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Summary 

From choosing which game to play to deciding how to most effectively delay bedtime—making 

repeated choices is a ubiquitous part of childhood. Two often contrasted paradigmatic choice behaviors 

are probability matching and maximizing. Maximizing, described as consistently choosing the option 

with the highest reward probability, has traditionally been considered economically rational. Probability 

matching, in contrast, described by proportionately matching choices to underlying reward probabilities, 

is debated whether it reflects a simple mistake or an adaptive mechanism overlearned in real-world 

environments.  

Previous research on the development of probability learning and repeated choice revealed consid-

erable change across childhood and reported the paradoxical finding that younger children are more 

likely to maximize—outperforming older children who are thought to be more likely to probability 

match (e.g., Jones & Liverant, 1960; Weir, 1964). However, this line of research largely disregarded the 

mind’s ability to capitalize on the structure of the environment and that some cognitive constraints under 

which children operate may facilitate learning. In this dissertation, I investigate the inter- and intra-

individual development of probability learning and repeated choice behavior in childhood under con-

sideration of ecological, cognitive, and methodological aspects. In four empirical chapters, analyzing 

almost 70.000 choices from over 600 children and more than 200 adults, I demonstrate that the interac-

tion between the maturing mind and characteristics of the learning and choice environment shapes the 

development of adaptive choice behavior.  

Chapter 2 compares how children and adults learn to adapt to an ecologically plausible statistical 

structure and provides a benchmark in relation to previous work. Behavioral and computational model-

ing results showed emerging adaptivity from school-age onward and indicated that younger children 

were more persistent in their choices but showed less sensitivity to the environment. Chapter 3 builds 

on this finding and longitudinally examines the intra-individual development of probability learning and 

repeated choice behavior in relation to executive functions from 3.5 to 6.5 years. Behavioral analyses 

revealed that children became more likely to probability match with increasing age but that probability 

maximizing was related to age differences in the cohort. Moreover, improving executive functions were 

associated with choice diversification as children grew older. Motivated by a recent rise in online data 

collection methods in developmental research, Chapter 4 takes a methodological view on the develop-

ment of probability learning from 3–4 years. Results demonstrated a decline in performance toward the 

end of the task and the adoption of qualitatively different strategies when tested online via video chat. 

Connecting research on risky choice and probabilistic inference in childhood, Chapter 5 investigates 

how children make repeated choices when learning probabilistic information from description. Whereas 

younger children performed below chance, school-aged children demonstrated a high propensity for 

switching behavior, suggesting that descriptive learning formats amplify developmental differences.  

In conclusion, the present research proposes that the development of probability learning and re-

peated choice behavior in childhood progresses from high persistence but also high inter-individual 



 vi 

variability to emerging adaptivity marked by increased diversification and exploration. This process is 

shaped by the development of cognitive capacities and growing experience with environmental struc-

tures, highlighting the benefit of taking an ecological rationality view in research on the development 

of decision making abilities. In particular, this dissertation emphasizes the importance of ecologically 

plausible study designs (e.g., ecologically valid statistical structures, experience-based learning formats) 

for revealing the young mind’s ability to capitalize on the structure of the environment. 
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Zusammenfassung 

Von der Entscheidung welches Spiel gespielt werden soll bis zur Wahl einer Taktik, wie man die 

Schlafenszeit am besten hinauszögert - ein allgegenwärtiger Aspekt in der Kindheit ist es, wiederholt 

Entscheidungen zu treffen. Zwei paradigmatische Verhaltensweisen, die oft miteinander verglichen 

werden, sind probability matching (dt. Angleichen der Wahrscheinlichkeit) und Maximieren. Um Be-

lohnungen zu maximieren, muss eine Person ausschließlich die Option mit der höchsten Wahrschein-

lichkeit auswählen. Dies wird ökonomisch als rationales Verhalten angesehen. Probability matching 

beschreibt, dass eine Person jede Option mit der gleichen Wahrscheinlichkeit auswählt, wie deren zu-

grunde liegende Wahrscheinlichkeit einer Belohnung ist. Es gibt Argumente, dass es sich bei probability 

matching um einen Fehlschluss handelt, aber auch, dass es adaptiver Mechanismus sein könnte, der in 

der realen Welt erlernt wurde.  

Frühere Forschung zu probabilistischem Lernen deckte erhebliche Entwicklungen im Laufe der 

Kindheit auf und berichtete über das paradoxe Ergebnis, dass jüngere Kinder eher maximieren als ältere 

Kinder. Von älteren Kindern nimmt man hingegen an, dass sie probability matchen (z. B. Jones & Live-

rant, 1960; Weir, 1964). In früherer Forschung wurde jedoch kaum berücksichtigt, dass Menschen die 

Struktur der Umwelt zu ihrem Vorteil nutzen können. In dieser Dissertation untersuche ich die inter- 

und intraindividuelle Entwicklung des probabilistischen Lernens und der wiederholten Entscheidungen 

in der Kindheit unter ökologischen und kognitiven Gesichtspunkten. In vier empirischen Kapiteln, in 

denen ich fast 70.000 Entscheidungen von über 600 Kindern und mehr als 200 Erwachsenen analysiere, 

zeige ich, dass die Interaktion zwischen heranreifenden kognitiven Funktionen, sowie Merkmalen der 

Lern- und Entscheidungsumgebung die Entwicklung des adaptiven Entscheidungsverhaltens prägt.  

In Kapitel 2 vergleiche ich, wie Kinder und Erwachsene lernen, Entscheidungen an eine ökologisch 

plausible statistische Struktur anzupassen. Die Anpassungsfähigkeit nimmt ab dem Schulalter zu und 

jüngere Kinder sind zwar persistenter in ihren Entscheidungen, reagieren aber weniger sensibel auf die 

Umwelt. Kapitel 3 baut auf diesen Ergebnissen auf und untersucht die intraindividuelle Entwicklung 

des probabilistischen Lernens im Kontext von exekutiven Funktionen im Alter von 3,5 bis 6,5 Jahren. 

Verhaltensanalysen ergaben, dass Kinder mit zunehmendem Alter eher probability matchen. Altersun-

terschiede in der Kohorte sagen Maximieren von Wahrscheinlichkeiten vorher. Darüber hinaus zeigt 

sich mit zunehmendem Alter der Kinder ein positiver Zusammenhang zwischen exekutiven Funktionen 

und Diversifizierung von Entscheidungen (d.h., wechseln zwischen Option). Angeregt durch die jüngste 

Zunahme von Online-Datenerhebungsmethoden in der frühkindlichen Entwicklungsforschung, nimmt 

Kapitel 4 eine methodische Perspektive ein. Ergebnisse zeigen, dass die Leistung gegen Ende der Lern-

aufgabe abnimmt und 3- bis 4-Jährige qualitativ andere Strategien anwenden, wenn sie online per Vi-

deochat teilnehmen statt offline in Person. Kapitel 5 stellt eine Verbindung zwischen der Forschung zu 

Entscheidungen unter Risiko und statistischen Intuitionen in der Kindheit her und untersucht, wie Kin-

der wiederholte Entscheidungen treffen, wenn Wahrscheinlichkeiten beschrieben sind. Während die 

Entscheidungen jüngerer Kinder zufällig schienen, zeigten Kinder im Schulalter die Tendenz zwischen 
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Optionen zu wechseln und Erwachsene maximierten Wahrscheinlichkeiten. Dies deutet darauf hin, dass 

beschreibende Lernformate Entwicklungsunterschiede verstärken können.  

Zusammenfassend lässt sich sagen, dass die Entwicklung des probabilistischen Lernens und der 

wiederholten Entscheidungen in der Kindheit mehrere Phasen durchlaufen: von hoher Persistenz, aber 

auch hoher interindividueller Variabilität bei jüngeren Kindern zu wachsender Anpassungsfähigkeit 

durch zunehmende Diversifizierung und Exploration bei älteren Kindern. Die Forschung in dieser Dis-

sertation unterstreicht insbesondere den Nutzen einer ökologischen Rationalitätsperspektive und die Be-

deutung ökologisch plausibler Studiendesigns (z. B. ökologisch plausible statistische Strukturen, erfah-

rungsbasierte Lernformate, etc.), um die Fähigkeiten von Kindern, Strukturen der Umwelt zum eigenen 

Vorteil zu nutzen, besser erfassen zu können.



 ix 

Table of Contents 

1 | General Introduction ....................................................................................................................................... 11 
1.1 An Ecologically Rational View on the Development of Judgment and Decision-Making ......................... 13 
1.1.1 An Evolutionary Perspective on Adaptive Behavior: The Life History Framework ........................... 15 
1.1.2 Characteristics of Real-World Environments ...................................................................................... 16 
1.1.3 From Fallacies to Phenomena .............................................................................................................. 19 
1.1.4 Studying the Development of Ecological Rationality: Many Moving Parts ....................................... 20 

1.2 Probability Learning in Adulthood .............................................................................................................. 21 
1.2.1 From Aggregate to Individual Probability Matching ........................................................................... 22 
1.2.2 Probability Matching: Fallacy or Phenomenon? .................................................................................. 24 

1.3 Probability Learning in Childhood .............................................................................................................. 26 
1.3.1 Probability Learning: A U-Shaped Function Across Development? ................................................... 27 
1.3.2 Of Maximizing Preschoolers and Matching Kids ................................................................................ 27 
1.3.3 Roads to Diversification: Children’s Underlying Choice Processes ................................................... 29 
1.3.4 Limitations to Cross-Sectional Findings on the Development of Probability Learning ...................... 30 

1.4 Individual Differences in the Development of Probability Learning: Executive Functions ....................... 31 
1.4.1 Response Inhibition ............................................................................................................................. 32 
1.4.2 Working Memory ................................................................................................................................. 33 

1.5 Probabilistic Reasoning in Childhood: A Precursor of Probability Learning? ............................................ 35 
1.6 The Same but Different? Online and Offline Developmental Data Collection ........................................... 37 
1.7 Overview of the Dissertation ....................................................................................................................... 39 
1.8 References .................................................................................................................................................... 40 

2 | Emerging Adaptivity in Probability Learning: How Young Minds and the Environment Interact ....... 52 
2.1 Introduction .................................................................................................................................................. 52 
2.1.1 Ecologically Rational Probability Matching ........................................................................................ 53 
2.1.2 Development of Probability Learning ................................................................................................. 54 
2.1.3 The Present Study ................................................................................................................................ 55 

2.2 Method ......................................................................................................................................................... 57 
2.2.1 Participants ........................................................................................................................................... 57 
2.2.2 Design .................................................................................................................................................. 57 
2.2.3 Material and Procedure ........................................................................................................................ 58 

2.3 Results .......................................................................................................................................................... 60 
2.3.1 Behavioral Results ............................................................................................................................... 60 
2.3.2 Model-Based Strategy Analysis ........................................................................................................... 68 

2.4 General Discussion ...................................................................................................................................... 73 
2.5 Conclusion ................................................................................................................................................... 76 
2.6 References .................................................................................................................................................... 77 

3 | The Development of Probability Learning and Repeated Choice Behavior in Childhood:                        
A Longitudinal Investigation ......................................................................................................................... 82 
3.1 Introduction .................................................................................................................................................. 82 
3.1.1 Benefits of Longitudinal Research in the Development of Probability Learning ............................... 83 
3.1.2 Probability Learning and Cognitive Development .............................................................................. 84 
3.1.3 The Present Study ................................................................................................................................ 86 

3.2 Method ......................................................................................................................................................... 87 
3.2.1 Participants ........................................................................................................................................... 87 
3.2.2 Design .................................................................................................................................................. 88 
3.2.3 Tasks and Procedures ........................................................................................................................... 88 

3.3 Results .......................................................................................................................................................... 92 
3.3.1 General Analysis Approach ................................................................................................................. 92 
3.3.2 Probability Learning ............................................................................................................................ 93 
3.3.3 Individual Choice Behavior ................................................................................................................. 94 
3.3.4 Exploratory Analyses: Choice and Executive Functions ..................................................................... 95 

3.4 Discussion .................................................................................................................................................... 97 
3.5 Conclusion ................................................................................................................................................. 100 
3.6 References .................................................................................................................................................. 101 

 
 



 x 

4 | Young Children Recruit Different Choice Strategies When Tested Online ............................................ 106 
4.1 Introduction ................................................................................................................................................ 106 
4.2 Method ....................................................................................................................................................... 109 
4.2.1 Participants ......................................................................................................................................... 109 
4.2.2 Design and Procedure ........................................................................................................................ 110 

4.3 Results ........................................................................................................................................................ 111 
4.3.1 Behavioral Results ............................................................................................................................. 111 
4.3.2 Model-Based Strategy Analysis ......................................................................................................... 114 

4.4 Discussion .................................................................................................................................................. 116 
4.5 Conclusion ................................................................................................................................................. 118 
4.6 References .................................................................................................................................................. 119 

5 | Do Children Match Described Probabilities? The Sampling Hypothesis and Risky Choice ................. 123 
5.1 Introduction ................................................................................................................................................ 123 
5.2 Method ....................................................................................................................................................... 126 
5.2.1 Participants ......................................................................................................................................... 126 
5.2.2 Design and Material ........................................................................................................................... 127 
5.2.3 Procedure ........................................................................................................................................... 127 

5.3 Results ........................................................................................................................................................ 129 
5.3.1 Majority-Color Choices Across Age Groups ..................................................................................... 129 
5.3.2 Aggregate Probability Matching ........................................................................................................ 130 
5.3.3 Individual-Level Probability Matching .............................................................................................. 131 
5.3.4 Exploratory Analysis: Switching Behavior ....................................................................................... 132 

5.4 Discussion .................................................................................................................................................. 133 
5.5 Conclusion ................................................................................................................................................. 136 
5.6 References .................................................................................................................................................. 137 

6 | General Discussion ......................................................................................................................................... 140 
6.1 Summary of Key Findings ......................................................................................................................... 140 
6.2 Implications, Limitations, and Future Directions ...................................................................................... 141 
6.2.1 The Development of Ecological Rationality in Probability Learning and Repeated Choices ........... 142 
6.2.2 Adaptive Benefits of Cognitive Immaturity ...................................................................................... 144 
6.2.3 Probability Maximizing and the U-Shaped Function of Probability Learning in Childhood ............ 145 
6.2.4 Risky Choice and Probabilistic Inference in Childhood .................................................................... 147 
6.2.5 Merits and Pitfalls of Modeling Children’s Choices ......................................................................... 149 
6.2.6 Methodological and Policy Implications ........................................................................................... 150 

6.3 Conclusion ................................................................................................................................................. 151 
6.4 References .................................................................................................................................................. 152 

Appendices .......................................................................................................................................................... 157 
A | Supplemental Material for Chapter 1 ......................................................................................................... 158 
B | Supplemental Material for Chapter 2 ......................................................................................................... 164 
C | Supplemental Material for Chapter 3 ......................................................................................................... 171 
D | Supplemental Material for Chapter 4 ......................................................................................................... 175 

Declaration of Independent Work .................................................................................................................... 177 
 

 



 11 
 

1 | General Introduction 

 

“With great power, there must also come great responsibility.” 

—Stan Lee, Amazing Fantasy #15 

 

Becoming an independent person is an important process across childhood and beyond. But with 

increasing independence and power comes the need to make sound choices. How do children grow into 

adaptive decision-makers? Considering the types of decisions that children make in their everyday life, 

one might realize two aspects inherent to many choice situations: First, living in a complex and changing 

world, children usually do not know if a choice will result in a desired outcome with certainty or only 

with a higher or lower probability. Second, children are rarely required to make a decision only once, 

but choice situations often repeat over time (e.g., choosing a game, book, with whom to play, what route 

to take to school, etc.). By making repeated choices and experiencing their outcomes across numerous 

everyday situations, children can learn about the probability of events and the structure of real-world 

environments. For example, a child may have learned from previous experience that asking their grand-

parents for ice cream is typically more successful than asking their parents. Despite its real-world and 

developmental relevance, we still know little about how children learn to capitalize on the probabilistic 

structure of the environment when making repeated choices.  

The process of learning about choice-outcome probabilities and applying this knowledge to consec-

utive choices is known as probability learning (Estes, 1964). Originating in classical conditioning and 

statistical learning, probability learning has been studied in both children and adults for more than half 

a century (e.g., Atkinson, 1956; Derks & Paclisanu, 1967; Estes, 1950; Estes & Straughan, 1954; Siegel 

& Goldstein, 1959; Weir, 1964). Experimental tasks typically require participants to make repeated 

choices between two or more options and learn about their outcome probabilities from feedback (e.g., 

predicting which light bulb will turn on; Gardner, 1957). Imagine the following real-world example of 

a paradigmatic probability learning task: A person lives between two subway lines—one is new and the 

other one rather old—and has to pick a route to work in the morning. The person learned from experience 

that when choosing the new line, they will arrive on time approximately 7 out of 10 times, and choosing 

the old line, they will arrive punctually only 3 out of 10 times. When faced with repeated choices be-

tween options, adults and older children often probability match: They select an option with the same 

probability that this option yields a desired outcome. In this example, the person would take the new 

line on 70% of the days and the old line only on 30% of the days. Suppose the likelihood of punctual or 

delayed trains remains constant over time (e.g., due to two independent railway switches that malfunc-

tion 70% or 30% of the time, respectively). Probability matching would result in the person arriving at 

work on time with a lower average probability (i.e., p = 70% x 70% + 30% x 30% = 58%) than when 
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consistently choosing the new line (i.e., p = 100% x 70% = 70%). In other words, probability matching 

results in a obtaining a desired outcome at a lower rate than probability maximizing (i.e., by exclusively 

choosing the option with the highest outcome probability) and, hence, represents a striking violation of 

rational economic choice. 

There are two perspectives on probability matching that differ in their optimism about human ra-

tionality. One perspective suggests that people fall prey to their cognitive limitations and, consequently, 

fail to identify the superiority of a maximizing strategy (James & Koehler, 2011; Koehler & James, 

2014; Shanks et al., 2002; Vulkan, 2000). This perspective resonates with research showing that some 

non-human animals also probability match in reinforcement learning paradigms. However, there is in-

creasing evidence that behavior close to probability maximizing is common across a large variety of 

species (for a review of the animal literature, see Montag, 2021). Similarly, probability matching does 

not seem to be an innate behavior in humans. Research on the development of probability learning in 

childhood has demonstrated that younger children under 5 years tend to maximize probability by per-

sistently choosing the option with the highest outcome probability (Goldman & Denny, 1963; M. H. 

Jones & Liverant, 1960; Weir, 1964). In contrast, only older children from 6 to 11 years are reported to 

be more likely to probability match (Derks & Paclisanu, 1967; M. H. Jones & Liverant, 1960; Plate et 

al., 2018). It would seem surprising that rats, baboons, pigeons, or fish indeed outperform older children 

and adults in a simple repeated choice task. However, opposing the idea of a sophisticated or superior 

strategy that can only be achieved by deliberation (Koehler & James, 2010), probability maximizing 

may require only little implementation effort (Saldana et al., 2022) and can serve as a satisficing strategy 

(Schulze et al., 2020). Thus, different choice behaviors can result from different processes—some may 

be misleading, but it is also conceivable that some of them are adaptive (for reviews, see Koehler & 

James, 2014; Newell & Schulze, 2017). 

The adaptive perspective on probability matching takes up an ecologically rational position. The 

framework of ecological rationality assumes that people adaptively use a set of search and decision 

strategies that enables them to capitalize on the structure of the environment despite only having finite 

cognitive resources (Gigerenzer & Goldstein, 1996; Pleskac & Hertwig, 2014; Simon, 1956, 1990a; 

Todd & Gigerenzer, 2007). Advocates of an ecologically rational perspective on probability matching 

argue for an overlearned behavior from the real world that people inappropriately apply in experimental 

environments (i.e., a mismatch between the experimental and natural environments; Gaissmaier & 

Schooler, 2008; Green et al., 2010; Schulze et al., 2017, 2020). People may have evolved strategies 

suited to probabilistic structures they experience regularly—yet, behavioral experiments often differ in 

these key statistical properties. For example, in real-world environments, autocorrelation between out-

comes in a sequence or clumped resources may rather be the norm than an exception (Koenig, 1999; 

Reimers & Harvey, 2011; Scheibehenne et al., 2011; Wilke & Barrett, 2009). In such environments, 

probability matching may be more profitable than strict probability maximizing (Schulze et al., 2017). 

The idea of a mismatch between stationary probability learning tasks and real-world environments is 
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not new in the debate on probability matching (e.g., Jones & Liverant, 1960). Yet until today, it received 

surprisingly little consideration, particularly in research on the development of probability learning in 

childhood. 

Taking an ecological rationality perspective, my dissertation investigates how probability learning 

and repeated choice behavior develop in childhood, considering ecological, cognitive, and methodolog-

ical aspects. What characterizes children’s choice behavior in different age groups? If probability match-

ing is indeed an ecologically rational strategy, how much life experience is needed to use it adaptively? 

What underlying cognitive mechanisms guide repeated choice behavior in childhood, and what is the 

role of intra-individual development? How do the learning format and other methodological factors 

shape adaptive choice behavior? To address these questions, I will integrate research on decision-mak-

ing and cognitive development, previously operating in parallel, and use both cross-sectional and longi-

tudinal study designs to map developmental trajectories of repeated choice behavior from early child-

hood to pre-adolescence between 3 and 11 years.  

The empirical chapters (Chapters 2–5) in this dissertation discuss theoretical introductions tailored 

to their specific research questions and stand alone as research articles. In the following sections of this 

chapter, I will provide a general overview of the theoretical foundations of my work. First, I will describe 

the ecological rationality framework in more detail and how it can inform research on cognitive devel-

opment. I will then discuss previous literature on probability learning in adults, focusing on probability 

matching. Afterwards, I will review work on the development of probability learning in childhood and 

how cognitive building blocks, in particular executive functions, may shape this process. Following, I 

will discuss the relationship between probability learning and early probabilistic inferences and, lastly, 

provide an overview of the comparability between developmental online and offline studies as a recent 

methodological concern in research on cognitive development. To conclude the general introduction, I 

will provide an outlook on the empirical research chapters. 

 

1.1 An Ecologically Rational View on the Development of Judgment and Decision-Making 

Consider a person living in a remote place where bus service is only provided once an hour, waiting 

for a friend to arrive by public transport. How likely is it that the person checks every other minute if 

their friend has already arrived? Given the lower probability that a bus will arrive farther away from the 

scheduled time, it seems unlikely that a person ignores this information completely. That people adapt 

their information search or decision strategies in some way or another to the structure of an everyday 

situation can be hardly contested. Yet, one of the most influential psychological research streams, the 

heuristics-and-biases program originating in the 1970s (Tversky & Kahneman, 1974), systematically 

discounted the ability of the human mind to capitalize on the structure of the environment in behavioral 

experiments (see Lejarraga & Hertwig, 2021). The ecological rationality framework, in contrast, ex-

plicitly considers the fit between the human mind and the structure of the environment (Todd & 
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Gigerenzer, 2007). Inspired by Herbert Simon’s scissors metaphor—that the mind and the environment 

represent two blades of a pair of scissors working together (Simon, 1990)—the framework assumes that 

a set of domain-specific search and choice strategies enable people to exploit environmental character-

istics, even though only investing limited cognitive resources. A growing body of evidence demonstrates 

how people succeed in myriad situations by using simple heuristics adapted to the features of the envi-

ronment (e.g., see Hertwig et al., 2022; Spiliopoulos & Hertwig, 2020; Todd & Gigerenzer, 2012). The 

ecological rationality framework has been successfully applied to a lifespan perspective for the aging 

decision maker (Mata et al., 2012)—but how do children grow into ecologically rational decision-mak-

ers?  

There is some evidence that children are using ecologically rational search and choice strategies in 

an increasingly systematic and adaptive manner across development (Horn et al., 2016; Lang, 2021; J. 

D. Nelson et al., 2014). Assume a hypothetical scenario in which a child is presented with the names of 

two TV shows—Peppa Pig and Friends—and asked which TV show they believe has more episodes. 

Using the recognition heuristic (see Goldstein & Gigerenzer, 2002), the child could infer that the TV 

show they recognize, Peppa Pig, must have more episodes than the other show they have never heard 

of. Children from 9 years onward have been found to use this heuristic systematically. However, only 

older adolescents have been reported to correctly use the predictive validity of the recognition cue to 

learn in which situations the heuristic is adaptive and in which not (Horn et al., 2016). For example, 

recognizing the TV show Peppa Pig may not be beneficial but misleading when not the number of 

episodes but the number of seasons was the criterion to be judged (Peppa Pig has more episodes, but yet 

fewer seasons than Friends; IMDb, n.d.). Relying on the same strategy may hold advantages in one 

environment but not in another. Apart from basic cognitive processes—such as memory encoding, re-

trieval, and discrimination between a known and novel item—other experiential factors related to the 

environment, for instance, domain knowledge, play an important role in learning to use the recognition 

heuristic adaptively (Horn et al., 2016).  

Likewise, each decision strategy requires the interplay between a set of underlying cognitive skills 

and environmental knowledge or experience (to a greater or lesser extent). Thus, when asking how chil-

dren become adaptive decision-makers, one needs to consider at least two aspects that develop with 

increasing age: cognitive processes that mature alongside the developing brain and experience with dif-

ferent environments or task structures. In the domain of repeated choices, this means that different 

choice behaviors may emerge as a result of increasing cognitive functions as well as increasing experi-

ence with real-world structures. But because scientists often only theorize about either the mind or the 

environment, but rarely in concert, the development of ecological rationality still needs to be better 

understood.  
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1.1.1 An Evolutionary Perspective on Adaptive Behavior: The Life History Framework  

Ecological rationality can provide a useful framework to study how the foundations of adaptive 

decision-making develop in childhood. However, the concept is not yet widely adopted in other domains 

of cognitive development (but see Ruggeri, 2022). In recent years, however, a similar conceptualization 

originating in evolutionary psychology gained significance as a framework for studying adaptive be-

havior in childhood (Gopnik, 2020). The life history framework suggests that people allocate resources 

differently across development to maximize fitness and that evolved capacities increase the chance of 

survival (Kaplan & Gangestad, 2015). In this framework, childhood serves its unique purposes: devel-

oping an immune system, growing a large brain, and, most of all, learning as much as possible (Kaplan 

& Gangestad, 2015). Indeed, during the first years of life, one developmental milestone is chasing the 

next: learning how to speak, walk, count, or read happens during a time frame that some adult person 

needs to write a dissertation. But how can children learn so many elementary skills in a short period 

despite the fact that their brains have not yet fully developed and yet less cognitive capacities than in 

adulthood are available?  

A growing body of research suggests that cognitive limitations characteristic of childhood—or in 

other words, cognitive immaturity—are not only necessary consequences of a not yet fully-developed 

brain or a mere obstacle to overcome but that these limitations are beneficial for learning (e.g., Bjorklund 

& Green, 1992; Gopnik, 2020; Gopnik et al., 2017). For instance, young children’s over-optimism in 

their own abilities may help them to continue practicing a difficult task (Bjorklund & Green, 1992). In 

particular, childhood is thought to serve as a developmental phase adapted to wide exploration, which 

may be especially useful in changing environments (Gopnik, 2020). For example, young children have 

been found to outperform older children and adults in inferring an unusual hypothesis (Gopnik et al., 

2015, 2017) or to detect environmental structures (Liquin & Gopnik, 2022). Exploration tendencies 

progress from less systematic to more goal-directed information search across childhood (e.g., Giron et 

al., 2022; Meder et al., 2021; Schulz et al., 2019). In a world where technological, societal, and climatic 

changes are occurring with increased frequency, it may be highly relevant on a societal level that young 

learners have the capacity to adopt new hypotheses quickly—even if they seem unlikely at first. Re-

search inspired by the life history framework further argues that early experience of environmental 

structures can serve as a cue for future conditions that a person must adapt to (Fawcett & Frankenhuis, 

2015; Nettle et al., 2013). For instance, if a person experiences early on in life that cues have high 

reliability in predicting outcomes in the environment, they may adapt their information search process 

accordingly and sample less information than when cues are unreliable (see Frankenhuis et al., 2019). 

From an evolutionary perspective, it seems plausible that being highly sensitive to environmental struc-

tures, particularly in childhood, is an adaptive capacity of the brain that increases fitness. 

Although the life history and ecological rationality frameworks both argue for an interplay between 

mind and environment, they approach this topic from different angles. Research rooted in the life history 

framework typically explores how the interplay between environment and mind has shaped the evolution 
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of a flexible cognitive system on an extensive timescale (Kaplan & Gangestad, 2015) and how this 

evolved flexibility is beneficial in learning environments (Gopnik, 2020). Yet, this stream of research is 

often mute about specific underlying cognitive processes that allow children to be particularly explora-

tive or flexible learners and how they adapt to environmental characteristics. In contrast, the framework 

of ecological rationality is designed to investigate the specific fit between a search or choice strategy 

and a particular environmental structure beyond addressing questions about survival and fitness. Com-

bining the two approaches, thus, provides an interesting perspective on studying the development of 

search and choice behavior in childhood and its underlying cognitive processes: How do characteristics 

of the developing brain and the experiences made in the environment interact in the development of 

ecologically rational decision making, for instance when making repeated choices? This overarching 

question is addressed in several empirical chapters of this dissertation.  

 

1.1.2 Characteristics of Real-World Environments 

Now, the elephant in the room is certainly what kind of environmental structures children experi-

ence in their everyday life and, thus, may have individually learned to adapt strategies to. Ahead of 

influential theories on the development of probabilistic inferences, Tolman and Brunswik (1935) argued 

that even young children already hold the (misleading) expectation that laboratory tasks reflect the prob-

abilistic structure of actions and outcomes experienced in their everyday lives. Characterizing these 

features is arguably a challenging endeavor, and a thorough analysis of statistical structures in real-

world environments marks a current gap in the literature (see also Frankenhuis et al., 2019). In the 

following sections, I will attempt to offer an overview of which real-world properties may, in particular, 

shape the development of children’s choice behavior when making repeated choices. A basic but helpful 

first step is distinguishing between certain, uncertain, and risky environments.  

 

1.1.2.1 Risk and Uncertainty  

Many everyday life environments are not certain (i.e., they do not unequivocally lead to the same 

outcome; Luce & Raiffa, 1989), but events occur probabilistically: for instance, since the Covid-19 

pandemic, we learned that a supermarket having all items on stock is sometimes unlikely and whether 

our favorite sports team will win the next match is yet to be determined. There are different ways to 

conceptualize the space that is not fully certain (for a review, see Kozyreva et al., 2019). Two key con-

cepts taken up by several definitions of this space are uncertainty and risk. Different conceptualizations 

pertain, for instance, to the source of uncertainty (e.g., epistemic or aleatory; Hacking, 2006), to the 

degree of knowledge, or to the measurability of probabilities (Knight, 1921). In this dissertation, when 

speaking of uncertainty and risk, I am following the definition by Luce and Raiffa (1989). In decisions 

under uncertainty, a person must choose between multiple actions without precisely knowing the prob-

ability with which an action will result in a set of possible outcomes (Luce & Raiffa, 1989). In contrast 
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to not knowing outcome probabilities in decisions under uncertainty, the concept of risk describes a 

situation in which the decision-maker does know the probabilities associated with each outcome before 

making a choice (Luce & Raiffa, 1989). Although less common than decisions under uncertainty, some 

life situations are, indeed, risky based on this definition. For instance, the probability of a person suffer-

ing from a side effect after vaccination is approximated based on the frequency of previous side effects 

in a vaccinated population, or the likelihood of rain is typically communicated in terms of explicit prob-

abilities.  

Both concepts play a role in the probability learning and repeated choice tasks investigated in the 

empirical chapters in this dissertation. Probability learning tasks are typically viewed as making deci-

sions under uncertainty (see Chapters 2–4): at the beginning of the task, participants do not have any 

information about the outcome probabilities. Over the course of the task, participants could use the 

information from previous outcomes to compute approximate probabilities. As the measurability of un-

certainty increases, it may be arguable if the end of a probability learning task is better characterized by 

decisions under uncertainty or risk. In contrast, Chapter 5 describes a task where participants make 

decisions under risk: All probabilistic information is provided before making a choice. In the present 

dissertation, decisions under risk and uncertainty are associated with different learning formats where 

outcome probabilities are either learned from feedback while making choices or from description before 

making a choice. 

 

1.1.2.2 Learning From Experience and Description 

How do people learn about the probabilities of choices resulting in desired outcomes in the real 

world? When deciding whether or not to take an umbrella, a person can interpret the probability of rain 

given in the weather forecast (i.e., learning from a description). An alternative possibility would be to 

infer the likelihood of rain from experiences over the last days, weeks, or months (i.e., learning from 

experience). Indeed, learning from experience is often the only way to acquire probabilistic information 

in uncertain real-world environments when probabilities are unknown at first. In decisions from descrip-

tion, a decision-maker typically receives outcome information verbally or graphically before making a 

choice; decisions from experience usually require the decision-maker to learn about outcome probabil-

ities from feedback or to draw samples of information before making a choice (Wulff et al., 2018).  

The learning format is an important but often discounted task characteristic, leading to possibly 

contradictory findings about people’s statistical reasoning abilities when not explicitly accounted for 

(see the intuitive statistician vs. heuristics-and-biases program; Lejarraga & Hertwig, 2021). Literature 

on the description–experience gap has shown that people’s choices differ systematically depending on 

whether they learned about probabilities from experience or description (e.g., Hertwig & Erev, 2009; 

Newell & Rakow, 2007; Teoderescu et al., 2013; Wulff et al., 2018). For instance, people tend to give 
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rare events less weight than their objective probability when they learn from experience and tend to 

overweight rare events when learning from description (Hertwig & Erev, 2009; Wulff et al., 2018).  

 In a developmental investigation of the description–experience gap, older children from 9 years 

have been found to weigh probabilities similarly to adults (Rakow & Rahim, 2010). But even beyond 

risky choice and gambles, addressing the learning format is essential when comparing cognitive abilities 

across a wider age range. As a consequence of adapting task demands to the abilities of the target sample, 

probabilistic tasks for children often rely on experiential formats or graphical descriptive representations 

(Denison & Xu, 2019; Schulze & Hertwig, 2021). When mistakenly contrasted with adults’, sometimes 

poorer, performance in verbally descriptive tasks, children may seem more capable of probabilistic rea-

soning than they actually are (Schulze & Hertwig, 2021). For instance, Schulze and Hertwig (2022) 

demonstrated that children seemingly outperform adults in conjunctive and Bayesian reasoning prob-

lems, but only when children learn from experience and adults from description. In contrast to descrip-

tive learning formats, which may increase in importance with age and formal education, young chil-

dren’s everyday learning opportunities about probabilistic structures are more likely to be experiential. 

Nevertheless, only few studies have explicitly addressed the impact of learning formats on (young) chil-

dren’s decision-making abilities, and there is yet much to be discovered. Comparing findings from ex-

periential probability learning tasks (Chapters 2–4) and a descriptive risky choice task (Chapter 5), this 

dissertation provides new insights into the role of the learning format for repeated choices in childhood.   

 

1.1.2.3 Statistical Characteristics of Real-World Environments 

Coming back to the example of a person deciding to take an umbrella with them or not when going 

outside. In this scenario, it seems unlikely that the probability of rain is the same every single day. 

However, some influential research streams in judgment and decision-making, like probability learning 

(for a review, see Vulkan, 2000), constructed theories of human choice under the assumption that out-

come probabilities are independent and identically distributed and do not change over time. That said, 

many natural or social environments in everyday life are, indeed, subject to frequent change. In non-

stationary environments, perceiving events closer together in time and space as part of a group or se-

quence could serve as a cue to predict future environmental states; perceiving events as more distant 

could disrupt this process.  

In the domain of weather and other naturally occurring events, autocorrelation across space and time 

seems to be a useful statistical measure to characterize change as underlying physical processes arise 

and decrease gradually (e.g., Chopin & Blazy, 2013; Fawcett et al., 2014; Koenig, 1999; Ping et al., 

2004; Trenberth, 1984). Nevertheless, autocorrelated processes are not restricted to naturally occurring 

environments. In an ecological analysis of real-world economic datasets, Lejarraga and Lejarraga (2023) 

show that autocorrelation and non-stationarity are key statistical characteristics underlying variables that 
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inform managerial decision making. For instance, when predicting the cost of goods or sales, experi-

ences from the recent past have a higher predictive value than those from longer ago.  

Autocorrelation is closely related to locally or temporarily clumped resource distributions. Another 

mechanism that may contribute to the emergence of clumped resources in real-world environments is 

how rewards are retained or decay over time (e.g., Jensen & Neuringer, 2008). Whereas in laboratory 

environments, a person can regularly only collect a reward at one specific instance (e.g., a monetary 

incentive for making a correct prediction or placing a bet), resources in the real world often do not 

immediately disappear if not instantaneously collected: for instance, when harvesting fruit or vegetables 

much of the produce will remain available while maturing slowly, money remains in a bank account 

even if not withdrawn immediately, and water in a rainwater tank will only slowly evaporate if not used. 

Although some retained resources will eventually disappear due to naturally decaying processes, the 

availability of resources may also depend on previous actions by oneself or other people. In such situa-

tions, sequential dependencies between choices and outcomes can be used as a cue to make predictions 

about future outcomes and help people to adapt to the environmental structure (Schulze et al., 2017).   

Under the assumption that autocorrelation, non-stationarity, or sequential dependencies are preva-

lent in many real-world environments, it may be plausible that people evolved strategies adapted to 

capitalize on these statistical structures (Fawcett et al., 2014; Haselton et al., 2009; Reimers & Harvey, 

2011; Scheibehenne et al., 2011). However, in environments that do not possess these characteristics, it 

may seem like a mistake, for instance, when a person anticipates that recent outcomes are predictive of 

following outcomes. 

 

1.1.3 From Fallacies to Phenomena 

Considering that people’s decision strategies may be particularly adapted to features of real-world 

environments, some previously deemed fallacies may instead reflect simple but adaptive responses to 

environments where people learned to make choices in. Two prominently discussed choice fallacies are 

the gambler’s (Kahneman & Tversky, 1972) and the hot-hand fallacy (Gilovich et al., 1985). The gam-

bler’s fallacy describes that people show negative recency when predicting sequential events—for in-

stance, when tossing a coin, they expect a streak of heads to stop with increasing streak length. Kahne-

man and Tversky (1972) concluded that people mistakenly expect a subset of a local sequence to hold 

the same characteristics of the global sequence (e.g., that a coin toss will always reflect the underlying 

probability of heads or tails with p = .5). The same argument of misperceived local representativeness 

has been used to explain why people fall prey to the hot-hand fallacy (the opposite of the gambler’s 

fallacy) and why people probability match (e.g., James & Koehler, 2011). A hot hand describes the 

assumption that an outcome streak will continue with increasing length (e.g., a basketball player be-

comes increasingly likely to score with increasing streak length of past successful throws; Gilovich et 

al., 1985). Whereas it has been suggested that the hot-hand fallacy is a cognitive illusion (Gilovich et 
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al., 1985), correcting for previously biased estimations of a hot hand has shown that positive recency in 

streaks may not be a pure illusion (Miller & Sanjurjo, 2018). Moreover, it has been shown that the 

statistical assumptions rendering these behaviors a fallacy often do not hold in the subset of events that 

people are able to monitor with their finite cognitive capacities (Hahn & Warren, 2009). 

Indeed, there is a growing body of evidence showing that these “fallacies” may not arise due to 

cognitive limitations or misperceptions of randomness but from a mismatch between the experimental 

and real-world environments (Oskarsson et al., 2009). For example, Ayton and Fischer (2004) suggested 

that the gambler’s and hot-hand fallacy may be adaptive responses learned in real-world environments 

where positive and negative recency are regularly encountered. Consistently, people across cultures 

seem to anticipate streaks or clumped resources (Blanchard et al., 2014; Wilke & Barrett, 2009). More-

over, it has been demonstrated that people make forecasts as if data points were positively autocorrelated 

even when they are objectively not (Reimers & Harvey, 2011) and make more accurate predictions when 

sequences are positively compared to negatively autocorrelated (Kareev, 1995).  

