
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
8
6
4
0
7
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
9
.
9
.
2
0
2
3

Harald Witte*, Tobias U. Blatter, Priyanka Nagabhushana, David Schär, James Ackermann,
Janne Cadamuro and Alexander B. Leichtle

Statistical learning and big data applications
https://doi.org/10.1515/labmed-2023-0037
Received March 28, 2023; accepted May 9, 2023;
published online June 2, 2023

Abstract: The amount of data generated in the field of lab-
oratory medicine has grown to an extent that conventional
laboratory information systems (LISs) are struggling to
manage and analyze this complex, entangled information
(“Big Data”). Statistical learning, a generalized framework
from machine learning (ML) and artificial intelligence (AI) is
predestined for processing “Big Data” and holds the potential
to revolutionize thefield of laboratorymedicine. Personalized
medicine may in particular benefit from AI-based systems,
especiallywhen coupledwith readily availablewearables and
smartphones which can collect health data from individual
patients and offer new, cost-effective access routes to
healthcare for patients worldwide. The amount of personal
data collected, however, also raises concerns about patient-
privacy and calls for clear ethical guidelines for “Big Data”
research, including rigorous quality checks of data and algo-
rithms to eliminate underlying bias and enable transparency.
Likewise, novel federated privacy-preserving data processing
approachesmay reduce the need for centralized data storage.
Generative AI-systems including large language models such

as ChatGPT currently enter the stage to reshape clinical
research, clinical decision-support systems, and healthcare
delivery. In our opinion, AI-based systems have a tremendous
potential to transform laboratory medicine, however, their
opportunities should be weighed against the risks carefully.
Despite all enthusiasm,weadvocate for stringent added-value
assessments, just as for any new drug or treatment. Human
experts should carefully validate AI-based systems, including
patient-privacy protection, to ensure quality, transparency,
and public acceptance. In this opinion paper, data pre-
requisites, recent developments, chances, and limitations of
statistical learning approaches are highlighted.

Keywords: ChatGPT; clinical decision-support systems; lab-
oratorymedicine;machine learning; personalizedmedicine;
wearables.

Introduction

In recent years, new technologies have led to a steep in-
crease of the amount of data generated in the field of labo-
ratory medicine, including clinical chemistry, hematology,
microbiology, genetics, and various “omics”-approaches
while today’s laboratory information systems (LISs) can
hardly cope with this plethora of data. This rich pool of “Big
Data” needs innovative approaches and technical improve-
ments to render it accessible for clinical data science [1, 2].
Advanced analysis methods which were formerly only
manageable by a handful of experts, are nowwidely utilized
and enter clinical routine. This includes statistical learning, a
framework of machine learning (ML) that allows to build
predictive models based on underlying data. The combina-
tion of “Big Data” and statistical learning disrupts the con-
ventional field of laboratory medicine, allowing improved
diagnostics and the development of accurate prognostic
models using data not only from analytical instruments, but
also from the large pool of data available from electronic
health records (EHRs). We will briefly highlight chances and
challenges of recent developments for the application of
statistical learning in clinical laboratory sciences.

Overview

Statistical learning is an ML framework to infer distribu-
tional properties of available data with the goal to allow
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predictions, i.e., find a predictive function for the data. This
approach follows the scientific method: First, a hypothesis is
formulated for a phenomenon of interest. Based on detailed
observations (i.e., collected data), a model of the phenome-
non is set up and continuously refined. The ultimate aim of
the model is to predict the phenomenon from similar new
data. In the setting of statistical learning and artificial
intelligence, this process is “just” automated. This allows
statistical learning procedures to process large amounts of
data and detect inherent patterns which would be hard or
even impossible to infer otherwise. Themultiple approaches
to statistical learning include supervised, unsupervised and
reinforcement learning [3]. The now omnipresent “artificial
intelligence“ (AI) also makes use of these data-intense
ML-frameworks.

Laboratory medicine and clinical science generate “Big
Data” of manifold types, including electronic health records
(EHRs), imaging data or data of various “omics”-approaches
including metabolomics, genomics and proteomics. Such
data is – in addition to its sheer amount – often highly
complex and intrinsically entangled. Here, the ongoing
process of automatization in laboratorymedicine offers new
possibilities to incorporate advanced statistics into fully
autonomous routines with the welcome side effect of lower
costs [4]. Hence, statistical learning and clinical data are a
predestined match to the benefit of patients and research
(Figure 1).

