
European Journal of Radiology 167 (2023) 111047

Available online 14 August 2023
0720-048X/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research article 

Automated liver segmental volume ratio quantification on non-contrast 
T1–Vibe Dixon liver MRI using deep learning 

Lukas Zbinden a,b, Damiano Catucci b,c, Yannick Suter a, Leona Hulbert b, Annalisa Berzigotti d, 
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A B S T R A C T   

Purpose: To evaluate the effectiveness of automated liver segmental volume quantification and calculation of the 
liver segmental volume ratio (LSVR) on a non-contrast T1-vibe Dixon liver MRI sequence using a deep learning 
segmentation pipeline. 
Method: A dataset of 200 liver MRI with a non-contrast 3 mm T1-vibe Dixon sequence was manually labeled slice- 
by-slice by an expert for Couinaud liver segments, while portal and hepatic veins were labeled separately. A 
convolutional neural network was trained using 170 liver MRI for training and 30 for evaluation. Liver segmental 
volumes without liver vessels were retrieved and LSVR was calculated as the liver segmental volumes I-III 
divided by the liver segmental volumes IV-VIII. LSVR was compared with the expert manual LSVR calculation 
and the LSVR calculated on CT scans in 30 patients with CT and MRI within 6 months. 
Results: The convolutional neural network classified the Couinaud segments I-VIII with an average Dice score of 
0.770 ± 0.03, ranging between 0.726 ± 0.13 (segment IVb) and 0.810 ± 0.09 (segment V). The calculated mean 
LSVR with liver MRI unseen by the model was 0.32 ± 0.14, as compared with manually quantified LSVR of 0.33 
± 0.15, resulting in a mean absolute error (MAE) of 0.02. A comparable LSVR of 0.35 ± 0.14 with a MAE of 0.04 
resulted with the LSRV retrieved from the CT scans. The automated LSVR showed significant correlation with the 
manual MRI LSVR (Spearman r = 0.97, p < 0.001) and CT LSVR (Spearman r = 0.95, p < 0.001). 
Conclusions: A convolutional neural network allowed for accurate automated liver segmental volume quantifi
cation and calculation of LSVR based on a non-contrast T1-vibe Dixon sequence.   

1. Introduction 

Liver cirrhosis is associated with a hypertrophy of the left liver seg
ments (I-III) and a hypotrophy of the right liver segments (IV-VIII) [1,2], 
which correlates with the patient’s individual prognosis [3], and helps 
differentiating cirrhosis from other types of liver diseases such as porto- 
sinusoidal vascular disorder (PSVD) [4]. The liver segmental volume 

ratio (LSVR) may be quantified on liver CT and MRI, as a quantitative 
non-invasive imaging biomarker to measure liver segmental remodeling 
[5]. LSVR describes the relative size of the different segments of the liver 
and is calculated as the volume of the left liver segments (I-III) divided 
by the right liver segments (IV – VIII). LSVR has been proven useful for 
liver fibrosis staging [6]. An LSVR threshold of ≥ 0.35 had a sensitivity 
and specificity for cirrhosis of 81.5% and 88.7% [7] and was able to 
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predict significant liver fibrosis based on an MR elastography cutoff 
value ≥ 3.5 kPa [8]. As LSVR is calculated non-invasively, it may be used 
as a repetitive measurement during follow-up in patients with chronic 
liver disease. 

The evaluation of liver volumes in MRI showed a high correlation 
with the measurement of the volume of the explanted liver in rats [9], 
and has also been validated in vivo in patients [10,11]. LSVR from MRI 
examinations is currently a complex procedure, as it requires time- 
consuming manual segmentation of the liver segments in the MR se
quences by radiologists with dedicated software. 

Deep learning (DL) is a branch of artificial intelligence that involves 
the use of neural networks to perform complex tasks such as image 
segmentation, voice recognition, and natural language processing. In the 
field of medical imaging, deep learning algorithms are increasingly 
being used to analyze and interpret medical images, such as X-rays, 
computer tomography (CT) scans, and magnetic resonance imaging 
(MRI) scans [12]. By automatically analyzing MRI scans, deep learning 
algorithms can provide clinicians with non-invasive, faster, and more 
accurate diagnoses than would be possible with human interpretation 
alone. In recent years, significant progress has been made in the devel
opment of deep learning algorithms for MRI [13,14]. 

