was very complicated and other students did
not recognized the need to configure their application by using a base path,
although it was explained in the documentation and the students defined the
base path by themselves, when they configured the NGINX. An error due to
a missing base path configuration normally results in a white screen and an
HTTP 404 result. Thus, it was difficult to detect for the students.
Next to Heureka! ’s requirement to use base paths, a few students used

technologies that required rewrite directives to be declared in the NGINX

https://httpd.apache.org/

158 CHAPTER 6: TECHNICAL PERSPECTIVE

configurations. Thus, the configuration files became larger and more compli-
cated.

A student faced CORS errors as responses while he/she tried to implement
the OAuth 2 handshake and asked if something has to be configured in Drops
or if something was incorrectly implemented. The student was running the
backend on one port, the frontend on another and the Heureka! architecture
on port 80. Thus, he/she fails to understand that the setup using different
ports leads to the CORS error. This being the case, the supervisor explained
how to configure the Drops backend that way it accepts requests from the
additional origins. A week later, the student noted, that a CORS error was
thrown, because the system was running on localhost:8080 , but it should
have been localhost .
Frequently, the students hard coded the localhost domain. Thus, the

new microservices run into error states after deploying the services using real
domains.
Furthermore, the students had difficulties detecting a new state of their

setup, since the NGINX responses with an HTTP 301 status code, if the
root path / is requested. The returned location directive points to an arise
path. Although this configuration is totally fine for a production system, it
becomes a usability issue for a development setup, since user agents “ought [...]
automatically re-link references to the effective request URI to one or more of
the new references sent by the server” (RFC 7231, §6.4.2.). Modern user agents
fulfill the specification by caching the new domains received by an HTTP 301
response. Thus, if something went wrong and the new microservices redirects
to the root path once, the software developers face a confusing usability error
the upcoming calls, since updated code will show no effect.

Additionally, students occasionally faced errors that microservices were not
available. These errors were always resulting from not correctly started docker
containers in the Heureka! CLI. Thus, these docker issues were assumed
to be NGINX issues and therefore wrongly addressed. Furthermore, when
the students aimed to deploy the new microservices as part of the Heureka!
platform accessible from a web client, a few occasions they focused Docker
instead of NGINX. Others were having issues, since the required ports 80 and
443 were already in use on their development systems.

In conclusion, one can say that the handling of an NGINX was very chal-
lenging for the participants and the issues were multi-layered. They had to
be familiar with URLs, particularly domains, ports and paths. Furthermore,
security relevant configurations, like secure shell (SSH) and CORS needed
to be known. Finally, also the Heureka! CLI must be improved to show the
status of Docker containers, and ideally analyze the NGINX configuration.
As a consequence, the usage of NGINX becomes a technological bond for the
microservice developers. Thus, it tackles the idea of having a free choice of
technology. Furthermore, the participants were intensively focusing on the
NGINX, as well as the Docker technology, due to their complexity. All the

SOFTWARE DEVELOPERS ARE USERS 159

time, they were constantly using the Heureka! CLI. Thus, they stated that
the integration in Docker and the network means that it must be deployable
from the Heureka! CLI.

The studentsmissed starting the integration of their microservices
regarding the shared session. They ran into several problems, e.g. one
student intended to validate the cookie that was set by Drops to identify the
users session. Two groups of the students were requiring a detailed introduction
in the OAuth 2 handshake. The supervisor explained the existing sequence
diagram to them and the students asked detail questions, such as: (1) What
is the entry point in the frontend? (2) How do I redirect everything that
way, that the user has a session at the end? (3) How to deal with errors? (4)
What is the workflow between frontend and backend? How does the frontend
authenticates itself against its backend?

Since the authentication is closely linked to the authorization, the decentral-
ized management of roles and access rights should also be addressed by the
Heureka! architecture. One group of students added the role Autoren (Ger-
man term for authors) to their microservice’s user management and session
handling.
Smaller problems that the students faced included: (1) They aimed to

create OAuth clients, although they were no administrators. (2) They aimed
to encrypt and read the HTTP cookie set by Drops to identify the Drops
session. (3) They did not received the expected server responses. Therefore,
all possible server responses should become listed and explained. (4) The
participants added URLs to the frontend, instead of the backend system of
their microservice to create an OAuth client in Drops. In the case of (3),
the wording in the documentation should be reworked to differ more clearly
between the OAuth provider and the OAuth client. Furthermore, the OAuth
client must be discussed in more detail regarding the separation of the frontend
running at the user’s client and the backend server. (5) One student faced
the problem that the OAuth handshake always runs into an HTTP redirect
to arise and the success case is missing. The supervisor observed that the
parameter ajax is missing. Thus, also the parameters must become discussed
more intensively in the documentation. (6) Another participant faced an
HTTP Connection-Refused error. The error occurred only in the case the
microservice’s backend sends the request. The same request sent by another
client (e.g. the browser) does not fails. Thus, supervisor and student assumed
that the problem is based in the client library. (7) One group mentioned that
the session normally ends after five minutes. The problem is part of the session
handling implemented by the students in the backend.
Furthermore, the participants also faced the problem of integrating

the CSS delivered by Dispenser . The students asked where the documen-
tation of the dispenser system (CSS provider) is and requested an example
project. Moreover, one student asked how to use the CSS classes provided
by the dispenser CSS. Me as the supervisor suggested to just use it, while

160 CHAPTER 6: TECHNICAL PERSPECTIVE

student prefers to write CSS classes that inherit from the given CSS classes.
Another participant mentioned that he/she has started editing the styling of
the navigation and footer from the heureka-widget-navigation.

Designing a new library of CSS classes inherited from the provided interface
can be judged as a formalization of the implicitly existing coupling that results
from using the provided library. On the one hand, it could support the software
developers in managing their maintaining responsibilities. On the other hand,
inheritance implicitly means to become more concrete and therefore also to
implement change. Thus, it would result in breaking the idea of having a
shared CD.

“How do we get the menu on our website?” – The participants had problems
to add the URLs of their microservices UIs to the menu. They did
not know where to start. Furthermore, although the file was saved at their
development system, they were reluctant to change the JSON file that handles
the menu entries. Other participants did not know that the navigation must
be re-initiated, after changing the file. One student was additionally cautious,
since both groups had to add a calendar system and he was curious if this
would be possible.

Interestingly, one participant and his or her group were not able to imagine
that two services implementing a similar functionality can be integrated at
the same time. This assumption is just the participant’s presupposition and
is not grounded in the documentation or the Heureka! CLI. Furthermore,
it breaks the acceptance criteria 2, since it requires replacing functions “on
behalf of single crews” and therefore, it must be possible to deploy multiple
microservices implementing the same function in parallel. Otherwise, if an
implementation always has to replace an existing one, it would break down
the self-management characteristic of the evolutionary-teal organization VCA.
Moreover, the integration of the widgets became challenging. The

participants faced some technical challenges: In one situation, a certain student
mentioned that he/she is facing issues in using the navigation widget. The
student assumes that it could be a problem, because the instructions are for
Vue.js, but they were using react.js. One student mentioned that he/she had
tried to integrate the heureka-widget-navigation in the react.js application.
In the end, a member of the group mentioned that the group was unable to
integrate the navigation widget. Another one tried to run a Vue.js component
in Angular to use the navigation widget. Group 1 missed to use VueI18n
(Vue.use(VueI18n)). One student mentioned that he/she does not know how to
pass the array of users selected through a widget to another function afterwards.
Unfortunately, several students noticed that the code for the user widget was
integrated, but does not work.
In an email the students mentioned the events described by the documen-

tation, but they don’t know how to catch or fire them. One student tried to
integrate the heureka-widget-navigation-2021 without installing it beforehand.
Equally, the usage of the widgets was unclear. A student had tried to integrate

SOFTWARE DEVELOPERS ARE USERS 161

the navigation widget at the index.html by using the JSX syntax. Since JSX
must be interpreted by JavaScript, this approach would just result in invalid
HTML.

A student described that the frontend components had to be loaded into the
frontend of the new microservice to result in the same look & feel as for the rest
of the Heureka! platform. One student had the idea of integrating the different
microservices by implementing one main UI, including menu and footer, and
multiple iFrames including the contents of the different microservices.

The widgets are designed to handle exceptions by themselves. A student was
running into a situation whereby he/she required to handle a possible widgets
exceptions by him-/herself. But since the widgets handle exceptions by
themselves, they do not throw any exceptions. Thus, the widgets
should throw their exceptions as events, next to handle themselves.
The student got the idea to check the state of the widget before loading it

(e.g. by calling an endpoint in the backend). In the case of an invalid state that
would lead to a malicious state of the widget, the system could load something
else. In another situation, a student may have encountered a bug of the user
autocomplete widget, since nothing happened on a click event. Unfortunately,
the student was not able to identify if the faulty behavior was induced by a
widget bug or an incorrect integration.

Since the widgets does not throw exceptions, the software developer was
limited regarding his/her integration. In fact, every well-designed interface, as
the widgets aimed to be, should implement exceptions, instead of only handling
them itself. Thus, this was an error in the technical design and should be
reworked.
The integration in Heureka! by using the provided APIs requires using

external libraries, since the implementation approaches aim to use or adapt
existing standards. Thus, the participants had to search for appropriated
libraries implementing the standards by their chosen technologies.
Furthermore, they had to read and understand the official specifications of the
standards and to know the way it was adapted for Heureka!. For example, they
had to read about Docker intensively and to implement the OAuth 2 handshake,
the students had to read and understand RFC 6749. Afterwards, they have to
learn that Heureka! remove the additional user dialog to receive the permission
to generate an authorization code and the students have to understand that
client libraries will not be affected by this adaptation. Subsequently, they
can search for a fitting programming code library. One student mentioned
that the OAuth integration required them to update Python packages in their
backend’s docker container.
The students mentioned that the wording used by the official specification

of RFC 6749 confused them. Thus, the Heureka! documentation should strive
to use the same wording. Furthermore, they noticed that different libraries
supported different OAuth 2 versions.
The participants were giving up on the integration in some cases.

162 CHAPTER 6: TECHNICAL PERSPECTIVE

The more complicated tools, like ERPnext or Metasfresh compelled the partic-
ipants to focus on the integration of Docker configurations, as well as network
communication through a proxy server in front of Heureka! and the microser-
vice. One student tried to run the applications in parallel, but he/she faced
several errors. Thus, the participant continued the integration by aiming
to merge the configurations. In fact, one participant was demotivated and
announced to replace the focused ERP Metasfresh, if the integration regarding
Docker and NGINX does not works in the upcoming week. Although he/she
did not rejected Metasfresh, the situation exemplified the significant effort
required to integrate a complex tool using Docker and NGINX.

A few students mentioned that they had not implemented an authentication
and no student integrated the OES.

Furthermore, a number of students did not integrated the widgets and the
CSS styling. While the participants focused the Docker configuration and the
NGINX integration by themselves, the supervisor had to suggest to check the
CSS classes of Dispenser, the integration in the menu and the usage of the user
widget several time. One group of students mentioned that he/she is facing
issues in using the widget-navigation. The student assumes that it could be a
problem, because the instructions are for Vue.js, but they are using react.js.
In the end, the student mentioned that the group was not able to integrate the
navigation widget. They reasoned that the widget was implemented in Vue.js
instead of react.js Next to technical challenges, another participant mentioned
that he/she had not been able to implement a frontend representation of the
user’s data due to timing issues. The student mentioned that the frontend
integration has not been completed.
One group stated that they had no more time to address the integration

after the microservice was implemented. No group performed a complete
integration, due to the amount of effort required in most of the cases. While
the bachelor students invested half the time to initially implement the new
microservice and had only the half of the time to address the integration,
the master students faced complex challenges, since they aimed to integrate
complex software that is modular in itself. As a consequence, the time intensive
technologies used by the Heureka! platform need to be questioned. Is there
any way to simplify the Docker setup? Should Docker be replaced? How
can Heureka! automatically identify misconfigurations regrading Docker and
NGINX? Furthermore, the interfaces at the frontend layer should become
more present and more intensively supported by Heureka! ’s documentation.
Despite of the identified challenges and issues, several students were

completing parts of the integration. The students deployed the Heureka!
environment using its CLI, but also the required Docker containers as part of
the Heureka! environment. Moreover, the students were able to deploy the
Heureka! environment next to complex ERP tools. Despite the technical issue
of restarting Docker containers that are difficult to see, the participants stated
that this issue was simple to resolve at the end.

SOFTWARE DEVELOPERS ARE USERS 163

Furthermore, they used the RESTful API of Drops. Also challenging tech-
nologies were managed by the NGINX of the Heureka! platform and most of
the students implemented the OAuth handshake successfully, including the
establishing of an user’s session handled by the new microservice. Two students
explained independently during their final presentations how the implementa-
tion of their handshake result in a successfully submitted Access Token . One
student noticed that the implementation of the OAuth handshake was more
simple that it was assumed it would be. Especially, the UML sequence diagram
in the documentation was very helpful.
The prototypical implementation of the Heureka! CLI raised sev-

eral issues of technical incompatibilities. Mainly, the participating stu-
dents had problems running the GNU BASH (https://www.gnu.org/softwa
re/bash/, accessed 2022-07-26) on macOS andWindows. Nearly all commands
used by the Heureka! CLI require the BASH. Additionally, students were
facing problems to run the docker containers of the Heureka! platform on their
Apple Mac devices with an ARM64 processor. Another student tried to replace
Docker by podman.io (https://podman.io/, accessed 2022-07-26), but ran
into problems, since podman was not supporting docker-compose. Using a
virtual machine, the students faced problems when using shared directories.
According to one student, the lack of support for macOS by Heureka! was
the biggest challenge. Trying to get Heureka! running on macOS was a time
consuming process (two weeks) and ultimately was not successful. In the end,
the students decided to work with Ubuntu, since they ran into problems with
the other operation systems.

More issues arouse when a student accidentally started the Heureka! CLI in
the development mode for Drops. Since Drops is implemented using Scala /
Play, it uses SBT (https://www.scala-sbt.org/, accessed 2022-07-26) as a
new dependency, and the students had to deal with that.

Moreover, since they did not know about the requirement of having at least
four GB working memory available to run the prototype, the students ran
into technical problems. One student also faced disk space problems, since the
docker containers of the new microservice already used the available space.
The participating students were facing several usability issues and

bugs of the Heureka! CLI, as well as a few of the associated non-functional
services and Drops. I coded 95 segments of the data during the open coding
that were indicating an usability error or a bug in parts of the Heureka!
platform.
Such issues can be expected, when interacting with a prototype. The

meaning of the bugs for the complexity of using the Heureka! platform as a
software developer is discussed by other paragraphs of this section. Therefore,
I will not go into detail here, but state that a new version of the Heureka! CLI
and the Heureka! platform’s services is available, fixing a lot of the detected
issues.
Nevertheless, I have to record that nearly all students were facing issues

https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://podman.io/
https://www.scala-sbt.org/

164 CHAPTER 6: TECHNICAL PERSPECTIVE

in using the platform and the CLI and therefore much time was invested in
trying to fix the issues, to find work-arounds, or to figure the problems out.
Students adapted new tools and concepts from the Heureka! plat-

form to implement their new application. Additionally, they mentioned
several times that they learned a lot about web development. Given that they
had to use NPM, Open API and GitLab, these tools proved interesting to the
students. The participants stated that they had to learn to use Git.

Although NPM and GitLab are collaboration tools not directly influencing
design decisions of the students, frameworks like Open API and Vue.js have
influenced the design of the new microservices. Since the students were facing
such tools and frameworks because they were using the Heureka! platform, it
has influenced the design decisions of the students.

The design of the Heureka! platform allows software designers to have some
degrees of freedom during the implementation. For example, if a designer
just uses the ID of a data object managed by another microservice, or if the
whole data object is received, can be decided by the engineer. Thus, the
communication between the services can be adjusted in detail. Nevertheless,
the students were confused by this degree of freedom and did not
knew how their system should be designed ideally.

Furthermore, during the phase of the integration and while reading the
documentation, the students began to realize that other elements of the
Heureka! platform is supporting them in handling such degrees of freedom.
Aiming to represent an user in the frontend, the students initially focused
the documentation of the REST API, but by extending their attention to the
concept of widgets, they figured out by themselves that they only need to
handle the user’s ID and the widget implements the rest. They were really
surprised and mentioned that they never would thought about solving “a
backend problem by a frontend concept” (translated from German).

Still, the students themselves analyzed the functions required for implemen-
tation to address their selected user story. They identified notifications as
loosely coupled to the rest of the functions implemented by their microservice.
Thus, they become uncertain, if they should implement it or not.

Consequently, the design of the new microservice is influenced by the concepts
and existing implementations of the Heureka! platform. Still, the coupling
that results from this influence is limited to the required interfaces of the
new microservice. Furthermore, Drops is in charge of representing the users.
In general, a managing microservice is in charge of representing pulled data
objects.
The students aligned the design of their new microservice to the

design of the already existing microservices. One group started sepa-
rating between a frontend and a backend application after four weeks of working.
Another student mentions that he/she has read the widgets documentation to
know what the frontend possibly could send to the backend.

Although the Heureka! platform aims at supporting software developers in

SOFTWARE DEVELOPERS ARE USERS 165

being unlimited regarding their software’s design, it is a useful approach to
know the interfaces the tool should work with and to align the design to the
expected values. In terms of the coupling between software developers that
results from such technical conditions, it is limited to the technical coupling
between the microservices. Thus, the number of such interface couplings is
limited and manageable regarding its complexity. Consequently, only a loose
coupling can be assumed.

Very early in the project, students asked for the data representation of
objects in Heureka!, e.g. the user representation. They assume it would was
required to implement their frontend and to implement the association between
the user instance and data instances implemented by their microservice. One
student mentioned to investigate the database structure in order to understand
the structure of the data instead of using the REST API documentation.
Another one mentioned that he/she aimed to implement a backend system
that directly accesses the Drops database.

Focusing on the basic data structures implemented by Heureka!, the students
designed their microservices to be restricted to such existing structures. Ideally,
the students should focus on the interfaces of the microservices in terms of the
REST APIs and the widgets.

The participants discussed the design of the RESTful API of their microser-
vice aiming to implement a calendar service. Due to privacy concerns they
questioned if the user data that is associated with the calendar data,
should be part of the data published through the REST API.

This case demonstrated that the design of the new microservice’s REST API
is limited to the restrictions given by the OES escalation guidelines. They only
allow for inclusion of a reference by the UUID to the user’s data. Thus, the
design of a new microservice’s REST API is influenced by the design decision
made during the implementation of the other microservices. Although such
an influence always implies an implicit coupling between the microservcices
software developers – they have to recognize and consider what is managed
by which microservice and their REST API design – the coupling is limited
to the required and provided REST interfaces of the new microservice. Thus,
just a loose coupling can be assumed.

The students faced unknown concepts or misconceptions. As already
mentioned, basic knowledge about HTTP, HTML and web development should
be familiar to the software developers. Getting up to speed costs a lot of time.
Additionally, the Heureka! platform requires having basic knowledge about
Docker and NGINX.

Furthermore, reading the documentation and learning about the basic con-
cepts of the Heureka! platform requires time and is necessary in order to
start integrating new microservices. This becomes more challenging, if the
software developers have to or aim to delve deeper into the applied standards
and technologies, like OAuth 2 or Docker, as mentioned by one student who
focused the OAuth 2 specification. Moreover, it is necessary to learn about the

166 CHAPTER 6: TECHNICAL PERSPECTIVE

Heureka! platform before the integration is initiated. One student mentioned
that he/she started editing the styling of the navigation and footer from the
heureka-widget-navigation. Therefore, he/she ignored the bounded context.
Software developers do support each other mutually. For example,

they explained the Heureka! architecture as well as HTTP and HTML to
each other. Another student explained the OAuth handshake to a group and
supported them in fixing problems. Additionally, they supported each other
on technical issues. The students had an active knowledge exchange regarding
the setup of the Heureka! CLI. Consequently, a loose coupling evolves. There
were some students using the Moodle course to implement a question and
answer (Q&A) forum, as well as informal communication between students of
different groups how to setup the Heureka! CLI. The participants supported
each other, when facing the same challenges.

Nevertheless, there were also students who preferred to work independently,
such as one student who did not take advantage of the Moodle course, since
he/she was sure that no one else was facing the same issues and therefore
he/she assumed that no one else was interested.
Thus, a community of practice evolved, that was very similar to Open

Source communities or grassroot initiatives as Crabu and Magaudda (2018)
have detailed. Although such a community implies a degree of coupling, it also
supports the adaptation and usage of platforms like Heureka!. Additionally, the
platform is designed to support a loosely coupled evolutionary-teal organization
and calls for software developers to be independent in their design choices.
It does not impede coupling and the software developers will benefit from a
community of practice.

The Heureka! project strives to reduce the number of required coordinative
interactions between software developers as much as possible. However, using
a central platform, like GitHub, for handling of code issues leads
to a coupling between software developers. Moreover, the prototypical
implementation of having one shared JSON file to manage the nav-
igation entries requires coordinative communication between the
software developers.

There are couplings between software developers that result from
the relevance of at least one of the maintained software projects
for the complete architecture. The deployment using the Heureka! CLI
leads to a required act of communication to integrate the deployment setup
in the Heureka! CLI. Therefore, it exists a coupling between the software
developers of each microservice and the Heureka! CLI software developers.
Equally, in the situations where students identified the missing awareness

interface, they had to communicate the new requirement to a community of
software developers (that does not exists at the moment).
Mostly, the participants performed well in terms of their self-ma-

nagement and did not mentioned anything of the supervisors ma-
nagement. Nevertheless, the many occurrences of questions and problems to

SOFTWARE DEVELOPERS ARE USERS 167

the supervisor supporting the students in finding a solution impeded the self-
management of the groups. For example, one time, the supervisor suggested
reading about the widgets and to decide if the widgets can be used by the
group. Yet, the students frequently identified the next steps of the integration
by themselves.
Usability errors of the Heureka! CLI, as well as missing aspects in the

documentation or a complex structure of it were as challenging as the tech-
nical issues in working with the existing standards and established solutions.
Particularly, the handling of the NGINX configuration, the Docker setup, and
management of the URL base paths by the microservice’s technology itself,
required the most intervention by me as the supervisor.
As the supervisor, I had to bring students that were facing the same chal-

lenges together. I therefore assumed the role of central social man-
agement. On one occasion, for example, the supervisor suggested reading
about the widgets and to decide if the widgets can be used by the group.
Furthermore, he supported the students several times on general questions
regarding the Heureka! technology. The same occurred when all developers
had to communicate with the developers of the Heureka! CLI to integrate
the deployment setups of their microservices. Moreover, as the supervisor, I
had to support the students in aligning their design decisions to the existing
interfaces, like the REST API, the widgets, or the network layer.
The students had active knowledge discussion regarding the setup of the

Heureka! CLI.
Unfortunately, no collaborative scenario occurred that compelled different

groups of students that were implementing different microservices to collaborate
in terms of coordinated design decisions. Only on one occasion did a student
mention that he/she was required to coordinate the creation of new menu entries
with the software developers of other microservices. Since this occurrence
posed no design challenge, it is not relevant here. Thus, it is not possible to
assess the coordinative costs and if the different software development teams
would stay loosely coupled to each other.

Although nothing can be said about the coordinative efforts resulting from
being responsible for a microservice of the Heureka! platform that is addressing
CSCW challenges, the supervisor’s central management aimed to (1) support
students in coming socially together and (2) align their activities to the
conceptualized interfaces, the networking structure, the REST API, and the
widgets. While the latter limits the self-management approach and should
be avoided in a next version (it is already addressed by several improvements
regarding the usability of the CLI and the documentation), the former poses
an interesting new challenge in supporting software developers in constructing
a community of practice.

Implicitly, the Heureka! CLI is using GitHub and therefore the issues
are handled on this platform centrally. The students expressed the
fact that this could become a privacy threat.

168 CHAPTER 6: TECHNICAL PERSPECTIVE

Furthermore, the students stated that there was no cumbersome bu-
reaucracy. But the participants themselves noted possible improvements
to have a more exciting experimental experience. They wished for a
more open, playful working environment. They would liked to have “played
around” with admin rights, as well as to “play the documentation”.

6.6.5. Limitations & Discussion

The Heureka! platform aims to support a decentralized and loosely coupled
ecosystem of software development teams in implementing a CSCW tool that is
aligned to the change processes of the social system using it. Since COVID-19
and the required pandemic management in Germany did not allow larger
groups of people to gather in one location, WASH volunteers were also limited
in their activities. Thus, no or only marginal cooperation between WASH
volunteers occurred through the known social structures, the regional crews.
The Pool2 that based on the Heureka! platform was mainly designed to address
such spatial cooperation scenarios. Therefore, the focus of the organization
regarding digitalization moved from the Pool2 to other social platforms.

Furthermore, the regional crews paused their activities and thus, no or only
marginal social interactions happened in the crews. Without communication
also social change cannot happen (see Section 2.1) and therefore, there was no
need to integrate software developers.
Consequently, although the study addresses the Pool volunteers, these vol-

unteers are substituted by students in a university context. They got credit
points for participating the course. Thus, while open participation has not
been considered here, the design of the study intends to make it possible
to enable self-management and wholeness in the sense of creating spaces to
include personal perspectives, experiences, and life goals. Nevertheless, the my
role as a supervisor and teacher as well as the participating ethnographer has
to be called into question. Obviously, a hierarchy between the students and
the teacher always exists on some level. This being the case, it may influence
the way a particular critique of my own work is expressed. The students were
obliged to implement a microservice for a platform that I had devised which
was tasked with communicating with other microservices and it was therefore
very important that I could receive open and multi-faceted feedback from
a variety of angles. In my efforts to support the students, also in terms of
requesting their hard critiques of my work, I continuously asked for specific,
objective critiques and was always open to convey those critiques of my ow
work.

