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Summary

Generalised dose–response curves are essential to understand how plants acclimate to atmospheric

CO2. We carried out a meta-analysis of 630 experiments in which C3 plants were experimentally

grown at different [CO2] under relatively benign conditions, and derived dose–response curves for
85 phenotypic traits. These curveswere characterised by form, plasticity, consistency and reliability.

Considered over a range of 200–1200 µmolmol�1 CO2, some traits more than doubled (e.g. area-

based photosynthesis; intrinsicwater-use efficiency),whereas othersmore than halved (area-based

transpiration). At current atmospheric [CO2], 64%of the total stimulation in biomass over the 200–
1200 µmol mol�1 range has already been realised.We alsomapped the trait responses of plants to

[CO2] against those we have quantified before for light intensity. For most traits, CO2 and light

responses were of similar direction. However, some traits (such as reproductive effort) only

responded to light, others (such as plant height) only to [CO2], and some traits (such as area-based

transpiration) responded in opposite directions. This synthesis provides a comprehensive picture of

plant responses to [CO2] at different integration levels and offers the quantitative dose–response
curves that can be used to improve global change simulation models.
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I. Introduction

Plants are the major primary producers on earth. Over time, they
have evolved various mechanisms to take up CO2 from their
environment and, using light energy, to reduce this CO2 to sugars
(Lambers &Oliveira, 2019). These photosynthetic reactions fuel a
plant’s growth and reproduction, but also have important ecolog-
ical ramifications, as most other organisms in the world directly or
indirectly depend on plant productivity. Over geological
timescales, plants have even engineered the Earth’s system, by
removing a substantial fraction of the atmospheric CO2 while
increasing oxygen levels, with all its downstream consequences for
the physical environment and the organisms living on this planet
(Berner, 2004). However, up to the industrial revolution these
changes generally have been so slow that even long-lived organisms
such as trees have not experienced substantial changes over their
lifetime.

The finding of Keeling et al. (1976) that atmospheric [CO2] is
rising because of anthropogenic emissions has sparked much
interest among biologists in how individual plants and ecosystems
will respond to this continuing increase (K€orner, 2000). As a result,
many experiments have been carried out in growth chambers,
glasshouses and open top chambers (OTCs), often focusing on the
effects of a doubling in atmospheric [CO2]. Various reviews and
meta-analyses have synthesised this knowledge. Generally, for
species with a C3 type of photosynthesis a doubling of the [CO2]
results in c. 40% higher rates of photosynthesis (Ainsworth et al.,
2002), an increase of c. 40% in plant biomass (Poorter & Navas,
2003), and c. 33% higher yields (Kimball, 1983). Because of
concerns about the translation from laboratory-based experiments
to more natural conditions (Kimball et al., 1997; Poorter et al.,
2016), an important addition in the last decades has been Free Air
CO2 Enrichment (FACE) studies, in which elevated CO2

concentrations can be applied under realistic field conditions,
albeit that – for financial reasons – the experimentally elevatedCO2

levels are generally only c. 50% higher than ambient. Data from
FACE experiments show increased rates of light-saturated photo-
synthesis of c. 31% and yield increases for various crops around
18% (Ainsworth & Rogers, 2007; Kimball, 2016; Ainsworth &
Long, 2021).

Most of the studies so far have focused on twoCO2 levels only, as
marginal costs for additional equipment are generally high. An
intrinsic problem with such two-level experiments is that plant
responses to CO2 may not necessarily be linear. Therefore, it is
difficult to interpolate or extrapolate results obtained from such
studies (K€orner, 1995; Becklin et al., 2017). A minority of papers
have studied plant responses over a wider range of concentrations,
and indeed observed saturating responses (Juurola, 2003; Zheng
et al., 2019). Others have focused on lower-than-ambient CO2

levels, in order to understand howplants and vegetation functioned
during pre-industrial and glacial times (reviewed by Gerhart &
Ward, 2010). It would be worthwhile if the results of this wide
variety of controlled experiments could be integrated into a more
general perspective that is applicable over a wider range of
CO2 concentrations. One way to achieve this is by constructing
dose–response curves from many independent, small experiments

by scaling plant responses for each experiment with reference to a
common CO2 level (MetaPhenomics approach; Poorter et al.,
2010). In this way, information from a broad diversity of
experiments and a wide range of CO2 concentrations can be
combined, and responses of different functional groups can be
compared. Such full dose–response curves therefore allow better
insight into how plants respond, not only to various future CO2

levels, but also to conditions from the past.
Another issue is that most experimental studies, for logistical

reasons, concentrate on a limited number of plant traits. To better
understand plant responses to CO2, it would be insightful to
integrate a wide range of traits that covers both anatomy,
morphology, the chemical composition of plants, various physi-
ological aspects of the C, N and H2O economy as well as growth
and reproduction. To be able to compare and rank the plasticity of
all these traits requires a common methodology. Dose–response
curves are very well suited for such a standardised comparison.

In this review, we first discuss briefly the changes in CO2

concentrations plants have faced over geological time scales and the
variation they currently experience in time and space. Focusing on
C3 plants, we then apply the MetaPhenomics approach and
summarise literature data for 630 experiments in which plants were
grown at various experimentally manipulated CO2 levels. We
derived dose–response curves for 85 traits, and analysed their shape,
consistency and reliability. Based on these curves, we established
plasticity indices over the 200–1200 µmol mol�1 CO2 range, to
compare the response of different traitsmore easily. Finally, as both
CO2 concentration and light intensity stimulate photosynthesis,
similarity in responses may be expected for some but not all traits.
We therefore analysed for which variables the CO2 and light
responses of plants are of similar magnitude and direction, which
ones are affected in independent directions and for which traits the
responses are opposite.

II. Variation in [CO2] in time and space

CO2 concentrations vary in time and space, with consequences for
both plant evolution and acclimation. At early geological time
scales atmospheric [CO2] was very high, with crude estimates of >
8000 µmol mol�1 (from here onwards indicated as ppm) during
the Precambrian period (Sheldon, 2006). Partly due to weathering
of rocks, partly due to the massive transformation of plant biomass
into C-rich deposits, a strong decline in CO2 occurred over time.
Over the last 400 million years, when vascular land plants
diversified, estimated CO2 concentrations varied between 180
and 2000 ppm (Fig. 1a), with particularly low values during the ice-
ages, when the solubility of CO2 in the ocean water was high (L€uthi
et al., 2008) and terrestrial decomposition slowed (Ciais et al.,
2012). Keeling et al. (1976) not only showed that [CO2] high in the
troposphere has beenon the rise again since the last century, but also
how it oscillates within a year. These oscillations are driven by
seasonal variation in CO2 uptake of the vegetation and its
subsequent decomposition and cause relative small deviations
from the yearly tropospheric mean, ranging from < 0.1% to 0.5%
(Fig. 1b; Keeling et al., 1996). Depending on local wind and
turbulence conditions, an atmospheric boundary layer of typically
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50–2000mcovers theEarth’s surface,whichpartially decouples the
CO2 concentration right above the vegetation from concentrations
higher in the troposphere. Hence, the yearly [CO2] oscillations at
this level are often larger, deviating by c. 3–5% from mean
tropospheric values (Fig. 1b). Although the seasonal build-up and
breakdown of plant biomass is massive on a global scale, the
magnitude of this fluctuation in CO2 concentration is not likely to
have a substantial effect on plant functioning.

A stronger source of variation is the diurnal rhythm within the
vegetation. During the night, when wind speed and turbulence are
often low, and mixing with air masses higher in the atmosphere
restricted, the respiratory output of plants and soil may cause the
[CO2] of the air around the plants to rise to values > 20% larger
than tropospheric levels (Fig. 1c), and occasionally to concentra-
tions > 100% larger (Ney & Graf, 2018). Although substantial in
size, these high night values mostly occur when plant photosyn-
thesis and transpiration are low or negligible, and so we presume
that their effects on vegetation functioning are small. More
consequentialmay be the drop in [CO2] that occurs during the day.

Relative to tropospheric values, this drop can exceed 10% (Fig. 1c),
large enough to affect photosynthesis. All these values are modest
compared with the CO2 concentrations of the air inside the soil,
where values 3–309 higher than tropospheric levels have been
reported (Fig. 1d). Finally, CO2 concentrationswill also vary inside
plants, and can go down to < 150 ppm inside the intercellular
spaces of leaves when photosynthesis is active, but may be up to
1000–200 000 ppm in stems and roots (Teskey et al., 2008; Sage&
Khoshravesh, 2016).

III. Methodology

1. Data compilation

An extended description of methods is given in Supporting
Information Notes S1. In short, we defined 85 plant traits of
interest (see Table 1 for definitions and abbreviations) and screened
the literature for experiments in which plants were grown
experimentally at different levels of CO2 and without pronounced
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Fig. 1 Variation in [CO2] in time and space at various scales. (a) Variation over the last 400 million years. (b) Seasonal variation in the northern-hemisphere
troposphere (as measured atMauna Loa) and above the vegetation (as measured for 140 eddy-covariance towers). (c) Vertical profiles through the canopy at
the middle of the day (continuous lines) and the middle of the night (broken lines). (d) Vertical profiles in the soil. Values in (b–d) are all given relative to
tropospheric values measured in the same year at Mauna Loa (black dashed line). Note that the subpanels in (a) with different shading have different but
connecting time scales. All CO2 axes start at 0 to better judge proportional changes. Data in (a) are fromFoster et al. (2017; sediment), Bereiter et al. (2015; ice
cores) and Keeling et al. (2001; with continuing data from https://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record.html); for (b) from
Pastorello et al. (2020), filtered for 30°–60°N and daytime, and Thoning et al. (2021); for (c) from the datasets underlyingNey&Graf (2018; crop 1,Hordeum
vulgare; crop 2,Beta vulgaris), Heinesch et al. (2008) andAubinet et al. (2018; forest), and for (d) fromFierer et al. (2005; grassland),Wang et al. (2013; crop)
and Carmi et al. (2013; forest).
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Table 1 Description and abbreviations of plant traits used in this review.