Recently, a fully automated LSVR calculation has been developed on 
contrast-enhanced CT scans with a deep learning-based model [15], but 
up to our knowledge, there is no such model for liver MRI. As the al
gorithm employed in this study is applicable on non-contrast T1-vibe 
Dixon sequences, it is independent from the contrast medium and may 
be used as well on liver MRI without contrast medium administration, 
which is expensive and contraindicated in patients with kidney failure. 
In addition, it would also be available for abbreviated, non-contrast liver 
MRI protocols, as it is currently discussed for several indications, such as 
hepatocellular carcinoma screening [16]. 

The aim of our study was to evaluate the effectiveness of automated 
liver segmental volume quantification and calculation of the liver 
segmental volume ratio (LSVR) on a non-contrast T1-vibe Dixon liver 
MRI sequence using a deep learning segmentation pipeline. 

2. Material and methods 

This retrospective study was approved by the local ethics committee 

(Bern cantonal ethics committee, Bern, Switzerland) and was carried out 
in accordance with the principles of the Declaration of Helsinki. All 
patients gave written informed consent to participate in the study. The 
authors had full access to and take full responsibility for the integrity of 
the data. 

2.1. Study participants 

This was a retrospective analysis of a prospective study, including 
184 patients with an abdominal CT in portal venous phase for any reason 
without malignant liver lesions or prior liver interventions who were 
invited to undergo a multiparametric liver MRI within 6 months from CT 
between 04/2015 – 11/2017. In addition, 61 consecutive patients with 
liver cirrhosis and clinically indicated liver MRI, without malignant liver 
lesions or prior liver intervention were included between 09/2018 – 05/ 
2019, resulting in a dataset of 245 liver MRI (Fig. 1). Patients with 
incomplete MRI sequences (n = 15) were excluded. The remaining MRI 
exams from 230 patients were collected from the picture archiving 
system (PACS) of the hospital in Digital Imaging and Communications in 
Medicine (DICOM) format. Acquisitions with significant motion artifacts 
(n = 27), inconsistent DICOM header (n = 2), or liver lesions > 2 cm (n 
= 1) were excluded. The final study population thus included 200 pa
tients. All MRI acquisitions included a non-contrast 3 mm T1-vibe Dixon 
in-phase sequence which was used in this study. Clinical characteristics 
were collected from the medical records and included the following: age, 
sex, weight, body mass index (BMI), and etiology of liver disease. 

2.2. Magnetic resonance imaging 

All magnetic resonance images were acquired at our university 
hospital on Siemens Magnetom scanners (154x Prismafit for 3 T, 46x 
Aera for 1.5 T; Siemens Healthineers, Erlangen, Germany). The acqui
sitions were made with a slice thickness of 3 mm and various pixel 
spacings ranging from 0.9375 × 0.9375 mm2 to 1.5625 × 1.5625 mm2. 
The sequences used in the study had axial dimensions ranging from 210 
× 320 to 270 × 320 pixels with 60 to 104 axial slices. The choice of the 
non-contrast T1-vibe Dixon in-phase acquisition to build the dataset was 
based on previous work by Zbinden et al. [17], showing the best per
formance for parenchyma and vessel segmentation, while the addition 

Fig. 1. Study participants inclusion flowchart.  
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of opposed-phase acquisition, as well as fat and water reconstructions, 
did not increase the accuracy of liver parenchyma and vessel 
segmentation. 

