

Hydrogen Bonding in Platinum Indolylphosphine Polyfluorido and Fluorido Complexes

Stefan Sander,^[a] Elizabeth J. Cosgrove,^[a] Robert Müller,^[b] Martin Kaupp,^{*[b]} and Thomas Braun^{*[a]}

Abstract: The reaction of the Pt complexes *cis*-[Pt(CH₃)(Ar)-{Ph₂P(Ind)}₂] (Ind = 2-(3-methyl)indolyl, Ar = 4-tBuC₆H₄ (1 a), 4-CH₃C₆H₄ (1 b), Ph (1 c), 4-FC₆H₄ (1 d), 4-CIC₆H₄ (1 e), 4-CF₃C₆H₄ (1 f)) with HF afforded the polyfluorido complexes *trans*-[Pt(F(HF)₂)(Ar){Ph₂P(Ind)}₂] 2a-f, which can be converted into the fluoride derivatives *trans*-[Pt(F)(Ar){Ph₂P(Ind)}₂] (3a-f) by treatment with CsF. The compounds 2a-f and 3a-f were characterised thoroughly by multinuclear NMR spectroscopy. The data reveal hydrogen bonding of the fluorido ligand with HF molecules and the indolylphosphine ligand. Polyfluorido complexes 2a-f show larger |¹J(F,Pt)|, but lower ¹J(H,F)

Introduction

In the last two decades fluorido complexes of late transition metals attracted an increasing interest,^[1] in part due to their ability to establish novel routes for metal-mediated fluorination,^[1h,i],r,2] but they can also play a distinct role in C–F and C–H bond activation reactions.^[1],n,3] Initial studies on the synthesis of Pt(II) fluorido complexes were reported in the early 1970's.^[1a,4] They then came back into focus at the begin of the millennium.^[1d,e,5] Strategies reported for the formation of platinum fluorido complexes include Cl/F exchange reactions with AgF,^[1d,e,5] fluorination with XeF₂^[5d,i] as well as with NFSI or Selectfluor,^[Sm,n] C–F,^[Sb,c, f] P–F^[Sk] or S–F^[1p,6] bond activation reactions, and conversions involving hydrogen fluoride.^[4a,5a,g,7] The potential of transition metal fluorido complexes to act as

[a] S. Sander, E. J. Cosgrove, Prof. Dr. T. Braun Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2, 12489 Berlin (Germany) E-mail: thomas.braun@cms.hu-berlin.de Homepage: https://www2.hu-berlin.de/chemie/braun
[b] Dr. R. Müller, Prof. Dr. M. Kaupp

Institut für Chemie Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7 Straße des 17. Juni 135, 10623 Berlin (Germany) E-mail: martin.kaupp@tu-berlin.de Homepage: https://www.quantenchemie.tu-berlin.de

- Supporting information for this article is available on the WWW under https://doi.org/10.1002/chem.202202768
- © 2022 The Authors. Chemistry A European Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

coupling constants when compared to the fluorido complexes **3a-f**. Decreasing ¹J(P,Pt) coupling constants in **2a-f** and **3a-f** suggest a *cis* influence of the aryl ligands in the following order: 4-tBuC₆H₄ (**a**) \approx 4-CH₃C₆H₄ (**b**) <Ph (**c**) \ll 4-FC₆H₄ (**d**) <4-ClC₆H₄ (**e**) <4-CF₃C₆H₄ (**f**). In addition, the larger *cis* influence of aryl ligands bearing electron-withdrawing groups in the *para* position correlates with decreasing magnitudes of $|^{1}J(F,Pt)|$ coupling constants. The interpretation of the experimental data was supported by quantum-chemical DFT calculations.

hydrogen bond acceptors^[1k,8] is of certain interest to control reactivity, for example by modulating the effective nucleophilicity of the fluoride through lowering its basicity,^[9] or by stabilisation of the fluoride in the outer ligand-sphere.^[7,10] A familiar route for the generation of bifluorido and polyfluorido complexes showing intermolecular hydrogen bonding to the fluorido ligand consists of the utilisation of hydrogen fluoride as potential hydrogen bond donor molecule.[1m,5a,11] Furthermore, several examples of complexes were described, where functional ligands - bearing NH or OH groups - form intramolecular hydrogen bonds to fluorido ligands in the outer ligand-sphere. Recently, we reported on Pt(II) (poly-)fluorido complexes featuring 2-(3-methyl)indolyl substituted phosphines as cooperating ligands, which stabilise (poly)fluorides by intramolecular hydrogen bonding in the outer ligand sphere.^[7] The hydrogen bonds of NH groups to the fluorido ligand provided unprecedented reactivities.^[12]

Most notably, the strength of a metal-ligand bond is affected by the *trans influence* of the *trans* coordinated ligand. For platinum complexes there is a well described correlation between Pt–P bond lengths and ¹J(P,Pt) coupling constants^[13] that enabled the early estimation of a ligand's *trans-influence*.^[13b,14] However, recent studies of complexes of the type *trans*-[Pt(X)(Y)(PPh₃)₂] also emphasised the presence of a non-negligible *cis-influence*, i.e. a weakening of the Pt–P bonds in the *cis* positions.^[15]

Herein, we report on the formation of the platinum fluorido complexes *trans*-[Pt(F)(Ar){Ph₂P(Ind)}₂] (**3 a-f**) (Ar = 4-*t*BuC₆H₄ (**3 a**), 4-CH₃C₆H₄ (**3 b**), Ph (**3 c**), 4-FC₆H₄ (**3 d**), 4-CIC₆H₄ (**3 e**), 4-CF₃C₆H₄ (**3 f**), Ind = 2-(3-methyl)indolyl) bearing indolylphosphine ligands as well as aryl ligands, which differ by their substitution pattern at the *para* position. The complexes were studied thoroughly by multinuclear NMR and IR-spectroscopy

as well as by single crystal X-ray diffraction. NMR data revealed a notable influence of the various aryl ligands on the ¹J(P,Pt) coupling constants, which show a correlation with the $|^{1}J(F,Pt)|$ coupling constants as well as with the chemical shifts for the indolyl NH proton and the fluorido ligand in the ¹H, ¹⁹F and¹H/¹⁵N HMBC NMR spectra.

Results and Discussion

The Pt(II) methyl aryl complexes *cis*-[Pt(CH₃)(Ar){Ph₂P(Ind)}₂] (Ar = 4-*t*BuC₆H₄ (**1a**), 4-CH₃C₆H₄ (**1b**), Ph (**1c**), 4-FC₆H₄ (**1d**), 4-ClC₆H₄ (**1e**), 4-CF₃C₆H₄ (**1f**)) were synthesised by reactions of [Pt(Ar)(CH₃)(COD)] (Ar = 4-*t*BuC₆H₄, 4-CH₃C₆H₄, ^[16] Ph,^[17] 4-FC₆H₄,^[18] 4-ClC₆H₄, 4-CF₃C₆H₄) with two equivalents of diphenyl-2-(3-methyl)indolylphosphine (Ph₂P(Ind)) (Scheme 1). The 1,5-cyclooctadiene platinum (II) precursor complexes were formed by treating [Pt(Cl)(CH₃)(COD)]^[19] (COD = 1,5-cyclooctadiene) with the appropriate aryl Grignard reagents in THF at 0 °C. Complexes **1a-f** were characterised by ¹H NMR, ³¹P{¹H} NMR as well as IR spectroscopy, and selected NMR and IR data are listed in Table 1.

The ATR IR spectra of **1a-f** each exhibit two mediumintensity absorption bands between $3444-3449 \text{ cm}^{-1}$ and $3361-3370 \text{ cm}^{-1}$, respectively, which can be assigned to the N–H stretch of the indolyl groups. Each complex exhibits one broadened and red shifted absorption band, compared to the absorption band of the free phosphine ligand precursor

Scheme 1. Syntheses of platinum methyl aryl complexes 1 a–f.

Table 1. Selected NMR and IR data of complexes 1 a-f.								
Complex	¹ Η NMR δ(N <i>H</i>) [ppm]	δ (Pt-C H_3) [ppm]	²J(H,Pt) [Hz]	³¹ Ρ{ ¹ Η} δ [ppm]	NMR ^[a] ¹ J(P,Pt) [Hz]	IR data \tilde{v} (N–H) [cm ⁻¹]		
1a	9.02 8.52	0.49	68	9.3 9.1	1594 1898	3445 3365		
1b	8.88 8.44	0.50	68	9.4 8.6	1615 1888	3449 3370		
1c	8.99 8.51	0.51	68	9.1 9.1	1607 1891	3444 3363		
1d	8.93 8.50	0.51	67	9.1 9.0	1664 1867	3448 3366		
1e	8.90 8.47	0.49	67	9.0 8.8	1670 1870	3444 3368		
1f	8.99 8.46	0.51	67	9.1 8.8	1669 1876	3444 3361		
[a] all spectra were recorded using CD_2CI_2 as solvent.								

Chem. Eur. J. 2023, 29, e202202768 (2 of 11)

(3445 cm⁻¹), which indicates hydrogen bonding in the solid state.^[20] The ¹H NMR spectra of **1a-f** display two signals for the NH protons of the indolyl moiety between 9.03-8.88 and 8.44-8.52 ppm. Both, the IR and ¹H NMR data for the indolyl NHgroup resemble data reported for similar Pt(II) dimethyl indolylphosphine complexes.^[12] For the platinum bound methyl ligand a multiplet with $^{\rm 195}{\rm Pt}$ satellites was observed at $\delta\!=\!0.49\text{--}$ 0.52 ppm with ²J(H,Pt) coupling constants of 67-68 Hz, which are typical values for platinum methyl complexes.^[21] The ³¹P{¹H} NMR spectra of 1a, 1b and 1d-f exhibit two doublets with ¹⁹⁵Pt satellites revealing ${}^{2}J(P,P)$ coupling constants < 15 Hz, which are characteristic for phosphorus nuclei in a mutually cis position.^[22] For complex 1c, two overlapping signals with ¹⁹⁵Pt satellites were detected at $\delta = 9.1 \text{ ppm}$. However the ¹⁹⁵Pt satellites clearly showed ²J(P,P) coupling constants of 9.9 Hz. For all complexes, ¹J(P,Pt) coupling constants between 1594–1669 Hz and 1867-1899 Hz were observed, which are typical values for a phosphorus nuclei in the trans position to an aryl or a methyl ligand, respectively.^[21,23] Note, that for the Pt-P bond trans to the aryl ligand complexes, 1a-c exhibit lower ¹J(P,Pt) coupling constants than 1d-f, which is consistent with a larger trans influence of the more electron rich $tBuC_6H_4$, $CH_3C_6H_4$ and Ph ligands compared to the 4-FC₆H₄, 4-ClC₆H₄ and 4-CF₃C₆H₄ ligands featuring electron withdrawing para substituents.^{[13b,14a, b,} 23d, 24]

Furthermore, the molecular structures of cis-[Pt(CH₃)(4-FC₆H₄){Ph₂P(Ind)}₂] (1 d) and cis-[Pt(CH₃)(4-ClC₆H₄){Ph₂P(Ind)}₂] (1 e) were determined by single-crystal X-ray diffraction analysis. Colourless crystals of 1 d and 1 e were obtained by slow evaporation of a concentrated solution in CH₂Cl₂ at room temperature. Selected bond lengths and angles are listed in the captions of Figure 1. For 1 d the asymmetric unit contains two independent molecules, which show only minor differences of the bond lengths and angles. Therefore, only the structure of one molecule will be discussed.

Figure 1. Molecular structure of *cis*-[Pt(CH₃)(4-FC₆H₄){Ph₂P(Ind)}₂] (**1 d**) (left) and *cis*-[Pt(CH₃)(4-Clc₆H₄){Ph₂P(Ind)}₂] (**1 e**) (right). Thermal ellipsoids are drawn at 50% probability level, the intermolecular hydrogen bond is depicted as a magenta dashed line. The second molecular structure of **1 d**, the solvent molecule and carbon bound hydrogen atoms were omitted for clarity. Selected bond lengths, distances [Å] and bond angles [°] of **1 d**: Pt1-P1 2.3022(7), Pt1-P2 2.3255(7), Pt1-C43 2.113(3), Pt1-C44 2.055(3), P1-Pt1-P2 96.09(2), C43-Pt1-C44 84.90(11), P1-Pt1-C44 91.85(7), P2-Pt1-C43 87.44(8). Selected bond lengths, distances [Å] and bond angles [°] of **1 e**: Pt1-P1 2.3105(8), Pt1-P2 2.3208(8), Pt1-C43 2.109(3), Pt1-C44 2.044(3), P1-Pt1-P2 102.82(3), C43-Pt1-C44 82.65(12), P1-Pt1-C44 88.78(8), P2-Pt1-C43 85.55(9).