The lessons learned from apparently “irrational” inferences in adults can facilitate an alternative 

perspective in research on the development of decision-making. Even though children are sometimes 

viewed as a proxy for an adult model with deficient cognitive capacities (more common from a 

heuristics-and-biases perspective; e.g., Baron et al., 1993; Ivan et al., 2018; Kokis et al., 2002), seem-

ingly irrational behavior may reflect an adaptive response to a child’s environment. 

 

1.1.4 Studying the Development of Ecological Rationality: Many Moving Parts 

Summarizing the previous section, it becomes apparent that the development of ecological ration-

ality is shaped by different processes that interact on different timescales over evolution and ontogenesis. 

A schematic high-level overview of involved processes relevant to this dissertation is presented in Fig-

ure 1.1. Taken together, the development of ecological rationality involves multiple interdependent 

sources. Inter-individual variability can arise from both mind and environment components. When eval-

uating how developing cognitive functions contribute to the development of ecologically rational choice 

behavior, it needs to be considered that these developments take place within and in interaction with the 

environment, as the cornerstone for plasticity in brain development (Greenough et al., 1987; Oakes, 

2017). Moreover, there are individual-independent factors like evolved functions of cognitive immatu-

rity and environmental characteristics that most children will experience while growing up. Building on 

this framework, my dissertation investigates how the interaction between environment and developing 

mind shapes adaptive probability learning and repeated choice behavior in childhood. 
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Figure 1.1 

Schematic Overview of Processes Involved in the Development of Ecological Rationality 

 

 

1.2 Probability Learning in Adulthood 

Probability learning describes the process of learning how likely a choice will result in a desired 

outcome and applying this knowledge to subsequent choices (Estes, 1964). With increasing interest in 

statistical models, probability learning has been studied since the early 1950s (e.g., Atkinson, 1956; 

Estes, 1950; Estes & Straughan, 1954). Classic probability learning paradigms are experience-based 

tasks that require a person to make repeated choices between two or more probabilistically rewarded 

options, for example, predicting which of two light bulbs will turn on next (e.g., Estes & Straughan, 

1954; Siegel & Goldstein, 1959). People typically do not obtain information about the probabilities 

associated with each choice option beforehand but need to learn this relationship from trial-wise feed-

back. Suppose a green light turns on in 70% of the trials and a red light in 30% of the trials, and a person 

receives an incentive for every correct prediction. An economic approach to human rationality would 

suggest that a person should maximize the probability of making a correct prediction. If outcome prob-

abilities are independent and identically distributed, probability maximizing entails exclusively predict-

ing the option associated with the highest outcome probability (the green light), obtaining an average 

reward rate of pmaximizing = .70. Yet, numerous studies suggest that adults do not always maximize prob-

ability but instead probability match (for reviews see Koehler & James, 2014; Vulkan, 2000). A proba-

bility matching person would predict each option according to its corresponding outcome probability. 

Consequently, in 70% of the trials, the person would predict the green light, and in 30% of the trials, the 

red light. This choice behavior violates economic views on rationality as it yields a lower average reward 

rate than probability maximizing with pmatching = .70 x .70 + .30 x .30 = .58.  
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Although sometimes mistaken for Herrnstein’s matching law (e.g., Lo et al., 2021), probability 

matching and the matching law differ in their predictions about how people allocate choices to the al-

ternative options (e.g., Houston et al., 2021; Houston & Sumida, 1987; Schulze et al., 2017). Herrn-

stein’s matching law (Herrnstein, 1961) assumes that a person matches choices to the rate of the obtained 

reward from an option compared to the obtained reward from an alternative option—not the pro-

grammed outcome probability integrating both obtained and forgone rewards in the case of probability 

matching. Counterintuitive to its name, the matching law, thus, predicts asymptotic probability maxim-

izing. This dissertation focuses on probability matching, not the matching law. 

 

1.2.1 From Aggregate to Individual Probability Matching 

Previous work on probability matching from the early stages of probability learning research has 

been reviewed elsewhere (e.g., Montag, 2021; Myers, 2014; Vulkan, 2000), yet one aspect may have 

received less attention than deserved: Much of the earlier work analyzed probability learning as a func-

tion of aggregated choices over trials and people (e.g., Estes & Straughan, 1954; Gardner, 1957; 

Goodnow, 1955; Grant et al., 1951; Humphreys, 1939; Jarvik, 1951; Morse & Runquist, 1960; Neimark 

& Shuford, 1959). However, these aggregate statistics do not allow determining if probability matching 

is, indeed, a choice behavior that individual people regularly pursue (Derks, 1962; Shanks et al., 2002; 

but see Estes, 1964 for an argument on the statistical benefit of group data). Probability matching on a 

group level could arise from heterogenous choice behavior across people: For instance, if half of the 

participants predict the green light at chance level and the other half predicts the green light on 90% of 

the trials, a researcher might find that participants, on average, approximate the underlying outcome 

probability of p  = .70. Similarly, often reported aggregate overshooting (i.e., choosing the high-proba-

bility option at a higher rate than its objective outcome probability but not exclusively) cannot be viewed 

as evidence against individual probability matching (see Montag, 2021), but could indicate a bimodal 

distribution where some people probability match and others maximize.  

Only a few studies from the earlier probability learning wave analyzed probability matching on an 

individual level (for adults, see Derks, 1962; for children, see Derks & Paclisanu, 1967; Jones & 

Liverant, 1960). But how is probability matching measured on an individual level beyond visually in-

specting graphical choice curves? Derks (1962) suggested quantifying a reasonable deviation from the 

underlying outcome probabilities, conditioned on the number of trials (i.e., the square root of the average 

reward probability when probability matching, multiplied by the number of trials). The probability of 

the more frequently reward option plus and minus the quantified deviation then serves as the upper and 

lower boundary, respectively, to classify probability matching behavior. Returning to the previous ex-

ample of predicting a green and red light turning on with probabilities  p1 = .7 and p2 = .3, respectively: 

The estimated deviation over N = 100 choice trials would be σ" = 4.58. Based on a criterion of plus and 

minus twice the estimated deviation around the base rate of a green light turning on (i.e., the high-
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probability option), a person would be categorized as a probability matcher if they predicted the green 

light on 61–79 out of 100 trials. 

Individual repeated choice behavior and probability matching has become the focus of more recent 

research since the early 2000s. Some of this later work moved away from experience-based probability 

learning paradigms and instead studied probability matching in descriptive tasks where outcome prob-

abilities were known beforehand or where participants indicated a strategy for several (hypothetical) 

trials rather than making trial-by-trial predictions (e.g., Gal & Baron, 1996; James & Koehler, 2011; 

West & Stanovich, 2003). Several definitions of individual probability matching are reported in the 

more recent literature: choosing the high-probability option according to its precise, objective frequency 

(James & Koehler, 2011; Koehler & James, 2010; West & Stanovich, 2003); choosing the high-proba-

bility option according to an individually varying frequency (Koehler & James, 2009); choosing the 

high-probability option within a binomial proportion 95% confidence interval (Saldana et al., 2022); 

comparison of probability matching model fits (Feher Da Silva et al., 2017; Plate et al., 2018); or choos-

ing the high-probability option according to its objective outcome probability plus or minus a fixed error 

margin, e.g., between 3–10% (Gaissmaier et al., 2016; Koehler & James, 2010; Newell & Rakow, 2007; 

Schulze et al., 2015; Schulze & Newell, 2016a, 2016b). In a nutshell, there is no gold standard for 

defining probability matching as an individual choice behavior. Thus, it is important to keep in mind 

that classification rules depend on researchers’ choices (both for probability matching and maximizing). 

Without being aware of possible (and sometimes considerable) differences in the definition and aggre-

gation level, comparing probability matching across studies may unintentionally result in a comparison 

of apples and oranges. 

Table A1 (experience-based paradigms) and A2 (descriptive paradigms) in Appendix A provide an 

overview of research reporting numeric proportions of participants who individually probability 

matched, alongside the respective task characteristics, sample size, and classification criteria for proba-

bility matching. Summing up this previous evidence, there are two main takeaways: First, probability 

matching is reported across a variety of tasks irrespective of whether people learn about outcome prob-

abilities from experience or description. Yet, not every person is best described by probability matching, 

and there are considerable differences across task implementations. Across different studies that either 

investigated the prevalence of probability matching contingent on task characteristics or actively tried 

to reduce this behavior, between 3–90% of participants are reported to probability match—leaving room 

for other choice behaviors such as random choice, overshooting, and maximizing. Second, the large 

variance in reported proportions of participants who probability match demonstrates the importance of 

contextual and methodological factors: for instance, definition criteria, if people perceived outcomes to 

be (in-) dependent, incentivization, time pressure, or number of trials. Particularly the length of an ex-

periment seems to affect probability matching behavior. People probability match less and make more 

maximizing responses as they become more experienced with the task and the number of trials increases 
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(e.g., Newell & Rakow, 2007; Otto, Taylor, et al., 2011; Schulze & Newell, 2016b; Shanks et al., 2002). 

What do these findings imply for why people probability match in the first place?  

 

1.2.2 Probability Matching: Fallacy or Phenomenon? 

Probability matching can arise from different underlying processes—some may be a mistake and 

others an adaptive response. In the following, I will describe two alternative views on probability match-

ing that either favor the view of a fallacy or a phenomenon. 

 

1.2.2.1 Fallacy  

The majority of research in favor of viewing probability matching as a shortcoming of the human 

mind is based on the dual-system account of cognitive processes (for a review, see Koehler & James, 

2014). The dual-system perspective argues that an automatic but error-prone response (i.e., probability 

matching) needs to be overcome by a slower, deliberate process to achieve optimal behavior (i.e., 

probability maximizing; for a review on the dual-system account, see Evans, 2008). Indeed, there is 

evidence that a higher proportion of maximizing responses is related to larger cognitive capacities, either 

on an individual level (Rakow et al., 2010; West & Stanovich, 2003) or as a result of pooled resources 

in groups (Schulze & Newell, 2016a). From a dual-process perspective, people have an initial tendency 

to probability match because this strategy comes to mind more readily (Koehler & James, 2009, 2010) 

but will eventually shift to probability maximizing with sufficient deliberation (Koehler & James, 2010; 

Newell et al., 2013). Higher strategy availability of matching compared to maximizing has been sug-

gested to result from people’s misperception of randomness and, specifically, their expectation of local 

representativeness (see previous section; Kahneman & Tversky, 1972). Recall that local representative-

ness describes the expectancy that any sub-sequence will hold the properties of the underlying generat-

ing mechanism (e.g., representative outcome probabilities or alternation rate of events in the sequence; 

see Bar-Hillel & Wagenaar, 1991; Reimers et al., 2018). In a coin tossing scenario, people would fail to 

consider that a higher number of coin tosses will increase the likelihood of heads and tails more closely 

approximating the underlying outcome probabilities. Consequently, they would instead expect even 

small samples to be representative of a long sequence (the law of small numbers; Tversky & Kahneman, 

1971). James and Koehler (2011) tested the hypothesis that people expect the frequency of outcomes in 

a short sequence (e.g., equally many heads and tails) to match their underlying probabilities in a descrip-

tive repeated choice task. They facilitated or inhibited sequence-wide expectations by introducing indi-

viduating features (e.g., framing the task as the same or different guessing games or asking participants 

to focus on the entire sequence instead of individual outcomes). Consistently with their hypothesis, they 

found that more people probability matched when the generation of sequence-wide expectations was 

promoted and concluded that probability matching is a mistake resulting from cognitive limitations and 

misperception of randomness (James & Koehler, 2011). But are sequence-wide expectations always a 

mistake? 
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1.2.2.2 Phenomenon 

Perceiving repeatedly occurring events as dependent could help to detect regularities in an outcome 

sequence. Autocorrelation or clumped resources in real-world environments may facilitate this process. 

Consider the following example: every fall, numerous people from Berlin collect mushrooms in the 

city’s outskirts. Next to a long road in a forested area, sometimes more and sometimes fewer cars are 

parked on the road bank. Perceiving these parked cars as dependent outcomes in a sequence (e.g., they 

belong to people collecting mushrooms and accumulate in areas with many mushrooms) could serve as 

a cue for where to search for mushrooms to maximize return. In other words, generating expectations 

about events in a sequence, either in space or time, could provide benefits when there are, in fact, pat-

terns to detect or dependencies to exploit. 

When making repeated choices, people may misapply adaptive expectations and strategies over-

learned from everyday life to laboratory environments where they are no longer appropriate (e.g., Green 

et al., 2010). This mismatch between theoretically adaptive behavior and the laboratory environment is 

the central argument for an ecologically rational approach to studying probability matching (Gaissmaier 

& Schooler, 2008; Green et al., 2010; Schulze et al., 2017; Seth, 2007). For instance, it has been argued 

that probability matching is related to people’s tendency to look for patterns in outcome sequences 

(Feher Da Silva et al., 2017; Gaissmaier et al., 2006; Gaissmaier & Schooler, 2008; Peterson & Ulehla, 

1965; Saldana et al., 2022; Schulze et al., 2020; Wolford et al., 2004). Participants who probability 

match in the absence of a pattern in a probabilistic outcome sequence have been found to be more likely 

to detect a pattern when there actually is one (Gaissmaier & Schooler, 2008; Schulze et al., 2020); in 

contrast, probability matching was observed to decrease in task environments when pattern search was 

more effortful (Saldana et al., 2022). Moreover, choice diversification close to probability matching has 

been found to provide an advantage over exclusively choosing one option in repeated choice tasks sim-

ulating characteristics of real-world choice ecologies, for instance, sequential dependencies (Schulze et 

al., 2017) or competition (Schulze et al., 2015; Seth, 2007). As uncertainty is inherent to many real-

world environments, probability matching could be related to people’s incomplete knowledge about the 

true nature of the generating process in an outcome sequence (Green et al., 2010). In particular, when 

outcome probabilities change over time or people do not receive full information about all options’ 

outcomes, exclusively selecting one option may prevent them from obtaining useful information (Feher 

Da Silva et al., 2017; Schulze et al., 2017). As a specific form of diversifying choices across options, 

probability matching facilitates exploration (Feher Da Silva et al., 2017) and has been linked to the use 

of a win-stay lose-shift heuristic (WSLS; Ellerby & Tunney, 2019; Otto et al., 2011; Schulze et al., 

2017). WSLS is a simple reward-sensitive choice rule that requires relatively few cognitive resources 

but entails exploratory benefits under uncertainty and is used by children, adults, and myriad animal 

species from albatrosses to bumblebees (Berman et al., 1970; Bonawitz et al., 2014; Bonnet-Lebrun et 

al., 2021; Maboudi et al., 2020; Scheibehenne et al., 2011; Spiliopoulos & Hertwig, 2020; Worthy et al., 

2012). 



 26 
 

Taken together, previous research on repeated choices shows that probability matching depends on 

both cognitive and contextual factors. It is safe to say that there is no single reason why a person will or 

will not probability match in a repeated choice scenario. Instead of being a strategy per se, probability 

matching can arise from different underlying (mal-) adaptive processes. However, the difficulty in de-

fining the circumstances under which people probability match also reflects an advantage. As a flexible 

behavior, matching outcome probabilities can guide repeated choices across numerous uncertain situa-

tions, allowing for exploration and exploitation of environmental structures. If probability matching is, 

indeed, a lesson learned from life, how early do children learn this lesson? In the next section, I will 

introduce previous research on the development of probability learning and repeated choice behavior 

across childhood.   

 

1.3 Probability Learning in Childhood 

Children are known to be capable statistical learners (e.g., Forest et al., 2023; Saffran & Kirkham, 

2018), but how do they learn to apply this knowledge to repeated choices? Most research on the devel-

opment of probability learning and repeated choice behavior dates back to the 1960s (e.g., Craig & 

Myers, 1963; Derks & Paclisanu, 1967; Jones & Liverant, 1960; Kessen & Kessen, 1961; Offenbach, 

1964; Rabinowitz & Cantor, 1967; Schusterman, 1963; Siegel & Andrews, 1962; Stevenson & Hoving, 

1964; Stevenson & Weir, 1959; Weir, 1964; Weir & Gruen, 1965). There are several parallels to the 

adult literature, for instance, frequent neglect of different aggregation levels (Lewis, 1966; Messick & 

Solley, 1957; Siegel & Andrews, 1962), but also the use of similar experience-based probability learning 

paradigms (e.g., predicting which light bulb will turn on; e.g., Derks & Paclisanu, 1967). Other earlier 

probability learning tasks designed for children typically relied on physical objects: token delivery ma-

chines in which children decide between two or three buttons and receive a token for a correct choice 

(e.g., Kreitler et al., 1983; Stevenson & Weir, 1959; Sullivan & Ross, 1970; Weir, 1964), a deck of cards 

showing different colors or objects (e.g., Messick & Solley, 1957; Offenbach, 1964), or boxes that prob-

abilistically contain objects (e.g., Moran & McCullers, 1979; Siegel & Andrews, 1962). Newer studies, 

in contrast, tend to rely on computerized versions of similar tasks (Plate et al., 2018; Starling et al., 

2018). In the following, I will provide an overview of the previous literature on the development of 

probability learning in childhood (aggregate and individual levels) and underlying strategies that chil-

dren have been suggested to rely on when making repeated choices (for more detailed reviews of the 

earlier literature, see Fischbein, 1975a; M. R. Jones, 1971). It is crucial to keep in mind that all previous 

work on the development of probability learning and repeated choice behavior relied on tasks where 

outcomes were independent and identically distributed. In these tasks, probability matching is a mistake, 

and exclusively choosing the high-probability option yields maximum rewards. 
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1.3.1 Probability Learning: A U-Shaped Function Across Development? 

A somewhat surprising finding in the developmental probability learning literature, on an aggregate 

level, is that younger children have been reported to make more high-probability choices than older 

children, claiming a U-shaped function between the rate of high-probability choices and age from early 

childhood to adulthood (Derks & Paclisanu, 1967; Sullivan & Ross, 1970; Weir, 1964; Winefield, 1980). 

The problem with this finding arises when asking what exactly younger and older children means. Some 

researchers reported that 3- to 4-year-olds are more likely than older children to choose the high-proba-

bility option (similar to adults; Derks & Paclisanu, 1967; Weir, 1964); others found 3- to 4-year-olds to 

be less likely to make high-probability choices than older children (Lewis, 1966; Messick & Solley, 

1957); and again, other researchers reported no difference (Offenbach, 1964). Moreover, it remains in-

conclusive if 5- and 6-year-olds are particularly likely or unlikely to make high-probability choices 

(Craig & Myers, 1963; Lewis, 1966; Messick & Solley, 1957; Sullivan & Ross, 1970; Weir, 1964; 

Winefield, 1980). However, some evidence shows that (pre-) adolescent children between 11 and 13 

years choose the high-probability option at a relatively low rate (Sullivan & Ross, 1970; Weir, 1962, 

1964). 

Summarizing these findings, the developmental pattern between high-probability choices in prob-

ability learning tasks is somewhat inconclusive. Despite mixed findings, there is more evidence in favor 

of young children being highly likely to make favorable high-probability choices than for the opposite 

assumption. However, it remains unclear when young children potentially transition from more to fewer 

maximizing responses. It is noteworthy that the tasks across these studies differed in some aspects, for 

instance, in the number of choice options or probability levels (e.g., p1 = 75% vs. p2 = 25%, or p1 = 66% 

vs. p2 = 0% vs. p3 = 0%). Nonetheless, only considering the most similar tasks does not fully reconcile 

findings (for an attempt at reviewing systematic differences between studies, see Jones, 1971). 

 

1.3.2 Of Maximizing Preschoolers and Matching Kids 

Much like in the adult literature, only few studies investigated the development of probability 

matching on an individual level (for an overview see Table A3 in Appendix A). Allowing for a 10% 

error margin around the outcome probability of the high-probability option (p  = .70),  Jones and Liver-

ant (1960) found that by the end of 100 trials, 20% of children aged 4–6 years, in contrast to 70% of 

children aged 9–11 years probability matched. Comparing choice behavior over the first and second half 

of a 200-trial choice task, Derks and Paclisanu (1967) reported that 38% of 3- to 4-year-olds probability 

matched over the first half of the task but only 3% in the second half. For older children between 8–10 

years, more than half of the children probability matched, and the proportion of probability matchers 

remained comparable across the experiment (Derks & Paclisanu, 1967). Children from 5–8 years were 

mostly undermatching or, in other words, choosing the high-probability option less than its objective 

probability (Derks & Paclisanu, 1967). In a probability learning task with eight different choice options, 
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Plate et al. (2018) found that 74% of children aged 6–8 years were best described by a model that as-

sumed initial probability matching before transitioning to overshooting or maximizing (over 200 trials); 

a probability-matching-only model better described 26% of children. This proportion of strict probabil-

ity matchers rose to 69% when outcome probabilities across options were less discriminable (Plate et 

al., 2018). Taken together, probability matching behavior in repeated choices tasks is already prevalent 

in childhood. However, the evidence is less robust for younger children below 5 years.  

Compared to probability matching, there is more research on probability maximizing across child-

hood. Maximizing is typically defined as either exclusively choosing the option with the highest out-

come probability (Stevenson & Weir, 1959) or choosing the high-probability option on at least 90% of 

the trials by the end of a task (e.g., Goldman & Denny, 1963; M. H. Jones & Liverant, 1960; Weir, 

1964). Evidence from several studies suggests that probability maximizing is more common in earlier 

than in later childhood: Across studies, approximately 50% and 70% of children between 3 and 6 years 

have been reported to maximize (Goldman & Denny, 1963; M. H. Jones & Liverant, 1960; Sullivan & 

Ross, 1970; Weir, 1964). The variability across children and studies might explain some of the incon-

sistencies on an aggregate level discussed before.  

Nevertheless, it may seem counterintuitive at first that young children regularly rely on behavior 

considered rational from an economic perspective, even though older children do not. It has been sug-

gested that younger children profit from lacking older children’s experience. For instance, older children 

may expect that there is a perfect solution to a probability learning task that allows to predict all out-

comes correctly (Baltes, 1987; Stevenson & Weir, 1963; Weir, 1962, 1964). To test if believing in a 

perfect solution affects children’s choice behavior, Weir (1962) instructed children either that a perfect 

solution exists or that the outcome sequence is random. Children, who were instructed that a perfect 

solution exists, gave more patterned responses (e.g., repeating left, middle, right choices) but were 

equally likely to make high-probability choices as other children. Although these findings cannot ex-

plain differences in maximizing behavior, they suggest that children’s expectations may influence strat-

egy use. An alternative perspective argues that children younger than 5 years rely on associative learning 

strategies but that their yet poorer response inhibition prevents them from switching between options 

(Derks & Paclisanu, 1967; S. J. Jones, 1970). Although the proposed relationship between response 

inhibition and maximizing in early childhood has not been tested, a large body of research on learning 

and executive function demonstrates considerable improvements across childhood compatible with this 

hypothesis (Garon et al., 2008; Tamm et al., 2002; White, 1965). Thus, probability maximizing in early 

childhood is rather viewed as a behavior requiring low-implementation effort, whereas probability 

matching in older children is thought to require more knowledge or experience with other task structures. 

Taken together, it seems that brain development and increasing real-world experiences may be equally 

important for the development of probability learning and repeated choice behavior, but researchers 

know yet very little about how these processes act in concert. 
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1.3.3 Roads to Diversification: Children’s Underlying Choice Processes 

Many roads lead to probability matching or choice diversification more broadly. What do we know 

about the choice processes underlying this behavior in childhood? Bogartz (1966) proposed that young 

children tend to apply simple rules to the single last choice or outcome (depending on what they still 

hold in memory), resulting in repetition or alternation behavior. In a probability learning task reinforcing 

every choice, 3-year-olds tended to persist with one option but 4- and 5-year-olds tended to alternate 

(Jeffrey & Cohen, 1965). Indeed, there is ample evidence that alternation tendencies increase in early 

childhood and are particularly strong for children between 5 and 6 years old (Craig & Myers, 1963; 

Derks & Paclisanu, 1967; S. J. Jones, 1970; Kessen & Kessen, 1961; Schusterman, 1963). Similarly, in 

the case of more than two choice options, circular behavior (e.g., choosing left, middle, right) is an often 

observed behavioral pattern in younger children (Gruen & Weir, 1964; Rabinowitz & Cantor, 1967) and 

has been suggested to be related to lower memory capacity (Kreitler et al., 1983). Indeed, a memory aid 

helped children to apply more complex alternation responses, such as double alternation (e.g., left, left, 

right; Balling & Myers, 1971). 

These simple rule-based strategies seem to evolve into reward-sensitive strategies with increasing 

age, for instance, win-stay lose-shift (Craig & Myers, 1963). This strategy entails choosing the same 

option again after a win and switching to the other option after a loss. Despite the simplicity of the rule, 

children differ in its implementation. For instance, Weir (1964) suggested that the ability to switch after 

a loss, in particular, improves with age (see also van den Bos et al., 2009). This finding, however, is not 

undebated. On the contrary, it has been argued that lose-shift serves as a default strategy in childhood 

that is overcome by better executive control (Berman et al., 1970; Ivan et al., 2018). In any case, the 

common ground of this research is that the use of a win-stay lose-shift heuristic improves with age. This 

is particularly evident when considering that younger children use this rule, but only older children from 

5 years adapt the strategy more optimally to the task (Schusterman, 1963). Investigating the fine-tuning 

of a win-stay lose-shift heuristic across development using computational modeling techniques that have 

proven useful in studying adult choice behavior (Otto, Taylor, et al., 2011; Schulze et al., 2017; Worthy 

et al., 2012) could provide new insights into how children use wins and losses to guide repeated choices. 

In sum, research on children’s choice processes in probability learning tasks suggests that they 

persist less with one option and diversify their choices more around preschool age. Maximizing less and 

diversifying more may benefit increasingly systematic exploration in childhood (Gopnik, 2020; Meder 

et al., 2021). Beyond cognitive development, there is evidence that task factors further drive increased 

exploration in probability learning tasks. For instance, Wittig and Weir (1971) found that 4- and 5-year-

old children chose the high-probability option less and diversified more when only partial feedback was 

provided or they had to select between more than two choice alternatives. In the case of more than two 

choice alternatives it seems to be a crucial factor for diversification that all options are probabilistically 

rewarded: Several studies reporting maximizing behavior in young children included three choice op-

tions of which only one was probabilistically rewarded (and the other two never; e.g., Stevenson & Weir, 
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1959; Weir, 1962, 1964). In sum, numerous unanswered questions remain about what kind of explora-

tion and choice strategies children rely on in probability learning across development, and how these 

strategies are influenced by environmental characteristics. Two chapters in this dissertation aim to fill 

this gap by using behavioral and computational modeling analyses to shed light on differences in strat-

egy use contingent on age, statistical structure of the environment, and testing modality (Chapters 2 and 

4).   

 

1.3.4 Limitations to Cross-Sectional Findings on the Development of Probability Learning 

It is important to consider a few limitations to previous research on the development of probability 

learning. So far, virtually all studies on the development of probability learning relied on cross-sectional 

study designs as a proxy for intra-individual change. More broadly, there are very few longitudinal 

investigations on the development of decision-making (but see Levin et al., 2007), and the field still 

needs to take advantage of the opportunity to disentangle between-person and within-person change. 

Under the assumption that gaining experience with statistical structures alongside improving cognitive 

abilities is important for adaptive decisions, a longitudinal analysis would be more appropriate to ad-

dress the question of developmental trajectories. Baltes (1987) suggested that a multidirectional process 

of concurrent gains and losses often characterizes ontogenetic development. Reviewing probability 

learning in early childhood as an example, he proposes that increasing experience with task structures 

(i.e., gain) can prevent older children and adults from performing at the same level as naïve younger 

children who probability maximize (i.e., loss; Baltes, 1987). When do young children, reported to max-

imize, develop the ability to diversify their choices? Does the transition from probability maximizing to 

matching in early childhood occur unidirectionally, or do children switch back and forth between strat-

egies?  

Moreover, considering that most research on this topic was conducted about 60 years ago, cohort 

effects might play a role compared to young children today. Indeed, the environment in which ontoge-

netic development takes place changes over time and can lead to considerable variability between per-

sons (i.e., history-graded influences; Baltes et al., 1980). Whereas the view on environmental influences 

on cognitive development became more popular over the years (e.g., Bronfenbrenner, 1979; Sameroff, 

2009), a thorough characterization of choice ecologies representative of children’s environments is yet 

missing (both then and now). Significant advancements in many areas of everyday life, from better 

nutrition to improved education in families and the schooling system (Lynn, 2009), provide the grounds 

to believe that environmental changes may have affected children’s everyday learning environments 

directly and cognitive development indirectly since the greater part of probability learning studies were 

conducted. 

In this dissertation, I investigate the intra-individual development of probability learning and re-

peated choice behavior in a two-year accelerated longitudinal study spanning the age ranges from 3.5 to 
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6.5 years (see Chapter 3). To advance the understanding of how individual differences in cognitive 

development interact in this process, I furthermore explore the relation between children’s choice be-

havior and developing executive functions. 

 

1.4 Individual Differences in the Development of Probability Learning: Executive Functions 

Previous research on the development of probability learning and repeated choice behavior sug-

gests considerable individual differences across childhood (for a review, see M. R. Jones, 1971). But 

how do individual differences arise? What are the cognitive building blocks underlying age-related 

changes in probability learning and repeated choice behavior? Whereas several cognitive factors, like 

working memory capacity, are regularly discussed as contributing to children’s flexibility in learning 

on a conceptual or theoretical level (e.g., Gualtieri & Finn, 2022), empirical analyses of such relation-

ships are yet largely missing. Previous findings on how cognitive resources relate to adults’ choice pro-

cesses can aid hypothesis generation on this topic, for instance, how cognitive capacities influence pat-

tern search, choice diversification, or maximizing (e.g., Gaissmaier et al., 2006; Rakow et al., 2010; 

Schulze et al., 2019). From an adaptive perspective on cognitive immaturity, it is crucial to keep in mind 

that cognitive constraints, facilitating exploration or learning in childhood, may lead to suboptimal be-

havior in adulthood. Consequently, the same constructs may not necessarily serve the same purpose 

across development. 

Cognitive functions that have been suggested to impact the development of repeated choice behav-

ior mostly relate to executive functions (EF). EF are viewed as a set of cognitive processes involved in 

performing complex tasks. Miyake and colleagues (2000) identify three intercorrelated components in 

their influential model: “[…] (a) shifting between tasks or mental sets, (b) updating and monitoring of 

working memory representations, and (c) inhibition of dominant or prepotent responses (p. 54)”. In the 

present research, I am focusing on working memory and response inhibition. There is an ongoing debate 

to what extent these components map to discriminable processes in childhood—yet, achieving a con-

sensus in increased differentiation across childhood and adolescence (Hartung et al., 2020; Huizinga et 

al., 2017; Lerner & Lonigan, 2014; McKenna et al., 2017; Reilly et al., 2022; Shing et al., 2010; Xu et 

al., 2013). Brain regions associated with EF are typically located in the prefrontal cortex (Delgado Reyes 

et al., 2020; Kwon et al., 2002; McKay et al., 2022; Tamm et al., 2002; Thompson-Schill et al., 2009) 

and adult-like structural brain networks are thought to be recruited from middle childhood on 

(Engelhardt et al., 2019; Kharitonova et al., 2012). Performance in tasks tapping into different EF pro-

cesses rapidly increases in preschool years, reflecting important developments of neural underpinnings 

(for reviews, see Fiske & Holmboe, 2019; Garon et al., 2008; Zelazo & Müller, 2002). Now, how can 

the development of EF in childhood help to explain behavioral differences in probability learning tasks? 
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1.4.1 Response Inhibition 

It has been suggested that the ability to inhibit a prepotent response contributes to more maximizing 

and persistence in young children’s repeated choice behavior (S. J. Jones, 1970). In the EF literature, 

response inhibition refers to a mechanism that suppresses an overlearned or dominant response (Zelazo 

et al., 2003). Improving significantly in early childhood (Garon et al., 2008), inhibitory mechanisms do 

not fully mature until late childhood or adolescence (Shing et al., 2010). Inhibiting prepotent responses 

has been linked to other constructs that may be relevant for early decision-making abilities, for instance, 

theory-of-mind (i.e., developing belief concepts; Carlson & Moses, 2001), search strategies (Baker et 

al., 2011; Ruggeri et al., 2019) and counterfactual reasoning (Beck et al., 2009; Kominsky, Gerstenberg, 

et al., 2021; but see, Buchsbaum et al., 2012). Evidence from adults’ reinforcement learning mechanisms 

suggests that better inhibition of prepotent responses may be related to model-based choice (Otto, 

Skatova, et al., 2011)—a more sophisticated reinforcement learning formalization that has been reported 

to increase across childhood and adolescence (for a review, see Bolenz et al., 2017). In sum, inhibitory 

control may be important for several processes affecting choice behavior in childhood. 

The cognitive demands associated with suppressing a prepotent response are thought to differ in 

complexity across tasks (Carlson & Moses, 2001; Hendry et al., 2022): For instance, delay-of-gratifica-

tion tasks (e.g., refraining from taking a marshmallow; Mischel et al., 1988) may require less control 

than interference-control tasks in which a person needs to suppress a prepotent response in favor of 

giving an alternative response instead (e.g., Stroop-like tasks; Stroop, 1935). However, the increased 

complexity of interference tasks often comes at the cost of requiring multiple EF processes simultane-

ously, leading to difficulties in measuring distinct components (discussed as task impurity; e.g., Miyake 

et al., 2000). The Stroop-like day–night task is an example of a child-friendly inhibitory task requiring 

different EF processes (Gerstadt et al., 1994). In this task, a child is presented with cards showing either 

a sun representing the day or a moon and stars representing the night. Under the assumption that children 

have the correct association with each card, the inhibition task requires children to say “day” when 

presented with the night-card and “night” when presented with the day-card. This task is thought to 

require inhibiting a prepotent response (i.e., the correct association), memorizing a new rule, and acting 

on a conflicting response (i.e., saying the opposite of the initial association).  

This more complex form of response inhibition may play a significant role in probability learning 

tasks. Whereas an immature mechanism could facilitate the repetition of choices—potentially beneficial 

in static repeated choice environments—more mature abilities could help to suppress the prepotent in 

favor of an alternative response—yielding an adaptive benefit in changing environments. Depending on 

the suppressed response tendency (e.g., repetition or alternation), improved inhibition may gradually 

allow for a larger set of possible strategies in probability learning tasks1. However, factor analyses 

 
1 Response inhibition and impulsivity are sometimes interchangeably used. Whereas impulsivity has been linked to probability 
matching behavior in habitual gamblers (Gaissmaier et al., 2016), impulsivity is not thought to be equivalent to motoric re-
sponse inhibition in risky choice in childhood (Rosenbaum et al., 2019), and it is advisable to view these distinct two distinct 
concepts. 
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showing that inhibition and memory tasks sometimes only load on a single EF factor in childhood (e.g., 

Shing et al., 2010; Xu et al., 2013) seem to suggest that response inhibition acts jointly with other pro-

cesses in shaping choice behavior. 

 

1.4.2 Working Memory 

There is yet less evidence for the role of working memory capacity in developing probability learn-

ing abilities, and it likewise remains a controversial topic in the adult literature. Children’s working 

memory capacity and development thereof are often evaluated in terms of Baddeley and Hitch’s influ-

ential model (Baddeley, 2000; Baddeley & Hitch, 1974). The model comprises a central executive, co-

ordinating and integrating information, and three systems storing a limited amount of information: the 

visuospatial sketchpad (primarily visual and spatial information), the phonological loop (verbal infor-

mation), and the episodic buffer (multidimensional information and interface to long-term memory; 

Baddeley, 2000). Performance in working memory tasks improves through childhood and adolescence 

(Best & Miller, 2010; Garon et al., 2008; Huizinga et al., 2017) and shows a robust relationship to fluid 

intelligence (Engel et al., 2010; Rosenberg et al., 2020).  

Increasing working memory capacity could enable children to become better decision-makers in 

two ways: first, improving storage for temporary information, and second, integrating this information 

more efficiently. For instance, higher working memory capacity has been positively related to 7- and 

10-year-olds’ performance in a proportional reasoning task (Ruggeri et al., 2018), suggesting a relation-

ship between working memory and evaluating frequencies. Moreover, increasing working memory ca-

pacity may be important for probabilistic feedback processing (van Duijvenvoorde et al., 2008) and 

efficiency in strategy use (Mata et al., 2011). Specifically, it has been suggested that working memory 

capacity and selective attention are closely related in childhood, allowing to differentiate between task-

relevant and irrelevant information (Plebanek & Sloutsky, 2019). The causality in this relationship is 

yet less clear. 

So far, there is only limited research on the role of working memory capacity and probability learn-

ing. Kreitler and colleagues (1983) investigated the association between 6- and 7-year-olds’ perfor-

mance in a serial recall task and choice behavior in a probability learning task. The authors found that 

children performing more poorly in the memory task were more likely to systematically alternate be-

tween options (i.e., a fixed response pattern like left, right, left, etc.). However, memory span was unre-

lated to high-probability choices. Kreitler and colleagues (1983) concluded that better memory of past 

outcomes is important for children to overcome simple response tendencies in favor of more effective 

strategies. Similarly, a memory aid has been reported to help children to adopt a more complex diversi-

fying strategy than simple alternation (Balling & Myers, 1971). Apart from working memory, other 

cognitive maturation processes may further enable children to diversify their choices and exploit envi-

ronmental structures. Recall that working memory capacity and fluid reasoning abilities show a robust 
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association in childhood (e.g., Engel et al., 2010). General cognitive capacities measured in intelligence 

tests revealed a negative relationship with high-probability choices in a standard probability learning 

task2 and a positive relationship in a repeated choice task with patterned outcome sequences in children 

aged 5–15 years (Goldman & Denny, 1963). Taken together, previous research indicates that improved 

information storage and integration capacity leads older children to diversify their choices more than 

younger children–potentially by testing new strategies and exploring hypotheses about the task. 

These findings relate to the idea that better working memory capacity enables adults to search for 

patterns in an outcome sequence (Gaissmaier et al., 2006; Wolford et al., 2004). If people search for 

patterns in a probability learning task (but fail to find one), they may choose the high-probability option 

less consistently than people who do not engage in pattern search (e.g., Gaissmaier et al., 2006; 

Gaissmaier & Schooler, 2008; Schulze et al., 2020). That said, evidence in favor of the relationship 

between working memory capacity and probability maximizing and probability matching remains in-

conclusive. Gaissmaier and colleagues (2006) found evidence for an association between memory span 

and high-probability choices in one experiment but a follow-up experiment showed somewhat different 

results. Similarly, Wolford and colleagues (2004) reported that performing a secondary task, simulating 

cognitive load, increases people’s likelihood to adopt a maximizing strategy. Yet, this result failed to 

replicate in a study with a larger sample size than in the original experiment, suggesting that probability 

matching is a robust choice behavior even under taxing conditions (Schulze et al., 2019). Consistently, 

another study found that adults were equally likely to probability match, irrespective of whether cogni-

tive resources were compromised or not (Otto, Taylor, et al., 2011). Again, many roads may lead to 

probability matching, but the underlying process may differ depending on the availability of cognitive 

resources (Otto, Taylor, et al., 2011). 

In sum, it seems plausible to assume that as working memory capacity increases, children improve 

in remembering and integrating outcome information more efficiently in a probability learning task. 

Although increased memory capacity is not robustly related to adults’ pattern search, the interaction of 

immature capacities unique to childhood may nevertheless favor exploratory tendencies. However, there 

are still several open questions. How are working memory capacity and probability learning related in 

children younger than 6 or 7 years? Does higher capacity create an advantage for early choice diversi-

fication? And more generally, regarding the role of executive function—do working memory capacity 

and response inhibition have a distinguishable effect on young children’s choice behavior beyond being 

a proxy for better information processing and cognitive control? These questions will be discussed as 

part of a longitudinal investigation on the intra-individual development of probability learning and re-

peated choice behavior in Chapter 3. 

