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1  |  INTRODUC TION

Monocytes and macrophages are pivotal cell types located in the 
bone marrow that have important roles in the human body. They 
represent some of the first cell types that interact with foreign 
pathogens and implanted medical devices. Classic studies have 
demonstrated that macrophages are rapidly recruited to infectious 
and injury sites, where they play critical roles in innate immunity. 
Here, these cells were shown to have broad roles and be responsible 
for regulating tissue homeostasis, including innate and adaptive im-
munity, wound healing, hematopoiesis, and malignancy.1

Biomaterials, once implanted into the human body, result in a for-
eign body reaction (FBR) that causes a period of inflammation largely 
involving monocytes and macrophages. This can also lead to excessive 
inflammation, tissue destruction, fibrous encapsulation, and incomplete 
osseointegration.2 Thus, the study of these materials, including the in-
teractions between the immune system and skeletal system, becomes 
extremely vital, especially given that millions of people suffer from bone 
defects and immune conditions such as osteoporosis, osteoarthritis, and 
diabetes.3 Traditional studies have often predominantly focused on the 
integrations between biomaterials and their “osteogenic capacity,” and 
much less attention has been given to the interaction between immune 
cells and biomaterials despite being the first cell type in contact with 
biomaterials. For instance, a systematic review of dental and orthopedic 
implants found that the majority of research (over 90%) focused primar-
ily on the in vitro behavior of osteoblasts on implant surfaces, while only 
a small percentage (roughly 10%) was dedicated to immune cells, includ-
ing monocytes, macrophages, osteoclasts, leukocytes, and multinucle-
ated giant cells (MNGCs).4 Thus, the field of bone biomaterial research 
has largely omitted their importance over the years, but our research 
group has specifically focused on the interplay of osteal macrophages 
(OsteoMacs) and their key role around bone biomaterials.5,6

Today, an entire field investigating the interplay and connection 
between the skeletal system and immune cells has been developed 
to address these exciting research topics. Osteoimmunology there-
fore focuses on strategies aimed at enabling biomaterials to modulate 
local immune environments from proinflammatory toward tissue res-
olution favoring healing and regeneration.5–7 Over the years, the rec-
ognition and importance of osteoimmunology has led to a shift in the 
traditional evaluation of biomaterials toward one that focuses more 
on the effects of immune cells around bone biomaterials. Thus, while 
there remains a lack of knowledge regarding the complex interactions 
between the immune and skeletal systems upon biomaterial implan-
tation, researchers have indicated the importance of this pairing in 
recent years to improve the osteoinductivity of bone biomaterials.8

This review article outlines the advancements made in the field 
of osteoimmunology, emphasizing the role of the osteoimmuno-
modulatory properties of biomaterials and their impact on oste-
oinduction. First, the various immune cell types involved in bone 
biomaterial integration are discussed, including the prominent role 
of osteal macrophages (OsteoMacs) during bone regeneration. 
Thereafter, key biomaterial properties, including topography, wet-
tability, surface charge, and adsorption of cytokines, growth factors, 
ions, and other bioactive molecules, are discussed in terms of their 
impact on immune responses. These findings highlight and recog-
nize the importance of the immune system and osteoimmunology, 
leading to a shift in the traditional models used to understand and 
evaluate biomaterials for bone regeneration.

2  |  IMMUNE CELL S

Bone is constantly renewed in healthy individuals with the partici-
pation of the immune system to a large extent. While it was once 
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thought that bone turnover involved three primary cell types, osteo-
blasts (bone-forming), osteocytes (bone-maintenance), and osteo-
clasts (bone-resorbing), more recently, the immune system and cells 
have been largely implicated in their cross talk. These effects have 
been further demonstrated in many knockout experiments in which 
immune cells are inactivated in bone tissues, and a dramatic reduc-
tion in bone development and formation has been observed. These 
cross talk mechanisms between the bone and immune system have 
essentially formed the field of osteoimmunology, and these extend 
into biomaterial osteoinduction discussed later in this article. An ex-
cellent review article by Yang and Liu9 addressed this topic during 
bone regeneration (Figure  1). This article summarizes their role in 
bone regeneration from the aspects of immune cells and immune 
cytokines.