Both complexes, 1d and 1e, possess a slightly distorted square-planar coordination geometry of the two phosphines, the aryl and methyl ligands bound to Pt. They exhibit P1-Pt1 – P2 bond angles of 96.09(2) and 102.82(3), while the C43 – Pt1-C44 bond angle between the methyl and aryl ligand are smaller with values of 84.90(11) and 82.65(12), respectively. For each complex the Pt1-P1 bond length in a trans position to the methyl ligand is slightly shorter (2.3022(7) for 1d, 2.3105(8) for 1e) compared to the Pt1-P2 bond length that is located trans to the aryl ligand (2.3255(7) (1d), 2.3208(8) (1e)). The Pt1-P1, Pt1-P2 and the platinum methyl Pt1-C43 bond lengths (2.113(3) (1 d), 2.109(3) (1 e)) as well as the platinum aryl Pt1 – C44 bond length (2.055(3) (1 d), 2.044(3) (1 e)) are in good accordance with the literature.^[21b,23b,25] Additionally, both structures exhibit intramolecular hydrogen bonding from one NH group of an 2-(3-methyl)indolyl moiety to the nitrogen atom of the second indolyl unit.

Recently, it has been reported that protonolysis of platinum dimethyl complexes bearing indolyl substituted phosphine ligands with HF sources led to the formation of the Pt(II) methyl (poly-)fluorido complexes *trans*-[Pt(F·(HF)₂)(CH₃){R₂P(Ind)}₂]. The fluorido derivatives *trans*-[Pt(F)(CH₃){R₂P(Ind)}₂] were generated by subsequently removing the pendant HF with CsF as a base (R = Ph, 4-FC₆H₄, 4-CF₃C₆H₄).^[12]

Scheme 2. Formation of platinum (poly)fluorido complexes 2 a-f and 3 a-f.

Intrigued by these results we investigated whether protonolysis of the methyl ligand is also feasible for the Pt(II) methyl aryl complexes 1a-f. Indeed, when solutions of 1a-f in dichloromethane were treated with an excess HF on using poly[4-vinylpyridinium poly(hydrogen fluoride)] (PVPHF; 38-42 wt% HF) as HF source, an immediate gas evolution was observed. NMR spectroscopic investigations revealed the formation of the platinum (poly)fluorido complexes trans-[Pt- $(F \cdot (HF)_2)(Ar) \{Ph_2P(Ind)\}_2$ **2a-f** as the main products. However, cleavage of the Pt-Ar bond was also observed and therefore trans-[Pt(F(HF)₂)(CH₃){Ph₂P(Ind)}₂]^[12] was detected as minor product. Although the amount of the latter varied, the largest amount of the Pt fluorido methyl complexes was determined to be 20% (based on signal integration from the ³¹P{¹H} NMR spectrum) (Scheme 2). The amount of pendant HF at 2a-f was determined by treatment of the reaction solutions with Et₃SiCl to yield Et₃SiF, the amount of which was determined by integration in the ¹⁹F NMR spectra. When the reaction solutions of the polyfluorido complexes were stirred over anhydrous CsF for five minutes, the fluorido complexes trans-[Pt(F)(Ar){Ph₂P-(Ind)₂] **3a**-**f** (major) as well as *trans*-[Pt(F)(CH₃){Ph₂P(Ind)}₂] (minor) were obtained (Scheme 2).

The fluorido complexes **3 a**–**f** were characterised thoroughly by ¹H, ¹⁹F, ³¹P{¹H} NMR as well as ¹H/¹⁵N HMBC NMR spectroscopy. For the polyfluorido complexes **2 a**–**f** broad signals were observed at room temperature and therefore ¹H, ¹⁹F and ³¹P{¹H} NMR were measured at -30 °C. Selected NMR data are listed in Table 2.

The ¹H NMR spectra of **3 a**–**f** each exhibit a downfield shifted doublet signal at $\delta = 12.93-12.76$ ppm, which can be assigned to the NH proton of the indolyl moieties. The NH groups undergo hydrogen bonding to the fluorido ligand, which is in accordance with the downfield shift, but is also revealed by the ¹J(H,F) coupling constants of 48–50 Hz.^[7,12] The signals collapse into singlets in the corresponding ¹H[¹⁹F] NMR spectra. Additional data for **3 a**–**f** were obtained from ¹H/¹⁵N HMBC NMR spectra. The ²J(N,F) coupling constants decrease slightly from 34 Hz for **3 a** to 31 Hz for **3 f**. The values are characteristic for a ¹⁵N-¹⁹F spin-spin coupling across a NH…F hydrogen bond,^[26] while the ¹⁵N chemical shifts as well as the ¹J(N,H) coupling constants are typical for indoles.^[27]

Table 2. Selected NMR data for the fluorido complexes 3 a-f ^[a] and polyfluorido complexes 2 a-f. ^[a,b]										
	¹ H NMR ^[a] ¹⁹ F NMR ^[a]		¹ H/ ¹⁵ N HMBC NMR ^[c]			³¹ P{ ¹ H} NMR ^[a]				
complex	δ (NH) [ppm]	¹ J(H,F) [Hz]	δ (Pt-F) [ppm]	¹ <i>J</i> (F,Pt) [Hz]	δ (NH) [ppm]	¹ <i>J</i> (N,H) [Hz]	² J(N,F) [Hz]	δ [ppm]	¹ <i>J</i> (P,Pt) [Hz]	² J(P,F) [Hz]
3a	12.93 11.79	50	-273.6	567	-238	97	34	5.8	3176	13.1
2a		38	-267.7	639	-	-	-	7.1	3164	13.4
3b	12.91 11.84	50	-274.0	564	-238	97	34	5.1	3172	13.0
2b		40	-269.8	626	-	-	-	6.2	3156	13.8
3c	12.88 11.87	50	-275.2	559	-238	97	33	5.5	3162	13.7
2 c		40	-270.0	620	-	-	-	6.7	3149	14.2
3 d	12.80 12.01	49	-278.3	521	-239	97	33	5.1	3112	13.6
2d		41	-274.3	583	-	-	-	6.0	3099	13.3
3e	12.76 12.05	49	-278.7	519	-239	97	32	4.9	3103	13.7
2e		42	-275.1	570	-	-	-	5.6	3091	13.4
3f	12.71 11.92	48	-280.0	515	-239	97	31	5.5	3090	13.5
2f		40	-275.9	569	-	-	-	6.3	3080	13.7
[a] all spectra were recorded using CD ₂ Cl ₂ as solvent. [b] all spectra were recorded at 243 K.										

Chem. Eur. J. 2023, 29, e202202768 (3 of 11)

The ¹⁹F NMR spectra of **3a-f** revealed a triplet of triplets with ¹⁹⁵Pt satellites for the fluorido ligands due to coupling with the N*H* protons and the two phosphorus nuclei (Figure 2, top). The observed chemical shifts between δ =-267.7 ppm – -280.0 ppm and the ²J(F,P) coupling constants of 13–14 Hz are typical values for Pt fluorido complexes bearing phosphine ligands in a *cis* position.^[1e,p,4c,5a,c,f,h,j,k, 6–7,28] The observed |¹J(F,Pt)| coupling constants (567-517 Hz) have comparable values to those reported for the fluorido complexes *trans*[-Pt(F)(CH₃){R₂P-(Ind)}₂] (R=Ph, 4-FC₆H₄, 4-CF₃C₆H₄).^[12]

For the polyfluorido complexes **2a–f** the ¹*J*(H,F) coupling constants to the indolyl moiety show smaller values (38–42 Hz) and the chemical shifts of the N*H* protons appear at higher field between δ = 11.79-12.05 ppm when the data are compared to those of **3a–f**. These observations are consistent with those for comparable Pt(II) (poly)fluorido complexes.^[12]

Note that for **2a–f** only broad signals with ¹⁹⁵Pt satellites were detected in the ¹⁹F NMR spectra at -30 °C and cooling to -70 °C or -90 °C did not resolve any additional coupling (Figure 2, bottom). The absolute values of the (negative, see below) |¹J(F,Pt)| coupling constants in the polyfluorido complexes **2a–f** are larger (639–569 Hz) when compared to these for the fluorido complexes **3a–f** (515-567 Hz). An increase of the absolute values of the |¹J(F,Pt)| coupling constants upon coordination of HF was also observed for the fluorido complexes *cis*-[Pt(F){ κ^2 -(*P*,*N*)-*i*Pr₂*P*(C₉H₇*N*)}*i*Pr₂P(Ind)}]^[7] and *trans*[Pt-(F)(CH₃){R₂*P*(Ind)}₂] (R=Ph, 4-FC₆H₄, 4-CF₃C₆H₄).^[12]

The ³¹P{¹H} NMR spectra of **3a**–f and **2a**–f each disclose a doublet with ¹⁹⁵Pt satellites, due to coupling of the two phosphorus nuclei to the fluorido ligand. The ¹J(P,Pt) coupling constants of **3a**–f and **2a**–f reveal typical values for Pt(II) complexes bearing a carbon bound σ -donor ligand and two phosphine ligands in a mutually *trans* coordination.^[12,24, 29]

The IR spectra of the fluorido complexes 2a-f and 3a-f featured broad absorption bands below 3100 cm^{-1} , which can be assigned to the N–H…F moieties. Note, that absorptions of N-H hydrogen bonded fluorides have been reported in a region between $3000-3150 \text{ cm}^{-1}$.^[30] However, due to overlapping with C–H absorption bands, no distinct band maxima could be

Figure 2. Sections of the ¹⁹F NMR NMR spectra of **2a** (bottom) and **3a** (top), revealing coupling constants of $|^{1}J(F,Pt)| = 639$ Hz for **2a** and $^{1}J(F,H) = 50$ Hz, $^{2}J(F,P) = 13$ Hz, $|^{1}J(F,Pt)| = 567$ Hz for **3a**.

Chem. Eur. J. 2023, 29, e202202768 (4 of 11)

determined. For **2a–f** broad features were detected in the regions of 2700-2500 cm⁻¹ and at around 1800 cm⁻¹, which are typical bands for polyfluoride moieties.^[30–31]

Overall, the NMR data of the complexes 2a-f and 3a-f reveal several interesting trends. The ¹J(P,Pt) coupling constants decrease continuously in the series from 2a to 2f as well as 3a to 3f from 3164 Hz to 3080 Hz and 3176 Hz to 3090 Hz, respectively. As only the substituent in the para-position of the aryl ligand differs, this corresponds to a larger cis-influence of the aryl ligands featuring electron withdrawing substituents, weakening somewhat the Pt-P bonds.[15,32] Indeed, analysis of the DFT optimised structures for 2a-f and 3a-f reveals a successive lengthening of the average Pt-P bonds with increasing electronegativity of the substituent in the paraposition of the aryl ligand. The computed ¹J(P,Pt) couplings for 3a-f (Tables S3, S4 in Supporting Information) do not show an as clear trend, but with (at least) one HF molecule hydrogenbonded to the fluoride, the distinction between electrondonating substituents (3a-3c) and electron-withdrawing ones (3d-3f) becomes clearer, as it does for 2a-2f (Tables S3, S4), i.e. with two HF molecules present. Similar to the effect of HF coordination, explicit hydrogen-bonding by two CH₂Cl₂ solvent molecules leads to an increase of the ¹J(P,Pt) couplings, although to a lesser extent (excluding 3a·(CH₂Cl₂)₂ from the analysis). Overall, the cis influence of the aryl ligands follows the order: $4-tBuC_6H_4$ (a) $\approx 4-CH_3C_6H_4$ (b) < Ph (c) $\ll 4-FC_6H_4$ (d) $< 4-FC_$ CIC_6H_4 (e) < 4-CF₃C₆H₄ (f). This trend is inverse to the *trans* influence of the aryl ligands observed for 1a-f, which is also consistent with the literature.^[15,32]

Furthermore, the N*H* chemical shift in the ¹H NMR spectra as well as ¹*J*(H,F) coupling constants suggest a weakening of the N*H*···F hydrogen bond by additional fluoride bound HF molecules in the polyfluorido complexes **2a–f**. However, the absolute values of $|^{1}J(F,Pt)|$ coupling constants are larger for the polyfluorido complexes **2a–f** than for the fluorido complexes **3a–f**. In addition, decreasing ¹*J*(P,Pt) coupling constants for the sequences **2a** to **2f** as well as for **3a** to **3f** correlate with high-frequency shifts of the signal for the fluorido ligand and smaller $|^{1}J(F,Pt)|$ coupling constant in the ¹⁹F NMR spectra; i.e. more electronegative aryl ligands show smaller $|^{1}J(F,Pt)|$ couplings.