2.3. Computer tomography 

The CT scans of the patient cohort were acquired on Siemens 
Somatom Definition Flash (Siemens Healthineers, Erlangen, Germany), 
Siemens Somatom Definition Edge (Siemens Healthineers, Erlangen, 
Germany) and Philips Brilliance 64 (Philips, Best, Netherlands) scanners 
within 6 months of MRI, as previously published [18]. For CT scans, a 
pitch of 0.8 and a detector collimation of 0.6 were used. The acquisitions 
were automatically adapted based on a reference of 100 kVp and 150 
mAs. Axial 1-mm slices were reconstructed with an increment of 1 mm 
in a liver parenchyma window, using the vendor-specific iterative 
reconstruction algorithm. 

2.4. Preprocessing and manual segmentation 

The liver MRI data sets were manually labeled slice-by-slice on in- 
phase images by a trained radiology resident with three years of expe
rience in liver MRI (D.C.) and a second reader with one year of experi
ence in liver MRI (L.H.) using ITK-SNAP (version 3.8.0) [19]. Liver 
segments and liver vessels (hepatic veins, portal veins) were manually 
segmented (Fig. 2). All results were reviewed by a board-certified 
abdominal radiologist with 7 years of experience (M.B.) and manually 
corrected, where necessary. 

The Couinaud segment delineation on the CT scans was handled 
using the Philips IntelliSpace Portal software (version 10.1). The seg
mentation was done semi-automatically with an initial delineation of 
the liver parenchyma suggested by the system. Subsequently, a board- 
certified radiologist with 8 years of experience (V.C.O.) corrected the 
liver borders manually and provided key landmarks for the assignment 
of the segments by the system, while the borders of segments I-III and IV- 
VIII were manually corrected in every patient, where necessary. LSVR 
was calculated by dividing the liver segmental volumes I-III by the liver 
segmental volumes IV-VIII. 

2.5. Deep learning algorithm 

2.5.1. Segmentation network 
The deep learning algorithm used for automated delineation of the 

Couinaud liver segments, and the liver vessels, was a 3D convolutional 
neural network with a U-Net architecture [20], the nnU-Net imple
mentation [21]. The nnU-Net offers a fully automated machine learning 
pipeline including data preprocessing, data augmentation, network ar
chitecture optimization, and postprocessing. We employed it in its 
original form without modifying the pipeline. The nnU-Net neural 
network architecture has 30.7 million trainable parameters, enabling it 
to learn and represent complex patterns within the imaging data. The 
segmentation task for the DL model was to classify each MR imaging 
voxel into one of twelve categories, including 9 segments, portal vessels, 
hepatic vessels, and background. To be compatible with the neural 
network input file format, the T1-vibe Dixon in-phase sequences in 
Digital Imaging and Communications in Medicine (DICOM) format were 
converted to the Neuroimaging Informatics Technology Initiative 
(NIfTI) format. By employing nnU-Net without alterations, we aimed to 
capitalize on its state-of-the-art capabilities and demonstrate its effec
tiveness in the classification of MR imaging voxels, which holds signif
icant promise for advancing medical image analysis and diagnosis. 

2.5.2. Training and evaluation 
The neural network was trained on the liver MRI with fivefold cross- 

validation using 170 patient MRI scans. Each fold had 136 liver MRI for 
training and 34 liver MRI for validation. The network 3D input was the 
single-modal T1-vibe Dixon in-phase sequence. 30 randomly selected 
patient MRI scans were not shown to the neural network for later out-of- 
sample hold-out testing. The nnU-Net network was trained with the 
default setup as published by Isensee, Jager, et al. [21]. This included as 
loss function the linear combination of Dice loss and cross-entropy loss, 
the Adam optimizer with an initial learning rate of 3 × 10-4, and a 
learning rate scheduler that reduced the learning rate to at least 10-6 

depending on the moving average of the training loss and the validation 
loss. For data augmentation, the following techniques were applied 
during training: random rotations, random scaling, random elastic de
formations, gamma correction augmentation and mirroring. We did not 

Fig. 2. Sample 63-year-old male patient without chronic liver disease. Manual annotations of 9 Couinaud segments are shown in a) and d), portal vessels and hepatic 
vessels are shown in b) and e), on two axial slices of a standard non-contrast T1-vibe Dixon in-phase sequence. The rightmost column c) and f) shows a 3D visu
alization of the complete manual segmentation. 
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make any changes to the architecture of the nnU-Net. 
The network optimization was performed on a NVIDIA GeForce RTX 