Interestingly, while immune cells are known to participate in the 
regulation of bone homeostasis, bone cells also impact the activity 
of immune cells, dictating their two-way communication between 
bone and immune systems.10 The immune microenvironment dic-
tates the healing, repair, and regeneration of bone tissue, with Os-
teoMacs being key players around bone biomaterials that determine 
the ability of bone tissue to regenerate.11 Bone turnover has been 
shown to be affected by several immune-related diseases, such as 
osteoporosis, hyperparathyroidism, osteoarthritis, and several other 
immune diseases.12–16

2.1  |  Neutrophils

Neutrophils are the most abundant leukocytes in mammalian blood 
and are heavily implicated in innate immunity. Upon tissue injury, 
they are usually the first to be recruited to the injury to clear invasive 
pathogens and microorganisms. These cells also initiate the acute 

inflammatory response.17 Histological animal studies have further 
confirmed that their aggregation is visualized during bone injury, 
playing a key role in the early stages of bone repair. Furthermore, 
their depletion in animal models leads to an impairment in bone heal-
ing following fracture.9

A second important role of neutrophils is the recruitment of 
monocytes and macrophages via secretion of inflammatory cyto-
kines.18 Studies have reported that bacteria producing endotoxin-
lipopolysaccharide (LPS) stimulate neutrophils to express receptor 
activator of nuclear factor kappa B ligand (RANKL).19,20 Interest-
ingly, in contrast to CD3+ T lymphocytes, neutrophils only express 
RANKL as a membrane protein and do not secrete soluble RANKL. 
This finding suggests that neutrophils activate osteoclast precursors 
only through direct intercellular contact.20,21 Neutrophils have also 
been implicated in bone regeneration. For instance, in long-term 
glucocorticoid use leading to osteoporosis as well as chronic gout, 
neutrophils directly inhibit osteoblast function, leading to a reduc-
tion in bone formation.22,23 These cells have also been shown to play 
important roles in osteoarthritis and periodontitis.24,25 In summary, 
diverse research has demonstrated that while neutrophils are ac-
tive in and initiate the immune system during fracture healing and/
or biomaterial implantation, functioning as immune cells, they also 
regulate bone homeostasis in both anabolic and catabolic pathways.

2.2  |  Dendritic cells

Dendritic cells (DCs) are most widely known as functional antigen-
presenting cells. The surface of DC membranes highly expresses 
major histocompatibility complex II (MHC II), which effectively ac-
tivates the immune function of T cells and initiates an immune re-
sponse.26 Their role is largely dictated during fracture healing and 

F I G U R E  1  Interactions between the 
immune and skeletal systems. T-cell 
subsets (Th1, Th2, Th17, and Treg) play 
an important role in bone repair and 
regeneration. Th17 cells, known as 
osteoclastogenesis-supporting T cells, 
secrete IL-17 to upregulate RANKL 
expression, and induce inflammatory 
cytokines such as TNF-α and IL-1 from 
innate immune cells. These cytokines 
further activate osteoclast precursor 
cells and inhibit osteoblast function. In 
contrast, Th1, Th2, and Treg cells inhibit 
osteoclastogenesis by secreting the 
cytokines INF-γ, IL-4, CTLA-4, and IL-10. 
B cells antagonistically block the effect 
of RANKL by secreting OPG and induce 
osteoclast apoptosis by secreting TGF-β. 
Reprinted with permission from Yang and 
Liu.9
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biomaterial implantation. Under normal physiological conditions, 
DCs are not found in or adjacent to bone tissues with no obvious 
abnormality of the skeletal system in DC-deficient mice.27 However, 
under tissue injury or systematic conditions such as rheumatoid ar-
thritis, a growing population of both immature and mature DCs ac-
cumulate in active lesion sites and bone tissue.28 Similarly, in chronic 
inflammatory diseases such as periodontitis, DCs aggregate into 
periodontal pockets and form aggregates with T cells to activate os-
teoclasts to destroy bone.29 Therefore, it is believed that DCs may 
indirectly affect inflammation-related bone loss by activating and 
regulating T-cell function.