Abbreviation Variable name Units Explanation

1. Anatomy and Morphology
Ames/A Area of mesophyll relative to leaf area m2 m�2 Includes both observations for total mesophyll area as

well as for mesophyll area adjacent to intercellular spaces
DrMaCoS Stem dry matter content g g�1 Stem dry mass/fresh mass
DrMaCoR Root dry matter content g g�1 Root dry mass/fresh mass
InLeAr Individual leaf area cm2 Can be either for a specific leaf, or averaged over all leaves
IntLen Internode length cm Length between two nodes
LeaDen Leaf density g ml�1 Leaf dry mass/leaf volume or leaf dry matter content
LMA Leaf mass per area g m�2 Inverse of SLA, scales positively with leaf thickness and density
LeaThi Leaf thickness µm
PlaHei Plant height cm Height from ground level to the shoot apex or

highest leaf tip
SleInd Slenderness index m m�1 Stem length/stem diameter of the main stem
SteDia Stem diameter mm Diameter of the stem or root collar
StoDen Stomatal density No. mm�2 Based on both leaf sides, or on the abaxial side if adaxial

data are not provided
SpStLe Specific stem length m g�1 Stem length/stem mass
SRL Specific root length m g�1 Root length/root mass
VoFrMe Fraction of leaf volume in mesophyll ml ml�1 Mesophyll volume/total leaf volume
VoFrPa Fraction of palisade cell volume

in total mesophyll volume
ml ml�1 Palisade mesophyll volume/total mesophyll volume

#PaCeLa Number of palisade cell layers Numeric If no data are provided taken from single cross sections
per treatment in published papers

#BraTil Number of branches or tillers Numeric Number of tillers (grasses) or 1st-order side branches
(dicots), plus the main tiller/axis

2. Chemical composition
[C]L, [C]S, [C]R [C] leaf, stem, root mg g�1 C concentration in dry matter
C/NL, C/NS, C/NR C : N ratio leaf, stem, root g g�1

Chl/A Chlorophyll content/area µmol m�2 No SPAD measurements
Chla/b Chlorophyll a : b mol mol�1

Chl/N Chlorophyll to N ratio mol Chl mol�1 N
[Mine]L [Minerals] leaf mg g�1 Minerals (including NO3

�) or ash
[NO3]L [Nitrate] leaf mg g�1

[Norg]L [organic N] leaf mg g�1 Total N, excluding NO3
�-N

Ntot/A Leaf total N content/area g m�2 Total N, including NO3
�-N

[Ntot]L [total N] leaf mg g�1 Total N, including NO3
�-N

[N]S, [N]R [N] stem, root mg g�1 Total N or organic N
[P]L, [P]S, [P]R [P total] leaf, stem, root mg g�1

N/PL N : P ratio leaf g g�1

[SolPhe]L [Soluble phenolics] leaf mg g�1

SolSug/TNCL Soluble sugar fraction in TNC for leaves g g�1

SolSug/TNCR Soluble sugar fraction in TNC for roots g g�1

[TNC]L [Nonstructural carbohydrates] leaf mg g�1

[TNC]R [Nonstructural carbohydrates] root mg g�1

[TNC]S [Nonstructural carbohydrates] stem mg g�1

Xant/Chl Xanthophylls/Chlorophylls mmol mol�1 Violaxanthin + Antheraxanthin + Zeaxanthin

3. Physiology
Abso Absorptance leaf % of incident photons (400–700 nm) absorbed by a leaf
ApQuYi Apparent quantum yield mol CO2 mol�1 photons CO2 fixed per unit photon flux at the leaf, at low PPFD
ci/ca Intercellular [CO2] relative

to outside the leaf
mol mol�1 Measured at growth light conditions and ambient [CO2]

Fv/Fm-d Variable fluorescence/maximal fluorescence Measured during the diurnal period
Fv/Fm-n Variable fluorescence/maximal fluorescence Measured during the nocturnal period (pre-dawn)
iWUE Intrinsic water-use efficiency µmol CO2 mol�1 H2O CO2 fixed divided by stomatal conductance, measured

at ambient light and CO2 levels
Jmax/Vcmax Electron transport capacity/

carboxylation capacity
mol and mol�1 CO2 Measured at saturating light and CO2 levels

Phot/AGL Photosynthesis at growth light/leaf area µmol CO2 m
�2 s�1 Measured at growth light and CO2

Phot/ASL Photosynthesis at saturating light/leaf area µmol CO2 m
�2 s�1 Measured at saturating light and growth CO2

Phot/ChlSL Photosynthesis at saturating
light/chlorophyll

mmol CO2 mol�1 s�1 Measured at saturating light and growth CO2

Phot/MGL Photosynthesis at growth light/leaf mass nmol CO2 g
�1 s�1 Measured at growth light and CO2
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limitation by other environmental factors. Following the classifi-
cation of K€orner (2006), we therefore restricted the analysis to
‘uncoupled systems’, experiments with individual plants or
monostands sown or planted under relatively benign conditions.

We noted the type of growth facility used, and which pot size and
other environmental conditions were applied. In case of factorial
experiments, we chose the combination of conditions at CO2

control levels in which plants were growing fastest. We only

Table 1 (Continued)

Abbreviation Variable name Units Explanation

Phot/MSL Photosynthesis at saturating light/leaf mass nmol CO2 g
�1 s�1 Measured at saturating light and growth CO2

Phot/NGL Photosynthesis at growth light/leaf N µmol CO2 mol�1 N s�1 Measured at growth light and CO2

Refl Reflectance leaf % of incident photons (400–700 nm) reflected
ReWaCoL Relative water content of leaves
Resp/AL Leaf respiration/unit area µmol m�2 s�1 Can be both on an O2 or CO2 basis; generally single leaf
Resp/ML Leaf respiration/unit mass nmol g�1 s�1 Can be both on an O2 or CO2 basis; generally single leaf
Resp/ML+S Shoot respiration/unit shoot mass nmol g�1 s�1 Can be both on an O2 or CO2 basis; whole shoots
Resp/MR Root respiration/unit root mass nmol g�1 s�1 Can be both on O2 or CO2 basis
Rubi/A Rubisco enzyme/area Numeric Only for leaves, estimates of both content and activity
StoCon Stomatal conductance mmol H2O m�2 s�1 Measured at growth light and [CO2] for a single leaf

in a leaf cuvette
Trsm Transmittance leaf % of incident photons (400–700 nm) transmitted by a leaf
Trsp/A Transpiration/unit area mmol H2O m�2 s�1 Measured for whole plants, no leaf cuvette measurements
Vcmax/A Carboxylation capacity/unit leaf area µmol CO2 m

�2 s�1

|WatPot-d| Water potential MPa Measured during the diurnal period, absolute values
|WatPot-n| Water potential MPa Measured during the nocturnal period (pre-dawn),

absolute values
WUEg Water-use efficiency for growth mg biomass g�1 H2O lost Biomass increase per unit water lost
D13C 13C discrimination &

4. Growth and reproduction
ConCosL Construction costs leaf g glucose g�1 Glucose mass required to build 1 g of leaf
GenBio Generative biomass g plant�1 Seed mass or total reproductive mass
InSeMa Individual seed mass mg Seed mass (or fruit mass if seed mass is not given)
LAR Leaf area ratio m2 kg�1 Leaf area/total vegetative plant mass
LMF Leaf mass fraction g g�1 Leaf mass/total vegetative plant mass
PlaInd Plastochron index Numeric Also: total number of leaves on the main stem
RepEff Reproductive effort g g�1 Reproductive mass (or seed mass)/total plant mass

(or aboveground mass if total mass is not reported)
RGR Relative growth rate mg g�1 d�1 Rate of increase in biomass/total vegetative plant mass
RMF Root mass fraction g g�1 Root mass/total vegetative plant mass
#SeeFru Number of seeds or fruits per plant Numeric Excluded are complicated cases in which species have

fruits with many seeds (such as tomato). Included
are some observations on number of flowers

SLA Specific leaf area m2 kg�1 Leaf area/leaf mass
SMF Stem mass fraction g g�1 Stem mass/total vegetative plant mass
TiToFl Time to flower d From germination to first flower, or to 50% of

flowers opened
ULR Unit leaf rate g m�2 d�1 Rate of increase in biomass/leaf area
VegBio Vegetative biomass of the plant g Reproductive structures excluded

5. Other abbreviations
CI Consistency index % The number of species 9 experiment combinations in

which, for a given trait, trait values were higher for
the highest [CO2] than for the lowest. Values close
to 0 or 100 indicate a highly consistent response

DLI Daily light integral mol m�2 d�1 The flux of photons (400–700 nm) integrated over the
day. Values are averaged over the period of active
growth of the plants

PI Plasticity index – Ratio in a given trait for the highest and lowest trait
values at two levels of an environmental factor.
Multiplied by �1 when the relationship is negative

RI Reliability index – Value on a scale from 1 to 10, indicating the reliability
of a dose–response curve as a general description of
a plant response

Abbreviations are alphabetically ranked within each overall category. Units are given as well as a further explanation of the variable and its specifications. All
concentrations and ratios are on a dry mass basis, unless otherwise stated.
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included experiments in which plants had been given enough time
to acclimate to the different [CO2], which we defined as being at
those concentrations for at least 2 wk and preferably achieving >
80% of their biomass at that condition. In case of repeated
measurements, the timewindow for data selection depended on the
trait of interest: for size variables such as height and biomass as well
as generative traits we considered the last harvest, for anatomical,
chemical and physiological traits that are expressed per unit area or
mass we considered data over a wider trajectory in which plants had
had some time to acclimate and were in the vegetative growth or
flowering stage. Repeated measurement data were averaged such
that for eachCO2 treatment level we obtained one average value per
trait per plant species (or genotype) per experiment.

