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Abstract: Individual tree detection for urban forests in subtropical environments remains a great
challenge due to the various types of forest structures, high canopy closures, and the mixture of
evergreen and deciduous broadleaved trees. Existing treetop detection methods based on the canopy-
height model (CHM) from UAV images cannot resolve commission errors in heterogeneous urban
forests with multiple trunks or strong lateral branches. In this study, we improved the traditional local-
maximum (LM) algorithm using a dual Gaussian filter, variable window size, and local normalized
correlation coefficient (NCC). Specifically, we adapted a crown model of maximum/minimum tree-
crown radii and an angle strategy to detect treetops. We then removed and merged the pending tree
vertices. Our results showed that our improved LM algorithm had an average user accuracy (UA) of
87.3% (SD± 4.6), an average producer accuracy (PA) of 82.8% (SD± 4.1), and an overall accuracy of
93.3% (SD± 3.9) for sample plots with canopy closures less than 0.5. As for the sample plots with
canopy closures from 0.5 to 1, the accuracies were 78.6% (SD± 31.5), 73.8% (SD± 10.3), and 68.1%
(SD± 12.7), respectively. The tree-height estimation accuracy reached more than 0.96, with an average
RMSE of 0.61 m. Our results show that the UAV-image-derived CHM can be used to accurately
detect individual trees in mixed forests in subtropical cities like Shanghai, China, to provide vital
tree-structure parameters for precise and sustainable forest management.

Keywords: unmanned aerial vehicle (UAV); local-maximum algorithm; urban forest; treetop detection;
subtropical evergreen–deciduous broadleaved mixed forest

1. Introduction

Urban trees refer to the woody perennial plants that thrive in and around cities [1].
Urban trees, as critical components of urban forests, provide diverse ecosystem services,
such as air purification [2], habitat [3], food [4], climate regulation [5], cultural value [6], etc.
Modern urban forestry requires accurate information on individual trees to maximize the
ecological benefits of urban forests. The individual-scale information includes the tree
structure, location and spatial distribution, species diversity, and function [7]. Due to rapid
urbanization, urban trees exhibit high dynamics in numbers and spatial distributions from
year to year, highlighting the need to conduct regular annual forestry inventories for forest
management [8]. The accurate biophysical parameters, such as the tree height, canopy
width, and tree species, are the key pieces of information for urban tree planning and
management [9–12].
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However, the traditional urban forest inventory is time-consuming and labor-intensive,
and therefore it cannot meet the ever-increasing demands for timely and accurate infor-
mation on urban trees in current precision forest management [13]. High-spatial- and
-temporal-resolution remotely-sensed images acquired via satellite and/or unmanned
aerial vehicles (UAVs) can provide accurate and low-cost images, which have been widely
applied to current forestry investigations for precision forestry [11,14,15], especially in
complex-terrain areas where traditional forestry field surveys are of low efficiency and high
labor intensity [16].

Individual tree detection algorithms for UAV images using image processing or com-
puter vision techniques primarily consist of two types: canopy-boundary segmentation
and treetop detection [10,17]. The canopy-boundary segmentation method analyzes the
orthophoto after UAV-remote-sensing processing. There are several methods for canopy-
boundary segmentation, such as the region growth method [18,19], the watershed segmen-
tation method [20,21], the inverse watershed segmentation method [22], the object-oriented
classification method [23], etc. This type of method exploits the differences in the textures
and contour features presented in different kinds of objects on remote-sensing images to
delineate the canopy boundary. The treetop detection method is based on the principle
that the spectral or height value of the treetop at the canopy position of the remote-sensing
image is greater than that of the surrounding area. The most commonly used method to
detect treetops is the local-maximum (LM) algorithm [24,25], which is both computationally
efficient [26] and effective at detecting coniferous treetops [27]. This type of method can
obtain both the heights and locations of trees [28].

In the treetop detection method, the traditional local-maximum algorithm is a tech-
nique that employs a fixed retrieval window size to extract the local maxima of the lu-
minance or height from remote-sensing images of the forest as the tree location. Early
stages of the method detected the spatial locations of individual trees by retrieving the
high-reflectivity area in a specific size window on the aerial-remote-sensing image and then
marked the pixel point with the highest brightness [24,29]. Currently, the local-maximum
method mainly utilizes high spatial-resolution UAV images and LiDAR images to derive a
3D canopy-height model (CHM) to extract more accurate treetops [30,31]. The method can
achieve more than 90% accuracy in treetop identification in forest plantations in areas with
flat and low canopy densities [32].

However, the CHM-based local-maximum method can still be improved in treetop
detection, such as in terms of overlapping crowns, irregular crown shapes, mixed forests
with uncertain edges, etc., which complicate the canopy segmentation and can reduce the
accuracy of treetop detection [33]. The traditional local-maximum method particularly
depends on the search-window-size setting. For example, if the crown sizes of the trees
in the recognition area vary significantly, then the algorithm cannot automatically adapt
to the crown-size variation in the area, resulting in an inappropriate window size that
causes a significant commission error [30,34]. To address this challenge, the local-maximum
algorithm with variable windows was developed to enhance the capability of the treetop
detection of the LM method in high-density areas and areas with highly varied crown
sizes [35,36]. However, the local-maximum algorithm with variable windows does not
adapt well to diverse tree-canopy features and generates significant commission and
omission errors [10]. It remains unclear whether the LM algorithm can be adapted to the
urban environment.