2.3  |  Innate lymphoid cells

Innate lymphoid cells (ILCs) are a more recent described subset of 
innate lymphocytes classified into three principal groups according 
to their transcription factor expression and cytokine secretion.30 
Group 1 ILCs (ILC1s) consist of NK cells and ILC1s, which produce 
IFN-γ. ILC2s secrete IL-13 and IL-5, while ILC3s consist of lymphoid 
tissue inducer cells and ILC3s, which secrete IL-22 and IL-17.31 Nota-
bly, various animal models have shown that ILCs are present in high 
numbers in periodontal tissues, with a ligature-induced periodon-
tal model displaying significant increases in each subset.32 Human 
periodontal tissues also show remarkable similarities to those of the 
murine model.32,33 While ILCs remain one of the “newer” researched 
cell types in bone tissues as well as periodontally diseased tissues, 
their implications in bone homeostasis are clearly observable, and 
future research is needed to better understand their role.

2.4  |  T cells

T cells are lymphocytes involved in the adaptive immune system that 
are derived from hematopoietic stem cells. They produce various cy-
tokines and growth factors that play a key role in the process of bone 
remodeling and regeneration. According to their surface receptors, 
T cells are divided into either αβ T cells or γδ T cells. αβ T cells are 
further subcategorized into CD4+ and CD8+ T cells.9

2.5  |  T helper: (Th1)/Th2 cells

Naive T cells can differentiate into either Th1 or Th2 cells. The role 
of Th1 cells is primarily to eradicate intracellular pathogens through 
the secretion of interferon γ (IFN-γ), IL-2, and tumor necrosis factor 
α (TNF-α). Th2 cells, in contrast, play a role in B-cell activation and 
elimination of extracellular pathogens through the expression of IL-
4, IL-5, IL-6, and IL-10.34 Previous studies have shown that RANKL is 
primarily expressed by Th1 cells.35 In addition, during postmenopau-
sal estrogen deficiencies, the osteoclastogenic effect of Th1 cells is 
the major source and cell type implicated in lower bone mass caused 
by menopause.36

2.6  |  Th17 cells

Th17 cells are a subtype of CD4+ T cells implicated in bone. Under 
activation by transforming growth factor β (TGF-β) and IL-6, T cells 
differentiate into Th17 cells, which are responsible for promoting 
bone resorption through the secretion of IL-17, IL-22, and IL-26.37 
IL-17 also indirectly promotes osteoclast function by recruiting and 
activating other immune cells to secrete TNF-α and IL-1.38 Thus, 
Th17 cells, known as osteoclastogenesis-supporting T cells, play a 
negative role in bone regeneration through their expression of Il-17.

2.7  |  T regulatory cells (Tregs)

T regulatory cells (Tregs) are a subset of T cells with immunosuppres-
sive functions and thus play a positive role in bone regeneration. These 
cells secrete pro-tissue resolution cytokines, such as TGF-β and IL-4, 
and maintain autoantigen immune tolerance and homeostasis of the 
immune system. Basic research studies have shown that transgenic 
mice with elevated levels of Tregs display higher bone mineral den-
sity and lower bone resorption than wild-type mice.39 Furthermore, 
basic research studies have demonstrated that systematic injection 
of Tregs effectively reduces the levels of inflammatory factors in the 
local area of trauma, thus leading to an improvement in osteogenic 
ability.35 In vitro studies have also shown that Tregs directly enhance 
the function of osteoblasts and improve their osteogenic differentia-
tion.40 Other studies have shown that Tregs also interact with CD8+ 
T cells to upregulate WNT10b, which acts on mesenchymal stem cells 
and osteoblasts to induce bone formation.41 Moreover, Tregs de-
crease the differentiation and function of osteoclasts.42,43 Therefore, 
Tregs play a direct and important role in both improving bone forma-
tion and attenuating bone resorption by osteoclasts. These cells are 
also recruited to sites of tissue inflammation, attenuate the inflamma-
tory process, and regulate immunopathologic reactions after injury.44 
Therefore, Tregs indirectly promote tissue regeneration by controlling 
neutrophil behavior and macrophage polarization.45,46