 
2 This is the opposite of the relationship between general reasoning abilities and probability maximizing reported by other 
researchers for adult participants (Gal & Baron, 1996; Rakow et al., 2010; West & Stanovich, 2003). However, it has been 
suggested that these contrasting findings are related to differences in the task format, specifically whether trial-by-trial outcome 
feedback was provided (Rakow et al., 2010). 
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Although developing executive functions have been related to probabilistic reasoning in descriptive 

tasks (Ruggeri et al., 2018), even very young children and infants are known to have probabilistic intu-

itions early on in ontogenetic development (Denison & Xu, 2019; Schulze & Hertwig, 2021). These 

early intuitions may be important building blocks underlying the development of repeated choice strat-

egies. Although the two research streams have yet largely acted in parallel, both fields may profit from 

drawing connections between them. 

 

1.5 Probabilistic Reasoning in Childhood: A Precursor of Probability Learning? 

A central assumption underlying the development of probability learning and repeated choice be-

havior is that children are able to draw inferences based on probabilistic information. Consider the fol-

lowing task: An experimenter explicitly counts the number of blue and red marbles before putting them 

in a bag and shaking them thoroughly. The experimenter then asks the child to predict the color of a 

randomly drawn marble based on the known color distribution. This describes the basic procedure in 

one of the tasks that Piaget and Inhelder (1951) used in their seminal work on children’s probabilistic 

intuitions. From children’s verbal responses in this and other tasks, Piaget and Inhelder (1951) deter-

mined three stages of probabilistic reasoning abilities (in a nutshell): little to no understanding of chance 

and probability from 4 to 7 years, emerging probabilistic concepts from 8 to 10 years, and matured 

probabilistic reasoning abilities from 11 to 13 years. However, assessing probabilistic reasoning based 

on verbal protocols may systematically discount younger children’s preverbal abilities—one of the ma-

jor criticisms of Piaget and Inhelder’s work (see, e.g., Davies, 1965; Fischbein, 1975; Schlottmann & 

Wilkening, 2011). Indeed, there is robust evidence showing that infants are remarkable implicit statisti-

cal learners. For instance, statistical learning enables infants to extract structures in continuous linguistic 

input and infer the meaning of a new word (e.g., Romberg & Saffran, 2010; Saffran & Kirkham, 2018; 

Thiessen et al., 2019). This implicit statistical learning ability has been suggested to be fundamental for 

young children’s capabilities to make probabilistic inferences, and it is by now undisputed that preverbal 

probabilistic reasoning precedes verbal competencies (for reviews, see Denison & Xu, 2019; Forest et 

al., 2023; Schulze & Hertwig, 2021).  

As noted before, classic probability learning tasks typically employ a learning-from-experience 

format that does not require abstract statistical knowledge and allows for incremental updating of new 

information (for reviews, see Fischbein, 1975a; Vulkan, 2000). However, this causes the constraint that 

there is no clear separation between learning and choice. Consequently, numerous trials are necessary 

to provide sufficient opportunity to learn about the underlying probabilistic structure. This leads to the 

question of whether younger children behave differently than older children or adults because of differ-

ences in learning or the choice process. For instance, their limited attention span and smaller memory 

capacity may make it more difficult for children to remember previous outcomes and infer probabilistic 

information from feedback. 
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In research on probabilistic inferences in early childhood, in contrast, probabilistic information is 

often provided before requiring a response, as in the marble guessing task described above (see Denison 

& Xu, 2019; Schulze & Hertwig, 2021). Tasks regularly incorporate features from both descriptive and 

experiential learning formats (Schulze & Hertwig, 2021), for instance, sequential presentation of infor-

mation before the entire distribution is visible (Denison et al., 2013; Schulze & Hertwig, 2022) or ran-

domization processes emphasizing the probabilistic nature of a task (e.g., Girotto & Gonzalez, 2008; 

Téglás et al., 2007). Whereas a large body of research suggests that infants and young children are able 

to make predictions based on visually presented proportions and probabilities (e.g., Denison et al., 2013; 

Denison & Xu, 2010; Téglás et al., 2007), other researchers failed to find further supporting evidence 

and report that children use simple shortcuts rather than making sophisticated use of probabilities (e.g., 

Girotto et al., 2016; Lang & Betsch, 2018; Levin & Hart, 2003). However, there seems to be a consensus 

that reducing the cognitive demands inherent to a task facilitates children’s probabilistic reasoning, for 

instance, by using icon arrays instead of numerical descriptions (Gigerenzer et al., 2021; Ruggeri et al., 

2018; Schulze & Hertwig, 2022) or providing a memory aid (van Duijvenvoorde et al., 2012; but see 

Girotto et al., 2016).  

Until now, research on probability learning and in other developmental domains that require some 

form of probabilistic reasoning have largely acted in parallel despite sharing commonalities. For in-

stance, the concept of probability matching has been discussed in relation to language acquisition (for a 

review, see Montag, 2021) and to causal learning (Denison et al., 2013). Specifically, Denison and col-

leagues suggested that children sample outcomes from a possibility space according to their probability 

of being correct when inferring causal relationships. Consider the following example: there are 80% red 

marbles and 20% blue marbles in a bag. The authors’ sampling hypothesis suggests that either 80% of 

children will predict a randomly drawn marble to be red in a one-shot scenario or that children will 

predict red in 80% of repeated trials (Denison et al., 2013). Although there is some evidence for this 

hypothesis in one-shot scenarios, it still needs to be tested if the sampling hypothesis also holds true for 

repeated choices when outcome probabilities are known to children before making a choice.  

Many open questions at the intersection between children’s probabilistic inferences from known 

probabilities and risky choices still need to be addressed. When learning and choice are more clearly 

separated (e.g., either because probabilities are described or there is a dedicated information sampling 

phase; see observe-or-bet-task; Rakow et al., 2010; Tversky & Edwards, 1966), how do young children 

make repeated choices? Can child-friendly visually descriptive formats that keep some experiential fea-

tures (e.g., sequential presentation) improve young children’s repeated choice behavior, or does reduced 

experience disrupt their choice processes? Bridging research on probabilistic reasoning in other domains 

of cognitive development and probability learning might provide new insights into how children harness 

described probabilities to guide choice behavior. To address this gap, Chapter 5 will connect the sam-

pling hypothesis, probability matching, and repeated risky choices. 
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So far, I have discussed what still needs to be better understood in the development of probability 

learning and repeated choice behavior from a theoretical perspective. Nevertheless, the Covid-19 pan-

demic and its restrictions have shown that how this research is conducted is standing at a (virtual) cross-

roads and deserves a closer look from a methodological perspective. In the following section, I will 

provide an overview of recently increasing online data collection methods in developmental research 

and discuss how validation studies can provide new insights into child cognition beyond aiming to rep-

licate offline evidence.   

 

1.6 The Same but Different? Online and Offline Developmental Data Collection 

What may be considered standard in psychological research with adult participants is rather new 

when investigating cognitive development with child participants: Over the past few years, interest in 

remote data collection via the internet increased in developmental science (e.g., Scott & Schulz, 2017; 

Sheskin et al., 2020; Sheskin & Keil, 2018; Venkatesh, 2021). There is little doubt that this process was 

accelerated by the challenges the Covid-19 pandemic posed to researchers, for instance, closed labora-

tories and public testing locations like schools or museums. But beyond being a makeshift solution as a 

response to a pandemic, remote data collection has the potential to combat critical issues that the field 

is facing. For instance, a recent study using a machine learning approach to estimate replicability in 

psychology found that developmental psychology ranked lowest relative to selected other disciplines in 

their publications’ likelihood to replicate (Youyou et al., 2023). Indeed, it has been argued that devel-

opmental research needs to overcome underpowered studies to improve replicability (e.g., Byers-

Heinlein et al., 2022; Davis-Kean & Ellis, 2019). Using online data collection methods could help to 

solve this issue, in particular when using a design that does not rely on real-time interaction between a 

researcher and the participating family (asynchronous or unmoderated studies; Sheskin et al., 2020). As 

of January 2023, more than 5 billion people in the world are estimated to use the internet (which corre-

sponds to more than 60% of the current world population; DataReportal, 2023), offering the opportunity 

to reach more children and families than in-person testing might allow. Apart from increasing sample 

size, sampling bias towards western and industrialized populations has been recognized as a further 

limitation in developmental psychology (Nielsen et al., 2017). With well-planned recruitment schemes, 

online data collection could increase the diversity in samples on a smaller scale within cultures (e.g., 

social groups not regularly visiting museums or research-institution adjacent schools; see Bacon et al., 

2021) or on a larger scale across cultures to extend the potential implications of theories in developmen-

tal research (e.g., Zaadnoordijk et al., 2021). 

The technological opportunities seem endless, but we find ourselves yet at the very beginning. 

Before exploiting the benefits of online data collection, it is essential to validate its use in developmental 

research. Do results from offline conducted studies replicate in online studies, even with young children? 

There is, of course, great interest in proving that offline and online data collection methods are 



 38 
 

equivalent in the data quality and results they produce. Several best-practice papers, published within a 

short time, are guiding researchers in their implementation choices for online studies with young chil-

dren to achieve replicability of results (e.g., Gijbels et al., 2021; Kominsky et al., 2021; Segal & Moulson, 

2021; Shields et al., 2021). Evidence from studies addressing the validity of online collected data com-

pared to offline studies is somewhat mixed. Several studies reproduced the overall developmental pat-

tern, but young children’s performance in online tasks seemed to be slightly worse than in offline tasks 

(Chuey et al., 2021; P. M. Nelson et al., 2021; Schidelko et al., 2021; Scott et al., 2017; Sheskin & Keil, 

2018). On the one hand, it has been reported that infants in an online violation-of-expectation paradigm 

(Bacon et al., 2021) and children in verbal comprehension and matrix reasoning tasks (P. M. Nelson et 

al., 2021) performed better than children tested offline. On the other hand, some researchers found worse 

performance in a shape discrimination task in an online compared to an offline sample (Bochynska & 

Dillon, 2021) or performance at chance level in the online version of a second-order inference task 

(Lapidow et al., 2021). In sum, it seems that some paradigms or tasks may be better suitable for online 

testing with children than others. 

A preprint using a meta-analytic approach to evaluate the replicability of offline data in online 

studies reports a trend, yet non-significant, for effect sizes in online studies to be smaller than offline 

and concludes that online and offline data collection are comparable in child research (Chuey et al., 

2022). However, several critical issues have not yet been addressed that would improve a meta-analysis’ 

explanatory power3. For instance, the inclusion criteria for papers allowed a replication study to differ 

in their dependent measure across testing methodologies (e.g., preferential look instead of preferential 

touch; Chuey et al., 2022). Yet, it has been suggested that these different dependent measures may con-

tribute to discrepant findings in infant research and, thus, should not be used interchangeably (Denison 

& Xu, 2019). Moreover, previous evidence showing that online replicability seems to be contingent on 

the cognitive process studied or paradigm used was discounted but could provide stronger conclusions 

if integrated. 

Taken together, it still needs to be better understood how children differ across online and offline 

testing methodologies and how characteristics of each format may shape cognitive processes and be-

havior. In fact, it has not yet been investigated whether or how online and offline testing may affect 

children’s cognitive processes differently, contingent on characteristics of each format (e.g., social cues, 

temporal dynamics of feedback, etc.). In research on the development of imitation behavior, it is a well-

known finding that younger children show a deficit in learning from videos instead of in-person obser-

vation but that the quality of video learning improves with age (Guellai et al., 2022; Strouse & Samson, 

2021). This effect has been recently extended to the domain of spatial recall, showing that young chil-

dren are better searchers in a physical than in a digital task (Kirkorian & Simmering, 2023). It seems 

rather likely that the prevalence of online instruction and testing methods in developmental psychology 

 
3 For a recent comment on general concerns of interpretability in meta-analytic reviews, see Simonsohn et al. (2022). 
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will not decrease but increase in the foreseeable future (Sheskin et al., 2020). But instead of viewing 

failed online replications as a risk or threat to developmental science, it may rather be a chance to take 

a closer look at task or methodological characteristics and their interaction with children’s cognitive 

processes across development. How is children’s cognition affected by the characteristics of online and 

offline data collection? What (unintended) obstacles may arise for young children in online data collec-

tion? Chapter 4 takes a first step in this direction and explores how performance and strategy use differ 

when children participate in a probability learning task online via video chat or offline in person. 

 

1.7 Overview of the Dissertation 

In this dissertation, I examine the development of probability learning and repeated choice behavior 

in early childhood, considering ecological, cognitive, and methodological aspects. In four empirical 

chapters, I approach this topic from different angles concerning the interplay between the mind and the 

environment: the probabilistic structure of the environment, intra-individual developmental trajectories, 

executive functions, effects of the data collection method, and learning format. Each of the empirical 

chapters is written as a self-contained scientific article. 

Chapter 2 investigates how children from 3 to 11 years adapt their choice behavior to an ecologi-

cally plausible environment. To this end, I created a child-friendly probability learning task in which 

probabilities change as a function of prior choices. Compared to classic probability learning paradigms 

with static outcome probabilities, children from 6 years on showed signs of emerging adaptivity and 

benefitted from but were also constrained by their tendency to explore. Younger children, in contrast, 

showed yet less sensitivity to the environmental structure. Chapter 3 adds the unique perspective of 

intra-individual development to probability learning in early childhood. Using an accelerated longitudi-

nal design spanning the age ranges from 3.5 to 6.5 years, this chapter investigates the intra-individual 

development of probability matching and maximizing. Chapter 3 also explores the relationship between 

choice behavior and developing working memory capacity or response inhibition. Results demonstrate 

that between-person and within-person age variability play key roles in probability maximizing and 

matching, respectively. Moreover, developing executive functions seem to facilitate increasing choice 

diversification in middle childhood. Chapter 4 addresses how a recent shift toward online data collection 

in developmental research may affect 3- and 4-year-olds’ cognitive processes when performing a prob-

ability learning task. Observed decreases in performance toward the end of the task and qualitative dif-

ferences in the underlying cognitive process emphasize that the testing modality holds important impli-

cations for online conducted research. Chapter 5 examines how children between 3 and 7 years make 

repeated choices when learning outcome probabilities from description before making a choice, without 

additional trial-wise feedback. Results suggest that descriptive risky choice amplifies developmental 

differences observed in experiential probability learning tasks. Lastly, Chapter 6 provides a summary of 

key findings and a general discussion of the main empirical contributions, carving out theoretical and 

practical implications for future research. 
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2 | Emerging Adaptivity in Probability Learning:                                   
How Young Minds and the Environment Interact 

 

Abstract. Learning to make choices based on probabilistically occurring outcomes is an important chal-

lenge in early childhood, and children’s repeated choice behavior has long been studied in static proba-

bility learning paradigms. Yet in failing to take the statistical structures of real-world choice ecologies 

into account, previous studies may have underestimated children’s competencies. Taking an ecologi-

cally rational perspective, we investigated the development of adaptive choice diversification and prob-

ability matching over childhood. We compared the performance of children aged from 3 to 11 years (N 

= 362) with that of adults (N = 121) in a child-friendly probability learning task, implementing three 

different statistical environments as between-subjects conditions (one ecologically plausible dynamic 

condition and two static conditions). Although probability matching was already seen in the 3–4-year 

age group, children only adaptively diversified choices in the ecologically plausible condition from age 

6 years onward. Children showed a stronger tendency for exploration, whereas adults were better able 

to overcome this tendency in favor of exploitation. Moreover, in line with previous work, we found that 

young children were highly persistent in their choices, irrespective of whether they maximized reward 

or not. Computational modeling results revealed that children adapted which strategy they used to the 

environment but that adults held an advantage in how they fine-tuned a strategy. Our findings have 

implications for future research on the development of ecologically rational decision-making and con-

tribute to the discussion on the adaptive functions of cognitive immaturity.  

 

2.1 Introduction 

Putting all of one’s eggs in one basket is not generally considered wise: It is simply too risky to 

commit all available resources to a single option. In the context of repeated choices, however, choice 

diversification—that is, putting one’s eggs in different baskets—has long been viewed as irrational be-

havior resulting from cognitive limitations (for reviews, see Koehler & James, 2014; Newell & Schulze, 

2017; Vulkan, 2000). Consider the following scenario: A wheel of fortune has seven blue and three red 

segments. A person receives a fixed payment for correctly predicting the color of the next spin. To 

maximize the probability of making correct predictions over many consecutive spins, the person should 

predict blue every time. When making repeated choices, however, people often probability match, pre-

dicting each color according to its underlying probability of being drawn (i.e., predicting blue in seven 

and red in three out of ten spins; e.g., James & Koehler, 2011; Newell & Rakow, 2007; Schulze et al., 

2017; Shanks et al., 2002; West & Stanovich, 2003). In this scenario, the expected payoffs of probability 

matching are lower than those of probability maximizing, that is, choosing the option with the highest 

outcome probability every time. In other words, when making repeated bets on a wheel of fortune, it 

makes sense to put all of one’s eggs in one basket.  
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There is, however, a striking mismatch between spinning a wheel of fortune and everyday choice 

situations. Whereas many established repeated choice paradigms assume stationary probabilities 

throughout a task (for a review, see Vulkan, 2000), the probabilities of outcomes in real-world situations 

may be clumped, autocorrelated, or sequentially dependent—and they are often learned from feedback 

rather than description (e.g., Ayton & Fischer, 2004; Fawcett et al., 2014; Groß et al., 2008; 

Scheibehenne et al., 2011). Choice diversification strategies—like probability matching—can reflect an 

adaptive response to these statistical structures in real-world, dynamic environments (Schulze et al., 

2017).  

 

2.1.1 Ecologically Rational Probability Matching 

The mismatch between laboratory and real-world environments is a central critique of ecologically 

rational perspectives on probability matching (e.g., Feher Da Silva et al., 2017; Gaissmaier & Schooler, 

2008; Schulze et al., 2015, 2017, 2020; Seth, 2007). Ecological rationality emphasizes the fit between 

the human mind and the environment, providing a framework for studying the mind’s ability to adapt 

to the statistical structures of the environment (e.g., Hertwig et al., 2022; Todd & Gigerenzer, 2007, 

2012). From this perspective, probability matching may not be good or bad per se but can deliver adap-

tive benefits under certain conditions. For instance, studies have shown that probability matching may 

be particularly profitable in environments where people, animals, or artificial agents compete for re-

sources (e.g., Schulze et al., 2015; Seth, 2007), that it evolves in noncompetitive environments as a 

result of near-optimal reinforcement learning (Niv et al., 2002), and that it facilitates the detection of 

patterns in outcome sequences (Gaissmaier et al., 2016; Gaissmaier & Schooler, 2008; Schulze et al., 

2020).  

Indeed, statistical regularities in outcome sequences may play a key role in shaping the learning 

and choice processes underlying probability matching. For instance, a Bayesian learning model incor-

porating beliefs about the temporal dependency of outcomes approximates probability matching when 

aiming to maximize outcomes (Green et al., 2010). Similarly, choice diversification strategies close to 

probability matching may be adaptive in exploiting sequential dependencies between choices and out-

comes (Schulze et al., 2017). Such sequential dependencies can arise, for instance, when rewards that 

are not collected remain available over multiple trials in an outcome sequence, which simulates an eco-

logically plausible resource depletion mechanism (see Jensen & Neuringer, 2008). Creating an analo-

gous task structure, Schulze et al. (2017) showed that people learned to adaptively diversify their choices 

in response to the dependencies in the environment. That people bring expectations about choice–out-

come dependencies learned in the real world to laboratory environments was suggested in the early 

stages of probability learning research (Tolman & Brunswik, 1935). However, surprisingly little is yet 

known about how and when people develop strategies adapted to the statistical structure of real-world 

environments. If adaptive choice diversification strategies like probability matching are habits learned 

in everyday life, then how much life experience is needed for them to emerge? 
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2.1.2 Development of Probability Learning 

Learning to make choices based on probabilistically occurring outcomes is an important compe-

tence for children to acquire—for instance, which book will be most fun to read or which sibling will 

be more likely to share their candy. However, the task structures implemented in previous studies on the 

development of probability learning may misrepresent children’s experience with typical choice ecolo-

gies and, consequently, systematically underestimate their competencies (for a similar argument in the 

domain of active learning, see Ruggeri, 2022).  

The development of repeated choice behavior has been studied in children from about 3 years of 

age across numerous standard probability learning paradigms with stationary outcome probabilities: 

predicting which light will turn on next (Craig & Myers, 1963; Derks & Paclisanu, 1967), which button 

will deliver a token (Gruen & Weir, 1964; Stevenson & Hoving, 1964; Stevenson & Weir, 1959; 

Sullivan & Ross, 1970), or under which rock in a computerized task a coin is hidden (Plate et al., 2018). 

Typically, these tasks require children to learn about outcome probabilities from feedback rather than 

description. For instance, one light turns on in 75% of the trials (i.e., the high-probability option) and 

the other in the remaining 25% of trials (i.e., the low-probability option; Derks & Paclisanu, 1967).  

To date, research investigating the development of probability learning and repeated choice behav-

ior reveals mixed findings, with some developmental patterns supported by stronger evidence than oth-

ers. First, children under 5 years are regularly found to maximize probability (e.g., Derks & Paclisanu, 

1967; Goldman & Denny, 1963; M. H. Jones & Liverant, 1960; Weir, 1964). However, the proportion 

of young children persisting with this behavior varies across tasks, leading to inconsistencies on an 

aggregate level. The developmental literature suggests that instead of arriving at maximization by de-

liberation—as reported for adults (Koehler & James, 2010; Newell et al., 2013)—young children, in 

whom cognitive control and response inhibition are not yet developed, use maximizing as a low imple-

mentation-effort strategy (Derks & Paclisanu, 1967; S. J. Jones, 1970). Second, school-aged and pread-

olescent children commonly diversify choices by probability matching (Derks & Paclisanu, 1967; M. H. 

Jones & Liverant, 1960; Plate et al., 2018), leading some researchers to assume a U-shaped function 

between high-probability choices and age (e.g., Derks & Paclisanu, 1967; Sullivan & Ross, 1970; Weir, 

1964; Winefield, 1980). The width and turning point of this U-function are debated, however: It remains 

somewhat unclear at what age the transition from probability maximizing to probability matching occurs. 

It has been suggested that this transition represents a trade-off between gains and losses in cognitive 

development (Baltes, 1987): With increasing cognitive capacities and experience, children pursue new 

optimization strategies that may occasionally prove a poor fit to the environmental structure.  

From the perspective of ecological rationality, the increase in choice diversification over childhood 

might reflect children’s growing experience with the statistical structures of a world in which it is often 

not advisable to put all one’s eggs in one basket. It has been suggested that human childhood, with its 

extended period of immaturity relative to other mammals, accommodates significant brain changes and 

facilitates the development of a diverse set of search and inference strategies (Gopnik, 2020; Gopnik et 
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al., 2017; Ruggeri, 2022). Indeed, some cognitive limitations inherent to childhood have been suggested 

to enhance learning (e.g., Bjorklund, 2018; Bjorklund & Green, 1992; Gopnik et al., 2017). Moreover, 

childhood is seen as a period of exploration during which children are particularly flexible learners, 

gathering and testing new information about the environment (e.g., Blanco & Sloutsky, 2020; Giron et 

al., 2022; Gopnik et al., 2017; Nussenbaum et al., 2022; Schulz et al., 2019). This could equip them to 

uncover features of the environment (Gopnik, 2020; Liquin & Gopnik, 2022) and to use environmental 

conditions as cues for adaptive strategies (Fawcett & Frankenhuis, 2015; Frankenhuis et al., 2019). How 

children learn to adapt their choice strategies to the specifics of the environment and how much experi-

ence with typical choice ecologies is required to shape this process remains incompletely understood. 

In this article, we provide new insights into these questions by testing how children adapt to a dynamic 

probability learning task that simulates an ecologically plausible environment. Additionally, we com-

pare children’s choices in this dynamic environment to their choices in a static environment under dif-

ferent outcome probabilities, and we use computational cognitive modeling to investigate the develop-

ment of the cognitive mechanisms underlying adaptive probability learning.  

 

2.1.3 The Present Study 

Drawing a connection between research on ecologically rational probability matching in adulthood 

and research on the benefits of cognitive immaturity in childhood (see Bjorklund & Green, 1992; 

Gaissmaier & Schooler, 2008; Gopnik, 2020; Green et al., 2010; Schulze et al., 2017), we investigated 

the development of adaptive probability matching and choice diversification from early childhood to 

adulthood. To this end, we contrasted an ecologically plausible dynamic choice environment with clas-

sic stationary probability learning paradigms. On the basis of previous research investigating probability 

learning and exploration strategies (e.g., Derks & Paclisanu, 1967; Gopnik et al., 2015, 2017; Schulz et 

al., 2019; Weir, 1964), we identified the age range between 3 and 11 years as a critical period for the 

development from persistent to more diversified choice behavior. To compare probability learning in 

early, mid-, and late childhood, we examined the age groups 3–4 years, 6–7 years, and 9–11 years (see, 

e.g., Gopnik et al., 2017).  

In the context of a child-friendly task requiring repeated choices between two options, we imple-

mented three different statistical environments as between-subjects conditions. The static high condition 

reflected classic probability learning paradigms (e.g., Derks & Paclisanu, 1967; M. H. Jones & Liverant, 

1960; Siegel & Andrews, 1962). In this condition, the high-probability option yielded a reward in 70% 

of trials; the low-probability option in 30% of trials. One way in which this statistical structure differs 

from many real-world environments is that rewards that are not immediately collected disappear. In 

everyday life, in contrast, resources often remain available for some time before disappearing due to 

maturation, competition, or other decay processes (see Jensen & Neuringer, 2008). For instance, parents 

will keep on offering food to a child for some time before removing it; a child can choose to go on the 

swing at the playground until another child occupies it; and the more a toy is used the sooner it will run 
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out of battery. Consequently, the probability of obtaining a desired outcome may change over time and 

as a function of prior decisions. As children gain more experience with environments in which resources 

remain available for some but not all of the time, they may become more efficient in exploiting this 

structure. The ecologically dynamic condition in our study simulated dynamically changing probabilities 

as a function of prior decisions. In this condition, outcomes were initially scheduled to occur with prob-

abilities of 70% and 30% for the high- and low-probability option, respectively, but rewards remained 

available over subsequent trials until collected (Ellerby & Tunney, 2019; Schulze et al., 2017). A side-

effect of this dynamic reward-hold mechanism is that the options’ reward probabilities can converge—

or even flip—over time, making the options less discriminable. In the static random condition, both 

choice options were equally likely to yield a reward. This condition allowed us to compare choice be-

havior in two conditions with less discriminable outcome probabilities and to explore whether young 

children persist in their choices even in the absence of a favorable option. 

Given previous research indicating that young children are more likely to probability maximize 

than older children (e.g., Derks & Paclisanu, 1967; Weir, 1964), we might expect the youngest age group 

to maximize more than 6- to 11-year-olds, irrespective of the environment and at a similar rate as adults. 

If 3- to 4-year-olds engage in probability maximizing as a satisficing, low implementation-effort strategy, 

we can expect the proportion who persist with this behavior to remain constant over conditions. Yet it 

is also conceivable that even young children can adapt to a dynamic environment. Indeed, infants show 

sometimes surprising capabilities for statistical learning and inference (for reviews, see Denison & Xu, 

2019; Forest et al., 2023; Schulze & Hertwig, 2021), enabling them to extract patterns from sequential 

input and thus to master key developmental milestones, such as language acquisition (Romberg & 

Saffran, 2010). From this perspective, even a small amount of experience with environments in which 

sequential dependencies are regularly encountered may suffice to help young children adaptively diver-

sify their choices, which would be reflected in probability matching in the ecologically dynamic condi-

tion.  

We expected that—as they grow older and gain more experience with real-world environments, 

and as continued brain development allows them to become more directed explorers—children become 

more effective in adapting their choice behavior to an ecologically plausible environment. We therefore 

hypothesized that older children (i.e., 6- to 7- and 9- to 11-year-olds) mainly diversify their choices in 

line with probability matching—particularly in the ecologically dynamic condition, where expectations 

about dynamic probabilistic structures learned in the real world are beneficial and not misleading. Lastly, 

we expected to replicate findings from a similar study with adult participants showing adaptive diversi-

fication in response to a reward-hold condition (Schulze et al., 2017). 

Because choice diversification and probability matching can result from different cognitive pro-

cesses, we complemented our behavioral analyses with a computational modeling approach that made 

it possible to explore the development of the cognitive processes underlying repeated choice behavior. 

Specifically, this approach allowed us to pinpoint the cognitive mechanisms on which children and 
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adults differ, and to investigate whether they use different diversification strategies depending on the 

statistical structure of the environment.  

 

2.2 Method 

2.2.1 Participants 

We recruited 381 children from three age groups (3–4 years, 6–7 years, and 9–11 years) and 121 

adults to participate in the experiment. The sample size was determined before recruitment via a power 

analysis based on the effect sizes reported in studies examining adult behavior in similar tasks (e.g., 

Schulze et al., 2017).4 A total of 18 3- to 4-year-olds and one 6-year-old terminated the experiment 

prematurely and were excluded from data analysis. The final sample consisted of 120 children aged 3–

4 years (M = 4.07 years, SD = 0.56 years, 48% female), 121 children aged 6–7 years (M = 6.92 years, 

SD = 0.56 years, 58% female), 121 children aged 9–11 years (M = 10.15 years, SD = 0.78 years, 55% 

female), and 121 adults (M = 26.23 years, SD = 5.99 years, range 18–51 years, 52% female; see Table 

B1 in Appendix B for age distribution per experimental condition). 

The experiment and procedure were reviewed and approved by the institutional review board of 

the Max Planck Institute for Human Development. Data collection took place from December 2019 to 

April 2022, with interruptions because of the Covid-19 pandemic. Most participants were tested at the 

Museum für Naturkunde and Zoo Berlin; due to Covid-19 restrictions, some participants had to be tested 

in the behavioral lab at the Max Planck Institute for Human Development. The two static conditions 

were run simultaneously, with participants being randomly assigned to a condition. Data for the dynamic 

condition were collected subsequently. Adult participants and parents of minor participants gave written 

consent prior to the study. Children were additionally asked for verbal consent at the beginning of the 

task. Every session was recorded on video.5 Adults received a performance-based payment of 1 EUR 

for every 10 correct choices; children received one sticker for every 10 correct choices. Parents of chil-

dren tested at the behavioral lab additionally received 15 EUR as an expense allowance. 

 

2.2.2 Design 

We implemented three probabilistic task structures as between-subjects conditions in a probability-

learning task in which participants made repeated choices between two options. The options’ reward 

probabilities were not explicitly stated but needed to be learned from trial-wise feedback. In the static 

high condition, one option delivered a reward in 70% of trials and the other in 30%; the placement of 

 
4 Specifically, we entered the results reported in Schulze et al. (2017) as proportions in a Fisher’s Exact Test between two 
independent groups in G*Power (Faul et al., 2007) to compute the sample size necessary to detect effects with a power of .8 
and significance criterion α = .05. Anticipating somewhat noisier behavior in children, we rounded up the required 34 partici-
pants per condition and age group to 40 participants. 
5 Sessions were recorded for child protection reasons; the video data will not be evaluated here. To protect participants’ privacy, 
the recording showed only their hands and the tablet. Participants gave explicit consent for the video data to be collected.  
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the high-probability option (left or right) was randomized across participants. In the static random con-

dition, each option delivered a reward in 50% of trials. In both static conditions, rewards at each option 

were mutually exclusive and had to be collected immediately.  

To create an ecologically plausible environment, we implemented a reward-hold mechanism (see 

also Ellerby & Tunney, 2019; Schulze et al., 2017). This mechanism mimics choice situations in which 

an uncollected reward is not lost immediately. For instance, a parent may offer their child a snack of 

carrot sticks. A child who prefers orange slices may ask for these instead, knowing that this request will 

only occasionally be successful. But even if it is denied, the carrot sticks will remain available. And 

even if orange slices are provided, the child may still get the carrot sticks afterwards too. Thus, in the 

ecologically dynamic condition, rewards were initially scheduled to occur at one option in 70% of trials 

and at the other option in 30% of trials, but were not mutually exclusive: one option, both options, or no 

option could deliver a reward at any trial.6 However, a reward that was scheduled to occur but was not 

collected immediately remained available over the following trials until collected (see Figure 2.1), but 

rewards did not accumulate (in the same way as the number of carrot sticks available does not increase 

while a child campaigns for orange slices). Hence, the actual outcome probability at any trial depended 

on both the programmed probabilities and participants’ prior choices. Consequently, an option’s out-

come probability could increase over trials while it was not selected (see Jensen & Neuringer, 2008; 

Schulze et al., 2017). 

In this environment, a strategy that approximates probability matching (e.g., several high-probabil-

ity choices followed by a single low-probability choice) outperforms persistent choice (for exact com-

putations, see Table 1 in Schulze et al., 2017).  

 

2.2.3 Material and Procedure 

We developed a tablet-based7 and child-friendly repeated choice task with 100 trials in which es-

caped zoo animals were hiding behind two houses (i.e., the choice options). The experiment was imple-

mented in the jsPsych framework (Leeuw, 2015) with custom-built functions. At the beginning of the 

task, an experimenter showed one of two laminated sheets displaying 50 out of 100 escaped zoo animals. 

This procedure ensured that all participants understood that many animals needed to be found without 

revealing the total number of trials. Adults completed the task by themselves, reading the instructions 

on the tablet; children were instead instructed verbally. The experimenter presented the child with the 

tablet showing two identical drawings of houses side by side (Figure 2.1A) and explained that they 

needed to find as many escaped animals as possible by guessing behind which of the houses an animal 

 
6 We simulated different choice behaviors (e.g., win-stay lose-shift, ratios of choosing the high- and low-probability option) in 
the ecologically dynamic condition with and without mutual exclusivity. Because some diversification strategies did not out-
perform persistent choice under mutual exclusivity, we implemented the condition without mutually exclusive rewards to in-
crease the profitability of diversification.   
7 We used Lenovo Tab2 A10-30 tablets with a screen resolution of 1280 × 800 px. 
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was hiding. Children were familiarized with the symbols displayed in two practice trials—one pro-

grammed to show a correct choice (Figure 2.1B); the other to show an incorrect choice (Figure 2.1C). 

In the ecologically dynamic condition, children completed a third practice trial in which there was an 

animal hiding behind each house (Figure 2.1D). Here, the experimenter explained that only one animal 

can be found per trial, even when two animals are later revealed on the screen. After children had made 

a choice by tapping on the tablet, a feedback screen showed where the animal was hiding, a hand symbol 

indicated the chosen option, and a checkmark or cross at the top of the screen marked whether the choice 

was correct or incorrect. Both houses were rendered transparent to provide full feedback about the out-

comes of both the option chosen and the other option. At the top left of the screen, one-tenth of a blue 

circle was added for every correct choice. For every full circle, children received a blue token that they 

could later exchange for stickers. Before the task, children were encouraged to look through the sticker 

box for stickers they liked. 

 

Figure 2.1  

Repeated Choice Task: Choice and Feedback Screens 

Note. (A) Choice screen in all three conditions; (B) Feedback screen for a correct choice in all three 

conditions; (C) Feedback screen for an incorrect choice in all three conditions; in the ecologically dy-

namic condition, the reward remains on hold; (D) Feedback screen in the ecologically dynamic condi-

tion; the animal on the right is on hold. 

 

Following the practice trials, participants completed 100 trials. To keep children interested in the 

task, the experimenter announced the name of each animal in a neutral tone and handed out a blue token 

after every ten correct choices. To gauge how well participants understood the task, we subsequently 

asked participants to indicate behind which of the two houses more animals were hiding and to use a 

response slider to give a numerical estimate of how many animals were hiding behind each house. The 

slider restricted numerical estimates to add up to a total of 100. Participants were then asked to explain 

A B 

C D 
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how they made their choices and to provide information about their age, gender, and education level.8 

Lastly, children were encouraged to exchange their blue tokens for stickers, and parents of minors tested 

in the laboratory as well as adult participants were paid in cash.  

 

2.3 Results 

2.3.1 Behavioral Results 

We first analyzed general persistence in terms of choices of the participant’s preferred option across 

our three experimental conditions—irrespective of whether that option maximized probability or not—

to investigate general persistence. We then investigated whether this choice behavior implied probability 

learning in the static high and ecologically dynamic conditions. Finally, we classified individual partic-

ipants’ responses as either probability matching or probability maximizing and report their ability to 

identify the high-probability option after completing all trials. All behavioral analyses were conducted 

in R (R Core Team, 2023). We used the afex package to estimate mixed models (Singmann et al., 2022) 

and the emmeans package for follow-up tests (Lenth, 2022). 

 

2.3.1.1 Aggregate Choice Behavior 

Persistence. To compare behavior across the three conditions, we calculated how many times a 

participant chose each option and defined the option they chose more frequently as their preferred option. 

This measure allowed us to investigate persistence irrespective of the reward structure and to compare 

behavior in the ecologically dynamic condition to the static random condition where probabilities (could) 

converge. Table 2.1 shows the proportion of participants whose preferred option was also the high-

probability option in the static high and ecologically dynamic conditions. 

 

Table 2.1 

Proportion of Participants Whose Preferred Option Was Also the High-Probability Option by Condition 

and Age Group 

 

 

 

 

 

 

 
8 Because young children had difficulties with using the slider to give a numerical estimate and answering the strategy question, 
we do not analyze these data here. 

 Condition 

Age group Static high Ecologically dynamic 

3–4 years .77 .66 

6–7 years .95 .90 

9–11 years .95 .95 

Adults .90 .90 



 61 
 

To examine if children and adults prefer one option irrespective of whether this option maximizes 

reward, we estimated a mixed model to investigate participants’ likelihood to choose their preferred 

option as a function of trial block (five blocks of 20 trials), condition (static high vs. static random vs. 

ecologically dynamic), age group (3- to 4-year-olds, 6- to 7-year-olds, 9- to 11-year-olds, adults), and 

the interactions between age group and condition as well as age group and trial block (all included as 

fixed effects). We used a logit link function accounting for the binary nature of the dependent variable 

(choosing the preferred option or not). Individually varying intercepts reflected the random effects struc-

ture, capturing that each participant made 100 choices. Figure 2.2 shows the fitted means and 95% con-

fidence intervals derived from the mixed model for each age group and condition, averaged across trial 

blocks.  

 

Figure 2.2 

Preferred Option Choices by Age Group and Condition 

 

Note. Estimated probability of a participant choosing their preferred option by condition and age group 

averaged across trial blocks based on the mixed-model analysis. Error bars represent the 95% confidence 

interval. 

 

First, we found a main effect of trial block, χ2(4) = 132.56, p < .001, as well as an interaction 

between age group and trial block, χ2(12) = 24.72, p < .05, indicating that, on average, participants 

increasingly tended to choose their preferred option over time. However, this effect was strongest for 

the youngest age group.  

Indeed, age played an important role in general persistence. Averaging across conditions and trial 

blocks, we found that the likelihood of a participant choosing their preferred option differed as a function 

of age group, χ2(3) = 59.48, p < .001. Tukey-corrected pairwise contrasts between age groups showed 

that 3- to 4-year-olds were more likely than any other age group to choose their preferred option: Aver-

aged across trial block and condition, 3- to 4-year-olds chose their preferred option more often than 6- 
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to 7-year-olds (z = 6.45, p < .001), 9- to 11-year-olds (z = 7.16, p < .001), or adults (z = 4.64, p < .001). 

Older children (6+ years) and adults did not differ in terms of choice of their preferred option (all ps 

> .05).  

Furthermore, we found a significant main effect of condition, χ2(2) = 32.96, p < .001, reflecting 

that, across trial blocks and age groups, participants were not equally likely in every condition to choose 

their preferred option. Tukey-corrected pairwise contrasts between conditions—averaged across age 

groups and trial blocks—showed that participants in the static high condition were 1.26 times more 

likely to choose their preferred option than participants in the ecologically dynamic condition (z = 3.43, 

p < .01), and 1.48 times more likely to choose their preferred option than participants in the static random 

condition (z = 5.86, p < .001); participants in the ecologically dynamic condition were 1.18 times more 

likely to choose their preferred option than participants in the static random condition (z = 2.43, p < .05). 