This study aims to propose an improved local-maximum algorithm to detect individual
urban trees and retrieve tree heights using UAV images. We developed a framework
consisting of three steps: (1) the use of a dual Gaussian filter to reduce the noise in the
crown spatial domain and tree-height domain of the canopy-height model (CHM); (2)
the optimization of the searching window size of the local-maximum algorithm based on
a clustering method to detect as many treetops as possible; and (3) the proposal of the
normalized correlation coefficient for treetop detection during the fine-extraction process.
The accuracy of our proposed method was compared to the traditional local-maximum
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method and validated using a field investigation of sample plots with various canopy
closures and a mixture of coniferous, deciduous, and evergreen broadleaved trees.

2. Materials and Methods
2.1. Study Area

Our study area was located in Shanghai (Figure 1), which has a typical northern sub-
tropical monsoon climate with an annual mean air temperature of 16 ◦C and precipitation
of 1200 mm. The original natural vegetation in Shanghai is characterized by mixed forests
composed of subtropical evergreen and deciduous broadleaved trees. However, it has been
largely destroyed because of long-term and intense human activity. The current vegetation
is dominated by artificial forests and urban green spaces, with considerably high species
diversity [37]. To test our improved algorithm, we deliberately selected a part of the area at
the plant of the Baosteel Co., Ltd., as our target area for the UAV survey (Figure 1b). The
green space of the Baosteel Co., Ltd., is representative of urban green spaces in Shanghai in
terms of its diverse plant species and high management activities.
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Figure 1. (a,b) Location of the study area and UAV flight route. The A to I is the No. of each field
survey sample plot. The blue numbers refer to the No. of the pre-set flight route of the UAV.

2.2. Aerial Image Collection and Pre-Processing

The aerial images were collected using a Sony a6000 camera mounted on a FEIMA
D2000 four-rotor unmanned aerial vehicle (UAV) made by Shenzhen Feima Robotics
Co., Ltd., equipped with Trimble R2 Real-Time Kinematic (RTK) technology. The camera
has a 24 MP CMOS sensor with a chip size of 23.5 × 15.6 mm (aps-c) and a lens focal
length of 25 mm, which is made by Sony Corp., Wuxi, China. The images were acquired
on 31 July 2020 under cloud-free and low-wind-speed weather conditions by the UAV-
mounted camera flying along the pre-set flight route (Figure 1b) at a height of 319 m to
avoid the higher buildings and production equipment in the plant. The camera took images
in RGB mode and set a heading overlapping of 80% and lateral overlapping of 60%, with a
high spatial resolution of 0.05 m, which can provide more detailed information about tree
species, including the spectral reflectance, texture, color, and crown geometry of the tree
canopy. We took a total of 1214 aerial images covering the target area of 2.05 km2. Before the
flights, 33 spatially evenly distributed points located at the crosses of roads and/or corners
of buildings were identified and set up as the ground-control points (GCPs) using Trimble
R2 differential GPS (DGPS) with plane- and elevation-positioning accuracies of 0.02 m and
0.05 m, respectively. Among them, 23 GCPs were used for aerial-photo geo-registration,
while the remaining 10 GCPs were used as validation.
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The UAV images were first pre-processed, including image geo-referencing and mosaic,
color blending, and orthorectification, and were then used to derive the digital orthophoto
map (DOM) and canopy-height model (CHM). To generate the CHM, we first produced
the digital surface model (DSM), representing the landscape elevation above sea level
with objects like trees or buildings, which was generated by the Triangulated Irregular
Network (TIN). The TIN was created by three-dimensional point clouds, which were
automatically extracted in the embedded DEM module of PHOTOMOD software (version
6.5). Secondly, we produced the digital elevation model (DEM), representing the natural
landscape elevation above sea level without objects, by removing all points of buildings
and vegetation above the ground surface from the DSM using the embedded filtration
tool in PHOTOMOD [38]. During this step, there were still some residual points from the
incompletely removed buildings and vegetation, and they had to be manually removed
via visual interpretation. Finally, we obtained the DEM, which was used as the datum
plane. The rasterized CHM was produced by subtracting the DEM from the DSM [34].
The DOM was orthorectified based on the DEM by using the orthorectification module in
PHOTOMOD. It can display the distinguishable boundaries of tree canopies, which can be
validated via the visual interpretation of each tree canopy in the sample plots. The spatial
resolutions for the DOM and CHM were 0.05 m and 0.1 m, respectively. The accuracy of
the CHM data was ±0.126 m, which was validated from 10 GCPs. All these pre-processing
steps were conducted in PHOTOMOD.

2.3. Field Investigation

To obtain the validation data for the improved local-maximum algorithm, we con-
ducted a field survey of sample plots that were randomly selected in the green space within
the target area (Figure 1b). We performed the field investigation on the plant biodiversity in
Baosteel using a sample plot of 20 × 20 m, considering the comparisons with our previous
studies, and we selected the previous plot size of 20 × 20 m for our field investigation.
First, we overlapped our target area onto the digital layer of the previous 84 sample plots,
and we found that 9 of them were located within the target area. Second, we conducted
a field survey from 21 September to 3 November 2020. The coordinates of four corner
points for each sample plot were primarily recorded using a Garmin eTrex 329x portable
GPS with a positioning accuracy of nearly 3 m. Then, the four points were spatially well
aligned with the super-high-resolution UAV images to position the precise boundary of
each plot in the field. The forests in the 9 selected sample plots contained mixed coniferous
and broadleaved stands. The canopy closure (CC) of each plot was estimated via visual
interpretation from the UAV digital image using ArcGIS software (Version 10.7) [39], and
was briefly categorized into two groups: CCs less than 0.5, including the plots A–D, and
CCs from 0.5 to 1.0, including the sample plots E–I. Individuals with diameters at breast
height (DBHs) larger than 5 cm and heights of more than 2 m were recorded with their
basal positions, heights, DBHs, canopy widths, and scientific taxa and abundances. Each
tree species was identified according to the flora of Shanghai [40].