In total, we compiled 2860 records (Experiment 9 Species 9
[CO2] combinations) for a total of 460 species from 95 families.
These were studied in 630 experiments, which have been published
over the last 65 y. The large majority of the records (78%) were for
experiments with two CO2 levels only. Overall, c. 45% of the
observations were for plants grown in growth chambers, 35% in
glasshouses, 15% from OTCs and 5% from FACE sites. The
median duration of the CO2 exposure was 50 d for herbaceous
species, and 122 d for woody ones, and most of the data compiled
(82%) were for plants exposed to CO2 concentrations within the
330–780 ppm range (Fig. S2). References to all papers used are
listed in Appendix A1.

2. Data processing

For each species or genotype in each experiment, we calculated by
means of interpolation what the value for a given trait would be at a
reference CO2 concentration of 450 ppm. We then scaled all
observed means for that species and experiment accordingly by
dividing them by this value (Poorter et al., 2010; Fig. S1). All data
presented are therefore relative values. After the scaling, we derived
dose–response curves in two ways. In the first approach, which is
basically assumption free, we aligned all scaled observations (y) by
CO2 concentration (x) and then divided them in 10 equally
numbered classes. For each class, we calculated the median x and y
value, as well as the 10th, 25th, 75th and 90th percentile of the scaled
trait. This allows for a good estimate of normal ranges observed
across the literature data. In the second approach, we fitted four
classes of dose–response curves through all points: no response (y =
a), a straight line (y = a + bx), a saturating curve based on a
monomolecular function (y = a�[1 – b�e(�c�x)]), and finally a
quadratic relationship to allow for relationships that increase or
decrease exponentially or show a local minimum or optimum.We
did so by means of the quantile regression package QUANTREG

(Koenker et al., 2021) in R (v.4.1.0; RCore Team, 2020), focusing
on median values. In this way, we minimised the effect of outlying
observations and avoided assumptions about the distribution of the
data. Based on the Akaike information criterion (AIC), we then
decided which type of curve fitted the data best.

Next, we characterised the strength, consistency and reliability of
the observed relationships by means of three indices:
(1) Plasticity index (PI): Based on the selected dose–response curve
for each trait, a PI was derived by calculating the trait values at 200

and 1200 ppmCO2 and subsequently taking the ratio between the
highest and lowest value.We added aminus sign to the PI in case of
negative responses to increasing CO2.
(2) Consistency index (CI): For every trait, we evaluated the
consistency of the response by calculating the percentage of
experimental cases in which the trait value at the highest [CO2]
applied was higher than at the lowest [CO2]. The overall response is
highly consistent across experiments whenCI values are close to 0%
or 100%, but highly variable and inconsistent when close to 50%.
(3) Reliability index (RI): We tried to capture the trustworthiness
and generality of the dose–response curve by a reliability index.
This index ranges on a relative scale from 1 to 10 and depends
positively on the total number of observations onwhich the curve is
based, the number of species for which observations were present
and the range of CO2 concentrations for which data were available,
and negatively on the variability of the data.

Further details on the indices and other calculations, as well as
the various reasons why we did not split the data for the various
growth environments used, are provided in Notes S1.

IV. Dose–response curves for 85 traits

Characteristics of all the calculated dose–response curves are
included in Table 2, summary graphs are shown in Figs 3–6, S3,
S4. Detailed figures for every trait with additional data are shown in
Figs S7–S93.Toprovide a better overview,we grouped the traits into
four sections:Anatomyandmorphologyof variousorgans,Chemical
composition, Physiology, and Growth and reproduction.

1. Anatomy and morphology

Leaf anatomical plasticity can be informatively studied relative to
the changes in leaf mass per area (LMA). LMA shows an increasing
and saturating response toCO2,with a PI of 1.5 (Fig. 2a; Table 2a).
LMA is themathematical product of leaf thickness and leaf density,
which both increase in a highly consistent manner and to a similar
extent in response to elevatedCO2.Therewas a small increase in the
volumetric fraction of mesophyll relative to the total leaf volume,
but the proportion of palisade parenchyma relative to total
mesophyll was not affected by CO2. This is also likely to be the
case for the number of palisade cell layers, a presumption we based
partly on the few data present, and partly on the fact that this trait is
hardly discussed in the CO2 literature on leaf anatomy. With
increased leaf thickness, this would imply that the size of the
palisade parenchyma cells increases, and this is what has been
observed (Masle, 2000; Uprety et al., 2001). Subcellular analyses
have shown that the numbers of chloroplasts andmitochondria per
cell are stimulated byCO2 (Sharma et al., 2014). An important link
between anatomy and physiology is the relative amount of
mesophyll area aligned to intercellular air spaces (Ames/A;
Terashima et al., 2011), for which we only found three reports,
with variable results.

Another relevant link between morphology and physiology is
through the density of stomata in the epidermis (Fig. 2f). The
higher the CO2 concentration gradient across the leaves, the easier
diffusion through the stomata takes place, which could potentially
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allow plants grown at higher [CO2] to reduce the number of
stomata per unit leaf area. There are indeed a variety of publications
that observed a significant negative relationship between stomatal
density and [CO2] during growth. Given that stomates are
sometimes well preserved in fossils, this negative acclimatory
relationship has been used as one of the proxies to reconstruct
paleoclimates. However, there is large variation in the response
across species (Apel, 1989), and even among genotypes of a given

species (Lake & Woodward, 2008). This led several authors to
question the observed relationship (Malone et al., 1993; Ainsworth
& Rogers, 2007). Considered over a large body of published data,
we found a significantly negative trend with CO2 (Table 2a).
However, the overall PI is very small (�1.1), and the consistency
index is low (37%), in line with conclusions by Royer (2001).

The size of various organs is positively affected by CO2: plant
height is larger (Fig. 2g), and so is stemdiameter. Both are increased

Table 2 Summary of the dose–response curve analysis for 85 plant traits as dependent on the ambient [CO2] during growth.

(a)

Trait
CO2 range
(ppm)

No. of
observations

No. of
species Fit Pseudo r2

Plasticity
(PI)

Consistency
(CI)

Reliability
(RI) a b c

1. Anatomy and morphology
LMA 100–3300 1340 315 S*** 0.52 1.5 90 9 1.201 0.6174 3.06e�3
LeaThi 255–1600 220 75 S*** 0.54 1.3 92 7 1.106 0.4092 3.49e�3
VoFrMe 290–910 70 25 L*** 0.15 1.1 77 5 0.9795 4.48e�5
VoFrPa 290–3200 80 25 – 0.00 1.0 60 5 0.9903 2.30e�5
#PaCeLa 290–910 20 10 L 0.00 1.0 60 3 1.000 4.92e�19
StoDen 150–3200 400 120 L* 0.01 �1.1 37 8 1.029 �6.48e�5
LeaDen 160–3200 240 80 S*** 0.36 1.3 85 7 1.095 0.4976 4.22e�3
DrMaCoS 320–1500 30 10 L 0.21 1.0 46 4 0.9836 3.65e�5
DrMaCoR 160–1500 100 40 L 0.00 �1.0 32 5 1.016 �3.62e�5
InLeAr 160–3300 240 65 L* 0.39 1.4 79 6 0.8431 3.47e�4
PlaHei 100–5000 500 125 S*** 0.44 1.5 87 8 1.114 0.9046 5.27e�3
SteDia 160–2000 180 55 S*** 0.60 1.5 97 7 1.172 0.6309 3.44e�3
SleInd 160–2000 170 50 S 0.05 1.1 49 6 1.001 13.68 2.67e�2
SpStLe 255–1000 50 15 L*** 0.65 �1.4 5 4 1.150 �3.32e�4
IntLen 200–2200 50 15 L* 0.56 1.3 91 4 0.8624 3.11e�4
#BraTil 160–3300 180 50 S*** 0.53 1.6 90 7 1.221 0.7963 3.50e�3
SRL 180–1000 80 35 L*** 0.14 �1.5 24 5 1.166 �3.68e�4

2. Chemical composition
Ntot/A 160–2050 300 85 L* 0.01 �1.1 39 7 1.037 �8.33e�5
[Ntot]L 160–5000 620 175 S*** 0.56 �1.5 8 8 0.8233 �1.286 4.27e�3
[Norg]L 200–3000 170 55 S*** 0.42 �1.4 11 6 0.7692 �0.6745 1.88e�3
[NO3]L 330–5000 70 30 L*** 0.36 �1.8 21 4 1.223 �4.97e�4
[Mine]L 330–5000 60 30 L*** 0.59 �1.8 4 4 1.230 �5.12e�4
[N]S 170–3000 170 55 – 0.00 �1.1 17 6 1.040 �8.00e�5
[N]R 190–3000 210 75 L*** 0.06 �1.1 31 6 1.052 �1.10e�4
[C]L 160–3000 380 115 – 0.00 �1.0 55 9 1.002 �5.29e�6
[C]S 170–3000 120 45 L 0.00 1.0 73 6 0.9959 8.99e�6
[C]R 200–3000 130 50 L 0.28 1.1 58 6 0.9779 4.93e�5
C/NL 160–3000 370 125 S*** 0.57 1.6 94 8 1.226 0.7515 3.29e�3
C/NS 170–3000 90 35 L 0.00 1.1 81 5 0.9717 4.87e�5
C/NR 190–3000 100 45 S* 0.09 1.2 74 6 1.042 0.4730 5.82e�3
[P]L 180–5000 160 55 S*** 0.40 �1.4 12 6 0.807 �0.766 2.63e�3
[P]S 200–1200 40 15 – 0.00 �1.0 43 3 1.006 �8.68e�6
[P]R 200–1200 40 20 L 0.05 �1.1 37 3 1.031 �6.75e�5
N/PL 180–5000 160 55 L 0.00 �1.2 32 6 1.066 �1.43e�4