Data prerequisites

To be most useful for clinical and research purposes, data
should ultimately conform to the FAIR data principles,
i.e., the data should be findable, accessible, interoperable,
and reusable, which poses a substantial challenge to current
LISs [2]. Frequently, clinical data is stored in clinical data
warehouses (CDWs) or data lakes, with CDWs being common

for structured data like EHRs and laboratory results and data
lakes being more suitable for larger data volumes like im-
ages or “omics”-data in their native, raw formats. Non-
relational databases (e.g., NoSQL-databases, referring to the
difference from traditional structured query language (SQL)-
databases) are an alternative approach without a fixed
schema, which may offer enhanced flexibility, speed and
scalability as compared to CDWs, but may be more complex
to set up. Federated analysis approaches in turn constitute a
secure, privacy-preserving alternative to centralized data
storage [5].

LISs tend to be historically grown, therefore the data in
the source systems often do not comply with current stan-
dardized quality measures and may lack correct formatting
or suffer from incompleteness. Consequently, the extract,
transform, load (ETL)-processes to prepare data for analysis
and clinical research (as a “Big Data”-resource) are
cumbersome. In the worst case they are not addressed at all,
e.g., due to a lack of resources, thereby precluding research
and use of available data. The aim should therefore be to
harmonize data and supplement it with metainformation at
the source to optimize usefulness and interoperability of
data over time and between centers by using controlled
vocabulary as well as international standards and classifi-
cation systems [2] – this is admittedly a significant invest-
ment but will pay off down the road by streamlining internal
processes and facilitating national and international col-
laborations. Individual “lighthouse projects” can break
down the enormous challenge into smaller parts by first
implementing certain aspects such as quality control or
introduction of specific standards to start with.

Common standards and systems include the Unified Code
for Units of Measure (UCUM) for units, the Anatomical Thera-
peutic Chemical (ATC) classification system for drugs, the
International Classification of Diseases (ICD) for diseases and
maladies, the Logical Observation Identifiers Names and Codes
(LOINC) for analyses, or the Systematized Nomenclature of
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Figure 1: Simplified workflow diagram for statistical learning approaches. Clinical data often stem frommultiple source systems, e.g., for different types
of data like laboratory and imaging data, or for different internal origins, e.g., results from central laboratories vs. point-of-care-testing (POCT). Data
needs to be harmonized, quality-checked, and combined to an interoperable “Big Data”-resource, respecting patient-privacy. Datamay be preprocessed
and used for training, validation and refinement of a statistical model. The final aim after external validation is the translation into clinical routine.
Notably, novel federated analysis approaches allow the analysis of multi-cohort data without the need to store data in a centralizedmanner [5]. The need
for data to be qualified at the point of care nevertheless remains of course.
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Medicine-Clinical Terms (SNOMED-CT) for medical terms.
Suitable standardized formats for data exchange, e.g., the Fast
Healthcare Interoperability Resources (FHIR) standard or
graph-based data representations such as the Resource
Description Framework (RDF) will promote data interopera-
bility further. Information on the type of method applied as
well as on manufacturer and type of instruments or reagents
used should also be provided along with laboratory results.
Here, standardized unique identifiers are most useful, e.g.,
from the Global Unique Device Identifier Database (GUDID) or
the European Database on Medical Devices (EUDAMED), as
well as medical device nomenclatures such as the Global
Medical Device Nomenclature (GMDN) or the European Med-
ical Device Nomenclature (EMDN). Notably, for some analyses,
e.g., immunoassays, such additional metainformation is
particularly important and indispensable to make data fully
comparable between laboratories (or avoid comparison of
“apples and pears”).

Recent developments

In this section we will briefly present a few recent publica-
tions highlighting different perspectives of the immense
potential of statistical learning models – due to space con-
straints, this list is a small selection far from complete. For a
broader overview, we refer the interested reader to recent
reviews [3, 6, 7].

One of the core fields for statistical learning models in a
medical context is diagnostics. Comparably simple ap-
proaches like logistic regression models as well as more
complex deep learning (DL) models can forecast emergence
or severity of a disease, for example from laboratory results
of COVID-19 patients [8, 9]. Similarly, an approach based on
Bayesian Model Averaging in combination with orthogonal
data augmentation used routine hospital data for the pre-
diction of myocardial ischemia [10].