For the |¹J(F,Pt)| coupling constants of the fluorido complexes 3a-f it is important to note that the computations show them to have negative signs (Table S3, S4). This is consistent with the smaller fluorine s-character in the F-Pt bond compared to phosphorus and similar to, for example, ¹J(C-F) couplings.^[34] As for the $|^{1}J(F,Pt)|$ coupling constants, the computations give overall negative couplings at the given BHLYP DFT level, even more so when including two CH₂Cl₂ solvent molecules hydrogen-bonded to the platinum-bound fluorine. Assuming a negative sign, the experimental data indicate less negative ¹J(F,Pt) values in the series **3a** (-567 Hz) to **3f** (-515 Hz). Again, the calculations on non-solvated 3a-3f do not capture the trend correctly, while computations with explicit microsolvation by two CH₂Cl₂ molecules distinguish between more negative couplings for 3a-3c and less negative ones for 3d-3f (Tables S3, S4). However, then the absolute values are over-

estimated, even more when for 2a-2f (Tables S3, S4). Therefore, we have to assume that the systematic DFT error can be about -200 Hz to -300 Hz. Computationally, the trans influence is clearly to some extent coupled to all the inter- and intramolecular hydrogen bonds present, rendering NMR analyses more complex. One complication for 3a-3f is obviously due to charge-assisted CH-F hydrogen bonds to the CH₂Cl₂ solvent (see above). Some of us have recently analyzed such interactions in detail using similar microsolvated cluster models^[35] and found them to be substantial whenever NPA charges that are more negative than -0.6 on fluorine are present. This is clearly the case for the platinum fluorides studied here (Tables S1, S2). The various hydrogen-bonding interactions likely also prevent a more accurate representation of the subtle substituent effects for the present systems. In the case of 2a-2f our modelling includes two explicit HF molecules (Tables S3, S4). In solution we have to expect, however, that these HF molecules are also microsolvated by CH--F hydrogen bonding with CH₂Cl₂, generating further complications.

Overall, more hydrogen bonding to the Pt-bound fluoride, either by HF or by the CH_2CI_2 solvent, clearly provides more negative $|{}^1J(F,Pt)|$ couplings, even though the magnitudes are not easy to reproduce computationally. This is consistent with experimental observations for the fluorido methyl complex *trans*-[Pt(F)(CH₃)(Ph₃P)₂], which does not exhibit any hydrogen bonding to the fluorido ligand and which exhibits a $|{}^1J(F,Pt)|$ coupling constant of 361 Hz that is lowered by 150–200 Hz compared to **3a–f**. On the other hand, the methyl fluorido complex *trans*-[Pt(F)(CH₃){Ph₂P(Ind)}₂], featuring hydrogen bonding from indolylphosphine ligands to the fluorido ligand, exhibits a $|{}^1J(F,Pt)|$ coupling constant of 546 Hz that is comparable with those found for **3a–f**.^[12,36]

Furthermore, the molecular structures of **3 a**, **3 c** and **3 d** were determined by single crystal X-ray diffraction (Figure 3, Table 3). In all cases electron density which could be assigned to nitrogen bound hydrogen atoms were found in the difference Fourier map and a free refinement was allowed. For complex **3 d**, the molecule is located on a mirror plane and the

asymmetric unit consists only of one half of the molecule. All structures reveal a slightly distorted square-planar coordination of the ligands, with the two phosphine ligands in a mutually *trans* position, exhibiting hydrogen bonds from their indolyl NH groups to the fluorido ligand. The Pt – P bond lengths of **3a** (2.3124(4), 2.3220(4) Å) and **3c** (2.3118(5), 2.3188(6) Å) are slightly shorter than those of **3d** (2.3254(7) Å), which is in accordance with the trend of the observed ¹J(P,Pt) coupling constants.^[13d] Generally, all Pt–P bond lengths are in accordance with similar data for Pt(II) fluorido complexes reported previously.^[1d,12]

The Pt-F bond lengths of 3a (2.1361(9) Å) and 3c (2.1386(13) Å) are slightly longer compared to 3d (2.125(3) Å) which might result from the larger trans influence of the 4-tBu and Ph ligands, respectively. However, all Pt-F bond lengths are elongated compared to Pt(II) fluorido complexes that feature no hydrogen bonding to the fluorido ligand in the coordination sphere (1.9787(14)-2.117(3) Å).^[1d,e,4d,5g,k] A Pt-F bond length of 2.1466(13) Å was observed for the molecular structure of the fluorido complex trans-[Pt(F)(CH₃){(4-FC₆H₄)₂P-(Ind)}2] that also features indolylphosphine ligands.^[12] The N···F distances of 3a (2.591(1), 2.610(1) Å), 3c (2.620(3), 2.619(2) Å) and 3d (2.588 Å) suggest hydrogen bonding of medium strength to the fluorido ligand.^[10b,12,37] The F-Pt-P-N dihedral angles of 3a and 3c reveal relative small values of -12.89(4)° and $19.86(4)^{\circ}$ as well as $18.31(6)^{\circ}$ and $-19.06(6)^{\circ}$, respectively, resulting in a favoured alignment of the N-H-F bond. The indolyl moieties in 3d appear to be more twisted, expressed by a larger dihedral F-Pt-P-N angle of 28.72°. This might be due to crystal packing effects associated with short contact interactions of a proximal CH group of a 4-fluorophenyl ligand to the fluorido ligand of a second molecule, as well as C–H- $\pi\text{-}$ interactions between phosphine ligands. However, all fluorido complexes 3a, 3c and 3d reveal smaller dihedral F-Pt-P-N angles when compared to the CI-Pt-P-N angles of the chlorido $trans-[Pt(CI)(Ph){Ph_2P(Ind)}_2]$ (4) analoque (CI1-Pt1-P1-N1 61.94(4)°, Cl1-Pt1-P2-N2 51.37(4)°), which is very likely explained by the sterically more demanding chlorido ligand (Figure 4).

Figure 3. Molecular structures of *trans*- $[Pt(F)(4-tBuC_6H_4){Ph_2P(Ind)}_2]$ (**3 a**) (left), *trans*- $[Pt(F)(Ph){Ph_2P(Ind)}_2]$ (**3 c**) (middle) and *trans*- $[Pt(F)(4-FC_6H_4){Ph_2P(Ind)}_2]$ (**3 d**) (right). Thermal ellipsoids are drawn at 50% probability level, the intermolecular hydrogen bonds are depicted as magenta dashed lines. Carbon bound hydrogen atoms and the solvent molecules were omitted for clarity.

Chem. Eur. J. 2023, 29, e202202768 (5 of 11)

Research Article doi.org/10.1002/chem.202202768

rable 3. Select	ted bond lengths, dis	tances [Å] and bond a	angles [°] of 3 a , 3 c and	l 3d.					
complex	Pt1-P1 Pt1-P2	Pt1-F1	Pt1-C(Aryl)	N1F1 N2F1	P1-Pt1-F1 P2-Pt1-F1	P1-Pt1-P2(P1') F1-Pt1-C(Aryl)	P1-Pt1-C(Aryl) P2-Pt1-C(Aryl)	N1-H1F1 N2-H2F1	F1-Pt1-P1-N1 F1-Pt1-P2-N2
3 a	2.3124(4)	2.1361(9)	1.9990(14)	2.591(1)	93.23(3)	171.165(12)	86.27(4)	160(2)	-12.89(4)
	2.3220(4)			2.610(1)	93.89(3)	178.06(4)	86.27(4)	152(3)	19.86(4)
30	2.3118(5)	2.1386(13)	2.012(2)	2.620(3)	92.23(4)	173.614(19)	87.21(6)	158(3)	18.31(6)
	2.3188(6)			2.619(2)	93.94(4)	177.00(8)	86.71(6)	164(3)	-19.06(6)
3d	2.3254(7)	2.125(3)	1.991(5)	2.588	92.10(2)	174.97(4)	88.01(2)	160	28.72
	I			I	I	175.45(15)	ı	I	1

Figure 4. Molecular structure of *trans*-[Pt(Cl)(Ph){Ph₂P(Ind)}₂] (4). Thermal ellipsoids are drawn at 50% probability level, the intermolecular hydrogen bond is depicted as a magenta dashed line. Carbon bound hydrogen atoms and the solvent molecule were omitted for clarity. Selected bond lengths, distances [Å] and bond angles [°]: Pt1-P1 2.2978(5), Pt1-P2 2.2960(5), Pt1-Cl1 2.4314(6), Pt1-C43 2.0219(18), N1…Cl1 3.241(2), N2…Cl1 3.168(2), P1-Pt1-Cl1 87.740(18), P2-Pt1-Cl1 89.154(19), P1-Pt1-P2 169.154(16), P1-Pt1-C1 90.55(5), P2-Pt1-C1 92.96(5), Cl1-Pt1-C1 177.05(5), N1-H1…Cl1 147(2), N2-H2…Cl1 147(2), Cl1-Pt1-P1-N1 61.94(4), Cl1-Pt1-P2-N2 51.37(4).

Both NH groups of the indolyl moieties form hydrogen bonds to the chlorido ligand with typical N…Cl distances of 3.241(2) Å and 3.168(2) Å.^[7,29,38] Complex 4 was synthesised by treatment of [Pt(Cl)(Ph)(COD)] with Ph₂P(Ind).

Conclusion

In conclusion, we describe the formation of the platinum fluorido and polyfluorido complexes trans-[Pt(F)(Ar){Ph₂P(Ind)}₂] **3a-f** and *trans*- $[Pt(F \cdot (HF)_2)(Ar)\{Ph_2P(Ind)\}_2]$ **2a-f** bearing electronically different aryl ligands (Ar = $4-tBuC_6H_4$ (1 a), $4-CH_3C_6H_4$ (1 b), Ph (1 c), 4-FC₆H₄ (1 d), 4-ClC₆H₄ (1 e), 4-CF₃C₆H₄ (1 f)), as well as 2-(3-methyl)indolyl (Ind) substituted phosphine ligands that allow for generation of intramolecular hydrogen bonding to the platinum bound fluoride. The complexes were analysed thoroughly by multinuclear NMR spectroscopy and in part by single crystal X-ray diffraction. X-ray data revealed a lower trans influence for aryl ligands with electron withdrawing substituents in the para position, but simultaneously a larger cis influence was observed. The cis influence was mirrored by the NMR ¹J(P,Pt) coupling constants,^[15] whereas the trans influence is not mirrored by the $|^{1}J(F,Pt)|$ coupling constants. In addition, the $|^{1}J(F,Pt)|$ coupling constants were found to be smaller for fluorido complexes 3a-f compared to polyfluorido complexes 2a-f. Moreover, intramolecular hydrogen bonding of the fluorido ligand to the indolyl NH moiety seems to be slightly weaker in the polyfluorido systems 2a-f based on NH chemical shifts and ¹J(H,F) coupling constants. DFT calculations suggest that, due to the high negative charge on the platinum-bound fluoride, hydrogen bonding by HF, but also by the dichloromethane solvent molecules to the fluoride have a considerable influence on the NMR parameters, complicating their quantitative description by DFT methods.

Experimental Section

All manipulations (if not otherwise mentioned) were carried out under argon using standard Schlenk techniques or in an argonfilled glovebox (MBRAUN). THF and *n*-hexane were dried and purified by distillation from SOLVONA[®] and stored under argon over molecular sieves. *n*-Pentane was purified using a two-column solid-state purification system (MBRAUN). Dichloromethane and CD_2Cl_2 were purified by distillation from CaH₂ and stored over molecular sieves. [Pt(Cl)(CH₃)(COD)]^[19] and Ph₂P(Ind)^[39] were prepared according to the literature.