[TNC]L 180–5000 360 100 S*** 0.44 2.0 92 7 1.652 0.774 1.54e�3
[TNC]S 180–1600 80 25 S 0.23 1.4 56 4 1.075 1.190 7.00e�3
[TNC]R 180–1600 100 40 L 0.12 1.3 72 4 0.8794 2.57e�4
SolSug/TNCL 195–5000 260 70 L** 0.16 �1.3 28 6 1.101 �2.24e�4
SolSug/TNCR 280–1600 30 15 – 0.00 1.0 42 3 0.988 3.82e�5
Chl/A 150–3000 240 65 L*** 0.13 �1.1 39 7 1.052 �1.23e�4
Chla/b 290–1450 120 45 L 0.02 �1.0 50 6 1.005 �1.14e�5
Chl/N 150–2050 100 30 L 0.29 �1.2 42 6 1.058 �1.41e�5
Xant/Chl 280–800 20 10 – 0.00 1.0 62 2 0.998 5.08e�6
[SolPhe]L 205–1500 60 30 L 0.37 1.4 70 4 0.832 3.60e�4
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(b)

Trait
CO2 range
(ppm)

No. of
observations

No. of
species Fit Pseudo r2

Plasticity
(PI)

Consistency
(CI)

Reliability
(RI) a b c

3. Physiology
Abso 255–1000 40 15 – 0.00 1.0 46 4 0.998 5.42e�6
Refl 255–1000 40 10 – 0.00 1.1 64 3 0.955 9.57e�5
Trsm 255–1000 30 10 L 0.00 �1.4 40 3 1.128 �2.89e�4
Rubi/A 150–2050 120 30 L*** 0.26 �1.2 28 6 1.092 �2.04e�4
Vcmax/A 150–2000 330 105 L*** 0.09 �1.2 33 8 1.088 �1.97e�4
Jmax/Vcmax 150–2000 270 85 L*** 0.11 1.1 66 7 0.941 1.32e�4
ApQuYi 200–1000 90 40 L*** 0.68 2.0 100 4 0.636 8.08e�4
Fv/Fm-n 200–1000 60 25 – 0.00 �1.0 45 6 1.001 �1.68e�6
FV/Fm-d 195–3000 100 40 – 0.00 �1.0 43 6 1.004 �9.32e�6
Phot/ASL 150–5000 650 185 S*** 0.61 2.6 93 8 1.500 1.086 2.73e�3
Phot/MSL 185–2000 80 25 L*** 0.44 1.8 75 5 0.689 6.42e�4
Phot/ChlSL 185–1100 80 30 S*** 0.80 2.5 92 5 1.321 1.358 4.10e�3
Phot/AGL 150–3300 570 160 S*** 0.65 2.2 93 8 1.401 1.021 2.94e�3
Phot/MGL 150–2050 160 50 L 0.37 1.5 78 6 0.819 4.03e�4
Phot/NGL 150–800 70 30 S*** 0.75 1.9 96 4 1.199 1.150 4.31e�3

Trsp/A 160–3200 80 25 S*** 0.69 �2.2 3 5 0.451 �2.749 1.87e�3
StoCon 160–5000 500 135 S*** 0.50 �2.4 10 7 0.437 �3.129 2.01e�3
ci/ca 150–2000 200 65 S 0.08 �1.0 42 7 1.000 �4.252 2.56e�2
Δ13C 155–1900 120 45 L*** 0.40 1.1 71 7 0.946 1.19e�4
iWUE 160–5000 330 105 L*** 0.82 6.1 97 7 �0.0103 2.22e�3
WUEg 210–5000 90 35 S*** 0.89 3.4 100 5 2.011 1.042 1.67e�3
|WatPot-n| 180–1000 60 20 – 0.00 �1.1 50 5 1.041 �8.88e�5
|WatPot-d| 200–2000 100 35 L*** 0.13 �1.3 26 5 1.102 �2.31e�4
ReWaCoL 200–2000 20 10 L 0.39 1.0 75 4 0.988 2.47e�5
Resp/AL 195–3300 120 40 S 0.10 1.1 58 5 1.087 0.2123 2.09e�3
Resp/ML 160–1750 90 25 – 0.00 1.1 56 5 0.972 �6.42e�5
Resp/ML+S 320–3300 20 10 – 0.00 �1.2 38 2 1.065 �1.45e�4
Resp/MR 290–1000 30 15 – 0.00 1.1 43 2 0.974 �7.86e�5

4. Growth and reproduction
RGR 150–5000 540 155 S*** 0.46 1.3 86 8 1.058 0.7846 6.51e�3
ULR 150–5000 370 115 S*** 0.70 1.8 97 8 1.350 0.7415 2.45e�3
LAR 150–5000 740 205 S*** 0.54 �1.5 9 8 0.876 �1.729 6.12e�3
SLA 100–3300 1330 310 S*** 0.52 �1.4 10 9 0.856 �1.035 4.35e�3
LMF 150–3200 990 260 S 0.17 �1.0 43 9 1.000 �2.99e6 0.104
SMF 150–3200 880 230 – 0.00 1.0 51 8 1.000 5.12e�19
RMF 150–3300 1200 295 L 0.02 1.0 55 9 0.983 3.69e�5
ConCosL 330–720 60 25 L*** 0.32 �1.1 19 4 1.025 �5.65e�5
VegBio 150–5000 1400 315 S*** 0.63 2.8 95 8 1.466 1.223 3.16e�3

PlaInd 170–3300 70 25 L*** 0.21 1.1 78 5 0.964 8.07e�5
TiToFl 160–5000 130 40 L*** 0.03 �1.0 38 6 1.005 �1.18e�5
#SeeFru 160–3000 200 50 S*** 0.47 2.0 86 6 1.239 1.218 4.39e�3
InSeMa 160–1050 160 40 S** 0.14 1.1 67 6 1.025 0.598 7.91e�3
GenBio 160–5000 200 40 S*** 0.45 2.3 87 6 1.277 1.355 4.31e�3
RepEff 150–5000 220 30 L 0.00 1.0 49 6 0.999 1.60e�6

Data are for C3 species only. Columns 2 and 3 indicate the range of [CO2] forwhich records are present in the database and the total number of observations (=
number of averaged values per species and [CO2] over all experiments; rounded to the nearest 10). Column 4 shows the number of species for whichwe have
observations for the various traits. The fit refers to the form of the dose–response curve. Fitted equations were either no relationship (–; Y = awhere Y is the
scaled value of the phenotypic trait of interest and a is the overall average ofY values); linear (L;Y = a + bXwhereX is the [CO2]), or saturating (S;Y = a (1 – b�e
(�cX))). The relativeweightwi of themodel selected by the AICc test is given by: *, 0.70 <wi < 0.90; **, 0.90 <wi < 0.98; ***,wi > 0.98, but only indicated in
case the CI is <40% or >60%. AICc, Akaike information criterion with a correction for small sample sizes. The pseudo r2 refers to the approximate fit of the
selected equation. The plasticity index (PI) as used here is the highest fitted value in the [CO2]-range 200–1200 divided by the lowest fitted value,with positive
values indicating positive trends with [CO2] and negative values decreasing trends; bold numbers indicate a |PI| 1.45. The consistency index (CI) refers to the
percentage of all cases (species9 experiment combinations) inwhich the phenotypic value at the highest [CO2]was larger than at the lowest [CO2], indicating
the consistency of the response. Values close to 0 or 100 indicate highly consistent positive or negative responses. The next column shows the reliability index,
based on the number of records in the database for that trait, the number of different species, the range of [CO2] levels at which it is measured and the average
deviation from the median response, with a relative scale from 1 (low) to 10 (high reliability level). The last three columns give the values for parameters a, b
and – if relevant – c for the equations mentioned above.

Table 2 (Continued)
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with high consistency and to a similar extent, and therefore the
slenderness index, which is the height : diameter ratio, is hardly
affected. High-CO2 plants have more branches or tillers – with the
highest PI value in this group of traits – as well as an increased
internode length, and individual leaves are larger in size. Most
likely, this range of morphological changes is triggered by a higher
supply of photosynthates. Specific stem length, the length per unit
stem biomass is lower, which accordswith the higher stemdiameter
observed. However, for most of these variables we only found
relatively few observations, and their reliability index (RI) is still
relatively low.

Whereas leaf density increases with CO2 in a highly consistent
manner, densities of stems and roots are unaffected, as judged
from their dry matter content (Table 2a; Fig. 2n). An important
root trait is specific root length, which decreases with a PI of�1.5,
albeit with relatively few observations. The lower SRL is in part
due to thicker roots (Nie et al., 2013). More effects on plant

morphology have been reviewed by Pritchard et al. (1999) and
Sharma et al. (2014).

2. Chemical composition

Whereas leaf biomass per unit leaf area (LMA) increases substan-
tially, there was a (small) decrease in the nitrogen content per unit
leaf area (Fig. 3a; Table 2a). This must imply that leaf nitrogen
concentration is strongly negatively affected, and this is indeed a
highly consistent finding in our analysis, with decreases occurring
in 92% of the cases studied. The decrease is stronger for leaf total
[N] than for the concentration of organic-N compounds, which fits
with the substantial decrease in leaf nitrate concentration (PI =
�1.8). The decrease in nitrate, also found in the meta-analysis of
Dong et al. (2018), is in line with a similar negative response of leaf
minerals in total. There was also a decrease in the leaf phosphorus
concentration, of slightly smaller magnitude than that for leaf
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Fig. 2 Dose–response curves of 15 anatomical andmorphological traits in relation to atmospheric [CO2] as well as the plasticity index (PI) over the 200–1200
ppm range, the consistency index (CI) and the reliability index (RI). The traits given are (a) LMA, leaf dry mass per area; (b) LeaThi, leaf thickness; (c) LeaDen,
leaf density; (d) VoFrMe, volumetric fraction of the leaf taken by mesophyll; (e) VoFrPa, volumetric fraction of the mesophyll taken by palisade parenchyma;
(f) StoDen, stomatal density; (g) PlaHei, plantheight; (h) SteDia, stemdiameter; (i) SleInd, slenderness index; (j) #BraTil, numberof branchesor tillers; (k) IntLen,
internode length; (l) InLeAr, individual leaf area; (m) SpStLe, specific stem length; (n) DrMaCoR, dry matter content of the roots; (o) SRL, specific root length.
Data pertain toC3 species only.All scaled values for a given traitwere grouped intodeciles basedon the [CO2] duringgrowth, andmedianvalues for eachdecile
group are indicated as green dots in the panels. The closer the points are in the x-direction, the denser the information in that range of CO2 concentrations. The
line is the curve fitted through all data points present in the 100–2000 ppm range, and given over the CO2 range for which observations were present in the
database. The strength of the CI is indicated by the number of orange symbols: none:% increases in the trait valuewith increasing [CO2] 40–60%; : 30–40%
or 60–70%; : 20–30% or 70–80%; : 10–20% or 80–90%; : 0–10% or 90–100%. The strength of the RI: none: RI = 1–2; : 3–4; : 5–6;

: 7–8; : 9–10. Graphs are shown up to a [CO2] of 1400 ppm.More detailed information for each variable can be found in Supporting Information
Figs S7–S23; Table 2(a).
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nitrogen. Consequently, the leaf N : P ratio declined to some extent
(PI = �1.2; Table 2a), in line with the conclusions of Du et al.
(2019). Leaf carbon concentration was unaffected by CO2, and so
theC :N ratio of the leaves increased solely due to thedecreasing [N].