A total of 19 tree species and 554 individual trees were recorded, including 4 conifer
species: Metasequoia glyptostroboides, Cedrus deodara, Juniperus chinensis ‘Kaizuka’, and
Chamaecyparis pisifera ‘Squarrosa’, and 15 broadleaved tree species. The diameters at breast
height (DBHs), tree heights (THs), and crown widths (CWs) for all tree species in the nine
sample plots were in the ranges of 5.7–57.3 cm, 4–30 m, and 2–10.5 m, respectively. Each of
these parameters for the individual trees was recorded for the validation of the estimation.

2.4. Improvement to Local-Maximum Algorithm

We utilized the local-maximum (LM) algorithm to detect treetops to count the number
of trees in each plot. However, the traditional LM suffers from the fixed searching-window-
size of the tree crown, which cannot deal with the canopy complexity, such as crown
overlapping, tree-crown irregularity, mixed canopies with evergreen and deciduous trees,
etc., especially the true- and pseudo-treetop questions. To solve these problems, we pro-
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posed an improved algorithm framework: the local-maximum correlation (LMC) algorithm,
which is suitable and robust for detecting the treetops of urban forests, especially mixed ev-
ergreen and deciduous broadleaved forests. Our improvement to the LM mainly included
the following aspects: First, the canopy-height model was optimized via dual Gaussian
filtration to reduce the noises from the original CHM input data. Second the searching
window was generated via a clustering analysis of the tree height and crown size in order
to find as many tree vertices as possible. Third, the crown-profile model was used to make
the largest and smallest crown templates as the reference to identify the true and pseudo
treetops using the normalized correlation coefficient (NCC). The overall workflow is shown
in Figure 2. A detailed description of each improvement can be found in the following
sections.
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The algorithm framework was developed on the R Studio platform (Version 1.22.5033)
in the R (Version 4.0.2) environment. The local-maximum detection in step 2 was improved
from the “vwf” function in the “ForestTools” package [41]. The algorithm did not use other
libraries except for the “raster” library for geographic data processing [42]. We developed
the programming for each algorithm in our framework, such as dual Gaussian filtering, the
canopy maximum and minimum tree-crown templates, normalized correlation coefficient
calculation, and the angle-filtering strategy.

2.4.1. CHM Optimization Using Dual Gaussian Filtering

When attempting to find the local maxima directly from the original canopy-height
model (CHM), individual treetop detection may present an issue known as ‘pseudo-treetop.’
This term refers to a situation in which more than one local-maximum value may be
detected within a single tree crown. This is often the case with broadleaved forest species,
which frequently have expansive crowns composed of several sturdy and lateral branches.
Consequently, this complicates the detection process and necessitates the implementation
of data pre-processing measures. The frequently used pre-processing method is CHM
filtration to smooth the noises on the surface of the canopy and to reduce the fluctuation in
its height value [43]. However, these filtering methods, such as the mean-value filter and
Gaussian filter, can also simultaneously smooth out smaller trees with lower heights and
coniferous trees with crowns that are highly intersected with the surrounding tree crowns.
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Therefore, the filtering method could lead to omission and commission errors in treetop
detection. Dual Gaussian filtering was proposed to address this issue [33]:

I f iltered(X) = N−1(X)
∫ ∞

−∞

∫ ∞

−∞
I(ε)(H(I(ε), I(X)) + G(ε, X))dε (1)

N(X) =
∫ ∞

−∞

∫ ∞

−∞
(H(I(ε), I(X)) + D(ε, X))dε (2)

H(I(ε), I(X)) = e
− ‖I(ε)−I(X)‖

2σ2
h (3)

D(ε, X) = e
− ‖ε−X‖

2σ2
d (4)

where I(X) is the original input image to be filtered; I f iltered(X) is the processed CHM
image; X is the current calculated pixel point; ε is the surrounding neighborhood pixel
points around X; N(X) is the normalization factor. H(I(ε), I(X)) and D(ε, X) are Gaussian
functions based on the height-value domain and spatial domain, respectively, where σh
and σd are the smoothing parameters in these two functions, respectively.

Three parameters, the window size, σd, and σh, need to be adjusted during this filtering.
The window size was defined using the average crown width of 4 m, which was calculated
from the field inventory data of all individual tree-crown sizes. This ensured that large
tree crowns would be smoothed while tree edges would be kept. The values of σd and
σh should be correlated with the CHM height values in order to achieve good data pre-
processing demands (σd = a2× σh = a1 ∗ I(X)). The sizes of the σd value and σh value
determine the effect of the dual Gaussian filter in crown spatial smoothing and edge
protection, respectively. The smaller the values, the better the Gaussian-filtering effects on
smoothing and edge protection for the neighboring pixels compared with distant pixels.
Broadleaved trees with larger crowns require a larger Gaussian-filter range, while smaller
trees with smaller crowns should have a smaller Gaussian-filter range. It was found that
a1 = 0.055 and a2 = 2 work better. The filtering effect is shown in Figure 3.
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Figure 3. Smoothing effect on the noise of the CHM via dual Gaussian filter. The heights and edges of
tree crowns look clearer and smoother after filtering (right image) compared with the original-input
CHM image (left image).