3090 GPU for 150 epochs with a batch size of two, using 5-fold cross- 
validation following the approach by Isensee, Jaeger, et al. [21]. Sub
sequently, experiments using the hold-out test data were carried out. 
Liver segmental volumes were retrieved on the unseen test patients and 
the LSVR was calculated automatically as the liver segment volumes I-III 
divided by the liver segmental volumes IV-VIII. The LSVR was then 
compared with LSVR obtained from the MRI manual segmentation 
volumes and the LSVR obtained from the CT manual segmentation 
volumes. 

2.6. Statistical analysis 

The performance of the convolutional neural network to segment 
liver segments, portal veins, and hepatic veins was assessed with respect 
to the MRI manual annotations. We used the standard metrics Dice 
similarity coefficient (DSC), average symmetric surface distance (ASSD), 
and Hausdorff distance 95 (HD95) to quantitatively measure the seg
mentation quality of the DL model. DSC is used to measure the voxel 
overlap between the prediction and the ground truth. The value of DSC 
ranges from 0 to 1, with 1 indicating perfect overlap and 0 none. ASSD is 
the average of all the surface-based distances between the prediction 
and the ground truth. HD95 quantifies the maximum surface-based 
difference between the prediction and the ground truth. HD95 ex
presses this distance as the 95th percentile of all distances. DSC, ASSD, 
and HD95 values are reported as mean ± standard deviation (SD). 

The LSVR was compared between the calculations by the DL model, 
the MRI manual method, and the CT manual method. We conducted 
statistical significance tests using the Kruskal-Wallis test with Dunn’s 
multiple comparison post-hoc test for between-group differences. 
Further, the Spearman correlation coefficient was used to analyze the 
correlation between manual LSVR calculation and LSVR automated 
calculation. In addition, linear regression and Bland-Altman plots were 
used to further compare the manual and automated calculations. The 
Shapiro-Wilk test was performed to assess the patient parameters for 
normal distribution in the groups. The values were not normally 
distributed; therefore, nonparametric tests were used for all analyses. 
Parameters among the patient groups were compared using the Mann- 
Whitney U test for continuous variables or the Fisher’s Exact test for 
categorical variables. Significance level was chosen to be α = 0.05. To 

demonstrate inter-reader and inter-modality reliability of volumetry and 
LSVR measurements, intraclass correlation coefficients (ICCs) were 
calculated between the MRI readers and the CT reader. ICC classifica
tions from 0.4 to 0.59 are considered as fair, those from 0.6 to 0.74 as 
good, and those from 0.75 to 1.00 are considered excellent [22]. All 
statistical analysis was conducted with the Python ecosystem (Python 
3.6.12, SciPy 1.5.4, scikit-learn 0.24.2, dicom2nifti 2.4.6, SimpleITK 
2.0.2, Matplotlib 3.3.3). 

3. Results 

3.1. Patient characteristics 

The clinical patient characteristics of the final cohort (n = 200) are 
shown in Table 1. There were 126 patients without chronic liver disease 
(noCLD) and 74 with chronic liver disease (CLD). Median age was 52 
years (interquartile range (IQR) 38 – 62 years) for patients without and 
60 years (IQR 54 – 67 years) for patients with CLD (p < 0.001). Patients 
without CLD showed a lower median BMI of 24.5 (IQR 22.5 – 28.2) than 
patients with CLD (p = 0.001) with a median of 27.6 (IQR 24.4 – 30.9). 
Etiology of chronic liver disease was nonalcoholic fatty liver disease or 
nonalcoholic steatohepatitis (NAFLD/NASH) in 29 patients, viral hep
atitis in 12 patients, alcohol-related liver disease (ARLD) in 27 patients, 
and other causes in 6 patients (Table 2). Of the 74 patients with chronic 
liver disease, 52 patients had liver cirrhosis. 