Total nonstructural carbohydrates (TNC) of leaves clearly
increased with increasing CO2 (Fig. 2j), indicating that the source :
sink balance, the ratio between sugar supply by the leaves and sugar
consumption by respiration and the growing tissues of the plant is
shifted more towards a sink limitation (Burnett et al., 2016). Most
of these changes are due to additional accumulation of both starch
and sugars, although a small but significant shift towards a lower
proportion of soluble sugars occurs at elevated CO2. There was a
marginal decrease in the chlorophyll content per unit leaf area, with
low consistency, and no effect on the chlorophyll a : b ratio. In those
cases in which both chlorophyll andN have beenmeasured, a small
decrease in the Chl/N ratio was found (Table 2a), but the change is

too small to infer substantial rearrangement in the investment of N
in the light and dark reactions of the photosynthetic apparatus.
Xanthophyll cycle pigments, expressed per unit chlorophyll, are
unaffected, which indicates that there is no systematic effect on
photoprotection either. Increased sugar availability may have
stimulated the production of secondary compounds such as soluble
phenolics. The increase is substantial (PI = 1.4), but with a low RI.
The observed increase is in linewith themeta-analysis ofDong et al.
(2018), and could have important ramifications for plant–animal
interactions.

Observations on the chemical composition of stems and roots are
less common. Decreases in N concentrations have been observed,
but they are ofmuch smallermagnitude (PIs =�1.1; Table 2a) than
in leaves, and this is reflected by small increases in theC :N ratios of
these organs (Fig. 3o; Nie et al., 2013). TNC concentrations did
increase, however, more consistently in roots than in stems.
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Fig. 3 Dose–response curves of 15 chemical traits in relation to atmospheric [CO2] as well as the plasticity index (PI) over the 200–1200 ppm range, the
consistency index (CI) and the reliability index (RI). The traits shownare (a)Ntot/A, nitrogen content per unit leaf area; (b) [Ntot]L, total nitrogen concentration
of the leaves; (c) [Norg]L, organic nitrogen concentration of the leaves; (d) [NO3]L, nitrate concentration of the leaves; (e) [Mine]L,mineral concentration of the
leaves; (f) [P]L, total P concentration of the leaves; (g)N/PL, nitrogen : phosphorus ratio of leaves; (h) [C]L, carbon concentration of the leaves; (i) C/NL, carbon :
nitrogen ratio of the leaves; (j) [TNC]L, total nonstructural carbohydrate concentration of the leaves; (k) SolSug/TNCL, fraction of the total nonstructural
carbohydrate concentration of the leaves taken by soluble sugars; (l) Chl/A, chlorophyll content per unit leaf area; (m) Chla/b, chlorophyll a : b ratio; (n)
[SolPhe]L, solublephenolic concentrationof the leaves; (o)C/NR, carbon : nitrogen ratioof the roots.Datapertain toC3 species only.All scaledvalues for agiven
trait were grouped into deciles based on the [CO2] during growth, andmedian values for each decile group are indicated as green dots in the panels. The closer
the points are in the x-direction, the denser the information in that rangeofCO2 concentrations. The line is the fitted curve fitted throughall data points present
in the 100–2000 ppm range, and given over the CO2 range for which observations were present in the database. The strength of the CI is indicated by the
number of orange symbols: none:% increases in the trait valuewith increasing [CO2] 40–60%; : 30–40%or 60–70%; : 20–30%or 70–80%; : 10–
20%or 80–90%; : 0–10%or 90–100%. The strength of the RI: none: RI = 1–2; : 3–4; : 5–6; : 7–8; : 9–10. Graphs are shownup to a
[CO2] of 1400 ppm. More detailed information for each variable can be found in Supporting Information Figs S24–S50; Table 2(a).
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3. Physiology

Light absorptance was not affected by the [CO2] during growth
(Fig. 4a), but there might be a small decrease in leaf transmittance
(Table 2b). As for nitrogen content per area, small decreases were
found in the Rubisco content per area. This accords with a decrease
in Vcmax as derived from short-term CO2 response curves of
photosynthesis. Although Jmax and Vcmax are generally strongly
coordinated (Wullschleger, 1993), on average a small increase in
the Jmax/Vcmax ratio is found, with low consistency. Medlyn et al.
(1999) reported that Jmax and Vcmax were affected to the same
extent, but this was over a two-fold range in [CO2] only, whereas a
six-fold range is considered here. Light-saturated photosynthesis
was limited by carboxylation capacity at low [CO2] and by electron
transport and RuBP regeneration at high [CO2] (Sage, 1994). The

observed increase in Jmax/Vcmax with [CO2] therefore leads to a
more efficient utilisation of the photosynthetic apparatus.
Increased atmospheric [CO2] also causes a higher intercellular
CO2 concentration. Consequently, elevated CO2 levels at the site
of Rubisco suppress photorespiration, thereby enhancing the
apparent quantum yield, the number of photons used to reduce one
molecule of CO2. The positive effect on apparent quantum yield is
highly consistent, also when plants are grown at elevated CO2 for
longer periods. Another gauge for the functioning of the photo-
synthetic apparatus is the variable fluorescence. There are no
indications that Fv/Fm is negatively affected, neither when
measured during the night, nor during the day (Table 2b).

Given these considerations, it can be anticipated that photosyn-
thesis measured under saturating light (Phot/ASL) and the prevailing
CO2 conditions during growth is strongly positively affected by
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Fig. 4 Dose–response curves of 15 physiological traits in relation to atmospheric [CO2] as well as the plasticity index (PI) over the 200–1200 ppm range, the
consistency index (CI) and the reliability index (RI). The traits shown are (a) Abso, absorptance; (b) ApQuYi, apparent quantum yield; (c) Rubi/A, Rubisco
content per unit leaf area; (d)Vcmax/A,maximumrate of carboxylation per unit leaf area; (e) Jmax/Vcmax, ratio betweenmaximumrate of electron transport and
maximum rate of carboxylation; (f) Phot/ASL, rate of photosynthesis per unit leaf area at saturating light and growth [CO2]; (g) Phot/M

SL, rate of
photosynthesis per unit leaf mass at saturating light and growth [CO2]; (h) Phot/A

GL, rate of photosynthesis per unit leaf area at growth light and [CO2]
conditions; (i) Trsp/A, whole-plant transpiration rate per unit leaf area; (j) StoCon, stomatal conductance; (k) ci/ca, ratio of intercellular to ambient [CO2]; (l)
iWUE, intrinsicwater-use efficiencyof thephotosynthetic process; (m)WUEg,water-useefficiencybasedongrowth; (n) |WatPot-d|,water potential during the
diurnal period in absolute numbers; (o) Resp/ML, leaf respiration rate per unit leaf mass. Data pertain to C3 species only. All scaled values for a given trait were
grouped into deciles based on the [CO2] during growth, andmedian values for each decile group are indicated as green dots in the panels. The closer the points
are in thex-direction, thedenser the information in that rangeofCO2concentrations. The line is thefitted curvefitted throughall datapoints present in the100–
2000ppmrange,andgivenover theCO2 range forwhichobservationswerepresent in thedatabase.The strengthof theCI is indicatedby thenumberoforange
symbols: none:% increases in the trait value with increasing [CO2] 40–60%; : 30–40%or 60–70%; : 20–30%or 70–80%; : 10–20%or 80–90%;

: 0–10%or90–100%.The strengthof theRI: none:RI=1–2; : 3–4; : 5–6; : 7–8; : 9–10.Graphsare shownup toa [CO2]of1400ppm.
More detailed information for each variable can be found in Supporting Information Figs S51–S78; Table 2(b).
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[CO2]. Indeed, with a PI of 2.6 the response is strong, particularly in
the low-CO2 range (Fig. 4f). The response of Phot/A

SL looks similar
to the usual CO2-response curve of photosynthesis, as determined at
a given day for a specific leaf.However, it is not identical asVcmax and
Jmax (to a lesser extent) typically decrease at high growth [CO2],
whereas they are constant in short-term measurements. Similar to
that expected from short-term measurements, the curve saturates
above 1000 ppm, as under these conditions Phot/ASL is limited by
Jmax and most of the photorespiration is suppressed. Responses of
similarmagnitude as Phot/ASL are achievedwhen the area-based rate
of photosynthesis measured under growth light conditions is
considered. Mass-based rates are less stimulated than area-based
values, due to higher LMA at high [CO2].

Whereas photosynthetic rates more than doubled over the 200–
1200 ppm range, area-based transpiration and stomatal conductance
more than halved (Fig. 4i,j). With stomatal density hardly affected
(Fig. 2f), the implication is that the decreased transpiration rate is
mainly due to stomatal closure (Ainsworth & Rogers, 2007). An
improved photosynthesis at decreased transpiration rates implied

strong increases in intrinsic water-use efficiency (iWUE), the rate of
photosynthesis divided by stomatal conductance under growth
conditions. The observed plasticity index (PI = 6.1) is the largest
among all traits considered here. WUE at the whole-plant level,
measured as biomass increase per unit water transpired, also increased
strongly. With a consistency index (CI) of 100, it is one of the rare
variables reported to increase with CO2 in all the studies compiled.
The reduced transpiration rate is not reflected in a substantial change
in the pre-dawn water potential, but water potential during the light
period was less negative, as can be derived from the lower normalised
values of absolute water potentials at high CO2 (Fig. 4n).