2.4.2. Selection of Suitable Window Size for Improved LM Algorithm

After the dual Gaussian filtering to the CHM, we used the local-maximum detection
algorithm to identify the treetops from the CHM. The local-maximum algorithm works
on the assumption that the highest value in a local area or a spatial neighborhood on
the CHM represents the tip of a tree crown [26,44,45]. Therefore, it is crucial to select
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a suitable window size for the local-maximum filter. Too large or too small a window
size will result in omission or commission errors, respectively [24,26]. To better detect
treetops, the variable window size has been widely used, and the window can be square-
or circle-shaped [24–26,46]. In this study, we selected the square-shaped variable window
size due to the fact that, firstly, most of the forest stands in our sample plots were mixed
forests with multiple species and varying crown sizes, and the single or fixed window
size is not enough to capture the complex morphology of the forest canopy [47]; secondly,
filtering for the local maximum with square-shaped windows provides a better model
fitting for hardwood species with various crown shapes [26]. The variable window of the
local maximum should be adjusted to an appropriate size that corresponds to the spatial
neighborhood on the CHM image. Generally, the generation of the appropriate window
size for treetop searching is based on the assumption that a relationship exists between the
heights of the trees and their crown sizes [26].

Unlike natural vegetation, street trees and forest stands in subtropical cities like
Shanghai are usually mixed with coniferous, evergreen, and deciduous broadleaved trees
to increase diversity and enhance landscape aesthetics, which challenges the variable
windows generated for the local-maximum filter [47]. This study utilized the tree-height
and crown-size data from the field investigation to generate the appropriate window size
through the following steps: Firstly, the tree-height and tree-crown data were classified
using two-step cluster analysis. Two-step clustering is a machine learning technique that
can automatically divide a given dataset into multiple specific subgroups in which data
in the same subgroup have similar attributes and features [48]. There were a total of
554 individual trees, and they were finally clustered into two groups using their height
and crown-size data obtained from the field investigation. Group I had 329 trees with
heights less than or equal to 12 m; Group II had 225 trees with heights of more than 12 m
(see Table 1).

Table 1. General statistics of the height–crown radius cluster groups of trees in all sample plots.

Group Number Indicator Minimum (m) Maximum (m) Mean (m) S.D. Group

≤12 m 329
Tree height 3.00 12.00 7.95 2.35 3.00

Canopy radius 0.25 5.50 1.96 0.84 0.25

>12 m 225
Tree height 12.00 38.00 20.12 5.42 12.00

Canopy radius 0.88 5.75 2.57 0.95 0.88

Secondly, the relationship between the tree heights and crown sizes for each clustered
group was established using linear or nonlinear fitting, and the optimal fitting model was
the quintic polynomial model when evaluated using the Akaike information criterion (AIC).
The models were used to predict the crown width (y) using the height value (x) from the
CHM (see Table 2). The predicted crown sizes were then used to generate the filtering
window size.

Table 2. Polynomial fitting of crown diameter and tree height for the two groups of sample plots.

Group Fitting Equation R2 AIC

≤12 m y= −2.86598 × 10−4x5 + 8.27 × 10−3x4 − 0.08274 × x3 + 0.32921 × x2 − 0.29568 × x + 0.05897 0.8896
−

72.15

>12 m y= 1.86478 × 10−6x5 − 2.17364 × 10−4x4 + 9.4 × 10−3 × x3 − 0.18446 × x2 + 1.62422 × x − 3.87244 0.5207
−

53.35

Thirdly, to further improve the variable window of the local-maximum algorithm
during the rough-extraction stage in order to find the exact pending treetops, and as many
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as possible, the size of the generated variable window (Svw) above was further limited
using Equation (5):

Svw =


minRadius vw < minRadius

f itting equation minRadius < vw < meanDiameter
meanDiameter vw > meanDiameter

(5)

For the maximum variable window size, the mean value of the crown width was
3.2 m, which was calculated from the field survey data and was chosen as the limit. For the
minimum variable window, the minimum crown width was selected. In addition, elevation
values below 1.5 m were ignored for the local-maximum detection of the CHM to exclude
shrubs, ground cover, and young trees in the forest gaps in urban areas.

2.4.3. Fine Extraction

A larger number of pending treetops are found in the rough-extraction stage, and
these local maxima are determined one by one in the fine-extraction stage to see whether
they should be kept, removed, or merged. Due to the considerable crown variation in
mixed coniferous and broadleaved forests in subtropical urban areas, we used the nor-
malized correlation coefficient method to check the similarity between the crown size of
each of the pending treetops and the crown width in the crown template with the ideal
maximum/minimum values of that tree species. Based on the similarity, we decided
whether to keep the pending treetops or not. Later, we checked the morphology of other
pending treetops in the neighborhood and used the angle-filtering strategy to finalize the
treetop selection.

The crown-profile models were fitted to the largest and smallest canopy species
in the study area (in this study, Cinnamomum camphora and Metasequoia glyptostroboides,
respectively). These 3D models’ highest points corresponded to the pending treetop location
on the CHM, and the height value and window size of the pending treetop were used
to generate canopy templates of the ideal maximum- and minimum-canopy-radius tree
species for that point (Figure 4). Then, the normalized correlation coefficient (NCC) was
calculated by comparing these two types of templates with the canopy-plane image of the
pending treetop [49]:

γ(x, y) =
∑s ∑t[w(s, t)− w̄]∑s ∑t

[
f (x + s, y + t)− f̄xy

]
{

∑s ∑t[w(s, t)− w̄]2∑s ∑t
[

f (x + s, y + t)− f̄xy
]2} 1

2
(6)

where γ(x, y) ∈ [−1, 1] is the NCC matrix of the CHM image; w(s, t) is the plane matrix
made for crown-image mapping to the crown-profile model; f (x + s, y + t) is the plane
matrix of the labeled crown image extracted from the rough-extraction stage for the pending
treetops; and f̄xy is the mean of the entire crown image of the pending treetops.

The two NCCs calculated for each treetop represent the extent to which the morphol-
ogy of that treetop fits the ideal crown morphology within the detection window. The
higher of the two values is chosen as the correlation result, and if the treetop NCC is above
the threshold, then the point is confirmed as the actual treetop. If the treetop NCC is below
the threshold, then the point will be removed.