The students are of the same age as the majority of the WASH volunteers.
Thus, searching for Pool volunteers, the WASH volunteers may have interacted
with computer science students at first. Additionally, the students are software
developers, but may be lacking some experience and may not have completed
their education. Thus, by focusing on them, I may be able to identify the level

CONCLUSION 169

of minimum knowledge required that was necessary to be capable of integrating
a new microservice. Nevertheless, a comparison between volunteering software
developers aiming to become Pool volunteers and the characteristics of the
study participants given in Section 6.6.1 is required in order to transfer and
apply the results to the Pool volunteers. Thus, potentially selection effects, as
described by Cohen, Manion, and Morrison (2007, p. 137) regarding external
validity in naturalistic research settings, had to be considered with respect to
the transferability of the results, as required and defined by Guba (1981).

Unfortunately, the study did not cover the acceptance criteria (3.d) and (3.g)
since the participants were students, no conclusions regarding the personal
motivation of software developers and open participation was therefore possible.
Furthermore, the study design was focused on communication between students
and between students and their supervisor. The analysis of the coupling
between the created microservices and the functional cohesion had to be
conducted by focusing on the software code. Since the resulting microservices
were partly incomplete in terms of the integration and therefore with regards
to the coupling interfaces, such an analysis was not possible.

The data generation phase of the study consists of field notes taken during
the semester as well as recorded and transcribed final presentations in the
end of the semester. Credibility and confirmability would have been more
intensively supported, if each weekly session had been recorded and transcribed
afterwards. It would have allowed for applying in-vivo coding and paraphrasing
the spoken words. Due to time and personal limitations it was not possible to
transcribe each four-hour session.

Furthermore, the applied approach of self-reflection from the very beginning
of the data generation until the end of the analysis, supported the credibility,
dependability, and confirmability of the observations and the interpretation.
Although such an approach is required for ethnographical investigations, further
studies should be designed aiming to eliminate the setting effect of an heavily
involved investigator.
Nevertheless, readers of the investigation need to be sensitive about the

qualitative nature of my results. Although sometimes observations are quan-
tified, by terms like frequently or sometimes, no base for the construction of
scientific facts is provided. Rather, all observations can occur and thus, the
construction of hypotheses or theories is a valid approach, as it is required to
initiate a next cycle of the DSR project.

6.7. Conclusion

The study highlighted several challenges that adversely affect the artifact in
relation to the acceptance criteria. The implementation and integration of
the new microservice was constrained by missing fundamental knowledge of
the participating students about HTTP, HTML, JavaScript and its modern

170 CHAPTER 6: TECHNICAL PERSPECTIVE

web frameworks, as well as about domains, REST APIs, and core components
like Docker. Furthermore, the students identified missing functions and were
facing run-time environment incompatibilities.

In the case of bachelor students, the fact that they would lack prior knowl-
edge was expectable. It would be interesting to investigate whether or not a
community of Pool volunteers would also lack the required skills. Nevertheless,
the architecture would need to be redesigned in order to address the identified
challenges, in terms of simplifying the usage Heureka! itself or by introducing
the required fundamental knowledge. Although the documentation of Heureka!
would not in and of itself be adequate as a beginners guide for modern web
development, adequate tutorials can be referenced.

The participants’ identified misleading presuppositions about the Heureka!
platform directly influence the ability of the participants to become Pool
volunteers. Not knowing that multiple microservices can address the same
domain, as is the case for calendar services, for example, compels software
developers to give up even before the new use case can be discussed. Similarly,
software developers aiming to directly manipulate the databases of other
services will end up in software that is not deployable due to data safety
reasons. Moreover, services implementing a more tight coupling to other
services as required will have an antagonistic effect onto the stability of the
microservice architecture. Since the study participants of the study were
mostly bachelor students, such problems were foreseeable. Nevertheless, the
approach to be technology independent must be limited and the required prior
knowledge should be communicated to Pool volunteers.
Equally, the authorization concept should also address the software devel-

opers perspective and avoid use case sensitive variable values to become no
barrier for new developers. Above all, the integration of a new microservice
represents a technical challenge. Nevertheless, a CSCW tool represents and
implements the social reality of its users. Therefore, software developers benefit
from knowing their case, but for the interfaces required for the integration, an
abstract representation should be chosen. Thus, a new challenge was identified:
The architecture, as well as its documentation should motivate software devel-
opers of new microservices to design abstract representations. For example,
the role management for the navigation must use more abstract role names and
definitions, but for the users the abstract implementation must be projected
to a concrete naming.
Additionally, the participants worked to solve issues already addressed by

the given architecture and concepts. This issue is closely linked to the several
occasions a student did not read the documentation. Summarizing, I found
many occurrences confirming a well-known fact: A software developer really
needs to read the documentation before he/she starts implementing any code.
This became apparent and proved especially to be the case in this situation
since many of the participants only attempted to tackle the challenges they
were facing with the aid of the given documentation after I, as the supervisor,

CONCLUSION 171

referred them to it and then the solutions to those issues were identified in
that documentation.
Some students were unable to identify all interfaces required for the in-

tegration. Focusing on the acceptance criteria and the RQ 2, the fact that
some interfaces are missing becomes a major threat, since it can lead to code
duplication, tighter coupling between services, and less cohesion in the service’s
functions. Addressing the acceptance criteria (1), (2), and (3) requires ensuring
a high level of cohesion. Thus, software developers aiming to implement a
new microservice need to be supported in identifying functions required to
be part of their new microservice, as well as to identify functions that are
only loosely coupled in their use case. Additionally, the development process
requires supporting developers in mocking loosely coupled functions that are
not implemented by other microservices at the moment. Thus, in a next cycle
of the DSR project, supporting functions and an extended documentation
should be explored. The documentation must explicitly identify the interfaces
and number them next to each other. Additionally, the integration task should
be explicitly described.

In the event participants added the role of Author to the authorization that
was required for the focused use case, the students considered the concept of
the managed business objects as described in Section 6.4.2. Thus, the archi-
tecture concepts are applied to address acceptance criteria (1). Nevertheless,
a basic authorization is implemented by Drops, but as the case shows, it is
extended by software developers in some matters. Thus, it would be useful to
extend the authorization concept to become decentralized through the Heureka!
architecture.

Nevertheless, the students discussed specific functions of their new microser-
vices by themselves that have to be considered for the purpose of integration.
For example, they thought about the REST API that their microservice should
provide and thereby considered their own microservice as relevant for other
services and developers.

Even though, me as the supervisor suggested the students to start the inte-
gration with the widgets, they chose very different approaches of ordering their
integration tasks (shared session, dynamic UI fragment composition, docker
and NGINX, OES). Mostly, they started with focusing on the deployment
setup of their new microservices as part of the Heureka! platform and invested
a lot of time, since the handling of Docker and NGINX were unknown to
many of them. The study demonstrated the complexity of the deployment.
Thus, although the Heureka! CLI and the usage of Docker simplified the task
of integrating new microservices on a network level, more has to be done
to address the acceptance criteria (3.a), (3.c), and (3.e). The adaptation of
continuous delivery approaches for the next version of Heureka! may support
the deployment of new microservices.

Due to timing issues, a few students also failed to integrate the new microser-
vice in the shared session. Nevertheless, most of the students completed the

172 CHAPTER 6: TECHNICAL PERSPECTIVE

implementation of the OAuth handshake successfully and a few added a session
handling using their chosen web technology. Thus, the implementation of the
shared session concept by the adapted OAuth 2 handshake can be assumed
to support the DG introduced in Section 3.1. Still, a few questions regarding
details were identified with respect to the entry point in the frontend, the redi-
rect of “everything”, dealing with errors, and the workflow between frontend
and backend. These questions should be addressed in the documentation. In
particular, possible error messages must be specified and initially, the objective
of allowing all microservices to handle the session management by themselves
must be clearly explained in the documentation.

Moreover, some students mentioned that an example of the OAuth handshake
in the documentation would be helpful. Since there already existed an example
client implemented in Scala / Play 2.5, it should be rewritten to become a
guide and it should use a more common programming language. Extending
the idea of having a guide as an example, one participant inquired as to how
software developers should test their RESTful API endpoints after a successful
login. The documentation should also describe a solution for this challenge.
The integration regarding the shared CSS delivered by Dispenser and the

global menu, also managed by using the Dispenser service was mostly unsuc-
cessful. Although it was described by the documentation, it was not clear
enough. After an update of the documentation, putting the handling of the
CSS and the menu in foreground, some students were able to extend the
integration of their microservices.

With respect to the design via CSS, I identified three problems: (1) The stu-
dents were lacking documentation, (2) they were unaware of how to handle the
provided CSS classes, and (3) they ignored the boundaries of the microservices.
While the first issue is simple to resolve by just providing documentation, the
second and the third issue are more challenging for an artifact addressing DG.
Obviously, a software developer changing the CSS of the utilized widgets would
implement a new coupling in terms of his or her responsibility for the new
code. The maintenance of it must be aligned to the maintenance of the widget
and therefore the providing microservice, although the software developer
implementing the change is not in the responsible role. Thus, coordination and
communication is required and therefore, a new coupling between the software
developers is established, in addition to the couplings regarding the existing
technical interfaces.
Still, the navigation widget, as well as the other utilized widgets proved

challenging for the students to deal with. A few students successfully integrated
the widgets, but struggled with aspects like exception handling, since the
widgets, in terms of an interface, lack the specification of their error handling.
As a consequence, the concept of widgets must be extended by means of an
error handling approach. Furthermore, the detected technical issues have to
be solved. The widgets were designed to be usable independent of the chosen
web framework. Therefore, intensive tests must be undertaken to identify and

CONCLUSION 173

fix all possible bugs regarding other technologies like Vue.js.
Furthermore, the participants had to invest time and effort for researching the

standards, adaptation differences, and the required libraries. These efforts are
directly in line with the successful integration of a new microservice. Moreover,
the Heureka! CLI was only implemented as a prototype and, therefore, several
issues of technical incompatibilities and usability challenges were identified.
Such technical barriers must be reduced by a final platform to support the open
participation, as required for VCA. Supporting the loose coupling between
software developers, the configuration files of Heureka! ’s NGINX should be
split and separated for the different microservices.

In the end, several students did complete parts of the integration. With the
exception of the shared CSS, every interface was used successfully integrated
by at least one student for their new microservice. The qualitative study
did highlight several possible optimizations that could be implemented in
order to foster the adaptation and usage of the Heureka! platform by software
developers. Thus, by investing more effort in the integration, the acceptance
criteria (1) and (2) are already addressed by the artifact.
With respect to the acceptance criterion (3), I observed that tools and

concepts that were new to the participants and that they have learned from
through the Heureka! platform have influenced the design of their new ser-
vices. Additionally, the students became insecure about their design decisions,
because they did not know how deal with the given degree of freedom in
their applications design. They aligned the design of their new services to the
design of the existing ones. Several times, the participants asked for the data
representation of objects in the databases of other services.
Furthermore, a coupling between the software developers was observed

when it came to providing mutual support in technical issues. Additionally,
the students mentioned a coupling, since Heureka! uses the central platform
GitHub to deliver the required code repositories and handle the communication
of issues and bugs for the different microservices. Moreover, the central JSON
file for handling the entries in the global menu was also mentioned as a
challenging coupling, since it requires coordinative communication. Lastly,
also the relevance of the maintained services or software packages for the rest
of the Heureka! platform implies a different degree of coupling between the
software developers. The Heureka! CLI is important for all software developers
and therefore, their maintainers may came in touch with all other software
developers. By means of the design of the Heureka! platform and its basic
concepts, such couplings are reduced to the interfaces between microservices
and the additional software, like Dispenser or the Heureka! CLI.

Thus, the acceptance criteria (3) is also addressed by the designed artifact.
The time to learn and adapt new technologies (3.a) can be further reduced
by the suggested improvements. The degree of coupling between software
developers (3.b) seems to be promisingly minimized. Upcoming research
should further investigate this aspect. The participants made no mention of

174 CHAPTER 6: TECHNICAL PERSPECTIVE

central management (3.c), although I as the supervisor connected the students
socially. Furthermore, the community process of naming and requesting
new microservices should be documented in order to handle newly identified
requirements.
The Heureka! platform should be redesigned to minimize the coordinative

burden that results from shared files like the JSON to manage the navigation
entries or the integration in the Heureka! CLI. Although there are several
ways to handle a shared files, like by using version control tools or shared file
systems on cloud servers, the usage of a database would be an alternative.
Nevertheless, the deployment on live servers still has to be coordinated and in
both cases, an administrator must be and would be able to join the files or
the database content.

As already mentioned the study generated no data regarding the acceptance
criterion (3.d) and (3.g). But the developers did not intervene in the functions
external to their own microservice (3.e). Cumbersome bureaucracy (3.f) was
also not detected, but the need to coordinate the access to the central JSON
file managing the navigation, as well as the integration of new microservices
into the Heureka! CLI require cumbersome communication process, that may
very quickly result in an increase in bureaucratic processes. Obviously, it
is a problem that the software developers are unaware of how they could
integrate their services in the menu. This must be addressed by a rework of the
documentation. The required files must explicitly identified and all required
data attributes have to be explained.
Overall, the artifact addresses the STR 1, 2, and 3 in a first attempt. The

improvements that result from this investigation are promising to further
support the STRs. Consequently, the RQ 2 is also addressed by the designed
artifact and the social system of Pool volunteers should be further investigated
to develop a new version of the Heureka! platform more fitting the characteris-
tics of them. Nevertheless, the characterization of the students participating
this investigation allow for a fast transfer of the results to the Pool volun-
teers. Therefore, I have already started to solve the identified usability and
documentation issues in 2021.

7. Social perspective

The ORQ introduced in Section 1.2 and its derived DG introduced in Section
3.1 are addressed by the solution approach presented in Chapter 6 from a
technical perspective. Taking the socio-technical character of the ORQ into
consideration compels one to take up a social perspective as well.

As discussed in Section 4.3, the organization VCA had not had established
working procedures to cover the software development process of the incor-
porated technical tool. Thus, stimulating the change of the socio-technical
evolutionary-teal organizations, this chapter aims to develop scientifically
grounded social artifacts that consider the characteristics of an evolutionary-
teal organization in relation to the open questions that were identified by the
literature review in Chapter 5.
The self-managing teams of socio-technical evolutionary-teal organizations

will (1) develop different requirements regarding their individual structures
and processes. The concept of wholeness implies that duties are constantly
negotiated and thus, it is (2) hard to generalize roles. The evolutionary purpose
claims to (3) integrate as many voices as possible to the long-term strategy
of the socio-technical organization. Hence, socio-technical evolutionary-teal
organizations strive to integrate all prospective users in their change processes
to enable joint optimization and organizational choice. In the end, evolution-
ary-teal “organisations will seek to use technology for everything that it can
be used for” (Kurki and Wilenius 2016, p. 11).

Integration of users starts with perceiving their needs. In respect thereof, the
case of a socio-technical evolutionary-teal organizations outlines open questions:
Are the prospective users able to express and explain their needs? How can we
enable them to do this? Furthermore, such needs have to be transformed into
technical requirements describing a possible solution addressing the original
needs. Can such tasks be done by the prospective users?

Additionally, the literature review presented in Chapter 5 raises some ques-
tions. How can members of socio-technical evolutionary-teal organizations
plan the cooperation of responsible persons? How can members of such orga-
nizations re-shape their shared language and the social protocols in line with
autopoietic change (initiated by technical modifications)? How can members
be empowered to communicate their needs as technical requirements?
Thus, the open questions derived from the case cover the open questions

derived from the literature. Addressing these challenges, I align this chapter
to the following RQs:

175

176 CHAPTER 7: SOCIAL PERSPECTIVE

Research Question 3. How can evolutionary-teal organizations empower
their members to express their needs regarding technical tools as requirements
truly addressing the needs?

Research Question 4. What are important context factors of an evolutionary-
teal organization regarding the adaptation of the tool identified by (RQ 3)?

In the next Section 7.1 I will outline the problem by deriving adaptation
requirements as suggested by A. R. Hevner (2007). Afterwards, in Section
7.2, I introduce the fundamental concepts for my solution approach, while I
describe the designed artifact to address the RQ 3, the USMU workshop, in
Section 7.3. At the end of the chapter, in Section 7.5 a study is described that
strives to provide an understanding for the covering of the original DG by the
USMU workshop as well as aiming to formulate an answer to the RQs 3 and
4. Supporting this study, the Section 7.4 introduces a questionnaire that was
designed in order to generate the analyzed data. The presented artifact is a
first attempt at a specific technique to put the WASH volunteers in touch with
Pool volunteers. Since the study utilizes an ethnographical approach, the one
introduced in Chapter 3, the demonstration and the evaluation of the artifact
as is required by the DSRM according to Peffers, Tuunanen, Rothenberger,
et al. (2007) are both performed by conducting the study. Thus, the structure
of the chapter represents DSRM and takes the approach of DSR cycles into
consideration (A. R. Hevner 2007; Drechsler and A. Hevner 2016).

7.1. Adaptation Requirements

The RQs 3 and 4 directly address the integration of future users into the
software development process. The previously introduced challenges that were
derived from the case, as well as the literature, mainly focus on the adaptation
of technical support functions by means of social change. When it comes to
socio-technical evolutionary-teal organizations, the integration of users in the
software development process also means constantly re-adapting the process
due to the aspects of self-management and wholeness as characteristics of these
organizations. Therefore, I will introduce adaptation requirements (ATRs)
in this section, forming and aligning the design of a social tool that aims in
order to support the development of new technical functions as a first step in
a process of adaptation of a technical tool. The social tool will also be part of
a continuing re-adaptation process itself.

I introduce the following ATRs with the goal of empowering prospective users
in order for the members of socio-technical evolutionary-teal organizationsto
express and explain their needs. Additionally, the social artifact must also be
designed to empower and motivate the prospective users to transform their
needs into technical requirements describing possible solutions addressing the

REQUIREMENT ENGINEERING APPROACHES 177

original needs. Due to the characteristics of socio-technical evolutionary-teal
organizations, the prospective users must have the capability of doing this by
themselves.

Adaptation Requirement 1. The designed social tool must be applicable for
a decentralized, loosely coupled network of self-managed teams.

Adaptation Requirement 2. Using the designed social tool, WASH volun-
teers must be able to formulate technical requirements that are addressing their
true needs.

Adaptation Requirement 3. Using the designed social tool, WASH vol-
unteers must be able to formulate technical requirements that are negotiable.

Adaptation Requirement 4. Using the designed social tool, new roles and
tasks that implicitly result from new technical requirements must be apparent.

Adaptation Requirement 5. The designed social tool must minimize the
bureaucratic barriers as well as the requirements for having technical expertise
to participate the development of the technical requirements.

ATR 1 has the goal of supporting the social structure of evolutionary-teal
organizations, while 2 addresses the open question of the literature review how
members of socio-technical evolutionary-teal organizations can communicate
their needs as technical requirements. ATRs 3 and 4 have the goal of enabling
the consideration of wholeness in the context of evolutionary-teal organizations
and supports the transformation of the shared language and the social proto-
cols. Furthermore, ATR 4 fosters members of socio-technical evolutionary-teal
organizations to plan the cooperation of responsible persons, as required by
the results of the literature review. Fulfilling the ATR 5 strives to enable the
consideration of the evolutionary purpose and the open participation in the
context of evolutionary-teal organizations.
Summing up, ATRs 1, 2, and 5 directly address RQ 3, while ATRs 1, 3,

4, and 5 specifically strive to take the characteristics of evolutionary-teal
organizations into consideration and therefore develop the opportunity to
observe social interactions that address the RQ 4.
Since the ATRs are very specific, no additional acceptance criteria are

required, as they were introduced in Chapter 6 and as suggested by A. R.
Hevner (2007) and Drechsler and A. Hevner (2016).

7.2. Requirement Engineering Approaches

In his work, Ebert (2019) defines requirement engineering as the systematic
approach of developing, documenting, analyzing, coordinating, and managing

178 CHAPTER 7: SOCIAL PERSPECTIVE

requirements. He adds that these activities must be oriented to the customers
and must consider technical and economic goals. Valentini et al. (2013) define
requirement engineering as the sum of all activities required to collect, analyze,
understand, and document requirements. Additionally, they differentiate
between requirements regarding the product as well as requirements regarding
the project. Furthermore, the authors explicitly consider activities for solving
conflicts, as well as verifying and validating collected requirements.
With the rise of agile software development processes during the 2000s

(Alsaqqa, Sawalha, and Abdel-Nabi 2020), the role of requirement engineering
activities has also changed. Human interaction focusing on the stakeholder as
well as the software architects became the core of the software development
process (Hoda, Salleh, and Grundy 2018). The collaboration with the customers
became increasingly important and requirements are constantly negotiated
and re-shaped during software development projects. Consequently, their form
and the methods of addressing the development, documentation, analysis,
coordination, and management also had to be aligned to the more agile nature
of the projects.
An agile software development project calls for shared understanding be-

tween the prospective users and the software developers. Levine (2011, p.
281) derives from several cases “that the customer understanding [must] be
well linked to product development”. Furthermore, he sees a high risk for
a disconnection of customer needs from the product development, when the
developing organization grows. Understanding the needs of a customer re-
quires starting to understand the words and terms used by customers. In
the same way, customers need to understand a basic vocabulary of software
development projects to communicate with experts. Holcombe (2008) is more
specific and suggests developing a shared vocabulary, including a glossary,
to explicitly explain the understanding of a term. He extends this approach
by making focused business processes explicit. The challenge to establish a
shared understanding between prospective users and developers of the context
of a software development project is also addressed by mutual learning as
a grounding principle of participatory design. In this respect, the concept
of having an agile software development project is aligned to the concept of
applying participatory design.

According to Heck and Zaidman (2018), Schön, Thomaschewski, and Escalona
(2017), and Lucassen, Dalpiaz, J. M. v. d. Werf, et al. (2016) user stories are
most commonly used in agile software development, next to prototypes, use
cases, and scenarios. Furthermore, the experts surveyed by Lucassen, Dalpiaz,
J. M. E. M. v. d. Werf, et al. (2016) on the benefits and effectiveness of
user stories stated that the stories improved the productivity and quality of
their work. Breaking down the requirements into user stories requires greater
initial effort, but results in the team having a deeper understanding of the
requirements.

Prototypes are mainly used to support the evaluation of design alternatives

REQUIREMENT ENGINEERING APPROACHES 179

and communication. Use case diagrams mainly describe systems more techni-
cally than User Stories, and they are apparently much more comprehensive
and complete in their description (Schön, Thomaschewski, and Escalona 2017).
User stories only cover one aspect at a time. Use case diagrams also strive for
a longevity that extends over the entire project. User stories, on the other
hand, usually only apply to one development iteration and may therefore be a
better fit in an agile software development process. Cohn (2004) also notes
that due to their intended completeness, use case diagrams are more prone to
assumptions about the user interface, which generally has to be avoided.

According to Lombriser et al. (2016), scenarios can be documented in many
different ways, for example as wireframes, natural language or storyboards.
Usually they are much more extensive than user stories and can also contain
multiple actors (here, the term actor is restricted to users). Despite the fact
that they contain more information, questions often remain open (Cohn 2004).
Thus, scenarios stimulate subsequent discussions and refinement similar to
user stories.

Me as <Role> want <Goal>[, so that
<Effect>] .

Figure 7.1.: Pattern for a user story.

User Stories are formulated in ev-
eryday language, and are mostly
short textual descriptions of require-
ments. During a project, user sto-
ries are under ongoing discussion and
refinement by developers and cus-

tomers (Cohn 2004). Additionally, user stories are easy to use and to learn
(Lombriser et al. 2016). Lucassen, Dalpiaz, J. M. E. M. v. d. Werf, et al.
(2016) conducted a survey of 182 experts that showed that 85% use a template
to write the descriptions. They stated that templates increase productivity
and quality of work. Various templates are in use, but the most common is
the Connextra template (59%): As a [role], I want to [goal], so that [benefit]
(see Figure 7.1). By using a template, the team can adhere to an agreed fixed
structure of user stories, which makes the creation of user stories easier and
the daily use of user stories more likely in general.

User stories consist of a role, a mean, and one or more optional ends (Lucassen,
Dalpiaz, J. M. v. d. Werf, et al. 2016). Roles describe the duties a user has
when he/she interacts with features described by the current user story. The
means represent the requirements and consist of subjects (e.g. I want), action
verbs, and the target object on which the action is executed. The ends justify
the need of the means or describe a dependency on other requirements. The
types of ends are not exclusive to each other. Ideally, a user story focuses
on one specific problem. User stories can be written on Story Cards. These
contain the user story on the front, possibly a priority, and other optional
attributes. The back contains acceptance criteria that can be used to check
whether the requirement was fulfilled by a concrete implementation.

User stories as agile requirements should follow the six INVEST characteris-
tics (Wake 2003), the Kano model (Lombriser et al. 2016), and the Quality

180 CHAPTER 7: SOCIAL PERSPECTIVE

User Story Framework (QUS) (Lucassen, Dalpiaz, J. M. v. d. Werf, et al.
2016). Nevertheless, several practitioners prefer asking experts to evaluate user
stories or apply peer-reviews instead of using quality criteria sets (Lucassen,
Dalpiaz, J. M. E. M. v. d. Werf, et al. 2016). Mostly, they are not aware of
the sets existing. But those already using quality criteria mention an increase
of their productivity.