Ideally, AI-based diagnostics will eventually reduce
mortality, e.g., by frequent causes like sepsis or cardiac death
from arrhythmia. A recent DL approach using cardiac
magnetic resonance images and clinical covariates predicts
individualized survival curves for patients with ischemic
heart disease [11]. Prediction (and consequently avoidance)
of sepsis is another important focus of research, be it from a
set of biomarkers [12] or EHRs [13]. These accurate and
generalizable predictions offer a non-invasive and relatively
cheap next-level support for clinical diagnostics and deci-
sion-making.

Reliable diagnoses are also key to ensure cost-effectiveness
by avoiding unnecessary repeated testing. Algorithms can
support the interpretation of test outcomes, e.g., of rapid HIV

tests in rural areas of developing countries to reduce the
number of false negatives and false positives [14]. Likewise,
ML-based models can improve the precision of diagnoses, for
example kidney diseases, to choose the optimal therapeutic
approach [15]. While the assembly of “Big Data”-sets can be
cumbersome and expensive, statistical models – once trained –
are easy to apply and can be cost-saving, in particular when
incorporated in readily available devices like smartphones.
Their worldwide spread has paved the ground for a wide
variety of health-related applications. This includes apps like
fitness trackers, often in combination with wearable devices,
but also medical applications including non-invasive image-
based detection of anemia [16] or skin cancer [17], and detection
and management of hypertension [18]. Notably, several appli-
cations that offer smartphone-based support for wound care
and urine analysis have already been CE-marked and
FDA-cleared [19]. Such systems open up improved access to
novel diagnostic approaches for rural areas or developing
countries and can in addition reduce the workload of clinical
staff in overwhelmed health systems.

Another advantage of “Big Data” research is the poten-
tial to confirm or rectify previous underpowered studies. A
recent study for example cautions against popular claims
that the gut microbiome is a driving factor in autism spec-
trum disorder. The results instead endorse a model in which
the reduced microbial taxonomic diversity found in autistic
patients is consequence rather than cause of autism [20].

Curiously enough, artificial intelligence (AI) may by
now also offer support in areas supposed to be genuinely
human. A recent study trained a multi-task RoBERTa-based
bi-encoder model to characterize empathy in conversations
[21]. Human peer supporters of onlinemental health support
platforms receiving real-time feedback from this AI were
enabled to provide more empathic responses to support
seekers – a good example of a fruitful human-AI collabora-
tion. Along those lines, the assessment of human sentiment
by AI-models using social media data is a growing field of
interest. While holding a lot of commercial potential (e.g.,
revealing customer preferences), it can be of clinical interest
as well, for example for the detection of depression [22].

Challenges and limitations

Personalized medicine is one of the fields envisioned to
benefit most from AI-models. The combination of multi-
faceted “Big Data” pools containing ever more details about
an individual and the growing possibilities to analyze and
interconnect this information, notably also across multiple
data pools, offers many chances to generate predictions and
insight. Personalization of healthcare, however,may require
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the collection of sensitive patient data which is now being
accumulated at an unprecedented scale [23]. This includes
“classical” medical data or health data from wearable de-
vices, but also non-medical data like personal habits,
movement profiles, personal web traffic, or even directly
identifying information like social security numbers or
mobile phone numbers. This data is collected by or shared
with multiple private and public stakeholders. Whether this
always happens on the basis of well-informed consent,
where “data donors” are fully aware of all implications of
data sharing, may at least be doubted [24]. This opens the
door for violations of patient privacy and confidentiality
with the risk of data being mishandled or potentially mis-
used [25]. It is therefore crucial to ensure that data is
collected on the basis of well-informed consent, but also
stored as well as analyzed in a secure and responsible
manner. Importantly, well-intentioned measures such as
“de-identification” may not suffice – full anonymization of
detailed sensitive data (including health data) can be difficult
to attain [26]. Some voices therefore advocate to accept a
(small) risk of re-identification of patients for the sake of
medical progress [27]. It would be desirable that data con-
sumers (e.g., researchers or “end users”) act in an ethical
way by their own effort, but in absence of clear guidelines
(“Do’s and Don’ts”) it may vary widely what individuals find
“acceptable”. Therefore, there is definitely a need for clear
ethical guidelines for “Big Data” research, as using “BigData”
comes along with great responsibility [28, 29]. An elegant
solution for this dilemma may be offered by federated
data processing approaches which keep data exclusively
on-site of a trusted data provider (e.g., a hospital) and
only reveal aggregate data to a researcher (“no copy, no
move”-principle) [5].