Poly[4-vinylpyridinium poly(hydrogen fluoride)] (PVPHF; 38-42 wt% HF) and 1-bromo-4-tert-butylbenzene were obtained from Sigma-Aldrich and were used without further purification. 4-Bromobenzotrifluoride was obtained from abcr GmbH and was used without further purification. p-Tolylmagnesium bromide (0.5 M in Et₂O), phenylmagnesium bromide (1.6 M in cyclopentyl methyl ether), 4fluorophenylmagnesium bromide (2 M in Et₂O) and 4-chlorophenylmagnesium bromide (1 M in THF/toluene) were obtained from Acros Organics. The NMR spectra were recorded on a Bruker Avance 500, Bruker Avance 400, Bruker Avance 300, or a Bruker DPX 300 spectrometer. The ¹H NMR chemical shifts were referenced to residual CDHCl₂ at δ = 5.32 ppm. The ¹³C{¹H} NMR spectra were referenced to CD_2Cl_2 at $\delta = 54.00$ ppm. The ¹⁵N NMR chemical shifts were referenced to external CH₃NO₂ at $\delta = 0.00$ ppm. The ¹⁹F NMR chemical shifts were referenced to external CFCl₃ at $\delta = 0.00$ ppm. The ³¹P{¹H} NMR chemical shifts were referenced to external H₃PO₄ at $\delta = 0.00$ ppm.

Structure determination of complexes 1d, 1e, 3a, 3c, and 3d: Colourless crystals of $1 d \cdot 0.5 CH_2 CI_2$, 1e, $3 a \cdot CH_2 CI_2$, $3 c \cdot 0.5 CH_2 CI_2$ and 3d were obtained by slow evaporation of the solvent from a dichloromethane solution at room temperature. The diffraction data were collected at a Bruker D8 Venture diffractometer at 100 K using Mo-K_a ($\lambda = 0.71073$ Å) radiation. Multi-scan absorption corrections implemented SADABS were applied to the data.^[40] The structures were solved by intrinsic phasing method (SHELXT 2014/5)^[41] and refined by full-matrix least-squares methods on F^2 (SHELXL 2016/4 or SHELXL-2018/3).^[42] The nitrogen-bound hydrogen atoms were found in the difference electron density maps and freely refined. All other hydrogen atoms were placed at calculated positions and refined using a riding model.

Deposition Number(s) 2166083 (for $1d \cdot 0.5 CH_2Cl_2$), 2166086 (for 1e), 2166098 (for $3a \cdot CH_2Cl_2$), 2166090 (for $3c \cdot 0.5 CH_2Cl_2$), 2166111 (for 3d) and 2170875 (for 4) contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

General procedure for the synthesis of [Pt(Ar)(CH₃)(COD)] (Ar = 4 $tBuC_6H_4$, 4-CH₃C₆H₄, ^[16] Ph,^[17] 4-FC₆H₄,^[18] 4-CIC₆H₄, 4-CF₃C₆H₄): The reactions were carried out under Argon, but the work-ups were done under air. In a Schlenk flask [PtCl(CH₃)(COD)] (0.71 g, 2.00 mmol) was dissolved in dry CH₂Cl₂ (20 mL) and solution was cooled to 0°C followed by dropwise addition of the appropriate Grignard reagent ArMgBr (4.40 mmol) (Ar = $4-tBuC_6H_4$, $4-CH_3C_6H_4$, Ph, 4-FC₆H₄, 4-ClC₆H₄, 4-CF₃C₆H₄). The reaction mixture was stirred for 30 min and then cooled to -78 °C. 2-Propanol (2 mL) was added to quench excess of the Grignard. The mixture was allowed to warm up to room temperature. Water was added (50 mL) and the mixture was stirred vigorously for 5 min. The two phases were allowed to separate and the lower organic phase was collected. The aqueous phase was extracted with dichloromethane (2×25 mL). The combined organic phases were washed with water (2×50 mL) and dried over anhydrous MgSO₄. After filtration, all volatiles were removed in vacuo yielding pale yellow to brownish solids. Potential brownish-dark colouring of the solids can be removed by filtration over a pad of silica or Florisil^{*}. The obtained solids were finally washed with small portions of cold *n*-pentane and dried *in vacuo* to give [Pt(Ar)(CH₃)(COD)] as colourless or off-white solids. The complexes obtained by this way can be used without further purification. Yields: 84-94%.

Analytical data for [Pt(4-tBuC₆H₄)(CH₃)(COD)]: ¹H NMR (300.1 MHz, CD₂Cl₂): δ = 7.31–7.05 (m, 4H, Ar*H*), 6.91 (m, 2H, Ar*H*), 5.09 (m + sat, ²J(H,Pt) = 39 Hz, 2H, C*H*), 4.83 (m + sat., ²J(H, Pt = 39 Hz, 2H, C*H*), 2.43 (m, 8H, C*H*₂), 1.29 (s, 9H, C(CH₃)₃), 0.78 ppm (s + sat., ²J(H, Pt) = 83 Hz, 3H, Pt-C*H*₃). ¹³C{¹H} NMR (75.4 MHz, CD₂Cl₂): δ = 155.1 (s + sat, J(C,Pt) = 1097 Hz, Pt-C_{ai}), 145.6 (s + sat., J(C,Pt) = 13 Hz, C_{ai}), 134.8 (s + sat., J(C,Pt) = 38 Hz, C_{ai}H), 125.1 (s + sat, J(C,Pt) = 76 Hz, C_{ai}H), 102.7 (s + sat., J(C,Pt) = 50 Hz, CH), 102.2 (s + sat., J(C,Pt) = 52 Hz, CH), 34.4 (s, C(CH₃)₃), 31.8 (s, C(CH₃)₃), 30.7 (s, CH₂), 30.2 (s, CH₂), 21.1 (s, CH₃), 6.9 (s + sat., J(C,Pt) = 778 Hz, Pt-CH₃). Anal. Calcd for C₁₀H₂₈Pt: C, 50.54; H, 6.25. Found: C, 50.66; H, 6.28.

Analytical data for $[Pt(4-CH_3C_6H_4)(CH_3)(COD)]^{1161}$: ¹H NMR (300.1 MHz, CD₂Cl₂): $\delta = 7.13$ (m + sat, ²J(H,Pt) = 68 Hz, 2H, Ar*H*), 6.91 (m, 2H, Ar*H*), 5.07 (m + sat, ²J(H,Pt) = 39 Hz, 2H, C*H*), 4.79 (m + sat, ²J(H, Pt = 39 Hz, 2H, C*H*), 2.41 (m, 8H, C*H*₂), 0.75 ppm (s + sat, ²J(H, Pt) = 83 Hz, 3H, Pt-CH₃). ¹³C{¹H} NMR (75.4 MHz, CD₂Cl₂): $\delta = 155.0$ (s + sat, J(C,Pt) = 1097 Hz, Pt-C_a), 135.0 (s + sat., J(C,Pt) = 38 Hz, C_a,H), 132.2 (s + sat., J(C,Pt) = 13 Hz, C_ar), 129.0 (s + sat, J(C,Pt) = 77 Hz, C_a,H), 102.7 (s + sat., J(C,Pt) = 50 Hz, CH), 102.3 (s + sat., J(C,Pt) = 52 Hz, CH), 30.7 (s, CH₂), 30.2 (s, CH₂), 21.1 (s, CH₃), 6.8 (s + sat., J(C,Pt) = 778 Hz, Pt-CH₃).

Analytical data for $[Pt(Ph)(CH_3)(COD)]^{(17)}$: ¹H NMR (300.1 MHz, CD₂Cl₂): δ = 7.24 (m + sat, 2H, ²J(H,Pt) = 68 Hz, ArH), 7.05 (m, 2H, ArH), 6.85 (m, 1H, ArH), 5.09 (m + sat, ²J(H,Pt) = 40 Hz, 2H, CH), 4.80 (m + sat., ²J(H, Pt) = 39 Hz, 2H, CH), 2.43 (m, 8H, CH₂), 0.76 ppm (s + sat., ²J(H, Pt) = 83 Hz, 3H, Pt-CH₃). ¹³C{¹H} NMR (75.4 MHz, CDCl₃): δ = 158.5 (s + sat, J(C,Pt) = 1094 Hz, Pt-C_{ar}), 134.9 (s + sat., J(C,Pt) = 36 Hz, C_{ar}H), 127.8 (s + sat., J(C,Pt) = 76 Hz, C_{ar}H), 122.9 (s + sat., J(C,Pt) = 12 Hz, C_{ar}), 102.1 (s + sat., J(C,Pt) = 50 Hz, CH), 101.7 (s + sat., J(C,Pt) = 51 Hz, CH), 30.2 (s, CH₂), 29.8 (s, CH₂), 6.8 (s + sat., J(C,Pt) = 772 Hz, Pt-CH₃).

Analytical data for [Pt(4-FC₆H₄)(CH₃)(COD)]^[18]: ¹H NMR (500.1 MHz, CD₂Cl₂): $\delta = 7.23$ (m + sat, 2H, ²J(H,Pt) = 68 Hz, ArH), 6.84 (m, 2H, ArH), 5.09 (m + sat, ²J(H,Pt) = 40 Hz, 2H, CH), 4.79 (m + sat, ²J(H, Pt) = 39 Hz, 2H, CH), 2.43 (m, 8H, CH₂), 0.77 ppm (s + sat., ²J(H, Pt) = 82 Hz, 3H, Pt-CH₃). ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂): $\delta = 160.5$ (d + sat., J(C,F) = 239.0 Hz, J(C,Pt) = 17 Hz, C_a-F), 153.3 (d + sat, J(C,F) = 3.5 Hz, J(C,Pt) = 1112 Hz, Pt-C_a), 135.7 (d + sat., J(C,F) = 5.5 Hz, J(C,Pt) = 44 Hz, C_a-H), 114.6 (d + sat., J(C,F) = 18.2 Hz, J(C,Pt) = 84 Hz, C_a-H), 102.7 (s + sat., J(C,Pt) = 52 Hz, CH), 30.7 (s, CH₂), 30.3 (s, CH₂), 6.6 (s + sat., J(C,Pt) = 768 Hz, Pt-CH₃). ¹⁹F{¹H</sup> NMR (470.6 MHz, CD₂Cl₂): $\delta = -123.4$ ppm (s + sat., ⁵J(F, Pt) = 26 Hz, Ar-F).

Analytical data for [Pt(4-ClC₆H₄)(CH₃)(COD)]: ¹H NMR (300.1 MHz, CD₂Cl₂): $\delta = 7.22$ (m + sat, ²J(H,Pt) = 67 Hz, 2H, ArH), 7.05 (m, 2H, ArH), 5.09 (m + sat, ²J(H,Pt) = 40 Hz, 2H, CH), 4.77 (m + sat, ²J(H, Pt) = 88 Hz, 2H, CH), 2.43 (m, 8H, CH₂), 0.74 ppm (s + sat., ²J(H, Pt) = 82 Hz, 3H, Pt-CH₃). ¹³C{¹H} NMR (75.4 MHz, CD₂Cl₂): $\delta = 157.4$ (s + sat, J(C,Pt) = 1110 Hz, Pt-C_a), 136.4 (s + sat., J(C,Pt) = 42 Hz, C_arH), 128.7 (s + sat., J(C,Pt) = 17 Hz, C_ar), 127.9 (s + sat., J(C,Pt) = 51 Hz, CH), 30.6 (s, CH₂), 30.3 (s, CH₂), 6.3 (s + sat., J(C,Pt) = 765 Hz, Pt-CH₃). Anal. Calcd for C₁₅H₁₉ClPt: C, 41.91; H, 4.46. Found: C, 41.96; H, 4.47.