Following INVEST (Wake 2003), high quality user stories are characterized
by: (IN 1) Independence – practically required dependencies between user
stories should be minimized. (IN 2) Negotiability – they have not to be finalized
in the sense of unalterability. Moreover, they should be (IN 3) valuable for all
stakeholders, (IN 4) estimable for a software developer, (IN 5) small enough
to fit an iteration of the software development process, and (IN 6) testable.

The Kano model classifies agile requirements by the value resulting for the
prospective users (Lombriser et al. 2016). The model describes the value by five
variables: (KA 1) Must-be – Users expect the implementation of the user story.
If it is not implemented, they are dissatisfied. (KA 2) One-dimensional – Users
will be satisfied if the user story is implemented and they will be dissatisfied
if it is not. (KA 3) Attractive – Users will be satisfied if the user story is
implemented, but they are not dissatisfied if it is not. (KA 4) Indifferent – The
users will be neither satisfied or dissatisfied if the user story was implemented
or not. (KA 5) Reverse – The users will be dissatisfied if it was implemented.

In the case of (KA 1) Must-be the user will be neither satisfied nor dissatisfied
if the feature is implemented because they simply expect it. For (KA 2) One-
dimensional the user will be satisfied if it is implemented.

Lucassen, Dalpiaz, J. M. v. d. Werf, et al. (2016) introduces a linguistic
perspective onto user stories. It distinguishes between the syntactic, semantic,
and pragmatic level. User stories consist of (1) a role, (2) some means, and (3)
some ends.
Syntactic. A user story is (LI 1) well-formed: It consists at least one role, one

mean, and expresses exactly one feature that is (LI 2) atomic. Subsequently,
it contains nothing else than a role, means, and ends – it is (LI 3) minimal.
Semantic. (LI 4) conceptually sound – The means describe the feature,

while the end justifies it. It is (LI 5) problem-oriented, thus it should not
specify a solution and avoids “terms or abstractions that lead to multiple
interpretations” (Lucassen, Dalpiaz, J. M. v. d. Werf, et al. 2016, p. 387) – it
is (LI 6) unambiguous. Sets of user stories are (LI 7) conflict-free.
Pragmatic. User stories are (LI 8) estimable and written in (LI 9) full

sentences. An estimable mean is simple to plan and prioritize. Additionally,
user story sets are (LI 10) unique, and the contained stories are (LI 11) uniform
(using the same template), (LI 12) independent to each other, and (LI 13)
complete – having all user stories implemented results in a feature-complete
application.

Thus, the INVEST criteria and the linguistic perspective address the verifi-
cation and the Kano model focuses on its validation of user stories.

REQUIREMENT ENGINEERING APPROACHES 181

The linguistic perspective shares some similarities to INVEST: Indepen-
dence (LI 12) of user stories is also required by INVEST (IN 1). Additionally,
it also states criteria claiming the independence: An atomic (LI 2) and min-
imal (LI 3) user story that is conceptually sound (LI 4), problem-oriented
(LI 5), unambiguous (LI 6), unique (LI 10), and uniform (LI 11) will likely be
independent (LI 12). Furthermore, negotiability (IN 2) is supported by a user
story that is conceptually sound (LI 4), problem-oriented (LI 5), unambiguous
(LI 6), written as full sentence (LI 9), unique (LI 10), and uniform (LI 11).
One specific story is valuable (IN 3), if it is well-formed (LI 1), conceptually
sound (LI 4), and problem-oriented (LI 5). Estimable implementation effort
(IN 4) (LI 8) and being small (IN 5) (LI 2) (LI 3) is required by both sets of
criteria. However, only INVEST call for testable (IN 6) user stories and the
linguistic perspective explicitly describes quality criteria for sets of user stories
(LI 7) (LI 10) (LI 11). Again, the criteria of completeness (LI 13) has not been
considered, since it will probably hinder an agile development process.

Although there are some quality criteria sets and software tools automatically
detecting the quality of a user story (Lucassen, Dalpiaz, J. M. v. d. Werf, et al.
2016), there is no tool for collecting quality assessments of different roles and
using it to improve the quality of the agile requirements.

Cohn (2004) states that interviews are often used to understand the perspec-
tives of future users. Furthermore, interviews can be applied to investigate the
future use of the system (Lucia and Qusef 2010). On the downside, Lucia and
Qusef (2010) noted that interviews are worse suited to collect domain-specific
requirements. Alternatively, collaborative techniques (e.g. card sorting) can
be used to gather further requirements.

Addressing user stories, Cohn (2004) introduces the story writing workshops.
The stakeholders focus a low fidelity prototype and for each screen user stories
are written describing the possible interactions. Normally, a brainstorming
session is applied, and thus stories are written quickly, unfiltered, and are not
yet discussed and evaluated. Likewise, no priorities are assigned or determined,
as this happens after the generation phase. Knapp, Zeratsky, and Kowitz
(2016) propose seeking inspiration in features of other solutions. Participants
roughly sketch the main aspect of the most convincing solutions for the rest of
the group. Similar to brainstorming, nothing is discarded.

Equally, the design studio (Gothelf 2013) guides participants using a docu-
ment with six boxes, all titled with one persona and a problem, to individually
formulate a solution. Subsequently, six rough prototypes for the solutions
are drawn up. Participants form groups based on similar solutions and are
summarize their results.

All approaches are selecting the best ideas at the end of the idea generation
phase. Knapp, Zeratsky, and Kowitz (2016) uses stickers, which are either
generally assigned to the idea, or mark a certain part of the drafted solution.
Subsequently a heatmap is generated that highlights the best component of
the drafted solution. Gothelf (2013) uses the best solutions to create concrete

182 CHAPTER 7: SOCIAL PERSPECTIVE

user stories.

7.3. User stories made by users

As already mentioned in Section 4.2, the WASH volunteers need to express their
requirements and the software developers have to listen to them. Additionally,
the focus of integrating as many voices as possible, due to the characteristics
of wholeness as well as the evolutionary purpose of socio-technical evolution-
ary-teal organizations, requires aligning the software development project that
accompanies the autopoietic change of VCA to agile principles. Since WASH
volunteers are amateurs in creating and capturing agile requirements, I decided
to use user stories. They feature a relatively low level of complexity, are easy
to create, and have a clear structure with a template (see Section 7.2). By
focusing on only one problem, a user story supports the negotiation about
it between WASH volunteers and Pool volunteers, as well as between crews.
Therefore, by using user stories, ATRs 1 and 3 are addressed. Furthermore,
negotiation (ATR 3) is supported by a structured template and according
to Schön, Thomaschewski, and Escalona (2017) the chosen template is not
decisive. Thus, I apply the popular Connextra template. User stories that
are mentioning the addressed problem or challenge support the alignment of
the formulated technical requirement to the true need, as required by ATR 2.
Since ideal user stories name a role and an activity, also ATR 4 is addressed.
Moreover, the authors of user stories can use their every day language and
thus, barriers to participate are reduced (ATR 5).

Alternative approaches to document requirements were introduced in Section
7.2. Although use cases and scenarios describe more information than one
user story, they are also more complex. Additionally, use case diagrams and
scenarios convey a better understanding of the context and connection between
the individual components than user stories. It is possible to divide scenarios
and use cases into a set of user stories, but by breaking them down into
stories information may be lost. That being said, a set of user stories can be
used to describe more information. Furthermore, Blomkvist, Persson, and
Åberg (2015) demonstrate that software developers often do not read scenarios,
because they see no benefit for themselves.
The writing workshops introduced by Cohn (2004) are an approach to

create user stories. Nevertheless, Cohn’s workshop is a general approach not
considering conditions of the social system. For the use case of a socio-technical
evolutionary-teal organizations, the requirements engineering activities are
difficult to initiate with the creation of a prototype. The requirements need
to be generated by WASH volunteers that are neither software developers
nor architects. Therefore, the prior workshop phases that generate the base
artifacts of the workshop to be focused on during the brainstorming have to be
designed. Additionally, addressing the evolutionary purpose, the generated user

USER STORIES MADE BY USERS 183

Introduction10 min

Identify roles and activities10 min
Brainstorming

Write problem statements
(PSs)

15 min
Brainstorming

Present PSs15 min

Rate PSs2 min

Problem Statements (PS)

32 min

Phase 1: Problem Statements

Figure 7.3.: The first phase of the USMU workshop.
stories must become transparent to all WASH volunteers not participating in a
workshop afterwards. Equally, Knapp, Zeratsky, and Kowitz (2016) introduces
a method that tries to draw inspiration from other existing technical solutions.
Although it seems to be valuable to not try and reinvent the wheel, in the case
of a CSCW tool in a socio-technical context, prospective users should take
their leads from real business processes. Gothelf (2013) begins by focusing on
already existing personas and problems. Furthermore, the competing concept of
Gothelf’s workshop does not address the basic values of VCA. The organization
aims to address its purpose by creating an environment for supporting the
open participation by collaboration instead of competition.

Furthermore, the alternative workshop methods require basic knowledge
about software requirement activities. Knapp, Zeratsky, and Kowitz (2016)
assumes that solution approaches of alternatives are known and that solution
outlines can be created quickly and safely. Gothelf (2013) requires that various
personas and their specific problems are known. I aim to create an approach
leading the participants through a process of focusing on roles and problems
that they know from their daily volunteering activities.

Me as <Role> want <Goal> , but
<Challenge> , because <Reason> . Thus, I
feel <Emotion> .

Figure 7.2.: Pattern for a problem statement.

Focusing on the RQs 3 and 4, I
adapt the writing workshops of Cohn
(2004) to create a new workshop ap-
plicable for decentralized and self-
managed teams of socio-technical e-
volutionary-teal organizations. I con-
sider the six basic principles of par-
ticipatory design (see Section 2.7) to integrate the future users.

The workshop is designed to lead the prospective users, the WASH volunteers

184 CHAPTER 7: SOCIAL PERSPECTIVE

through the creation of user stories and is named by its approach user stories
made by users (USMU). Nevertheless, the workshop is designed according
to the grounding principles of participatory design and therefore, next to
prospective users also the Pool volunteers should participate. Initially, the
participants (1) create PSs. PSs are introduced by Völker (2021) in his
master thesis as a structured form to express issues encountered during the
volunteering. Figure 7.2 describes the pattern for a PS. It consists of a role,
the striven ideal state, the problem that impedes the ideal state, the reason
for the problem, and the expression of a feeling. Thus, the form is also aligned
to the Connextra template of user stories. Afterwards, (2) goals are created by
focusing on specific PSs, assuming that achieving the goal addresses a solution
for the PSs. Goals are only short phrases describing a new situation or a new
feature required to become implemented to address challenges identified by
the PSs. As a next step, these (3) goals are transformed into user stories.
Consequently, the workshop consists of three phases. Figure 7.3 visualizes

the first phase. The workshop starts with an introduction that explicitly names
the goal of the workshop, outlines the program, the rules for brainstorming,
and closes with a self-introduction of the participants. Although the workshop
design addresses teams of evolutionary-teal organizations, the concept of open
participation will result in a situation where participants do not know each
other. Furthermore, the Pool volunteers should be identified to ensure mixed
groups of WASH volunteers and Pool volunteers during the workshop.
Afterwards, the focus on business processes is shaped by having a short

brainstorming session in order to identify all roles and tasks the participants
take in VCA. The participants receive two minutes to write every role or
task they have written on Post-It notes. The next eight minutes are used
to briefly present the roles and tasks of each participant. The moderator is
invited to ask for details, thus the participants may start to exchange their
experiences. In a last step of the first phase, the participants formulate PSs.
This step has three sub-steps: (1) A brainstorming is applied for writing PSs
down. Subsequently, (2) the PSs are presented to the other participants and
(3) rated by using sticky dots, as suggested by Knapp, Zeratsky, and Kowitz
(2016). Every participant gets three sticky dots and is invited to mark the
most three important PSs. They are allowed to assign multiple dots to one
PS.

How could we <Circumstance> influ-
ence, change, or affect that way, that
<desired effect> ?

Figure 7.5.: Pattern for a HMW.

The second phase of the workshop
is illustrated by Figure 7.4 and con-
sists of two major steps. In a first
attempt, the participants have to
create HMWs questions (IDEO.org
2015, p. 85). Again, in this step a
brainstorming is conducted to create

interesting HMW regarding the previously developed PSs to trigger ideas for
relevant goals in a next step. Figure 7.5 describes the pattern of a HMW. The

USER STORIES MADE BY USERS 185

How-Might-We-Questions (HMW)15 min

Create Goals addressing the
focused PSs

30 min
Brainstorming

Rate Goals5 min

Group Goals5 min

Goals

40 min

Phase 2: Goals

Figure 7.4.: The second phase of the USMU workshop.

participants only focus the PSs that were rated at least once. Afterwards, the
goals are created to address the two highest rated PSs by trying to find answers
to the HMWs. Identified goals are written to moderation cards and pinned
to a place visible to all participants. The rules of a brainstorming have to
applied, thus no one discusses the pinned goals in this step. Subsequently, the
resulting goals are rated and grouped. Again, every participant is allowed to
rate by having three sticky dots. The two highest rated goals are selected to be
focused upon by two separated groups of participants in the upcoming phase
of the workshop. These groups should be mixed of WASH volunteers and Pool
volunteers. Thus, the WASH volunteers are allowed to choose between the
both highest rated goals, while the Pool volunteers are equally distributed.
The last phase of the workshop (see Figure 7.6) is only rarely moderated.

The participants are introduced to the principles of USs and the Connextra
template. They get leaflets regarding user stories and the template as well as
they get moderation cards and pens. The presentation slides and the leaflet
are published by Sell and John (2020). Afterwards they start writing user
stories that aim to address the previously selected goals.
The USMU workshop format provides some guidance to ensure that the

WASH volunteers are able to join the requirement elicitation. This guidance has
the objective of supporting the participants by creating user stories of sufficient
quality that will be comparable. Thus, the workshop will become a new
democratic practice for the members of VCA and supports the equalization of
power relations by decomposing domain knowledge related hierarchies, as forced
of participatory design techniques. Furthermore, by bringing WASH volunteers
and Pool volunteers together to create user stories in everyday language, the
USMU bases on mutual learning. As a consequence, the workshop acts as a
participatory design technique.
The decentralized teams of VCA can apply the USMU workshop to create

186 CHAPTER 7: SOCIAL PERSPECTIVE

Present the concept of USs and the Connextra
Template

5 min

Assign different workplaces two both groups
including the required material.

5 min

Groups start writing their USs20 min
Brainstorming

Phase 3: User Stories

Figure 7.6.: The third phase of the USMU workshop.
small sets of special purpose USs focusing on their very own working procedures.
Although the subsequent implementation of the USs is not managed by the
proposed workshop, the resulting technical requirements can be collected by
the central well office of VCA or addressed by the WASH volunteers of the
crews themselves (in collaboration with Pool volunteers). Therefore, the crews
stay uncoupled by applying the USMU workshop, with the exception that they
decide to share and discuss their results with other crews. Thus, the workshop
format addresses ATR 1.

Splitting the workshop into three phases with recurring activities of present-
ing and rating the preliminary results, the workshop compels the participants
to constantly assess these results regarding their original needs. Furthermore,
by moving from problems that are anchored in real life experiences to goals
that are independent of technical solutions in second and concrete technical
requirements focusing on such goals in a third step, the workshop has the
objective of ensuring the creation of solutions that have a connection to the
actual, original needs. Therefore, it addresses the ATR 2. Additionally, the
approach allows people without technical skills to participate the workshop
from the very beginning. It has the objective of applying a participatory design
approach and thus, mutual learning should further support WASH volunteers
in collaborating with the Pool volunteers during the last and more technical
phase of the workshop. As a consequence, the USMU workshop is designed to
address the ATR 5.

Using the user stories format to formulate technical requirements, ATR 3, 4,
and 5 are implicitly addressed. ATR 4 is further addressed by using the format
of problem statements requiring one to explicitly detail the roles involved in
an identified challenge.
In contrast to the introduced approaches to create user stories in Section

7.2, the USMU is explicitly designed to address the ATRs. Thus, it is an
applicable approach for supporting the members of socio-technical evolutionary-
teal organizations in creating technical requirements aligned to their autopoietic
change process and in consideration of the self-managed, decentralized and
loosely-coupled teams.

USER STORY QUALITY ASSESSMENT TOOL 187

7.4. User Story Quality Assessment Tool

In this section, I will introduce the User Story Quality Assessment Tool (USQA)
as a tool to assess the quality of user story sets. It is derived from literature
presenting quality criteria for USs as introduced in Section 7.2. The USQA
consists of three questionnaires that collect qualitative assessments of given
user stories. The questionnaires were designed to qualitatively investigate user
stories. Thus, they consist of free-text items. Note that every single question
item is relevant in order to ensure that a corresponding quality criteria is
addressed. The items mentioning our case study VCA are italic to support the
adaptation of the tool. A first assessment of user stories using the USQA is
published as a part of the data publication by Sell and John (2020, files 3-1).

7.4.1. Questionnaire Q1: Assessment by ICT professionals

The questionnaire Q1 is used to verify single user stories independent of others.
ICT experts that have to implement the user stories should use Q1. Thus, using
the proposed tool should be precede by an estimation of expertise (Feigenspan
et al. 2012; Siegmund n.d.).

QI 1.1 Is the user story written in full sentences?

QI 1.2 Does the user story mention a role?

QI 1.3 How many roles can you identify?

QI 1.4 Does the user story mention one or more subjects expressing an aim
(e.g. “I want to...”)?

QI 1.5 What does the subject want to do (action verb)?

QI 1.6 Does the user story mention an object that is required to execute the
action (see answer to QI 1.5)?

QI 1.7 Does the user story express the wish for a feature?

QI 1.8 How many wishes for features can you identify?

QI 1.9 Does the mean described in QI 1.4, QI 1.5 and QI 1.6 expresses one
of the features that you have identified in QI 1.7? If not: How would
you describe the mean?

QI 1.10 Does the user story justify the mean? If so, how is it justified?

QI 1.11 Does the user story express more than that someone wants to do
something using a specific feature? If so, please describe the additional
information.

188 CHAPTER 7: SOCIAL PERSPECTIVE

QI 1.12 Does the user story describe a problem? What is the problem?

QI 1.13 Does the user story suggest a solution?

QI 1.14 Do you know all terms used by the authors of the user story? Please
note all terms that are unknown to you.

QI 1.15 Are there any misused terms? Please note these terms and describe
the way it was misused.

QI 1.16 Are there any inconclusive terms? Which one and what is your
interpretation?

QI 1.17 How long would you need to implement it? Please reason your esti-
mation and describe the plan you would follow to implement it.

QI 1.18 Do you think the user story is of high priority? Please reason about
your decision.

QI 1.19 Do you think the user story is of high value for the volunteers, the
employees and Viva con Agua itself? Please reason your decision.

QI 1.20 Please describe a required test for the user story (you can use pseudo
code, if you want to).

QI 1.21 Please judge the given acceptance criteria. Would you be able to
implement it?

QI 1.22 Please judge the given acceptance criteria. Do you think it covers all
relevant cases?

7.4.2. Questionnaire Q2: Assessment by prospective users

Questionnaire Q2 collects qualitative data regarding the verification and
validation of user stories by taking the perspective of the prospective users.
Each user story has to be judged, if it is (a) negotiable (IN 2) and (b) valuable
(IN 3). Additionally, the questionnaire contains items regarding the Kano
model.

QI 2.1 Do you think the user story will become a frequently discussed “hot
topic” for Viva con Agua? Please reason your answer!

QI 2.2 Do you think the user story is valuable for you as a volunteer of Viva
con Agua? Please reason your answer!

QI 2.3 Do you think the user story is valuable for your crew? Please reason
your answer!

USER STORY QUALITY ASSESSMENT TOOL 189

QI 2.4 Do you think the user story is valuable for other volunteers of Viva
con Agua? Please reason your answer!

QI 2.5 Do you think the user story is valuable for Viva con Agua at all?
Please reason your answer!

QI 2.6 Would you expect that the system implements a functionality similar
to the one described?

QI 2.7 Do you think, that the user story is a mandatory requirement for the
system?

QI 2.8 Would you be satisfied if the functionality will be implemented? Please
reason your answer!

QI 2.9 Would you be dissatisfied if the functionality will be implemented?
Please reason your answer!

7.4.3. Questionnaire Q3: Assessment of sets by ICT
professionals

Some quality criteria of Independence, Negotiable, Valuable, Estimable, Small,
Testable (INVEST) and the linguistic perspective address sets of user stories.
That is to say, the items of questionnaire Q3 focus sets. Note that a (sub)set
of USs has to be shown to the participants.

QI 3.1 Are there user stories that are dependent on each other? Please name
them and describe the dependence that you have identified.

QI 3.2 Are there user stories being in conflict with each other? Please name
them and describe the conflict that you have identified.

QI 3.3 Are all presented user stories unique or do you identify duplicates?
Please name the duplicates.

QI 3.4 Do the presented user stories have the same structure? If not, please
describe the main differences!

QI 3.5 Would you agree that the presented user stories are uniform? If not,
please reason your answer!

7.4.4. Relation between questionnaires and quality criteria

The Tables 7.1, 7.2, and 7.3 map the items of the questionnaires to quality
criteria sets introduced in Section 7.2.

190 CHAPTER 7: SOCIAL PERSPECTIVE

Questionnaire Items of Q1 Quality criteria

QI 1.2, QI 1.3, QI 1.4, QI 1.5, and
QI 1.6

well-formed (LI 1)

QI 1.7, and QI 1.8 atomic (LI 2), small (IN 5)

QI 1.11 minimal (LI 3), small (IN 5)

QI 1.9, and QI 1.10 conceptually-sound (LI 4)

QI 1.12, and QI 1.13 problem-oriented (LI 5)

QI 1.14, QI 1.15, and QI 1.16 unambiguous (LI 6)

QI 1.1 full-sentences (LI 9)

QI 1.17, and QI 1.18 estimable (LI 8) (IN 4)

QI 1.1, QI 1.9, QI 1.10, QI 1.12, QI
1.13, QI 1.14, QI 1.15, and QI 1.16

negotiable (IN 2)

QI 1.2, QI 1.3, QI 1.4, QI 1.5, QI
1.6, QI 1.9, QI 1.10, QI 1.12, QI
1.13, and QI 1.19

valuable (IN 3)

QI 1.20, QI 1.21, and QI 1.22 testable (IN 6)

Table 7.1.: Mapping between items of questionnaire Q1 and quality criteria
for user stories.

Questionnaire Items of Q2 Quality criteria

QI 2.1 negotiable (IN 2)

QI 2.2, QI 2.3, QI 2.4, and QI 2.5 valuable (IN 3)

QI 2.6, and QI 2.7 must-be (KA 1)

QI 2.8, and QI 2.9 one-dimensional (KA 2), attractive
(KA 3), indifferent (KA 4) and reverse
(KA 5)

Table 7.2.: Mapping between items of questionnaire Q2 and quality criteria
for user stories.

USER STORIES CONSTRUCTED IN THE FIELD 191

Questionnaire Items of Q3 Quality criteria

QI 3.1 independence (IN 1), (LI 12)

QI 3.2 conflict-free (LI 7)

QI 3.3 unique (LI 10)

QI 3.4, and QI 3.5 uniform (LI 11)

Table 7.3.: Mapping between items of questionnaire Q3 and quality criteria
for user stories.

7.5. User stories constructed in the field

I developed the USMU format to enable members of an evolutionary-teal
organization to (1) express problems they have faced, (2) transform these
problems into goals whose fulfillment would address the original problem, and
(3) develop user stories addressing a goal.

The organizational members are enabled to explain and formulate techni-
cal requirements as well as to focus on real-world problems in self-managed
workshops. Hence, the members become empowered to design their own
work environment. Furthermore, they are enabled to align the purpose of the
socio-technical organization to their own ideas.

This section presents a qualitative investigation aiming to identify possible
improvements for the USMU. The study contributes with some distinct
practical tweaks of the workshop. Additionally, I will investigate whether or
not the USMU can be applied for socio-technical evolutionary-teal organizations
to support their autopoietic change processes. Thus, I will take the first step
in developing a theory of how such workshops could be designed.
The USMU workshop approach outlined in Section 7.3 was investigated

phase by phase. Thus, Völker (2021) and Bierschenk (2022) investigated the
first phase and conducted two workshops addressing the creation of PSs (Völker,
Frey, and Sell 2020; Bierschenk, Frey, and Sell 2020). The study presented
here focuses on the investigation of the second and the third phase of the
USMU workshop in January 2020. Since the workshop did not covered the first
phase, the sequence of activities is slightly adjusted to the actual conditions.
The workshop was conducted in an evening session after a working day with
WASH volunteers. Some of them had already programming experience. Thus,
the conditions for volunteering activities, as detailed in Chapter 4 had to be
considered.

192 CHAPTER 7: SOCIAL PERSPECTIVE

7.5.1. Participants

VCA volunteers are usually not technically trained. Nevertheless, a few volun-
teers are professional software developers and it can be assumed that these
volunteers are able to express USs addressing their needs. Consequently,
the participants had to work collaboratively to create technical requirements.
Thus, the workshop applied mutual learning as one of the guiding principles
of participatory design (see Section 2.7).