Thus, participants were, on average, most likely to revisit their preferred option—and least likely to 

diversify—in the static high condition, followed (in descending order) by the ecologically dynamic con-

dition and the static random condition. These findings reflect that there is a sweet spot in the ecologically 

dynamic condition between persistence and diversification. However, the interaction between age group 

and condition, χ2(6) = 16.41, p < .05, indicates that older children and adults adapted their persistence 

to the statistical structure of the environment more effectively than younger children: Children from 6 

years and adults were less likely to persist with one option when high persistence was less beneficial 

(i.e., in the static random and ecologically dynamic conditions, respectively; see Figure 2.2). In contrast, 

3- to 4-year-olds tended to persist with one option irrespective of whether or not it maximized reward. 

 

Probability Learning. However, analyzing preferred option choices does not provide full insight 

into the learning of underlying probabilities, nor whether people probability match or maximize. Diver-

sification, like probability matching, yields higher average reward probabilities in the ecologically dy-

namic condition whereas probability maximizing is more beneficial in the static high condition. In the 

static random condition, it makes no difference whether a participant sticks exclusively to one option, 

diversifies their choices, or chooses at random: All choice behaviors lead to the same average reward 

probability. We therefore focused on the static high and ecologically dynamic conditions to address the 

research question of how much life experience is needed for adaptive choice diversification to emerge.  

We estimated a mixed-effects model to predict probability learning by trial block (five blocks of 

20 trials), condition (static high vs. ecologically dynamic), age group (3- to 4-year-olds, 6- to 7-year-

olds, 9- to 11-year-olds, adults), and the interactions between age group and condition as well as age 

group and trial block. We used a logit link function to account for the binary dependent variable (choos-

ing the high probability option or not) and implemented individually varying intercepts as a random 

effects structure to capture that multiple choices were made by the same individuals. Figure 2.3 shows 

the estimated probability of choosing the high-probability option per block of 20 trials and age group in 

the static high and ecologically dynamic conditions.  
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We found a significant main effect of condition, χ2(2) = 14.76, p < .001, reflecting that, averaged 

across trial blocks, participants in the static high condition made more choices of the high-probability 

option (M = .66) than did participants in the ecologically dynamic condition (M = .59). As predicted, 

participants, on average, learned to diversify their choices more in an ecologically plausible environment.  

 

Figure 2.3 

High-Probability Choices by Trial Block, Age Group, and Condition 

  

Note. Estimated mean probability of choosing the high-probability option by block of 20 trials and age 

group in the static high (left) and ecologically dynamic (right) condition based on mixed-model analysis. 

Error bars represent the 95% confidence interval. 

 

Furthermore, participants in both conditions learned to choose the high-probability option more 

often over time, as indicated by a main effect of trial block, χ2(4) = 197.61, p < .001. Additionally, we 

found an interaction between block and age group, χ2(12) = 30.01, p < .05. To determine whether chil-

dren and adults differed in their propensity of choosing the high-probability option toward the end of 

learning, we computed two Tukey-corrected custom contrasts for the final block of 20 trials (3- to 4-

year-olds + 6- to 7-year-olds + 9- to 11-year-olds vs. adults in the static high and ecologically dynamic 

conditions). In the static high condition, adults were 1.49 times more likely than children to choose the 

high-probability option by the end of the task (z = 2.68, p < .05); in the ecologically dynamic condition, 

children and adults did not differ significantly (z = 1.85, p = .12). In other words, whereas adults out-

performed children by the end of the task in the static high condition, this difference disappeared in the 

more ecologically plausible statistical environment (see Figure 2.4). 

Additionally, probability learning across trials seemed to proceed similarly for children and adults 

in the two conditions: neither age group nor the interaction between age group and condition signifi-

cantly predicted learning to choose the more frequently rewarded option over the course of the experi-

ment (all ps > .1).  
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In sum, we found that adults were more likely than children to choose the high-probability option 

by the end of the task in the static high condition, but no main effect of age group on the likelihood of 

choosing the high-probability option. Moreover, on an aggregate level, participants were more likely to 

diversify their choices in the ecologically dynamic environment, in which this behavior was adaptive. 

Next, we turn to the cognitive strategies used by individual children and adults in the static high and 

ecologically dynamic conditions. 

 

Figure 2.4 

High-Probability Choices by Age Group and Condition Toward the End of Learning 

 

Note. Proportions of choices of the high-probability option averaged over the final block of 20 trials in 

the static high and ecologically dynamic condition. Error bars represent the bootstrapped 95% confi-

dence interval of the mean. 

 

2.3.1.2 Individual Choice Behavior: Choice Diversification and Maximizing 

To investigate individual choice strategies, we calculated the proportion of choices of the high-

probability option in the final block of 20 trials per participant. Figure 2.5 shows the distribution of 

participants’ individual choice proportions by age group and condition. Most notably, 3- to 4-year-olds 

showed the most heterogeneous choice behavior. While about a quarter of 3- to 4-year-olds probability 

maximized through persistent choice, a comparable proportion used choice diversification strategies that 

approximated probability matching. Moreover, whereas 15% of the 3- to 4-year-olds exclusively se-

lected the high-probability option in both the static high and the ecologically dynamic environment, 5% 

and 3% of them exclusively selected the low-probability option in the static high and ecologically dy-

namic condition, respectively. In contrast, older children and adults chose the high-probability option in 

at least 40% of trials in both conditions. 
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Figure 2.5 

Distribution of the Proportion of Choices of the High-Probability Option in the Final Block of 20 Trials 

by Age Group and Condition 

Note. In each panel, the top bar represents the participants categorized as probability maximizers and 

the third bar from the top represents probability matchers. Proportion of high-probability choices in the 

final block of trials on the y-axis; proportion of participants on x-axis. 

 

We categorized participants as probability matchers or probability maximizers based on their indi-

vidual proportions of choosing the high-probability option in the final block of trials. Definitions of 

probability matching and maximizing in the literature differ significantly. Here, we follow a commonly 

used definition in the adult literature (e.g., Schulze et al., 2015), defining probability matching as choos-

ing the high-probability option in between 65% and 75% of trials (70% +/- 5%). To keep the boundary 

width of the definitions equal, we defined probability maximizing as choosing the high-probability op-

tion in at least 90% of trials. All remaining participants were classified as using other strategies. Table 

2.2 shows the results of this categorization. Children of all age groups as well as adults engaged in 

probability matching in both the static high and the ecologically dynamic condition. However, 3- to 4-

year-olds showed the least probability matching of all age groups. A Fisher’s Exact Test indicated no 

association between choice behavior and age group in the static high condition (p = .25). In contrast, a 

Fisher’s Exact Test showed a significant relationship between age group and choice behavior in the 

ecologically dynamic condition (p < .001): More 3- to 4-year-olds probability maximized and more 

adults probability matched than expected under independence. There were no strategy differences be-

tween conditions within each age group (all ps > .06). In sum, these results indicate that 3- to 4-year-

olds tended to both probability match and probability maximize whereas older children mostly 
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probability matched, irrespective of the environment. Adults adapted both probability matching and 

maximizing to the environment. 

 

Table 2.2 

Number of Participants Categorized as Using Probability Matching, Probability Maximizing, or Other 

Strategies in the Final Block of 20 Trials by Condition and Age Group 

Note. Probability matching (maximizing) yielded higher average reward probabilities in the ecologically 

dynamic (static high) condition. 

 

In the ecologically dynamic condition, diversifying choices close to probability matching can yield 

higher average reward rates than always choosing the initial high-probability option as it provides the 

opportunity to exploit sequential dependencies. When rewards were retained over trials, there was a 100% 

chance of obtaining a reward when selecting a reward-hold option and only a 70% or 30% chance when 

selecting the alternative option. The average number of trials before a reward on hold is exploited can 

serve as a measure of how efficiently children and adults learned to exploit the sequential dependencies. 

A Kruskal-Wallis test showed that age groups differed in how quickly they collected held rewards, H(3) 

= 62.29, p < .001. Children aged 3–4 years (Mdn = 2.8, SD = 25.6) exploited a reward on hold less 

quickly than children aged 6–7 years (Mdn = 1.12, SD = 0.43), children aged 9–11 years (Mdn = 1.14, 

SD = 0.3), or adults (Mdn = 1.37, SD = 3.55). Only two 7-year-olds pursued an optimal solution by the 

end of the task (i.e., always choosing the high-probability option unless an uncollected reward has been 

observed at the low-probability option). 

 

2.3.1.3 Ability to Identify the High-Probability Option 

To gauge how well participants understood the task, we subsequently asked those in the static high 

and ecologically dynamic conditions to identify the option that was more frequently rewarded. A 

  Category  

Condition Age group 
Probability 
matching (%) 

Probability max-
imizing (%) Other (%) 

p Fisher’s 
Exact Test 

Static high 3–4 years 10 (26) 11 (28) 18 (46) .25 

6–7 years 16 (39) 4 (10) 21 (51)  

9–11 years 12 (29) 5 (12) 24 (59)  

Adults 16 (40) 8 (20) 16 (40)  

Ecologically 
dynamic 

3–4 years 11 (27) 9 (22) 21 (51) <.001 

6–7 years 15 (38) 0 (0) 25 (63)  

9–11 years 12 (30) 0 (0) 28 (70)  

Adults 25 (62) 2 (5) 13 (33)  
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binomial test indicated that all age groups, on average, performed above chance level in this task (range 

= .73–.95, p < .05), although it required reasoning on a more abstract level than the repeated choice task 

itself. We can therefore assume at least a basic understanding of the experienced frequencies and the 

task instructions, even in the youngest age group (for a statistical analysis of age and condition differ-

ences, see Table B2 in Appendix B).  

 

2.3.1.4 Interim Discussion 

Behavioral analyses across the three statistical conditions revealed considerable differences in gen-

eral persistence and choice behavior across development. When comparing general persistence—irre-

spective of whether an option maximized reward or not—we found that 3- to 4-year-olds showed the 

strongest tendency to repeat a choice. Accordingly, more 3- to 4-year-olds probability maximized than 

did participants in any other age group, but a few 3- to 4-year-olds persisted with the low-probability 

option. In sum, the youngest age group was less sensitive to the statistical structure of the task than were 

older children and adults, and may have used persistent choice as an easy-to-implement strategy rather 

than as a deliberate strategy to maximize probability (see also Derks & Paclisanu, 1967; S. J. Jones, 

1970). 

But how much life experience is needed for choice diversification strategies such as probability 

matching to emerge? On average, children and adults chose the high-probability option less frequently, 

and instead diversified their choices more often, when the statistical structure of the task was ecologi-

cally plausible. Analyses of choice behavior toward the end of learning showed that adults chose the 

high-probability option more often than children in the static high condition, but not in the ecologically 

dynamic condition. This may indicate that adults have an advantage over children in statistical environ-

ments that do not reflect everyday experience and require more abstract reasoning (Schulze & Hertwig, 

2021). Yet older children (6+ years) seemed to be more reactive to the environment than younger chil-

dren and were better able to exploit sequential dependencies. In comparison to younger children, they 

seemed to have used previous outcome information more efficiently.  

Our results further showed that probability matching is already prevalent in children from the age 

of 3 years. While about a quarter of 3- to 4-year-olds probability maximized through persistent choice, 

a comparable proportion of children in this age group used choice diversification strategies that approx-

imated probability matching. Older children from 6 to 11 years, in contrast, rarely probability maxim-

ized in the static high condition (where it would have yielded maximum rewards) and never did so in 

the ecologically dynamic condition (where it was outperformed by diversification). Although choice 

diversification strategies like probability matching seem to develop early in life, our behavioral analyses 

suggest that children do not start using them adaptively before elementary school age. 

Integrating our findings on an aggregate and individual level, it seems that younger children’s 

choice behavior can be characterized by persistence whereas older children’s behavior resembled 
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diversification, irrespective of the environment. Both probability maximizing and probability matching 

can arise from different cognitive processes—some adaptive, others misguided (e.g., Gaissmaier & 

Schooler, 2008; Koehler & James, 2014; Otto et al., 2011; Schulze et al., 2020). Thus, it is vital to 

distinguish to what extent children indeed adapt to their environment rather than using a default strategy 

that may be a better or worse fit to the task structure. Some behavioral markers (e.g., tuning the level of 

persistence and exploiting sequential dependencies) suggest that older children are indeed more reactive 

to the environment than younger children. To further investigate this emerging adaptivity, we next de-

scribe a computational modeling approach that we used to identify the involved cognitive processes. 

 

2.3.2 Model-Based Strategy Analysis 

We implemented three computational models to gain insight into the choice mechanisms underly-

ing probability matching, probability maximizing, and other strategies. Do similarities on a behavioral 

level reflect similar cognitive processes in children and adults? Or do the mechanisms underlying prob-

ability learning differ across development? And do children and adults use different diversification strat-

egies depending on the statistical structure of the environment? We first present the strategy models 

considered and the estimation method used. 

 

2.3.2.1 Strategy Models 

Reinforcement learning (RL) models have proven particularly useful in characterizing develop-

mental differences in probability and value-based learning (for a recent review, see Nussenbaum & 

Hartley, 2019). Depending on parameter combinations, RL models allow for flexibility in explaining 

various choice behaviors, including probability matching and maximizing (e.g., Rivas, 2013; Schulze et 

al., 2017). Win-stay lose-shift (WSLS) models have identified developmental differences in probabilis-

tic reasoning and feedback processing (e.g., Bonawitz et al., 2014; van den Bos et al., 2009). WSLS is 

an easily implementable choice diversification strategy used by adults and children in similar tasks (e.g., 

Berman et al., 1970; Gaissmaier & Schooler, 2008; Worthy et al., 2012). We compared the RL and 

WSLS models with a baseline model assuming a constant probability per participant of choosing the 

high-probability option at any trial (for a similar approach, see Schulze et al., 2017). We fitted each 

model individually to participants’ choice data in a nonhierarchical Bayesian framework using JAGS 

(Plummer, 2003) and with MATLAB as an interface (The MathWorks Inc., 2021). We used the Devi-

ance Information Criterion (DIC; Spiegelhalter et al., 2002) to compare model performance. The DIC 

describes the fit between the model prediction and the data, and incorporates a penalty for more complex 

models (with lower values indicating a better fit). We used the lowest DIC value per model and partic-

ipant to classify strategy use. The formal implementation of the models and the details of the parameter 

estimation and model comparison techniques are reported in Appendix B. 
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Reinforcement Learning. RL models assume that the decision maker updates the values of the 

choice options on a trial-by-trial basis and develops a propensity toward choosing the higher-valued 

option (Rescorla & Wagner, 1972). Here, we analyzed a simple algorithm with two free parameters: 

First, the learning rate parameter scales the extent to which the computed difference between an ex-

pected and an observed value (i.e., the prediction error) is integrated into the value-updating process. 

Higher values of the learning rate parameter give more weight to recent outcomes when updating the 

value of an option; lower values give more weight to a longer window of past outcomes. To account for 

full feedback in our task, values of both options were updated in every trial, irrespective of the actual 

choice. Second, inverse temperature—often labeled choice sensitivity—captures how deterministically 

(higher values) or randomly (lower values) the high-valued option is chosen (for a review on how these 

parameters may vary across development, see Nussenbaum & Hartley 2019). 

 

Win-Stay Lose-Shift. A WSLS heuristic is a simple strategy to achieve choice diversification 

(close to probability matching on an outcome level) that requires only the last outcome to be remem-

bered. A person chooses the same option again after experiencing a win and switches to the other option 

after experiencing a loss (or the absence of a win). A WSLS algorithm can yield exploratory benefits in 

patterned or changing environments (Gaissmaier & Schooler, 2008) and has been suggested to enable 

children to approximate Bayesian inference in probabilistic choice tasks (Bonawitz et al., 2014). In this 

analysis, we used a probabilistic implementation of the WSLS heuristic that has two free parameters, 

estimating the probability of staying after a win—p(stay|win)—and shifting after a loss—p(shift|loss).  

 

2.3.2.2 Strategy Classification 

Figure 2.6 shows the percentage of participants by age group and condition classified as users of 

each strategy based on a DIC comparison. Overall, the RL model best described participants’ choice 

behavior (47%), followed by the WSLS model (38%) and the baseline model (15%); however, there 

were considerable differences across conditions and age groups. In the static high condition, about 69% 

of participants were best described by the RL model (vs. 20% WSLS, 11% baseline). In the static ran-

dom and ecologically dynamic conditions, only 36% of participants were best described by the RL 

model (static random: 43% WSLS, 21% baseline; ecologically dynamic: 51% WSLS, 13% baseline). 

For adults, the RL model best described choice behavior across all conditions (see last column of 

Figure 2.6). No evidence in favor of an association between strategy use and condition emerged from 

either a frequentist chi-square test or a Bayesian contingency table test assuming independent multino-

mial sampling,9 χ2(4, N = 121) = 2.87, p = .58, BF10 = .02. Children, in contrast, seemed to recruit 

 
9 Estimation of Bayes Factors was carried out in JASP with default settings unless otherwise stated (JASP Team, 2022). We 
report inclusion Bayes Factors, where BFinclusion > 1 provides evidence in favor and BFinclusion < 1 provides no evidence for an 
effect or evidence against it. The inclusion Bayes Factor quantifies the likelihood of the data under a model given the in- or 
exclusion of the predictor of interest. For follow-up tests, we report Bayes Factors derived from Bayesian t-tests that quantify 
the likelihood that the data occurred under the alternative hypothesis for BF10 > 1 or under the null hypothesis for BF10 < 1. 
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different strategies depending on the statistical structure of the environment. We found strong evidence 

for an association between strategy use and condition for 3- to 4-year-olds, χ2(4, N = 120) = 16.1, p 

< .05, BF10 = 18.8, 6- to 7-year-olds, χ2(4, N = 120) = 22.8, p < .001, BF10 = 256.4, and 9- to 11-year-

olds, χ2(4, N = 120) = 28.1, p < .001, BF10 = 5019.4. While the RL model was the most common model 

for children in the static high condition (71% across age groups), WSLS was the most common strategy 

for children in the static random (47% across age groups) and ecologically dynamic (57% across age 

groups) conditions.  

 

Figure 2.6 

Classification of Participants to Strategies by Age Group and Condition 

 

Note. Percentage of participants in each age group and condition best described by the three models, as 

determined by comparison of DIC values. DIC = Deviance Information Criterion. 

 

2.3.2.3 Parameter Analysis 

Did children and adults use the choice strategies in similar ways or did their usage differ? We 

analyzed model parameters to explore developmental and individual differences in strategy use across 

conditions. Model parameters were computed as the posterior medians from the samples of those par-

ticipants best described by each model. Figure 2.7 shows a visual representation of mean values by age 

group and condition for each of the free parameters in the RL and WSLS models (see Table B3 in 

Appendix B for numeric values). We entered the free parameters as the dependent variable in 4 (age 

group) x 3 (condition) ANOVAs. In addition to conventional null-hypothesis significance tests, we re-

port inclusion Bayes Factors (BFinclusion) that quantify the likelihood of the data having occurred under a 

specific effect for ANOVAs and Bayes Factors (BF10) that quantify the likelihood of the data having 
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occurred under the alternative rather than the null hypothesis for follow-up tests (see Footnote 6). Bayes 

Factors for follow-up tests were derived from Bayesian t-tests. We additionally computed Bonferroni 

corrected Tukey honestly significant difference (HSD) tests. The results of these analyses are reported 

in detail in Tables B4 and B5 in Appendix B. In the following, we highlight the key results with respect 

to condition and age effects. 

 

Figure 2.7 

Differences in Model Parameters: Mean Values by Age Group and Condition 

Note. Means of the posterior medians for the free parameters in the RL (panels A and B) and WSLS 

(panels C and D) models by age group and condition. Error bars represent +/- standard error. RL = 

reinforcement learning; WSLS = win-stay lose-shift. 

 

We found strong evidence for a main effect of condition for the RL learning rate parameter, F(2,215) 

= 11.22, p < .001, BFinclusion = 474.47, for the probability to stay after a win for WSLS users, F(2,171) = 

6.29, p < .05, BFinclusion > 1010, and for the probability to shift after a loss for WSLS users, F(2, 171) = 

5.5, p < .05, BFinclusion = 5.2 x 108. For RL users, a follow-up test indicated higher learning rates in the 

static random (M = .63) than in the ecologically dynamic (M = .5; p < .05, BF10 = 2.48) or the static high 

condition (M = .43; p < .001, BF10 = 3926.91; see Figure 2.7A). When updating the values of choice 

options, participants who used an RL strategy adaptively integrated a longer window of past outcomes 

in the presence of a high-probability option and were more reactive to recent outcomes in the absence 

of a high-probability option. For WSLS users, a follow-up test indicated that participants were, on 
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average, less likely to choose the same option again after a win in the ecologically dynamic condition 

(M = .32) than in the static high condition (M = .41; p < .05, BF10 = 1.1; see Figure 2.7C). Furthermore, 

participants in the ecologically dynamic condition were less likely than participants in the static random 

condition to choose the same option again after a win (Mdiff = −.07; p < .05, BF10 = 1.4) and more likely 

to switch after a loss (Mdiff = .08; p < .05, BF10 = 2.19; see Figure 2.7C and 2.7D), although the Bayesian 

evidence remained somewhat ambiguous. Thus, across age groups, both participants using an RL strat-

egy and participants using WSLS adapted appropriately to the different environments in our experiment.  

Frequentist statistics pointed to a significant main effect of age group for the learning rate parameter 

of RL model users, F(3,215) = 2.74, p < .05, but Bayesian evidence was inconclusive (BFinclusion = 0.47). 

Despite this mixed evidence for a main effect, follow-up tests indicated that children aged 3–4 years, on 

average, showed a lower learning rate (M = .39) than children aged 6–7 years (M = .55; p < .05, BF10 = 

11.04). In other words, 3- to 4-year-olds tended to weight prediction errors less strongly than 6- to 7-

year-olds. For WSLS model users, we found evidence for a main effect of age group for the probability 

to stay after a win, F(3,171) = 37.00, p < .001, BFinclusion > 1010, and to switch after a loss F(3,171) = 

37.00, p < .001, BFinclusion = 5.2 x 108. Follow-up tests revealed that younger children and adults were 

more likely than older children to repeat a choice after a win (all ps < .001, BFs10 > 114) and were less 

likely to shift after a loss (all ps < .001, BFs10 > 23.52). Adults chose adaptively, being particularly likely 

to stay after a win in the static high condition (M = .69) and to switch after a loss in the ecologically 

dynamic condition (M = .67). Children aged 3–4 years, by contrast, were most likely to stay after a win 

in the ecologically dynamic condition (M = .56; see Figure 2.7C) and to switch after a loss in the static 

high condition (M = .79), thus making choices opposite to those that would have implied higher reward 

rates in these conditions. Indeed, a significant interaction between condition and age for both p(stay|win), 

F(6,171) = 12.50, p < .001, BFinclusion = 8.9 x 108, and p(switch|loss), F(6, 171) = 12.75, p < .001, BFin-

clusion = 1.9 x 109, indicates differences in adaptivity to the environment across age groups. 

 

2.3.2.4 Interim Discussion 

The aim of our computational modeling approach was to investigate the cognitive mechanisms 

underlying choice behavior across development. Whereas adults’ strategy use did not change with the 

statistical structure of the task, children recruited different strategies depending on the characteristics of 

the environment. In the static high condition—where the best strategy is to stick with the high-probabil-

ity option—most participants across age groups were best described by an RL model. In the ecologically 

dynamic condition—where choice diversification can lead to higher reward rates—children more fre-

quently used a WSLS heuristic instead. The proportion of participants best described by the WSLS 

model in the ecologically dynamic condition was high among children aged 6–11 years, in particular. 

This strategy requires relatively low memory and implementation effort but allows for the concurrent 

exploration and exploitation of various ecologically plausible environments (e.g., with clumped or dy-

namically changing resources).  
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We further analyzed how children and adults used the respective strategies and found considerable 

differences across conditions and development. When relying on an RL mechanism, participants were, 

on average, sensitive to the presence or absence of a high-probability option. All age groups adaptively 

gave prediction errors less weight when there was a high-probability option and focused on more recent 

outcomes when both options were equally likely. Moreover, 3- to 4-year-olds tended to show lower 

learning rates than 6- to 7-year-old children. Although context-independent age differences between RL 

parameters are difficult to interpret (see Eckstein et al., 2022), the youngest age group, being less sensi-

tive to the structure of the environment, may update values slower than older children. Assuming lower 

cognitive capacity in the youngest learners, this result is in line with findings showing that adults learn 

at a lower rate when under cognitive load in a dual task paradigm than in a single task condition (e.g., 

Otto et al., 2011). 

Developmental differences in the parameters of participants best described by a WSLS strategy 

corroborate these conclusions. Whereas adult WSLS users seemed to fine-tune their strategy use to the 

demands of the environment, 3- to 4-year-old children did not. Their high probability of staying after a 

win and low probability of switching after a loss could be related to cognitive constraints in integrating 

counterfactual information about foregone outcomes (Kominsky et al., 2021). In contrast, older children 

and adults seemed to be able to exploit counterfactual learning opportunities more quickly. 

In sum, our computational modeling approach revealed significant differences between children 

and adults in the strategies used and in how strategies were adapted to the statistical structure of the task. 

Adults relied on similar strategies across conditions but were more efficient than children in adjusting a 

strategy to the demands of the environment (also see Plate et al., 2018). Older children followed the 

ordinal pattern of adults in their strategy fine-tuning and showed signs of emerging adaptivity—but 

constrained by a tendency to explore.  

 

2.4 General Discussion 

Choice diversification—and probability matching, in particular—can be seen either as an adaptive 

mechanism learned in everyday life or as a systematic failure of the cognitive system to override intui-

tive but misleading responses (for reviews, see Koehler & James, 2014; Vulkan, 2000). There is increas-

ing evidence that probability matching can be ecologically rational in real-world environments charac-

terized by social competition or dynamic statistical structures (e.g., Ellerby & Tunney, 2019; Schulze et 

al., 2015, 2017; Seth, 2007). In this article, we investigated the development of adaptive probability 

matching and choice diversification in children aged from 3 to 11 years in an ecologically plausible 

statistical environment. As children grow older, they gain experience with everyday choice ecologies, 

and advancing brain development allows for more directed exploration (see Gopnik, 2020; Ruggeri, 

2022)—two aspects that may be important for ecologically rational choice diversification. Analyzing 

children’s choice behavior in two static and one ecologically dynamic environments, we found less 
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sensitivity to the environmental structure in children aged 3–4 years than in any other age group and 

emerging adaptivity in children from 6 years onward. In line with previous research on probability 

learning and adaptive immaturity in childhood (e.g., Derks & Paclisanu, 1967; Gopnik et al., 2017; M. 

H. Jones & Liverant, 1960; Weir, 1964), our findings suggest a phase of high persistence in young 

children, increased diversification and exploration in older children, and the ability to overcome explo-

ration tendencies in favor of exploitation—while still maintaining adaptivity—in adults. 

The youngest age group showed a striking tendency to persevere with one option, irrespective of 

whether it maximized reward, and was more likely than older children or adults to maximize probability 

in the ecologically dynamic condition. However, this tendency to persist did not imply an increased 

likelihood of choosing the high-probability option. Indeed, some 3- to 4-year-olds persisted with the 

low-probability option, and this age group showed the largest variability in choice behavior. Taken to-

gether, these results are consistent with previous findings on young children’s individual choice behav-

ior (Derks & Paclisanu, 1967; M. H. Jones & Liverant, 1960) but do not replicate earlier work showing 

differences in aggregate choice between younger and older children (e.g., Sullivan & Ross, 1970; Weir, 

1964; Winefield, 1980). What explains young children’s tendency to persist and their low sensitivity to 

outcomes? A possible explanation is that young children persevere because it requires little cognitive 

control (S. J. Jones, 1970; Thompson-Schill et al., 2009) and can serve as a satisficing strategy (Schulze 

et al., 2020; Schulze & Newell, 2016). Assuming generally low sensitivity to reward also explains the 

counterintuitive finding that young children seemed to integrate a longer window of past outcomes in 

an RL model, despite having generally lower memory capacity than older children or adults (see Otto 

et al., 2011). Moreover, younger children’s delayed response to sequential dependencies could indicate 

that it took them longer to grasp the somewhat abstract concept of the reward-hold manipulation in the 

ecologically dynamic condition. Alternatively, young children might have been limited by cognitive 

constraints in integrating counterfactual information about forgone outcomes into their predictions (e.g., 

Fischer & Ullsperger, 2013). Nonetheless, a stronger tendency to repeat responses irrespective of ob-

taining a reward does not necessarily reflect that the young mind is per se maladaptive (see Bjorklund 

& Green, 1992). Rather, reward-insensitive persistence and response repetition may in some contexts 

be beneficial for learning in early childhood (e.g., for training and mastering new motor responses).  

Children from 6 years onward showed a strong tendency to explore across all conditions. Accord-

ingly, they made fewer maximizing responses than adults by the end of the task in the static high con-

dition but not in the ecologically dynamic condition. This finding could indicate that older children were 

able to make more adaptive choices when the statistical structure better reflected their real-world expe-

riences. Indeed, it has previously been demonstrated that children search for information more effi-

ciently when the statistical structure of the task is ecologically plausible (Nelson et al., 2014). Such 

efficient use of previous outcome information was particularly evident in the ecologically dynamic con-

dition for children between 6 and 11 years. In this condition, consistently choosing the high-probability 

option and switching to the low-probability option once a reward has been observed yielded maximum 
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rewards. Only two 7-year-olds used this optimal solution consistently in the final block of trials. Never-

theless, on average, 6- to 11-year-old children quickly exploited a reward on hold in a near-optimal way 

and even outperformed adults in this regard. Children’s predisposition for exploration and testing a di-

verse set of hypotheses can help them to learn the structure of an environment better than adults (Liquin 

& Gopnik, 2022), but it often comes at the cost of less efficient information search (Ruggeri et al., 2016; 

Schulz et al., 2019) and suspends directed exploitation until later in life (Gopnik, 2020). Our modeling 

analyses provide further evidence for these ideas. Children who diversified their choices effectively may 

have benefitted from relying on a trial-by-trial decision rule like win-stay lose-shift in testing new hy-

potheses about the structure of the ecologically dynamic condition. In line with previous work (e.g., 

Schusterman, 1963), we found that older children between 6 and 11 years adapted their WSLS use to 

the environment in a similar ordinal pattern as adults but used the heuristic in a more exploratory manner 

(i.e., with a stronger tendency to shift). Yielding more profitable results in the ecologically dynamic 

condition, exploration through diversification was not equally beneficial across conditions. Conse-

quently, the tendency to explore may have hindered older children from reaching adults’ performance 

levels when less diversification was more profitable. 

Lifespan developmental psychology describes cognitive development in terms of a trade-off be-

tween gains and losses (Baltes, 1987). According to this approach, children pursue new strategies with 

increasing cognitive capacity and age, but these new strategies occasionally provide a poor fit to the 

environmental structure. Using probability learning as an example (see Baltes, 1987), this view suggests 

that older children may develop the expectation that finding a perfect solution to the task is possible, 

whereas younger children may profit from not yet making such assumptions10. Similarly, it has been 
suggested that adults probability match because they search for patterns in the environment to avoid 

otherwise inevitable losses associated with a maximizing strategy (e.g., Gaissmaier & Schooler, 2008; 

Schulze et al., 2020). Our findings provide support for the notion of trade-offs between gains and losses 

across all age ranges in our study, while emphasizing the role of the interplay between the mind and the 

environment: Participants trade off probability matching and probability maximizing, diversification 

and persistence, and exploration and exploitation against the backdrop of the given environment struc-

ture. 

A few questions remain unanswered. We need to acknowledge that young children’s highly persis-

tent choice behavior may raise the question of whether they properly understood the task. We cannot 

rule out the possibility that a few children had difficulties differentiating between a correct and an in-

correct choice; we provided full feedback and an animal always appeared after a choice irrespective of 

whether it was correct or incorrect. While our results indicate that children learned to select the more 

profitable option more frequently in the presence of a high-probability option, it remains an interesting 

avenue for future research to investigate whether partial feedback helps even the youngest children to 

 
10 For an analysis of instructions manipulating the perceived solvability of a probability learning task, see Weir (1962). 
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diversify choices more, as reported for adult participants (Otto & Love, 2010; Schulze et al., 2017). 

Along these lines, future research could provide new insights by characterizing the statistical structures 

of real-world choice ecologies actually experienced by younger and older children. The sequential de-

pendencies created in the ecologically dynamic condition are likely not representative of every real-

world environment but approximate dynamic change and temporarily available outcomes that may be 

present in many everyday situations (e.g., Fawcett et al., 2014; Jensen & Neuringer, 2008). 

A question we did not address in this study is whether learning about the underlying generating 

mechanism might have helped children to pick up environmental regularities even earlier (in life and in 

the task). Indeed, a key challenge that children face on an everyday basis is to learn about the mecha-

nisms underlying repeated outcomes. For instance, a child might learn that the seasons of a year increase 

or decrease the likelihood of specific weather events. It is well-documented that causal learning plays a 

vital role in children’s abilities to make probabilistic inferences (Bonawitz et al., 2014; Denison et al., 

2013; Gopnik et al., 2015; Kushnir & Gopnik, 2007). However, knowing about causal generating mech-

anisms does not imply that this information is used to guide repeated choices. It has been demonstrated 

that children up to the age of 12 were better described by an RL model that updated values on choice 

outcomes alone rather than incorporating the causal structure of the task (Cohen et al., 2020). Therefore, 

it is crucial to understand how children develop adaptive choice behaviors to ecologically plausible 

statistical structures beyond incorporating causality. Many causal mechanisms in the real world may be 

too complex; understanding them fully might be too computationally demanding or impossible. In such 

situations, using frequently encountered environmental regularities to guide choices might be an adap-

tive response mechanism that humans learn early in life.  

 

2.5 Conclusion 

Taken together, our findings suggest that choice diversification strategies such as probability 

matching develop early in life, but that their adaptive use in an ecologically plausible environment seems 

to require either increased experience with typical choice ecologies or an explorative mind. Modeling 

analyses revealed that although children from all age groups adapted which strategy they used to the 

structure of the environment, adults held an advantage in how they fine-tuned a strategy. Our findings 

emphasize the importance of implementing ecologically plausible task environments in research on the 

development of choice behavior and cognitive development more broadly. Finally, we showed how an 

ecologically rational perspective can provide new insights into decades of research on the development 

of probability learning, and we contributed a decision-making perspective to the discussion on the adap-

tive functions of cognitive immaturity and increased exploration in childhood. 
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3 | The Development of Probability Learning and Repeated Choice 
Behavior in Childhood: A Longitudinal Investigation 

 

Abstract. Virtually all previous studies on the development of probability learning and repeated choice 

behavior in early childhood relied on cross-sectional designs. What is the intra-individual trajectory of 

probability learning in early childhood, and how does it relate to the development of executive functions? 

Using a longitudinal design with three measurement waves (N = 74 at T1), we investigated the devel-

opment of high-probability choices, probability maximizing, and matching in relation to working 

memory capacity and response inhibition from 3.5 to 6.5 years. Our findings revealed different trajec-

tories for probability learning (learning to choose the more likely option) and choice behavior. On the 

one hand, children became more likely to choose the high-probability option with increasing age. On 

the other hand, more children diversified choices close to probability matching as they became older. 

Across measurements, younger children in the cohort were more likely to maximize than older children. 

These trends may seem counterintuitive at first but are driven by decreasing inter-individual variability 

over time. Additional analyses revealed that as children became older, higher memory capacities pre-

dicted a reduced likelihood of high-probability choices. We discuss how young children’s variability in 

choice behavior may affect the estimated direction of developmental change and emphasize the im-

portance of studying cognitive development longitudinally in light of possible cohort effects. 

 

3.1 Introduction 

Early research on the development of probability learning, dating back to the 1960s, revealed the 

puzzling finding that younger children are more likely to maximize reward than older children (e.g., M. 

H. Jones & Liverant, 1960; Stevenson & Weir, 1959; Weir, 1964). Consider the following classic prob-

ability learning task (M. H. Jones & Liverant, 1960): A token delivery machine has two buttons, and 

pressing one button will probabilistically release a poker chip. One button delivers a poker chip on 70% 

of the trials (i.e., the high-probability option), and the other button on 30% of the trials (i.e., the low-

probability option). Without knowing these outcome probabilities beforehand, children need to learn 

how likely a button press will result in getting a poker chip through feedback in a series of trials. In this 

task, children are explicitly instructed to make as many correct choices as possible. When probabilities 

are independent and identically distributed, exclusively choosing the high-probability option maximizes 

the probability of obtaining a reward—any deviation will lower the average reward rate. Across a variety 

of probability learning tasks, relatively high proportions of children below the age of 5 years have been 

found to show such reward-maximizing behavior (M. H. Jones & Liverant, 1960; Stevenson & Weir, 

1959; Weir, 1964). Older children, in contrast, are thought to be more likely to diversify their choices 

by approximating probability matching (Derks & Paclisanu, 1967; M. H. Jones & Liverant, 1960). When 

examining aggregate choice behavior—choices averaged across children—some researchers have 
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suggested a U-shaped function between the rate of favorable high-probability choices and age. Specifi-

cally, the U-shaped function predicts that children below age 5 and adults are more likely to choose the 

high-probability option than older children and young adolescents (Derks & Paclisanu, 1967; Stevenson 

& Weir, 1959; Sullivan & Ross, 1970; Weir, 1964; Winefield, 1980).  

Interest in young children’s higher likelihood to make maximizing choices is not limited to research 

on probability learning but also served as a paradigmatic example in other domains: for instance, to 

demonstrate gains and losses in lifespan theory (Baltes, 1987), to inform the early development of choice 

sensitivity in reinforcement learning (Nussenbaum & Hartley, 2019), or to emphasize children’s adap-

tive benefit as flexible learners (Gualtieri & Finn, 2022). However, evidence for young children’s ad-

vantage in reward maximization is not as unambiguous as sometimes portrayed. For instance, our find-

ings showed that young children persist not only on the high-probability option but occasionally also on 

the low-probability option (see Chapter 2). Other studies comparing the same age range sometimes re-

ported conflicting results (Craig & Myers, 1963; Derks & Paclisanu, 1967; Lewis, 1966; Messick & 

Solley, 1957; Offenbach, 1964; Sullivan & Ross, 1970; Weir, 1964; Winefield, 1980), and attempts at 

reconciling these findings were not entirely successful (for reviews, see Fischbein, 1975; M. R. Jones, 

1971).  

 

3.1.1 Benefits of Longitudinal Research in the Development of Probability Learning 

In particular, the intra-individual trajectory of probability learning and repeated choice behavior in 

early childhood is still poorly understood, despite high relevance for many real-world choices: For in-

stance, children need to estimate which friend will most likely have time to play in the afternoon or 

predict if throwing a tantrum in the supermarket will get them their desired candy bar. Virtually all 

previous studies on probability learning used cross-sectional study designs. Although relying on cross-

sectional data is often a viable, cost- and time-efficient substitute for studying developmental processes, 

intra-individual change is sometimes not adequately captured (e.g., Kraemer et al., 2000; Lindenberger 

et al., 2011; Louis et al., 1986). For instance, research on hippocampal and memory development in 

childhood showed that cross-sectional and longitudinal results suggest discrepant underlying processes 

(Keresztes et al., 2022). Likewise, a longitudinal analysis indicated that heightened prefrontal activation 

was associated with higher risk-taking in adolescents, whereas cross-sectional evidence supported the 

opposite effect (McCormick et al., 2017). Diverging cross-sectional and longitudinal effects may also 

underlie the development of probability learning, where different processes dynamically interact. Con-

sider that a probability learning task may vary in difficulty across childhood. For instance, tracking 

previous outcomes and sustaining attention over numerous trials may be more difficult for younger 

children with fewer skills in these domains (see M. R. Jones, 1971). Older children potentially begin the 

task with (sometimes misleading) expectations about the underlying generating mechanism or how 

choices and outcomes are typically related in their everyday life (e.g., Baltes, 1987; Stevenson & Weir, 

1963; Tolman & Brunswik, 1935). Accordingly, higher cognitive functions in younger children may 
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help them to track the outcomes of the high-probability option—facilitating consistent high-probability 

choices. In contrast, higher cognitive functions in older children could enable more complex responses 

based on tracking both options—facilitating diversifying choices. Furthermore, variability in younger 

children’s choice behavior may lead to biased estimates of change in probability learning from cross-

sectional data. For instance, when some 3-year-olds persistently choose the high-probability option and 

other 3-year-olds the low-probability option, and they become less extreme over time, some children 

will inevitably experience opposite directions of change. Lastly, almost all evidence for the high preva-

lence of maximizing behavior in young children dates back to the 1960s (e.g., Derks & Paclisanu, 1967; 

M. H. Jones & Liverant, 1960; Weir, 1964; for a review, see Fischbein, 1975). Following considerable 

societal and technological changes and improvements in early education in families and formal school-

ing (Lynn, 2009; Shonkoff, 2010), it cannot be ruled out that differences between earlier and more recent 

work may arise from systematic cohort differences.  