Analytical data for [Pt(4-CF₃C₆H₄)(CH₃)(COD)]: ¹H NMR (300.1 MHz, CD₂Cl₂): δ = 7.42 (m + sat, ²J(H,Pt) = 68 Hz, 2H, ArH), 7.29 (m, 2H, ArH), 5.14 (m + sat, ²J(H,Pt) = 40 Hz, 2H, CH), 4.78 (m + sat, ²J(H, Pt = 38 Hz, 2H, CH), 2.44 (m, 8H, CH₂), 0.74 ppm (s + sat., ²J(H, Pt) = 82 Hz, 3H, Pt-CH₃). ¹³C{¹H} NMR (75.4 MHz, CD₂Cl₂): δ = 165.8 (s + sat,

 $\begin{array}{l} J(C,Pt) = 1106 \mbox{ Hz}, \mbox{ Pt-}C_{ar}), \ 135.6 \ (s+sat., \ J(C,Pt) = 39 \mbox{ Hz}, \ C_{ar}H), \ 125.7 \\ (q, \ J(C,F) = 271.1 \mbox{ Hz}, \ CF_3), \ 124.9 \ (q, \ J(C,F) = 31.6 \mbox{ Hz}, \ C_{ar}H), \ 124.1 \ (q+sat., \ J(C,F) = 3.8 \mbox{ Hz}, \ J(C,Pt) = 79 \mbox{ Hz}), \ 103.5 \ (s+sat., \ J(C,Pt) = 53 \mbox{ Hz}, \ CH), \ 102.8 \ (s+sat., \ J(C,Pt) = 51 \mbox{ Hz}, \ CH), \ 30.7 \ (s, \ CH_2), \ 30.3 \ (s, \ CH_2), \ 5.9 \\ (s+sat., \ J(C,Pt) = 761 \mbox{ Hz}, \ Pt-CH_3). \ ^{19}F \ NMR \ (470.6 \mbox{ MHz}, \ CD_2Cl_2): \ \delta = -62.4 \mbox{ ppm (CF_3)}. \ Anal. \ Calcd \ for \ C_{16}H_{19}F_3Pt: \ C, \ 41.47; \ H, \ 4.13. \ Found: \ C, \ 41.62; \ H, \ 4.24. \end{array}$

Synthesis of cis-[Pt(Me)(4-tBuC₆H₄){PPh₂(Ind)}₂] (1 a): A solution of diphenyl-2-(3-methyl)indolylphosphine (662 mg, 2.10 mmol) in CH₂Cl₂ (10 mL) was added to a solution of [Pt(4-tBuC₆H₄)(CH₃)(COD)] (452 mg, 1.00 mmol) in CH₂Cl₂ (10 mL) while stirring. The resulting solution was stirred for another hour. The solvent was then removed in vacuo to yield an off-white solid. The crude product was washed with pentane (5×5 mL) and the solid was dried in vacuo, affording 1 a as a colourless powder. Yield 737 mg (76%). IR (ATR, diamond): $\tilde{v} = 3445 \text{ cm}^{-1}$ (medium, broad, N–H), 3365 cm⁻¹ (medium, broad, N–H). ¹H NMR (400.1 MHz, CD₂Cl₂): δ = 9.02 (s, 1H, NH), 8.52 (s, 1H, NH), 7.58 (d, ³J(H,H)=7.9 Hz, 1H, ArH), 7.45 (d, ³J(H,H) = 7.7 Hz, 1H, ArH), 7.41 (d, ³J(H,H) = 8.2 Hz, 1H, ArH), 7.31 (dd, ³J(H,H) = 8.2 Hz, ³J(H,H) = 6.9 Hz, 1H ArH), 7.23 (m, 3H, ArH), 7.17 (m, 4H, ArH), 7.11-7.02 (m, 14H, ArH), 6.96 (m, 4H, ArH), 6.72 (d, ³J(H,H) = 8.3 Hz, 2H, ArH), 6.68 (d, ³J(H,H) = 8.2 Hz, 1H, ArH), 2.03 (s, 3H, ArCH₃), 1.90 (s, 3H, ArCH₃), 1.17 (s, 9H, C(CH₃)₃), 0.49 (m + sat., 2 J(H,Pt) = 68 Hz, 3H, Pt-CH₃). 31 P{¹H} NMR (162.0 MHz, CD₂Cl₂): δ = 9.3 $(d + sat., {}^{2}J(P,P) = 9.8 Hz, {}^{1}J(Pt,P) = 1594 Hz), 9.1 ppm (d + sat., {}^{2}J (P,P) = 9.8 \text{ Hz}, {}^{1}J(Pt,P) = 1898 \text{ Hz}).$ Anal. Calcd for $C_{50}H_{46}N_2P_2Pt$: N, 2.88; C, 65.35; H, 5.38. Found: N, 2.89; C, 65.55; H, 5.34.

Synthesis of cis-[Pt(Me)(4-MeC₆H₄){PPh₂(Ind)}₂] (1 b): A solution of diphenyl-2-(3-methyl)indolylphosphine (687 mg, 2.18 mmol) in CH₂Cl₂ (10 mL) was added to a solution of [Pt(4-CH₃C₆H₄)(CH₃)(COD)] (446 mg, 1.09 mmol) in CH₂Cl₂ (10 mL) while stirring. The resulting solution was stirred for another hour. The solvent was then removed in vacuo to yield an off-white solid. The crude product was washed with pentane $(5 \times 5 \text{ mL})$ and the solid was dried in vacuo, affording 1 b as a colourless powder. Yield 873 mg (86%). IR (ATR, diamond): $\tilde{v} = 3449 \text{ cm}^{-1}$ (medium, broad, N–H), 3370 cm⁻¹ (medium, broad, N–H). ¹H NMR (400.1 MHz, CD_2CI_2): $\delta = 8.99$ (s, 1H, NH), 8.48 (s, 1H, NH), 7.59 (d, ³J(H,H) = 7.9 Hz, 1H, ArH), 7.45 (d, $^{3}J(H,H) = 8.1$ Hz, 1H, ArH), 7.40 (d, $^{3}J(H,H) = 8.2$ Hz, 1H, ArH), 7.30 (m, 1H, ArH), 7.21 (m, 7H, ArH), 7.13 (m, 7H, ArH), 7.05 (m, 7H, ArH), 6.97 (m, 4H, ArH), 6.71 (d, ³J(H,H) = 7.9 Hz, 1H, ArH), 6.54 (d, ³J(H,H) = 7.2 Hz, 2H, ArH), 2.07 (s, 3H, ArCH₃), 1.97 (d, ⁴J(H,P) = 1.2 Hz, 3H, ArCH₃), 1.92 (d, ⁴J(H,P) = 1.3 Hz, 3H, ArCH₃), 0.50 ppm (dd + sat., ${}^{3}J(H,P) = 9.6 \text{ Hz}, {}^{3}J(H,P) = 6.5 \text{ Hz}, {}^{2}J(Pt,H) = 68 \text{ Hz}, 3H, CH_{3}$. NMR (162.0 MHz, CD₂Cl₂): $\delta = 9.4$ (d + sat., ²J(P,P) = 9.8 Hz, ¹J(Pt,P) = 1615 Hz), 8.6 ppm (d+sat., ²J(P,P)=9.8 Hz, ¹J(Pt,P)=1888 Hz). Anal. Calcd for $C_{50}H_{46}N_2P_2Pt$: N, 3.01; C, 64.44; H, 4.98. Found: N, 2.89; C, 64.27; H, 5.20.

cis-[Pt(CH₃)(Ph){PPh₂(Ind)}₂] (1c): A solution of diphenyl-2-(3-methyl)indolylphosphine (1.24 g, 3.92 mmol) in CH₂Cl₂ (20 mL) was added to solution of [Pt(Ph)(CH₃)(COD)] (0.74 g, 1.87 mmol) in CH₂Cl₂ (15 mL) while stirring. The resulting solution was stirred for another hour. The solvent was then removed in vacuo yielding the crude product as an off-white solid which was recrystallised from CH_2Cl_2/n -hexane (5 mL/60 mL) at 0 °C. The solid was collected by filtration, washed with n-pentane (3×5 mL) and dried in vacuo to yield 1c as a colourless powder. Yield 1.33 g (77%). IR (ATR, diamond): $\tilde{v} = 3444 \text{ cm}^{-1}$ (medium, broad, N–H), 3363 cm⁻¹ (medium, broad, N–H). ¹H NMR (400.1 MHz, CD₂Cl₂): δ = 8.98 (br s, 1H, NH), 8.50 (br s, 1H, NH), 7.58 (d, ³J(H,H) = 8.0 Hz, 1H, ArH), 7.46 (d, ³J(H,H) = 7.2 Hz, 1H, ArH), 7.40 (d, ³J(H,H) = 8.2 Hz, 1H, ArH), 7.30 (m, 1H, ArH), 7.23 (m, 5H, ArH), 7.17 (m, 4H, ArH), 7.11 (m, 7H, ArH), 7.05 (m, 5H, ArH), 6.97 (m, 4H, ArH), 6.69 (m, 3H, ArH), 6.54 (m, 1H, ArH), 2.02 (d, ⁴J(H,P) = 1.1 Hz, 3H, ArCH₃), 1.91 (d, ⁴J(P,H) = 1.1 Hz, 3H, ArCH₃), 0.51 ppm (dd + sat., ³J(H,P) = 9.3 Hz, ³J(H,P) = 6.5 Hz, ²J(H,Pt) - = 68 Hz, 3H, CH₃). ³¹P{¹H} NMR (162.0 MHz, CD₂Cl₂): δ = 9.1 (d + sat., ²J(P,P) = 9.9 Hz, ¹J(P,Pt) = 1607 Hz), 9.1 ppm (d + sat., ²J(P,P) = 9.9 Hz, ¹J(P,Pt) = 1891 Hz). Anal. Calcd for C₄₉H₄₄N₂P₂Pt: N, 3.05; C, 64.12; H, 4.83. Found: N, 2.77; C, 63.75; H, 5.14.

Synthesis of cis-[Pt(Me)(4-ClC₆H₄){PPh₂(Ind)}₂] (1e): A solution of diphenyl-2-(3-methyl)indolylphosphine (659 mg, 2.09 mmol) in CH₂Cl₂ (10 mL) was added to a solution of [Pt(4-ClC₆H₄)(CH₃)(COD)] (451 mg, 1.05 mmol) in CH_2CI_2 (10 mL) while stirring. The resulting pink solution was stirred for another hour. The solvent was then removed in vacuo to yield an off-white solid. The crude product was washed with pentane (5 \times 5 mL) and the solid was dried in vacuo, affording 1 e as a colourless powder. Yield 950 mg (95%). IR (ATR, diamond): $\tilde{v} = 3444 \text{ cm}^{-1}$ (medium, broad, N–H), 3368 cm⁻¹ (medium, broad, N–H). ¹H NMR (400.1 MHz, CD_2CI_2): $\delta = 8.90$ (s, 1H, NH), 8.47 (s, 1H, NH), 7.59 (d, ³J(H,H) = 8.2 Hz, 1H, ArH), 7.48 (d, ³J(H,H) = 7.5 Hz, 1H, ArH), 7.39 (d, ³J(H,H) = 8.2 Hz, 1H, ArH), 7.31 (m, 1H, ArH), 7.26-6.97 (m, 25H, ArH), 6.70 (d, ³J(H,H) = 7.7 Hz, 1H, ArH), 6.64 (m, 2H, ArH), 2.10 (d, ${}^{4}J(H,P) = 1.2 \text{ Hz} 3H$, ArCH₃), 1.94 (d, ⁴J(P,H) = 1.2 Hz, 3H, ArCH₃), 0.49 ppm (dd + sat., ³J(H,P) = 9.3 Hz, $^{3}J(H,P) = 6.4 \text{ Hz}, ^{2}J(H,Pt) = 68 \text{ Hz}, 3H, CH_{3}). ^{31}P\{^{1}H\} \text{ NMR} (162.0 \text{ MHz}, 162.0 \text{ MHz})$ CD₂Cl₂): $\delta = 9.0$ (d + sat., ²J(P,P) = 10.5 Hz, ¹J(P,Pt) = 1670 Hz), 8.8 ppm (d+sat., ²J(P,P) = 10.5 Hz, ¹J(P,Pt) = 1870 Hz). Anal. Calcd for C₄₉H₄₃ClN₂P₂Pt: N, 2.94; C, 61.80; H, 4.55. Found: N, 2.75; C, 61.55; H, 4.70.

Synthesis of cis-[Pt(Me)(4-CF₃C₆H₄){PPh₂(Ind)}₂] (1 f): A solution of diphenyl-2-(3-methyl)indolylphosphine (306 mg, 0.97 mmol) in CH_2CI_2 (5 mL) was added to a solution of $[Pt(4-CF_3C_6H_4)(CH_3)(COD)]$ (227 mg, 0.49 mmol) in CH₂Cl₂ (5 mL) while stirring. The resulting solution was stirred for another hour. The solvent was then removed in vacuo to yield the crude product as a yellow powder. This was washed with pentane (5×5 mL) and dried in vacuo to yield 1 f as a pale-yellow powder. Yield 338 mg (70%). IR (ATR, diamond): $\tilde{v} =$ 3449 cm⁻¹ (medium, broad, N–H), 3370 cm⁻¹ (medium, broad, N–H). ¹H NMR (400.1 MHz, CD₂Cl₂): $\delta = 8.88$ (s, 1H, NH), 8.45 (s, 1H, NH), 7.60 (d, ³J(H,H) = 7.8 Hz, 1H, ArH), 7.48 (m, ³J(H,H) = 8.5 Hz, 1H, ArH), 7.40 (m, ³J(H,H) = 8.2 Hz, 1H, ArH), 7.34-7.17 (m, 10H, ArH), 7.08 (m, 12H, ArH), 6.97 (m, 4H, ArH), 6.86 (d, ³J(H,H)=7.6 Hz, 2H, ArH), 6.69 (m, 1H, ArH), 2.14 (d, ⁴J(H,P) = 1.3 Hz, 3H, ArCH₃), 1.95 (d, ⁴J(H,P) = 1.3 Hz, 3H, ArCH₃), 0.51 (dd + sat., ³J(H,P) = 9.2 Hz, ³J(H,P) = 6.3 Hz, $^2 J\!(H,Pt)\!=\!67$ Hz, 3H, CH_3). ^{19}F NMR (282.4 MHz, CD_2Cl_2): $\delta\!=\!$ -62.2 ppm (s, CF₃). ³¹P{¹H} NMR (162.0 MHz, CD₂Cl₂): $\delta = 9.1$ (d + sat., ²J(P,P) = 11.0 Hz, ¹J(P,Pt) = 1877 Hz), 8.77 ppm (d + sat., ²J(P,P) = 11.0 Hz, ${}^{1}J(P,Pt) = 1669$ Hz). Anal. Calcd for $C_{50}H_{43}F_{3}N_{2}P_{2}Pt$: N, 2.84; C, 60.91; H, 4.40. Found: N, 2.63; C, 60.70; H, 4.71.