The workshop was conducted in Hamburg using the office of VCA’s employees.
Therefore, all volunteers of the Hamburg crew were invited and six WASH
volunteers participated the workshop. Three were also a Pool volunteer. All
participating volunteers were of the same Hamburg crew. Thus, the tighter
coupling in terms of a closer interaction between the participants was obvious
during the observation. One participant was an employee of VCA and was
also a Pool volunteer. Additionally, I, along with a student assistant, attended
the workshop and participated as moderator and observer.

7.5.2. Workshop Design

The workshop starts with an adaptation from the first phase of the USMU
workshop to initially group the participants into WASH volunteers and Pool
volunteers. They are grouped by asking them for programming experiences.
Participants with experience were added to the Pool group, participants
without experiences to the WASH group. Alternatively, volunteers could have
been grouped by using questionnaires assessing their programming experience
(Duran et al. 2019; Siegmund, Kästner, Apel, et al. 2013). Since using forms
is a very time-consuming activity, it would not be in line with the volunteering
constraints outlined in Chapter 4.
Afterwards, an initial set of problem statements conducted by Bierschenk,

Frey, and Sell (2020) was pinned to the whiteboard and briefly explained.
Each participant has marked their most important problem statement and has
explained their reasons to the others. Subsequently, participants reformulate
the selected problems using HMW questions; brainstorming is initiated. The
brainstorming is intended to create goals that address the original problem
statements, or if they will be fulfilled. In the end, each participant marked the
three best ideas, and the highest ranked goals were selected for the next step.
In the next step, groups consisting of WASH volunteers and equally dis-

tributed Pool volunteers generate a set of USs addressing each goal. I hypoth-
esize that the Pool volunteers assist the WASH volunteers in writing stories.
User Stories and the Connextra template were presented at the beginning of
this phase and leaflets were distributed explaining the purpose of user stories,
giving short instructions and a concrete example.
As a result of the volunteering context described in Chapter 4, I aim to

construct an adaptable workshop format that allows to collaboratively generate

USER STORIES CONSTRUCTED IN THE FIELD 193

satisfying results within two joyful hours. The planned workshop procedure is
presented in Table 7.4 or the file 4-1-Timetable.pdf in the data publication of
Sell and John (2020). As already mentioned, the workshop was conducted on
a work day in the evening.

From To Description Duration

07:45 07:55 Introduction 10 min

07:55 08:00 Grouping into WASH volunteers and
Pool volunteers

5 min

08:00 08:02 Rate problem statements 2 min

08:02 08:05 Presentation of the self-chosen problem 3 min

08:05 08:20 HMW questions 15 min

08:20 08:50 Brainstorming to identify goals 30 min

08:50 09:00 Evaluate ideas and form groups 10 min

09:00 09:30 Generate User Stories 30 min

09:30 09:50 Fill up questionnaires 20 min

09:50 10:05 Outro 15 min

Table 7.4.: Time table for the two hours workshop implementing the phases
two and three of the USMU workshop aiming to generate user
stories.

7.5.3. Data generation

The conducted workshop focused on the second and the third phase of the
originally suggested USMU workshop and was based on the existing PSs
generated for the data set of Bierschenk, Frey, and Sell (2020). The workshop
started with 11 PSs, as for example: “As a supporter, I want to know what
happens in the Pool. Since I am not able to check the Pool every day, I feel
overstrained and give up”. Regarding the example PS the participants have
identified (1) “Reminder”, (2) “What’s new dashboard”, (3) “Pool-App”, and
(4) “Subscribe to topics” as goals. The PS as well as the goals are translated
freely from German, see the data in Sell and John (2020).
I collected video and audio recordings of the conducted workshop, the

material used during the workshop as well as the material used for preparation
and the invitations. After transcription and anonymization, the material was
published in the data set Sell and John (2020).
Additionally, the resulting user stories were verified and validated by the

194 CHAPTER 7: SOCIAL PERSPECTIVE

USQA expert assessment, introduced in Section 7.4. The stories are assessed
by me and the student assistant.

As introduced in Chapter 3, ethnographical naturalistic case studies end up
resulting in an overwhelming wealth of generated data (Cohen, Manion, and
Morrison 2007). It is therefore very important to consciously select data for
the purpose of analysis. Since a huge data set was retrieved from the elicitation
phase, and I focused the presentation and the reasoning for the created user
stories in the video transcriptions, as well as the quality assessments and the
communication surrounding the organization of the workshop for the purpose
of analysis.

7.5.4. Analysis

The generated data Sell and John 2020 was analyzed qualitatively to address
the RQs 3 and 4.

CONTEXT: COLLAB_CREATE
FORM: FEATURE_WISHES
CONTENT: DEPENDENCIES

Figure 7.7.: Example axial code CTL

The coding followed four steps:
The open coding, an axial coding,
sketching observations, and insights.
An open coding (see Section 3.2.4)
led to 882 open codes and 1062 cod-
ings. Afterwards, an axial coding
step was performed to cluster the

open codes by similarity on three axes: The context, the form, and the content.
The context generalizes the situations the code was applied to. Possible values
are a user story, the review of it, or the collaborative workshop procedure.
The form indicates the topic of the code, such as reasoning or some feature
requests. The content describes how the code addresses the research questions.
I defined a new or assigned an existing nominal value to each axis for each
code from the open coding. A set of 145 new axial codes cluster the original
open codes. Each of these codes consists of three values for the three axes.

O1: Participants justify a new feature as re-
quirement to implement the feature that is
originally needed by the focused goal.

O2: Participants are constantly confused by
the new feature, since it is not required by the
focused goal.

Figure 7.8.: Example observations O1 and O2
derived from axial code CTL

Figure 7.7 shows the axial code
CTL as an example the axial code.
The code groups all open codes cod-
ing a situation in which the partici-
pants are expressing feature requests
and detecting dependencies between
the new one and already existing
ones.

Subsequently, were formulated for
all axial codes observations by a new
coding cycle, starting with an open
coding applied to each cluster of open
codes that was identified through the axial coding. For example, CTL shapes
the observation O1 and O2 shown by Figure 7.8. These observations are

USER STORIES CONSTRUCTED IN THE FIELD 195

sketching the relation between the open codes of an axial code and the research
questions. Overall, 320 observations were identified.
The observations were interpreted regarding the three topics described by

the RQs 3 and 4. Thus, this process of interpretation was conducted as a
focus coding addressing the topics of (1) evolutionary-teal organizations, (2)
participatory design, and the (3) quality of the user stories. This last coding
step resulted in 169 insights that were filtered in two parts: (1) The insights
focusing on the user stories as a result of the workshop (76 insights - see Sell
2021) and (2) the insights focusing on the collaboration during the workshop
(93 insights). The insights of group (2) are additionally filtered by the number
of codings (see Sell 2021). Only the codes with at least ten codings were
considered during the analysis. The next section relates the insights to the
RQ 3 and 4.

7.5.5. Results

First of all, the procedure of the workshop was slightly adapted due to timing
issues. The creation and use of HMW questions was rejected. Table 7.5 shows
the changed procedure. Since the participants were still able to generate
valuable USs, as shown in Section 7.5.5, the study showed that the HMW
questions are optional.

From To Description Duration

07:45 07:55 Introduction 10 min

07:55 08:00 Grouping into WASH volunteers and
Pool volunteers

5 min

08:00 08:02 Rate problem statements 2 min

08:02 08:05 Presentation of the self-chosen problem 3 min

08:05 08:20 HMW questions 15 min

08:05 08:30 Brainstorming to identify goals 25 min

08:30 08:40 Evaluate ideas and form groups 10 min

08:40 09:30 Generate User Stories 40 min

09:30 09:50 Fill up questionnaires 20 min

09:50 10:05 Outro 15 min

Table 7.5.: Applied time table for the two hours workshop implementing the
phases two and three of the USMU workshop aiming to generate
user stories.

196 CHAPTER 7: SOCIAL PERSPECTIVE

The qualitative analysis led to the insights described in Sell (2021) and the
Tables A.3 and A.4 in the appendix. The insights describe to what degree the
USMU workshop technique addresses the RQs 3 and 4. The quality of the
created user stories (see Section 7.5.5), the appraisal of the USMU concept as
being a participatory design technique (see Section 7.5.5), and the relation of
the USMU concept and the principles of evolutionary-teal organizations (see
Section 7.5.5) are derived.

Quality of the user stories

This section refers the insights that relate the created USs to existing quality
criteria sets (Wake 2003; Lombriser et al. 2016; Lucassen, Dalpiaz, J. M. v. d.
Werf, et al. 2016). These quality criteria sets are introduced in Section 7.2
and further discussed in Section 7.4. The subsection contains no quotes, since
the interpretation mostly depends on the quality assessment of the workshop
results performed by me and my student assistant.

First of all, the generated user stories are not independent (I8, I9, and I10).
There are user stories required by others (I8 and I10) and feature requests can
be generalized to the same abstract feature (I9). During the group session, the
participants discussed restrictions for prospective users if they had no external
contact data added to their user profiles (Sell and John 2020, file 2-4, p. 31–36).
Since the user profiles are managed by the microservice Drops, they implicitly
discussed the interfaces between microservices.
The set of created user stories is conflict-free (I66), contains no duplicates

(I41) and all stories are written in full sentences (I72). Moreover, they are
uniform (I42), except varying formulations (I43) and lacking acceptance criteria
(I44). User stories created by participants of a USMU workshop are addressing
a role (I35), a mean (I36, I37), and an end (I57). Thus, they are well-formed.
Nevertheless, the direct object is missing (I40), some describe more than one or
none action verb (I38 and I39) or mentioning multiple roles (I33). Mostly, the
end arguments about the reasons for the story I53. In one case, new conditions
to existing working procedures required to adapt the resulting feature were
introduced. Nevertheless, the user stories can be characterized as minimized
I49 in general.

In the most cases, the expressed feature requests implementing support for
the described mean I45. Nevertheless, there are few user stories whose feature
requests are unrelated to the given mean.

Mostly, a problem has not been described at all (I62). The user stories that
describe a problem are not suggesting a solution (I64) or the solution is just
implicitly mentioned (I63).
The terms and phrases utilized were correctly applied (I19 and I20) and

unambiguous (I15), but the readers have to interpret them (I16 and I17). Ac-
tually, I11, I13, I18, and I21 suggest that the stories are difficult to understand
for WASH volunteers not attending the workshop. Thus they become difficult

USER STORIES CONSTRUCTED IN THE FIELD 197

to negotiate.
A US is judged as being of high value, if it addresses the whole social system

(I24), supports the cooperative business procedures of VCA (I22), and solves
a problem (I25) that has not already been solved by a workaround (I26).

According to I31 the Pool volunteers are able to implement all created user
stories. Nevertheless, the I68 and I69 suggest that Pool volunteers are not
able to estimate all user stories. Thus, the workshop can be facilitated by a
short documentation of the Pool and by focusing on technologies known to the
participating Pool volunteers (I70 and I71). Mostly, the stories are expressing
exactly one feature request (I49). However, there are few user stories implicitly
expressing more than one or completely missing the feature request.

I73, I74, I75, and I76 are suggesting that the user stories are not testable,
while the existing test cases can be implemented I6.

Although the workshop has produced user stories that can be used to design
new parts of the CSCW system Pool, we have identified relevant improvements
for the workshop concept. The Sections 7.5.6 and 7.6 will further discuss these
issues.

Participatory design

Although the moderator guides the participants (I102), only the order of the
workshop phases is predefined (I115) and the participants are enabled to shape
the collaboration during the individual phases by themselves (I109). Consider
the following comment of a participant:

Sometimes, you can find such workarounds [...]. These should
maybe not be expressed directly as an user story ((laugh)).

(freely translated from German)
Sell and John (2020, file 2-5, p. 71)

While the participants formulate a solution that they classify as a workaround,
the quote is spoken. Hence, the solution incorrectly utilizes a technical system
to fulfill a task that it has not been designed for. The group of participants
rejected the idea without an explicit workshop phase for evaluating the ideas
and by focusing on the quality of the proposed solutions. Additionally, the
quoted participant initiates a group decision: Should the group reopen the
ideation phase or should they further formulate the user story regarding the
workaround. Therefore, the participants were free to shape the dedicated
phases of their group collaboration. Thus, the group uses democratic practices
and has equal power relations. Furthermore, no exclusion of participants
during the workshop was observed.

The participants of the USMU workshop are considering the concept of open
participation (see Section 4.1.1; I124, I128 and I133) and thus, they are acting
on their own interest and the interest of VCA in general. Additionally, they

198 CHAPTER 7: SOCIAL PERSPECTIVE

are primarily grounding the feature requests in the business procedures (I136,
I137, I147 and I151):

It would be very helpful for me to be familiar with the process of
deriving user stories.

(freely translated from German)
Sell and John (2020, file 2-5, p. 67)

Thus, the feature requests are in the interest of all volunteers involved in the
working procedures. Even though they may introduce the requests due to
their own experiences, the feature has to be generalized in order to fit a role
instead of the individual. Therefore, the feature requests are in the interests of
the common good with respect to VCA and fulfill the principle of democratic
practices (Bratteteig et al. 2012). Furthermore, the justifications of the user
stories were intensively discussed (I121 and I142).

However, the participants were confused by the naming of problem statements,
goals, and user stories (I164). The concept of the USMU workshop has to
be self-explaining to educate the participants for becoming democratically
involved.

Workshops contradict the idea of having a situation-based learning, since the
daily volunteering is not organized that way. Additionally, the moderator gets
involved by explaining the workshop concept (I106) and guiding the participants
(I102, I103, and I104). Nevertheless, the participants focused heavily on real
business working procedure situations (I136) and minor sequences of actions
(I94 and I147) describing micro tasks of the business process. I cite these very
minor business processes action sequences, as one is described in the following
comment of a participant:

Otherwise, I would have to save my data for each event individually,
because it could change every time and thus I am forced to update
my data.

(freely translated from German)
Sell and John (2020, file 2-4, p. 9)

Unfortunately, since all participating Pool volunteers were also WASH volun-
teers, no data regarding situated or mutual learning was collected.

Nevertheless, in the end of the workshop, feedback regarding the workshop
was collected. The participants mentioned a technically oriented wording, like
“microservices” should be avoided.

Now, me a non-programmer was outnumbered. Thus, I ignored
some terms and I thought: If I would have to know this, it will
come up again. But, if the distribution [of WASH volunteers and
Pool volunteers] differs and someone uses so many domain specific
terms, it becomes complicated.

(freely translated from German)
Sell and John (2020, file 2-5, p. 144)

USER STORIES CONSTRUCTED IN THE FIELD 199

Since this was the only occasion, the term “microservice” was used by the par-
ticipants of the workshop, the Pool volunteers obviously did not explained this
basic concept to the WASH volunteers. Consequently, no shared understanding
regarding microservices was established.
Nevertheless, the surrounding discussions of the initial selection of PSs

showed how the participants started to construct a shared understanding of
the USMU workshop as an activity of the software development process.

Actually, it is a process. The Pool becomes simply a component of
it.

(freely translated from German)
Sell and John (2020, file 2-5, p. 12–14)

Thus, the Pool volunteers did not explicitly shared their knowledge regarding
technical concepts with the WASH volunteers, but for concepts new to all
participants, the construction of a shared understanding was a successful and
explicit process.
The participants decided to not impede open participation as a general

design guideline (I124): Volunteers of VCA cannot be compelled to use a
specific technology or to communicate via an SNS. Thus, user stories imply
a communication infrastructure service that is open for existing clients, as
implemented by the relatively new Matrix (https://matrix.org/, accessed
05/26/2020). Therefore, alternative visions about technology were introduced,
although they are not required by the USMU workshop itself.

Evolutionary-teal organization

According to one participant, all volunteers of VCA are able to adapt the
concept of the USMU workshop (I83):

After restraint is gone, everyone is able to do it. Why? Because it
requires neither deep technical nor domain knowledge regarding
the Pool or VCA. It is enough, if one already had a problem in
the context of VCA and is able to describe it.

(freely translated from German)
Sell and John (2020, file 2-2, p. 8)

Additionally, the volunteers will outline the business process as they know it
(I132, I136, and I151) and focus action sequences described from their own
perspective (I94, I137, and I147). Thus, by altering the business procedures
through the description of a user story implements self-management. Fur-
thermore, the workshop itself is self-managed by the participants (I109, I115,
and I121). The moderator still guides the workshop (I102, I103, I104, and
I106). The participants manifest the principle of open participation that partly
ensures self-management by itself (I124, I128, I132, and I133).

200 CHAPTER 7: SOCIAL PERSPECTIVE

Due to timing issues, the moderator skipped the step of creating HMW
questions and the participants have created goals without the guiding support of
HMW questions. Thus, addressing the volunteering context of the participants,
but also the self-management of evolutionary-teal organizations, this step is
optional.

The USMU workshop was designed to be guided by the participants them-
selves (I109 and I115). Thus, the participants have to introduce social and
organizational skills next to their domain knowledge as either WASH volunteers
or Pool volunteers. Hence, they address wholeness to a limited degree.

Moreover, participants of a USMU workshop indirectly influence the vision
of VCA (I84). Thus, in limited and also indirect manner, the workshop
supported the principle of evolutionary purpose. Nevertheless, the workshop
format should serve as motivation to question relationships between the PS,
goals, user stories and the purpose of VCA.

7.5.6. Discussion

As noted by Dourish (2014), an ethnographical text in HCI research should
discuss the context of its production. By discussing the foundation of the
participation in the presented studies their results become more simple to
transfer and furthermore, it supports their credibility and confirmability (see
Section 3.2.1). The participants of the study presented in this chapter are
WASH volunteers that were invited because they are part of a specific crew that
is spatially responsible for the town the workshop was situated in. Thus, the
newly created workshop intervention is investigated in existing team structures
of one of the loosely coupled teams of VCA. Moreover, they decided freely and
based on their personal interests whether or not they wanted to participate.
Consequently, the concept open participation is explicitly applied for the context
of the scientific investigation.
Nevertheless, such a setup mainly addresses WASH volunteers already in-

terested in the technical tool. Therefore, the participants were classified as
partly both, Pool as well as WASH volunteers. Additionally, through my
prolonged engagement (see Section 4.2.2), I made some personal contacts.
Thus, I have to admit, that some participants were additionally motivated to
participate because they wanted to do me a favor. Nevertheless, since being
a volunteer of VCA is a time consuming activity, the main motivation still
remains transforming the tool. Therefore, I observed no changed behavior in
comparison to other VCA meetings during the workshop presented in Chapter
7 and critique was frankly communicated.

Moreover, exploring more crews and possibly observing different behavior
patterns in other crews would further address the characteristics of an evolution-
ary-teal organization. Besides, increasing the number of investigated workshops
with the same members allows for developing theories about challenges that are
faced in later iterations. Thus, data triangulation regarding these dimensions

CONCLUSION 201

would be useful, but also very time and resource consuming.
Although the qualitative analysis were very detailed, only a part of the

generated data was analyzed. More than 120 additional pages of the video
transcript are not considered yet and can be investigated for more insights.
Additionally, the generated and published material of other workshops could
have been included in the analyzes (Sell 2020; Völker, Frey, and Sell 2020;
Bierschenk, Frey, and Sell 2020). Although these workshops were not focused
on the creation of user stories, the data sets Völker, Frey, and Sell (2020) and
Bierschenk, Frey, and Sell (2020) were generated by conducting workshops
that were adapting the first phase of the workshop. Nevertheless, addressing
more general ORQs, the master theses Völker (2021) and Bierschenk (2022)
describe an analysis of data with a focus on socio-technical evolutionary-
teal organizations. Sell (2020) describes data generated through a workshop
adapting the USMU workshop for employees of VCA to have a first attempt.
Next to the previously discussed selection effects, also setting effects were

observed (Cohen, Manion, and Morrison 2007, p. 257). The composition
of the group of participants also resulted in a low number of observations
regarding the application of wholeness or the mutual learning. Since three of
six participants marked themselves as Pool as well as WASH volunteers, many
questions and explanations between these two groups were not required.

7.6. Conclusion

I developed the USMU workshop format to enable members of an evolution-
ary-teal organization to (1) express problems they faced, (2) transform these
problems into goals whose fulfillment would address the original problem, and
(3) develop user stories addressing a goal (Sell and John 2020).

The organizational members were able to explain and formulate technical
requirements and they focused on real problems in self-managed workshops.
Hence, the members became empowered to design their own work environment.
Furthermore, they were enabled to align the purpose of the socio-technical
organization to their own ideas.

The USMU workshop directly addressed the RQ 3. The workshop is adapt-
able by the volunteers of VCA, although it needs to be extended by instructional
explanations and moderation guidelines. The participants partly managed the
workshop by themselves. Dedicated techniques for visualizing and altering
existing business processes or action sequences would further support self-
management. Moreover, the participants included capabilities in addition to
their WASH domain expertise. Thus, a first step regarding wholeness was
taken. Specific workshop techniques aiming to animate the participants to
introduce experiences of their daily life unrelated to VCA would further sup-
port wholeness. Furthermore, the created USs are usable. Pool volunteers
implementing these stories will have to solidify and substantiate further details

202 CHAPTER 7: SOCIAL PERSPECTIVE

in collaboration with WASH volunteers, but requirements are under ongoing
change in agile software development. Thus, the concept empowers members
of an evolutionary-teal organization to express their needs. Additionally, the
quality of the results can be improved: (1) The use of business processes and
action sequences has to be further supported by the workshop and (2) fewer
USs with more details have to be created.
Addressing the missing direct objects of the created USs, as well as the

problems regarding action verbs and roles, the leaflets given to the participants
should be extended and the moderators guideline has to instruct to focus on
these elements (I30). Since in a few cases the requested feature was unrelated
to the formulated mean, the moderator could suggest the participants to
constantly reason their feature request by their mean. Moreover, moderators
should provide hints to the participants, if the feature request is missing.
Additionally, the participant should be invited to write atomic user stories.
The moderator guideline must be extended by these points.

The created USs are lacking enough acceptance criteria to refer to them as
testable. An explicit creativity session with respect to observed conditions
may possibly supports the identification of relevant test cases. The workshop
procedure could be extended by transforming selected cases into acceptance
criteria for each user story.

Supporting the WASH volunteers in interpreting the created user stories, a
glossary for the WASH volunteers can be added (I14) or an open Q&A session
after the USMU workshop (I5) to explicitly discuss the effects of user stories
onto the social system. I suggest relating the user stories to their problem
statements in order to increase the plausibility. Furthermore, a presentation
game can be played during the workshop: A group A presents the user stories
of the other group B and explains their comprehension of it. Group B gives
feedback, if group A has understood the user stories the way it was intended.

Additionally, the workshop can be improved by explicitly support the identi-
fication of high value USs for VCA. A community-based prioritization support
should be implemented as part of the CSCW system Pool that polls WASH
volunteers regarding the four characteristics of high value USs, identified in
Section 7.5.5.

Considering the business processes and action sequences, prospective USMU
workshops should use the SeeMe notation (Herrmann 2006) to collaboratively
introduce and rework the working procedures as well as specifing the action
sequences. Such a technique should additionally be supported by specific tools
to save the results and make these accessible for others.
A more specific support for motivating the participants include their own

personal experiences wholly in the sense of evolutionary-teal organizations
requires specific techniques to introduce aspects of the participants’ personality
that are not directly connected to VCA.
Focusing the RQ 4, members consulting other volunteers in conducting an

USMU workshop need some training. Additionally, the organization has to

CONCLUSION 203

manage textual guides and the resulting USs. I observed, that the USMU
workshop requires more time or a more specific focus. Furthermore, the work-
shop transforms business processes. Hence, it has to support the adaptation
of potential changes and organization-wide awareness for the effects of the
workshops needs to be ensured. The results of the study shape an answer
to RQ 4 and identify challenges that have to be considered for the workshop
concept, but also by prospective moderators. Still, the identified challenges
require further research.

Moreover, further studies should investigate if the USMU workshop supports
the volunteers in contributing to the evolutionary purpose. I assume that
effects onto the purpose will become visible by surveying the use of the USs.

The USMU workshop goes along with two principles of participatory design:
Equalizing power relations and democratic practices. Regarding the principles
of mutual and situation-based learning further research has to be conducted.
Additionally, prospective iterations should improve the used tools and tech-
niques by the previous suggestions in this section. For example, participants
should be supported in aligning USs to business processes. Likewise, workshop
techniques triggering more alternative visions about technology need to be
adapted.

No relationship between the behavior of the workshop participants and the
Heureka! architecture, introduced in Chapter 6 was observed. The architecture
of the Pool was designed to decouple the feasibility of users’ requirements from
the architecture of the platform. Furthermore, the platform strives to reduce
the number of technical dependencies required to implement new functions.
Consequently, no existing relationship can be understood as a success for
the workshop. Nevertheless, the non-existence of such a relationship must be
further focused in upcoming workshops. Additionally, it must be questioned,
if really no interfaces should be discussed, since the Section 7.5.5 mentioned
an observed discussion of boundaries between microservices. Although the
participants took note of existing of boundaries between microservices, they
were unable to explicitly identify these boundaries between the services and
therefore, they were not cited in the interfaces.
Summarizing, a first qualitative analysis as part of a DSR project was

presented, but no theory was constructed. Subsequent workshops focusing on
some of the insights and improvements, could become a base for a grounded
theory. Hypotheses could be developed that are grounded in the data.

Still, a rigor qualitative analysis was presented here. The USMU workshop
is a useful format to support socio-technical evolutionary-teal organizations
regarding their autopoietic change. Particularly, using a CSCW tool, the ap-
proach of moving from problems to goals to user stories seems to be successfully
accomplished. Thus, the USMU workshop and a first qualitative analysis of
its use are important steps in developing a theory of how tools and techniques
have to be designed to enable socio-technical evolutionary-teal organizations
to collaboratively design their own work support systems.