We searched for other treetops that existed within the window of the filtered treetops,
after which the detected treetops within the window were calculated two by two. We
created a line connecting the two points, found the lowest point presented on the surface
of the canopy on that path, and calculated the angle between the crowns of the pending
treetops. Based on knowledge of crown morphology, two pending treetops may be local
maxima on the same broadleaf tree when the angle is above the threshold. The pending
treetop with the lower NCC is removed, and the spatial position of the treetop with the
higher correlation coefficient will be adjusted. When the angle is below the threshold, the
two treetops can be considered as belonging to two trees.
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Figure 4. Schematic diagram illustrating the use of a crown-profile model to generate a crown-plane
template to calculate normalized correlation coefficients (NCCs). (a) A 3D crown-profile model of
the maximum and minimum canopy tree species in the study area. (b) Crown-plane template of a
specific treetop calculated from (a), with the crown-radius and height-value parameters obtained via
the LMC method in the rough-extraction stage. (c) NCC calculation between the actual tree-crown
image and crown-plane template to quantify the similarity.

2.5. Accuracy Assessment

According to the accuracy assessment methods utilized by previous studies [10,50],
the accuracies of the treetops detected by the LMC were validated using commission
errors (CE), omission errors (OE), the user accuracy (UA), the producer accuracy (PA), the
detection ratio (DET), and the overall accuracy (OA) at the sample-plot scale. A treetop
detected via the LMC algorithm is considered correct if the distance between the detected
treetop and the actual treetop is less than 1/2 of the maximum canopy width. The accuracy
indices were calculated using the following equations:

CE =
Nc

Nv
× 100% (7)

OE =
No

Nv
× 100% (8)

UA = (1−CE) =
(

1− Nc

Nv

)
× 100% (9)

PA = (1−OE) =
(

1− No

Nv

)
× 100% (10)

DET =

(
Nd − Nc

Nd

)
× 100% (11)

OA = 1− |Nd − Nv|
Nv

× 100% (12)

where Nd denotes the number of urban trees identified via the LMC method; Nv denotes
the actual number of trees present on the site; Nc is the number of trees incorrectly marked
via the LMC method; and No is the number of trees not detected via the LMC method. The
CE represents the probability that the real data are misclassified, and the UA represents the
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percentage of correct detections within the ground-truth data after classification. The OE
represents the probability of being missed in the ground-truth data classification, and PA
represents the probability of being detected in the ground-truth data after classification.
The DET represents the probability that the detection is correctly validated against the
ground-truth data. The OA is the ratio of correct detection to the ground-truth data.

For comparison, we also detected treetops using the original local-maximum algorithm
in the R package “ForestTools” [41]. A one-way ANOVA was used to check the differences
between the sample plots with different canopy closures. The accuracies of the estimated
tree heights were assessed via the field investigation data using linear regression and its
R-squared and root-mean-squared error (RMSE) [51].

3. Results
3.1. Treetop Detection and Accuracy Assessment

The accuracy validation data for the LMC algorithm are shown in Table 3. For all the
sample plots, the average overall accuracy (OA) reached 79.3%, the average detection rate
(DET) reached 85.1%, the average user accuracy (UA) was 82.5%, the average producer
accuracy (PA) was 77.8%, and the average commission error (CE) and omission error
(OE) were 17.5% and 22.2%, respectively. The accuracy depends on the canopy closure,
where less canopy closure generally leads to higher accuracy. The accuracy indices for
samples with less canopy closure were relatively higher and their standard deviations were
considerably smaller than those with larger canopy closures, which demonstrates that the
robustness of our algorithm may degrade with an increase in the canopy closure.

Table 3. Accuracy verification of treetop detection in the nine sample plots.

Sample Plot Canopy
Closure

Actual Tree
Number NDT CE (%) OE (%) UA (%) PA (%) DET (%) OA (%)

A 0.5 84 93 13.98 23.66 86.02 76.34 84.52 90.32
B 0.5 28 28 17.86 17.86 82.14 82.14 82.14 100
C 0.5 34 37 13.51 13.51 86.49 86.49 85.29 91.89
D 0.5 153 168 5.36 13.69 94.64 86.31 94.12 91.07

Mean (±SD) 12.68
(±2.55)

17.18
(±7.12)

87.32
(±7.55)

82.82
(±2.12)

86.52
(±6.54)

93.32
(±3.90)

E 1 49 42 26.19 9.52 73.81 90.48 77.55 83.33
F 1 89 121 4.96 31.4 95.04 68.6 93.26 73.55
G 1 65 43 74.42 23.26 25.58 76.74 50.77 48.84
H 1 85 122 0.82 31.15 99.18 68.85 98.82 69.67
I 1 111 171 0.58 35.67 99.42 64.33 99.1 64.91

Mean
(±SD)

21.39
(±31.47)

26.2
(±10.34)

78.61
(±31.47)

73.8
(±10.34)

83.9
(±20.49)

68.06
(±12.70)

OM 17.52 22.19 82.48 77.81 85.06 79.29

Note: NDT: the number of treetops detected using the LMC method. OM: mean accuracy of the algorithm over all
sample plots.