Most leaf respiration rates are measured in leaf cuvettes with
portable infrared gas analysers (IRGAs), which face problems with
CO2 diffusion across the gaskets (Flexas et al., 2007). It has been
shown that this can lead to the erroneous conclusion of a reduction in
respiration with CO2 enrichment (Davey et al., 2004).We therefore
compiled only those respirationmeasurements inwhich the problem
of large concentration differences across the cuvette was explicitly
dealt with. Overall, we found little effect of growth [CO2] on mass-
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Fig. 5 Dose–response curves of 15growthand reproduction-related traits in relation to atmospheric [CO2] aswell as theplasticity index (PI) over the200–1200
ppm range, the consistency index (CI) and the reliability index (RI). The traits shown are (a) RGR, relative growth rate; (b) ULR, unit leaf rate; (c) LAR, leaf area
ratio; (d) SLA, specific leaf area; (e) LMF, leaf mass fraction; (f) SMF, stem mass fraction; (g) RMF, root mass fraction; (h) ConCosL, construction costs of the
leaves; (i) VegBio, vegetative biomass per plant; (j) PlaInd, plastochron index; (k) TiToFl, time to flower; (l) #SeeFru, number of seeds or fruits per plant; (m)
InSeMa, individual seedmass; (n) GenBio, generative biomass per plant; (o) RepEff, reproductive effort. Data pertain to C3 species only. All scaled values for a
given trait were grouped into deciles based on the [CO2] during growth, andmedian values for each decile group are indicated as green dots in the panels. The
closer the points are in the x-direction, the denser the information in that range of CO2 concentrations. The line is the fitted curve fitted through all data points
present in the 100–2000 ppm range, and given over the CO2 range for which observations were present in the database. The strength of the CI is indicated by
the number of orange symbols: none:% increases in the trait valuewith increasing [CO2] 40–60%; : 30–40%or 60–70%; : 20–30%or 70–80%; :
10–20%or80–90%; : 0–10%or90–100%.The strengthof theRI: none:RI=1–2; : 3–4; : 5–6; : 7–8; : 9–10.Graphsare shownup to
a [CO2] of 1400 ppm. More detailed information for each variable can be found in Supporting Information Figs S79–S93; Table 2(b).
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based leaf, shoot or root respiration, which contrasts with the meta-
analysis of Wang & Curtis (2002). They reported overall depressed
respiration rates at high [CO2], most likely because they included
some earlier measurements in which no precautions for CO2

diffusion across the leaf cuvette gasket were taken.

4. Growth, development and reproduction

Growth has been well studied, and relative growth rate (RGR)
increased with CO2, with a PI of 1.3 (Fig. 5a; Table 2b). RGR is
the product of unit leaf rate (ULR) and leaf area ratio (LAR).
ULR (also known as net assimilation rate) is the increase in
biomass per unit time and leaf area, and is generally well
correlated with the rate of photosynthesis across species or
treatments (Poorter & Van der Werf, 1998). This is also true for
CO2, although the PI is somewhat lower (but of the same order of
magnitude) as the actual rate of photosynthesis under growth
conditions. The higher ULR is counterbalanced by a decrease in
LAR, the amount of leaf area per unit total plant mass. The
decrease in LAR is primarily caused by a decrease in specific leaf
area (SLA; leaf area/leaf mass). The other component that
determines LAR is the leaf mass fraction (LMF), which did not
change at all over the 200–1200 ppm range, and the same was
true for allocation of biomass to stems and roots (SMF and RMF,
respectively).

Construction costs of leaves indicated how much glucose was
required to drive all the biosynthetic reactions to produce 1 g of leaf
(Villar & Merino, 2001). Construction costs are slightly, but
consistently, lower at elevated CO2 (Fig. 5h), which will at least
partly be due to a reduced protein content, as we deduce from the
decrease in organicN,which are costly to produce, and the increased
starch and sugar concentrations, which are compounds with low
construction costs.Total vegetative biomass formed (VegBio) is then
the integrated result of changes in all the above variables. This has
been frequentlymeasured and showed a strong (PI = 2.8) and highly
consistent response, with saturation at higher [CO2].

Notwithstanding the strong increase in biomass, speed of
development was only marginally affected, as judged by the
plastochron index, which measures the number of leaves or leaf pairs
formedon themain stemover a givenperiodof time (Fig.5j).Overall,
the time to flowering was not affected, with low consistency across
experiments (CI = 38%; see also Springer&Ward, 2007). There was
a strong increase in thenumberof seeds, fruits or flowers producedper
plant (PI = 2.0; see also Jablonski et al., 2002). Individual seed mass
was also increased, but to a much smaller extent, as is expected for a
variable that generally is not strongly affected by the environment.
The curve for total production of generative mass (seeds, fruits) is
rather similar to that of the vegetative biomass. Consequently the
reproductive effort or harvest index was markedly constant.

V. The overall response of plants to CO2

1. A whole-plant perspective

As shown in Section IV, CO2 affected many phenotypic traits.
Some of these are primary responses; other traits are indirectly

influenced. For a better overview of what happens at the whole-
plant level, we have summarised a range of trait responses and
interactions in a knowledge graph (Figs 6, see S5 for an animated
version). The black and red arrows between traits indicate positive
and negative relationships between trait pairs, under the condition
that all other variables remain constant. Arrows within a box
indicate the PI of the CO2 response for that particular trait. There
are three primary effects of [CO2] on plants with cascading effects
on other traits. First, CO2 concentration at the site of Rubisco rises,
which enhances photosynthesis by increasing substrate concentra-
tion around the enzyme. This is noticeable in the dose–response
curves for both area-based and mass-based photosynthesis mea-
sured at light saturation, but also when determined at growth light
conditions. For short-term responses, this is well captured by the
Farquhar–Von Caemmerer–Berry model (Farquhar et al., 1980).
The same model also encapsulates the second effect, which is
reduced photorespiration when the CO2 : O2 ratio at the site of
Rubisco increases. This will increase CO2 fixation at a given
electron transport rate, therefore enhancing apparent quantum
yield. Third, increased CO2 levels inside the leaf negatively affect
stomatal conductance and therefore transpiration (Leakey et al.,
2012). The exact mechanism is still unknown (Engineer et al.,
2016), although the various genes involved are beginning to be
identified (Gamage et al., 2018). Both the increased photosynthesis
and the decreased stomatal conductance are among the strongest
trait responses in this analysis, indicating that they persist even after
plants acclimated to the various CO2 levels.

Assuming optimal stomatal control, Medlyn et al. (2011)
derived that the ratio between photosynthesis and stomatal
conductance, which is termed ‘intrinsic water-use efficiency’,
should be linearly related to the ambient CO2 level. Indeed, we
found that the intrinsic WUE was linearly related to growth CO2

concentration over the full range considered. The decrease in
conductance has various downstream consequences. Transpiration
rate per unit area decreases, with diminished evaporative cooling
and therefore leaf temperature will probably increase (Bernacchi
et al., 2007). This partly nullifies the decreased conductance, as a
larger vapour pressure difference across the leaf has in itself a
stimulating effect on transpiration. The overall decrease in
transpirational demand will result in less soil water consumption.
In experiments in which water supply is regularly and amply
supplied, this will not have further consequences, but in other cases
water potential as measured during the day may become less
negative. The experimental regime may therefore explain why the
observed response in plantwater potential is relatively variable. The
ratio between intercellular and ambient [CO2] is markedly similar
across CO2 levels, consistent with theory predicting much weaker
control of optimal ci/ca by [CO2] than by, for example air
temperature and vapour pressure deficit (Wang et al., 2017).

Although LMA is substantially affected by [CO2], effects on leaf
anatomy are only marginal. There is not much evidence that there
are increases in the number of palisade cell layers. Also the
relationship between the volumes of palisade and spongy
parenchyma (VoFrPa) did not change. Nonetheless, individual
leaves probably are larger in all dimensions.Therewas an increase in
leaf density, which is at least partially caused by accumulation of
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and m and r

Fig. 6 Knowledge graph of plant traits and how they are affected by atmospheric [CO2]. The lines with arrows between boxes indicate positive (black) or
negative (red) relationships between two traits when all other traits would remain constant. Arrows behind each trait indicate whether the effect of [CO2] on
that trait is positive (upward arrows), neutral (horizontal arrows) or negative (downward arrows). Bold arrows indicate that the plasticity index (PI) is > 1.45 or
<�1.45, respectively, doublebold arrowsaPI>2.45.The relationship is consideredneutral if theAICc test (whereAICc is theAkaike information criterionwitha
correction for small sample sizes) selected this alternative, or when the consistency index (CI) was between 40% and 60%. The primary chain of C-economy
events from [CO2] through vegetative biomass and production of seeds or fruits is given by the bold vertical axis in themiddle of the graph.All changes in other
traits may modulate the primary chain of events. The grey areas are a visual aid to discriminate between groups of traits from different subfields: (1) Leaf
anatomy; (2) Chemistry. (3) C-economy, (4) Water economy, (5) growth-related traits. Groups of traits related to N-economy, stem morphology and
reproduction were not separately indicated for clarity reasons. The dotted red line connects leaf dry mass per area (LMA) and specific leaf area (SLA), which
represent two different expressions representing the same trait. An animated version of this graph is given in Supporting Information Fig. S5. See Table 1 for list
of abbreviations.
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starch and sugars ([TNC]L). Increased starch concentrations often
go with thicker leaves, but to what extent this is caused simply by
increased starch granule volume is unclear. The accumulation of
TNC is generally large, in both a relative and an absolute sense and
is – next to a decreased N concentration and increased LMA – a
hallmark of a plant’s response to high CO2. This can accumulate to
such an extent that it dilutes the concentration of other compounds
(Poorter et al., 1997). To what extent leaf chemical composition is
affected independently of TNC accumulation remains an out-
standing issue.