8. Closure

The long process of a constant self-development in our society leads to a
working world for millennials that is totally different to the one that was
criticized by Chaplin (1936). Now, the millennials are reshaping this world by
new forms of organizing and the use of new CSCW tools. They are facing new
facets of the socio-technical tension in the autopoietic change process of their
organizations. This thesis presents a technical, as well as a social approach to
handle these tensions.
Thereby, the scientific work conducted to address the original ORQ was

aligned to the real case study VCA as an example of a new type of organizations,
the socio-technical evolutionary-teal organizations, Following the ideas and
values of the millennials. This chapter will discuss my research approach
in Section 8.1, conclude my results in Section 8.2, and give an outlook to
upcoming research opportunities in Section 8.3.

8.1. General Discussion

In Chapter 3 the concept of objectivity for qualitative, naturalistic and ethno-
graphic investigations is discussed and as a consequence an undeniable degree
of subjectivity has to be considered. First of all, I am a source of influence
myself onto the investigated situation. Thus, the Section 4.2 contains a self-
description to make my influence onto the context of the case transparent.
Next to this description of my prolonged engagement, my personal background
becomes relevant. I received a diploma degree in computer science and I
already worked as a software developer in a consulting company focusing on
the design of CSCW systems. Therefore, the employees and volunteers of VCA
were integrating me in a role of a consultant regarding the tool Pool. Thus, the
participants in my studies were characterizing me as an IT expert and some
of them assumed that I was biased regarding the use of technology. In some
occasions they felt the need to make clear, that they would use technology if
it supports the collaboration, but they would prefer to not use any technology
at all. Thus, my professional biography caused biased expectations by the
participants and I had to support them in opening their minds.

My research focuses on socio-technical systems and my work for a consulting
company led to my firm conviction that technology is a tool that can be used
for human work, if it appropriately supports the processes the humans carry
out. Thus, my personal values supported me in deconstructing prejudices

205

206 CHAPTER 8: CLOSURE

participants had because of my expertise as a software developer. Furthermore,
I have explained my personal goals motivating me to work in this project to
the participants of my research: (1) I aimed to gain knowledge regarding the
ORQ introduced in Section 1.2. Implicitly, (2) I aimed to support VCA in
their further development, and (3) I aimed to enable the WASH volunteers to
bring in themselves in the software development process. By communicating
my personal goals transparently, I was able to establish the required degree of
confidence to find interested participants for my studies that were convinced
to invest their free time to support the organization VCA. Nevertheless, I also
raised expectations about the outcomes of the interventions.
Since I was a WASH volunteer myself and also supported the Berlin crew

as an ASP, some participants of my studies knew me and supposed that I
knew the working procedures that WASH volunteers are involved. I had to
consciously motivate the participants to express their own perception of the
daily work. Furthermore, I had to be careful in expressing my own point of
view, when I aimed to catch the perspective of the participants, since my
experiences could have influenced and questioned the way participants would
talk about their daily life. Moreover, I was part of the Berlin crew and knew
their working procedures, why I was mainly inviting persons from other crews
to my studies. Thus, I was able to catch differences that may occur due to the
self-management of the crews. Nevertheless, several times I had to motivate
the participants in expressing their experiences by talking about interesting
differences between my experiences from working in the crew Berlin and other
experiences from other crews.

Due to the nature of a DSR project, I was constantly involved in activities
to foster the adaption of the created artifacts, as required by the change and
impact cycle (see Section 3.1). I had talks on regional meetings, as well as
on several NWTs. My talks were explaining the STWTs, the USs as their
results, the technical artifact Rambla (Sell and Pinkwart 2016), the Heureka!
microservice architecture (see Chapter 6), as well as the upcoming steps of
the project. Consequently, I was forming and transforming the social system
under investigation, since I raised expectations and formed the awareness for
socio-technical needs of VCA in the minds of the WASH volunteers. Although
such an approach is at least questionable for neutral, objective observers, I
was acting as an ethnographer in a DSR project. Thus, having an influence
was not preventable, but by seeing, understanding, and reflecting upon this
influence, I was able to make it transparent. Therefore, I aimed to generate
results of the presented studies that are credible, transferable, dependable, and
confirmable (see Section 3.2.1).

Apparently, the conducted studies that are described in the Chapters 6
and 7 are formed and constructed by my personal history, values and goals
that became intertwined with the histories, values and goals of the humans
participating my studies. Therefore, my interactions with the participants are
“an inherent part of the research reality. It, too, is a construction” (Charmaz

GENERAL DISCUSSION 207

2014, p. 13).
Due to political and external issues (e.g. the COVID-19 crisis) it was not

possible to examine the correlation between generated data and interpretations
in the course of time (predictive validity) as one aspect of criterion-related
validity. It would have been necessary to conduct the qualitative data in a
course of time, thus, the study presented in Chapter 6 would have required
attempting the implementation of new microservices, not only in one point
of time, but more often as well. Equally, the study presented in Chapter
7 would have forced to conduct the workshop again and again, ideally with
different crews. Unfortunately, the COVID-19 crisis and the required political
actions to address this crisis did not allowed to come together for workshop
approaches. At the same time, these political measures forced VCA to change
their own activities, that were always focusing on the meeting in person. Thus,
the technical tool Pool were suddenly irrelevant. Furthermore, many WASH
volunteers stopped their engagement to address their own personal change
of life. As a consequence, VCA moved their attention from the previously
identified socio-technical challenge to other, technically completely new tools
and the workshop format was not applicable anymore.
In Chapter 4 I describe my prolonged engagement as a WASH volunteer

for VCA. It became the base for the description of the initial environment
and the first intervention by conducting the STWTs. Thus, I was able to
readjust my biases and question my perception of VCA. The permanent
communication with other WASH volunteers has enabled me to detect the
typical characteristics of the volunteers (it was a persistent observation by the
terms of Guba 1981). The whole context of the research project is described
in Section 4.3, as required by Denzin and Lincoln (2008) and Dourish (2014).
Unfortunately, peer debriefing and triangulation of investigators were difficult
to implement, since the research project was accompanied only by me. Such
a limit of available researchers is a typical challenge for qualitative research
projects (McDonald, Schoenebeck, and Forte 2019). Furthermore, as an
ethnographer, I was heavily involved in the social situation the data generated.
Thus, McDonald, Schoenebeck, and Forte (2019) argue that there is no need for
an agreement between researchers, as it would be achieved by a triangulation
of external investigators, since only persons participating the situation are able
to understand the context of observed social change. Nevertheless, the research
interventions described in this thesis base on a triangulation of data sources.
The inquiries generated field notes, as well as video and audio recordings
that were transcribed. Furthermore, the iterative nature of the investigations
in Chapter 6 allowed for an analysis of the data during the phase of data
generation. Thus, I was able to perform member checks. However, since
the behavior of the participants is shaped by many external influences and is
not as reproducible as for classroom situations, the collection of referential
adequacy materials was not expediently. The coding strategies described for
the purpose of analysis and for the transparent description of the interpretation

208 CHAPTER 8: CLOSURE

are supporting the establishing of structural corroboration or coherence.
As one approach to support transferability, the generated data was published

(Sell 2020; Sell and John 2020; Sell 2022b), as well as the implemented software
code (Sell, Kleber, and Kästle 2022a; Sell, Kleber, Ottmann, et al. 2022; Sell,
Kleber, and Gottemeyer 2022).
Since I was focusing on an evolutionary-teal organization as my research

case, the results are applicable to this type of organizations. Nevertheless, I
am confident that the Heureka! platform and the USMU workshop could also
be applied to support non evolutionary-teal organizations. As mentioned in
Section 1.1, the results of my research are also transferable to other social
contexts, like universities or e-governmental processes. For universities, the
Heureka! platform can be used to deploy CSCW functions required by only
a few research groups to address their research topic or to support their
self-management. The required interfaces can be identified by focusing on
the existing direct and indirect communications between the research groups,
mostly established through the university’s self-administration. Moreover,
many universities already implement an university wide SSO to have only one
account per user for all used tools. They introduce special purpose tools and
identify the bounded contexts of these tools in terms of supported acts of
communication, as well as required data exchange between the tools. Thus,
they start to identify the interfaces between the services used in specific micro
contexts. It is only a small step to adapt the concept of microservices and
face the challenges of the socio-technical autopoietic change using a more
systematic approach.
Consequently, universities would benefit from implementing the USMU

workshop as a basic communication tool to argue about the requirements
for the used CSCW tools. The introduction of a communication tool for so
many different and self-managed research groups from various fields requires
considering many different perspectives and for socio-technical organizations,
it also covers different perspectives in the technology. Focusing on the basic
goals and purposes of universities, research and teaching, the different research
groups are equal in their rights and their responsibilities, although they may
be organized in separated institutes and faculties. The USMU workshop as a
communication tool strives to apply the basic principles of participatory design
to establish an agile software development process as a part of the autopoietic
change process of its using organization. The universities would make it
possible for themselves to align the their socio-technical autopoietic change to
the manifold and slightly different technical requirements occurring from the
thematic scientific and organizational diversity of their research groups, while,
at the same time, the addressed purposes are equal for these groups.
In the case of e-governmental structures, platform approaches similar to

the presented Heureka! platform prototype would allow for distributing the
technical responsibility. Moreover, such a platform approach prevents putting
a nation’s socio-technical sovereignty into the hands of a few or only one

GENERAL DISCUSSION 209

technical provider companies. Again, the identification of interfaces would be
possible by focusing on the existing communications between ministries, as
well as between ministries and citizens. Moreover, general approaches to allow
citizens to participate in the further development of a democratic nation’s
technical tools are needed. The USMU workshop can offer an approach to
establishing such a democratic participation method.

In the end, the results of my research are transferable to other socio-techni-
cal contexts. The social subsystems of these socio-technical systems must be
organized in smaller, loosely coupled, and self-managed units. They have to
consider the people that are participating the social system from all aspects.
Therefore, it is not possible to bind the autopoietic change of the social system
to foreseeable professional roles and tasks as is possible for the production
lines of Chaplin’s fictive “Electro Steel Corporation”. The technical system
supports collaborative work procedures and its UI is accessible using a web
user agent, as is the case with modern CSCW tools. If these characteristics
for the social, as well as the technical system are provided, it seems to be
quite probable that my technical approach, as well as my social tool would be
applicable to the context.

Next to transferability, Guba (1981) has suggested establishing an audit trail
to support the dependability of the naturalistic investigations. Thus, I aimed
to describe results that are consistent with the data, by using transparent
coding strategies and publishing the codes and codings as data publications for
the study presented in Section 6.6 (Sell 2022b). Furthermore, the description
of my prolonged engagement in the field, provided in Chapter 4, embeds my
process of interpretation in the social situation as I experienced it. Thus,
interpretation of the data is traceable and the context is given.

Nevertheless, the analyzed data range from transcriptions of whole workshop
situations to field notes made during several meetings. Next to differences in
the data comprehensiveness, it should be noted, that field notes are a result
of interpretation itself (Charmaz 2014, p. 136). Thus, in the case of field
notes without accompanying video or audio recordings, the dependability of
the field notes is difficult to assess. However, qualitative research always needs
to address the tension between comprehensiveness of data and the required
effort for its generation, as well as its interpretation. Furthermore, due to
the previously mentioned reasons (political challenges and the COVID-19
crisis), it was not possible to examine the predictive validity, the correlation
between generated data and interpretations in the course of time. By increasing
the number of data generation phases in terms of conducted workshops or
accompanied microservice development projects, a triangulation in space and
time as well as a methodological triangulation would possibly further support
the dependability.
Charmaz (2014, p. 112) suggest to code “everything early in [...] research

and see where it takes you as you proceed.” But what it means to code early
differs from inquiry to inquiry. While the study described in Chapter 6 consists

210 CHAPTER 8: CLOSURE

of recurring meetings, so that all generated data was proceeded by an open
coding directly after the meeting and has become the base for the upcoming
events, the study in Chapter 7 consists of only one data generation event with
no coding at the same time.

McDonald, Schoenebeck, and Forte (2019, p. 72:18) suggest to describe the
applied analytical procedures in detail, since the “process and rationale should
be treated as a critical part of the research”. I published my whole analysis
for the study presented in Section 6.6, including the code set, the codings, the
memos, as well as the data, covering also my introspection and I described
the processes roughly, but clearly (Sell 2022b). More precisely, I saved my
introspection during the process of analysis in form of specific protocols as
well as memos. Thus, I described the influence, my own presence had during
the research interventions to support the confirmability of the investigations,
as required by Guba (1981).
The thesis presents the research interventions conducted by a naturalistic

DSR approach, to be more concrete, the DSR cycles, introduced by A. R.
Hevner (2007). The Chapter 4 introduces the given initial environment, that
also covers the DSR trigger for the given project. The Chapter 5 encapsulates
the current state of the scientific discourse regarding the ORQ introduced
in Section 1.2. Subsequently, Chapters 6 and 7 follow the DSR cycles by
first deriving research requirements from the initial environment, outlining a
solution approach in a next step, and aiming to investigate its fitting regarding
the RQs in a final study.

Additionally, more artifacts like the documentation of the technical artifact
(Sell 2022a) or short descriptions of the USMU procedure have resulted from the
activities of the design cycle and are influenced by the rigor contextualization,
but unfold their effect for the project as part of the change and impact cycle.
Thus, the ethnographical approach frames the activities in all cycles of the
DSR project.
Still, the aforementioned COVID-19 crisis, as well as the required time for

qualitative analyses, did not allow for conducting more iterations of the DSR
cycles. Since the DSR approach is based on the idea of constantly improving
the quality of designed solutions, more iterations would be desirable. Still, I
proceeded with one iteration of each cycle and took two different perspectives
onto the ORQ. Therefore, my research project is organized as a linear approach
while processing the originally intended cycles as steps in both perspectives.

Chapter 5 presents a literature review that takes academic articles from
2015 to 2020 into consideration. Thus, published articles from the years 2020
to 2022 have not been considered, although interesting work was published.
Hoda (2022) suggests a new grounded theory approach explicitly focusing on
socio-technical systems. Thus, aligning the applied methodology to the new
approach would provide more “clarity and flexibility in its methodological
steps and procedures” (Hoda 2022, p. 3808) regarding the grounded theory
aspects of my methodology.

GENERAL DISCUSSION 211

Addressing the joint optimization of socio-technical systems, Fayoumi and
Williams (2021) propose a new framework with the purpose to support so-
cio-technical enterprise modeling. Although the authors do not reference
to the systems theory of Luhmann (2001) and therefore use a definition of
social systems that explicitly understands social systems as network of agents
interacting with each other and that are focusing on goals, the approach
seems to be promising for consideration for socio-technical evolutionary-teal
organizations. The authors suggest modeling the focused organization by eight
different layers. First, a (1) goal model has to be created, additionally, an
(2) organizational model, (3) a domain ontology model, (4) an agent model,
(5) a process model, (6) a capability model, (7) a rule / decision model, and
(8) and technology model have to be created. For the case of a health care
scenario, investigated by Fayoumi and Williams (2021), the created models
led to technology choices that were in line with the current business demands.
According to the authors, the continuous adaptation of new IT tools must be
aligned to the current business environment of the socio-technical organization.
Thus, Fayoumi and Williams (2021) do agree with me, as I assume that the
joint optimization in a socio-technical organization is driven by the autopoietic
change and must be aligned to it simultaneously. The proposed framework is
an interesting approach that covers the social perspective by more explicitly
differing between layers like the organizational goals or the applied processes.
Thus, my work could benefit from this more structured layer perspective.

Also Naidoo and Möller (2022) are focusing on socio-technical systems by
applying an understanding of social system similar to the one of Fayoumi and
Williams (2021). Furthermore, Naidoo and Möller (2022) address DevOps and
conduced a literature review focusing on the socio-technical tensions regarding
the consideration of security. They found that no study has considered security
aspects in DevOps as “explicitly consisting of two sub-systems, DevSecOps
processes to achieve joint optimisation of these sub-systems, and the socio-
technical interplay that generates the outcomes for the entire DevSecOps work
system” (Naidoo and Möller 2022, p. 202). The study presented in Section
6.6 is considered within a DevOps scenario. Nevertheless, it fails to explicitly
encapsulate the observed behavior in terms of DevOps and its security aspects.

For the purposes of continuously managing socio-technical change processes,
change triggered by unwanted events must also be taken into consideration.
Unwanted events observed by human users of technical systems may lead
to “working around” the technical tool and consequently questioning the
socio-technical self-description. The model of accountability proposed by
Ibrahim, Kyriakopoulos, and Pretschner (2021) may aid in identifying and
managing such triggers for change. They propose designing technical systems
to enable users to identify causes of events. Ibrahim, Kyriakopoulos, and
Pretschner (2021) provide examples of their approach by means of a tool
using a microservice architecture. Addressing the Heureka! architecture, an
adaptation of the approach would be beneficial. Moreover, the concept of

212 CHAPTER 8: CLOSURE

accountability should also be adapted for identifying unexpected events in
business processes and during task completion to move it to a more socio-tech-
nical perspective. Equally, Aboucaya, Angarita, and Issarny (2022) call for
the implementation of features supporting participatory platform’s users in
improving the existing functionality.
Levy, Hadar, and Aviv (2021) proposes taking an agile worldview when it

comes to knowledge management during requirement engineering processes.
The authors showed that their approach created “a culture of collaboration,
trust, and reflection that foster the dynamic and flexible organization” (Levy,
Hadar, and Aviv 2021, p. 19). These cultural aspects are very important for
evolutionary-teal organizations and therefore, the requirements engineering
process that accompanies the socio-technical change of such organizations,
could be aligned to the guidelines and processes described by Levy, Hadar,
and Aviv (2021). The USMU workshop, that was discussed in Chapter 7, can
be integrated into the agile knowledge management requirement engineering
processes as one tool to perform the steps eight and nine, the requirements
analysis and specification.
Furthermore, the relevance of my research topic was further acknowledged

by Efimova et al. (2021, p. 330), mentioning that “[c]orrelation between the
organizational evolution [of evolutionary-teal organizations] and evolution of
IT-environment is clear: synergy and synchronization of paces for these two
categories are required to achieve success and evolve.”

8.2. Conclusion

The thesis describes my approach to address the ORQ introduced in Section 1.2
from two perspectives by applying naturalistic qualitative research, organized
by cycles of a DSR project. The ORQ is introduced in Chapter 1. Subsequently,
I described the background and terminology in Chapter 2, as well as my research
methodology in Chapter 3. Afterwards, I delved into the investigated case
in Chapter 4 to describe the context of the conducted ethnographic research.
The social structure is described in Chapter 4 and aligned to the theoretical
characterization of evolutionary-teal organizations, given in Section 2.2.3.
Furthermore, the Chapter 4 outlines the case boundaries and reflects on my
participation in the organization. Chapter 5 has the objective of connecting
the developed conceptual grasp of the case with the current state of scientific
CSCW literature to find an appropriate answer to the ORQ. In line with the
concept of a DSR project, I developed artifacts addressing the ORQ for the
examined case. The construction of these artifacts, as well as the artifacts
themselves, are described in the Chapters 6 and 7 as a DSR project’s activities
in the design cycle.

These chapters also contain two distinct qualitative investigations aiming to
record the fitting of the designed artifacts regarding the ORQ. The presented

OUTLOOK 213

studies are activities of the rigor cycle of the DSR project. The applied coding
methods (see Section 3.2.4) are used to identify more detailed themes and topics
that occurred in the data regarding the RQs. Thus, I was able to formulate one
possible system design that strives to address the DG introduced in Section
3.1. Moreover, by aligning the coding strategy to the RQs, I identified possible
improvement for my designed prototypes. Thus, a next iteration of the design or
the relevance cycle of the DSR project can be triggered by implementing these
improvements. Additionally, the nature of qualitative research is incorporated
thereby, as such improvements are results of an interpretation of the whole
natural setting of humans interacting with the designed prototype.
The technical perspective, presented in Chapter 6, introduces a platform

architecture for a CSCW tool to allow experts collaborating with a socio-tech-
nical evolutionary-teal organizations to participate the software development
process. The rigorous application of software architecture patterns and by
considering current knowledge of HCI research, the architecture addresses the
ORQ with a renewed approach to use existing interface technologies aiming to
separate teams of software developers at the one hand and implement a coherent
user interface on the other hand. Thus, platforms applying these concepts allow
for opening up their software development to various, different and loosely
coupled teams of software developers, as well as they can be used to support
socio-technical evolutionary-teal organizations in their dynamic autopoietic
change processes. Taking the social perspective, described in Chapter 7, I
created a workshop concept to enable the members of a socio-technical evolu-
tionary-teal organizations to identify and express their needs in an appropriate
way. Thus, they can participate the software development process and keep
their autopoietic change processes under their own control. This perspective
introduces agile requirement engineering approaches into the context of the
investigated case. Hence, the ORQ is addressed with rigor computer science
expertise in a technical manner. Considering the social perspective, the ORQ
is also focused on taking requirement engineering knowledge into consideration
and therefore my solution approach makes use of many dimensions of the
wide-ranging and interdisciplinary field of computer science.

8.3. Outlook

The results of the investigation presented in Chapter 6 revealed participants’
lacking knowledge when it comes to completely using the platform’s archi-
tecture. Therefore, it should be further investigated as to whether or not
this problem also occurs for more skilled programmers, or if a redesign of
the architecture is possible in order to simplify the use of the designed in-
terfaces. Furthermore, Section 6.7 already mentioned the need for educating
the upcoming Pool volunteers regarding the context of implementing support
functions for a socio-technical evolutionary-teal organizations. Moreover, the

214 CHAPTER 8: CLOSURE

documentation should be redesigned to more intensively catch the software
developers attention.
As a last point, tools for supporting programmers in identifying a high

cohesion in sets of functionalities should be introduced to design microservices
with a high cohesion in its implemented functionality and a loose coupling
to other services. Aiming to integrate the prospective users of the CSCW
platform with participatory design techniques, the identification of these
bounded contexts of functions could maybe performed by applying the domain
specific knowledge of these later users. Thus, the USMU workshop presented
in Chapter 7 may become a solution for addressing this challenge by extending
it by a step of clustering the designed user stories with regards to their use
during the business processes.

Furthermore, the study revealed required extensions of the technical concepts.
The authorization mechanism must be redesigned to implement a decentralized
and extendable access right management. The deployment of the platform must
be reconsidered to apply well-known DevOps strategies aiming to reduce the
effort required to setup the platform for the purpose of development, as well as
providing live services. Most importantly, a non-prototypical implementation of
the platform needs to implement a well-designed error handling to increase the
previously discussed accountability. Above all, the newly introduced concept of
the UI fragment composition requires straightforward error handling, since the
study results indicate that the widgets become the most important interfaces
for the communication between microservices.

The investigation of the USMU workshop, presented in Chapter 7 to address
the ORQ introduced in Section 1.2, also revealed some possible improvements
to increase the fitting of the workshop for the ORQ. The visualization and
altering of business processes must be explicitly supported during the workshop.
Additionally, the workshop should be redesigned to apply techniques explicitly
enabling the participants to bring in their whole personalities including all
aspects next to their professional selves in the context as members of the
focused socio-technical evolutionary-teal organizations. Moreover, the quality
of the resulting user stories can be improved by focusing on the creation of
fewer and more substantial stories, as well as by extending the moderator
guideline with annotations regarding the attributes of high quality user stories.
Furthermore, the workshop proceeding can be improved with suggestions
explicitly referred to in Section 7.6.

Still, the results of these workshop are not only user stories, but also changes
in the lived business processes. Therefore, the workshop should explicitly
mention these changes as part of the results to allow an implementation and
management of these changes after the workshop.

The effects of the workshop onto the evolutionary purpose of the organization
was not visible in the generated data of the conducted investigation. I already
mentioned in Section 7.6 to focus on the use of the workshop results to
further investigate the relationship between the USMU workshop and this

OUTLOOK 215

crucial characteristic of evolutionary-teal organizations. Equally, the mutual
learning and situated learning occasions during a USMU workshop must be
investigated in further proceedings, since the composition of participants in the
conducted workshop did not allow for generating data regarding these topics of
a participatory design technique. In particular, the mutual learning becomes
interesting for the requirements engineering perspective, since it would reveal
insights regarding the degree of influence the architecture has onto the created
user stories. Striving to allow socio-technical evolutionary-teal organizations
to align their autopoietic change to their social needs, the existing Heureka!
platform should have as few influence as possible.
These improvements of the designed artifacts are triggering the next itera-

tions of the design cycles of the DSR projects by taking the two perspectives.
According to idea of the DSR cycles introduced by A. R. Hevner (2007) and
Drechsler and A. Hevner (2016), the case must be reconsidered before the
presented improvements are implemented and therefore, also new iterations
of the relevance cycles are initiated. Furthermore, the improvement of the
artifacts require to also initiate a next iteration of the DSR rigor cycles and
call for the conduction of new investigations questioning the fitting of the new
versions of the artifacts to the DG introduced in Section 3.1.

In Section 8.1, I discussed the effects of the COVID-19 crisis on my research.
Nevertheless, the returning possibilities for social contacts and the still lived
values and characteristics of the millennials will result in the originally identified
socio-technical tension occurring in other contexts. Therefore, the presented
results here can become a valuable approach for upcoming research. I am
confident that the platform architecture, as well as the USMU workshop could
also be applied to non-evolutionary-teal organizations. However, since the
case, outlined in Chapter 4, focuses on a socio-technical evolutionary-teal
organizations, the results are restricted to this type of organizations.