3.2. Liver segmental volume evaluation 

The Couinaud liver segments and vessel segmentation results are 
summarized in Table 3. The neural network model classified the Coui
naud segments I-VIII with an average DSC score of 0.770 ± 0.03, 

Table 1 
Patient Characteristics.   

noCLD 
(n = 126) 

CLD 
(n = 74) 

p- 
value 

Male (n, %) 64 (51%) 60 (81%)  <0.001 
Age (years) 52 (38–62) 60 (54–67)  <0.001 
Body mass index (kg/m2) 24.5 

(22.5–28.2) 
27.6 
(24.4–30.9)  

0.001 

Arterial Hypertension (n, %) 22 (17%) 35 (47%)  <0.001 
Diabetes mellitus (n, %) 6 (5%) 28 (38%)  <0.001 
Daily alcohol consumption (n, %) 1 (1%) 18 (24%)  <0.001 
Pre-cirrhotic CLD (n, %) 0 (0%) 22 (30%)  <0.001 
Liver cirrhosis (n, %) 0 (0%) 52 (70%)  <0.001 
Child-Pugh-Groups (in patients 

with cirrhosis)     
- Child A (n, %) 0 (0%) 41 (55%)  <0.001  
- Child B (n, %) 0 (0%) 11 (15%)  <0.001  
- Child C (n, %) 0 (0%) 0 (0%)  1.0 

Values are presented as median with interquartile range (25–75%) or n (%). P- 
values were calculated using the Mann-Whitney U test or Fisher’s Exact test as 
appropriate. 
noCLD = no chronic liver disease; CLD = chronic liver disease; PDFF = Proton- 
density fat fraction; Alcohol consumption was defined as average consumption 
of 2 alcoholic units per day for men and 1 alcoholic unit per day for women; 
Focal liver lesion was defined as actual focal liver lesion or treated focal liver 
lesion. 

Table 2 
Etiology liver disease.  

Etiology noCLD 
(n = 126) 

CLD 
(n = 74) 

NAFLD / NASH (n, %) 0 (0%) 29 (39%) 
Viral Hepatitis (n, %) 0 (0%) 12 (16%) 
ARLD (n, %) 0 (0%) 27 (37%) 
Inflammatory / Autoimmune (n, %) 0 (0%) 5 (7%) 
Drug-induced liver injury (DILI) 0 (0%) 1 (1%) 

Values are presented as n (%). 
noCLD = no chronic liver disease; CLD = chronic liver disease; NAFLD =
nonalcoholic fatty liver disease; NASH = nonalcoholic steatohepatitis; ARLD =
alcohol-related liver disease. 

Table 3 
Deep learning segmentation performance on Couinaud liver segments and liver 
vessels.   

DSC ASSD HD95 

Portal vessels 0.663 ± 0.07 2.168 ± 0.64 10.706 ± 3.81 
Hepatic vessels 0.559 ± 0.08 3.391 ± 1.35 18.194 ± 7.27 
Segment I 0.744 ± 0.10 2.584 ± 1.40 8.729 ± 4.53 
Segment II 0.801 ± 0.08 2.956 ± 1.85 11.114 ± 13.66 
Segment III 0.754 ± 0.16 3.099 ± 1.95 9.089 ± 7.29 
Segment IVa 0.743 ± 0.06 3.255 ± 0.96 11.717 ± 5.56 
Segment IVb 0.726 ± 0.13 3.746 ± 2.90 13.821 ± 14.62 
Segment V 0.810 ± 0.09 3.201 ± 1.43 11.852 ± 7.93 
Segment VI 0.746 ± 0.20 3.797 ± 3.54 12.751 ± 13.94 
Segment VII 0.805 ± 0.11 2.974 ± 1.55 10.396 ± 7.60 
Segment VIII 0.796 ± 0.10 3.505 ± 1.91 12.02 ± 8.82 
Segments I-III 0.868 ± 0.05 2.260 ± 1.48 9.420 ± 12.14 
Segments IV – VIII 0.942 ± 0.01 1.444 ± 0.25 5.112 ± 1.27 
All Segments 0.770 ± 0.03 3.235 ± 0.37 11.276 ± 1.56 