Figure 5 shows the treetop detections using the local-maximum (LM) and LMC algo-
rithms for the nine sample plots with different canopy closures and tree species distribution
patterns. In the sample plots Figure 5A–D, with canopy closures of about 0.5, the LMC
algorithm captured fewer pending treetops than the LM algorithm and resulted in more
accurate treetop detections and a lower CE. The LMC algorithm was robust with lower
standard deviations, and the average OA was 93.3% (±3.9) (see Table 3). In contrast, for
the sample plots Figure 5E–I with canopy closures close to 1, the accuracies of the treetop
detections for both the LM and LMC algorithms were greatly reduced. The average OA
was 68.1% (±12.7). The LMC algorithm could detect fewer broken canopy points located
on the edges of the sample plots than the original LM algorithm. In particular, within the
sample plot labeled ‘G,’ a significant number of European oleander (Nerium oleander)
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trees were present. These trees are characterized by their tendency to grow numerous
branches, leading to a relatively flat canopy area replete with multiple robust branch tops.
This characteristic of oleanders had a noticeable impact on the accuracy indices. Specifically,
the commission-error (CE) value and omission-error (OE) value were found to be 74.4%
and 23.3%, respectively, indicating a notable decrease in accuracy when compared to plots
with less complex canopies. The average CE was 21.4% (±31.5) and the average OE was
26.2% (±10.3) for the sample plots with higher canopy closures.
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Figure 5. Treetops detected in each sample plot. The blue circle represents the treetop position
detected using the original LM algorithm. The cross represents the treetop position detected using
the LMC method. Black points mark the reference treetops positioned via field investigation; grey
circles refer to the extent of tolerance for the positional deviations between the detected treetop and
the actual referenced treetop when the treetop point is not overlapped with the point of the trunk
basal due the fact that the trunk may grow at an angle, or the highest point of the canopy may lie on
a strong branch of the canopy. The size of the sample plots was 40 × 40 m. The stands were mixed
conifer–broadleaf forests in each plot. The canopy density was nearly 0.5 in the plots (A–D), and
approximately 1 in the plots (E–I). Plot G had a lot of Nerium oleander trees with flattened canopies
composed of several strong branches.

3.2. Tree-Height Estimation and Accuracy Evaluation

The tree-height estimates using the LMC algorithm had high accuracy compared with
the field inventory. The R2 of the linear fitting of the estimated tree heights for the sample
plots with lower canopy densities of 0.5 and 1 reached 0.97 and 0.96, respectively (Figure 6).
Compared with the tree-height investigations in the sample plots with canopy densities
(CD) of 0.5, the estimations via the LMC algorithm were overestimated with the tree-height
range from 5.0 to 10.0 m (Figure 6a), and the average RMSE of the tree-height estimation
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was 0.54 m. For the sample plots with CDs close to 1, the overestimation mainly occurred in
tree heights between 12 and 20 m, the lower estimation presented in the tree-height range
of 5–12 m (Figure 6b), and the average RMSE of the tree-height estimation was 0.67 m.
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Figure 6. The scatterplot of tree-height estimation using the LMC algorithm vs. the field-measured
tree height. The graph (a) shows the results of the linear fit of tree heights in sample plots Figure 5A–D
with canopy densities (CDs) of 0.5. The graph (b) shows the results of the linear fit of tree heights in
sample plots Figure 5E–I with CDs close to 1.

4. Discussion
4.1. The Influences of Parameter Settings in the LMC Algorithm

In subtropical urban areas, it is common to find broadleaved species intermixed
with coniferous species in the urban landscape. Given this mixed-species environment,
it becomes essential to consider the impacts of the algorithm parameter settings on the
tree species. Specifically, attention should be given to trees with varying crown radii and
heights during each step of the algorithm’s execution. Our results showed that, in the data
pre-processing step, the optimal parameter setting for the dual Gaussian filter can result in
a desirable smoothing of the height values of the crowns with different spatial distributions
of heights. This goal is well achieved for the canopy areas in the CHM image where a lot
of broadleaved tree species stand with high treetops of their crowns; therefore, a smaller
σd parameter setting is needed to increase the spatial smoothing effect, which can well
suppress the local maxima generated by a number of strong branches within the crown
and, hence, reduce the commission errors. In addition, a smaller σd also can reduce the
variance in the height values, which also helps to increase the local angle on the canopy
and then enhance the filter selection in the next step during the angle detection. For canopy
areas with lower height values where a lot of crown edges of larger trees and small trees are
predominantly located, a smaller σh value can facilitate the suppressing of the smoothing
effect on the crown edges and ensure the angle detection to maintain the external crown
forms of these small trees. For instance, in our study, for the CHM image, when a1 = 0.055
and a2 = 2, and σd = 0.055 and σh = 0.0275, a good combined smoothing effect on the edges
and heights could be achieved.

The aim of our improved LMC method is to obtain as many accurate treetops as
possible during the rough-extraction stage. Our variable window size could well identify
more treetops on the CHM image by clustering the target tree species into groups and
simulating different patterns of crown morphologies of coniferous and broadleaved trees
in subtropical urban areas. The window size was finally adaptively estimated using a
five-order polynomial fitting [47]. To ensure that as many accurate pending treetops as
possible could be obtained, a piecewise function using a minimum and maximum limit was
also useful to generate the variable window size, which benefited the further crown-width
selection during fine extraction.
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In the fine-extraction stage, the CHM data are used to determine whether the tree-
top candidates obtained in the previous stages should be reserved, merged, or removed.
Therefore, it is important to form a more accurate crown template to calculate the exact
correlation values for each pending treetop. The spatial location of the treetop candidates
obtained via the local maximum and the window size in which the point was extracted
were used to generate the canopy-plane template. To distinguish the pattern of the crown
sizes of different urban tree species, a crown-profile template was created for the tree
species with the largest crown sizes (i.e., the Cinnamomum camphora) and for the tree species
with the smallest crown size (i.e., the species Metasequoia glyptostroboides) in the sample
plots, and then the NCC range could be calculated between the crown form of the pending
treetops and the largest and smallest crown templates. As the crown-profile template
produced was a planar form of the entire crown of that tree, direct use of the searching
window size generated in the rough-extraction stage to extract the true crown may have
resulted in underestimation. We tested this by applying 2.25 times the searching window
size for the broadleaved-tree-crown template and 1.2 times the searching window size for
the conifer-tree-crown template, and with an NCC threshold of 0.4, which produced more
robust treetop selection results. It is possible that some of the selected pending treetops
may have still been one of the local maxima within the same large tree crown; therefore,
they needed to be subsequently merged and deleted using an angle-filtering strategy. As
the horizontal distance between two treetops increases, the angle between the two points
and the connected minimum point increases, which indicates that the angle-filtering mech-
anism will not work when the two points are far away from each other. Therefore, we
excluded treetops with horizontal distances between the two points above the average
crown width of 3.2 m and set the angle over 120◦ as the angle-filtering threshold, thereby
reducing the probability of error in merging treetops while ensuring the feasibility of the
angle-filtering strategy.