Organizations like universities or governmental structures of democratic na-
tions are no evolutionary-teal organizations, but show similar characteristics, as
I briefly discussed in Chapter 1. My thesis showed a valid approach to enabling
for the autopoietic change in socio-technical evolutionary-teal organizations. It
would be quite interesting to transfer my prototypical platform architecture, as
well as the USMU workshop to the case of universities in order to investigate
if research groups can be enabled to implement socio-technical transformation
aligned to their autopoietic change. Equally, federalist democratic nations may
benefit from the loosely coupled approach to organize socio-technical tensions
when they are implementing e-governmental structures, as is often called for
according to the term digitization. In distribution of the responsibility for the
digital infrastructure, dependence on one or only a few software companies
can be avoided. Thus, change can be applied in a naturalistic manner and the
nation’s sovereignty regarding its own digital administration is more simple
maintain.

Bibliography

All online sources were last retrieved on November 28, 2022.

Aboucaya, William, Rafael Angarita, and Valerie Issarny (May 2022). “De-
tecting Obstacles to Collaboration in an Online Participatory Democracy
Platform: A Use-case Driven Analysis”. In: FairWare ’22 - International
Workshop on Equitable Data and Technology. Pittsburgh, PA, United States:
HAL-Inria. url: https://hal.inria.fr/hal-03654027/.

Adil, Ali M. and Yekang Ko (May 2016). “Socio-technical evolution of
Decentralized Energy Systems: A critical review and implications for urban
planning and policy”. In: Renewable and Sustainable Energy Reviews 57,
pp. 1025–1037. issn: 18790690. doi: 10.1016/j.rser.2015.12.079.

Alsaqqa, Samar, Samer Sawalha, and Heba Abdel-Nabi (July 2020). “Agile
software development: methodologies and trends”. In: International Journal
of Interactive Mobile Technologies (iJIM) 14.11, pp. 246–270. doi: 10.3991/
ijim.v14i11.13269.

Amabile, Teresa. M. (1983). “The social-psychology of creativity: A compo-
nential conceptualization”. In: Journal of Personality and Social Psychology
45.2, pp. 357–376.

Angelidou, Margarita and Artemis Psaltoglou (2017). “An empirical investi-
gation of social innovation initiatives for sustainable urban development”.
In: Sustainable Cities and Society 33, pp. 113–125. issn: 2210-6707. doi:
10.1016/j.scs.2017.05.016.

Arora, Nidhi and Vijay Dhole (July 2019). “Generation Y: Perspective,
engagement, expectations, preferences and satisfactions from workplace; a
study conducted in Indian context”. In: Benchmarking: An International
Journal 26.5, pp. 1378–1404. issn: 14635771. doi: 10.1108/BIJ-05-
2018-0132.

Baptista, João et al. (2017). “Social Media and the Emergence of Reflexiveness
as a New Capability for Open Strategy”. In: Long Range Planning 50.3,
pp. 322–336. issn: 0024-6301. doi: 10.1016/j.lrp.2016.07.005.

Bellafkir, Bilal (Jan. 2021). “Wie lässt sich Gamification in sozio-technischen
evolutionary-teal Organisationen einsetzen, um kollaborative Arbeitsprozesse
zu motivieren?” Master thesis. Humboldt-Universität zu Berlin.

217

https://hal.inria.fr/hal-03654027/
https://doi.org/10.1016/j.rser.2015.12.079
https://doi.org/10.3991/ijim.v14i11.13269
https://doi.org/10.3991/ijim.v14i11.13269
https://doi.org/10.1016/j.scs.2017.05.016
https://doi.org/10.1108/BIJ-05-2018-0132
https://doi.org/10.1108/BIJ-05-2018-0132
https://doi.org/10.1016/j.lrp.2016.07.005

218 BIBLIOGRAPHY

Bierschenk, Tom (Sept. 2022). “Supporting collaboration between volunteer
developers and users in an evolutionary-teal organization”. Master thesis.
Humboldt-Universität zu Berlin.

Bierschenk, Tom, Lily Frey, and Johann Sell (2020). Obtaining Problem
Statements and Transformation into Ideas - Workshop Data Set. doi:
10.5281/zenodo.3766962.

Blaschke, Michael et al. (Aug. 2019). “Design principles for digital value
co-creation networks: a service-dominant logic perspective”. In: Electronic
Markets 29, pp. 443–472. issn: 1019-6781. doi: 10.1007/s12525-019-
00356-9.

Blomkvist, Johan Kaj, Johan Persson, and Johan Åberg (Apr. 2015). “Commu-
nication through boundary objects in distributed agile teams”. In: Confer-
ence on Human Factors in Computing Systems - Proceedings. Vol. 2015-April.
New York, New York, USA: Association for Computing Machinery, pp. 1875–
1884. isbn: 9781450331456. doi: 10.1145/2702123.2702366.

Bødker, Keld, Finn Kensing, and Jesper Simonsen (2010). “Participatory
Design in Information Systems Development”. In: Reframing Humans in
Information Systems Development. London: Springer, London, pp. 115–134.
doi: 10.1007/978-1-84996-347-3_7.

Borri, Dino et al. (Jan. 2016). “Technological change and innovation for
sustainable cities: A multiagent-based ontological approach”. In: Green
Energy and Technology, pp. 61–82. issn: 18653537. doi: 10.1007/978-3-
319-31157-9_4.

Bratteteig, Tone et al. (Oct. 2012). “Methods: organising principles and
general guidelines for Participatory Design projects”. In: Routledge Inter-
national Handbook of Participatory Design. Ed. by Jesper Simonsen and
Toni Robertson. London: Routledge. Chap. 6, pp. 137–164.

Brunswicker, Sabine and Aaron Schecter (2019). “Coherence or flexibility?
The paradox of change for developers’ digital innovation trajectory on open
platforms”. In: Research Policy 48.8, p. 103771. issn: 0048-7333. doi:
10.1016/j.respol.2019.03.016.

Buck, John A and Gerard Endenburg (2012). “The creative forces of self-
organization”. In: Sociocratic Center, Rotterdam, The Netherlands, Tech.
Rep.

Bygstad, Bendik (June 2017). “Generative innovation: A comparison of
lightweight and heavyweight IT”. In: Journal of Information Technology
32.2, pp. 180–193. issn: 14664437. doi: 10.1057/jit.2016.15.

https://doi.org/10.5281/zenodo.3766962
https://doi.org/10.1007/s12525-019-00356-9
https://doi.org/10.1007/s12525-019-00356-9
https://doi.org/10.1145/2702123.2702366
https://doi.org/10.1007/978-1-84996-347-3_7
https://doi.org/10.1007/978-3-319-31157-9_4
https://doi.org/10.1007/978-3-319-31157-9_4
https://doi.org/10.1016/j.respol.2019.03.016
https://doi.org/10.1057/jit.2016.15

BIBLIOGRAPHY 219

Candrowicz, Martin (Jan. 2021). “Awareness-Systeme im Kontext von
soziotechnischen evolutionären Organisationen”. Master thesis. Humboldt-
Universität zu Berlin.

Carnemolla, Phillippa (Dec. 2018). “Ageing in place and the internet of
things – how smart home technologies, the built environment and caregiving
intersect”. In: Visualization in Engineering 6.1, p. 7. issn: 22137459. doi:
10.1186/s40327-018-0066-5.

Chaplin, Charlie (1936). Modern Times. United Artists. Film.

Charmaz, Kathy (2014). Constructing Grounded Theory. Second. Introducing
Qualitative Methods. SAGE Publications Ltd, p. 416. isbn: 978-0-85702-
914-0.

Cohen, Louis, Lawrence Manion, and Keith Morrison (2007). Research Methods
in Education. 6th. Routledge. isbn: 0-203-02905-4.

Cohn, Mike (2004). User stories applied: For agile software development.
Boston, MA: Addison-Wesley Professional.

Crabu, Stefano and Paolo Magaudda (Apr. 2018). “Bottom-up Infrastruc-
tures: Aligning Politics and Technology in building a Wireless Community
Network”. In: Computer Supported Cooperative Work: CSCW: An Interna-
tional Journal 27.2, pp. 149–176. issn: 15737551. doi: 10.1007/s10606-
017-9301-1.

Denzin, Norman K. and Yvonna S. Lincoln (2008). “Introduction: The
Discipline and Practice of Qualitative Research”. In: Strategies of Qualitative
Inquiry. Ed. by Norman K. Denzin and Yvonna S. Lincoln. 3rd. SAGE
Publications, pp. 1–44. isbn: 978-1-4129-5756-4.

Di Maio, Paola (June 2014). “Towards a Metamodel to Support the Joint
Optimization of Socio Technical Systems”. In: Systems 2.3, pp. 273–296.
doi: 10.3390/systems2030273.

DIN EN ISO 9241-11 (Nov. 2018). DIN EN ISO 9241-11:2018-11, Ergonomie
der Mensch-System-Interaktion - Teil 11: Gebrauchstauglichkeit: Begriffe
und Konzepte (ISO 9241-11:2018); Deutsche Fassung EN ISO 9241-11:2018.
Norm DIN EN 9241-11:2018. doi: 10.31030/2757945.

Dourish, Paul (2014). “Reading and interpreting ethnography”. In: Ways of
knowing in HCI. Ed. by Judith S. Olson and Wendy A. Kellogg. Springer
New York, pp. 1–23. isbn: 978-1-4939-0377-1. doi: 10.1007/978-1-
4939-0378-8_1.

Dragoni, Nicola et al. (2017). Microservices: yesterday, today, and tomorrow.
doi: 10.48550/arXiv.1606.04036.

https://doi.org/10.1186/s40327-018-0066-5
https://doi.org/10.1007/s10606-017-9301-1
https://doi.org/10.1007/s10606-017-9301-1
https://doi.org/10.3390/systems2030273
https://doi.org/10.31030/2757945
https://doi.org/10.1007/978-1-4939-0378-8_1
https://doi.org/10.1007/978-1-4939-0378-8_1
https://doi.org/10.48550/arXiv.1606.04036

220 BIBLIOGRAPHY

Drechsler, A. and A. Hevner (May 2016). “A four-cycle model of IS de-
sign science research: capturing the dynamic nature of IS artifact design”.
In: Breakthroughs and Emerging Insights from Ongoing Design Science
Projects: Research-in-progress papers and poster presentations from the
11th International Conference on Design Science Research in Information
Systems and Technology (DESRIST). Ed. by J. Parsons et al. St. John,
Canada: DESRIST 2016, pp. 1–8. isbn: 978-1-906642-85-3. url: http:
//hdl.handle.net/10468/2560.

Duran, Rodrigo et al. (July 2019). “Towards a common instrument for measur-
ing prior programming knowledge”. In: Annual Conference on Innovation
and Technology in Computer Science Education, ITiCSE. New York, NY,
United States: Association for Computing Machinery, pp. 443–449. isbn:
9781450363013. doi: 10.1145/3304221.3319755.

Ebert, Christof (2019). Systematisches Requirements Engineering. 6th. D-
punkt.verlag, p. 496. isbn: 978-3-96088-452-1.

Eckstein, Jutta (2016). “Sociocracy: An Organization Model for Large-Scale
Agile Development”. In: Proceedings of the Scientific Workshop Proceedings
of XP2016 on - XP ’16 Workshops. New York, New York, USA: ACM Press,
pp. 1–5. isbn: 9781450341349. doi: 10.1145/2962695.2962701.

ECMA International (June 2015). Standard ECMA-262 – ECMAScript Lan-
guage Specification. 6th. Geneva. url: https://262.ecma-international.
org/6.0/.

Efimova, O.V. et al. (2021). “Correlation of Evolution of IT-Environment
With Levels of Organizational Development: Reaching Teal-Level Maturity
Through Losses Elimination”. In: Proceedings of International Scientific
and Practical Conference Russia 2020 - a new reality: economy and society
(ISPCR 2020). Vol. 164. Advances in economics, business and management
research. Paris, France: Atlantis Press. isbn: 978-94-6239-341-7. doi:
10.2991/aebmr.k.210222.064.

Eli, Karin et al. (2016). “Mobile activism, material imaginings, and the ethics
of the edible: Framing political engagement through the Buycott app”. In:
Geoforum 74, pp. 63–73. issn: 0016-7185. doi: 10.1016/j.geoforum.
2016.04.002.

Fang, Chencheng and Jiantong Zhang (2019). “Users’ continued participa-
tion behavior in social Q&A communities: A motivation perspective”. In:
Computers in Human Behavior 92, pp. 87–109. issn: 0747-5632. doi:
10.1016/j.chb.2018.10.036.

Fayoumi, Amjad and Richard Williams (Sept. 2021). “An integrated socio-
technical enterprise modelling: A scenario of healthcare system analysis and

http://hdl.handle.net/10468/2560
http://hdl.handle.net/10468/2560
https://doi.org/10.1145/3304221.3319755
https://doi.org/10.1145/2962695.2962701
https://262.ecma-international.org/6.0/
https://262.ecma-international.org/6.0/
https://doi.org/10.2991/aebmr.k.210222.064
https://doi.org/10.1016/j.geoforum.2016.04.002
https://doi.org/10.1016/j.geoforum.2016.04.002
https://doi.org/10.1016/j.chb.2018.10.036

BIBLIOGRAPHY 221

design”. In: Journal of Industrial Information Integration 23, p. 100221.
issn: 2452414X. doi: 10.1016/j.jii.2021.100221.

Feigenspan, Janet et al. (2012). “Measuring Programming Experience”. In:
20th IEEE International Conference on Program Comprehension (ICPC).
Passau, Germany: IEEE, pp. 73–82. isbn: 978-1-4673-1215-8. doi: 10.
1109/ICPC.2012.6240511.

Fielding, Roy T. and Julian Reschke (June 2014). Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. RFC 7231. doi: 10.17487/RFC7231.

Fiesler, Casey et al. (Nov. 2019). “Qualitative methods for CSCW: challenges
and opportunities”. In: Conference Companion Publication of the 2019 on
Computer Supported Cooperative Work and Social Computing. New York,
NY, USA: ACM, pp. 455–460. isbn: 9781450366922. doi: 10.1145/
3311957.3359428.

Flick, Uwe (2018). An Introduction to Qualitative Research. 6th. Sage. isbn:
978-1-5264-4564-3.

Garriga, Martin et al. (Jan. 2016). “RESTful service composition at a glance:
A survey”. In: Journal of Network and Computer Applications 60, pp. 32–53.
doi: 10.1016/j.jnca.2015.11.020.

Geertz, Clifford (1973). The Interpretation of cultures: Selected Essays. Basic
Books, Inc.

Gholami, Mahdi Fahmideh et al. (2017). “Challenges in migrating legacy
software systems to the cloud — an empirical study”. In: Information
Systems 67, pp. 100–113. issn: 0306-4379. doi: 10.1016/j.is.2017.03.
008.

Giuffrida, Rosalba and Yvonne Dittrich (2015). “A conceptual framework to
study the role of communication through social software for coordination
in globally-distributed software teams”. In: Information and Software
Technology 63, pp. 11–30. issn: 0950-5849. doi: 10.1016/j.infsof.
2015.02.013.

Glassman, Robert B. (Mar. 1973). “Persistence and loose coupling in living
systems”. In: Systems Research and Behavioral Science 18.2, pp. 83–98.
doi: 10.1002/bs.3830180202.

Gothelf, Jeff (2013). Lean UX: Applying Lean Principles to Improve User
Experience. 1st ed. O’Reilly Media. isbn: 9781449311650.

Greb, Wilhelm (Mar. 2021). “Construction of a digital tool for team building
support”. Master thesis. Humboldt-Universität zu Berlin.

https://doi.org/10.1016/j.jii.2021.100221
https://doi.org/10.1109/ICPC.2012.6240511
https://doi.org/10.1109/ICPC.2012.6240511
https://doi.org/10.17487/RFC7231
https://doi.org/10.1145/3311957.3359428
https://doi.org/10.1145/3311957.3359428
https://doi.org/10.1016/j.jnca.2015.11.020
https://doi.org/10.1016/j.is.2017.03.008
https://doi.org/10.1016/j.is.2017.03.008
https://doi.org/10.1016/j.infsof.2015.02.013
https://doi.org/10.1016/j.infsof.2015.02.013
https://doi.org/10.1002/bs.3830180202

222 BIBLIOGRAPHY

Gross, Tom and Michael Koch (2007). Computer-Supported Cooperative Work.
Ed. by Michael Herczeg. München: Oldenbourg Wissenschaftsverlag GmbH,
p. 204. isbn: 9783486593419. doi: 10.1524/9783486593419.

Guba, Egon G. (June 1981). “Criteria for assessing the trustworthiness of
naturalistic inquiries”. In: Educational technology research and development
(ECTJ) 29.2, p. 75. doi: 10.1007/BF02766777.

Hardt, Dick (Oct. 2012). The OAuth 2.0 Authorization Framework. RFC 6749.
doi: 10.17487/RFC6749.

Heck, Petra and Andy Zaidman (Mar. 2018). “A systematic literature review
on quality criteria for agile requirements specifications”. In: Software Quality
Journal 26.1, pp. 127–160. issn: 15731367. doi: 10.1007/s11219-016-
9336-4.

Herrmann, Thomas (2006). SeeMe in a nutshell-the semi-structured, socio-
technical Modeling Method. Tech. rep. Ruhr Uni Bochum, pp. 1–18. url:
http://www.imtm-iaw.ruhr-uni-bochum.de/imperia/md/content/
seeme/seeme_in_a_nutshell.pdf.

Herrmann, Thomas et al. (2004). “Socio-technical walkthrough: designing
technology along work processes”. In: Proceedings of the eighth conference
on Participatory design Artful integration: Interweaving Media, Materials
and Practices - PDC 04. Ed. by Andrew Clement et al. Vol. 1. New
York, New York, USA: ACM Press, pp. 132–141. isbn: 1581138512. doi:
10.1145/1011870.1011886.

Hevner, Alan R (2007). “A Three Cycle View of Design Science Research”.
In: Scandinavian Journal of Information Systems 19.2, pp. 87–92. url:
http://aisel.aisnet.org/sjis.

Hilbrich, M. and F. Lehmann (July 2022). “Discussing Microservices: Defini-
tions, Pitfalls, and their Relations”. In: 2022 IEEE International Conference
on Services Computing (SCC). Barcelona, Spain: IEEE Computer Society,
pp. 39–44. doi: 10.1109/SCC55611.2022.00019.

Hoda, Rashina (Oct. 2022). “Socio-Technical Grounded Theory for Soft-
ware Engineering”. In: IEEE Transactions on Software Engineering 48.10,
pp. 3808–3832. issn: 0098-5589. doi: 10.1109/TSE.2021.3106280.

Hoda, Rashina, Norsaremah Salleh, and John Grundy (Sept. 2018). “The
rise and evolution of agile software development”. In: IEEE Software 35.5,
pp. 58–63. doi: 10.1109/MS.2018.290111318.

Holcombe, Mike (Oct. 2008). Running an agile software development project.
John Wiley & Sons, Inc. doi: 10.1002/9780470385883.

https://doi.org/10.1524/9783486593419
https://doi.org/10.1007/BF02766777
https://doi.org/10.17487/RFC6749
https://doi.org/10.1007/s11219-016-9336-4
https://doi.org/10.1007/s11219-016-9336-4
http://www.imtm-iaw.ruhr-uni-bochum.de/imperia/md/content/seeme/seeme_in_a_nutshell.pdf
http://www.imtm-iaw.ruhr-uni-bochum.de/imperia/md/content/seeme/seeme_in_a_nutshell.pdf
https://doi.org/10.1145/1011870.1011886
http://aisel.aisnet.org/sjis
https://doi.org/10.1109/SCC55611.2022.00019
https://doi.org/10.1109/TSE.2021.3106280
https://doi.org/10.1109/MS.2018.290111318
https://doi.org/10.1002/9780470385883

BIBLIOGRAPHY 223

Hovav, Anat and Frida Ferdani Putri (2016). “This is my device! Why should
I follow your rules? Employees’ compliance with BYOD security policy”.
In: Pervasive and Mobile Computing 32, pp. 35–49. issn: 1574-1192. doi:
10.1016/j.pmcj.2016.06.007.

Ibrahim, Amjad, Stavros Kyriakopoulos, and Alexander Pretschner (Oct. 2021).
“Causality-based accountability mechanisms for socio-technical systems”. In:
Journal of Responsible Technology 7-8, p. 100016. issn: 26666596. doi:
10.1016/j.jrt.2021.100016.

IDEO.org (2015). The Field Guide to Human-Centered Design. 1st ed.
IDEO.org, p. 192. isbn: 978-0-9914063-1-9. url: http://www.designkit.
org/resources/1.

Janssen, Marijn and Natalie Helbig (2018). “Innovating and changing the
policy-cycle: Policy-makers be prepared!” In: Government Information
Quarterly 35.4, Supplement, S99–S105. issn: 0740-624X. doi: 10.1016/
j.giq.2015.11.009.

Karasavvoglou, A, P Polychronidou, and Al Horobet (2019). “Do Entrepreneurs
of Generation Y Adopt Budget Planning Procedures?” In: Economies of
the Balkan and Eastern European Countries (EBEEC 2019), pp. 16–28.
isbn: 978-618-80440-7-4. url: http://ebeec.teiemt.gr/documents/
oldConferences/EBEEC_2019_Proceedings.pdf#page=19.

Kensing, Finn and Joan Greenbaum (Oct. 2012). “Heritage: having a say”. In:
Routledge International Handbook of Participatory Design. Ed. by Jesper
Simonsen and Toni Robertson. London: Routledge. Chap. 2, pp. 41–56.
doi: 10.4324/9780203108543-9.

Kitchenham, Barbara and Stuart Chartes (2007). Guidelines for performing
systematic literature reviews in software engineering (EBSE Technical Report
No. EBSE-2007-01). Tech. rep. Keele University. url: http://www.
academia.edu/download/35830450/2_143465389588742151.pdf.

Klievink, Bram, Nitesh Bharosa, and Yao-Hua Tan (2016). “The collaborative
realization of public values and business goals: Governance and infrastructure
of public–private information platforms”. In: Government Information
Quarterly 33.1, pp. 67–79. issn: 0740-624X. doi: 10.1016/j.giq.2015.
12.002.

Knapp, Jake, John Zeratsky, and Braden Kowitz (2016). Sprint: How to Solve
Big Problems and Test New Ideas in Just Five Days. Simon & Schuster,
p. 288. isbn: 9781501121746.

Kochuguev, Sergey, Andrey Maslov, and Research Kochuguev (2016). “DATA-
GRAV: A FRAMEWORK FOR KNOWLEDGE SHARING USING TRAN-
SCLUSION ENABLED COLLABORATION MEDIA”. In: Twenty-Fourth

https://doi.org/10.1016/j.pmcj.2016.06.007
https://doi.org/10.1016/j.jrt.2021.100016
http://www.designkit.org/resources/1
http://www.designkit.org/resources/1
https://doi.org/10.1016/j.giq.2015.11.009
https://doi.org/10.1016/j.giq.2015.11.009
http://ebeec.teiemt.gr/documents/oldConferences/EBEEC_2019_Proceedings.pdf#page=19
http://ebeec.teiemt.gr/documents/oldConferences/EBEEC_2019_Proceedings.pdf#page=19
https://doi.org/10.4324/9780203108543-9
http://www.academia.edu/download/35830450/2_143465389588742151.pdf
http://www.academia.edu/download/35830450/2_143465389588742151.pdf
https://doi.org/10.1016/j.giq.2015.12.002
https://doi.org/10.1016/j.giq.2015.12.002

224 BIBLIOGRAPHY

European Conference on Information Systems (ECIS). Istanbul: Association
for Information Systems. url: http://aisel.aisnet.org/ecis2016_rp.

Kolbitsch, Josef and Hermann Maurer (2006). “Transclusions in an HTML-
Based Environment”. In: CIT. Journal of Computing and Information
Technology 14.2, pp. 161–173. doi: 10.2498/cit.2006.02.07.

Krippendorff, Klaus (Apr. 2012). Content Analysis: An Introduction to Its
Methodology. Third. SAGE Publications, Inc, p. 456. isbn: 978-1-4129-
8315-0.

Kunau, Gabriele (2006). “Facilitating computer supported cooperative work
with socio-technical self-descriptions”. PhD thesis. Technische Universität
Dortmund, p. 376. doi: 10.17877/DE290R-8096.

Kurki, Sofi and Markku Wilenius (Dec. 2016). “Trust makes this organisation
unique”. In: European Journal of Futures Research 4.1, p. 23. issn: 2195-
4194. doi: 10.1007/s40309-016-0095-z.

Laloux, Frédéric (2014). Reinventing Organizations. 1st ed. Brussels: Nelson
Parker, p. 360. isbn: 9782960133509. doi: 10.15358/9783800649143.

Landwehr, Peter M et al. (2016). “Using tweets to support disaster planning,
warning and response”. In: Safety Science 90, pp. 33–47. issn: 0925-7535.
doi: 10.1016/j.ssci.2016.04.012.

Lenkenhoff, Kay et al. (2018). “Key challenges of digital business ecosystem
development and how to cope with them”. In: Procedia CIRP 73, pp. 167–
172. issn: 2212-8271. doi: 10.1016/j.procir.2018.04.082.

Levine, Michael K. (2011). A Tale of Two Transformations: Bringing
Lean and Agile Software Development to Life. Productivity Press. isbn:
9781466516809.