A sometimes neglected limitation of AI-based models
originates in the data itself: “Big Data” does not inevitably
warrant “high-quality data”. Data harmonization and
rigorous checks to remove bias and ensure plausibility and
quality of data need to be the rule before data is made
available to statistical learning models (Figure 1), both for
training and the actual analysis [2]. Depending on the
application, such measures during the ETL-process include
the removal of data where crucial information is missing
(e.g., diagnosis codes) or values which have been entered
wrongly (for example, implausible birthdates, body weights
or heights), removal of biasing information where appli-
cable (e.g., gender, information on ethnic background, or
income), removal of obviously wrong measurements (for
example, laboratory values incompatible with living pa-
tients), the addition ofmetainformation on analysismethods
(e.g., to avoid the comparison of incompatible assays by
providing information onmanufacturer and version of a test

kit), or the unification of results of compatible assays under
a common standardized code (e.g., mapping of multiple
internal analysis codes to one suitable LOINC) [30].

Statistical learning models are to a large extent as good
as the data they are trained with – trained with biased data,
their output will be biased, too [31]. A recent study for
instance highlights that current stroke-prediction models
perform worse for Black as compared to White adults [32] –
further effort is urgently called for to eliminate such bias.
This also applies in a broader medical context, as a model
trained on specific patient populations to predict medical
outcomes inherently reflects patients’ access to health care,
stigma around seeking medical care, and cultural health
norms [33]. Another issue with statistical learning algo-
rithms is their lack of transparency. Explainable artificial
intelligence (XAI) which reveals the “reasoning” behind its
decisions (“white-box” models) may be the way forward
here [34, 35]. A different sort of bias is neither rooted in the
data nor the statistical learning models: Will all patients
benefit alike from elaborated new applications, or will it
primarily be those anyway privileged already?

Future advanced models will ideally help to identify
therapeutic targets on the level of the individual patient. A
recent high-profile genomics publication, however, suggests
that the currently available tools for clinical interpretation
need further refinement to achieve this milestone – large
amounts of data alone are not sufficient [36]. In part thismay
be due to erroneous model setup. While novel tools have
drastically facilitated the generation of ML-based models
they do not automatically circumvent methodological pit-
falls, including data leakage, leading to reproducibility fail-
ures [37].

Conclusions and outlook

Statistical learning and “Big Data” applications offer
immense chances to the field of laboratory medicine and
beyond, including improved diagnostic and prognostic
models as well as potential decision support. The diverse
and overarching “Big Data” their success is built on, how-
ever, comes along with major challenges which call for a
considerate, responsible implementation of future applica-
tions. International efforts of the scientific community,
society as a whole, and regulatory bodies will be required to
balance progress and patient privacy.

Currently, we are also witnessing the debut of genera-
tive AI to a broad audience of both expert and lay users, with
large language models (LLMs) using natural language
processing (NLP) like ChatGPT being the most celebrated
ones for now. This is very likely more than a brief hype but
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rather the beginning of an exciting era where LLMs may
support experts with the analysis of the growing amount of
literature, facilitating the generation ofnewclinical hypotheses
or simply staying up to date with recent developments,
resulting in better-informed decisions of clinical staff. LLMs
mayalso improve communicationbetween experts of different
fields or doctors and patients – it is not necessarily a core
strength of every specialist to convey expertise in a straight-
forward manner. If “digital literacy” is fostered at early stages
of education, AI-based systems may also enable personalized
training of students and healthcare professionals. Overall,
recent developments offer numerous opportunities to di-
agnostics and “BigData” applications andmaybring education,
research, and healthcare delivery to the next level [38, 39].

While it is tempting to see new promising approaches
through rose-colored glasses, they should undergo the same
added-value assessment as any other new methodology to
avoid “ChatGPT hallucinations” (plausible-sounding yet
incorrect statements of AI-systems) [40, 41]. Ideally, protec-
tion and security of patients and their data should be a
natural “side effect” for responsible scientists and de-
velopers, rather than a primary target. Full transparency of
decisions which algorithms are influencing is the way to go
to ensure public acceptance.

Eventually, it is not guaranteed that statistical learning
algorithms will actually grasp biological or medical signifi-
cance, i.e., draw the right conclusions from detected pat-
terns. We therefore advocate a future where human experts
and AI work hand in hand to combine the best of both
worlds – in laboratory medicine and beyond.
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