4.2. Error Analysis

There are several factors that could have affected the accuracy of the treetop detection
using the LMC algorithm. Firstly, some of the trees located at the edges of the sample
plots resulted in broken and incomplete crowns when cutting the CHM image into the
recognition square. These incomplete crowns were detected as potential treetops and
could thus enhance the commission error. Secondly, certain tree species, such as the
European oleander (Nerium oleander) found in sample plot G, exhibit a cespitose branching
pattern, while others, like the camphor tree (Cinnamomum camphora) in sample plot E,
have large crowns with several robust branches. The tops of these branches have only
slight height differences compared to the actual treetops. This subtle difference poses
challenges in distinguishing between them, which can lead to commission errors in the
treetop identification process. Thirdly, errors can occur in the creation of the canopy-height
model (CHM). The CHM is produced by deducting the elevation of roads and lawns in the
digital elevation model (DEM) from the canopy height derived from the point-cloud data
obtained from unmanned-aerial-vehicle (UAV) images. This process may inadvertently
reduce the recorded heights of some young trees that are slightly taller than 1.5 m to less
than 1.5 m. As a result, these trees could be completely omitted in the CHM. This issue is
evident in sample plots F, H, and I, which were utilized as final input data. Consequently,
this leads to what is known as an omission error. Lastly, due to the inherent defect of the
optical sensor of the UAV onboard, some of the smaller and lower trees under the large trees
could not be monitored and therefore could not be detected, resulting in omission error.

In addition, previous studies have demonstrated that the canopy closure and slope
of the study area could influence the accuracy of treetop detection [10,16]. The overall
accuracy of treetop detection is in the range of from 78% to 96.4%, corresponding to canopy
closures of high and low, respectively [10,52], which is similar to our study, with an overall
accuracy range from 68.1% for a high canopy closure of nearly 1.0 to 93.3% for a canopy
closure less than 0.5, but much higher than that of the original LM algorithm with an
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overall accuracy of 61.0%. Our study showed that the canopy closure also influenced
the accuracy. There was a strong correlation between the canopy closure and the overall
accuracy (OA) when examined using the one-way ANOVA method. Table 4 shows that
there is a significant difference between the production accuracy (PA) and OA for the
sample plots with different canopy closures (p < 0.05). This indicates that, for the LMC
algorithm, the canopy closures of the sample plots had a large impact on the omission error,
especially the OAs of the sample plots.

Table 4. Effects of different canopy densities on accuracy of sample-plot verification data.

Statistical Measure NDT Nv UA PA DET OA

F 0.032 0.208 0.292 2.552 0.061 14.055
p-value 0.863 0.662 0.605 0.154 0.813 0.007

F is the statistical measure of the F test. The homogeneity test for each dependent variable had p values > 0.05,
which satisfied the homogeneity of variance.

In comparison to other studies that utilize UAV-derived CHMs for individual treetop
detection, our improved local-maximum correlation (LMC) algorithm demonstrates im-
proved accuracy. For instance, when applying the LM algorithm to primeval temperate
forests in Mazandaran Province, Iran, Ahmadi et al. achieved a tree detection accuracy
of only 0.60 [53], which is significantly lower than our accuracy of 0.793. Similarly, re-
search conducted in Valongo, Porto, Portugal, employing UAV Structure-from-Motion
(SfM) technology to generate point clouds, yielded an 80% detection accuracy [54], which
is similar to our accuracy. But our accuracy is lower than that of another study conducted
in the Roda River catchment, Jena, Germany, in which the detection rate and commission
error reached 93.2% and 10.7%, respectively [55], and of that of the study conducted in a
private forest at Cache Creek located in eastern Jackson city in Wyoming, USA, in which
the accuracy was more than 85% [28]. The tree detection accuracy is largely dependent
on the complex canopy structure and tree species diversity. The mean overall accuracy of
our LMC algorithm reached 79.3% and could be considerably acceptable. Therefore, our
LMC algorithm is capable of accurately detecting individual trees, even in situations in
which the tree crowns are heavily overlapped, or when forest stands exhibit dense canopy
cover. It would be valuable to conduct additional studies to assess the applicability of this
improved LMC algorithm in different places in diverse locations and cities.

5. Conclusions

This research enhances the traditional local-maximum algorithm with several opti-
mization strategies aimed at improving the analysis of canopy-height models derived from
UAV imagery for urban forests in subtropical regions, such as Shanghai. During data
pre-processing, we employed dual Gaussian filtering to refine the canopy-height model.
For the rough-extraction phase, we utilized a clustering method to optimize the generation
of the variable window. In the final fine-extraction stage, the local normalized correlation
coefficient was used to construct a crown-plane model, aiding in the detection of treetops
and tree heights.