Levy, Meira, Irit Hadar, and Itzhak Aviv (Mar. 2021). “Agile-Based Education
for Teaching an Agile Requirements Engineering Methodology for Knowledge
Management”. In: Sustainability 13.5, p. 2853. issn: 2071-1050. doi:
10.3390/su13052853.

Light, Ann and Clodagh Miskelly (June 2019). “Platforms, Scales and Net-
works: Meshing a Local Sustainable Sharing Economy”. In: Computer
Supported Cooperative Work: CSCW: An International Journal 28.3-4,
pp. 591–626. issn: 15737551. doi: 10.1007/s10606-019-09352-1.

Lin, Xiaolin, Dawei Zhang, and Yibai Li (2016). “Delineating the dimensions
of social support on social networking sites and their effects: A comparative
model”. In: Computers in Human Behavior 58, pp. 421–430. issn: 0747-
5632. doi: 10.1016/j.chb.2016.01.017.

http://aisel.aisnet.org/ecis2016_rp
https://doi.org/10.2498/cit.2006.02.07
https://doi.org/10.17877/DE290R-8096
https://doi.org/10.1007/s40309-016-0095-z
https://doi.org/10.15358/9783800649143
https://doi.org/10.1016/j.ssci.2016.04.012
https://doi.org/10.1016/j.procir.2018.04.082
https://doi.org/10.3390/su13052853
https://doi.org/10.1007/s10606-019-09352-1
https://doi.org/10.1016/j.chb.2016.01.017

BIBLIOGRAPHY 225

Lin, Yanliu (2018). “A comparison of selected Western and Chinese smart
governance: The application of ICT in governmental management, participa-
tion and collaboration”. In: Telecommunications Policy 42.10, pp. 800–809.
issn: 0308-5961. doi: 10.1016/j.telpol.2018.07.003.

Lombriser, Philipp et al. (2016). “Gamified Requirements Engineering: Model
and Experimentation”. In: International Working Conference on Require-
ments Engineering: Foundation for Software Quality REFSQ 2016: Re-
quirements Engineering: Foundation for Software Quality. Cham: Springer,
pp. 171–187. doi: 10.1007/978-3-319-30282-9_12.

Lucassen, Garm, Fabiano Dalpiaz, Jan Martijn E. M. van der Werf, et al.
(2016). “The Use and Effectiveness of User Stories in Practice”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics). Vol. 9619. Cham:
Springer Verlag, pp. 205–222. isbn: 9783319302812. doi: 10.1007/978-
3-319-30282-9_14.

Lucassen, Garm, Fabiano Dalpiaz, Jan Martijn van der Werf, et al. (Sept.
2016). “Improving agile requirements: the Quality User Story framework and
tool”. In: Requirements Engineering 21.3, pp. 383–403. issn: 1432010X.
doi: 10.1007/s00766-016-0250-x.

Lucia, Andrea De and Abdallah Qusef (2010). “Requirements engineering in
agile software development”. In: Journal of Emerging Technologies in Web
Intelligence 2.3, p. 9. doi: 10.4304/jetwi.2.3.212-220.

Ludwig, Heiko et al. (2009). “REST-based management of loosely coupled
services”. In: Proceedings of the 18th international conference on World
wide web - WWW ’09. New York, New York, USA: ACM Press, p. 931.
isbn: 9781605584874. doi: 10.1145/1526709.1526834.

Luhmann, Niklas (2001). Soziale Systeme. Grundrißeiner allgemeinen Theorie.
Neuauflage. Suhrkamp, p. 674. isbn: 3518282662.

Ma, Meng et al. (2019). “Light-Weight and Scalable Hierarchical-MVC
Architecture for Cloud Web Applications”. In: 2019 6th IEEE International
Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th
IEEE International Conference on Edge Computing and Scalable Cloud
(EdgeCom), pp. 40–45. doi: 10.1109/CSCloud/EdgeCom.2019.00017.

MacCormack, Alan, Carliss Baldwin, and John Rusnak (Oct. 2012). “Explor-
ing the duality between product and organizational architectures: A test of
the “mirroring” hypothesis”. In: Research Policy 41.8, pp. 1309–1324. doi:
10.1016/j.respol.2012.04.011.

Malaska, Pentti (1999). “A Conceptual Framework For The Autopoietic
Transformation of Societies”. In: FUTU-publication 99.5. url: https:

https://doi.org/10.1016/j.telpol.2018.07.003
https://doi.org/10.1007/978-3-319-30282-9_12
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.4304/jetwi.2.3.212-220
https://doi.org/10.1145/1526709.1526834
https://doi.org/10.1109/CSCloud/EdgeCom.2019.00017
https://doi.org/10.1016/j.respol.2012.04.011
https://core.ac.uk/display/347180846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://core.ac.uk/display/347180846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

226 BIBLIOGRAPHY

//core.ac.uk/display/347180846?utm_source=pdf&utm_medium=
banner&utm_campaign=pdf-decoration-v1.

Manca, Stefania (2018). “ResearchGate and Academia.edu as Networked Socio-
Technical Systems for Scholarly Communication: A Literature Review”. In:
Research in Learning Technology v26. url: https://eric.ed.gov/?id=
EJ1173547.

Maye, Damian (2019). “‘Smart food city’: Conceptual relations between smart
city planning, urban food systems and innovation theory”. In: City, Culture
and Society 16, pp. 18–24. issn: 1877-9166. doi: 10.1016/j.ccs.2017.
12.001.

McDonald, Nora, Sarita Schoenebeck, and Andrea Forte (Nov. 2019). “Re-
liability and Inter-rater Reliability in Qualitative Research: Norms and
Guidelines for CSCW and HCI Practice”. In: Proceedings of the ACM on
Human-Computer Interaction 3.CSCW, pp. 1–23. doi: 10.1145/3359174.

Meelen, Toon, Bernhard Truffer, and Tim Schwanen (2019). “Virtual user
communities contributing to upscaling innovations in transitions: The case
of electric vehicles”. In: Environmental Innovation and Societal Transitions
31, pp. 96–109. issn: 2210-4224. doi: 10.1016/j.eist.2019.01.002.

Meerow, Sara, Joshua P. Newell, and Melissa Stults (Mar. 2016). “Defining
urban resilience: A review”. In: Landscape and Urban Planning 147, pp. 38–
49. issn: 01692046. doi: 10.1016/j.landurbplan.2015.11.011.

Mukherjee, Arunima and Festus Mukoya (2019). “ICT enabled peace network:
Case study of conflict early warning system in kenya”. In: IFIP Advances
in Information and Communication Technology. Vol. 551. Springer New
York LLC, pp. 127–139. isbn: 9783030183998. doi: 10.1007/978-3-030-
18400-1_11.

Muñoz, Diego et al. (2015). “A social cloud-based tool to deal with time and
media mismatch of intergenerational family communication”. In: Future
Generation Computer Systems 53, pp. 140–151. issn: 0167-739X. doi:
10.1016/j.future.2014.07.003.

Naidoo, Rennie and Nicolaas Möller (June 2022). “Building Software Ap-
plications Securely with DevSecOps: A Socio-Technical Perspective”. In:
Proceedings of the 21st European Conference on Cyber Warfare and Security
21.1, pp. 198–205. issn: 2048-8610. doi: 10.34190/eccws.21.1.295.

Namiot, Dmitry and Manfred Sneps-sneppe (2014). “On micro-services ar-
chitecture”. In: International Journal of Open Information Technologies
2.9, pp. 24–27. url: http://cyberleninka.ru/article/n/on-micro-
services-architecture.

https://core.ac.uk/display/347180846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://core.ac.uk/display/347180846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://core.ac.uk/display/347180846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eric.ed.gov/?id=EJ1173547
https://eric.ed.gov/?id=EJ1173547
https://doi.org/10.1016/j.ccs.2017.12.001
https://doi.org/10.1016/j.ccs.2017.12.001
https://doi.org/10.1145/3359174
https://doi.org/10.1016/j.eist.2019.01.002
https://doi.org/10.1016/j.landurbplan.2015.11.011
https://doi.org/10.1007/978-3-030-18400-1_11
https://doi.org/10.1007/978-3-030-18400-1_11
https://doi.org/10.1016/j.future.2014.07.003
https://doi.org/10.34190/eccws.21.1.295
http://cyberleninka.ru/article/n/on-micro-services-architecture
http://cyberleninka.ru/article/n/on-micro-services-architecture

BIBLIOGRAPHY 227

Narbutaitė, Lina et al. (2018). “Using Collaborative Robotics as a Way
to Engage Students”. In: Towards Extensible and Adaptable Methods in
Computing. Springer Singapore, pp. 385–397. doi: 10.1007/978-981-13-
2348-5_29.

Nelson, Ted H. (1965). “Complex information processing: a file structure
for the complex, the changing and the indeterminate”. In: ACM ’65:
Proceedings of the 1965 20th national conference. New York, New York,
USA: ACM Press, pp. 84–100. doi: 10.1145/800197.806036.

Newman, Sam (2015). Building Microservices. Ed. by Mike Loukides, Brain
MacDonald, and Kristen Brown. 1st ed. O’Reilly Media, p. 280. isbn:
978-1-491-95035-7.

Nikaj, Adriatik, Sankalita Mandal, et al. (2016). “From Choreography Dia-
grams to RESTful Interactions”. In: Service-Oriented Computing – ICSOC
2015 Workshops. ICSOC 2015. Lecture Notes in Computer Science, vol
9586. Ed. by A. Norta et al. Berlin: Springer, Berlin, Heidelberg, pp. 3–14.
doi: 10.1007/978-3-662-50539-7_1.

Nikaj, Adriatik and Mathias Weske (2016). “Formal Specification of RESTful
Choreography Properties”. In: Web Engineering. ICWE 2016. Lecture
Notes in Computer Science. Ed. by A. Bozzon, P. Cudre-Maroux, and
C. Pautasso. Cham: Springer, pp. 365–372. doi: 10.1007/978-3-319-
38791-8_21.

Nikitina, B. et al. (2020). “Development of the practice of sharing economy in
the communicative information environment of modern urban communities”.
In: Advances in Intelligent Systems and Computing. Vol. 908. Springer
Verlag, pp. 376–394. isbn: 9783030113667. doi: 10.1007/978-3-030-
11367-4_37.

Ottmann, Jens (Sept. 2019). “Das Stimmungsbarometer als Unterstützungs-
möglichkeit zur Selbst- und Gruppenreflexion in soziotechnischen Systemen”.
Master thesis. Hochschule für Technik und Wirtschaft Berlin.

Pautasso, Cesare (2014). “RESTful Web Services: Principles, Patterns, Emerg-
ing Technologies”. In: Web Services Foundations. New York, NY: Springer
New York, pp. 31–51. doi: 10.1007/978-1-4614-7518-7_2.

Peffers, Ken, Tuure Tuunanen, and Björn Niehaves (Mar. 2018). “Design
science research genres: introduction to the special issue on exemplars and
criteria for applicable design science research”. In: European Journal of
Information Systems 27.2, pp. 129–139. issn: 0960-085X. doi: 10.1080/
0960085X.2018.1458066.

Peffers, Ken, Tuure Tuunanen, Marcus A Rothenberger, et al. (2007). “A
Design Science Research Methodology for Information Systems Research”.

https://doi.org/10.1007/978-981-13-2348-5_29
https://doi.org/10.1007/978-981-13-2348-5_29
https://doi.org/10.1145/800197.806036
https://doi.org/10.1007/978-3-662-50539-7_1
https://doi.org/10.1007/978-3-319-38791-8_21
https://doi.org/10.1007/978-3-319-38791-8_21
https://doi.org/10.1007/978-3-030-11367-4_37
https://doi.org/10.1007/978-3-030-11367-4_37
https://doi.org/10.1007/978-1-4614-7518-7_2
https://doi.org/10.1080/0960085X.2018.1458066
https://doi.org/10.1080/0960085X.2018.1458066

228 BIBLIOGRAPHY

In: Journal of Management Information Systems 24.3, pp. 45–77. issn:
0742-1222. doi: 10.2753/MIS0742-1222240302.

Pekkarinen, Satu and Helinä Melkas (2019). “Welfare state transition in
the making: Focus on the niche-regime interaction in Finnish elderly care
services”. In: Technological Forecasting and Social Change 145, pp. 240–253.
issn: 0040-1625. doi: 10.1016/j.techfore.2018.09.015.

Peltz, Chris (Oct. 2003). “Web services orchestration and choreography”. In:
Computer 36.10, pp. 46–52. doi: 10.1109/MC.2003.1236471.

Pînzaru, Florina et al. (2016). “Millennials at work: Investigating the speci-
ficity of generation Y versus other generations”. In: Management Dynamics
in the Knowledge Economy 4.2, pp. 173–192.

Praetorius, Gesa, Erik Hollnagel, and Joakim Dahlman (2015). “Modelling
Vessel Traffic Service to understand resilience in everyday operations”. In:
Reliability Engineering & System Safety 141, pp. 10–21. issn: 0951-8320.
doi: 10.1016/j.ress.2015.03.020.

Presenza, Angelo et al. (2019). “Enacting Social Crowdfunding Business
Ecosystems: The case of the platform Meridonare”. In: Technological
Forecasting and Social Change 143, pp. 190–201. issn: 0040-1625. doi:
10.1016/j.techfore.2019.03.001.

Reisenwitz, Timothy H. and Rajesh Iyer (2009). “Differences in generation
x and generation y: Implications for the organization and marketers”. In:
Marketing management journal 19.2, pp. 91–102.

Rios, Melanie (2011). “Sociocracy: A Permaculture Approach to Community
Evolution”. In: Communities 153, pp. 20–23.

Robertson, Brain J. (2015). Holacracy - The New Management System for
a Rapidly Changing World. 1st ed. New York: Henry Holt and Company,
LLC, p. 213. isbn: 978-1-62779-429-9.

Rodriguez, Alex (2008). “RESTful Web services: The basics”. In: IBM
developerWorks. url: http://www.gregbulla.com/TechStuff/Docs/ws-
restful-pdf.pdf.

Rossitto, Chiara and Airi Lampinen (Dec. 2018). “Co-Creating the Work-
place: Participatory Efforts to Enable Individual Work at the Hoffice”. In:
Computer Supported Cooperative Work: CSCW: An International Journal
27.3-6, pp. 947–982. issn: 15737551. doi: 10.1007/s10606-018-9319-z.

Rut, Monika and Anna R Davies (2018). “Transitioning without confrontation?
Shared food growing niches and sustainable food transitions in Singapore”.
In: Geoforum 96, pp. 278–288. issn: 0016-7185. doi: 10 . 1016 / j .
geoforum.2018.07.016.

https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1016/j.techfore.2018.09.015
https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.1016/j.ress.2015.03.020
https://doi.org/10.1016/j.techfore.2019.03.001
http://www.gregbulla.com/TechStuff/Docs/ws-restful-pdf.pdf
http://www.gregbulla.com/TechStuff/Docs/ws-restful-pdf.pdf
https://doi.org/10.1007/s10606-018-9319-z
https://doi.org/10.1016/j.geoforum.2018.07.016
https://doi.org/10.1016/j.geoforum.2018.07.016

BIBLIOGRAPHY 229

Schön, Eva Maria, Jörg Thomaschewski, and María José Escalona (Jan. 2017).
“Agile Requirements Engineering: A systematic literature review”. In:
Computer Standards and Interfaces 49, pp. 79–91. issn: 09205489. doi:
10.1016/j.csi.2016.08.011.

Schulze, Nicola (Sept. 2021). “Implementing a highly adaptable notification
service in a Microservice architecture”. Master thesis. Humboldt-Universität
zu Berlin.

Sell, Johann (2015). “Design sozio-technischer Systeme für ehrenamtlich
Engagierte”. Studienarbeit. Humboldt-Universität zu Berlin.

Sell, Johann (2020). Transform Problem Statements into Goals - A brief
Workshop. doi: 10.5281/zenodo.3732399.

Sell, Johann (2021). User Stories made by Users Workshop Analysis Results.
doi: 10.5281/zenodo.5574543.

Sell, Johann (2022a). Documentation of the CSCW microservice architecture
Heureka (0.30.2). doi: 10.5281/zenodo.6544394.

Sell, Johann (Nov. 2022b). Software developers are users of the Heureka
microservice platform. Version 1.0.0. doi: 10.5281/zenodo.7330414.

Sell, Johann (Sept. 2022c). Viva con Agua de St. Pauli e.V. User Stories
created by socio-trechnical walkthroughs. doi: 10.5281/zenodo.7103998.

Sell, Johann and Elias John (2020). User Stories made by Users Workshop
Data Set (Version: 1.0.0). doi: 10.5281/zenodo.3686671.

Sell, Johann, Dennis Kleber, and Frederik Gottemeyer (Nov. 2022). Stream
microservice for the Heureka microservice platform. Version 1.0.0. doi:
10.5281/zenodo.7315333.

Sell, Johann, Dennis Kleber, and Tobias Kästle (Nov. 2022a). Heureka
microservice platform infrastructure services. Version 1.1.0. doi: 10.5281/
zenodo.7315357.

Sell, Johann, Dennis Kleber, and Tobias Kästle (Nov. 2022b). Heureka
microservice platform infrastructure services. Version 1.0.0. doi: 10.5281/
zenodo.7315347.

Sell, Johann, Dennis Kleber, Jens Ottmann, et al. (Nov. 2022). Drops
microservice for the Heureka microservice platform. Version 1.1.0. doi:
10.5281/zenodo.7315309.

Sell, Johann and Niels Pinkwart (2016). “Rambla: Supporting collaborative
group creativity for the purpose of concept generation”. In: Proceedings of the
22th International Conference on Collaboration and Technology (CRIWG).

https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.5281/zenodo.3732399
https://doi.org/10.5281/zenodo.5574543
https://doi.org/10.5281/zenodo.6544394
https://doi.org/10.5281/zenodo.7330414
https://doi.org/10.5281/zenodo.7103998
https://doi.org/10.5281/zenodo.3686671
https://doi.org/10.5281/zenodo.7315333
https://doi.org/10.5281/zenodo.7315357
https://doi.org/10.5281/zenodo.7315357
https://doi.org/10.5281/zenodo.7315347
https://doi.org/10.5281/zenodo.7315347
https://doi.org/10.5281/zenodo.7315309

230 BIBLIOGRAPHY

Ed. by T. Yuizono et al. Vol. 9848 LNCS. Kanazawa, Japan: Springer,
pp. 81–97. isbn: 9783319447988. doi: 10.1007/978-3-319-44799-5_7.

Sell, Johann and Niels Pinkwart (2018). “Socio-Technical Self-Development
Using A Microservice Architecture”. In: International Conferences e-Health
2018; ICT, Society, and Human Beings 2018; and Web Based Communities
and Social Media 2018. Ed. by Mário Macedo et al. Madrid: IADIS Press,
pp. 261–264. isbn: 978-989-8533-77-7. url: https://iadisportal.
org/digital-library/socio-technical-self-development-using-a-
microservice-architecture.

Siegmund, Janet (n.d.). Measuring Programming Experience. url: https:
//www.tu-chemnitz.de/informatik/ST/research/material/PE/.

Siegmund, Janet, Christian Kästner, Sven Apel, et al. (2013). “Experience
from Measuring Program Comprehension—Toward a General Framework”.
In: Software Engineering 2013. Ed. by Stefan Kowalewski and Bernhard
Rumpe. Bonn: Gesellschaft für Informatik e.V., pp. 239–257. doi: 10.
1184/R1/6622163.V1.

Siegmund, Janet, Christian Kästner, Jörg Liebig, et al. (Oct. 2014). “Mea-
suring and modeling programming experience”. In: Empirical Software
Engineering 19.5, pp. 1299–1334. issn: 15737616. doi: 10.1007/s10664-
013-9286-4.

Soden, Robert et al. (Oct. 2021). “Time for historicism in CSCW: an
invitation”. In: Proceedings of the ACM on Human-Computer Interaction
5.CSCW2, pp. 1–18. doi: 10.1145/3479603.

Stack-Overflow (Aug. 2021). Most used web frameworks among developers
worldwide, as of 2021. Graph. Statista. url: https://www.statista.
com/statistics/1124699/worldwide-developer-survey-most-used-
frameworks-web/.

Stäheli, Urs (Sept. 2017). “Traveling by Lists: Navigational Knowledge and
Tourism”. In: Lili - Zeitschrift fur Literaturwissenschaft und Linguistik 47.3,
pp. 361–374. issn: 2365953X. doi: 10.1007/s41244-017-0070-6.

Stake, Robert E. (2008). “Qualitative Case Studies”. In: Strategies of
Qualitative Inquiry. Ed. by Norman K. Denzin and Yvonna S. Lincoln. 3rd.
SAGE Publications, pp. 119–149. isbn: 978-1-4129-5756-4.

Sydow, Jörg (1985). Der soziotechnische Ansatz der Arbeits- und Organisa-
tionsgestaltung: Darstellung, Kritik, Weiterentwicklung. Campus Forschung.
isbn: 3-593-33485-2.

Tempini, Niccolò (2017). “Till data do us part: Understanding data-based value
creation in data-intensive infrastructures”. In: Information and Organization

https://doi.org/10.1007/978-3-319-44799-5_7
https://iadisportal.org/digital-library/socio-technical-self-development-using-a-microservice-architecture
https://iadisportal.org/digital-library/socio-technical-self-development-using-a-microservice-architecture
https://iadisportal.org/digital-library/socio-technical-self-development-using-a-microservice-architecture
https://www.tu-chemnitz.de/informatik/ST/research/material/PE/
https://www.tu-chemnitz.de/informatik/ST/research/material/PE/
https://doi.org/10.1184/R1/6622163.V1
https://doi.org/10.1184/R1/6622163.V1
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1145/3479603
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://doi.org/10.1007/s41244-017-0070-6

BIBLIOGRAPHY 231

27.4, pp. 191–210. issn: 1471-7727. doi: 10.1016/j.infoandorg.2017.
08.001.

Thomas, Godwin, Reinhardt A. Botha, and Darrell van Greunen (Oct. 2015).
“Understanding the problem of coordination in a large scale distributed
environment from a service lens view — Towards the South African public
sector e-Administration criteria for coordination support”. In: Government
Information Quarterly 32.4, pp. 526–538. issn: 0740624X. doi: 10.1016/
j.giq.2015.08.002.

Trencher, Gregory (2019). “Towards the smart city 2.0: Empirical evidence of
using smartness as a tool for tackling social challenges”. In: Technological
Forecasting and Social Change 142, pp. 117–128. issn: 0040-1625. doi:
10.1016/j.techfore.2018.07.033.

Trist, Eric Lansdowne (2013). Organizational Choice: Capabilities of Groups
at the Coal Face under Changing Technologies - The Loss, Re-discovery &
Transformation of a Work Tradition. 1st ed. London: Routledge, p. 332.
isbn: 9780203436325.

Tyrer, Clare (Dec. 2019). “Beyond social chit chat? Analysing the social prac-
tice of a mobile messaging service on a higher education teacher development
course”. In: International Journal of Educational Technology in Higher
Education 16.1. issn: 23659440. doi: 10.1186/s41239-019-0143-4.

Valentini, Uwe et al. (2013). “Grundlagen des professionellen Requirements
Engineering & Management”. In: Requirements Engineering und Projekt-
management. Ed. by Andrea Herrmann, Eric Knauss, and Rüdiger Weißbach.
Xpert.press. Springer Berlin Heidelberg, pp. 21–28. isbn: 978-3-642-29431-
0. doi: 10.1007/978-3-642-29432-7_3.

Vicente, Alfonso, Lorena Etcheverry, and Ariel Sabiguero (2021). “An RDBMS-
only architecture for web applications”. In: 2021 XLVII Latin American
Computing Conference (CLEI), pp. 1–9. doi: 10.1109/CLEI53233.2021.
9640017.

Viennot, Nicolas et al. (2015). “Synapse: a microservices architecture for
heterogeneous-database web applications”. In: Proceedings of the Tenth
European Conference on Computer Systems - EuroSys ’15. New York,
New York, USA: ACM Press, pp. 1–16. isbn: 9781450332385. doi:
10.1145/2741948.2741975.

Völker, Mario (Apr. 2021). “Participatory Design of Access Control in
Evolutionary-Teal Organizations”. Master thesis. Humboldt-Universität zu
Berlin.

https://doi.org/10.1016/j.infoandorg.2017.08.001
https://doi.org/10.1016/j.infoandorg.2017.08.001
https://doi.org/10.1016/j.giq.2015.08.002
https://doi.org/10.1016/j.giq.2015.08.002
https://doi.org/10.1016/j.techfore.2018.07.033
https://doi.org/10.1186/s41239-019-0143-4
https://doi.org/10.1007/978-3-642-29432-7_3
https://doi.org/10.1109/CLEI53233.2021.9640017
https://doi.org/10.1109/CLEI53233.2021.9640017
https://doi.org/10.1145/2741948.2741975

232 BIBLIOGRAPHY

Völker, Mario, Lily Frey, and Johann Sell (2020). Participatory Design of Us-
ability Requirements for Access Control in an Evolutionary-Teal Organization
Workshop Data Set. doi: 10.5281/zenodo.3736813.

Wake, Bill (2003). “INVEST in Good Stories, and SMART Tasks - XP123”.
In: XP123: Exploring Extreme Programming. url: https://xp123.com/
articles/invest-in-good-stories-and-smart-tasks/.

Weick, Karl E. (Mar. 1976). “Educational Organizations as Loosely Coupled
Systems”. In: Administrative Science Quarterly 21.1, pp. 1–19. doi: 10.
2307/2391875.