Results are presented as mean ± SD. 
DSC, Dice score; ASSD, Average Symmetric Surface Distance; HD95, Hausdorff. 
Distance 95. 
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ranging from 0.726 ± 0.13 (segment IVb) to 0.810 ± 0.09 (segment V). 
The liver vessels were segmented with a DSC of 0.663 ± 0.07 for portal 
vessels and a DSC of 0.559 ± 0.08 for hepatic vessels. A qualitative 
segmentation result is shown in Fig. 3. 

3.3. Mean LSVR comparison between neural network and manual 
segmentation 

The mean LSVR of the test liver MRIs as calculated by the neural 
network, the MR manual, and the CT manual is presented in Table 4. The 
calculated mean LSVR with test liver MRI unseen by the neural network 
was 0.323 ± 0.14, as compared with MRI manually quantified LSVR of 
0.328 ± 0.15, resulting in a mean absolute error (MAE) of 0.024 and a 
mean absolute percentage error (MAPE) of 7.19%, respectively. A 
comparable mean LSVR of 0.352 ± 0.14 with a MAE of 0.039 and a 
MAPE of 10.34% resulted with the LSVR retrieved from the CT scans in 
the same patients. There was no statistically significant difference be
tween the three mean LSVRs as shown by a Kruskal-Wallis test (p =
0.652). The variance of the test LSVRs was identical in all three methods 
(from ± 0.14 to ± 0.15). 

In Fig. 4, the scatterplots showcase the strong correlation between 
MR DL and MR manual, and MR DL and CT manual. The Bland-Altman 
plot between MR manual and MR DL shows only a slight mean bias 
(0.01) with almost no outliers, underlining that the MR DL calculates the 
LSVR in close approximation to the MR manual. Moreover, the scat
terplots show that the LSVR measurements occur on both sides of the 

cirrhosis threshold of 0.35 [1], evidencing that the DL model can 
robustly and reliably predict the LSVR in pathological cases as well. 

3.4. Intra-patient correlation between neural network and manual 
segmentation 

Pairwise LSVR measurements between neural network and manual 
MR and CT segmentation are shown in Fig. 4. LSVR calculated auto
matically by the neural network correlated very well with manual MR 
segmentation (r = 0.97, p < 0.001), as well as manual CT segmentation 
(r = 0.95, p < 0.001). There was also a good correlation between manual 
MR and CT segmentation (r = 0.97, p < 0.001). Bland-Altman plots 
showed small mean biases, ranging between 0.01 and 0.03 for all three 
pairwise comparisons. 

3.5. Segmentation time of the neural network 

Liver segments and vessel segmentation inference in one test liver 
MRI and calculation of the LSVR was performed in 70 s using an NVIDIA 
GeForce RTX 3090 GPU, an AMD EPYC 7302 16-Core Processor CPU, 
and an IBM Spectrum Scale-based file system. A manual segmentation 
took 35 min on average for a single liver MR. 

3.6. Interobserver reliability 

Interobserver reliability between manual CT and MRI liver volume 

Fig. 3. AI automated segmentation of the same patient as in Fig. 2. 9 Couinaud segments are shown in a) and d), portal vessels and hepatic vessels are shown in b) 
and e), on two axial slices of a standard non-contrast T1-vibe Dixon in-phase sequence. The rightmost column c) and f) shows a 3D visualization of the complete 
automated segmentation. 

Table 4 
Liver segmental volume ratio (LSVR) as calculated by the MRI deep learning model (DL), MRI manual and CT manual on the validation data.   