Soluble phenolic concentration increases, even against the
diluting effect of increased TNC, whereas mineral concentrations
in total, as well as nitrate in particular, decrease. A decrease in
[NO3] may also be caused by the lower transpiration rate at high
[CO2], which results in a decreased mass flow of soil solutes from
the soil environment toward the roots (McDonald et al., 2002;
Taub & Wang, 2008), or because NO3 uptake is downregulated
(Zheng, 2009). An alternative hypothesis suggested that nitrate
reduction in the chloroplasts is reduced due to lower photores-
piration (Bloom et al., 2012), but this would probably result in an
increased nitrate concentration, which is not often observed. All
suggested mechanisms in the end have a negative effect on both
total and organic leaf [N] and, notwithstanding higher LMA, also
a marginally negative effect on total N content per leaf area.
However, the total content of N per plant is higher in high-CO2

plants (Andrews et al., 2019), because the proportional increase in
plant mass is larger than the decrease in plant [N]. Leaf
phosphorus concentration also diminishes, but not to the same
extent as nitrogen, resulting in a reduced N : P ratio of the leaves.
This cannot be explained by dilution through TNC accumula-
tion alone, and would fit with the idea that the uptake of mobile
ions such as nitrate is relatively strongly impaired by the decreased
mass flow, whereas uptake of immobile nutrients such as P is
not affected.

There was also a small decrease in chlorophyll/area, which
apparently has no consequences for light absorptance, as this is
unaffected by [CO2]. The measured amount and/or activity of
Rubisco per unit area declined, without negative consequence for
the actual rates of photosynthesis, which remain stimulated due to
the higher internal CO2 levels. Long-term effects on respiration
rates have been debated for a long time. Based on high
photosynthetic and growth rates one would expect increased
mass-based respiration, but due to lower organic-N concentration
one would expect respiration to be reduced (Dusenge et al., 2019).
Both for leaves, whole shoots and roots, the evidence suggests that
neither of the two happens or that the two contrasting effects
cancel each other out.

At the level of whole-plant growth, surprisingly little happens in
terms of biomass allocation over a wide CO2 trajectory. In that
sense, plants do not seem to follow the functional equilibrium
concept of preferential allocation to the organ that limits growth
most, which is so well known for light and nutrients (Bloom et al.,
1985; Poorter et al., 2012). Perhaps the balance is more compli-
cated, as elevated CO2 reduces both the need for a higher leaf
investment because of increased photosynthesis, and a higher root
investment for water uptake because of decreased transpiration.

Possibly, the reduced concentration of organic N is a consequence
of plants not shifting their allocation pattern towards more roots.
The lower SLA (higher LMA) decreases the leaf area : total mass
ratio, and this explains why the positive and large effect of increased
photosynthesis on ULR, the growth rate per unit leaf area, does not
show up in a comparable stimulation of RGR. Nonetheless, the
relatively small increase in RGR over the experimental period has
strong positive consequences on overall plant size. This stimulation
was reflected in a range of variables, not only biomass but also stem
and root morphology as well as the number of branches and tillers.
Althoughnot all branches or tillers produce seed, increased branching
is certainly one of the ways plants increase the number of sinks.
Whereas individual seedmass is stimulated in some cases,most of the
stimulation in reproduction is due to increased seed numbers. The
CO2-induced increase in seedmass often goes with an increase in the
C :N ratio of the seeds, which reduces nutritional value as well as seed
vigour (Zhu et al., 2018; Lamichaney &Maity, 2021).

2. The shape of the dose–response curves

The above analyses are based on PI values, comparing the ratio of
values at 1200 and 200 ppmCO2.However, the shape of the dose–
response curve is also important. Over the CO2 range considered,
we found no traits with a local maximum or minimum, or with
exponential responses. Here, c. 45% were linear, and 38%
saturating, with the remaining traits unaffected. Some of the traits
have not yet been determined over the full 200–1200 ppm rangewe
considered, and may turn out to be saturating when data become
available over a wider span. A range of key traits (e.g. LMA, area-
based photosynthesis, stomatal conductance, ULR and generative
biomass) have saturating curves. For these five traits, 31–70%of the
total change over the 200–1200 ppm range will have already been
realised at the current [CO2] of 415 ppm; for vegetative biomass it
is 64%. A logical consequence of this saturation is that, over time,
the effect of a doubling in [CO2], which has been kind of standard
in CO2 research, is becoming smaller: over the 350–700 ppm
range, often studied 30 y ago, the biomass stimulation is 45%, over
the 415–830 range it diminishes to 36%.

Two more points require attention. From a palaeobiological
perspective, plant performance at low [CO2] is a relevant topic in
itself (Gerhart & Ward, 2010; Temme et al., 2013). As discussed
earlier, our plasticity analysis over the 200–1200 ppm trajectory
found that plants do not follow the functional equilibrium concept
and do not change biomass allocation to the organ that is supposed
to be most limiting at low CO2, in this case the leaves. However,
closer inspection of the data showed that, at very low CO2 levels (<
200 ppm), plants do allocate a larger fraction of biomass to the
leaves, at the expense of stems and roots (Figs S83–S85). Residual
analysis showed that SLA also increases more strongly in this range,
with additional evidence of a decreased leaf C concentration.
Clearly, in the very low CO2 range, plants respond strongly to the
deteriorated C gain. An interesting question in that respect is at
what [CO2] can plants not grow anymore? For C3 plants, the CO2

compensation point for photosynthesis strongly depends on
temperature, but will often be in the range 35–60 ppm (Bauer &
Martha, 1981). Due to respiration of leaves, roots and other plant
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organs, theCO2-compensation for theCbalance of thewhole plant
will be higher. Campbell et al. (2005) estimated this whole-plant
CO2 compensation point for growth to be well below 100 ppm.To
what extent CO2 derived from root or soil respiration affects this
CO2 compensation point for growth is still unknown, but
experiments in which only root zone [CO2] is manipulated have
shown that there can be substantial effects on leaf morphology,
photosynthesis and growth (He et al., 2010; Sun et al., 2011).
Analogous to what happens at low light, we had expected
reproductive growth to be more strongly negatively affected than
vegetative biomass, but this did not show up in the data compiled,
as reproductive effort remains markedly constant (Fig. 5o).

The second point is whether there is an optimal [CO2] for plant
performance, and at which levels [CO2] becomes supraoptimal.
With a CI of 95% for total biomass, there were only few
experiments in which plants at the highest [CO2] were smaller
than those at the lowest level. Variation can be due to differential
species responses (Zheng et al., 2018), but might also be simply
caused by sampling ‘error’ (Poorter & Navas, 2003). In horticul-
tural practice, CO2 enrichment up to 800–1000 ppm is often
applied. This may serve as a first approximation for the optimal
CO2 level, albeit those concentrations are also determined by the
financial return on the additional costs for the CO2 supplied.
Some reports have shown an optimum growth in the 1000–2000
ppm range, with small decreases in the order of 10% above 2000
ppm (Jolliffe & Ehret, 1985). Others found no indication of
supraoptimal growth at levels as high as 30 000 ppm (Imazu et al.,
1966; Vaughn et al., 2003). Inspection of all the dose–response
curves of individual experiments in our database suggested strong
saturation above 1500 ppm, but no supraoptimality. With
photosynthesis saturating at these levels, and respiration unaf-
fected, no negative primary effects on C balance would be
expected. Although morphological disorders such as leaf rolling,
chlorosis and necrosis have been observed (Ehret & Jolliffe, 1985;
Wheeler et al., 1993), they could potentially also be due to
impurities in the CO2 source (e.g. ethylene or NOx). Other species
may show leaf-tip chlorosis under high CO2, because of reduction
in transpiration and a concomitant decrease in calcium and boron
transport to the youngest leaves (Nederhoff, 1994). Interestingly,
there have been reports of much higher transpiration rates at
extremely high [CO2], especially at night (Levine et al., 2009). To
the extent that disorders show up at elevated [CO2], they generally
do not preclude positive responses in total biomass. Based on the
current but scarce evidence, we postulate that the level at which
CO2 becomes supraoptimal for the biomass accumulation of most
C3 plants will lie well above 3000 ppm. However, there are
indications that for seed yield, supraoptimal CO2 levels may be
lower (Grotenhuis & Bugbee, 1997).

VI. Comparisonbetween responses to [CO2] and light

The photosynthetic process in plants is generally co-limited by
[CO2] and light. Consequently, sugar production will go up when
either of the two increases. To what extent then does an increase in
[CO2] have the same effect on the various plant traits as an
increase in light intensity? Poorter et al. (2019) analysed the

response of plants to the daily light integral (DLI; mol photons
m�2 d�1) in a similar way as has been done here for [CO2]. The
range in DLI they considered for their plasticity calculation was
50-fold, which is much larger than the six-fold range in [CO2] we
considered here, and therefore the PI values cannot be compared
directly. In Fig. S5 we compare the plasticity values for [CO2]
with those for DLI calculated over a six-fold range (4–24 mol m�2

d�1). An alternative approach is to use the CI discussed earlier as
an indicator of the direction of the response: a value of 0%
indicates that a trait decreased consistently across experiments,
whereas a value of 100% indicates a consistent increase. We
mapped these estimates of consistency for light and [CO2] in Fig.
7 for 80 traits for which we have information available. For ease of
interpretation we subdivided this full area into nine regions, which
showed for each of the two environmental factors whether the
response is mostly negative (CI < 25%), rather variable (25 < CI <
75%) or predominantly positive (CI > 75%). A range of traits
reacted in a rather similar way to increased [CO2] and light, colour
coded with black dots in Fig. 7. For example, in both cases the
area-based rate of photosynthesis and the ULR consistently
increased at higher [CO2] and light, and so did the leaf TNC
concentration, stem diameter, number of branches and tillers,
vegetative biomass and number of seeds or fruits per plant.
Conversely, SLA consistently decreased, and so did total leaf [N]
and [P] as well as specific stem length. Most of the responses that
are in the upper-right or lower-left corner are probably explained
by a common increase in sugar availability, and it is likely that
signal transduction pathways related to sugar sensing are (co-)
involved in the genetic regulation of these acclimatory changes
(Lastdrager et al., 2014; Barbier et al., 2015).