Thus, the first goal of our study is to explore intra-individual developmental trajectories in proba-

bility learning and repeated choice behavior, providing new insights into between-person and within-

person change. For instance, when and how do children transition from maximizing to matching behav-

ior? Is this transition unidirectional? And, do children learn to make more favorable choices as they 

grow up?  

 

3.1.2 Probability Learning and Cognitive Development 

An additional goal of our study is to explore how probability learning and repeated choice behavior 

are shaped by developing cognitive functions. Most theorists agree that young children’s maximizing 

does not represent a deliberately rational behavior (e.g., M. H. Jones & Liverant, 1960; S. J. Jones, 1970; 

Thompson-Schill et al., 2009) and that older children’s choice diversification can serve adaptive benefits 

(see Chapter 2; Baltes, 1987; Goldman & Denny, 1963). In Chapter 2, we showed that younger children 

continued to persist with one option across different statistical environments, irrespective of whether 

this option maximized reward. Older children, in contrast, mainly diversified their choices and were 

better at exploiting dynamic environmental structures. Which developing cognitive functions facilitate 

this behavioral transition in early childhood? 

Whereas several executive functions have been suggested to fuel the development of choice behav-

ior in early childhood  (Gualtieri & Finn, 2022; S. J. Jones, 1970; Thompson-Schill et al., 2009), empir-

ical tests of the proposed relations are yet sparse. Executive functions refer to a set of cognitive processes, 

such as working memory, response inhibition, and mental shifting (Miyake et al., 2000), involved in 

performing complex tasks (for a developmental review, see Zelazo et al., 2003). Particularly in pre-

school age, children rapidly improve in tasks targeting executive functions, indicating a significant 

change in the neural underpinnings in early childhood (for reviews, see Fiske & Holmboe, 2019; Garon 

et al., 2008). In the following, we will review previous work proposing that two specific executive 
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function components—response inhibition and working memory—facilitate changes in probability 

learning and repeated choice behavior (e.g., M. H. Jones & Liverant, 1960; S. J. Jones, 1970; Kreitler et 

al., 1983; Thompson-Schill et al., 2009) 

Immature response inhibition has been suggested to prevent younger children from applying diver-

sifying choice strategies (S. J. Jones, 1970; Thompson-Schill et al., 2009). Thus, in probability learning 

tasks, the ability to suppress a prepotent response in favor of an alternative response may be a prerequi-

site for deviating from persistent choice. Moreover, response inhibition has been suggested to relate to 

other constructs that may be important for the development of early decision-making competencies: for 

instance, theory-of-mind (Carlson & Moses, 2001), search strategies (Baker et al., 2011), and counter-

factual reasoning in early childhood (Beck et al., 2009). 

The second executive function relevant in this context is working memory capacity. Working 

memory capacity has been demonstrated to facilitate children’s performance, particularly in tasks that 

involve processing probabilistic information (van Duijvenvoorde et al., 2008; Ruggeri et al., 2018). It 

has been theorized that young children probability maximize because their limited working memory 

capacity restricts them from tracking past outcomes and making goal-directed low-probability choices 

(Gualtieri & Finn, 2022). In a probability learning task, children could profit from increasing working 

memory capacity, for instance, by increasing storage for temporary information and through more effi-

cient information integration (Best & Miller, 2010; Garon et al., 2008). Better memory of past outcomes 

may help children to overcome simple response patterns (e.g., alternation) in favor of more effective 

diversifying strategies (Balling & Myers, 1971; Kreitler et al., 1983).  

However, research with adult participants examining the connection between working memory and 

repeated choice behavior indicates that this relationship needs to be interpreted in the context of outcome 

feedback and whether working memory capacity is experimentally manipulated. For instance, higher 

working memory capacity may enable people to search for patterns in an outcome sequence which, in 

turn, leads them to choose the high-probability option less frequently (Gaissmaier et al., 2006). Yet, 

outcome feedback is critical for generating and testing hypotheses about possible patterns. In the absence 

of outcome feedback, the opposite finding has been reported: People with higher memory capacity were 

more likely to probability maximize (Rakow et al., 2010). When working memory capacity is experi-

mentally taxed by requiring participants to simultaneously perform a secondary task, adults seem less 

sensitive to current outcomes (Otto et al., 2011; Worthy et al., 2012). Although cognitive load has been 

suggested to increase probability maximizing (Wolford et al., 2004), this finding has since failed to 

replicate (Schulze et al., 2019). 

 Nonetheless, it is important to acknowledge that adults and children differ in more aspects than 

memory capacity and that these findings need to be considered in light of the adaptive functions of 

children’s cognition. An increasing body of evidence suggests that some cognitive characteristics and 

limitations inherent to childhood allow for greater flexibility in exploration and learning (for reviews, 

see Bjorklund & Green, 1992; Gopnik, 2020; Gualtieri & Finn, 2022). Following this account, 
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increasing cognitive capacities in childhood may particularly facilitate their exploratory tendencies. In 

a standard probability learning task, children aged 5–15 years with lower general reasoning abilities 

have been found to make more favorable high-probability choices than children with higher scores 

(Goldman & Denny, 1963; Lewis, 1966). In a task where there was, indeed, a patterned outcome se-

quence, the opposite relationship was reported: Children with higher reasoning abilities made more fa-

vorable responses than children with lower reasoning abilities (Goldman & Denny, 1963). These find-

ings resonate with theoretical considerations that older children may look for a perfect solution or a 

pattern in probability learning tasks and therefore diversify choices (Baltes, 1987; Stevenson & Weir, 

1963). Exploring the associated cognitive processes driving probability learning and repeated choice 

behavior could provide new insights into the adaptive benefits of cognitive immaturity, specifically into 

what cognitive developments enable flexibility in learning and exploration. 

 

3.1.3 The Present Study 

In the current study, we use an accelerated longitudinal design to map the developmental trajectory 

of probability learning in early childhood from 3.5 to 6.5 years and to explore the relation to developing 

executive functions. At each of three measurement time points, children completed the same tasks: a 

standard probability learning task with static probabilities, two memory tasks, and a response inhibition 

task. The design and main hypotheses were preregistered, but one hypothesis needed adjustment based 

on the most recent findings.11 The following section reflects our updated expectations before data anal-

ysis. 

On the level of individual choice behavior, we expected that children become less likely to proba-

bility maximize with increasing age and more likely to probability match. On the level of aggregate 

choice behavior, there are different possibilities for how developmental trajectories may play out, de-

pendent on the variability in young children’s choice behavior. Our previous cross-sectional study (see 

Chapter 2) found that young children’s choice behavior was highly variable and that the proportion of 

maximizing children was lower than reported in previous work from the 1960s. Whereas younger chil-

dren were more persistent in their choices than older children, persistence was unrelated to probability 

learning. These results were robust across different implementations of the probabilistic task structure. 

Depending on the initial variability in persistent choice behavior at the first measurement time point 

(e.g., Chapter 2; Derks & Paclisanu, 1967; Goldman & Denny, 1963; M. H. Jones & Liverant, 1960; 

Offenbach, 1964; Plate et al., 2018), two trajectories seem plausible: On the one hand, average proba-

bility learning might not change over time if children, to the same extent, persist less but also make less 

 
11 Specifically, we initially stated that children would decrease in their likelihood to choose the high-probability option with 
increasing age. While this expectation was grounded in a literature review (e.g., Derks & Paclisanu, 1967; Weir, 1964; 
Winefield, 1980), our own results in a cross-sectional study—obtained after submitting the preregistration—render this expec-
tation unlikely (see Chapter 2). Although deviating from a preregistered hypothesis is never ideal, this case is in particular 
related to the very reason why a longitudinal study on this topic is needed.  
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errors (i.e., fewer low-probability choices). On the other hand, if the proportion of children adopting 

less favorable choice behaviors is higher than for maximizing, we might expect an increase in their 

average likelihood of choosing the high-probability option with increasing age. Additionally, we 

planned to conduct exploratory analyses to shed light on the role of working memory and response 

inhibition in the development of probability learning and repeated choice behavior.  

 

3.2 Method 

3.2.1 Participants 

The study consisted of three sessions, each one year apart in the spring of 2021 (T1), 2022 (T2), 

and 2023 (T3). We planned to collect a final sample size of at least 40 children who completed the 

probability learning task in all three measurement waves spanning the age range from 3.5 to 6.5 years. 

To achieve this sample size, we accounted for a total attrition rate of 30% based on reports from other 

cross-sectional and longitudinal studies and aimed to collect valid data from 60 children at T112.  

We sent a total of 252 invitation e-mails to families registered in the participant database of the 

Max Planck Institute for Human Development who were matching the inclusion criteria: child’s age 

between 42 and 54 months at T1, access to a tablet or laptop with touch function, and to a stable internet 

connection. Seventy-four children participated in the first measurement wave (MT1 = 47.1 months, SDT1 
= 4 months, range = 41–54 months, 54% female)13. Seventy children returned to participate at T2 (MT2 

= 59.6 months, SDT2 = 4 months, range = 53–67 months, 53% female). In T3, 56 children participated14 

(MT3 = 71.1 months, SDT3 = 4 months, range = 65–78 months, 52% female). All children (except for one 

who did not attend any institution) went to daycare centers at T1 and T2. At T3, 14% of children went 

to elementary school. Several children at each measurement wave were excluded from data analysis 

based on preregistered criteria (see Table C1 in Appendix C).  

Parents provided informed written consent for their child to participate in the study upon registra-

tion; children were asked for verbal consent at the beginning of each session. Each session was recorded 

on video to document child consent, standardized instructions, and for data analysis of the verbal re-

sponse inhibition task. After each session, parents chose the designated purpose of the recording (e.g., 

data analysis only or educational purposes). Families received 50.00 EUR as an expense allowance via 

bank transfer or as a gift voucher for a toy shop after completing all test sessions. 

 
12 Longitudinal studies in other domains investigating a similar age range report an attrition rate of about 15% (Marcovitch et 
al., 2015; Williams & Moore, 2016). Cross-sectional probability learning studies using a similar task but slightly more trials 
report between one-fourth and one-third of children not completing the experiment (Plate et al., 2018; Starling et al., 2018). 
Based on these reports of cross-sectional and longitudinal data loss, we decided to account for an attrition rate of 30%. 
13 Nine of those children were initially recruited for a pilot study. After the pilot study, a minor change was made to the prob-
ability learning task (i.e., children in the pilot study saw a green checkmark for a correct prediction while all remaining children 
saw a blue circle at T1). In T2 and T3, children from the pilot study became part of the main group. Because we did not observe 
differences in behavior between these two groups at T1 and results for our hypothesis do not change dependent on the inclusion 
of the data from pilot children, we decided to aggregate the data. 
14 Due to continued repercussions of the Covid-19 pandemic, data collection in T3 was slightly delayed. At the time of the 
submission of this dissertation, data collection was still ongoing. 
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3.2.2 Design  

We implemented an accelerated longitudinal design spanning the age range from 3.5 to 6.5 years 

in a two-year study. Design and procedure were approved by the internal review board at the Max Planck 

Institute for Human Development and preregistered on the Open Science Framework. The preregistra-

tion is embargoed while the study is ongoing and will be available afterward15 or upon request.  

Families received tokens and stickers prior to each test session via mail and booked an appointment 

with an experimenter to their convenience. The procedure was the same in every session and is sche-

matically presented in Figure 3.1. Tasks were designed to accommodate meaningful performance dif-

ferences in the age range from 3.5 to 6.5 years. Children participated under the supervision of their 

parents at home on a tablet or computer with a touchscreen via zoom. The experimenter shared the tasks 

via screen sharing and parents assisted their children with the handling of the tablet. The order of tasks 

was predetermined: Children played the probability learning task first and then completed the visual 

working memory (VWM) forward, response inhibition, and VWM backward tasks. Families were re-

quired to take a 10-minute break between the probability learning and VWM forward task, during which 

they turned off microphone and video. 

 

Figure 3.1 

Overview of Tasks and Procedure Across Measurement Waves T1–T3 

Note. VWM = Visual working memory.  

 

3.2.3 Tasks and Procedures 

3.2.3.1 Probability Learning Task 

We used a child-friendly probability learning task created for a previous cross-sectional study 

which required children to make 100 repeated choices between two options (see also Chapter 2). The 

high-probability option was rewarded on 70% of the trials, and the low-probability option was rewarded 

 
15 Link to the preregistration: osf.io/gxba9 

Probability learning VWM forward VWM backward Response inhibition 

T1 T2 T3 

https://osf.io/gxba9
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on the remaining 30% of the trials (pseudo-randomized over 100 trials). The positioning of the high- 

and low-probability option to the left or right side, respectively, was randomly assigned per child and 

wave.  

Various animals were presented on the screen at the beginning of the task. The experimenter ex-

plained that the animals had escaped from a zoo and that the child needed to find them. Children com-

pleted two practice trials, guessing behind which of two simultaneously presented houses an animal 

would hide next (see Figure 3.2). After every choice, a feedback screen showed behind which house an 

animal was hiding, and the experimenter announced the kind of animal in a neutral tone. Children col-

lected a fragment of a blue token for every correct choice, which they could exchange against stickers 

at the end of the task (one token was equivalent to ten correct choices). The first practice trial was 

programmed to be correct, and the second practice trial was always incorrect. During the practice trials, 

the experimenter explained the symbols appearing for feedback: A hand symbol indicated which option 

the child chose, a blue circle on top of the screen indicated a correct choice, and a red cross indicated an 

incorrect choice. Additionally, a bonus bar on top of the screen indicated progress toward collected 

tokens and was visible during choice and feedback.  

Following the two practice trials, children completed 100 trials. After every ten correct choices, 

they received a physical blue token and were reminded to collect as many tokens as possible. After 

completing all trials, children were asked to indicate behind which house more animals were hiding 

throughout the task and how they decided which house to select next. Finally, children were encouraged 

to exchange as many tokens as they had collected in the game against animal stickers (rounded up to the 

next full token). 

 

Figure 3.2 

Choice and Feedback Screen in the Probability Learning Task 

 
3.2.3.2 Visual Working Memory 

As a measure of VWM, we adapted the Corsi Block Tapping Task (Corsi, 1972) as a child-friendly, 

computerized task. The Corsi Block Tapping Task originally requires participants to tap on wooden 

blocks in the same order as the experimenter demonstrated over an increasing sequence length (Corsi, 

1972). The task is frequently employed across a variety of settings: in research from childhood to older 

Choice screen Feedback: incorrect Choice screen Feedback: correct 
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age as a nonverbal measure of memory span and in clinical scenarios to detect cognitive deficits (e.g., 

Berch et al., 1998; Garon et al., 2008; Pagulayan et al., 2007). Children have been found to improve in 

their ability to recall an increasing length of tapping sequences in the age range of interest for this study 

(for a review, see Garon et al., 2008). In terms of Baddeley and Hitch’s seminal working memory model 

(Baddeley & Hitch, 2000), the Corsi forward task is thought to mainly recruit the visuospatial sketchpad 

for shorter sequence lengths (Vandierendonck et al., 2004). Retaining longer sequences in the forward 

task and manipulating visuospatial information in the backward task, in contrast, additionally requires 

the support of the central executive (Vandierendonck et al., 2004). Task performance correlates highly 

with digit span recall tasks in children aged 3 to 6 years (Lehmann et al., 2014). 

To increase young children’s interest and engagement, we designed the Corsi task as a tablet-based 

hide-and-seek game (see Figure 3.3; for a similar implementation, see Ramani et al., 2020). The task 

was programmed in an internally developed JavaScript-based framework for online experiments. There 

were eight hills presented on the screen in two rows of four hills each (see Figure 3.3). The experimenter 

explained that several monsters will appear and disappear from the hills one after the other, accompanied 

by a short sound to increase attention. The child was asked to remember the order of hills where the 

monsters had appeared before and to tap on the hills in the same order (forward) or in the reverse order 

(backward). To demonstrate the rules, the experimenter first completed one trial by herself and com-

mented on her choice of hills (“I saw the first monster appear here [hovering mouse over hill], that’s 

why I tap on this hill first.”). A monster could only appear once at any location, and tapping on a hill 

increased its transparency to indicate that it had been selected. At the top of the screen, a hand symbol 

appeared, and the background appeared in light blue when children could start tapping the sequence, 

and a star appeared after completing their response (see Figure 3.3). No outcome feedback was provided 

and children initiated the next trial by themselves by tapping on the star. 

There were two trials of each sequence length, starting with two monsters and increasing to up to 

eight. Each monster appeared for 1s with 500ms between monsters. In the forward version, the task 

progressed to the next level if children tapped on the correct hills (but irrespective of the order) in one 

trial of a sequence length; in the backward version, the task progressed to the next level only if children 

tapped on the correct backward order in one trial of a sequence length. We implemented the more liberal 

stopping rule for the forward version to avoid floor effects as the task (in particular the backward version) 

might have been relatively difficult for young children at T1. The score in each version was the longest 

sequence of monsters that a child remembered in the correct order (VWM forward ordered, VWM back-

ward) or simply at the correct locations (VWM forward unordered)16. 

 

 

 
16 Technically, unordered recall would not require the forward prefix. However, we still label the unordered recall as a forward 
version as children were originally instructed to remember the order and the only difference here is that we used a less strict 
performance score.  
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Figure 3.3 

Visual Working Memory Task 

Note. The first two panels display sequentially appearing items. The third panel demonstrates the end of 

the sequence and the beginning of tapping. The last panel displays the screen when tapping was com-

plete. Tapping on the star invoked the next trial. 

 

3.2.3.3 Response Inhibition 

As a measure of complex response inhibition, we used an adaptation of the day–night task (Gerstadt 

et al., 1994). The day–night task is a Stroop-like task (Stroop, 1935) building on the assumption that 

children have a strong association with the word “day” when presented with a bright image of a sun and 

to say the word “night” when presented with a dark image of a moon. The task requires children to 

suppress their initial tendency to say the congruent word and to say the opposite instead (i.e., “night” to 

the sun image and “day” to the moon image). Instead of simply suppressing an initial response as in 

delay-gratification-tasks (e.g., Mischel et al., 1988), the day–night task moreover requires children to 

keep in mind and execute a conflicting rule (for a review, see Montgomery & Koeltzow, 2010). Thus, 

the day–night task is thought to not only demand inhibitory control but also to require working memory 

components and has been reported to possess good reliability and concurrent validity when assessed 

online via video chat (Ahmed et al., 2022). 

However, test runs with children of lab members indicated that for German-speaking children, the 

association between “day” and “night” and the respective images of a sun and moon may not be very 

strong. Instead of suppressing a prepotent response, children seemed to simply apply a newly learned 

rule. Indeed, the day–night task has been mostly implemented in English-speaking populations (e.g., 

Best & Miller, 2010; Cuevas & Bell, 2014; Eng et al., 2022; Kim et al., 2013; Petersen et al., 2021). 

Analogous to alternative implementations of the day–night task (e.g., grass–snow, happy–sad; for a 

review, see Garon et al., 2008), we presented children with images of a dog and a mouse, assuming 

stronger associations for well-known animals instead of relatively abstract concepts of day and night, 

while at the same time restraining word lengths to one syllable in German. Otherwise, we kept the 

procedure for the task as close to the original version as possible (Gerstadt et al., 1994).  

The task was implemented on presentation slides (for a similar implementation, see Ahmed et al., 

2022), with each slide showing either a picture of a dog or a mouse on a neutral background (see Figure 

3.1). The experimenter explained the rules of the game (i.e., saying mouse [dog] as quickly as possible 



 92 
 

when presented with a dog [mouse]) and instructed the child in two practice trials. The practice trials 

counted toward the test trials when answered correctly and were repeated if not answered correctly. In 

sum, there were 16 trials in the same alternation order of images, as reported in Gerstadt et al. (1994). 

Between each image, a blank screen was displayed for 1 second. If the child did not reply to an image 

after several seconds, the experimenter asked, “What do you say when you see this image?” but other-

wise remained silent during the test trials.  

The response inhibition score was the proportion of correct (i.e., incongruent) responses in the 16 

trials17. The video recordings of the response inhibition task were coded by three raters. Interrater reli-

ability was examined based on a subset of eight videos and reached perfect agreement between the three 

raters. 

 

3.3 Results 

3.3.1 General Analysis Approach 

Children had an age difference of up to one year at every measurement wave, and measurements 

were between 11 to 13 months apart. Thus, between-person differences in age arose from the initial age 

span and a small variability in the time span between measurements. We accounted for between-person 

and within-person variability in age by transforming the age variable in the following way (see Neuhaus 

& Kalbfleisch, 1998): Cross-sectional age was computed as the deviation of a child’s mean age across 

time points from the mean age of the whole sample (i.e., a child’s mean-centered age). Longitudinal age 

was calculated as the deviation of a child’s age at each time point from its own mean age across meas-

urement time points. We initially planned to test hypotheses based on the discrete measure of time points. 

However, because this information is implicitly included in the longitudinal age measure, we use the 

decomposed age variable as a predictor, when feasible, to provide a more detailed picture of develop-

mental trajectories. 

All analyses were conducted in R (R Core Team, 2022). We used the brms package (Bürkner, 2017) 

to estimate Bayesian multilevel models, which relies on Stan for parameter estimation (Carpenter et al., 

2017) 18. Unless otherwise specified, we used default priors and ran four chains with 4000 samples each, 

thinning out every other sample, in addition to an initial burn-in period of 1000 samples. These settings 

resulted in 8000 samples in total after warm-up and thinning. The R%-Statistic (< 1.01) indicated no con-

vergence issues for any parameter. 

 

  

 
17 We also coded response time, but latency was not informative beyond the mean score. 
18 We deviate from the preregistered analysis plan where we specified a repeated measures ANOVA to investigate probability 
learning. The Bayesian approach allows for more flexibility in modeling choice behavior without aggregating choices and 
provides an estimation of the credibility of results rather than frequentist significance testing.   
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3.3.2 Probability Learning 

First, we investigated the development of probability learning across time using a Bayesian mixed 

model approach. We expected to find either no differences across time or a higher rate of high-proba-

bility choices with increasing age. Figure 3.4A shows the observed proportion of choices children allo-

cated to the high-probability option per trial block and measurement time point. A comparison between 

children’s performance at T3 with children similar in age only tested once in a previous cross-sectional 

study revealed no performance differences (see Figure C1 in Appendix C). Any performance differences 

in this longitudinal study are thus unlikely to merely arise from practice or retest effects. 

We investigated changes in the likelihood of high-probability choices using a logit link function to 

account for the binary nature of the dependent variable. We submitted the cross-sectional age variable, 

the longitudinal age variable, their interaction, and trial block as an ordered factor as predictors (fixed 

effects) and individually varying intercepts as a random effect. Results showed that children learned to 

choose the high-probability option more frequently over trial blocks but seemed to reach a plateau to-

ward the end of the task, as indicated by linear (b = .32, 95% CI[.25,.39]) and quadratic trends (b = -.17, 

95% CI[-.24,-.11]). High-probability choices improved with increasing longitudinal age (b = .17,    95% 

CI[.13,.21]). Although we did not find a general effect of cross-sectional age (b = .02, 95% CI[-.25,.29]), 

there was evidence for an interaction between cross-sectional and longitudinal age (b = -.24, 95% 

CI[-.35,-.13]). This indicates that the age variability between children of up to one year had less of an 

impact but that younger children increased in their likelihood to choose the high-probability option more 

than older children. Thus, the development of probability learning decelerated over time. Figure 3.4B 

shows the proportion of choices allocated to the high-probability option (across blocks) as a function of 

longitudinal age. 

 

Figure 3.4 

Changes in High-Probability Choices as a Function of Trial Blocks and Longitudinal Age 

Note. (A) Observed percentage of high-probability choices per trial block and measurement time point. 

Error bars represent +/- standard error. (B) Observed percentage of high-probability choices, averaged 

across trials, by longitudinal age. Regression line derived from Bayesian mixed-effects model. 

A B 
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3.3.3 Individual Choice Behavior 

To investigate individual choice behavior, like probability matching and maximizing, we catego-

rized choice behavior based on the proportion of choices allocated to the high-probability option in the 

final block of trials. We expected that children become less likely to maximize probability over time 

while becoming more likely to probability match. Probability maximizing was defined as choosing the 

high-probability option on at least 90% of the trials; probability matching as choosing the high-proba-

bility option between 65–75% of the trials (see Chapter 2; Schulze et al., 2019). We estimated a Bayesian 

multinomial mixed model with a logit link function and varying individual intercepts as a random effect. 

Categorical choice behavior (maximizing vs. matching vs. neither) was submitted as the dependent var-

iable. Cross-sectional and longitudinal age, and their interaction served as predictors. We found that the 

likelihood of maximizing behavior was negatively associated with cross-sectional age, showing that 

younger children in the cohort were more likely to maximize than older children (b = -1.39, 95% CI[-

2.84,-0.16]). There was no evidence for a main effect of longitudinal age on probability maximizing, 

nor for an interaction between longitudinal and cross-sectional age. This does not confirm our hypothe-

sis that probability maximizing decreases as children grow older but nonetheless indicates an effect of 

age, albeit between-person variability. As expected, the likelihood of probability matching behavior, in 

contrast, increased with longitudinal age (b = 0.59, 95% CI[.06,1.13]) but not as a function of cross-

sectional age or their interaction. These results suggest that the likelihood of probability matching be-

havior by the end of the task increased as children grew older and that between-person age variability 

in the cohort was not related to probability matching. 

To further explore more nuanced choice behavior as a function of age and how different choice 

behaviors transitioned over time, we additionally created categories for other behaviors (based on the 

proportion of high-probability choices in the final block of trials): overmatching (76–89%), undermatch-

ing (55–64%), random choice (45–54%) and below chance (0–44%). Figure 3.5A shows the predicted 

probabilities of category membership as a function of longitudinal age derived from a Bayesian multi-

nomial mixed model accounting for multiple data points per participant (i.e., random participant inter-

cepts; cross-sectional age, longitudinal age, and their interaction as predictors). Figure 3.5B shows the 

distribution and transition of choice behavior classification across time points. Most notably, unsystem-

atic choices below and at chance level decreased (displayed in red and orange), while probability match-

ing and its closely neighboring forms, undermatching and overmatching, increased in prevalence over 

time. By the end of the two-year study, at age 5.5 to 6.5 years, most children used some form of above-

chance choice diversification (displayed in shades of green).  
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Figure 3.5 

Classification of Choice Behavior as a Function of Longitudinal Age and Measurement Wave 

Note. Classification based on the proportion of high-probability choices in the final block of 20 trials. 

(A) Fitted probabilities of choice behavior classification are derived from a Bayesian multinomial mixed 

model. The confidence band represents 95% credible interval of the posterior mean. (B) Transition be-

tween choice behavior classification over measurement time points based on individual category mem-

bership. This plot only includes data from children who completed three waves (N = 49). 

 

3.3.4 Exploratory Analyses: Choice and Executive Functions  

Table 3.1 provides an overview of children’s average performance in the executive function 

measures across time points. As expected, children performed better in unordered recall in the forward 

version of the VWM task than in ordered recall in the forward and backward versions, reflecting differ-

ent difficulty levels. On average, performance in the VWM tasks improved as a function of cross-sec-

tional age (older children performed better than younger within the cohort) and longitudinal age (chil-

dren perform better with increasing age; see Table C2 in Appendix C). However, children only showed 

minor improvements in the response inhibition task, indicating performance close to the ceiling.  

 

Table 3.1 

Mean (M) and Standard Deviation (SD) of Children’s Executive Function Performance by Measurement 

Wave 

  Memory 

Wave Response Inhibition Forward unordered Forward ordered Backward  

 M SD M SD M SD M SD 

T1 .76 .23 2.79 1.45 2.15 1.42 1.53 1.18 

T2 .77 .19 3.98 1.34 2.98 1.34 2.49 1.26 

T3 .87 .11 4.58 1.84 3.52 1.38 3.54 1.02 

 

A B 
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We did not specify hypotheses about the relation between executive function measures and choice 

behavior beforehand. Thus, the following analyses are exploratory. Immature response inhibition has 

been suggested to lead young children to probability maximize (e.g., Jones, 1970). If poor response 

inhibition does, indeed, affect highly persistent choice behavior, we might expect a difference between 

children who matched and children who consistently chose one option, irrespective of whether this op-

tion maximized reward. For this analysis, children were assigned to the persistence category if they 

exclusively chose either the high- or low-probability option on at least 90% of the trials in the final block 

of the probability learning task. Whereas there seemed to be a trend at T1 in the suggested direction (see 

Figure 3.6), there was no statistically credible evidence for a difference in the response inhibition score 

between matching and persistence (p = .59, BF10 = .47)19. Likewise, forward and backward memory 

span was unrelated to probability matching and persistence in any wave (all ps > .07, all BF10 < .85). 

 

Figure 3.6 

Mean Response Inhibition for Children Categorized as Probability Matching or Persistent Choice by 

Measurement Time Point 

 

Note. RI = Response inhibition; probability matching and persistence were classified based on choice 

behavior in the final block of trials (i.e., 65–75% high-probability choices, > 90% either high- or low-

probability choices). 

 

The pattern search hypothesis (Gaissmaier et al., 2006) suggests that higher memory capacity fa-

cilitates searching and testing patterns in an outcome sequence, which requires switching between high- 

and low-probability options. Thus, we explored the relationship between high-probability choices and 

memory span. We extended the Bayesian mixed model used to investigate changes in high-probability 

choices by adding memory span as a predictor. Specifically, the extended model had the following spec-

ifications: high-probability choices as the dependent variable estimated via logit link; individually 

 
19 In Chapter 4, we argue that online testing affects young children’s choice behavior over the course of a lengthy task and 
leads to decreases in performance. When exploring the relationship between matching, persistence, and response inhibition in 
the penultimate block of trials, there is weak evidence in favor of a difference in the suggested direction, t(15.81) = 2.69, p 
< .05, BF10 = 1.93.  
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varying intercepts (random effects); block as an ordered factor, cross-sectional age, longitudinal age, 

ordered recall forward and backward, as well as the two-way interactions between the age predictors 

(cross-sectional x longitudinal) and each age and memory predictors as independent variables. Table C3 

in Appendix C reports the full parameter estimation results. As in the simpler model, high-probability 

choices increased with longitudinal age and over the course of the task, reaching a plateau towards the 

end. The interaction between cross-sectional and longitudinal age did not provide credible evidence as 

a predictor, indicating that increasing memory span might have mediated the effect. Furthermore, we 

found an interaction between longitudinal age and memory span. As children became older, lower back-

ward (b = -.21, 95% CI [-.25,-.17]) and, to a smaller extent, forward recall span (b = -.05, 95% 

CI[-.09,-.01]) increased children’s likelihood of choosing the high-probability option. The credible in-

tervals for all other main effects and interactions included zero. Although it is possible that older children 

look for patterns in the environment and that higher memory capacity facilitates choice diversification 

(see Gaissmaier et al., 2006), this relationship needs to be confirmed in future studies for reliable evi-

dence. 

 

3.4 Discussion 

Previous cross-sectional research showed puzzling age-related trends in probability learning tasks: Chil-

dren below age 5 were found to often engage in probability maximizing (M. H. Jones & Liverant, 1960; 

Stevenson & Weir, 1959; Weir, 1964), whereas older children were more likely to probability match (see 

Chapter 2; Derks & Paclisanu, 1967; M. H. Jones & Liverant, 1960). These findings prompted some re-

searchers to propose a U-shaped function between the rate of high-probability choices and age. (Derks & 

Paclisanu, 1967; Stevenson & Weir, 1959; Sullivan & Ross, 1970; Weir, 1964; Winefield, 1980). In this 

longitudinal study—the first one to our knowledge on probability learning—we examined children’s repeated 

choice behavior between 3.5 and 6.5 years at three measurement time points to shed light on the underlying 

intra-individual trajectory and explored possible cognitive functions shaping this process.  

Our analyses revealed that children, irrespective of age, learned to make more favorable choices 

throughout the experiment, reaching a plateau toward the end of the task. Moreover, they became more 

likely to choose the high-probability option with increasing age, but this process slowed down over time. 

These findings are consistent with other researchers reporting improvements in probability learning 

across early childhood (e.g., Messick & Solley, 1957; Offenbach, 1964) and emphasize that children 

undergo significant developments in this period that help them to improve the skills required in proba-

bility learning tasks.  

As expected, we found that children, on average, became more likely to probability match as they 

got older. In contrast, the age difference between children of up to a year in the cohort due to the accel-

erated design was unrelated to probability matching. Furthermore, we observed a considerable qualita-

tive change in diversifying choice behavior over time, reducing initial variability in choice behavior. 

Notably, the proportion of children choosing the high-probability option at chance or below chance level 
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decreased continuously: By the end of the study, when children were 5.5–6.5 years old, they mostly 

diversified choices but retained performance above chance level. In sum, these results validate that prob-

ability matching behavior increases throughout early childhood as a function of increasing age (for 

cross-sectional findings, see Chapter 2; M. H. Jones & Liverant, 1960). In contrast, probability maxim-

izing showed a different trajectory. We expected that probability maximizing decreases as a function of 

longitudinal age (over time points). Instead, we found a cross-sectional age effect, indicating that 

younger children in the cohort were more likely to maximize probability than older children. This find-

ing is consistent with previous cross-sectional findings that did not reveal age effects for probability 

maximizing in a standard probability learning task (see Chapter 2) but inconsistent with earlier work 

indicating a decline in the propensity to maximize across age groups (Derks & Paclisanu, 1967; M. H. 

Jones & Liverant, 1960; Weir, 1964). However, this inconsistency may be related to the fact that these 

studies found a twice or three times larger proportion of young children who maximized probability. 

Given the difference in the starting point, it seems plausible that we did not find evidence for a longitu-

dinal decline in maximizing and the previously reported U-shaped function between high-probability 

choices and age (which would have predicted a decrease by the latest from 5 years onward; e.g., Derks 

& Paclisanu, 1967; Gruen & Weir, 1964).  

A few differences between our study and those contributing evidence to the U-shaped function are 

noteworthy. For instance, several studies presented children with three choice options, of which only 

one was probabilistically reinforced, and the other two options never yielded a reward (e.g., Gruen & 

Weir, 1964; Stevenson & Hoving, 1964; Stevenson & Weir, 1959; Weir, 1964). In this version of a 

probability learning task, identifying the single option that occasionally delivers rewards may be easier 

than the paradigm used in the present study. Moreover, tasks in earlier work on probability learning 

development usually involved physical setups (e.g., light bulbs, token delivery machines). Yet, our study 

was conducted online, which may make it more difficult for younger children to sustain attention (see 

Chapter 4; Gijbels et al., 2021). Lastly, virtually all studies reporting that more than 50% of children 

below 5 years probability maximized were conducted more than half a century ago. Two newer studies 

that reported relatively high proportions of probability maximizing children tested either slightly older 

children in twice as many trials as we did (Plate et al., 2018)20 or used a more liberal criterion to classify 

probability maximizing (Starling et al., 2018). In other words, the original findings were or could not be 

replicated in more recent years. Environmental factors that contributed to a general rise in performance 

in intelligence tests over the past century (i.e., the Flynn effect; Pietschnig & Voracek, 2015) may affect 

cohort differences with respect to earlier work on the development of probability learning. 

Having discussed the trajectory of probability matching, maximizing, and probability learning in 

early childhood, we still need to better understand the underlying processes. The second goal of this 

study was to examine how working memory and response inhibition may shape these developments. 

 
20 Probability maximizing is known to increase with the length of a task, both in adult and child research (e.g., Derks & 
Paclisanu, 1967; Newell & Rakow, 2007; Plate et al., 2018; Shanks et al., 2002). 
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Our analyses revealed that the likelihood of choosing the high-probability option differed as a function 

of the interaction between memory span and longitudinal age. As children grew older, higher memory 

capacity was associated with a decreased likelihood of high-probability responses. In other words, we 

found a high-capacity advantage in diversification and a low-capacity advantage in maximization for 

older children. This finding is consistent with the pattern search hypothesis suggesting that adults with 

higher memory span have an increased propensity to search for patterns in the outcome sequence and, 

consequently, switch between the high- and low-probability option to test possible patterns (Gaissmaier 

et al., 2006). Moreover, this finding resonates with previous research on increasingly systematic explo-

ration tendencies in childhood (e.g., Blanco & Sloutsky, 2020; Liquin & Gopnik, 2022; Schulz et al., 

2019) and suggests that increasing working memory capacity may play a role in these processes. How-

ever, as our analyses were exploratory, further confirmatory research is needed.  

Whereas some researchers proposed that probability maximizing in early childhood arises from 

protracted response inhibition development (e.g., Derks & Paclisanu, 1967; S. J. Jones, 1970), we did 

not find evidence in favor of this theory. On the one hand, children seemed to reach ceiling effects in 

the response inhibition task early on, and this was possibly strengthened by retest effects. A different 

response inhibition measure may confirm the expected relationship. On the other hand, the variability 

in persistence across time points may indicate that response inhibition only plays a small role in shaping 

young children’s choice behavior. For instance, some children who maximized (or minimized) at T2 

chose randomly before at T1 (and vice versa). Beyond failing to inhibit a prepotent response, some 

younger children seem to prefer strategies that do not require extensively tracking previous outcomes 

and are easy to implement (for a similar argument in the adult literature, see Schulze & Newell, 2016).  

Nonetheless, these findings demonstrate that an increase in cognitive capacities alone does not fully 

explain developmental processes in probability learning. Cognitive capacities and other experiential 

factors, such as beliefs, expectations, or experience with statistical structures in the real world, seem to 

influence the development of probability learning and choice behavior (also see Chapter 2; Baltes, 1987; 

Plate et al., 2018). For instance, school-aged children may differ in why they (do not) probability max-

imize. Whereas some children aged 5–6 years in the present study maximized, children aged 6–7 years 

did not maximize probability in a previous cross-sectional study where outcomes were sequentially de-

pendent. This may indicate that school-aged children persistently choose the high-probability option as 

a veritable reward maximization strategy21 that they only abandon when a diversification strategy pro-

vides adaptive benefits. Tracking children’s choice behavior longitudinally in an ecologically plausible 

probability learning task may provide new insights into such considerations. Moreover, an extended 

longitudinal investigation into adolescence may reveal how and when the transition from heightened 

exploration to adult-like exploitation occurs.  

 
21 An initial cue may be that children who maximized at T3 explained their choices by stating that they selected the option 
where more animals were hiding while children who maximized at T1 said they guessed or knew where the animals were 
hiding. 
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Despite the unique benefits of longitudinal research, we acknowledge that retest and practice effects 

are possible limitations (e.g., Rabbitt et al., 2004). While retest effects may underestimate change in 

studies investigating cognitive decline in older age (Lövdén et al., 2004), they may lead to overestima-

tion of effects in research on cognitive development in childhood. We believe that retest or practice 

effects influence the measures used in this study to a different extent. First, the response inhibition task 

was possibly most affected by practice effects as children could have remembered the rule of the game. 

Second, in the probability learning task, the high-probability option was randomly assigned at every 

time point: children did not benefit from remembering which side was more favorable over measurement 

waves—even if they could do so over a year-long break. A comparison with previous cross-sectional 

results showed that children’s performance at T3 was equal to children of a similar age who played the 

game only once. Third, studies reporting training effects in working memory tasks for preschoolers 

typically require more practice sessions in a much shorter period to observe improvements than we used 

in the present study (e.g., ten sessions within a few weeks vs. three sessions in two years; Ramani et al., 

2020; Thorell et al., 2009). Thus, we believe practice effects may have only had a minor impact on our 

main findings. Overall, our results show the feasibility and benefit of longitudinal research in develop-

mental processes in early childhood. 