WHATWG (June 2022a). HTML Living Standard. Tech. rep. accessed,
2022-06-22. WHATWG.

WHATWG (May 2022b). XMLHttpRequest Living Standard. Tech. rep. ac-
cessed, 2022-07-08. WHATWG.

Wilson, Paul (Aug. 2018). “Introducing CSCW – What It Is and Why We
Need It”. In: Computer-Supported Cooperative Work: The multimedia and
networking paradigm. Ed. by Stephen A.R. Scrivener. Routledge, pp. 1–18.
isbn: 9780429462276. doi: 10.4324/9780429462276-1.

Winograd, Terry and Fernando Flores (1986). Understanding computers
and cognition: A new foundation for design. 5th ed. Ablex Publishing
Corporation, p. 207. doi: 10.1016/0004-3702(87)90026-9.

Zimmermann, Olaf (2017). “Microservices Tenets: Agile Approach to Ser-
vice Development and Deployment”. In: Computer Science-Research and
Development 32.3, pp. 301–310. doi: 10.1007/s00450-016-0337-0.

https://doi.org/10.5281/zenodo.3736813
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://doi.org/10.2307/2391875
https://doi.org/10.2307/2391875
https://doi.org/10.4324/9780429462276-1
https://doi.org/10.1016/0004-3702(87)90026-9
https://doi.org/10.1007/s00450-016-0337-0

Web Resources

http://cssguidelin.es/ . 123
http://doc.soteto.net/technical-documentation/widgets 134
http://doc.soteto.net . 95
http://lesscss.org/ . 124
http://semver.org/ . 137
http://soteto.net/ .40, 104
http://vcv.soteto.net . 40
http://www.bibtex.org/de/ . 86
https://auth0.com/ . 112
https://aws.amazon.com/de/cognito/ . 112
https://aws.amazon.com/de/identity/saml/ . 112
https://cli.vuejs.org/ . 136
https://css-tricks.com/css-style-guides/ . 123
https://developer.mozilla.org/de/docs/Web/HTTP/CORS/Errors . . 128
https://dlnext.acm.org/search/advanced .85
https://docs.docker.com/compose/ .153
https://erpnext.com/ . 155
https://firebase.google.com/docs/auth .112
https://getgrav.org/ . 134
https://github.com/heartcombo/devise . 112
https://httpd.apache.org/ . 157
https://metasfresh.com/ . 154, 156
https://moodle.com/ . 142
https://nats.io/ . 110, 116, 119
https://oauth.net/2/grant-types/authorization-code/ 111
https://oauth.net/2/ . 111, 112, 121
https://oauth.net/code/ . 121
https://openid.net/connect/ .112
https://podman.io/ . 163
https://reactjs.org/docs/introducing-jsx.html 116
https://reactjs.org/ . 135
https://rubyonrails.org/ . 111
https://spring.io/projects/spring-security .111
https://twitter.com/ . 112
https://vuejs.org/guide/components/slots.html 135
https://vuejs.org/guide/essentials/component-basics.html 138
https://vuejs.org/ . 116, 132, 135, 136

233

http://cssguidelin.es/
http://doc.soteto.net/technical-documentation/widgets
http://doc.soteto.net
http://lesscss.org/
http://semver.org/
http://soteto.net/
http://vcv.soteto.net
http://www.bibtex.org/de/
https://auth0.com/
https://aws.amazon.com/de/cognito/
https://aws.amazon.com/de/identity/saml/
https://cli.vuejs.org/
https://css-tricks.com/css-style-guides/
https://developer.mozilla.org/de/docs/Web/HTTP/CORS/Errors
https://dlnext.acm.org/search/advanced
https://docs.docker.com/compose/
https://erpnext.com/
https://firebase.google.com/docs/auth
https://getgrav.org/
https://github.com/heartcombo/devise
https://httpd.apache.org/
https://metasfresh.com/
https://moodle.com/
https://nats.io/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/
https://oauth.net/code/
https://openid.net/connect/
https://podman.io/
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/
https://rubyonrails.org/
https://spring.io/projects/spring-security
https://twitter.com/
https://vuejs.org/guide/components/slots.html
https://vuejs.org/guide/essentials/component-basics.html
https://vuejs.org/

234 WEB RESOURCES

https://vuex.vuejs.org/guide/ . 136
https://www.amazon.de/ . 112
https://www.docker.com/ . 116
https://www.facebook.com/ . 112
https://www.gnu.org/software/bash/ . 163
https://www.google.de/ . 112
https://www.java.com/ . 111
https://www.keycloak.org/ . 112
https://www.markdownguide.org/basic-syntax/ . 134
https://www.maxqda.com/ . 48
https://www.nginx.com/ .131
https://www.npmjs.com/ .137
https://www.playframework.com/documentation/2.4.x/Home 116
https://www.playframework.com/documentation/2.7.x/Home . . 116, 119
https://www.playframework.com/ . 128
https://www.scala-lang.org/ . 128
https://www.scala-sbt.org/ .163
https://www.tesla.com/ .53

https://vuex.vuejs.org/guide/
https://www.amazon.de/
https://www.docker.com/
https://www.facebook.com/
https://www.gnu.org/software/bash/
https://www.google.de/
https://www.java.com/
https://www.keycloak.org/
https://www.markdownguide.org/basic-syntax/
https://www.maxqda.com/
https://www.nginx.com/
https://www.npmjs.com/
https://www.playframework.com/documentation/2.4.x/Home
https://www.playframework.com/documentation/2.7.x/Home
https://www.playframework.com/
https://www.scala-lang.org/
https://www.scala-sbt.org/
https://www.tesla.com/

A. Appendix

A.1. Resources

The following resources have been considered to select the publications. Due
to timing issues, only the first five resources have been used.

ACM Digital Library (https://dlnext.acm.org/)

IEEE Computer Society Digital Library (https://www.computer.o
rg/csdl/home)

Elsevier (ScienceDirect) (https://www.sciencedirect.com/)

Springer (SpringerLink) (https://link.springer.com/advanced-
search)

235

https://dlnext.acm.org/
https://dlnext.acm.org/
https://www.computer.org/csdl/home
https://www.computer.org/csdl/home
https://www.computer.org/csdl/home
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://link.springer.com/advanced-search
https://link.springer.com/advanced-search
https://link.springer.com/advanced-search

236 APPENDIX

A.2. List of microservices and software projects

Software Project Microservice or Non-functional requirements

drops Drops

https://github.com/SOTETO/drops, accessed 2022-07-07

Data publication by Sell, Kleber, Ottmann, et al. (2022)

The server-side backend system written using Scala / Play 2.4.x.

arise Drops

https://github.com/SOTETO/arise, accessed 2022-07-07

Data publication by Sell, Kleber, Ottmann, et al. (2022)

The client-side frontend system written using Vue.js.

vca-widget-user Drops

https://github.com/SOTETO/vca-widget-user, accessed 2022-07-07

Data publication by Sell, Kleber, Ottmann, et al. (2022)

A widget that implements user interface elements to search, select and show
users. It is also written using Vue.js.

play2-oauth-client Drops

https://github.com/SOTETO/play2-oauth-client, accessed 2022-07-07

Data publication by Sell, Kleber, Ottmann, et al. (2022)

A server-side backend plugin for Play 2.5 and Play 2.7 that serves as a
OAuth 2 client for the OAuth 2 Provider that has been implemented in the
backend of Drops.

stream-backend Stream

https://github.com/SOTETO/stream-backend, accessed 2022-07-07

Data publication by Sell, Kleber, and Gottemeyer (2022)

The server-side backend system written using Scala / Play 2.7.x.

Continued on next page

https://github.com/SOTETO/drops
https://github.com/SOTETO/arise
https://github.com/SOTETO/vca-widget-user
https://github.com/SOTETO/play2-oauth-client
https://github.com/SOTETO/stream-backend

LIST OF MICROSERVICES AND SOFTWARE PROJECTS 237

Software Project Microservice or Non-functional requirements

stream-frontend Stream

https://github.com/SOTETO/stream-frontend, accessed 2022-07-07

Data publication by Sell, Kleber, and Gottemeyer (2022)

The client-side frontend system written using Vue.js.

grav-dockerfile Documentation

https://github.com/SOTETO/grav-dockerfile, accessed 2022-07-07

A dockerfile used to deploy GRAV as part of the Heureka! environment.

docu Documentation

https://github.com/SOTETO/docu, accessed 2022-07-07

Contains the content of the Heureka! documentation and is cloned on every
hosting system.

heureka Non-functional requirements

https://github.com/SOTETO/heureka, accessed 2022-07-07

Data publication by Sell, Kleber, and Kästle (2022a)

Implements a CLI to deploy the Heureka! architecture and environment.

dispenser Non-functional requirements

https://github.com/SOTETO/dispenser, accessed 2022-07-07

Data publication by Sell, Kleber, and Kästle (2022a)

Handles a database to instantiate a navigation and hosts a shared CSS
library that can be used by all microservices.

heureka-widget-navigation-2021 Non-functional requirements

https://github.com/SOTETO/heureka-widget-navigation-2021,
accessed 2022-07-07

Data publication by Sell, Kleber, and Kästle (2022a)

Continued on next page

https://github.com/SOTETO/stream-frontend
https://github.com/SOTETO/grav-dockerfile
https://github.com/SOTETO/docu
https://github.com/SOTETO/heureka
https://github.com/SOTETO/dispenser
https://github.com/SOTETO/heureka-widget-navigation-2021

238 APPENDIX

Software Project Microservice or Non-functional requirements

A widget that implements UI elements for a navigation. It is written using
Vue.js.

vca-widget-base Non-functional requirements

https://github.com/SOTETO/vca-widget-base, accessed 2022-07-07

Data publication by Sell, Kleber, and Kästle (2022a)

A widget that implements basic UI elements that can be used by all frontend
applications. It is written using Vue.js.

webapps-drops-oauth Non-functional requirements

https://github.com/SOTETO/webapps-drops-oauth, accessed 2022-07-
07

A server-side backend system that uses the play2-oauth-client to handle
the OAuth 2 based authentication of the Heureka! architectures shared
session concept. It can be used for WebApps with no or external backend
implementation to handle the authentication.

https://github.com/SOTETO/vca-widget-base
https://github.com/SOTETO/webapps-drops-oauth

LIST OF WIDGETS 239

A.3. List of widgets

Widget Project

VCA Frame vca-widget-base

The frame describes the base of a Pool2 page. Content is organized in VCA
Boxes and these boxes are part of the VCA Columns which are positioned
by the VCA Frame. Additionally, it is possible to add a title.

VCA Column vca-widget-base

Columns organize the VCA boxes in a vertical order.

VCA Box vca-widget-base

Boxes contain the main content of a Pool2 page. They can be used for any
kind of content and help to cluster the information and functions provided
by a microservice.

VCA Info Box vca-widget-base

This box will be used to raise the users attention and inform the user about
important facts.

VCA Filter Tag vca-widget-base

Tags can be used to display key-value structured information. For example,
it is used in Drops to show the selected search criteria of the user search
(the user model’s attribute and the search key).

Heureka! menu heureka-widget-navigation-2021

The menu implements basic HTML and CSS code to show the buttons of
the main menu. During its initiation, the widget requests the content of the
menu by an Ajax call to Dispenser. That means all buttons with labels and
targets, but also the structure of the menu are received from a database
managed by Dispenser. It is designed to stay at the top of the page.

Heureka! footer heureka-widget-navigation-2021

The footer contains a menu with secondary priority. It is designed to be
the bottom of the page.

Plain crew name vca-widget-user

Prints a crew name by a given crew’s UUID.

Continued on next page

240 APPENDIX

Widget Project

Crew select vca-widget-user

Allows the user to select a crew. The widget fires an event after selection
that returns the UUID of the selected crew.

Tag vca-widget-user

User or crew names are shown as small (removable) tags. On click, the user
will be redirected to the profile page of the user that is represented by the
tag.

Avatar vca-widget-user

Shows the avatar (profile image) of a user.

VCA Role vca-widget-user

Shows the role of a user as a tag.

User Widget vca-widget-user

Visualizes a user in various forms.

User Widget List vca-widget-user

Shows a set of users and implements functions to search through, sort and
paginate the set. There are four different forms of visualizing the set: as
large user widget, as medium user widget, as small user widget and as table
rows.

User Widget Autocomplete vca-widget-user

Allows to select a list of users by an autocomplete field.

Table A.2.: A list of all widgets implemented for the first prototype of the
Heureka! platform.

INSIGHTS FROM THE QUALITATIVE ANALYSIS 241

A.4. Insights from the qualitative analysis

Table A.3.: The insights resulting from the qualitative analysis regarding the
RQs 3 and 4 of Chapter 7 that are addressing the user stories.

ID Insight

I1 When VcA adapts the user stories created by the USMU workshop,
then they have to consider new roles that have been introduced by
the user stories.

I2 If a user story is assessed of being of high priority, the user story
has a positive effect on the simplicity the volunteers can participate
the activities of VcA.

I3 If user stories consider external tools, the assigned Pool volunteers
require additional skills or have to be willingly to learn new skills.

I4 If user stories are created by a USMU workshop, it is describing
interactions of users with the technical tools.

I5 The decision making during the USMU workshop does not suffi-
ciently filters suggestions that could have a negative effect on the
evolutionary-teal social system of VcA.

I6 When user stories are created during the USMU workshop, some
user stories will miss the required test cases.

I7 When test cases have been created during a USMU workshop, Pool
volunteers are able to implement the test cases.

I8 If user stories A, B are created by a USMU workshop, US A will
define base conditions (role, access rights) that are used by US B.

I9 If user stories are created by a USMU workshop, the user stories
are expressing feature requests that can be generalized to the same
abstract feature request.

I10 If user stories A, B are created by a USMU workshop, user story A
becomes the base of user story B.

I11 If user stories are created by the USMU workshop, it will not become
a hot topic of VcA.

I12 If volunteers are participating a USMU workshop, they consider
new technical requirements with unclear consequences for the social
system.

I13 If user stories are created by the USMU workshop, it will be not
understood by volunteers of Viva con Agua.

I14 If user stories are created by a USMU workshop, all terms are known
by the Pool volunteers.

242 APPENDIX

ID Insight

I15 If user stories are created by a USMU workshop, all terms are
unambiguous.

I16 When participants of a USMU workshop are discussing the user
stories, they are not explicitly defining the used terms.

I17 When user stories are created by a USMU workshop, the used terms
have to be interpreted by the volunteers.

I18 If user stories are created by a USMU workshop, the used terms
have an unclear meaning.

I19 If user stories are created by a USMU workshop, there are no misused
terms.

I20 If WASH and Pool volunteers collaborate by a USMU workshop, no
terms will be misused.

I21 If user stories are created by a USMU workshop, the US are only
comprehensible for the participants.

I22 User stories are judged as being of high value, if they are supporting
the cooperation procedures.

I23 User stories are judged as being of high value, if they are supporting
the intrinsically motivated activities of the volunteers.

I24 User stories are not of high value, if it does not effects the whole
social system.

I25 User stories are not of high value, if it does not solves a problem.

I26 User stories are not of high value, if there already exists a work
around.

I27 If a user story has been created by a USMU workshop, the user
stories describe no mandatory requirements.

I28 If user stories are created by a USMU workshop, the volunteers
expecting the implementation of it.

I29 If user stories are created by a USMU workshop, the volunteers
would not be satisfied by implementation of the user story.

I30 User stories created by a USMU workshop are missing required
details.

I31 Pool volunteers are able to implement all user stories created during
a USMU workshop.

I32 If user stories are created by a USMU workshop, it mentions one
role.

I33 If user stories are created by a USMU workshop, it mentions two
roles.

I34 If a user story is created by a USMU workshop, it mentions the role
supporter more often than other roles of VcA.

INSIGHTS FROM THE QUALITATIVE ANALYSIS 243

ID Insight

I35 If user stories are created by a USMU workshop, they are mentioning
a role.

I36 If user stories are created by a USMU workshop, they are describing
a subject that expresses an aim.

I37 If user stories are created by a USMU workshop, it describes an
action verb.

I38 If user stories are created by a USMU workshop, it describes more
than one action verb.

I39 If user stories are created by a USMU workshop, it does not describes
an action verb.

I40 If user stories are created by a USMU workshop, the stories are
missing a direct object.

I41 If user stories are created by a USMU workshop, there are no
duplicates of the user stories.

I42 If user stories are created by a USMU workshop, the resulting set
of user stories are uniform.

I43 If user stories are created by a USMU workshop, it uses different
styles to formulate the role.

I44 If user stories are created by a USMU workshop, it misses acceptance
criteria.

I45 If user stories are created by the USMU workshop, the user story
expressing feature requests implementing support for the mean.

I46 If user stories are created by the USMU workshop, the user story
expressing feature requests not implementing support for the mean.

I47 If user stories are created by a USMU workshop, implicit feature
requests has to be maked explicit.

I48 If user stories are created by a USMU workshop, it contains more
than one feature request.

I49 If user stories are created by a USMU workshop, the user stories
describing explicitly one feature request.

I50 If user stories are created by a USMU workshop, the user stories
are not describing a feature request.

I51 If user stories are created by a USMU workshop, it expresses the
feature request indirectly.

I52 If user stories are created by a user story workshop, it mentions no
additional information.

I53 If user stories are created by a USMU workshop, it reasons the user
story itself by an additional information.

244 APPENDIX

ID Insight

I54 If user stories are created by a USMU workshop, it introduces new
conditions to existing working procedures as additional information.

I55 If user stories are created by a USMU workshop, it is reasoned by
the working procedure.

I56 If user stories are created by the USMU workshop, the stories do
not justify the user story.

I57 If user stories are created by a USMU workshop, it is reasoning
about itself.

I58 If user stories are created by a USMU workshop, it is reasoned by a
required information flow.

I59 If user stories are created by a USMU workshop, it is reasoned by a
required business process.

I60 If user stories are created by a USMU workshop, the addressed
problems occur during the collaborative working procedure.

I61 If user stories are created by a USMU workshop, the addressed
problems occur during the interaction with the technical system
Pool and also during the social interaction without any technical
support.

I62 If user stories are created by a USMU workshop, no problems will
be described that are addressed by the user stories.

I63 If a user story is created by a USMU workshop and it describes a
solution, the solution will be implicitly.

I64 If user stories are created by a USMU workshop, the user story will
not describes any solution.

I65 If a user story is created by a USMU workshop and describes no
problem, it will also describe no solution for any problem.

I66 If user stories are created by a USMU workshop, there is no conflict
between the user stories.

I67 The decision making process of the USMU workshop does not ensure
that the created user stories are of high priority.

I68 If user stories are created by a USMU workshop, Pool volunteers
are able to estimate the required time to implement the user story.

I69 If user stories are created by a USMU workshop, Pool volunteers
are not able to estimate the required time to implement the user
story.

I70 If Pool volunteers estimate a user story, they have to know technical
details of the Pool system.

INSIGHTS FROM THE QUALITATIVE ANALYSIS 245

ID Insight

I71 If user stories are created by a USMU workshop, the Pool volunteers
have to be enabled to implement the user stories by VcA closing
deals with external partners.

I72 If user stories are created by a USMU workshop, it consists of full
sentences.

I73 User stories created by the USMU workshop consist of test cases
that are not specifying the user story.

I74 If user stories are created by the USMU workshop, it will miss
relevant test cases.

I75 If user stories are created by the USMU workshop, the text for the
test case description does not describes a test case.

I76 Participants of a USMU workshop are not consider the edge cases
while they are creating the test cases.

Table A.4.: The insights resulting from the qualitative analysis regarding the
RQs 3 and 4 of Chapter 7 that are addressing the concept of the
USMU workshop. Only codes with at least ten codings are listed,
except I84 that has been introduced as a special case.

ID Insight

I83 All VcA volunteers are able to adopt and adapt the USMU workshop
format.

I84 Participating the USMU workshop as VcA volunteer indirectly in-
fluences the vision of VcA.

I85 If volunteers of VcA would like to adopt and adapt the USMU work-
shop, s/he requires descriptive explanations (instructions, examples,
guiding questions).

I94 All participants of a USMU workshop are developing an action
sequence of the prospective user to embed the user story into it.

I102 If a USMU workshop is performed, the moderator guides the par-
ticipant through the activities of the collaborative process.

I103 If a USMU workshop is performed, the moderator supports partici-
pants in aligning their inputs onto the concept of user stories.

I104 If a USMU workshop is performed, the moderator supports partici-
pants in formulating the user stories.

I106 If a USMU workshop is performed, the moderator explains concept
of the USMU workshop.

I109 If user stories are created by a USMU workshop, participants are
guiding themselves through the activities of the collaborative process.

246 APPENDIX

ID Insight

I115 While the moderator defines the order of the different workshop
phases, the participants are free to organize the activities during a
phase by themselves.

I121 Participants of the USMU workshop are writing the user stories
after the stories have completly been formulated and discussed, as
well as they are writing it while they are formulating and discussing
it.

I124 Participants of a USMU workshop are considering the concept of
open participation of VcA by not forcing the volunteers to use a
specific technology or to participate a technology based exchange.

I128 Participants of a USMU workshop are considering the principle of
open participation by formulated details of the feature request.

I132 Participants of a USMU workshop are trying to consider as many
involved roles as possible.

I133 Participants of a USMU workshop are considering the principle of
open participation during the creation of user stories.

I136 Participants of a USMU workshop are suggesting feature requests
reasoned by support of a business process.

I137 Participants of a USMU workshop are focusing a specific part of
the business process by describing its action sequence that embeds
the user story.

I142 Participants of a USMU workshop are discussing the reasoning about
the user stories.

I147 Participants of a USMU workshop are deriving conditions from the
action sequence to model the feature request.

I151 Participants of a USMU workshop are reasoning about the accep-
tance criteria by referencing the business process.

I164 Participants of a USMU workshop do not know the naming of
problem statements, goals, and user stories.

Selbstständigkeitserklärung

Ich erkläre, dass ich die Dissertation mit dem Titel

Microservices to Address the Change Challenges in
Socio-Technical Evolutionary-Teal Organizations

selbständig und nur unter Verwendung der von mir gemäß §7 Abs. 3 der Pro-
motionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät, veröf-
fentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin
Nr. 42/2018 am 11.07.2018 angegebenen Hilfsmittel angefertigt habe.

Johann Sell

247

	1 Introduction
	1.1 Technical challenge for millennials
	1.2 Research contribution

	2 Background & Terminology
	2.1 Social Systems
	2.2 New forms of organizing
	2.2.1 Holocracy
	2.2.2 Sociocracy
	2.2.3 Evolutionary-teal organizations

	2.3 Socio-technical systems
	2.4 Joint Optimization
	2.5 Organizational Choice
	2.6 Computer Supported Cooperative Work
	2.7 Participatory Design

	3 Methodology
	3.1 Design Science Research
	3.2 Qualitative research
	3.2.1 Aspects of Trustworthiness
	3.2.2 Ethnography
	3.2.3 Case Study
	3.2.4 Analysis

	3.3 A Naturalistic Design Science Research Approach

	4 The Case
	4.1 Viva con Agua de St. Pauli e.V.
	4.1.1 Social system
	4.1.2 Socio-technical characterization
	4.1.3 Internal social events

	4.2 My activities in the organization
	4.2.1 Introducing new internal social events
	4.2.2 Prolonged engagement

	4.3 In the context of a DSR project

	5 Systematic Literature Review
	5.1 Selection of publications
	5.1.1 Search Keys
	5.1.2 Selection criteria
	5.1.3 Selection procedure

	5.2 Data extraction
	5.3 Results
	5.3.1 Social System
	5.3.2 Joint Optimization and Organizational Choice
	5.3.3 Architectures
	5.3.4 Guidelines
	5.3.5 Architectures and users
	5.3.6 Architectures and software developers

	5.4 Discussion
	5.5 Conclusion

	6 Technical perspective
	6.1 Socio-technical Requirements
	6.2 Acceptance criteria
	6.3 Microservices as a solution approach
	6.4 Design of a microservice architecture
	6.4.1 Dynamic UI Fragment Composition
	6.4.2 Business Object Event System
	6.4.3 Shared Session

	6.5 Implementation of the microservice architecture
	6.5.1 One microservice, one application?
	6.5.2 Non functional services
	6.5.3 OAuth2 handshake
	6.5.4 Integration of systems as microservices
	6.5.5 Widgets

	6.6 Software developers are users
	6.6.1 Participants
	6.6.2 Data generation and conduction
	6.6.3 Analysis
	6.6.4 Results
	6.6.5 Limitations & Discussion

	6.7 Conclusion

	7 Social perspective
	7.1 Adaptation Requirements
	7.2 Requirement Engineering Approaches
	7.3 User stories made by users
	7.4 User Story Quality Assessment Tool
	7.4.1 Questionnaire Q1: Assessment by ICT professionals
	7.4.2 Questionnaire Q2: Assessment by prospective users
	7.4.3 Questionnaire Q3: Assessment of sets by ICT professionals
	7.4.4 Relation between questionnaires and quality criteria

	7.5 User stories constructed in the field
	7.5.1 Participants
	7.5.2 Workshop Design
	7.5.3 Data generation
	7.5.4 Analysis
	7.5.5 Results
	7.5.6 Discussion

	7.6 Conclusion

	8 Closure
	8.1 General Discussion
	8.2 Conclusion
	8.3 Outlook

	 Bibliography
	A Appendix
	A.1 Resources
	A.2 List of microservices and software projects
	A.3 List of widgets
	A.4 Insights from the qualitative analysis