MR DL MR manual CT manual p-value MR DL vs. MRI manual MR DL vs. CT manual MR manual vs. CT manual 

LSVR 0.323 ± 0.14 0.328 ± 0.15 0.352 ± 0.14  0.652    
LSVR MAE      0.024  0.039  0.032 
LSVR MAPE      7.19%  10.34%  12.24% 

Results are presented as mean ± SD and percentage. 
The p-value was calculated using the Kruskal-Wallis test with Dunn’s multiple comparison post-hoc test. 
MAE, mean absolute error; MAPE, mean absolute percent error. MR DL, deep learning-automated LSVR on MR; MR manual, manual LSVR on MR; CT manual, 
manual LSVR on CT. 
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segmentation was excellent, with an ICC of 0.93 (95% CI 0.44, 0.98) for 
Couinaud segments I-III, and an ICC of 0.95 (95% CI 0.84, 0.98) for 
Couinaud segments IV-VIII. In addition, the manual LSVR measurements 
were found with an ICC of 0.96 (95% CI 0.86, 0.99), demonstrating an 
excellent inter-reader and inter-modality reliability. 

4. Discussion 

We showed that a deep learning-based algorithm for automated 3D 
segmentation of Couinaud liver segments and liver vessels allows ac
curate calculation of the liver segmental volume ratio (LSVR). To our 
knowledge, this is the first work to present a neural network-based 
automated calculation of the LSVR using non-contrast T1-vibe Dixon 

Fig. 4. Scatterplots of pairwise LSVR measurements (left column) with corresponding Bland-Altman plots (right column). Row a) compares MR deep learning with 
MR manual. Row b) compares MR deep learning with CT manual. Row c) compares MR manual with CT manual. All pairwise comparisons show a significant 
Spearman correlation (r > 0.94, p < 0.001). 
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liver MRI. LSVR was performed in<2 min with the neural network 
model, as compared to manual segmentation which took more than half 
an hour on average. The results of the automated LSVR calculation on 
the test data were very accurate and correlated strongly with the MRI 
manual calculation (Spearman r = 0.97, p < 0.001), as well as with the 
manual segmentation on CT scans of the same patients as an intermodal 
cross-validation (Spearman r = 0.95, p < 0.001). As CT and MRI manual 
LSVR calculation was performed by different radiologists, this compar
ison showed a high inter-reader and inter-modality reliability of the 
automated LSVR (ICC = 0.96). As the automated segmentation did not 
rely on contrast-enhanced MRI, it may be used on any standard MRI, 
even without contrast medium administration, as it is currently dis
cussed in several indications [16]. 

Our liver segment results are comparable with two other similar 
studies in existing literature, as shown in Table 5. The larger study of 
Han et al. [23] used contrast-enhanced MRI scans and excluded patients 
with liver cirrhosis. In addition, they did not differentiate liver vessels 
that were counted as liver segmental volume and did not distinguish 
segment IV into IVa and IVb. This may explain the slightly higher Dice 
score (0.902) for the liver segmentation than we found in our study 
(0.770). However, the exclusion of patients with liver cirrhosis is not 
helpful in a realistic setting and the additional exclusion of the liver 
vessels in our study allows for more accurate segmentation of the liver 
segmental volume. In addition, our approach has the advantage to be 
applied to liver MRI without contrast medium administration. The 
smaller study of Arya et al. [24] excluded the anatomically difficult liver 
segment I and just analyzed segments II-VIII. As in the study of Han 
et al., liver vessels were counted as liver parenchyma, which made the 
segmentation task easier. Nevertheless, they achieved a comparable 
Dice score (0.802) to the one we found in our study. 

Mojtahed et al. [25] studied a deep learning-based Couinaud 
segment volume measurement tool for MR images but did not report 
DSC scores on the segments. The only study investigating LSVR calcu
lation with a neural network was recently performed in contrast- 
enhanced CT scans, reporting an average DSC of 0.834 ± 0.08 [15]. 

The main limitations of this study were the single-center study design 
and that all MRI scans were performed on MRI scanners from the same 
manufacturer. Therefore, the study results should be externally vali
dated on different scanners. Another limitation is that the dataset did not 
include focal liver lesions or postoperative livers. 

In conclusion, a convolutional neural network allowed for accurate 
automated liver segmental volume quantification and calculation of 
LSVR based on a non-contrast T1-vibe Dixon sequence. 
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