 

3.5 Conclusion 

In line with previous findings, we provided credible evidence that choice diversification, like prob-

ability matching, increases longitudinally from early to middle childhood. Probability maximizing, in 

contrast, did not decrease over time but was related to age variability in the cohort. Our results emphasize 

the variability of choice behavior in early childhood and show that, on average, children improve their 

performance in standard probability learning tasks. Furthermore, exploratory analyses revealed that in-

creasing cognitive capacities may facilitate choice diversification rather than maximization and contrib-

ute to developmental research on exploration tendencies. Lastly, our study outlines the interplay between 

the developing mind and children’s experience with real-world statistical structures as a fruitful avenue 

for future research on probability learning. 
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4 | Young Children Recruit Different Choice Strategies                  
When Tested Online 

 

Abstract. Using remote technologies in research on cognitive development is becoming increasingly 

prevalent, but evidence for the generalizability of results across online and offline conducted studies is 

mixed. Here, we investigated behavioral and strategy differences in a probability learning paradigm in 

3- and 4-year-old children instructed online via video chat (n = 39) or offline in person (n = 69). We 

found an interaction between testing modality and trial block: Children in the online sample chose the 

more frequently rewarded option less often toward the end of the experiment. Moreover, computational 

modeling analyses revealed considerable differences in strategy use across the entire task, not only to-

ward the end. Children in the online sample were more likely to rely on a win-stay lose-shift heuristic, 

whereas a reinforcement learning model best described children in the offline sample. Our results em-

phasize that the testing modality is a key factor in shaping cognitive processes underlying young chil-

dren’s choice behavior and needs careful consideration in designing online studies for developmental 

research.   

 

4.1 Introduction 

The internet is increasingly shaping how people communicate and work, and there is little doubt 

that the Covid-19 pandemic has accelerated this process (Zhu & Benwell, 2021). With the need to find 

creative solutions to the problems that social distancing posed, remote technologies have seeped into 

areas where they have been rarely used before. While online data collection was a widely used method 

in research with adult participants already prior to the Covid-19 pandemic (e.g., Peer et al., 2022), this 

method has become increasingly popular among developmental scientists over recent years (e.g., Scott 

& Schulz, 2017; Sheskin et al., 2020a; Sheskin & Keil, 2018; Zaadnoordijk & Cusack, 2022). Remote 

testing kept research projects running while labs, schools, and other public testing sites were locked 

down. In addition to these pragmatic concerns, online data collection offers a chance to reach a demo-

graphically more representative sample and to increase sample size while reducing the time needed to 

collect data (e.g., Sheskin et al., 2020a). But are in-person and online data collection indeed interchange-

able in a developmental context? 

While the question of data quality in online studies is not limited to developmental research (e.g., 

Newman et al., 2021; Peer et al., 2022; Webb & Tangney, 2022), moving developmental studies online 

is particularly challenging. For instance, task setups previously relying on physical objects (e.g., toy 

blocks, cards, or other stimuli) and dependent measures requiring a child to move toward or touch an 

object had to be transformed into their digital counterpart; instead of asking children or families in a 

public testing site if they want to participate, new online recruitment strategies needed to be developed; 

and as children typically give verbal, not written consent, alternative methods to document children’s 
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voluntary participation had to be created for unmoderated online studies. The publication of several 

papers on best practices for developmental online data collection within a short period illustrates the 

urgency to solve these issues (e.g., Gijbels et al., 2021; Kominsky et al., 2021; Segal & Moulson, 2021; 

Shields et al., 2021). These guidelines typically differentiate between synchronous and asynchronous 

studies: Synchronous studies are moderated by an experimenter, for example, via video chat; asynchro-

nous studies do not require the presence of an experimenter, but participants can complete the study on 

an online platform at any time. Although asynchronous studies offer the opportunity to collect large 

sample sizes cost-efficiently, they provide little control over parental interference or verification of a 

child’s presence. Synchronous studies, in contrast, resembles in-person testing more closely because an 

experimenter interacts directly with the child and caregiver. However, this method is fairly unique to 

developmental research. Direct interaction has been suggested to be an important factor for children to 

sustain attention (Gijbels et al., 2021) and to complete longer online tasks (Sheskin et al., 2020). To 

minimize methodological differences between online and offline testing, we focus on synchronous 

online testing in the present study.  

Previous comparisons between synchronous online and offline studies with young children (i.e., < 

5 years) showed promising results but, at the same time, raised several questions. Although a general 

developmental pattern can often be reproduced in online studies, considerable behavioral differences 

can arise from different testing methods. For instance, several online studies using violation-of-expec-

tation or false-belief paradigms reported comparable results across testing methods; however, children 

tended to perform more poorly in online studies (Chuey et al., 2021; Schidelko et al., 2021; Scott et al., 

2017; Sheskin & Keil, 2018; Smith-Flores et al., 2021). Similarly, a study on second-order inferences 

showed that 3-year-olds in the online sample performed at chance level and yet did not behave signifi-

cantly differently from children in an offline sample (Lapidow et al., 2021). 

Moreover, a yet unpublished meta-analysis showed a trend for smaller effect sizes in online samples 

(Chuey et al., 2022). While this effect was not statistically significant, the meta-analysis allowed online 

replications to use a different dependent measure than offline studies (e.g., preferential looking time 

instead of touch) and did not address the different domains or abilities that these studies investigated 

(Chuey et al., 2022). However, depending on the research questions, tasks, and examined abilities, not 

all studies may be equally suited for online testing with young children. Explicitly addressing these 

different domains in evaluating online testing methods could provide helpful new insights on cognitive 

development beyond mere validation of the data collection method. Until now, only a smaller number 

of domains is represented in online validation studies: for instance, word learning, memory, number 

knowledge, shape discrimination, or theory-of-mind (e.g., Bánki et al., 2022; Bochynska & Dillon, 2021; 

Escudero et al., 2021; Morini & Blair, 2021; Nelson et al., 2021; Schidelko et al., 2021; Sheskin & Keil, 

2018; Silver et al., 2021). The decision-making domain in younger children has not yet been addressed 

(for an asynchronous study with older children, see Nussenbaum et al., 2020). Studying children’s de-

cision-making abilities with remote technologies becomes more important as their digital media and 
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internet use increases from early childhood to adolescence, for instance, for education, communication, 

and entertainment purposes (e.g., Feierabend et al., 2020; Kieninger et al., 2020; Rideout & Robb, 2020). 

This research may provide new insights into how instruction via a digital device affects their decision-

making competencies compared to in-person settings (e.g., remote vs. classroom instruction).  

The present study investigates children’s repeated choices in online and offline probability learning 

paradigms. In classic probability learning paradigms, children make repeated choices between two or 

more options and receive reinforcement when making a correct choice (e.g., a token, candy,  or just the 

information of having made a correct choice; e.g., Derks & Paclisanu, 1967; Plate et al., 2018; Weir, 

1964). Outcome probabilities are not known at the beginning of the task but need to be learned from 

trial-wise feedback. The development of probability learning has been studied for several decades, 

showing that children as young as 3 years old are able to learn about the underlying probabilistic sched-

ule by increasingly choosing the option associated with the highest probability of holding a reward (i.e., 

the high-probability option; Derks & Paclisanu, 1967; Lewis, 1966; Siegel & Andrews, 1962). 

Because the strength of evidence for previous online replications of in-person findings in child 

development is somewhat mixed, it is important to investigate why children perform slightly worse in 

online tasks and sometimes even at chance level, in addition to the general comparability across testing 

modalities. There are two possibilities for why young children’s choice behavior in probability learning 

tasks might differ across testing modalities. Online testing characteristics could elicit qualitatively dif-

ferent strategies when performing a task or make it more challenging to implement a specific choice 

strategy. While a maladjusted strategy will likely result in decreased performance, a shift in strategy use 

to a simpler process does not necessarily allow such a prediction. Some strategies may be less adaptive, 

but others could result in similar performance levels. For instance, the fast-and-frugal heuristics program 

has demonstrated that even when ignoring some of the available information, simple decision rules can 

enable people to make accurate choices (e.g., Gigerenzer & Gaissmaier, 2011). Seminal work on adap-

tive strategy selection suggests that people consider time and effort when selecting a strategy, trading 

off between accuracy and costs (Payne et al., 1988). Suppose online testing increases the difficulty of 

attending to all information (e.g., due to environmental distractions, difficulties imposed by handling 

the device, internet lag, etc.). In that case, we might expect children to switch to a simpler strategy that 

requires less effort or attention. 

However, if children across testing modalities rely on the same strategies, but strategy adjustment 

is more difficult online, we may observe a decline in performance because children make more errors 

and choose the high-probability option less frequently (for a similar argument for adults, see Olschewski 

et al., 2018). In associative or reinforcement learning models, the extent to which participants consist-

ently choose a higher-valued over a lower-valued option is governed by a sensitivity parameter. This 

parameter is viewed as an indicator of random exploration in children but also as decision noise or error-

proneness in the choice process (e.g., Eckstein et al., 2022; Giron et al., 2022; Schulz et al., 2019; van 

den Bos et al., 2011). If children tested online show a decline in performance compared to children 
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tested offline (i.e., choosing the high-probability option less often), this might be reflected in lower 

values of a sensitivity parameter. 

In the current study, we will investigate behavioral and strategy differences in probability learning 

between 3- and 4-year-old children tested offline in-person or online via video chat. To this end, we use 

two compatible datasets previously collected for other research projects  (see Chapters 2 and 3). We will 

analyze performance based on high-probability choices and switching behavior and further use a com-

putational modeling approach to explore children’s underlying cognitive processes. For this purpose, 

we will fit several models to children’s choices that have previously been used to describe how task 

characteristics (e.g., Newell et al., 2013; Otto & Love, 2010; Rakow & Miler, 2009; Schulze et al., 2015, 

2017) and cognitive factors shape strategy use in adults (e.g., a win-stay lose-shift heuristic or 

reinforcement learning mechanisms, Otto et al., 2011; Worthy et al., 2012).  

Based on the trend for worse performance in online settings and assuming that online instruction 

and testing add complexity to the task, we expect children in the online sample to choose the high-

probability option less often than children in the offline sample. Given that much of the previous work 

on online- and offline comparisons required only a few trials per child, a detrimental effect of online 

testing may particularly emerge in later trials. That is, if children in the online sample fail to sustain 

attention to the task over time, we might expect them to increasingly choose the low-probability over 

the high-probability option. On a behavioral level, this could result in more reward-insensitive switching 

behavior. On a strategy level, this could lead to a decrease in choice sensitivity and an increase in random 

exploration (Olschewski et al., 2018). Examining behavioral and strategy differences in an online and 

offline conducted probability learning task will provide new insights into the generalizability of findings 

across testing modalities and inform our understanding of how methodological considerations may 

shape young children’s choice process. 

 

4.2 Method 

4.2.1 Participants 

        Thirty-nine children completed the offline study (M = 4.12 years, SD = 0.57 years, 44% female), 

and sixty-eight the online study (M = 3.94 years, SD = 0.33 years, 53% female)22. Ten additional chil-

dren participated but were excluded from data analysis: five children in the offline study and two chil-

dren in the online study because they did not complete all choice trials; three children in the online study 

because of parental interference (affecting children’s choices, e.g., “You do not always have to choose 

the left option.”); and one child in the online study due to internet connectivity issues. Data exclusion 

criteria for the online sample were preregistered. 

 
22 The target sample size for both datasets was predetermined based on their original research questions with N = 40. The 
offline sample fell short by one child due to testing restrictions arising from the Covid-19 pandemic. Online data was collected 
in the context of the first measurement wave of a longitudinal study and accounts for possible dropouts during later waves.  
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        Offline data collection took place from December 2019 to March 2020 in a local museum in Berlin, 

Germany. Children for the online sample were recruited via the participant database at the Max Planck 

Institute for Human Development and instructed online via video chat; recruitment and data collection 

took place from January to March 2021. Parents or children’s legal guardians provided written consent 

for the child to participate and for their data to be used for secondary analyses. Children were addition-

ally asked for verbal consent at the beginning of the task. To document consent and standardized in-

structions, each session was video recorded.  

 

4.2.2 Design and Procedure 

We kept the procedure across both testing modalities as similar as possible—including the same 

two experimenters collecting the data in both samples. All children played the same, child-friendly prob-

ability learning task on a tablet. Children repeatedly predicted behind which of two houses an escaped 

zoo animal would hide next. Children in the offline sample completed the task on a Lenovo Tab (1280 

x 800 px); children in the online sample used either a tablet or a laptop with touchscreen. The images’ 

and buttons' relative size and positioning were held constant across devices. Additional technical pre-

requisites for the online study were that the videoconference app Zoom was installed on the device and 

that families had access to a stable internet connection. In contrast to children in the museum who par-

ticipated on site, parents of children in the online sample made an appointment at their convenience. A 

test session took approximately 20 minutes in both testing modalities.  

The instructions were the same for children tested online and offline. Children in the offline sample 

were instructed by an experimenter sitting next to them, assisting with handling the tablet; children in 

the online study were instructed via video chat. The experimenter shared the task via screen sharing and 

granted remote access to the participating family. Parents in the online sample helped children with the 

handling of the tablet but were asked to allow their child to make choices independently and to refrain 

from commenting on their child’s behavior or giving feedback.  

Figure 4.1 displays the probability learning task. To introduce the task, the experimenter explained 

that all animals escaped from the zoo. Children were then presented with a selection of escaped animals 

to give them an idea that there were, in fact, many animals. Afterwards, they completed two practice 

trials: the first was programmed to be correct, and the second was incorrect. To make a choice, the child 

touched the house behind which they believed an animal was hiding. On the following feedback screen, 

a previously hidden animal appeared, a hand symbol indicated which option was last chosen, and a green 

checkmark (online: blue circle) or red cross above the houses indicated whether a choice was correct. 

Except for eight children, participants in the online sample saw a blue circle instead of a green 

checkmark (see Figure 3.2 in the previous Chapter). However, we did not observe behavioral differences 

between these two groups in the online sample and hence, aggregated the data. Correct and incorrect 

choices were further accompanied by a high- or low-pitched sound, respectively. Children were in-

structed to collect fractions of blue tokens when making a correct prediction that they could later 
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exchange against animal stickers from a box (offline) or an envelope (online). A bonus bar at the top of 

the screen, consisting of blue circles, informed children about their progress. Throughout the experiment, 

children received a physical token representing a blue circle for every ten correct choices. Children in 

the online sample received the material via mail before the test session.  

The probability of animals hiding behind either house remained constant over trials: the high-prob-

ability option concealed an animal in 70% of the trials, and the low-probability option in 30% of the 

trials. Probabilities were pseudo-randomized, and only one animal appeared in any trial. Probabilities 

were not stated explicitly, but children had to learn about the likelihood of animals hiding behind the 

houses from feedback. After completing all 100 trials, children were asked to indicate the house behind 

which they believed more animals were hiding throughout the task, to estimate how many animals were 

hiding behind the houses using a response slider, and to explain how they decided which house to select. 

Lastly, correct choices were rounded up to the next blue token, and children were allowed to select as 

many stickers as they had collected tokens.  

 

Figure 4.1 

Example Screens in the Offline Probability Learning Task: Choice and Feedback 

 
4.3 Results 

4.3.1 Behavioral Results 

The primary goal of this study was to examine performance differences between children tested 

online and offline. To this end, we investigated whether children tested online or offline differed in their 

likelihood of choosing the high-probability option and switching responses over the experiment. All 

analyses were conducted in R (R Core Team, 2023). We used the brms package with default priors 

(Bürkner, 2017) with the statistical modeling software Stan (Carpenter et al., 2017) to estimate Bayesian 

mixed models, and the BayesFactor package to compute Bayes Factors for t-tests and contingency tables 

(Morey & Rouder, 2022). Bayesian generalized linear mixed models had the following specifications: 

We used a logit link function to predict the dependent variable (model 1: choosing the high-probability 

option or not; model 2: switching or repeating choice) and included random participant intercepts to 

account for repeated choices per child. We entered testing modality (offline vs. online), trial block, and 

their interaction as fixed effects. Trial block was submitted as an ordered factor allowing to test for 

linear and quadratic trends. For each model, we ran four chains with 5000 samples each after discarding 

Choice screen Feedback: correct Choice screen Feedback: incorrect 
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the first 1000 samples as warm-up, and thinning every other sample. This yielded 8.000 samples post 

warm-up and thinning. The R%-statistic (≤1.01) indicated no convergence issues for any of the predictors. 

 

4.3.1.1 High-Probability Choices 

We expected young children tested online to make fewer high-probability choices than children 

tested offline. If performance differences are related to sustained attention, this effect would particularly 

emerge over the course of the task. Figure 4.2A shows the percentage of choices allocated to the high-

probability option per trial block and testing modality. Results from a Bayesian generalized linear mixed 

model showed that, when averaging across modalities, children learned to choose the high-probability 

option more often throughout the task, as indicated by a positive linear trend over trial blocks (b = .49, 

CI95%[.33, .65]). Aggregating over trial blocks, we did not find evidence that children performed worse 

when tested online than offline (b = -.13, CI95%[-.57, .32]). However, there was evidence for an interac-

tion between the linear (b = -.22, CI95%[-.42, -.02]) and quadratic polynomials (b = -.21, CI95%[-.41, -.01]) 

of trial block and online testing modality. In other words, toward the end of the task, children in the 

online sample chose the high-probability option less often than children in the offline sample. 

Figure 4.2B displays how children allocated choices to the high-probability option in the final block 

of trials. We find bimodal distributions in both testing modalities. In both modalities, one peak approx-

imates persistently choosing the high-probability option. The second peak, however, centers on approx-

imate probability matching for children tested offline (between 70–75% high-probability choices) but 

on random choice for children tested online (50–55% high-probability choices). 

 

Figure 4.2 

Percentage of Aggregate and Individual High-Probability Choices Across Testing Modalities 

Note. (A) Percentage of high-probability choices per trial block and testing modality. Error bars indicate 

+/- 1 standard error. (B) Distribution of individual participants’ allocations to the high-probability option 

in the final block of trials per testing modality. Values on the y-axis in percent (e.g., the top bar repre-

sents children exclusively choosing the high-probability option in the final 20 trials).  
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4.3.1.2 Switching 

To investigate whether the online testing modality increased reward-insensitive switching behavior 

between the high- and low-probability option, we analyzed children’s tendency to switch or repeat a 

choice using a Bayesian generalized linear mixed model. The likelihood of switching responses instead 

of repeating a response decreased over trial blocks irrespective of testing modality, as indicated by a 

linear trend (b = -.58, CI95%[-.74, -.42]). However, the decrease slowed over trial blocks, indicated by a 

quadratic trend (b = .16, CI95%[.01, .33]; see Figure 4.3). The estimated credible intervals of the remain-

ing predictors included zero, indicating no effect of testing modality nor an interaction between linear 

or quadratic polynomials of trial block and testing modality. 

 

Figure 4.3 

Percentage of Option Switches by Trial Block and Testing Modality 

Note. Error bars indicate +/- standard error. 

 

4.3.1.3 Ability to Identify the High-Probability Option 

To explore whether children learned that one option had a higher outcome probability than the 

other, we asked them to identify the high-probability option at the end of the task. A binomial test re-

vealed that children in the online (M = .77) and offline group (M = .66) were able to correctly indicate 

the high-probability option above chance level (all ps < .05, all BFs10 > 16). A Bayesian contingency 

test assuming independent multinomial sampling with their total fixed and a chi-square test showed that 

children in both samples were similarly likely to identify the high-probability option correctly, χ!(1) = 

1.1, p = .34, BF10 = 0.43. That is, although children in the online sample seemingly had more difficulties 

identifying the high-probability option correctly, statistical analyses did not provide credible evidence 

for an effect of testing modality. 

 

4.3.1.4 Interim Summary 

In sum, behavioral results extend previous offline findings (see Chapter 2) and demonstrate that 

young children between 3 and 4 years can successfully learn about the probabilistic structure of a prob-

ability learning task when instructed online via video chat. However, our analyses also show that 
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children’s choices in the online sample were not equivalent to those in the offline sample. In particular, 

with an increasing number of trials, differences in performance emerged. To further investigate whether 

children tested online and offline relied on qualitatively different strategies when making decisions or 

only changed the fine-tuning of a given strategy, we next model children’s choices with a set of different 

strategies that have proven useful to study children’s and adults’ repeated choice behavior (see Chapter 

2; Otto et al., 2011; Schulze et al., 2017; Worthy et al., 2012).   

 

4.3.2 Model-Based Strategy Analysis 

We used a computational modeling approach to investigate possible differences in strategy use 

between children in the online and offline samples. Do performance differences toward the end of the 

task mean that children generally rely on different strategies? Or, if children rely on the same strategies, 

are there differences in how they tune a strategy to the task?  

Instruction via video chat may tax children’s cognitive resources more in a probability learning 

task than when instructed in person. Adult participants have been found to recruit reinforcement learning 

(RL) and win-stay lose-shift (WSLS) strategies differently when their cognitive resources are taxed 

under dual-task conditions compared to a single task condition (Worthy et al., 2012) and to show less 

sensitivity to the higher-valued option (Olschewski et al., 2018). Both WSLS and RL have been shown 

to underlie children’s choice behavior in related tasks (Bonawitz et al., 2014; for a review on RL 

modeling across development, see Nussenbaum & Hartley, 2019) and, thus, may be helpful to charac-

terize possible differences across testing modalities. We also estimated a baseline model that assumes 

children choose the high-probability option with a constant probability throughout the task. The free 

parameter from the baseline model equals the mean high-probability choice per participant (see Schulze 

et al., 2017). Models were implemented in the Bayesian framework JAGS (Plummer, 2003) and fit to 

each participant’s choice data separately using MATLAB as an interface (The MathWorks Inc., 2021). 

We selected the model best describing each participant’s choice behavior based on a comparison of the 

Deviance Information Criterion (DIC; Spiegelhalter et al., 2002). As a measure of model fit penalizing 

complexity, we selected the model with the lowest DIC value per participant. The following section 

provides an overview of the implemented models, but see Appendix B for more details on model im-

plementation and parameter estimation techniques.  

 

4.3.2.1 Reinforcement Learning 

The central assumption of RL models is that a decision-maker gradually updates the values of al-

ternative choice options over trials and makes choices based on these values (Rescorla & Wagner, 1972; 

Sutton & Barto, 2018). In simple RL models, two parameters characterize people’s choice process. The 

learning rate captures the weight of recent outcomes in the value-updating process. To this end, a pre-

diction error is computed on every trial and describes the difference between the expected and an ob-

served outcome. As a scaling parameter, the learning rate determines if recent outcomes are weighted 
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more strongly (higher learning rates) or if a longer window of outcomes is considered in the value-

updating process (lower learning rates). The second parameter, choice sensitivity or inverse temperature, 

describes how deterministically people choose the higher-valued option. Higher parameter values sug-

gest that a person chooses the high-valued option more deterministically; lower values indicate that a 

person more randomly explores the low-valued option. RL models have been used successfully to de-

scribe older children’s and adolescents’ choice behavior, learning, and exploration (e.g., Ciranka & van 

den Bos, 2021; Decker et al., 2016; Nussenbaum et al., 2020; Smid et al., 2022; van den Bos et al., 

2011).  

 

4.3.2.2 Win-Stay Lose-Shift 

In contrast to RL models that capture value learning processes over several trials, WSLS describes 

a heuristic that is only based on the single last outcome. Using a WSLS rule, a person repeats a choice 

if a reward was obtained and switches to the alternative option if no reward was obtained (Berman et 

al., 1970). WSLS is a common strategy used by children, adults, and other species in various tasks (e.g., 

Bonawitz et al., 2014; Ellerby & Tunney, 2017; Gaissmaier & Schooler, 2008; Maboudi et al., 2020; 

Scheibehenne et al., 2011). Despite requiring little memory, a WSLS heuristic can serve to explore 

alternative choice options beyond reward-insensitive switching in numerous environments, for instance, 

including more ecologically plausible statistical structures (Scheibehenne et al., 2011) or social compe-

tition (Nowak & Sigmundt, 1993). To explore whether children in the online and offline sample treat a 

win and a loss (i.e., absence of a win) differently when using a WSLS heuristic, we used a probabilistic 

implementation with two parameters that allowed to estimate separate probabilities for staying after a 

win and switching after a loss (e.g., Worthy et al., 2012).  

 

4.3.2.3 Strategy Classification 

Figure 4.4 shows the proportion of children per testing modality classified as using one of the three 

strategies. Strategy classification differed significantly across testing modalities, 𝜒!(2) = 11.67, p < .01, 

BF10 = 24.87. As confirmed by inspection of the residuals, more children in the offline sample relied on 

an RL mechanism, and more children in the online sample used a WSLS heuristic than expected under 

independence between strategy classification and testing modality23. A similar proportion of children in 

both samples was best described by the baseline model. Apart from differences in what strategy children 

used, does the testing modality also affect how children use a strategy?  

 
23 Behavioral analyses suggest that performance in the online sample declines only in the second half of the experiment. To 
explore whether this indicates a shift in strategy use, we also fit the models to children’s choice data only from trial blocks 3–
5 (see Figure D1 in Appendix D). While the proportion of children best described by the baseline model increased in this 
analysis, the overall pattern and statistical results remain the same as when fitting the models to all data: the majority of children 
in the online sample were best described by the WSLS model and the majority of children in the offline sample were best 
described by the RL model. The increase in baseline users suggests that some children stopped learning toward the middle of 
the task and choose the high-probability option with a constant probability. Indeed, about half of the baseline users (47%) were 
maximizers or minimizers. We decided to report the full-data analysis here due to some convergence issues for the inverse 
temperature parameter when using a subset of data. 
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Figure 4.4 

Strategy Classification by Testing Modality 

 

 

4.3.2.4 Parameter Analysis 

To answer this question, we explored differences in the models’ parameter estimates for those chil-

dren best described by the respective models per testing modality. A Welch’s t-test revealed that children 

tested online (M = .44) had a higher probability to repeat the same choice after a win than children tested 

offline (M = .25), but Bayesian evidence was anecdotal t(46.35) = -3.4, p = .001, BF10 = 1.37. There was 

no evidence for an effect of testing modality on the probability to shift after a loss, t(26.73) = 1.96, p 

= .06, BF10 = 0.7. In sum, evidence for a distinct use of a WSLS heuristic remains ambiguous.  

Analyses of the RL parameter estimates revealed similar learning rates (Monline = .22, Moffline = .36), 

t(41.96) = 1.76, p = .09, BF = .98, and sensitivity, (Monline = 11.45, Moffline = 11.69), t(30.79) = 0.04, p 

= .97, BF = .30, for those children best described by the RL model in both samples. In sum, our results 

suggest that children tested online and offline differed in the kind of strategy they relied on rather than 

in how they used a given strategy. 

 

4.4 Discussion 

In the present study, we investigated 3- and 4-year-olds’ performance in a probability learning task 

when instructed offline in person or online via video chat. Previous research on cognitive development 

reported similar developmental patterns across online and offline studies. However, children tended to 

perform slightly poorer in online than offline conducted tasks (e.g., Schidelko et al., 2021; Scott et al., 

2017; Sheskin & Keil, 2018; Smith-Flores et al., 2021). Consequently, effect sizes in online studies 

seemed slightly smaller than in offline studies (Chuey et al., 2022). Our behavioral results and compu-

tational modeling analyses substantiate evidence that online and offline testing methods for young chil-

dren are, in fact, not interchangeable. We found that 3- and 4-year-old children performed better toward 

the end of a probability learning task when instructed offline in person and that children recruited dif-

ferent strategies depending on the testing modality across the entire task.  
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Our behavioral analyses revealed that children instructed offline were more likely to choose the 

high-probability option than children in the online sample toward the end of the probability learning 

task. This indicated that although there was no main effect of testing modality on performance, differ-

ences may emerge over the course of a lengthy experiment. Yet, this was unrelated to children’s likeli-

hood of switching between options or repeating the same choice. Instead, frequent switching seemed to 

be a typical choice behavior for most children at the beginning of the task, with a slowing decrease over 

trial blocks (see also Rabinowitz & Cantor, 1967). Nevertheless, whereas approximately two-thirds of 

children tested online were able to identify the more frequently rewarded option after the task correctly, 

approximately three-fourths of children in the offline sample were able to do so. However, there was no 

evidence for a credible effect of testing modality on the ability to identify the high-probability option. 

Although some children might have had difficulties with the task, our results suggest that performance 

differences toward the end of the task cannot be solely attributed to misunderstanding task instructions.  

When looking at individual choice proportions in the last block of trials, we found bimodal distri-

butions of choice behavior in both testing modalities: One group of children persisted on the high-prob-

ability option irrespective of testing modality. In contrast, another group of children diversified choices 

differently across modalities—the peak of this second group of children was at a higher rate of high-

probability choices in the offline than in the online sample. Indeed, the modal individual choice behavior 

in the online sample by the end of the task was random choice.  

Moreover, our computational modeling approach showed considerable differences in strategy use. 

Whereas an RL mechanism best described most children in the offline sample, most children in the 

online sample were better described by a probabilistic WSLS model. Parameter analyses suggested that 

children best described by the respective models were using the strategy in a similar way. Our modeling 

approach relied on all choices to provide enough data to discriminate between choice models. However, 

the general pattern of results remained the same when using only the second half of choice data to fit 

the models. In sum, the modeling analyses suggest that children tested offline relied on a more associa-

tive learning strategy, whereas children tested online tended to use a simple rule-based strategy. Both 

models can accommodate variability in high-probability choices. However, whereas RL requires updat-

ing options’ values over repeated trials, a WSLS heuristic only requires memory of the single last out-

come. From the perspective of heuristic and adaptive strategy selection (Gigerenzer & Gaissmaier, 2011; 

Payne et al., 1988), the shift in strategy use between offline and online testing might suggest that a 

simpler WSLS heuristic wins the effort–accuracy tradeoff when the implementation of an RL mecha-

nism becomes more difficult.  

However, what specific aspects of the online testing environment affected strategies and perfor-

mance? One mechanism pointed out in the literature is decreasing sustained attention in online settings 

due to distractions in the home environment (Shields et al., 2021). However, more distractions in a home 

environment are unlikely to account for our findings: Children in the offline sample were tested at a 

local museum where people were passing by at a relatively close distance. Difficulties with sustained 
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attention could rather be related to aspects inherent to the online testing situation instead of the physical 

location. For instance, features of the physical presence of an experimenter, like facial expressions and 

gestures, are difficult to convey in an online environment or may be altered by time lag or low frame 

rates. In our study, the experimenter was only visible in a small window, as the screen-shared experiment 

took up most of the screen on the tablet. Moreover, a slow internet connection or lower processing speed 

of the tablet could have introduced a small time lag between the choice through physical touch and the 

appearance of the feedback screen. It has been suggested that increased inter-trial intervals may lead to 

more response variability of children’s choices, even in a physical probability learning task (Weir & 

Gruen, 1965). One possibility to directly test for an effect of attention in future studies would be to 

combine a probability learning task with smartphone- or webcam-based eye-tracking methods to meas-

ure how children attend to outcomes across testing modalities (e.g., Erel et al., 2022; Werchan et al., 

2022). 

 

4.5 Conclusion 

To conclude, we demonstrated that performance differences in a probability learning task might 

arise with increasing task length between young children tested online via video chat or offline in person. 

Moreover, computational modeling analyses revealed considerable strategy differences. Children in the 

online sample primarily relied on a simple WSLS heuristic, whereas a reinforcement learning mecha-

nism better described children in the offline sample. Our findings show that online testing can shape 

children’s cognitive processes underlying repeated choices and that such methodological aspects need 

to be appropriately addressed when generalizing across testing modalities. Focusing on validation stud-

ies with the goal of proving the equivalence of online and offline testing in research with young children 

may miss out on the opportunity to uncover which and how factors in online testing affect children’s 

cognitive processes. However, this research could have important implications for creating effective 

study designs in developmental research. Since remote technologies seem to have come to stay in life 

and science (Sheskin et al., 2020), it is essential to better understand how they affect children’s cognition 

and behavior. 
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5 | Do Children Match Described Probabilities?                                 
The Sampling Hypothesis and Risky Choice 

 

Abstract. We investigated how repeated choices develop in early childhood when outcome probabilities 

are learned from description. Integrating previous findings from children’s causal learning and adults’ 

repeated choice behavior, we expected young children to probability match in a repeated risky choice 

paradigm and predicted that the perceived dependency between choices shapes the underlying sampling 

process. Two hundred one children between 3 and 7 years and 100 adults participated in a child-friendly 

guessing game with described outcome probabilities. We were unable to replicate findings reported by 

the studies that inspired this research but found that children broadly diversified choices and that switch-

ing between options dominated older children’s choice behavior. These findings are consistent with an 

amplification of developmental differences reported in experiential repeated choice tasks and hold im-

plications for studying a description–experience gap in repeated risky choice across development. 

 

5.1 Introduction 

Learning about the probability of a desired outcome and applying this knowledge when making 

repeated decisions—a process typically referred to as probability learning (Estes, 1964)—is an im-

portant skill to develop while growing up. How likely will a child’s feet get wet when repeatedly jump-

ing in a puddle while wearing boots? Who will be more likely to play with a child, their older or younger 

sibling?  

Decades of research have shown that adults often behave suboptimally in standard probability 

learning tasks and tend to choose an option with the same frequency as the option results in a desired 

outcome (i.e., they probability match; see Vulkan, 2000). In classic behavioral experiments, where out-

come probabilities remain stationary, probability matching is a mistake because it yields lower average 

reward rates than exclusively selecting the option with the highest outcome probability (i.e., probability 

maximizing). But why do adults probability match? Several explanations have been suggested, differing 

in their optimism about human rationality. Traditionally, probability matching is attributed to cognitive 

limitations and the failure to identify the superiority of a maximizing strategy (e.g., Koehler & James, 

2010; Vulkan, 2000). Yet, there is growing evidence that probability matching may instead be a cogni-

tive mechanism adapted to complex real-world environments that allows people to exploit, for instance, 

autocorrelated or clumped resources (e.g., Ellerby & Tunney, 2019; Gaissmaier & Schooler, 2008; 

Green et al., 2010; Schulze et al., 2017, 2020). Indeed, people who probability match in the absence of 

patterns are often better able to detect existing patterns in an outcome sequence (Gaissmaier & Schooler, 

2008; Schulze et al., 2020). This pattern detection ability significantly improves in probability learning 

tasks during childhood (Goldman & Denny, 1963).  
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When does probability matching enter the stage of available choice strategies? In previous longi-

tudinal and cross-sectional studies (see Chapters 2–3), we demonstrated that although the prevalence of 

probability matching considerably increases from early to middle childhood, only school-aged children 

used probability matching adaptively. Younger children between 3 and 5 years are more variable in their 

choice behavior but also more likely than older children to persist on one option, often resulting in 

probability maximizing (Goldman & Denny, 1963; Jones & Liverant, 1960; Sullivan & Ross, 1970; 

Weir, 1964). Changes in probability learning and repeated choice behavior across development may 

arise from an interaction between the developing mind and the environment but still need to be better 

understood.  

The importance of understanding the inference and choice processes shaping young children’s 

probability matching and maximizing behavior is not limited to standard probability learning tasks but 

extends to research addressing other reasoning domains such as causal or inductive inference (Denison 

et al., 2013; Schulz, 2012; Sobel et al., 2004). For example, Denison et al. (2013) suggested that children 

probability match on an aggregate level in a causal learning task. Specifically, they suggested that 4- 

and 5-year-old children draw independent samples from an internal distribution when selecting a hy-

pothesis from a set of possibilities. If children make probabilistic inferences by drawing repeated, inde-

pendent samples, their behavior should also reflect individual-level probability matching over repeated 

trials by the same child. This contrasts with younger children maximizing in classic probability learning 

tasks (e.g., Weir, 1964). One methodological aspect that may contribute to these contradictory findings 

relates to the different learning modes used in probability learning and causal or probabilistic inference 

studies. While Denison et al. (2013) used a task in which probabilities—represented by differently col-

ored blocks—were known to children before making an inference, standard probability learning para-

digms typically require children to learn outcome probabilities from trial-by-trial feedback. There is 

convincing evidence that the learning format strongly impacts probabilistic inferences by both children 

and adults (see Schulze & Hertwig, 2021, 2022). Indeed, the effect of descriptive versus experiential 

task formats on people’s risky decisions is well-known as the description–experience gap (Hertwig & 

Erev, 2009) and has been demonstrated for adults’ and older children’s choice processes alike (Rakow 

& Rahim, 2010).  

The format of explicit probabilistic information needs to be adapted to children’s abilities. For 

example, probabilistic information adapted for children is often presented in a graphical format based 

on natural frequencies. Such visual representations have improved children’s inferences from 7 years 

onward in other domains, such as in an Iowa Gambling Task (van Duijvenvoorde et al., 2012) and 

Bayesian reasoning problems (Gigerenzer et al., 2021). Little is known, however, about how children 

make repeated choices in purely descriptive analogs of probability learning paradigms. Can explicit 

outcome probabilities elicit rational sampling behavior and increase probability matching even in 

younger children between 3 and 4 years? Providing descriptive probabilistic information could poten-

tially alleviate memory demands (van Duijvenvoorde et al., 2012) and help children apply more flexible 
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strategies. Many adults continue to probability match even when knowing the outcome probabilities 

beforehand (e.g., James & Koehler, 2011; Newell & Rakow, 2007). For instance, James and Koehler 

(2011) showed in a descriptive repeated choice task that generating sequence-wide expectations shapes 

choice diversification. They found that when adults made decisions in a series of different gambles, their 

predominant choice strategy was probability maximizing; when they made a series of decisions in the 

same gamble, adults probability matched more often. James and Koehler (2011) argue that when think-

ing about a sequence as a whole, people erroneously expect the outcomes to reflect the underlying prob-

abilities. However, when playing different gambles, this expectation is disrupted. An alternative inter-

pretation of their findings is that repeatedly playing the same gamble leads people to perceive outcomes 

as more dependent than outcomes generated by separate independent gambles. Outside of artificial la-

boratory environments, perceiving outcomes as dependent might serve as a valid cue to look for a pattern 

or regularity in the outcome sequence that can be exploited using a probability matching strategy. Sim-

ilarly, it has been demonstrated that people’s responses are closer to probability matching when they 

perceive a generating process as less random (either by control over the chance device, see Peterson & 

Ulehla, 1965, or by direct instruction, see Beach & Swensson, 1967) and closer to probability maxim-

izing when they perceive the process as more random (Beach & Swensson, 1967; Peterson & Ulehla, 

1965).  

The hypothesis that the perceived dependency between outcomes affects choice behavior is also 

central to Denison et al.’s (2013) sampling hypothesis. In their low-dependency manipulation, children 

made three guesses while waiting one week between each guess; in their high-dependency condition, 

children made three consecutive guesses without a prolonged waiting time between trials. Denison et al. 

(2013) argued that children draw less independent samples from a set of possible hypotheses when they 

perceive guesses to be dependent and, as a result, make systematically patterned responses (e.g., alter-

nating). Despite coming from different research streams and using different methodologies, the behav-

ioral results in the studies by Denison and colleagues (2013) and James and Koehler (2011) show an 

interesting consistency: the modal response of participants in their low-dependency conditions was max-

imizing, whereas participants in the high-dependency conditions either probability matched or showed 

a strong tendency to alternate. Suppose young children can already benefit from using perceived de-

pendency between outcomes as a cue to guide choices. Will they probability match more when the 

perceived dependency is high, and probability maximize more when the perceived dependency is low 

between sequential outcomes? 

In the current study, we aim to bridge research on classic probability learning and development of 

causal inference, which has remained largely disconnected—despite investigating related research ques-

tions and cognitive processes. We will use a descriptive repeated choice paradigm inspired by the tasks 

used by James and Koehler (2011) to test whether the sampling hypothesis proposed by Denison et al. 