A second group of traits, also colour coded black, did not
respond, or reacted only marginally to both factors: chlorophyll
content per unit leaf area, leaf absorptance,mass-based leaf and root
respiration rates as well as the nocturnal values of water potential
and fluorescence (Fv/Fm). These traits are still following the overall
diagonal of similar responses, but the responses are variable in both
cases. More interesting is the group of traits that responds to one
factor only. A few traits are predominantly affected by [CO2]
(colour coded blue). Apparent quantum yield was increased by
CO2 only, due to a direct reduction in photorespiration by elevated
CO2 (Section IV).Whereas photosynthetic capacity and organic-N
concentration, both expressed per unit leaf mass, are little affected
by light, they are increasing respectively decreasing at higher [CO2].
This implies that the maximum photosynthetic nitrogen-use
efficiency, which is the ratio between photosynthetic capacity and
leaf nitrogen concentration, is unaffected by light (Poorter &
Evans, 1998), but stimulated by [CO2] (Zhang et al., 2013). Plant
height, individual leaf area as well as internode length are
consistently stimulated by CO2 but not so by light availability.
Light affects more traits (colour coded red), as it has much stronger
formative effects on leaf and plant development. In general, the
number of palisade cell layers increasedmore at high light, andwith
it the amount of Rubisco and Vcmax per unit leaf area. Also the
increased chlorophyll a : b ratio is a typical hallmark of acclimation
to high light, and so is (at the other side of the graph) the decrease in
chlorophyll/N.We presumed that the range of receptors that sense
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quantity and/or quality of light (cryptochromes, phytochromes;
Ballar�e&Pierik, 2017) are playing amore dominant role here than
the above-mentioned sugar sensors, as both environmental factors
affected starch and sugar levels similarly.

As discussed above, stomatal density is only marginally
sensitive to CO2, but showed a much stronger and more
consistent response to increased light. This has relevant ramifi-
cations for those efforts in which stomatal density in fossils is used
to reconstruct the paleoclimate: if light intensity has varied over
geological timescales, for example because of changes in water
vapour and cloud cover in the air, or if leaves developed in a more
shady habitat, this probably had a stronger effect on stomatal
density than the variation in atmospheric CO2 concentration per
se. This implied that paleo-climate reconstructions based on
acclimatory dose–response curves of stomatal density should be
approached with care.

A fourth and very small set of traits showed opposing responses
to light and CO2. Some of those traits, which are colour coded

green, are found in the upper left part of the graph, where light is
strongly stimulating and [CO2] is strongly inhibiting. Traits found
here are stomatal conductance and area-based transpiration, which
generally increase with light, as the higher carboxylation rates of
photosynthesis have to be matched with an increased CO2

conductivity, with higher water loss as a consequence. This
problem is less relevant at increased [CO2], as it creates a far steeper
CO2 diffusion gradient between the atmosphere and the leaf
interior, implying that water loss can be restrictedwith little penalty
on C gain. Close to the opposite, lower-right part, we found leaf
water potential during the diurnal phase. Data for leaf water
potential showed less negative values, so an improvedwater status at
high [CO2], but more negative values at high light. All these traits
depended on stomatal regulation, which is known to be regulated
by at least two independent pathways, of which the internal CO2

sensor(s) discussed earlier is one (Gamage et al., 2018) and a
phototropin sensing blue light is another (Inoue & Kinoshita,
2017).
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Fig. 7 Comparison of the consistency in response of plants to [CO2] and daily light integral (DLI; mol m�2 d�1) with respect to a wide range of plant traits.
Explanation of the trait abbreviations is given in Table 1. The overall consistency index (CI; percentage of the species9 experiment combinations in which trait
valueswere higher for the highest level than for the lowest level) as calculated for 500 experiments inwhich theDLI (data fromPoorter et al., 2019)was varied,
plotted against the same index based on the 630 CO2 experiments in the current analysis. The dotted lines indicate CI values of 25%and 75%and are a visual
support to judgewhich traits are relativelymarginally affected in both cases (middle area), strongly positively or negatively affectedby [CO2] (right and left part
of the graph) and/or strongly positively or negatively by DLI (top or bottom part). Colours of the points are a visual aid and show (1) in black: traits similarly
affectedbyDLI andCO2; (2) in blue: predominantly affectedbyCO2; (3) in red: traits predominantly affectedby light; (4) in green: traits responding in opposite
directions; (5) in grey: all other traits. A comparison based on plasticity index values is shown in Supporting Information Fig. S6.
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VII. Concluding remarks

1. Outlook

The focus of this review centres around the effects of aerial CO2

concentration at the organismal level. By establishing generalised
dose–response curves for a wide range of traits we tried to
contribute to the understanding of how C3 plants acclimate to one
of their vital environmental factors.However, with somuch change
in ambient [CO2] ahead and so little past experience or possibilities
for large-scale experiments, there is societal pressure to use this
knowledge to improve our understanding of future crops, ecosys-
tems and possibly for system Earth (IPCC, 2014; Walker et al.,
2021). With the acknowledgement that every integration level has
its own feedbacks and peculiarities, we identified four relevant steps
to further our understanding and applied the resulting dose–
response curves fruitfully.
(1) Better define the curves, especially at the outer ends of the CO2

range. There are few data on plant functioning below 300 and
above 1000 ppm, and some of the curves we derived therefore still
have low reliability. At low [CO2], there are indications for strong
physiological and morphological responses (Section V.2). What
compensatory mechanisms take over under these conditions, in
which sugar availability becomes low although light is abundant?
What is the CO2 compensation point of growth, and how is
reproduction affected in this range? At the other end, at what level
does [CO2] becomes supraoptimal? Although there are no clear
indications for deleterious effects of [CO2] as high as 5000 ppm on
vegetative biomass, it is as yet unclear what happens physiologically
and biochemically at these levels.
(2) Understanding interspecific variation in the dose–response
curves. Here, we focused on the ‘average’ C3 species. Which are the
traits for which species with a C4 or CAM type of photosynthesis
will show very different dose–response curves, and which are
similar? Moreover, how large is the variation in dose–response
curves and plasticity among functional types of C3 species?
(3) Understanding trait integration physiologically, also under
suboptimal growth conditions.Our compilation is for plants grown
under relatively benign conditions, often with one plant per pot
rooted in nutrient-rich andwell-watered potting soil.Howdo these
dose–response curves change when plant density is high and
resources are suboptimal? We know, both from controlled exper-
iments and FACE systems, that plant biomass responses to elevated
[CO2] are stronger in the presence of ozone, relatively unaltered by
low water availability, and reduced at low temperatures and low
nutrient levels (Poorter & P�erez-Soba, 2001; Ainsworth & Long,
2021).Butwhat happens to thedose–response curves of other traits,
andwhichare, intheend,thekeytraits thatmodulatetherelativeCO2

response of biomass and reproduction at suboptimal conditions?
(4) Integrate these dose–response curves into crop and ecosystem
models. Many process-based models run with fixed parameter
values for a given species or functional type and do not allow for
environmental acclimation in structural or functional variables (Xu
& Trugman, 2021). However, acclimation is an essential compo-
nent in plant performance and fitness. Some routines that rely on
optimisation procedures for photosynthesis or sugar allocation, for

example,may partly accommodate for plant acclimation, but this is
more difficult for structural variables. For example,most ecosystem
models use a fixed LMA for different functional types, but adding
an empirical relationship that incorporates LMA responses to
increasing CO2 significantly changes the outcome of such models
(Kovenock & Swann, 2018). Going forward, vegetation models
will increasingly be equipped to predict plant nonstructural
carbohydrate pools, and the observed empirical relationships will
be valuable formodel development.The observed change in soluble
phenolics is directly relevant to community models that predict
herbivore nutrition, and to models that include litter quality as a
control on decomposition. The relationships presented for the
number of seeds/fruits and generative dry mass could be directly
relevant to models that predict seed dispersal, recruitment, and
population dynamics.
(5) Finally, to improve our understanding of biological systems
and their models, comparison of the dose–response curves derived
here with those calculated for different state or rate variables in crop
and ecosystem models would be very insightful (Hasegawa et al.,
2017; Yin et al., 2021).

2. Conclusions

We established dose–response curves to [CO2] for 85 ecophysio-
logical traits of C3 species and ranked them in terms of plasticity
from strongly negative to strongly positive. These curves give a
comprehensive insight into how plants respond to a wide range of
CO2 concentrations under otherwise close-to-optimal conditions
and are very useful for integration in or comparisonwith trait-based
simulation models. By contrasting these responses with those to
light intensity, we better understand the various ways by which
plants acclimate to their environment.
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Supporting Information

Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 Example showing how dose–response curves are calculated
based on scaled data from various experiments.

Fig. S2Distribution of observations for four traits over the [CO2]
range of 0–2000 ppm.

Fig. S3 Dose–response curves of the 14 morphological and
chemical traits that were not included in Figs 2 and 3.

Fig. S4Dose–response curves of the 13 physiological and growth-
related traits that were not included in Figs 4 and 5.

Fig. S5 Animated build-up of the knowledge graph presented in
Fig. 6.

Fig. S6 Plasticity indices for the response to a six-fold difference in
light (daily light integral over the 4–24molm�2 d�1 range) vs those
for a six-fold difference in [CO2] (200–1200 ppm).

Fig. S7–S23 Specific figures per trait, for the group of anatomical
and morphological variables.

Fig. S24–S50 Specific figures per trait, for the group of chemical
variables. For more information see the legend above.

Fig. S51–S78 Specific figures per trait, for the group of physio-
logical variables. For more information see the legend above.

Fig. S79–S93 Specific figures per trait, for the group of growth and
reproduction-related variables. For more information see the
legend above.

Notes S1 Extended Materials & Methods.
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