General procedure for the formation of fluorido complexes trans- $[Pt(F \cdot (HF)_2)(Ar){Ph_2P(Ind)}_2]$ (2 a-f) and trans- $[Pt(F)(Ar){Ph_2P(Ind)}_2]$ (3 a-f) (Ar = Ph (a), 4-FC₆H₄ (b), 4-CIC₆H₄ (c), 4-CH₃C₆H₄) (d), $\bar{4}$ - $CF_3C_6H_4$) (e), 4-(CH_3)₃ CC_6H_4) (f)): Solutions of *cis*-[Pt(CH_3)(Ar){R₂P-(Ind)₂] (1 a-f) (0.15 mmol) in CD₂Cl₂ or CH₂Cl₂ (2 mL) were added into PFA-tubes containing PVPHF (150 mg; 38-42 wt% HF). Immediate gas evolution was overserved, and the mixtures were stirred for further 5 minutes. The respective solutions were then filtered from the polymer into PFA-Inliners and analysed by NMR-spectroscopy revealing the formation of 2a-f. Afterwards, the reaction solutions of 2a-f were added into a Schlenk flask loaded with anhydrous CsF (100 mg) and the mixtures were vigorously stirred for 5 minutes. After filtration of the solvent were removed in vacuo to give paleyellow solids, which were dissolved in CD_2Cl_2 (0.7 mL) and analysed by NMR spectroscopy revealing the formation of 3a-f. Colourless crystals of 3a·CH₂Cl₂, 3c·0.5 CH₂Cl₂ and 3d were obtained by slow evaporation of the solvent from a dichloromethane solution at room temperature and were isolated by filtration. 3 a-CH₂Cl₂ was dried under an argon stream yielding 3a·CH₂Cl₂ (84 mg, 53%) as colourless crystals. 3 c 0.5 CH₂Cl₂ and 3d were dried in vacuo to give 3c (94 mg, 68%) and 3d (67 mg, 48%) as a colourless solid.

Selected analytical data:

trans-[**Pt**(**F** · (**HF**)₂)(4-*t*BuC₆H₄){**Ph**₂**P**(**Ind**)}₂] (**2** a): ¹H NMR (300.1 MHz, CD₂Cl₂, 243 K) $\delta = 11.79$ ppm (d, ¹*J*(H,F) = 38.1 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂, 243 K): $\delta = -171.8$ (br s, HF), -267.7 ppm (br s + sat, |¹*J*(F,Pt)| = 639 Hz, Pt-F). ³¹Pt¹H NMR (121.5 MHz, CD₂Cl₂, 243 K): $\delta = -7.1$ ppm (d + sat, ²*J*(P,F) = 13.4 Hz, ¹*J*(P,Pt) = 3164 Hz).

trans-[**Pt**(**F** · (**HF**)₂)(**4**-**CH**₃**C**₆**H**₄){**Ph**₂**P**(**Ind**)}₂] (**2** b): ¹H NMR (300.1 MHz, CD₂Cl₂, 243 K) $\delta = 11.84$ ppm (d, ¹*J*(H,F) = 39.8 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂, 243 K): $\delta = -171.5$ (br s, HF), -269.8 ppm (br s + sat, |¹*J*(F,Pt)| = 626 Hz, Pt-F). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂, 243 K): $\delta = -6.2$ ppm (d + sat, ²*J*(P,F) = 13.8 Hz, ¹*J*(P,Pt) = 3156 Hz).

trans-[Pt(F · (HF)₂)(Ph){Ph₂P(Ind)}₂] (2 c): ¹H NMR (300.1 MHz, CD₂Cl₂, 243 K) $\delta = 11.87$ ppm (d, ¹J(H,F) = 39.9 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂, 243 K): $\delta = -177.8$ (br s, HF), -270.0 ppm (br s + sat, | ¹J(F,Pt)| = 620 Hz, Pt-F). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂, 243 K): $\delta = 6.7$ ppm (d + sat, ²J(P,F) = 14.2 Hz, ¹J(P,Pt) = 3149 Hz).

trans-[Pt(F·(HF)₂)(4-FC₆H₄){Ph₂P(Ind)}₂] (2 d): ¹H NMR (300.1 MHz, CD₂Cl₂, 243 K) δ = 12.01 ppm (d, ¹J(H,F) = 41.4 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂, 243 K): δ = -126.0 (m, Ar–F), -171.4 (br s, HF), -274.3 ppm (br s+sat, |¹J(F,Pt)| = 583 Hz, Pt–F). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂, 243 K): δ = 6.0 ppm (d+sat, ²J(P,F) = 13.3 Hz, ¹J(P,Pt) = 3099 Hz).

trans-[Pt(F·(HF)₂)(4-ClC₆H₄){Ph₂P(Ind)}₂] (2 e): ¹H NMR (300.1 MHz, CD₂Cl₂, 243 K) δ = 12.05 ppm (d, ¹J(H,F) = 42.0 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂, 243 K): δ = -173.5 (br s, HF), -275.1 ppm (br s + sat, |¹J(F,Pt)| = 570 Hz, Pt-F). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂, 243 K): δ = 5.6 ppm (d + sat, ²J(P,F) = 13.4 Hz, ¹J(P,Pt) = 3091 Hz).

trans-[**Pt**(**F**·(**HF**)₂)(**4**-**CF**₃**C**₆**H**₄){**Ph**₂**P**(**Ind**)}₂] (**2f**): ¹H NMR (300.1 MHz, CD₂Cl₂, 243 K) $\delta = 11.92 \text{ ppm}$ (d, ¹*J*(H,F) = 40.0 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂, 243 K): $\delta = -62.4$ (s, CF₃), -173.1 (br s, HF), -275.9 ppm (br s+sat, |¹*J*(F,Pt)| = 569 Hz, Pt–F). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂, 243 K): $\delta = 6.3 \text{ ppm}$ (d+sat, ²*J*(P,F) = 13.7 Hz, ¹*J*(P,Pt) = 3080 Hz).

trans-[Pt(F)(4-tBuC₆H₄){Ph₂P(Ind)}₂] (3 a): ¹H NMR (300.1 MHz, CD₂Cl₂) δ = 12.93 ppm (d, ¹J(H,F) = 50.0 Hz). ¹H,¹⁵N HMBC (300.2 MHz/30.4 MHz, CD₂Cl₂): δ = 12.9/-238 ppm (dd/dvt, ¹J(H,F) = 50 Hz, ¹J(NH) = 97 Hz/²J(N,F) = 34 Hz, N = 8 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂): δ = -273.6 ppm (tt + sat, ¹J(F,H) = 50 Hz, ²J(F,P) = 13 Hz, | ¹J(F,Pt) | = 567 Hz). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): δ = 5.8 ppm (d + sat, ²J(P,F) = 13.1 Hz, ¹J(P,Pt) = 3176 Hz). Anal. Calcd for C₅₂H₄₉FN₂P₂Pt·CH₂Cl₂: N, 2.64; C, 59.89; H, 4.84. Found: N, 2.91; C, 59.95; H, 4.84.

trans-[Pt(F)(4-CH₃C₆H₄){Ph₂P(Ind)}₂] (3 b): ¹H NMR (300.1 MHz, CD₂Cl₂) δ = 12.91 ppm (d, ¹J(H,F) = 50.1 Hz). ¹H, ¹⁵N HMBC NMR (300.2 MHz/30.4 MHz, CD₂Cl₂): δ = 12.9/-238 ppm (dd/dvt, ¹J(H,F) = 50 Hz, ¹J(NH) = 97 Hz/²J(N,F) = 34 Hz, N = 8 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂): δ = -274.0 ppm (tt + sat, ¹J(F,H) = 50 Hz, ²J(F,P) = 13 Hz, | ¹J(F,Pt) | = 564 Hz). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): δ = 5.1 ppm (d + sat, ²J(P,F) = 13.0 Hz, ¹J(P,Pt) = 3172 Hz).

trans-[Pt(F)(Ph){Ph₂P(Ind)}₂] (3 c): ¹H NMR (300.1 MHz, CD₂Cl₂) δ = 12.88 ppm (d, ¹J(H,F) = 49.6 Hz). ¹H, ¹⁵N HMBC NMR (300.2 MHz/ 30.4 MHz, CD₂Cl₂): δ = 12.8/-238 ppm (dd/dvt, ¹J(H,F) = 50 Hz, ¹J-(NH) = 97 Hz/²J(N,F) = 33 Hz, N = 9 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂): δ = -275.2 ppm (tt + sat, ¹J(F,H) = 50 Hz, ²J(F,P) = 14 Hz, ¹J(F,Pt) | = 559 Hz). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): δ = 5.5 ppm (d+sat, ²J(P,F) = 13.7 Hz, ¹J(P,Pt) = 3162 Hz). Anal. Calcd for C₄₈H₄₁FN₂P₂Pt: N, 3.04; C, 62.54; H, 4.48. Found: N, 3.07; C, 62.58; H, 4.50.

trans-[Pt(F)(4-FC₆H₄){Ph₂P(Ind)}₂] (3 d): ¹H NMR (300.1 MHz, CD₂Cl₂) $\delta = 12.80$ ppm (d, ¹J(H,F) = 48.9 Hz). ¹H, ¹⁵N HMBC NMR (300.2 MHz/ 30.4 MHz, CD₂Cl₂): $\delta = 12.8/-239$ ppm (dd/dvt, ¹J(H,F) = 49 Hz, ¹J-(NH) = 97 Hz/²J(N,F) = 33 Hz, N = 8 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂):

$$\begin{split} \delta &= -126.0 \text{ (m, Ar}-F) -278.3 \text{ ppm (tt}+\text{sat, } {}^{1}\!J(F,H) = 49 \text{ Hz}, \, {}^{2}\!J(F,P) = \\ 14 \text{ Hz}, \,\, |{}^{1}\!J(F,Pt)| = 521 \text{ Hz}, \,\, Pt-F). \,\, {}^{31}P\{{}^{1}\text{H}\} \,\, \text{NMR} \,\, (121.5 \text{ MHz}, \,\, CD_{2}\text{Cl}_{2}): \\ \delta &= 5.1 \text{ ppm (dd}+\text{sat, } {}^{2}\!J(P,F) = 13.6 \text{ Hz}, \,\,\, J(P,F) = 2.0 \text{ Hz}, \,\,\, {}^{1}\!J(P,Pt) = \\ 3112 \text{ Hz}). \,\, \text{Anal. Calcd for } C_{48}H_{40}F_{2}N_{2}P_{2}\text{Pt}: \,\, \text{N}, \,\, 2.98; \,\, \text{C}, \,\, 61.34; \,\, \text{H}, \,\, 4.29. \\ \text{Found: N, } 3.09; \,\text{C}, \,\, 61.47; \, \text{H}, \,\, 4.30. \end{split}$$

trans-[Pt(F)(4-ClC₆H₄){Ph₂P(Ind)}₂] (3 e): ¹H NMR (300.1 MHz, CD₂Cl₂) $\delta = 12.76$ ppm (d, ¹J(H,F) = 48.6 Hz). ¹H, ¹⁵N HMBC NMR (300.2 MHz/ 30.4 MHz, CD₂Cl₂): $\delta = 12.8/-239$ ppm (dd/dvt, ¹J(H,F) = 49 Hz, ¹J-(NH) = 97 Hz/²J(N,F) = 32 Hz, N = 8 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂): $\delta = -278.7$ ppm (tt + sat, ¹J(F,H) = 48 Hz, ²J(F,P) = 14 Hz, ¹J(F,Pt) | = 519 Hz, Pt-F). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): $\delta = 4.9$ ppm (d + sat, ²J(P,F) = 13.7 Hz, ¹J(P,Pt) = 3103 Hz).

trans-[Pt(F)(4-CF₃C₆H₄){Ph₂P(Ind)}₂] (3 f): ¹H NMR (300.1 MHz, CD₂Cl₂) = 12.71 ppm (d, ¹J(H,F) = 47.9 Hz). ¹H, ¹⁵N HMBC NMR (300.2 MHz/30.4 MHz, CD₂Cl₂): $\delta = 12.7/-239$ ppm (dd/dvt, ¹J(H,F) = 48 Hz, ¹J(NH) = 97 Hz/²J(N,F) = 31 Hz, N = 8 Hz). ¹⁹F NMR (282.4 MHz, CD₂Cl₂): $\delta = -62.6$, (s, CF₃), -280.0 ppm (tt + sat, ¹J(F,H) = 48 Hz, ²J(F,P) = 14 Hz, $|^{1}J(F,Ft)| = 515$ Hz, Pt–F). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): $\delta = 5.5$ ppm (d + sat, ²J(P,F) = 13.5 Hz, ¹J(P,Ft) = 3090 Hz).