(2013) extends to a domain other than causal reasoning but that also requires drawing samples from a 

frequency distribution. To match age samples previously reported to differ in choice behavior in the 
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probability learning literature, we will recruit children between 3 and 7 years. Consistent with the sam-

pling hypothesis, we expect to find response patterns in children that reflect the outcomes’ underlying 

probability distribution. Thus, contrary to developmental work using probability learning paradigms, 

we expect young children to probability match. With increasing age and cognitive capacity, we predict 

older children’s distribution of choice behaviors to more narrowly match the expected distribution. Fur-

thermore, we aim to reproduce the effect of perceived dependency between outcomes resulting in more 

maximizing behavior under low dependency and more matching under high dependency. Finally, we 

expect to replicate the results reported by James and Koehler (2011) in a different adult sample using a 

child-friendly task.  

 

5.2 Method 

5.2.1 Participants 

We recruited 207 children (105 children aged 3–4 years and 102 children aged 6–7 years) and 111 

adults via the participant database at the Max Planck Institute for Human Development. Five children 

aged 3–4 years and one 7-year-old did not complete the experiment and were excluded from data anal-

yses. Six adults, who were part of a pilot study24, and five adults who indicated that they tracked objects 

on the screen as a strategy to make predictions were also excluded from data analyses. The final sample 

consisted of 100 children aged 3–4 years (M = 3.96 years, SD = 0.56 years, 54% female), 101 children 

aged 6–7 years (M = 6.99 years, SD = 0.55 years, 49% female), and 100 adults between 18 and 41 years 

(M = 27.92 years, SD = 5.68 years, 52% female).  

The sample size was determined before data collection by submitting the proportions of strategy 

users reported in James and Koehler (2011) to a power analysis in G*Power (Faul et al., 2007). To detect 

an effect with power .80 and a significance criterion of α = .05, the average required sample size per 

condition was n = 44. To account for potentially noisier choice behavior of children compared to adult 

participants, we increased the required sample size by approximately 15% to n = 50 per age group and 

condition. One additional 6-year-old participated in the study due to a higher number of registrations 

than expected. 

The experimental procedure received ethical approval from the institutional review board at the 

Max Planck Institute for Human Development. Adult participants and parents of minor participants gave 

digital consent to participate in the study. Children were asked for verbal consent at the beginning of the 

test session. Parents of minor participants agreed to the session being video recorded, documenting child 

consent and standardized instructions. Participants (for children, their legal guardian) received a fixed 

payment of 3.00 EUR and could earn a performance-based bonus of 0.50 EUR for every correct predic-

tion.  

 
24 After piloting, we filtered out participants who reportedly tracked objects on the screen despite being instructed not to do so. 
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5.2.2 Design and Material 

We developed child-friendly versions of the tasks and procedures used in Experiment 1 by James 

and Koehler (2011). Based on their reported material, we created ten guessing games in which we asked 

participants to predict the color of a randomly drawn object (e.g., balls in a bingo cage, a wheel of 

fortune, etc.; see Figure 5.1). Each type of game was implemented with two sets of colors resulting in 

ten unique color-game combinations (henceforth “games”). Objects were displayed in one of two dif-

ferent colors representing the probabilistic structure of the task: seven objects had one color (e.g., red), 

and three objects were of a second color (e.g., blue). We selected colors based on good discriminability 

in case of possible color vision deficiencies. 

 

Figure 5.1 

Overview of Guessing Games 

 

 

As in Experiment 1 by James and Koehler (2011), we tested two conditions as a between-subjects 

factor. In the low-dependency condition, participants played ten different games; in the high-depend-

ency condition, participants played ten trials of the same game. Participants were randomly assigned to 

a condition upon registration for the study. In the low-dependency condition, the order of games was 

randomized under the constraint that no two games with the same type (e.g., bingo) or color set (e.g., 

red–black) could follow in consecutive trials. In the high-dependency condition, we randomly selected 

one game per participant. The majority-color—i.e., the more common color—was counterbalanced 

across participants. 

The guessing games were implemented as a web-based experiment. We used an internally devel-

oped JavaScript framework for online experiments and implemented shuffling animations (e.g., spin-

ning the wheel of fortune) to visualize the random generating mechanism in each game.  

 

5.2.3 Procedure 

Adults completed the task asynchronously in an unmoderated online experiment, whereas an ex-

perimenter instructed children via video chat. Before the testing session, parents of participating children 

received tokens and stickers via mail. The task was the same for children and adults except for the 
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delivery method of the instructions (written vs. oral). Due to the simplicity of the task, we refrained 

from implementing comprehension checks for adults.  

Before the experiment, we inquired about basic demographic information. For the choice experi-

ment, participants were asked to imagine playing multiple guessing games at a fun fair. Participants in 

the high-dependency condition were told that they would play the same games ten times in a row; par-

ticipants in the low-dependency condition were told that they would play ten different games. After-

wards, participants were familiarized with the mechanics of the guessing game in a practice trial con-

sisting of a similar type of guessing game as the ones included in the test trials. All trials—including the 

practice trial—followed the same general procedure (see Figure 5.2). First, the specific game was intro-

duced (see Figure 5.2A), and for children, the experimenter counted out loud how many objects of each 

color there were (see Figure 5.2B). Except for the practice trial with five objects of each color, the 

distribution for the test trials was seven objects of one color and three objects of a second color, respec-

tively. During test trials, the experimenter also asked children which color they believed was more fre-

quent. If children did not answer this comprehension check correctly, the experimenter counted the col-

ored objects again and highlighted which color was more frequent. Afterwards, the experimenter ex-

plained that the colors in the game were only visible while a light—presented as an icon in the top right 

corner of the screen (see Figure 5.2)—was switched on. During the following animation visualizing the 

randomization process of the game, the light was switched off, and all colors appeared gray-scaled in 

the same hue (see Figure 5.2C). After that, one out of 10 objects was randomly drawn (e.g., a ball fell 

out of the bingo cage; see Figure 5.2D), and participants were prompted to guess the color of the ran-

domly drawn object by choosing from a set of two colors (see Figure 5.2E). Adults and older children 

used the mouse to indicate their response; younger children pointed to the color, and their parents exe-

cuted their choice by clicking on the colored icon. Except for the practice trial, we did not provide 

immediate feedback about the correct outcome but only at the end of the experiment. Children received 

a token after every choice as a motivation to collect more tokens as the experiment progressed. 

After completing all trials, participants answered control questions about strategy use, previous 

visits to fun fairs, and their favorite color out of all ten occurring colors. Participants in the high-depend-

ency condition—who experienced the same two colors across all trials—were additionally asked which 

of the two colors they preferred. Finally, participants received feedback about their choices, actual out-

comes for every trial (Figure 5.2F), and the monetary bonus they achieved. Children were then encour-

aged to select as many stickers as they made correct guesses. A session with a child participant took 

approximately 20 minutes, while adults completed the practice and 10 test trials, on average, in 6 

minutes (without welcoming instructions and additional questions).25 

 
25 Children’s moderated test sessions took longer than unmoderated sessions for adults. To test for an effect of sustained atten-
tion, we analyzed choices for the first and second half of the experiment separately in a repeated measures ANOVA. Majority-
color choices in the first and second half of the experiment differed at an anecdotal level, χ2(1,197) = 3.58, p = .06. The marginal 
trend pointed toward more majority-color choices in the second half of the experiment and did not support the assumption of 
more random behavior due to attentional deficiencies.  
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Figure 5.2 

Overview of the Trial Procedure 

Note. (A) Introduction of the type of game. (B) Display and counting of the frequency of each colored 

object. (C) Animated randomization process with switched-off light. (D) Sampling of one object. (E) 

Choice screen. (F) Feedback screen after completing all trials. 

 
5.3 Results 

We first analyzed majority-color choices across age groups. Then we investigated the prediction 

for probability matching on an aggregate level on the first trial and across trials based on the sampling 

hypothesis (see Denison et al., 2013). Afterwards, we analyzed individual-level probability matching 

(see Koehler & James, 2011). All analyses were conducted in R version 4.2.3 (R Core Team, 2023). For 

mixed-models, we used the afex package (Singmann et al., 2022) and the package emmeans (Lenth, 

2022) for follow-up analyses.  

 

5.3.1 Majority-Color Choices Across Age Groups 

When learning from graphic frequency distributions, are there differences across development in 

choosing the more likely option? To answer this question, we performed a mixed-effects regression with 

per-participant intercepts as a random effect. We included age group (3–4 years, 6–7 years, adults), 

condition (repeated, unique), their interaction, and whether the majority-color was a participant’s favor-

ite color as fixed effects. We used a logit link function to model the dependent variable's binary nature 

(choosing the majority-color or not). We found a significant main effect for age group, χ2(2) = 122.68, 

p < .001, but for none of the remaining fixed effects (all ps > .28).  To further investigate the difference 

between age groups, we computed pairwise contrasts and used the Benjamini-Hochberg method to cor-

rect p-values for multiple testing (see Benjamini & Hochberg, 1995). Results showed that adults were 

eight times more likely than 3- and 4-year-old children (z  = 10.72, p < .001) and 5.7 times more likely 

than 6- and 7-year-old children (z  = 9.08, p < .001) to choose the majority-color. Moreover, 6- and 7-

year-olds were 1.4 times more likely than 3- and 4-year-olds to choose the majority-color (z  = 2, p 

A B C 

D E F 
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< .05). In sum, adults outperformed children with respect to choosing the option with the higher fre-

quency, but we also observed improvements between 4 and 6 years of age. 

 

5.3.2 Aggregate Probability Matching 

5.3.2.1 Probability Matching on the First Trial 

First, we tested whether participants’ first choices differed across conditions. Chi-square tests re-

vealed no differences concerning the proportion of children choosing the majority-color on the first trial 

in the high- and low-dependency conditions, respectively (all ps > .37). For adults, a Fisher’s Exact 

Test26 indicated no association between condition and number of majority-color predictions on the first 

trial (p = .11). We, therefore, aggregated data across conditions to investigate aggregate probability 

matching on the first trial. Binomial tests revealed that 3- and 4-year-olds performed at chance level (M 

= .56, p = .27) while 6- and 7-year-olds (M = .6) and adults (M = .93) chose the majority-color signifi-

cantly above chance (all ps < .05). The proportion of children and adults predicting the majority-color 

on the first trial, differed significantly from the underlying distribution of p = .7 (all ps < .05). In contrast 

to the sampling hypothesis, we did not find evidence for aggregate probability matching on the first trial 

for any age group.  

 

5.3.2.2 Probability Matching Across Trials 

 Next, we analyzed aggregate probability matching across trials to determine whether participants’ 

choices reflected independent sampling from the frequency distribution (see Denison et al., 2013). For 

ten trials, there are 1024 different possible response patterns. We summed up expected probabilities for 

those patterns that included the same number of majority-color choices (see Figure 5.3A). For example, 

strict probability matching based on choosing the majority-color precisely 7 out of 10 times has a pos-

terior probability of p = .77 x .33 = .002 (i.e., multiplying the outcome probability for every trial: .7 x .7 

x … x .3). Multiplied by 120 response patterns, that contain precisely seven majority-color and three 

minority-color choices, the expected proportion of probability matching participants would be p = .27.  

Chi-square-goodness-of-fit tests revealed that the observed proportions of participants differed sig-

nificantly from the expected proportions derived from the sampling hypothesis (all ps < .001; see Table 

5.1). Moreover, there was no difference between conditions for any age group (all ps > .09). Hence, our 

results neither support aggregate probability matching across trials nor an effect of the experimental 

manipulation. 

 

  

 
26 We used a Fisher’s Exact Test instead of a chi-square test because few adults predicted the minority-color on the first trial. 
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Table 5.1 
Fit of Observed and Expected Majority-Color Choice Proportions: Results From Chi-Square Tests 

 Condition 
 Low-dependency High-dependency 
Age group χ2 df χ2 df 
3–4 years 55280* 10, N=100 122237* 10, N=100 
6–7 years 54162* 10, N=101 54579* 10, N=100 
Adults 1804382* 10, N=100 2118372* 10, N=100 
Note. p < .001* 

 

5.3.3 Individual-Level Probability Matching 

To investigate the effect of perceived dependency on individual-level probability matching and 

maximizing across development, as typically reported in the probability learning literature, we repli-

cated the analysis reported in Koehler and James (2011) but corrected for multiple testing. Consistently 

with their original method, we classified participants as probability matchers, if they chose the majority-

color in seven out of 10 trials and as probability maximizers, if they chose the majority-color in 10 out 

of 10 trials.  Figure 5.3 shows the proportion of participants per age group and condition across summed 

majority-color choices.  

 

Figure 5.3 

Choice Proportions by Sum of Majority-Color Choices 

Note. (A) Expected proportion of majority-color choices predicted by the sampling hypothesis. (B–D) 

Observed proportion of participants by age group and condition, allocating between 0 and 10 choices 

to the majority-color. 
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Unlike in the original study (James & Koehler, 2011), we did not exclude participants if they chose 

the low-probability option on more than half of the trials, as this is a regularly observed behavior in 

children. Results from chi-square tests indicated no association between probability matching or max-

imizing and condition (see Table 5.2)27: Within each age group, participants were equally likely in the 

high-dependency and low-dependency condition to probability match and maximize, respectively. How-

ever, probability matching was the modal response for 3- and 4-year-olds in the low-dependency con-

dition. Recall that James and Koehler (2011) found more maximizing under low-dependency and more 

matching under high-dependency. Thus, we did not replicate these results in a different adult sample, 

nor did we extend their findings to a developmental context.  

 

Table 5.2 

Strategy Classification by Age Group and Condition: Chi-Square Test Statistics  

  Condition    

Strategy classification Age group LD HD df χ2 p 

Probability matching 3–4 years 9 6 1,100 .71 .50 

 6–7 years 6 6 1,101 < .01 .98 

 Adults 5 11 1,100 2.68 .20 

Probability maximizing 3–4 years 4 6 1,100 .44 .50 

 6–7 years 4 4 1,101 < .01 .98 

 Adults 23 25 1,100 0.16 .69 

Note. LD = low-dependency; HD = high-dependency; p-values were corrected for multiple comparisons 

based on the Benjamini-Hochberg method; n per condition = 50 except for 6- and 7-year-olds in low-

dependency with n = 51. 

 

5.3.4 Exploratory Analysis: Switching Behavior 

To further investigate the reasons for the unsuccessful replication of results reported in the literature, 

we conducted an additional exploratory analysis. Based on the high proportion of children showing 

switching behavior in the high-dependency condition reported by Denison and colleagues (2013), we 

examined the likelihood of children and adults switching between responses without outcome feedback. 

To this end, we computed switching as a binary variable indicating whether a participant revisited the 

same option or changed options in the subsequent trial (from majority- to minority-color or vice versa). 

We submitted switching as a dependent variable to a mixed-effects logistic regression and used age 

group, condition, and their interaction as predictors (fixed effects). We accounted for multiple responses 

 
27 Using a more liberal criterion for probability matching (7 +/- 1 majority-color choices) and maximizing (9 or 10 majority-
color choices) to account for possibly noisier behavior across development did not change any of the conclusions reported in 
the main text.  
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per participant by implementing random intercepts (random effect). Figure 5.4 shows the model-derived 

estimated probability per age group and condition to switch responses. Likelihood ratio tests indicated 

a significant main effect of age group, χ2(2) = 65.85, p < .001, but not of condition, χ2(1) = 1.11, p = .29, 

nor their interaction, χ2(2) = 3.46, p = .18. Pairwise contrasts between the levels of age groups revealed 

that 6- and 7-year-olds (M = .58) were 8.1 times more likely than adults (M = .15, z = 8.04, p < .001), 

and 2.6 times more likely than 3- and 4-year-olds to switch responses (M = .35, z = 3.9, p < .001). In 

addition, children aged 3–4 years were 3.1 times more likely to switch responses than adults (z = 4.4, p 

< .001)28.  

 

Figure 5.4 

Estimated Probability of Switching Responses by Age Group and Condition 

 

Note. Estimated probability of switching to the alternative choice option derived from mixed-model 

analysis. Error bars indicate the lower and upper bound of a 95% confidence interval. 

 

5.4 Discussion 

We investigated the development of repeated choice in a descriptive paradigm by connecting find-

ings from two lines of research that have previously operated in parallel: probability learning and causal 

inference. We expected young children to probability match and predicted that the perceived depend-

ency between sequential outcomes would influence their choices. Analyzing repeated choices from 201 

children and 100 adults, we did not replicate central findings previously reported in the literature: We 

were unable to find evidence for children and adults drawing independent samples from a probability 

distribution when making either one or repeated choices (cf. Denison et al., 2013), and for choice be-

havior differing as a function of the high- and low-dependency manipulation (cf. Denison et al., 2013; 

Koehler & James, 2011).  

 
28 p-values were corrected for multiple testing using the Benjamini-Hochberg method. 
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Regarding our initial prediction that young children would probability match in repeated choice 

from description, we observed that probability matching was the modal response for 3- and 4-year-olds 

in the low-dependency but not in the high-dependency condition. Indeed, most 3- and 4-year-olds di-

versified choices widely. Consistently with our results, other research investigating young children’s 

probabilistic inferences from description, found that children under 5 years of age showed little consid-

eration of stated proportions (Girotto et al., 2016). Moreover, fewer young children probability maxim-

ized than typically reported in experiential probability learning studies with children (e.g., Weir, 1964), 

and some 3- and 4-year-olds persisted with the minority-color. In light of previous findings from expe-

riential repeated choice, persistence seems to decrease in description but does not disappear. Finally, we 

found that switching responses dominated 6- and 7-year-olds’ choice behavior. This finding is in line 

with Denison et al. (2013) but contradicts other research based on non-symbolic probability judgments 

showing that children in this age group either chose based on the absolute number of objects (Falk et al., 

2012) or, with increasing age, based on ratios (O’Grady & Xu, 2020)—however, this was not the case 

in our study as children repeatedly switched between options. In the present task, where outcome prob-

abilities were known beforehand, and no trial-by-trial outcome feedback was provided (two features 

uncharacteristic of standard probability learning tasks), switching or alternation is a mistake. In many 

real-world situations, switching—including reward-sensitive strategies like win-stay lose-shift—may 

entail exploratory benefits and is commonly used by children in experiential paradigms (Berman et al., 

1970; Bogartz, 1965; Bonawitz et al., 2014; Rabinowitz & Cantor, 1967). In fact, childhood has been 

suggested to be a developmental period during which the mind is particularly well prepared for wide 

exploration (Gopnik, 2020). Yet without feedback, explorative strategies are difficult to implement. It 

seems that knowing outcome probabilities beforehand helped children to diversify choices. Not receiv-

ing additional feedback, however, might have been counterproductive (e.g., see Rakow & Newell, 2010). 

An interesting avenue for future research is to disentangle the effect of trial-by-trial feedback and de-

scriptive probabilistic information on the development of repeated choice behavior. 

A central question that arises from the discrepancies between our results and previous studies is if 

the differences between methodologies were too large to replicate results. In contrast to Denison et al. 

(2013), children in our task were not prompted to think about a causal relationship between the randomly 

drawn object and another event. Instead, the task was framed as a guessing game. Thinking about causal 

relationships might help young children to make better (i.e., less random) predictions based on proba-

bilistic information. There is evidence that causal explanations can impact probabilistic inferences in 

adults (e.g., Hayes et al., 2014, 2018). For children, however, it still needs to be determined whether 

thinking about a causal relationship or the requirement to explain a choice directly impacts probabilistic 

inferences. In any case, considering causal relationships alone cannot sufficiently explain the present 

results: Other studies investigating proportional reasoning that did not implement causal relationships 

in their task reported higher performance for children at a similar age (e.g., Falk et al., 2012; Ruggeri et 

al., 2018).   
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Furthermore, unlike Denison et al. (2013) and James and Koehler (2011), we offered monetary 

incentivization and rewarded children with stickers. The magnitude of a reward has been shown to im-

prove performance in probability learning tasks in children and adults (Shanks et al., 2002; Stevenson 

& Hoving, 1964; Weir & Gruen, 1965). The monetary incentive in our study might have contributed to 

more adults maximizing than typically found in experiential probability learning tasks (Chapter 2; for a 

review, see Vulkan, 2002). The graphical representation of the frequency distribution as a mnemonic 

aid may have further strengthened this effect by acting as an additional individuating feature and prompt-

ing adults to make single “best guesses” rather than to think about the sequence as a whole. In this case, 

the question remains why this effect did not impact (older) children’s choice behavior similarly. One 

possibility might be that children’s smaller cognitive capacity and their tendency for wider exploration 

compared to adults prevented them from pursuing a more economically rational solution to the task (see 

Rakow et al., 2010). Likewise, deliberation has been found to increase adults’ maximizing behavior in 

a similar task (Koehler & James, 2010). Indeed, when asked about their strategy, only three children 

between 6 and 7 years stated that they always chose the majority-color—adults more frequently reported 

a maximizing strategy.  

Another methodological difference was that we used a computerized task instructed via video 

chat—unlike Denison and colleagues (2013), who used a face-to-face setting. While previous research 

has shown that online and offline testing methods in developmental research reproduce comparable 

developmental patterns, there seems to be a trend for children to perform slightly worse in online tasks 

(e.g., Chuey et al., 2021; Schidelko et al., 2021; Scott et al., 2017; Smith-Flores et al., 2021). A com-

parison between online and offline testing methodologies in an experiential probability learning task 

revealed that 3- to 4-year-olds perform worse in an online study toward the end of a lengthy task and 

use qualitatively different strategies (Chapter 4). Moreover, it has been demonstrated that preschoolers 

made more accurate predictions when learning from a physical compared to a computerized deck of 

cards (Nikiforidou, 2019). However, more research is needed on how specific features of an online 

instruction format may impact children’s performance in inference tasks.  

Although the online format might have made the task more difficult than offline testing, our task 

posed fewer demands than Denison et al. (2013) regarding numerosity, including only ten objects. In 

our task, the experimenter counted out loud the number of differently colored objects (seven to three). 

Yet, children could also only use the graphic representation of frequencies to make a prediction. Infants 

in their first year of life can already discriminate between quantities at smaller ratios than those used in 

the present study (see Cantlon et al., 2009). There are several reasons to believe that children in the 

present study understood the frequencies and general instructions. First, children answered most of the 

comprehension checks correctly about which color was more frequent. Second, participants did not 

choose their favorite color more often than other colors—an artifact suggested to impact young chil-

dren’s probability learning and choices (e.g., Goldberg, 1966). Third, children did not show negative 

effects of attention (i.e., decreased majority-color choices in later trials). Despite demonstrating a 
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general understanding of the instructions, the task was possibly more difficult for children than adults. 

This may have enhanced developmental differences observed in previous experiential repeated choice 

tasks (see Chapters 2–4): highly variable choice behavior in younger children, more goal-directed di-

versification in older children, and the ability to overcome diversification to achieve maximum rewards 

in adults. 

 

5.5 Conclusion 

We created synergies across different research streams in cognitive development and adult deci-

sion-making to examine how children use probabilistic information when making repeated choices. 

Whereas we did not find evidence for the sampling hypothesis in children’s repeated choices from de-

scription, our findings indicate the importance of considering the learning format in a developmental 

context. Compared to previous findings from experiential probability learning, description may have 

amplified developmental differences: Young children were highly variable in their choice behavior, 

whereas older children largely diversified choices. Diversification did not yield higher reward rates than 

persistently choosing the majority-color reward in this task but may serve the exploration of choice 

options in other task structures inspired by real-world characteristics. In sum, our findings contribute to 

increasing evidence of childhood as a phase for heightened exploration and integrate into a series of 

studies showing that children’s probabilistic inferences are highly context-dependent and often difficult 

to reproduce.  
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6 | General Discussion 

 

This dissertation examined the development of probability learning and repeated choice behavior 

in childhood, proposing that an interaction between the developing mind and the environment shapes 

this process. In the following sections, I will briefly summarize key findings and discuss implications, 

limitations, and possible future work in light of the previous literature. 

 

6.1 Summary of Key Findings 

Chapter 2 investigated how children adapt to an ecologically plausible statistical structure in prob-

ability learning and, more specifically, if children rely on probability matching as an ecologically ra-

tional strategy. Results showed increasing choice diversification, like probability matching, and emerg-

ing adaptivity from school-age onwards. In the ecologically plausible condition, characterized by 

choice–outcome dependencies, older children resembled adults more in their choice behavior than 

younger children. Computational modeling revealed that children were more likely to rely on a win-stay 

lose-shift heuristic that is reactive to environmental changes but showed poorer strategy fine-tuning to 

the environment. Indeed, there was evidence that older children seemed to be constrained by their ten-

dency to explore and, thus, failed to diversify less when this would have yielded higher reward rates. In 

contrast, on an aggregate level, younger children from 3–4 years were more likely to persist with one 

option, irrespective of whether this option maximized reward. Regarding individual choice behavior, 

younger children showed the greatest between-person variability in choice behavior, including maxim-

izing, matching, random choice, and minimizing. Integrating results in the age group from 3–4 years, 

findings suggest that younger children maximize as a satisficing strategy that requires low implementa-

tion effort. In sum, Chapter 2 points to a phase of high persistence but also high inter-individual varia-

bility in younger children, increased diversification and environmental sensitivity in older children, and 

the ability to adaptively balance diversification and exploitation in adults.  

But how valid are cross-sectional findings as a proxy for intra-individual development, and what is 

the role of executive functions? These questions were examined in Chapter 3 in a longitudinal study 

spanning the age range from 3.5 to 6.5 years. Results showed that probability matching and, more 

broadly, choice diversification considerably increased longitudinally (validating results from Chapter 

2). Moreover, higher working memory capacity in older children was related choice diversification. In 

other words, there was a high-capacity advantage for diversification and a low-capacity advantage for 

making high-probability choices.  This somewhat counterintuitive finding may indicate that other pro-

cesses (e.g., expectations, beliefs, or pattern search) shape the development of probability learning in 

concert with cognitive development. Probability maximizing, in contrast, proved to be more affected by 

age differences between children in the cohort than by increasing longitudinal age: Younger children 

were more likely to maximize than older children across measurement waves. Moreover, there was 
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greater variability in the choice behavior of younger than older children (also see Chapters 2 and 5). As 

a result of decreasing between-person variability, children became more likely to make favorable high-

probability choices over the two-year study. Taken together, Chapter 3 disentangled intra- and inter-

individual change in probability learning from early to middle childhood and emphasizes the importance 

of longitudinal designs in developmental research.  

Although Chapters 2 and 3 replicate similar performance levels and choice behavior for school-

aged children when tested offline in-person and online via video chat, this was not the case for younger 

children. Inspired by a recent increase in online data collection methods in developmental research, 

Chapter 4 examined how the testing modality may impact young children’s performance and strategy 

use in a probability learning task between 3–4 years. Findings suggest that younger children tested 

online via video chat decrease in their performance over longer experimental procedures. Moreover, 

computational modeling analyses revealed that children in the online sample relied on a heuristic strat-

egy, whereas an associative learning strategy better described children in the offline sample. These find-

ings hold implications for research on both probability learning and, more broadly, cognitive develop-

ment: First, the complexity associated with a probability learning task may elicit differences in strategy 

use in early childhood. Second, the testing modality needs to be explicitly addressed when generalizing 

studies in early childhood conducted online and offline.  

Whereas the first three chapters approached the development of repeated choices using a learning-

from-experience format, Chapter 5 investigated how children between 3 and 7 years compared to adults 

make repeated choices when probabilistic information is learned from description before making a 

choice. This study aimed to connect two research streams that had mainly operated in parallel before: 

probabilistic inference in childhood and repeated risky choice. Results showed that the youngest chil-

dren performed at chance level and, again, showed the greatest variability in choice behavior. Children 

aged 6–7 years performed above chance level but showed a high degree of switching behavior. Adults, 

in contrast, were mainly maximizing probability, although some continued to probability match under 

description. Taken together, these findings indicate that high inter-individual variability and exploratory 

tendencies are characteristic of younger and older children’s choices, respectively, and emphasize the 

importance of considering contextual factors in investigating the development of repeated choice, such 

as the learning format and trial-wise feedback.  

 

6.2 Implications, Limitations, and Future Directions 

In the following sections, I will discuss how the results comprised in this dissertation advance the 

understanding of developmental processes in probability learning and repeated choice, which limitations 

need to be considered, and what potential directions for future work arise. 
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6.2.1 The Development of Ecological Rationality in Probability Learning and Repeated Choices 

In real-world environments, desired outcomes are only rarely generated by a mechanism that fulfills 

the assumptions of independent and identically distributed random variables (e.g., weather systems build 

up slowly, resources decay, etc.). Under these conditions, persistently choosing the option with the ini-

tially highest probability does not yield maximum rewards. Previous research with adult participants 

demonstrated that choice diversification, like probability matching, can reflect an adaptive mechanism 

in dynamic or patterned environments and suggested that people sometimes misapply strategies learned 

from everyday life (e.g., Gaissmaier & Schooler, 2008; Green et al., 2010; Schulze et al., 2017). But 

how much life experience is needed to adaptively probability match? The empirical work in this disser-

tation addressed this gap in the literature. Chapters 2 and 3 demonstrate that probability matching, 

among other choice behaviors, is already present early in life. However, despite 3- to 4-year-olds showed 

some sensitivity to the environmental structure (e.g., recruiting qualitatively different strategies in dif-

ferent environments), they did not attain older children’s abilities in adapting to sequential dependencies 

(Chapter 2). From school age onward, children mostly diversified their choices in an adaptive manner 

close to probability matching (Chapter 2). Moreover, longitudinal results emphasize that probability 

matching and choice diversification become particularly prevalent in middle childhood and may be re-

lated to increasing working memory capacity (Chapter 3). Thus, adaptive probability matching rests on 

both developing cognitive functions and increasing experience with real-world environments in middle 

childhood. These findings suggest that children capitalize on the structure of the environment by diver-

sifying choices, which may hold adaptive benefits across numerous dynamically changing environments. 

In sum, this dissertation contributes to the increasing body of work arguing for an adaptive view on 

probability matching (e.g., Gaissmaier & Schooler, 2008; Green et al., 2010; Schulze et al., 2017). 

Nonetheless, the evidence presented in this dissertation also suggests that older children may be partic-

ularly prone to misapply probability matching to laboratory environments where it does not yield max-

imum rewards.    

The question of how children become ecologically rational decision-makers is highly complex. As 

children grow older, they improve cognitive capacities and gain increasing experience in everyday life, 

for instance, with statistical structures or causal mechanisms (see Figure 1.1). Experience is a corner-

stone of plasticity and influences the development of the brain and cognition (e.g., Frankenhuis & 

Walasek, 2020; Greenough et al., 1987; Oakes, 2017). This dissertation carves out three intertwined 

questions to better understand the development of ecological rationality in the future: First, what are 

(statistical) characteristics prevalent in everyday life, across the lifespan, or specific to different age 

groups? Second, what cognitive developments facilitate the development of learning and choice strate-

gies adapted to these characteristics? Third, how does experience with these characteristics shape chil-

dren’s knowledge, beliefs, and expectations contributing to adaptive choice behaviors and strategies? 

There are several approaches to how researchers could address the first question: for instance, an-

alyzing time-series datasets across a variety of domains that may capture statistical commonalities 
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experienced across the lifespan irrespective of age (for examples of ecological analyses, see Lejarraga 

& Lejarraga, 2023; Pleskac & Hertwig, 2014), or coding events from video recordings of children in 

their natural settings for age-specific data (e.g., helmet cameras; Barbaro, 2022; Smith et al., 2018). 

Recording and coding real-life situations could provide detailed information, for instance, whether 

choices are made alone or in social situations (for social feedback in developmental probability learning, 

see Lewis et al., 1963; Stevenson & Odom, 1964), or if children can learn from causal mechanisms that 

underlie outcomes. Such ecological analyses may inform myriad investigations across different fields 

of research. Indeed, the role of natural environments in shaping cognition and learning across the 

lifespan has been recently emphasized by several scholars also outside of the domain of ecologically 

rational judgment and decision-making (e.g., Adolph, 2019; Hartley, 2022; Ruggeri, 2022). 

Turning to the second question, asking which cognitive developments facilitate adaptivity to envi-

ronmental characteristics, it is vital to acknowledge that multiple processes interact with each other: 

from improvements in (selective) attention (e.g., Betsch & Lang, 2013; Mata et al., 2011; Plebanek & 

Sloutsky, 2019) to general processing speed (e.g., Fry & Hale, 2000; Kail, 2016). Findings from the 

longitudinal investigation in Chapter 3 provide preliminary evidence for the contribution of increasing 

working memory capacity (which may be related to general processing speed in children, Fry & Hale, 

2000). Under the assumption that choice diversification is beneficial in many real-world environments, 

marked by autocorrelation or sequential dependencies, increasing working memory capacity may enable 

children to store and manipulate more information about past outcomes. As children became older in 

the longitudinal study, higher working memory capacity was associated with a decreased likelihood of 

choosing the high-probability option (i.e., which implies diversification). This finding is consistent with 

the hypothesis that adults and children with higher memory capacity or general reasoning abilities make 

less maximizing responses because they search for patterns in the outcome sequence (Gaissmaier et al., 

2006; Goldman & Denny, 1963). Likewise, adolescents have been reported to detect patterns in an out-

come sequence more quickly than children (Crandall et al., 1961). For adults, it has been suggested that 

trial-wise outcome feedback determines the direction of the relationship between memory and maxim-

izing: Without outcome feedback, adults with higher memory capacity make more maximizing re-

sponses (Rakow et al., 2010). Although it seems plausible to assume, based on the current evidence, that 

memory capacity or general reasoning abilities influence the relationship between outcome feedback 

and pattern search, such investigations still need to be conducted for children. In any case, such analyses 

need to consider that cognitive development changes how children learn from feedback; for instance, 

how they process positive or negative feedback (e.g., Nussenbaum et al., 2022; van den Bos et al., 2009) 

or if they learn equally well from experienced or counterfactual information (e.g., Kominsky et al., 2021; 

Palminteri et al., 2017). 

Concerning the third question—following the proposition that even young children generate, some-

times misleading, expectations about probabilistic structures in laboratory tasks (Tolman & Brunswik, 

1935)—ecological analyses could provide new insights into what (ecologically plausible) beliefs 
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underlie and shape children’s choice behavior. For instance, older children are thought to enter an ex-

perimental task assuming that a perfect solution exists (Baltes, 1987; Stevenson & Weir, 1963; Weir, 

1962). Similarly, children may generate expectations about statistical structures or causal mechanisms. 

Some expectations may even persist when all probabilistic information is provided before making a 

choice (see Chapter 5). However, it has not yet been investigated in repeated choice tasks if knowledge 

of causal mechanisms or causal explanations help children to make adaptive choices and to exploit en-

vironmental characteristics already earlier in life. Young children’s striking probabilistic reasoning abil-

ities in causal learning tasks may support this assumption (Gopnik et al., 2015; Kushnir & Gopnik, 2007; 

Tenenbaum et al., 2011), whereas the protracted development of model-based reinforcement learning 

may not speak in favor of a positive effect (Bolenz et al., 2017; Cohen et al., 2020). 

 

6.2.2 Adaptive Benefits of Cognitive Immaturity 

The results comprised in this dissertation contribute to a growing body of research highlighting 

evolved adaptive benefits of childhood and the cognitive constraints under which children operate (e.g., 

Bjorklund & Green, 1992; Gopnik, 2020; Gopnik et al., 2017; Gualtieri & Finn, 2022; Liquin & Gopnik, 

2022; Ruggeri, 2022). From this perspective, plasticity in childhood serves the goal of wide exploration 

and learning, whereas adult-like cognition favors exploitation (Gopnik, 2020). Cross-sectional (Chap-

ters 2 and 5) and longitudinal evidence (Chapter 3) illustrate 6- to 11-year-olds’ propensity to diversify 

choices, which may be viewed as an indicator of exploration. When persistence yields maximum re-

wards, this tendency seems to prevent children from reaching adult-like performance levels. 

Even when a probability learning task provides full feedback, switching between options is crucial 

to test hypotheses about how choices may influence sequential outcomes or if a pattern exists. Children 

are thought to have more lenient stopping rules than adults when collecting evidence for a hypothesis 

(Ruggeri et al., 2016) and to explore more than beneficial for reward maximization (Meder et al., 2021). 

This tendency may come at the cost of lower efficiency in information search but may facilitate detecting 

regularities in environmental structures (Liquin & Gopnik, 2022). In the present research (Chapter 2), 

only two 7-year-olds adopted the optimal strategy to exploit sequential dependencies in an ecologically 

plausible environment. School-aged children, in general, collected retained rewards more quickly than 

adults or younger children. These findings highlight the role of ecologically plausible task structures in 

research on the development of adaptive exploration in childhood (also see Nelson et al., 2014). Children 

may not necessarily explore more than beneficial for reward maximization in all environments, but only 

when diversification and exploitation oppose each other (for instance, as in standard probability learning 

tasks). Disentangling children’s exploration and exploitation in a probability learning task could illumi-

nate these processes in future research (e.g., in observe-or-bet-tasks; Rakow et al., 2010; Tversky & 

Edwards, 1966).  
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Having discussed diversification as an adaptive tendency in childhood, there may also be an adap-

tive side to persistence in younger children. Response repetition may positively strengthen synaptic 

connections and facilitate learning of fundamental skills in early childhood (for a similar argument on 

unrealistic over-optimism in early childhood, see Bjorklund & Green, 1992). For instance, throwing a 

ball over and over again may improve motor skills, whereas repeating the same word many times may 

promote word learning and speech production. The protracted development of response inhibition in 

childhood may facilitate such processes (for a review on response inhibition in preschoolers, see Garon 

et al., 2008). Analyses in Chapter 3 did not find evidence for a relationship between persistent choice 

and a child-friendly response inhibition task. On the one hand, a more extensive test battery may be 

better suited to detect an effect. On the other hand, results from Chapter 2 demonstrated that persistence 

with one option increased over the length of the task, which cannot be explained by poorer response 

inhibition alone and points to an interaction with other processes. 

Lastly, although young children’s persistence may benefit some domains of development, the pre-

sent research provides credible evidence that it does not represent a superior ability in using probabilistic 

information (Chapters 2–5). However, this claim has been made in the past to illustrate cases where 

young children are more proficient in using probabilistic information than older children or adults 

(Gualtieri & Finn, 2022). The results comprised in this dissertation emphasize the viewpoint that not all 

maximizing, or matching for that matter, reliably reflect a superior ability and that contextual factors 

must be appropriately considered.  

 

6.2.3 Probability Maximizing and the U-Shaped Function of Probability Learning in Childhood 

Recall that previous work on the development of probability learning in childhood painted a some-

what inconclusive picture of underlying developmental trajectories. The empirical research in this dis-

sertation sheds light on some of these inconsistencies. 

On the level of individual choice behavior, several researchers suggested that children younger than 

5 years are more likely to probability maximize than older children and reported that more than half of 

the children in their sample demonstrated this behavior (Derks & Paclisanu, 1967; Goldman & Denny, 

1963; M. H. Jones & Liverant, 1960; Weir, 1964). Older children, in contrast, have been reported to be 

more likely to probability match (Derks & Paclisanu, 1967; M. H. Jones & Liverant, 1960). Based on 

these findings, some researchers suggested a U-shaped relationship between high-probability choices 

and age: Younger children and young adults are thought to be more likely to make high-probability 

choices. Evidence for this U-shaped function was contested in several other studies (Goldman & Denny, 

1963; Lewis, 1966; Messick & Solley, 1957; Offenbach, 1964), but the proposition that younger chil-

dren outperform older children in probability learning tasks continues to attract interest across research 

disciplines (e.g., Gualtieri & Finn, 2022; Nussenbaum & Hartley, 2019; Thompson-Schill et al., 2009). 
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Notably, findings central to this argument have not been replicated since the first wave of probability 

learning research in the 1960s.  