The improved local-maximum algorithm demonstrated notable success in treetop
detection, with an average user accuracy of 87.3% for lower-density urban forests and
78.6% for high-density urban forests. In addition, the algorithm’s tree-height estimation
closely aligned with the ground-truth tree-height measurements, evidenced by an R2 value
exceeding 0.96 and an average root-mean-square error (RMSE) of 0.61 m across urban
forests with varying canopy closures.

The enhanced algorithm outperforms the original local-maximum approach in treetop
detection for subtropical urban areas. It shows particular promise for the mapping of
subtropical mixed coniferous–broadleaf urban forests, reinforcing its utility in improving
urban-forest-mapping accuracy.



Remote Sens. 2023, 15, 3779 15 of 17

Author Contributions: Conceptualization, J.L. and C.W.; methodology, H.W. and Y.C.; software,
H.W. and C.M.; validation, H.W. and M.Z.; formal analysis, H.W. and M.Z.; investigation, M.Z., C.W.,
L.O., Y.L. and Y.S.; resources, J.L. and C.M.; data curation, H.W. and M.Z.; writing—original draft
preparation, H.W., C.W. and J.L.; writing—review and editing, J.L., C.W. and T.Q.; visualization,
H.W.; supervision, J.L. and C.W.; project administration, J.L. and C.W.; funding acquisition, J.L., C.W.
and Y.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported partially by the National Key R&D Program of China (Grant
No. 2022YFF1301105), the National Natural Science Foundation of China (No. 31870453) to J.L. and
the National Natural Science Foundation of China (No. 32001162) and China Postdoctoral Science
Foundation (No. 2021M702131) to C.W., and the project from Baosteel Co., Ltd. to Y.T. and J.L.

Data Availability Statement: The data presented in this study are available on request from the author.

Acknowledgments: We are grateful to Jingyao IT Co., Ltd. and Baosteel Co., Ltd. for their assistance
with the UAV survey and sample-plot field investigation, respectively.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across

cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [CrossRef]
2. Yao, J.; Liu, M.; Chen, N.; Wang, X.; He, X.; Hu, Y.; Wang, X.; Chen, W. Quantitative assessment of demand and supply of urban

ecosystem services in different seasons: A case study on air purification in a temperate city. Landsc. Ecol. 2021, 36, 1971–1986.
[CrossRef]

3. Bhattacharjee, K.; Behera, B. Does forest cover help prevent flood damage? Empirical evidence from India. Glob. Environ. Chang.
2018, 53, 78–89. [CrossRef]

4. Wehner, J.; Mittelbach, M.; Rillig, M.C.; Verbruggen, E. Specialist nectar-yeasts decline with urbanization in Berlin. Sci. Rep. 2017,
7, 45315. [CrossRef] [PubMed]

5. Schwaab, J.; Meier, R.; Mussetti, G.; Seneviratne, S.; Bürgi, C.; Davin, E.L. The role of urban trees in reducing land surface
temperatures in European cities. Nat. Commun. 2021, 12, 6763. [CrossRef] [PubMed]

6. Chen, M.; Huang, S.; Chen, Z.; Xing, Y.; Xing, F.; Leong, K.; Yang, Y.; Qiu, Y.; Qin, X. Species characteristics and cultural value of
stone wall trees in the urban area of Macao. Sci. Rep. 2022, 12, 1562. [CrossRef]

7. Fardusi, M.J.; Chianucci, F.; Barbati, A. Concept to Practice of Geospatial-Information Tools to Assist Forest Management and
Planning under Precision Forestry Framework: A review. Ann. Silvic. Res. 2017, 41, 3–14. [CrossRef]

8. Lin, J.; Wang, Q.; Li, X. Socioeconomic and spatial inequalities of street tree abundance, species diversity, and size structure in
New York City. Landsc. Urban Plan. 2021, 206, 103992. [CrossRef]

9. Davis, A.Y.; Jung, J.; Pijanowski, B.C.; Minor, E.S. Combined vegetation volume and “greenness” affect urban air temperature.
Appl. Geogr. 2016, 71, 106–114. [CrossRef]

10. Chen, S.; Liang, D.; Ying, B.; Zhu, W.; Zhou, G.; Wang, Y. Assessment of an improved individual tree detection method based on
local-maximum algorithm from unmanned aerial vehicle RGB imagery in overlapping canopy mountain forests. Int. J. Remote
Sens. 2021, 42, 106–125. [CrossRef]

11. Hao, Y.; Widagdo, F.R.A.; Liu, X.; Quan, Y.; Dong, L.; Li, F. Individual Tree Diameter Estimation in Small-Scale Forest Inventory
Using UAV Laser Scanning. Remote Sens. 2021, 13, 24. [CrossRef]

12. Qiu, T.; Aravena, M.-C.; Andrus, R.; Ascoli, D.; Bergeron, Y.; Berretti, R.; Bogdziewicz, M.; Boivin, T.; Bonal, R.; Caignard, T.; et al.
Is there tree senescence? The fecundity evidence. Proc. Natl. Acad. Sci. USA 2021, 118, e2106130118. [CrossRef] [PubMed]

13. Yang, H.; Chen, W.; Qian, T.; Shen, D.; Wang, J. The extraction of vegetation points from LiDAR using 3D fractal dimension
analyses. Remote Sens. 2015, 7, 10815–10831. [CrossRef]

14. Matese, A. Recent Advances in Unmanned Aerial Vehicles Forest Remote Sensing—A Systematic Review. Part II: Research
Applications. Forests 2021, 12, 397. [CrossRef]

15. Puliti, S.; Dash, J.P.; Watt, M.S.; Breidenbach, J.; Pearse, G.D. A comparison of UAV laser scanning, photogrammetry and airborne
laser scanning for precision inventory of small-forest properties. For. Int. J. For. Res. 2020, 93, 150–162. [CrossRef]
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