Synthesis of trans-[Pt(Cl)(Ph){Ph2P(Ind)}2] (4): A solution of diphenyl-2-(3-methylindolyl)phosphine (0.15 g, 0.48 mmol) in CH₂Cl₂ (5 mL) was added to a stirring solution of [Pt(Cl)(Ph)(COD)] (0.10 g, 0.24 mmol) in DCM (5 mL). The resulting mixture was stirred for two hours. The solvent was removed in vacuo to yield the crude product as a colorless powder. This solid was recrystallised from a solution of CH₂Cl₂/n-hexane (20 mL/60 mL) and the product was left to precipitate overnight. The solution was then filtered off and a colourless solid was obtained, which was washed with pentane ($3 \times$ 5 mL) and then dried in vacuo to yield 4 as a colourless solid. Yield 0.14 g (62%). IR (ATR, diamond): $\tilde{v} = 3297 \text{ cm}^{-1}$ (strong, sharp, N–H) ¹H NMR (500.1 MHz, CD₂Cl₂): $\delta = 10.11$ (s, 2H, NH), 7.57 (dd, ³J(H,H) = 8.0 Hz, J(H,P) = 0.6 Hz, 2H, ArH), 7.45-7.38 (m, 9H, ArH), 7.38-7.33 (m, 5H, ArH), 7.2 9–7.22 (m, 10H, ArH), 7.14-7.09 (m, 2H, ArH), 6.80 (m + sat., ³J(H,H) = 8.0 Hz, ⁴J(H,P) = 1.2 Hz, J(Pt,H) = 57 Hz, 2H, ArH, ortho), 6.27 (t, ³J(H,H) = 7.3 Hz,1H, ArH, para), 6.15 (t, ³J(H,H) = 7.6 Hz, 2H, ArH, meta), 1.78 (br s, 6H, ArCH₃). ³¹P{¹H} NMR (202.5 MHz, CD₂Cl₂): $\delta = 8.25$ (br s + sat., ¹J(Pt,P) = 3066 Hz). Anal. Calcd for C48H41CIN2P2Pt: N, 2.99; C, 61.44; H, 4.40. Found: N, 2.81, C, 61.75, H, 4.34.

Computational Details: All structure optimizations have been performed with the Turbomole program, version 7.5.1,^[43] using the PBE^[44] functional in conjunction with def2-TZVP^[45] basis sets for all atoms. In all calculations the multipole-accelerated resolution-ofidentity approximation (MARIJ)^[46] as well as D3^[47] empirical dispersion corrections with Becke-Johnson damping (BJ)^[48] was employed. In addition to gas phase calculations, all structures were subsequently optimized using the COSMO^[49] continuum solvent model, employing a relative permittivity $\epsilon = 8.9$ for dichloromethane (DCM, CH2Cl2) as solvent. Based on the optimized structures, NMR nuclear spin-spin coupling constants were calculated using the AMS program package, release version 2022.1.^[50] These calculations were performed at the two-component (2c) quasi-relativistic ZORA^[51] all-electron DFT level, employing the BHLYP^[52] functional in conjunction with a locally dense basis set scheme with all-electron QZ4P-J^[53] basis set for the coupling atoms and otherwise all-electron TZ2P-J^[53] basis sets for the remaining atoms, and a Becke grid of quality 4.^[54] Further electronic structure analyses at BHLYP/def2-TZVP level used the NBO 7.0.7^[55] program linked to the Gaussian 16 program, revision A.03.^[56] In this way, atomic charges from natural population analyses (NPA),^[57] atomic hybridizations from natural localized molecular orbital $(\mathsf{NLMO})^{\scriptscriptstyle[57]}$ analyses, and Wiberg bond indices (WBI)^[58] were obtained.

Chem. Eur. J. 2023, 29, e202202768 (9 of 11)

Acknowledgements

We gratefully acknowledge financial support from the CRC 1349 funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; Gefördert durch die Deutsche Forschungsgemeinschaft - Projektnummer 387284271 - SFB 1349). We would like to thank L. Richter and R. Jaeger for measurements of the low temperature and ¹H,¹⁵N HMBC NMR spectra and S. Rachor for scientific discussions. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: fluorido complexes · hydrogen bonding										
indolylphosphine • platinum • polyfluorido complexes										

- [1] a) N. M. Doherty, N. W. Hoffmann, Chem. Rev. 1991, 91, 553-573; b) E. F. Murphy, R. Murugavel, H. W. Roesky, Chem. Rev. 1997, 97, 3425-3468; c) V. V. Grushin, Chem. Eur. J. 2002, 8, 1006–1014; d) P. Nilsson, F. Plamper, O. F. Wendt, Organometallics 2003, 22, 5235-5242; e) A. Yahav, I. Goldberg, A. Vigalok, Inorg. Chem. 2005, 44, 1547–1553; f) T. Braun, A. Steffen, V. Schorlemer, B. Neumann, H.-G. Stammler, Dalton Trans. 2005, 3331-3336; g) D. S. Laitar, P. Müller, T. G. Gray, J. P. Sadighi, Organometallics 2005, 24, 4503-4505; h) D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. García-Fortanet, T. Kinzel, S. L. Buchwald, Science 2009, 325, 1661; i) A. Vigalok, Organometallics 2011, 30, 4802-4810; j) E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady, R. N. Perutz, Acc. Chem. Res. 2011, 44, 333-348; k) D. A. Smith, T. Beweries, C. Blasius, N. Jasim, R. Nazir, S. Nazir, C. C. Robertson, A. C. Whitwood, C. A. Hunter, L. Brammer, R. N. Perutz, J. Am. Chem. Soc. 2015, 137, 11820-11831; I) M. G. Campbell, T. Ritter, Chem. Rev. 2015, 115, 612-633; m) H. Baumgarth, G. Meier, T. Braun, B. Braun-Cula, Eur. J. Inorg. Chem. 2016, 2016, 4565–4572; n) T. Ahrens, J. Kohlmann, M. Ahrens, T. Braun, Chem. Rev. 2015, 115, 931-972; o) J. Kohlmann, T. Braun, R. Laubenstein, R. Herrmann, Chem. Eur. J. 2017, 23, 12218-12232; p) D. Dirican, M. Talavera, T. Braun, Chem. Eur. J. 2021, 27, 17707-17712; q) S. G. Rachor, R. Müller, P. Wittwer, M. Kaupp, T. Braun, Inorg. Chem. 2022, 61, 357-367; r) S. G. Rachor, R. Jaeger, T. Braun, Eur. J. Inorg. Chem. 2022, 17, e202200158
- [2] a) A. C. Albéniz, J. A. Casares, in *Adv. Organomet. Chem., Vol. 62* (Ed.: P. J. Pérez), Academic Press, **2014**, pp. 1–110; b) K. M. Engle, T.-S. Mei, X. Wang, J.-Q. Yu, *Angew. Chem. Int. Ed.* **2011**, *50*, 1478–1491; *Angew. Chem.* **2011**, *123*, 1514–1528; c) J. A. Akana, K. X. Bhattacharyya, P. Müller, J. P. Sadighi, *J. Am. Chem. Soc.* **2007**, *129*, 7736–7737.
- [3] a) M. Talavera, C. N. von Hahmann, R. Müller, M. Ahrens, M. Kaupp, T. Braun, *Angew. Chem. Int. Ed.* **2019**, *58*, 10688–10692; *Angew. Chem.* **2019**, *131*, 10798–10802; b) M. Talavera, R. Müller, T. Ahrens, C. N. von Hahmann, B. Braun-Cula, M. Kaupp, T. Braun, *Faraday Discuss.* **2019**, *220*, 328–349; c) M. Talavera, T. Braun, *Synlett* **2020**, *31*, 1760–1774.
- [4] a) R. D. W. Kemmitt, R. D. Peacock, J. Stocks, J. Chem. Soc. A 1971, 846–849; b) K. R. Dixon, J. J. McFarland, J. Chem. Soc. Chem. Commun. 1972, 1274–1275; c) M. A. Cairns, K. R. Dixon, J. J. McFarland, J. Chem. Soc. Dalton Trans. 1975, 1159–1164; d) J. Howard, P. Woodward, J. Chem. Soc. Dalton Trans. 1973, 1840–1843.
- [5] a) N. A. Jasim, R. N. Perutz, J. Am. Chem. Soc. 2000, 122, 8685–8693; b) T.
 Wang, B. J. Alfonso, J. A. Love, Org. Lett. 2007, 9, 5629–5631; c) T. Wang,
 J. A. Love, Organometallics 2008, 27, 3290–3296; d) A. Yahav-Levi, I.

Goldberg, A. Vigalok, J. Fluorine Chem. 2010, 131, 1100–1102; e) A. D. Sun, J. A. Love, J. Fluorine Chem. 2010, 131, 1237–1240; f) T. Wang, L. Keyes, B. O. Patrick, J. A. Love, Organometallics 2012, 31, 1397–1407; g) R. Friedemann, K. Seppelt, Eur. J. Inorg. Chem. 2013, 2013, 1197–1206; h) J. Berger, T. Braun, R. Herrmann, B. Braun, Dalton Trans. 2015, 44, 19553–19565; i) A. Abo-Amer, P. D. Boyle, R. J. Puddephatt, Inorg. Chem. Commun. 2015, 61, 193–196; j) J. Berger, T. Braun, T. Ahrens, P. Kläring, R. Laubenstein, B. Braun-Cula, Chem. Eur. J. 2017, 23, 8886–8900; k) N. Arnold, R. Bertermann, F. M. Bickelhaupt, H. Braunschweig, M. Drisch, M. Finze, F. Hupp, J. Poater, J. A. P. Sprenger, Chem. Eur. J. 2017, 23, 5948–5952; l) J. Hu, M. Nikravesh, H. R. Shahsavari, R. Babadi Aghakhanpour, A. L. Rheingold, M. Alshami, Y. Sakamaki, H. Beyzavi, Inorg. Chem. 2020, 59, 16319–16327; m) E. Sarkissian, M. Golbon Haghighi, Inorg. Chem. 2021, 60, 1016–1020; n) M. G. Haghighi, E. Sarkissian, H. Samouei, J. Organomet. Chem. 2022, 967, 122339.