What does the present research contribute to this matter? A large consistency between the present 

research and earlier work is that children increasingly diversify choices as they get older (see Chapters 

2–3). Moreover, the present research strengthens the view that young children do not pursue probability 

maximizing as a deliberate reward maximizing strategy (e.g., M. H. Jones & Liverant, 1960; S. J. Jones, 

1970). Chapter 2 demonstrates that some 3- to 4-year-olds persistently chose one probability option 

irrespective of whether this option maximizes reward, and the longitudinal analysis (Chapter 3) revealed 

little stability in reward maximizing behavior. Lastly, Chapter 5 showed that children rarely maximized 

probability in a risky choice task even though no memory demands were associated with pursuing this 

behavior. Instead, Chapter 5 emphasizes that between-person variability and persistence characterize 

young children’s choice behavior and suggests that experiential learning formats may help them to direct 

their persistence to the high-probability option. Taken together, these findings support previous work 

with adults showing that probability maximizing can serve as a satisficing strategy, requiring only little 

implementation effort (Saldana et al., 2022; Schulze et al., 2020; Schulze & Newell, 2016).  

Remarkably, the proportions of maximizing children reported in earlier work are at least two times 

larger than the proportion of maximizing children in the current experiments. In Chapters 2 and 3, which 

implemented a probability learning task with two options and static probabilities (70% vs. 30%), only 

21–23% of 3- to 4-year-old children probability maximized, and yet fewer older children or adults. This 

difference in the starting point would have made it very difficult to recover a U-shaped function between 

high-probability choices and age. Several aspects need to be considered when directly comparing these 

results to previous research. For instance, in some earlier studies, children seemingly had already par-

ticipated in similar experiments using the same paradigm (Weir, 1964), and explanations of how chil-

dren who did not (want to) complete the task were handled are largely missing (see Derks & Paclisanu, 

1967; M. H. Jones & Liverant, 1960; Weir, 1964). However, based on more recent evidence (see 

Chapters 2–5; Plate et al., 2018; Starling et al., 2018), it seems unlikely that there was, indeed, not a 

single child who quit the task prematurely. Thus, it is possible that previous research obtained somewhat 

biased samples. Moreover, to my knowledge, all developmental probability learning studies conducted 

in the 20th century relied on physical task setups (e.g., token machines, light bulbs, deck of cards, con-

tainers concealing items), whereas the more recent work used digital games on a computer (Plate et al., 

2018) or tablet (see Chapters 2–4; Starling et al., 2018). Performance decline and strategy differences 

demonstrated by young children tested online (see Chapter 4) indicate that such methodological differ-

ences should not be taken lightly.  

Furthermore, the time difference between the early stages of probability learning research and the 

current work may reflect a blink of an eye regarding evolutionary history but deserves consideration 

concerning cohort differences. Evidence from the longitudinal study (Chapter 3) suggests that cohort 

differences might play a role in discrepant proportions of probability maximizing children. Children did 
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not decrease their likelihood to maximize probability as they grew older over repeated measurements. 

Instead, younger children in the sample were more likely to maximize than older children, highlighting 

that differences arise from between-person and not within-person age variability. However, did young 

children in the 1960s possess the same cognitive capacities as children today? Research on changes in 

general reasoning abilities of children and adults over the past century suggests that this may not be the 

case (i.e., the Flynn effect; Lynn, 2009; Pietschnig & Voracek, 2015). Several environmental factors, 

like improved pre- and post-natal nutrition or education in families and the schooling system (e.g., 

Bratsberg & Rogeberg, 2018; Lynn, 2009; Pietschnig & Voracek, 2015), may contribute to cohort dif-

ferences in young children’s probabilistic reasoning abilities and choice behavior.  

In sum, it can be said with some confidence that in digital probability learning tasks, the proportion 

of young children maximizing probability falls short of the proportion reported from tasks involving 

physical objects conducted in the 1960s. However, only an exact replication could verify sampling bi-

ases, an effect of physical or digital tasks, and underlying cohort differences. Until such analyses are 

conducted, the evidence gathered in this dissertation suggests that a unifying interpretation of the previ-

ous and more recent literature is that younger children show a higher degree of persistence, whereas 

older children show a higher degree of diversification, transitioning in the preschool period.  

 

6.2.4 Risky Choice and Probabilistic Inference in Childhood 

Probability matching and maximizing have not only been studied in experiential probability learn-

ing tasks but also in probabilistic causal learning paradigms with children (Denison et al., 2013) and 

descriptive risky choice paradigms with adults (e.g., James & Koehler, 2011; Koehler & James, 2010; 

Newell & Rakow, 2007; Schulze & Newell, 2016; West & Stanovich, 2003). Chapter 5 connected these 

lines of research to investigate how repeated risky choice develops in early childhood when probabilistic 

information is known before making a choice. Whereas more adults probability maximized than in pre-

vious experiential tasks (see Chapter 2), this was not the case for children. Surprisingly, although a 

mnemonic aid was provided at the time of the choice, children continued to diversify their choices 

widely. Compared to experiential probability learning tasks (see Chapter 2), it seems that the descriptive 

version enhanced developmental differences: Across learning formats, young children’s choices are best 

characterized by high persistence but also high inter-individual variability (Chapters 2–5). School-aged 

children are best described by a high degree of choice diversification across tasks (Chapters 2, 3, and 5). 

However, without outcome feedback in description, children rarely matched probabilities (on an indi-

vidual or aggregate level; Chapter 5). Adults differed from children with respect to overcoming diver-

sifying tendencies in favor of maximization across tasks, which was most evident in description (alt-

hough adults also continued to probability match in description; Chapters 2 and 5; see also Koehler & 

James, 2010; Newell & Rakow, 2007). Taken together, these results suggest that experiential probability 

learning tasks help children to make the best out of their underlying task-irrespective repeated choice 
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tendencies. The descriptive risky choice task, in contrast, seemed to have been more difficult for children, 

resulting in poorer choices. 

The descriptive risky choice (Chapter 5) and experiential probability learning tasks (Chapters 2–4) 

differ in two important aspects that may contribute to these differences: the learning format (description 

vs. experience) and whether outcome feedback was provided after every choice. Both of these aspects 

are known to impact adults’ repeated choice behavior (Newell et al., 2013; Newell & Rakow, 2007; 

Rakow et al., 2010), but systematic investigations for children are rare (but see, Rakow & Rahim, 2010; 

Rolison et al., 2022). Disentangling these two features in future research will improve our understanding 

of the description–experience gap of risky choices in early childhood (see also Schulze & Hertwig, 

2021). For instance, does additional feedback improve children’s repeated choices in description (see 

also Schulze & Hertwig, 2022)? How do children balance exploration and exploitation when these pro-

cesses are separated (see also Rakow et al., 2010; Tversky & Edwards, 1966)? 

In any case, the current findings not only hold implications for research on decision making but 

also for research on the development of probabilistic inferences in early childhood. Unexpectedly, Chap-

ter 5 was unable to capture previously reported striking abilities of young children to make probabilistic 

inferences based on proportions (for reviews, see Denison & Xu, 2019; Schulze & Hertwig, 2021). 

Nonetheless, this was not the first study that failed to demonstrate substantial probabilistic reasoning 

skills for 3- and 4-year-old children (e.g., Girotto et al., 2016). Schulze and Hertwig (2021, 2022) argue 

that the degree of experience in learning probabilistic information might contribute to discrepant find-

ings. Moreover, younger children seem to learn better the more tangible task and instructions are: for 

instance, using physical objects instead of digital ones (see also the video deficit in learning; Kirkorian, 

2023; Strouse & Samson, 2021) or instructing in person as compared to online (see Chapter 4). These 

contextual factors may shape and direct children’s attention toward specific aspects of the task. Thus, a 

possible way forward in reconciling differences between studies on probabilistic intuitions in early 

childhood and repeated choice may be to combine eye-tracking, measuring attention, and behavioral 

choice data to investigate how young children attend to information. Research with adult participants 

has demonstrated that attention affects probability weighting and preference formation in risky choice 

(Zilker & Pachur, 2022). Studies examining probabilistic intuitions in early childhood often only collect 

data from a few trials per child (see Denison & Xu, 2019). Under these conditions, computational mod-

eling techniques, otherwise applicable to gain insight into underlying cognitive processes, are often not 

feasible. Adding eye-tracking29 to repeated risky choice or probability learning paradigms in childhood 

that include many trials could, thus, provide new insights into how task features influence cognitive 

processes and may further illuminate random and directed exploration (see Fan et al., 2023; Kozunova 

 
29 Looking times are commonly used as a dependent variable in infant research on probabilistic intuitions (for a review, see 
Denison & Xu, 2019). However, using computational modeling approaches, eye-tracking may provide information about un-
derlying cognitive processes beyond indicating surprise about the occurrence of an unlikely event.  
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et al., 2022). The computational modeling approach implemented in this dissertation provides some 

general insights into the feasibility of such techniques in studying early childhood decision-making. 

 

6.2.5 Merits and Pitfalls of Modeling Children’s Choices 

Computational modeling analyses can illuminate the underlying mechanism of children’s choices. 

However, such analysis approaches have only been used more recently with preschool children (e.g., 

Blanco & Sloutsky, 2020; Meder et al., 2021). Strategy classification based on model comparison in 

Chapter 2 revealed that children from 3 to 11 years show a similar ordinal pattern in strategy use, con-

tingent on the structure of the environment. In the presence of sequential dependencies, children often 

relied on a probabilistic win-stay lose-shift heuristic, capitalizing on environmental changes. However, 

whereas children adopted qualitatively different strategies in different environments, adults had an ad-

vantage in fine-tuning strategies. Older children seemed to be constrained by their tendency to explore. 

These findings draw parallels to previous research on the development of search and decision making 

strategies. For instance, computational modeling analyses revealed that children explore less randomly 

and more systematically with increasing age (Blanco & Sloutsky, 2020; Meder et al., 2021). Likewise, 

children’s efficiency in searching and integrating probabilistic information only slowly improves with 

age (Betsch et al., 2016, 2021; Lindow & Betsch, 2019; Mata et al., 2011). In sum, these findings are 

consistent with the proposition that developmental processes “cool off” in favor of more adaptive be-

havior with increasing age (Giron et al., 2022; Gopnik et al., 2017).  

Generally, the empirical work in this dissertation demonstrated the feasibility of computational 

modeling approaches with preschool children. Nevertheless, it also became evident that the variability 

in young children’s choice behavior can be a risk to modeling techniques and potentially yield parameter 

estimates outside of a meaningfully interpretable space. Because some models may not adequately cap-

ture the underlying choice process, parameter analyses in the present work were conducted only for 

those participants and respective models that provided the best fit. This has the advantage that parame-

ters may capture less noise (e.g., parameters may otherwise absorb processes that are not explicitly 

specified in the model) but comes at the cost of introducing possible bias due to error or uncertainty in 

the model comparison process. A different approach that may be promising is latent-mixture modeling 

which allows inferring category membership (strategy use) while providing an estimate of how accu-

rately a person follows a strategy (e.g., Bröder & Schiffer, 2003; Steingroever et al., 2019).   

Future research will need to address such considerations, particularly when investigating model-

specific developmental trajectories. For instance, the longitudinal study (Chapter 2) may provide a suit-

able dataset to study intra-individual trajectories of reinforcement learning processes in preschool chil-

dren. Such analyses mark a clear gap in the current developmental reinforcement learning literature. 

Many questions remain unanswered about how value-guided learning processes develop in early child-

hood (see Nussenbaum & Hartley, 2019). 
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6.2.6 Methodological and Policy Implications 

The empirical work in this dissertation highlights several methodological and policy implications. 

First, children’s ability to capitalize on the structure of the environment seems to hinge on the ecological 

plausibility of the study design (see also Dhami et al., 2004). Like the description–experience differen-

tiation, ecological plausibility is not black or white. It may be better described as a continuum and is 

contingent on age-related changes in choice ecologies. Increasing the degree of ecological plausibility 

can happen in various ways: for instance, by implementing ecologically valid statistical structures 

(Chapter 2; Green et al., 2010; Pleskac & Hertwig, 2014; Schulze et al., 2017), using ecological stimuli 

(Young et al., 2022), or choosing a learning format that is representative of typical age-related choice 

ecologies (for younger children, this will typically include some form of experience; see also Schulze 

& Hertwig, 2021). Such considerations may prove beneficial from a policy perspective in designing 

effective education targeting children’s more formal acquisition of probabilities or in communicating 

risks to young citizens (e.g., traffic, unhealthy nutrition). 

Second, offline and online data collection with young children are not equivalent (see Chapter 4), 

and generalizations across testing modalities need to be made cautiously. Not all research questions and 

study designs may be equally suitable to be implemented as an online experiment when children aged 4 

years and below are the target sample. Potentially detrimental effects of online testing decrease from 

early to middle childhood. However, knowing that online and offline studies may potentially lead to 

discrepant results should not be viewed as a threat to online developmental research but as a chance to 

improve study designs and methodologies. This may not only provide new insights into cognitive de-

velopment but also help to address replicability issues in developmental psychology (see Davis-Kean & 

Ellis, 2019; Youyou et al., 2023). 

Third, children are a particularly vulnerable group in risky choice scenarios in the real world that 

may hold perilous outcomes. For instance, in the world of online or smartphone gaming, so-called loot 

boxes have become increasingly prevalent even in games marked as age appropriate for children (Zendle 

et al., 2020). Loot boxes probabilistically contain desired game items (e.g., highly desirable items occur 

with a low probability) and can be bought with real money or time played (Zendle et al., 2020). Chil-

dren’s exploratory tendencies and still developing abstract probabilistic reasoning skills may make them 

particularly susceptible to such implementations (effectively representing a gamble). This danger has 

been recognized by policymakers, for instance, in the European Parliament (see Cerulli-Harms et al., 

2020). However, the present research shows that the policy proposition to explicitly inform about the 

underlying probabilities in order to reduce the harm of entering repeated gambles may be rather inef-

fective for children (Cerulli-Harms et al., 2020).  
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6.3 Conclusion 

Learning to make sound choices becomes more and more important as children grow up and gain 

increasing independence. How do children become adaptive decision makers, capable of navigating 

myriad uncertain real-world environments? In this dissertation, I examined the inter- and intra-individ-

ual development of probability learning and repeated choice behavior in childhood, considering ecolog-

ical, cognitive, and methodological aspects. Evidence from three cross-sectional and one longitudinal 

empirical investigation suggests that the interaction between developing cognitive capacities, growing 

first-hand experience with real-world environments, and characteristics of the task environment shape 

adaptive choice behavior in childhood. The current work proposes that probability learning and repeated 

choice behavior progress from high persistence but also high inter-individual variability in early child-

hood to emerging adaptivity characterized by diversification and exploration in middle and late child-

hood. In conclusion, this dissertation highlights the benefit of taking an ecological rationality perspec-

tive in studying the development of decision making abilities and emphasizes the importance of ecolog-

ically plausible study designs in revealing the young mind’s ability to capitalize on the structure of the 

environment. 
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Table A1 

Overview of Experience-Based Probability Learning Studies (With Sequential Feedback) Reporting Proportions of Individual-Level Probability Matchers: Adults 

Reference 
N 

sample p-levels
Chance 
device 

Last n trials 
(total) Task characteristics Criterion probability matching % PM 

Derks, 1962 10 p1 = .75  
p2 = .25 

Light bulbs 100 (250) Standard task, no incentive p1 +/- computed deviation 40% 

“ “ “ “ “ 15 sec outcome delay “ 50% 
“ “ “ “ “ 15 sec inter-trial interval “ 50% 
“ “ “ “ “ limited response latency: ~0.2 sec; excluded if re-

quired > 0.5 sec on 25% of trials 
“ 90% 

“ “ “ “ “ win .05 USD if correct “ 30% 
“ “ “ “ “ win .05 USD if correct, loss of 0.05 USD if wrong “ 30% 
“ “ “ “ “ partial feedback “ 50% 
“ “ “ “ “ partial feedback + win .05 USD if correct, loss 

of .05 USD if wrong 
“ 10% 

“ “ “ “ 100 (1000) Standard task, no incentive “ 30% 
Gaissmaier et al., 2016 92 p1 = .67 

p2 = .33 
Slot machine 
(virtual) 

96 (288) habitual gamblers; 0.10 USD if correct + 4 random 
participants received actual cash payout 

p1 +/- 5% 31.9% 

“ 72 “ “ “ 0.10 USD if correct  + 4 random participants re-
ceived actual cash payout 

“ 15.7% 

Saldana et al., 2022 20 p1 = .70 
p2 = .30 

Digital task 
(shapes) 

60 (240) correct: 0.02 USD; incorrect: 0 USD p1 +/- binomial 95% CI [0.568, 0.812] 20-30%

“ 39 “ “ 60 (480) “ “ 31-33%
“ 19 “ “ 60 (240) always 0.01 USD (if correct right away, if incor-

rect: feedback + correction) 
“ 21-32%

Schulze, et al. 2015 25 “ Light bulbs 
(virtual) 

50 (500) .04 AUD if correct; outcome information remained 
available for 10 trials; 

p1 +/- 5% 8%

“ “ “ “ “ .04 AUD if correct; outcome information remained 
available for 10 trials; competing against opponent 

“ 20%

Schulze et al., 2016a “ “ Digital task 
(shapes) 

100 (500) 2 cents if correct; varied color-key mapping + WM 
load 

“ 28%

Note. p-levels = outcome probabilities of options; last n trials = trials based on which probability matching was computed; CI = confidence interval; PM = probability matching. 
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Table A2 

Overview of Descriptive Repeated Choice Studies Reporting Proportions of Individual-Level Probability Matchers: Adults 

Reference 
N 

sample p-levels 
Chance 
device N trials Feedback Task characteristics Criterion probability matching % PM 

James & Koehler, 2010 84 p1 = .70 
p2 = .30 10-sided-die 10 No 1 CAD if correct; 10 bets on same device matching exact frequency of p1 26% 

James & Koehler, 2011 66 “ Fun fair games 
(described) “ “ low dependency: unique games (bingo, wheel of 

fortune, etc.); hypothetical 1$ if correct “ 3% 

“ 61 “ “ “ “ high dependency: repeated games (e.g., bingo, 
wheel of fortune, etc.); hypothetical 1$ if correct “ 38% 

“ 38 “ 10-sided-die
(described) “ “ low dependency: unique die in every game “ 3% 

“ 89 “ “ “ “ high dependency: same die across games “ 18% 

“ 41 “ “ “ “ 
global-focus: "In 10 rolls of the die, how many 
times would you expect each outcome?" prior to 
game; 1$ per correct guess 

“ 61% 

“ 42 “ “ “ “ 
local-focus: "On any individual roll of the die, 
which color is more likely to be rolled?" prior to 
game; 1$ per correct guess 

“ 38% 

Koehler & James, 2009 102 p1 = .75 
p2 = .25 

marbles 
(virtual) 20 “ 

proportion reported across 4 conditions (learning: 
sequential  x aggregate; test: sequential x. aggre-
gate); $0.50 if correct 

matching subjective p1 probability 45%  

“ 121 “ “ “ “ replication across the same four conditions: com-
plete information hypothetical $0.50 if correct “ 38%  

“ 30 “ “ “ “ aggregate-aggregate condition, i.e., described pro-
portions and all choices at once “ 80%  

Schulze & Newell, 
2016b 60 p1 = .70 

p2 = .30 
10-sided die
(virtual) 50 Yes 0.2 EUR per correct choice, sequential choice p1 +/- 5% 10% 

“ “ “ “ “ No 0.10 AUD per correct choice; allocating all choices 
at once “ 35% 

West & Stanovich, 
2003 397 “ deck of cards 

(described) 10 “ hypothetical $100 if correct matching exact frequency of p1 66% 

 Note. p-levels = outcome probabilities of options; last n trials = trials based on which probability matching was computed; CI = confidence interval; PM = probability matching. 
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Table A3 

Overview of Experience-Based Studies Reporting Individual-Level Matching and Maximizing: Children 

Reference Age groups 
(in years) 

N Paradigm p-levels N trials Reward Criteria for matching + maximizing % Match % Max 

Derks & 
Paclisanu, 1967 

3–4 29 Hand with toy p1 = .75 
p2 = .25 

200 M&M candy if correct Probability matching: 66% to 84% high-op-
tion choices per 100 trials 

Trial 0–100: 38% 
Trial 101–20: 10% 

- 

“ 5–6 29 Light bulbs “ “ “ “ Trial 0–100: 10% 
Trial 101–20: 10% 

- 

“ 6–7 20 “ “ “ “ “ Trial 0–100: 35% 
Trial 101–20: 25% 

- 

“ 7–8 “ “ “ “ “ “ Trial 0–100: 35% 
Trial 101–20: 40% 

- 

“ 8–10 “ “ “ “ “ “ Trial 0–100: 40% 
Trial 101–20: 50% 

- 

“ 10–12 “ “ “ “ “ “ Trial 0–100: 60% 
Trial 101–20: 65% 

- 

“ 12–13 “ “ “ “ “ “ Trial 0–100: 55% 
Trial 101–20: 65% 

- 

“ 18–25 “ “ “ “ “ “ Trial 0–100: 45% 
Trial 101–20: 65% 

- 

Goldman & 
Denny, 1963 

5–6 26 “ “ 150 Toy; 2 USD for best 
performer 

Fixating: choosing either high-option or low-
option on 96% of last 50 trials 

- 50%

“ 7–8 34 “ “ “ “ “ - 15%

“ 9–10 17 “ “ “ “ “ - 12%

“ 11-12 25 “ “ “ “ “ - 4%
“ 14-15 20 “ “ “ 1 penny for 5 correct; 

2 USD for best per-
former 

“ - 5%
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Reference Age groups 
(in years) 

N Paradigm p-levels N trials Reward Criteria for matching + maximizing % Match % Max 

Jones & 
Liverant, 1960 

4–6 “ Token delivery 
machine 

p1 = .70 
p2 = .30 

100 Candy Maximizing: 9–10 high-option choices (last 
10 trials); matching: 6–8 high-option choices 
(last 10 trials)  

20% 65% 

“ 9–11 “ “ “ “ 1 penny for every 5 
correct 

“ 70% 25% 

“ 4–6 “ “ p1 = .90 
p2 = .10 

“ Candy “ 20% 70% 

“ 9–11 “ “ “ “ 1 penny for every 5 to-
kens 

“ 50% 45% 

Plate et al., 
2018 

M = 7.7    
SD = 1.99 

31 Computer game: 
8 rocks hiding 

coins 

p1 = .70 
p2 = .10 
p3 = .10 
p4 = .05 
p5 = .05 
p6 = .00 
p7 = .00 
p8 = .00 

200 Prize + 20 dollars Model comparison: pure probability match-
ing or model that transitions from matching 
to maximizing 

26% 74% 

“ M = 20.5, 
SD = 1.7 

32 “ “ “ 20 dollars or course 
credit 

“ 19% 81% 

“ M = 7.9    
SD = 1.9 

32 “ “ “ Prize + 20 dollars “ 69% 31% 

“ M = 20.6, 
SD = 1.9 

33 “ “ “ 20 dollars or course 
credit 

“ 45% 55% 

Stevenson & 
Weir, 1959 

3 10 Token delivery
machine 

p1 = 1.0 
p2 = .00 
p3 = .00 

80 Two toys Maximizing: exclusively choosing the high-
option on last 20 trials  

- 100%

“ 5 “ “ “ “ “ “ - 80%
“ 7 “ “ “ “ “ “ - 80%
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Reference Age groups 
(in years) 

N Paradigm p-levels N trials Reward Criteria for matching + maximizing % Match % Max 

Stevenson & 
Weir, 1959 

8–10 10 Token delivery 
machine 

p1 = 1.0 
p2 = .00 
p3 = .00 

80 Two toys Maximizing: exclusively choosing the high-
option on last 20 trials 

- 80%

Sullivan & 
Ross, 1970 

5 15 “ p1 = .80 
p2 = .20 

“ toy prize Maximizing: high-option 18 out of 20 trials 
in last block  

- 46%

Sullivan & 
Ross, 1970 

17 15 “ “ “ 2 people received 3 or 
2 USD, respectively 

“ - 33%

Weir, 1964 3 10 “ p1 = .66 
p2 = .00   
p3 = .00 

“ Prize “ - 70%

“ 5 35 “ “ “ “ “ - 66%
“ 7 20 “ “ “ “ “ - 25%
“ 9 15 “ “ “ “ “ - 20%
“ 13 10 “ “ “ None “ - 20%
“ 18 “ “ “ “ “ “ - 50%
“ 3 “ “ p1 = .33 

p2 = .00 
p3 = .00 

“ Prize “ - 50%

“ 5 27 “ “ “ “ “ - 33%
“ 7 31 “ “ “ “ “ - 0%
“ 9 15 “ “ “ “ “ - 0%
“ 10 26 “ “ “ None “ - 0%
“ 14 26 “ “ “ “ “ - 4%
“ 18 35 “ “ “ “ “ - 17%

Note. M = mean; SD = standard deviation; match = probability matching; max = probability maximizing.
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B | Supplemental Material for Chapter 2 

Emerging Adaptivity in Probability Learning: How Young Minds and 

the Environment Interact 
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Table B1 

Sample Size, Age in Years, and Gender Distribution by Age Group and Experimental Condition 

3–4 years 6–7 years 9–11 years Adults 

SR SH ED SR SH ED SR SH ED SR SH ED 

N 40 39 41 40 41 40 40 41 40 41 40 40 

Age M 

(SD) 
4.12 
(0.53) 

4.12 
(0.57) 

3.99 

(0.58) 
6.86 
(0.56) 

6.85 
(0.59) 

7.04 

(0.53) 
10.16 
(0.77) 

10.18 
(0.77) 

10.09 

(0.82) 
25.68 
(6.23) 

27.38 
(6.41) 

25.64 

(5.26) 

% Female 42 44 59 62 59 52 55 49 60 49 58 50 

Note. SR = static random; SH = static high; ED = ecologically dynamic; SD = standard deviation 

Table B2 

Ability to Correctly Identify the High-Probability Option by Condition and Age Group: Results of an Analysis of Variance 

Note. p < .001**, p < .05*. 

M SD F df 𝜂"!

Condition 4.59* 1,314 .01 
Static high .88 .33 
Ecologically dynamic .79 .41 

Age group 6.01** 3,314 .05 
3–4 years .73 .45 
6–7 years .78 .42 
9–11 years .88 .33 
Adults .95 .22 

Condition × age group 0.61 3,314 > .01
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Computational Modeling Approach to Chapters 2 and 4 

We used a computational modeling approach similar to that implemented in Schulze et al. (2017), 

but generated estimates in a Bayesian framework using JAGS (Plummer, 2003) and with MATLAB as 

an interface (The MathWorks Inc., 2021). 

Model Specifications 

Baseline 

The baseline model makes no assumptions about the choice process. It has just one free parameter 

that captures a constant probability of choosing the high-probability option, p(H), p(L) = 1 – p(H).  

Reinforcement Learning (RL) 

We implemented a simple RL model assuming that a person gradually updates the values of the 

two choice options. The current value 𝑞#(𝑖) of an option i at trial t is described by 

𝑞#(𝑖) = 	𝑞#$%(𝑖) + 	𝛼	 ×	 [𝑟#(𝑖) −	𝑞#$%(𝑖)] (B1) 

where 𝑟#(𝑖) determines whether the current choice resulted in a reward, 𝑟#(𝑖) = 1 , or not, r&(i) = 0. 

The experienced reward is compared with the expected value of the option in the previous trial, resulting 

in a prediction error (here in brackets). The learning rate parameter 𝛼 scales the extent to which the 

prediction error affects the value-updating process, with higher (lower) values indicating that recent 

prediction errors are weighted more (less) heavily.  

Following a softmax choice rule (Sutton & Barto, 2018), the higher-valued option is then selected 

more or less deterministically depending on the inverse temperature parameter 𝜃: 

𝑝#'%(𝑖) = 	
(!	×	$%(')

(!	×	$%())	'	(!	×	$%(')		
            (B2) 

Win-Stay Lose-Shift (WSLS) 

We used a probabilistic version of the WSLS heuristic (e.g., Worthy et al., 2012) that has two free 

parameters: the probability of repeating the same choice after experiencing a win in the previous trial, 

denoted as pt+1(stay|wint), and the probability of shifting after a loss, denoted as pt+1(shift|losst).  

Parameter Estimation and Strategy Classification 

To estimate parameters, we modeled each participant’s choices across all 100 trials. Posterior dis-

tributions of model parameters were sampled via the Gibbs sampling method implemented in JAGS 

(Plummer, 2003). We assigned uninformed beta prior distributions to the constant probability in the 

baseline model, to the win-stay and lose-shift parameters in the WSLS model, and to the learning rate 
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in the RL model, 𝐵𝑒𝑡𝑎(1,1). For the inverse temperature in the RL model, we used a gamma prior 

distribution, 𝐺𝑎𝑚𝑚𝑎(1.1051, 1.1051). 

In the RL model, the choice options were assumed to have an initial expected value of 0, and the 

propensity toward the high-valued option was initialized with p = .5. In the WSLS model, a decision 

maker was assumed to randomly choose one option in the first trial.  

For each model, we ran 20 chains with 50,000 samples each and an initial burn-in period of 2,000 

samples. For the model fitting in Chapter 2, the 𝑅E statistic indicated no convergence issues (< 1.01), 

except for the learning rate for one 3-year-old and the inverse temperature parameter for one adult who 

chose the high-probability option below chance and seemed to switch their behavior for every block of 

trials (𝑅E < 1.2). However, excluding these participants from analysis did not change the results.  

We used the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002) to evaluate which 

strategy model provided the best fit to each participant’s choice data. The DIC penalizes model com-

plexity. Lower DIC values indicate a better fit between model predictions and the data. For each partic-

ipant, we selected the model with the lowest DIC value as best describing their strategy.
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Table B3 

Mean (Standard Deviation) of Model Parameters by Age Group and Condition for Those Participants 

Best Described by Each Model 

Note. 𝛼 = learning rate;	𝜃 = inverse temperature. The constant probability of choosing the high-proba-

bility option estimated in the baseline model equals the average probability of choosing the more likely 

option in the static high and ecologically dynamic condition and a randomly drawn option in the static 

random condition and is therefore not considered here (see Behavioral Results section Chapter 2). Where 

no standard deviation is reported, N = 1.

Models and parameters 

Win-stay lose-shift Reinforcement learning Baseline 

Condition Age group N p(stay|win) p(shift|lose) N 𝛼 𝜃 N p(const) 

Static high  3–4 years 9 .24 (.05) .79 (.07) 24 .36 (.28) 11.65  (27.43) 6 .45 (.32) 

6–7 years 7 .31 (.14) .71 (.10) 33 .48 (.25) 2.88  (1.75) 1 .58 

9–11 years 7 .34 (.05) .67 (.05) 29 .44 (.27) 6.44  (21.86) 5 .60 (.13) 

Adults 9 .69 (.07) .35 (.06) 25 .40 (.26) 7.63  (23.21) 6 .77 (.17) 

Static ran-
dom 

3–4 years 17 .37 (.23) .62 (.23) 9 .47 (.31) 2.13 (1.45) 14 .41 (.42) 

6–7 years 23 .31 (.10) .67 (.14) 16 .67 (.17) 1.72  (0.65) 1 .52 

9–11 years 16 .32 (.08) .68 (.11) 14 .65 (.28) 0.34  (0.10) 10 .52 (.10) 

Adults 13 .64 (.10) .34 (.10) 19 .66 (.30) 3.40  (6.01) 9 .51 (.18) 

Ecologically 
dynamic 

3–4 years 19 .56 (.29) .43 (.31) 11 .36 (.33) 14.69  (22.17) 11 .65 (.35) 

6–7 years 24 .22 (.08) .76 (.08) 13 .53 (.30) 3.31  (4.53) 3 .78 (.10) 

9–11 years 27 .22 (.08) .79 (.09) 11 .49 (.30) 8.12  (21.65) 2 .57 (.14) 

Adults 12 .37 (.10) .67 (.12) 23 .55 (.34) 3.63  (4.72) 5 .72 (.14) 
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Table B4 

Model Parameters in the Reinforcement Learning and Win-Stay Lose-Shift Models: Results of an Anal-

ysis of Variance  

Note. p < .001**, p < .05*; RL = reinforcement learning; WSLS = win-stay lose-shift. 

Model and parameter Variable F df 𝜂"! BFinclusion 

RL 

Learning rate Condition 10.22 ** 2,215 .09 207.89 

Age group 2.74 * 3,215 .04 0.47 

Condition × age group 0.34 6,215 < .01 0.05 

Inverse temperature Condition 1.67 2,215 .02 0.19 

Age group 1.95 3,215 .03 0.14 

Condition × age group 0.48 6,215 .01 0.01 

WSLS 

p(stay|win) Condition 6.28 * 2,171 .07 2.1 x 108

Age group 37.00 ** 3, 171 .39 > 1010

Condition × age group 12.5 ** 6, 171 .30 8.8 x 108

p(shift|loss) Condition 5.51 * 2,171 .06 > 1010

Age group 28.39 ** 3,171 .33 5.2 x 108

Condition × age group 12.76 ** 6,171 .31 1.9 x 109
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Table B5 

Post-hoc Analysis for Group-Level Differences in Model Parameters Based on Tukey HSD and Bayes-

ian t-test Derived Bayes Factor 

Note. p < .001**, p < .05*, p < .1+; SR = static random, SH = static high, ED = ecologically dynamic; 

CI = confidence interval. 

Model and parameter Variable and levels Difference 95% CI BF10
RL 
Learning rate Condition 

SR − SH .21 ** [.10,31] 3926.91 
ED − SH .07 [−.03,.18] 0.56 
ED −SR −.13 * [−.26,−.01] 2.48 

Age group 
6–7y − 3–4y .15 * [.01,.3] 11.04 
9–11y − 3–4y  .12 [−.03,.26] 1.47 
Adult − 3–4y  .12 [−.02,.26] 2.48 
9–11y − 6–7y −.04 [−.17,.1] 0.25 
Adult − 6–7y −.03 [−.16,.09] 0.2 
Adult − 9–11y 0 [−.13,14] 0.21 

Inverse temperature Condition 
SR − SH −4.52 [−10.62,1.58] 0.64 
ED − SH −0.27 [−6.37,5.83] 0.16 
ED − SR 4.24 [−2.74,11.24] 1.76 

Age group 
6–7y − 3–4y −7.56 + [−15.71,0.58] 4.32 
9–11y -3–4y  −4.75 [−13.14,3.64] 0.4 
Adult − 3–4y −5.02 [−13.04,3] 0.56 
9–11y − 6–7y 2.81 [−4.87,10.5] 0.37 
Adult − 6–7y 2.54 [−4.74,9.82] 0.39 
Adult − 9–11y −0.27 [−7.83,7.28] 0.2 

WSLS 
p(stay|win) Condition 

SR − SH −.01 [−.09,.6] 0.24 
ED − SH −.08 * [−.15,−.01] 1.12 
ED − SR −.07 * [−.12,−.01] 1.41 

Age group 
6–7y − 3–-4y −.15 ** [−.23,−.08] 138.7 
9–11y − 3–4y −.15 ** [−.22,−.07] 114.26 
Adult − 3–4y .13 ** [.04,.21] 3.85 
9–11y − 6–7y .01 [−.07,.08] 0.21 
Adult − 6–7y .28 ** [.20,.36] 6.1 x 1012
Adult − 9–11y .27 ** [.19,.36] 5.6 x 1012 

p(shift|loss) Condition 
SR − SH −.02 [−.10,.05] 0.25 
ED − SH .06 [−.02,.13] 0.47 
ED − SR .08 * [.02,.14] 2.19 

Age group 
6–7y − 3–4y .14 ** [.06,.22] 23.36 
9–11y − 3–4y  .15 ** [.07,.23] 79.71 
Adult − 3–4y −.11 ** [−.20,−.02] 1.57 
9–11y − 6–7y .01 [−.06,.09] 0.31 
Adult − 6–7y −.25 ** [−.34,−.16] 7.1 x 108
Adult − 9–11y −.26 ** [−.35,−.18] 1.1 x 1010 
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havior in Childhood: A Longitudinal Investigation 
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Table C1 

Number and Reasons for Exclusion From Data Analysis by Task and Wave 

Exclusion criterion PL RI VWMB VWMF 

T1 T2 T1 T3 T1 T2 T1 T2 

Technical issues 1 0 1 1 1 0 1 1 

Intervention parent 3 0 0 0 0 0 0 0 

Stopped prematurely 2 4 3 0 0 1 0 0 

Note. PL = probability learning; RI = response inhibition; VWMB = visual working memory backward ; 

VWMF = visual working memory forward. 

Figure C1 

Comparison of Probability Learning Across Trial Blocks Between Children Aged 5–6 Years in the 

Longitudinal (T3) and Cross-Sectional Study  

Note. Data for the cross-sectional study obtained in study from Chapter 2. Longitudinal and cross-sec-

tional studies used the same probability learning paradigm. 
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Table C2 

Age Effects on Executive Function Measures Derived From Bayesian Mixed-Model With Individually Varying Intercepts 

Parameter Response inhibition Memory backward Memory forward ordered Memory forward unordered 

𝛽 Error 95% CI 𝛽 Error 95% CI 𝛽 Error 95% CI 𝛽 Error 95% CI 

Random effect 

ID (Intercept) .11 .02 [.07,.15] 0.44 0.15 [0.09,0.69] 0.06 0.05 [0,0.18] 0.33 0.19 [0.02,0.71] 

Fixed effects 

Intercept .79 .02 [.76,.83] 2.41 .10 [2.22,2.59] 1.00 .05 [0.91,1.09] 3.69 .12 [3.46,3.93] 

Agecross-sectional .12 .04 [.03,.20] 1.14 .23 [0.68,1.61] 0.24 .11 [0.02,0.47] 0.83 .28 [0.28,1.39] 

Agelongitudinal .04 .02 [.01,.07] 0.98 .10 [0.77,1.18] 0.28 .06 [0.16,.39] 0.98 .14 [0.70,1.27] 

Agecross-sectional x agelongitudinal -.03 .04 [-.12,.05] 0.08 .27 [-0.46,.61] -0.21 .16 [-0.52,.10] -0.55 .38 [-1.31,.21]

Note. CI = Credible interval; total of 8000 post-warmup samples per model; 𝑅E = 1.00 for all parameter estimates 
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Table C3 

Age and Memory Effects on High-Probability Choices Derived From Bayesian Mixed-Model With In-

dividually Varying Intercepts 

Parameter 𝛽 Error 95% CI 

Random effect    

ID (Intercept) .50 .05 [.41,.60] 

Fixed effects    

Intercept .58 .09 [.41,.76] 

Block (linear) .32 .04 [.25,.39] 

Block (quadratic) -.18 .04 [-.24,-.11] 

Agecross-sectional -.10 .20 [-.50,.29] 

Agelongitudinal .77 .07 [.63,.90] 

Agecross-sectional x agelongitudinal -.05 .09 [-.22,.12] 

VWM forward .05 .02 [0,.08] 

VWM forward x Agecross-sectional .02 .04 [-.05,.10] 

VWM forward x Agelongitudinal -.05 .02 [-.09,-.01] 

VWM backward .03 .02 [0,.07] 

VWM backward x Agecross-sectional .01 .05 [-.08,.11] 

VWM backward x Agelongitudinal -.21 .02 [.-25,-.17] 

Note. CI = Credible interval; total of 8000 post-warmup samples per model; 𝑅E = 1.00 for all parameter 

estimates 
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Computational Modeling Approach in Chapter 4 

The modeling approach implemented in this Chapter is equivalent with the one described in Ap-

pendix B (please refer to that section for a detailed description). When modeling the full choice dataset 

in Chapter 4, the 𝑅E-statistic indicated no convergence issues, except for the inverse temperature param-

eter for one child in online sample (𝑅E = 1.1). However, this child was better described by a different 

model than RL, and thus, does not affect the analyses results. 

The deline in performance toward the end of the task in the online sample may suggest that children 

start using a different strategy with increasing length of the experiment. To examine this possibility, we 

separately modeled children’s choices for trial blocks 3–5. Figure D1 shows the strategy classification 

based on this approach. However, the 𝑅E-statistic (𝑅E > 1.01).  indicated convergence issues, in particular, 

for the inverse temperature parameter in the RL model for eight children offline and 16 children online. 

Moreover, inspection of the choice data reveals that some children stopped “learning” after two trial 

blocks and were choosing the high-probability option at constantly very high or low rate, explaining 

some of the increase in baseline users compared to modeling the full dataset. 

 

Figure D1 

Strategy Classification by Testing Modality: Trial Blocks 3–5 
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