- [6] C. Berg, T. Braun, M. Ahrens, P. Wittwer, R. Herrmann, Angew. Chem. Int. Ed. 2017, 56, 4300–4304; Angew. Chem. 2017, 129, 4364–4368.
- [7] S. Sander, R. Müller, M. Ahrens, M. Kaupp, T. Braun, Chem. Eur. J. 2021, 27, 14287–14298.
- [8] a) T. G. Richmond, *Coord. Chem. Rev.* **1990**, *105*, 221–250; b) C. E. Osterberg, M. A. King, A. M. Arif, T. G. Richmond, *Angew. Chem. Int. Ed. Engl.* **1990**, *29*, 888–890; c) S. Libri, N. A. Jasim, R. N. Perutz, L. Brammer, J. Am. Chem. Soc. **2008**, *130*, 7842–7844.
- [9] a) J.-W. Lee, M. T. Oliveira, H. B. Jang, S. Lee, D. Y. Chi, D. W. Kim, C. E. Song, *Chem. Soc. Rev.* 2016, *45*, 4638–4650; b) S. Liang, G. B. Hammond, B. Xu, *Chem. Eur. J.* 2017, *23*, 17850–17861; c) D. W. Kim, H.-J. Jeong, S. T. Lim, M.-H. Sohn, *Angew. Chem. Int. Ed.* 2008, *47*, 8404–8406; *Angew. Chem.* 2008, *120*, 8532–8534; d) C. Hollingworth, V. Gouverneur, *Chem. Commun.* 2012, *48*, 2929–2942.
- [10] a) C. M. Moore, N. K. Szymczak, Chem. Commun. 2015, 51, 5490–5492;
 b) J. R. Wilson, M. Zeller, N. K. Szymczak, Chem. Commun. 2021, 57, 753– 756.
- [11] a) M. K. Whittlesey, R. N. Perutz, B. Greener, M. H. Moore, Chem. Commun. 1997, 187–188; b) T. Braun, S. P. Foxon, R. N. Perutz, P. H. Walton, Angew. Chem. Int. Ed. 1999, 38, 3326–3329; Angew. Chem. 1999, 111, 3543–3545; c) S. J. Archibald, T. Braun, J. A. Gaunt, J. E. Hobson, R. N. Perutz, J. Chem. Soc. Dalton Trans. 2000, 2013–2018; d) N. A. Jasim, R. N. Perutz, S. P. Foxon, P. H. Walton, J. Chem. Soc. Dalton Trans. 2001, 1676–1685; e) F. Nahra, M. Brill, A. Gómez-Herrera, C. S. J. Cazin, S. P. Nolan, Coord. Chem. Rev. 2016, 307, 65–80; f) M. Joksch, J. Haak, A. Spannenberg, T. Beweries, Eur. J. Inorg. Chem. 2012, 2012, 2012, 2012, 2012
- [12] S. Sander, T. Braun, Angew. Chem. Int. Ed. 2022, 61, e202204678.
- [13] a) G. G. Mather, A. Pidcock, G. J. N. Rapsey, J. Chem. Soc. Dalton Trans. 1973, 2095–2099; b) A. Pidcock, in Catalytic Aspects of Metal Phosphine Complexes, Vol. 196 (Eds.: E. C. Alyea, D. W. Meek, American Chemical Society, Washington, DC, 1982, pp. 1–22; c) R. J. Blau, J. H. Espenson, Inorg. Chem. 1986, 25, 878–880; d) P. G. Waddell, A. M. Z. Slawin, J. D. Woollins, Dalton Trans. 2010, 39, 8620–8625.
- [14] a) A. Pidcock, R. E. Richards, L. M. Venanzi, J. Chem. Soc. A 1966, 1707– 1710; b) T. G. Appleton, H. C. Clark, L. E. Manzer, Coord. Chem. Rev. 1973, 10, 335–422; c) T. G. Appleton, M. A. Bennett, Inorg. Chem. 1978, 17, 738–747.
- [15] a) L. Rigamonti, C. Manassero, M. Rusconi, M. Manassero, A. Pasini, Dalton Trans. 2009, 1206–1213; b) L. Rigamonti, A. Forni, M. Manassero, C. Manassero, A. Pasini, Inorg. Chem. 2010, 49, 123–135.
- [16] J. K. Jawad, R. J. Puddephatt, M. A. Stalteri, Inorg. Chem. 1982, 21, 332– 337.
- [17] a) H. C. Clark, K. von Werner, J. Organomet. Chem. 1975, 101, 347–358;
 b) M. Hackett, G. M. Whitesides, Organometallics 1987, 6, 403–410.
- [18] Y. Suzaki, M. Kiho, K. Osakada, Organometallics 2017, 36, 1391–1397.
- [19] H. C. Clark, L. E. Manzer, J. Organomet. Chem. 1973, 59, 411–428.
- [20] a) G. C. Pimentel, A. L. McClellan, *The hydrogen bond*, W. H. Freeman And Co, San Francisco and London, **1960**; b) A. Novak, in *Large Molecules. Structure and Bonding, Vol. 18*, Springer Berlin Heidelberg, Berlin, Heidelberg, **1974**, pp. 177–216; c) G. A. Jeffrey, *An Introduction to Hydrogen Bonding*, Oxford University Press, **1997**; d) T. Steiner, *Angew. Chem. Int. Ed.* **2002**, *41*, 48–76; *Angew. Chem.* **2002**, *114*, 50–80; e) T. Steiner, *Angew. Chem.* **2002**, *114*, 50–80; *Angew. Chem. Int. Ed.* **2002**, *41*, 48–76.
- [21] a) R. Romeo, G. Alibrandi, *Inorg. Chem.* **1997**, *36*, 4822–4830; b) C. M. Haar, S. P. Nolan, W. J. Marshall, K. G. Moloy, A. Prock, W. P. Giering, Organometallics **1999**, *18*, 474–479.
- [22] a) J. F. Nixon, A. Pidcock, in *Annual Reports on NMR Spectroscopy, Vol. 2* (Ed.: E. F. Mooney), Academic Press, **1969**, pp. 345–422; b) F. B. Ogilvie, J. M. Jenkins, J. G. Verkade, *J. Am. Chem. Soc.* **1970**, *92*, 1916–1923.

Chem. Eur. J. 2023, 29, e202202768 (10 of 11)

[23] a) J. D. Kennedy, W. McFarlane, R. J. Puddephatt, P. J. Thompson, J. Chem. Soc. Dalton Trans. **1976**, 874–879; b) D. C. Smith, C. M. Haar, E. D. Stevens, S. P. Nolan, W. J. Marshall, K. G. Moloy, Organometallics **2000**, 19, 1427–1433; c) P. S. Braterman, R. J. Cross, G. B. Young, J. Chem. Soc. Dalton Trans. **1977**, 1892–1897; d) C. Eaborn, K. J. Odell, A. Pidcock, J. Chem. Soc. Dalton Trans. **1978**, 357–368; e) H. A. Brune, J. Ertl, Liebigs Ann. Chem. **1980**, 1980, 928–937; f) C. Eaborn, K. Kundu, A. Pidcock, J. Chem. Soc. Dalton Trans. **1981**, 933–938.

[24] F. H. Allen, A. Pidcock, J. Chem. Soc. A 1968, 2700-2704.

- [25] a) J. M. Wisner, T. J. Bartczak, J. A. Ibers, Organometallics 1986, 5, 2044–2050; b) C. Laporte, G. Frison, H. Grützmacher, A. C. Hillier, W. Sommer, S. P. Nolan, Organometallics 2003, 22, 2202–2208; c) P. Nair, G. K. Anderson, N. P. Rath, Organometallics 2003, 22, 1494–1502; d) D. Gudat, V. K. Jain, A. Klein, T. Schurr, S. Záliš, Eur. J. Inorg. Chem. 2005, 2005, 4056–4063; e) I. Pantcheva, K. Osakada, Organometallics 2006, 25, 1735–1741; f) A. Gunay, W. D. Jones, J. Am. Chem. Soc. 2007, 129, 8729–8735; g) A. Yahav-Levi, I. Goldberg, A. Vigalok, A. N. Vedernikov, J. Am. Chem. Soc. 2008, 130, 724–731; h) N. Mintcheva, M. Tanabe, K. Osakada, Organometallics 2011, 30, 187–190; i) S. Kundu, B. E. R. Snyder, A. P. Walsh, W. W. Brennessel, W. D. Jones, Polyhedron 2013, 58, 99–105.
- [26] a) J. E. Del Bene, R. J. Bartlett, J. Elguero, *Magn. Reson. Chem.* 2002, 40, 767–771; b) J. E. Del Bene, S. A. Perera, R. J. Bartlett, M. Yáñez, O. Mó, J. Elguero, I. Alkorta, *J. Phys. Chem. A* 2003, 107, 3121–3125.
- [27] a) R. M. Claramunt, D. Sanz, C. López, J. A. Jiménez, M. L. Jimeno, J. Elguero, A. Fruchier, *Magn. Reson. Chem.* **1997**, *35*, 35–75; b) M. Radek, L. Antonin, K. Erkki, S. Elina, T. Jaromir, *Curr. Org. Chem.* **2007**, *11*, 1154–1205.
- [28] C. Berg, N. Pfister, T. Braun, B. Braun-Cula, Chem. Eur. J. 2018, 24, 7985– 7990.
- [29] Y.-Y. Kuo, R. C. Da Costa, H. A. Sparkes, M. F. Haddow, G. R. Owen, Eur. J. Inorg. Chem. 2020, 2020, 4195–4202.
- [30] R. R. Lovelace, K. M. Harmon, J. Mol. Struct. 1989, 193, 247-262.
- [31] K. M. Harmon, R. R. Lovelace, J. Phys. Chem. 1982, 86, 900-903.
- [32] a) F. H. Allen, S. N. Sze, J. Chem. Soc. A 1971, 2054–2056; b) L. M. Venanzi, Chem. in Britain 1968, 4, 162; c) Y. K. Syrkin, Bull. Acad. Sci. USSR, Cl. Sci. Chim. 1948, 69.
- [33] a) U. Sternberg, E. Brunner, J. Magn. Reson. 1994, 108, 142–150; b) E. D. Becker, in Encyclopedia of Nuclear Magnetic Resonance, Vol. 1 (Eds.: D. Grant, R. K. Harris), John Wiley, New York, 1996, pp. 2409–2415; c) A. J. Dingley, F. Cordier, S. Grzesiek, Concepts Magn. Reson. 2001, 13, 103–127; d) M. G. Siskos, A. G. Tzakos, I. P. Gerothanassis, Org. Biomol. Chem. 2015, 13, 8852–8868; e) M. N. C. Zarycz, C. Fonseca Guerra, J. Phys. Chem. Lett. 2018, 9, 3720–3724.
- [34] F. Mack, C. J. Schattenberg, M. Kaupp, F. Weigend, J. Phys. Chem. A 2020, 124, 8529–8539.
- [35] M. Kaupp, C. J. Schattenberg, R. Müller, M. Reimann, *ChemistryOpen* 2002, 11, e202200146.
- [36] J. Lobban, Preparation of novel fluorine-containing organometallic platinum compounds as conductive material, **2003**.
- [37] a) S. Wallwork, Acta Crystallogr. 1962, 15, 758–759; b) D.-H. Lee, H. J. Kwon, B. P. Patel, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree, Organometallics 1999, 18, 1615–1621; c) A. Maity, R. J. Stanek, B. L. Anderson, M. Zeller, A. D. Hunter, C. E. Moore, A. L. Rheingold, T. G. Gray, Organometallics 2015, 34, 109–120; d) J. M. Stauber, G. E. Alliger, D. G. Nocera, C. C. Cummins, Inorg. Chem. 2017, 56, 7615–7619.
- [38] T. Steiner, Acta Crystallogr. Sect. B 1998, 54, 456–463.
- [39] J. Wassenaar, J. N. H. Reek, Dalton Trans. 2007, 3750-3753.

- [40] G. M. Sheldrick, University of Göttingen, Göttingen, 1996.
- [41] G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8.
- [42] G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
- [43] a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett.
 1989, 162, 165–169; b) O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346–354; c) M. Von Arnim, R. Ahlrichs, J. Comput. Chem. 1998, 19, 1746–1757.
- [44] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868; Phys. Rev. Lett. 1997, 78, 1396.
- [45] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- [46] a) K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, *Chem. Phys. Lett.* **1995**, *242*, 652–660; b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, *Theor. Chem. Acc.* **1997**, *97*, 119–124; c) M. Sierka, A. Hogekamp, R. Ahlrichs, *J. Chem. Phys.* **2003**, *118*, 9136–9148; d) F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057–1065.
- [47] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [48] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- [49] a) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 799–805;
 b) A. Klamt, J. Phys. Chem. 1995, 99, 2224–2235.
- [50] AMS 2021.1, SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, http://www.scm.com.
- [51] a) S. K. Wolff, T. Ziegler, J. Chem. Phys. 1998, 109, 895–905; b) S. K. Wolff, T. Ziegler, E. Van Lenthe, E. J. Baerends, J. Chem. Phys. 1999, 110, 7689– 7698.
- [52] A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377.
- [53] E. Van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142-1156.
- [54] M. Franchini, P. H. T. Philipsen, L. Visscher, J. Comput. Chem. 2013, 34, 1819–1827.
- [55] NBO 7.0.7, E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2018.
- [56] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.
- [57] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926.
- [58] a) K. B. Wiberg, Tetrahedron 1968, 24, 1083–1096; b) K. B. Wiberg, J. Am. Chem. Soc. 1968, 90, 59–63.

Manuscript received: September 5, 2022 Accepted manuscript online: November 3, 2022 Version of record online: December 12, 2022