2.8  |  B cells

B cells are also derived from the hematopoietic stem and are an 
important source of antibody synthesis and secretion important to 
adaptive immunity. These cells work very closely with the immune 
system, whereby the differentiation and maturation of B cells oc-
curs in the bone marrow cavity, where bone marrow-derived stem 
cells provide a stable microenvironment for B-cell differentiation.47 
This phenomenon is most pronounced during bone-related diseases 
such as multiple myeloma,48,49 rheumatoid arthritis,50 and osteopo-
rosis.51 Notably, in bone tissues, B cells and plasma cells are the main 
sources of osteoprotegerin (OPG). OPG blocks the effect of RANKL 
and reduces osteoclast activity, therefore leading to increases in 
bone mass.52,53 In summary, the role of B cells in bone regeneration 
is most pronounced during pathological conditions.
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2.9  |  Macrophages

Macrophages have been the cell type most studied with respect to 
their role in the immune system as well as their role around bone 
biomaterials leading to osteoinduction. Notably, Allison Petit's 
research group is given credit for terming a subset of osteal mac-
rophages found in bone tissues “OsteoMacs.” Original observations 
described in the mid-1980s sought to characterize the role of osteal 
macrophages in bone biology.54 Hume et al. were one of the first to 
clearly demonstrate that periosteal and endosteal tissues contained 
a discrete population of resident tissue macrophages in line with 
traditional bone cell nomenclature.55,56 OsteoMacs constitute ap-
proximately one sixth of all cells residing in bone marrow and display 
a stellate morphology allowing them to achieve extension coverage 
of bone surfaces, suggesting that they may form a comprehensive 
communication network (Figure  2).56 This subset of CD68+ cells 
has been shown to be derived from a resident population of mac-
rophages, such as macrophages found in other tissues.57–59 More 
recent research has clearly confirmed that macrophages may subdi-
vide and proliferate from resident tissues, in contrast to the original 
theories positing that these cells are derived from monocyte precur-
sors from the bloodstream.60–63

3  |  M1 AND M2 MACROPHAGES

The general role of OsteoMacs has been described as immune sur-
veillance cells in the bone microenvironment. Several previous stud-
ies have demonstrated that this subset of macrophages can function 
as phagocytes,64,65 can detect bacterial products,66,67 and can re-
spond to antigens.65,68 In vitro cell culture systems have further pro-
vided evidence by demonstrating how primary murine osteoblast 

cultures can respond to pathophysiological levels of lipopolysaccha-
ride (LPS), characteristics of the M1 macrophages.56

Initial macrophage experiments classified macrophages into two 
specific cell types, classic M1 proinflammatory macrophages and 
M2 tissue resolution/wound healing macrophages (Figure 3). Clas-
sic proinflammatory stimuli in response to LPS include TNF-α,69,70 
IL-6,71,72 and IL-1β69,73 all contributing to tissue inflammation and 
osteoclastogenesis. M2 macrophages typically produce TGF-β and 
arginase, both of which are implicated in tissue repair processes.74–77 
Table 1 presents a general overview of the differences observed be-
tween M1 and M2 macrophages.

Phenotyping macrophages has typically been carried out with 
cell surface markers, including CD11b, CD68, macrophage anti-
gen-2, and F4/80. Phenotyping macrophages is a complex process 
since subsets from animals such as rodents are different than those 
in humans, making it difficult to rapidly advance the field using an-
imal models. Some researchers have even suggested that human 
macrophages are “fundamentally” different from their mouse coun-
terparts and thus should be studied as entirely separate entities.78,79

Figure 3 presents an overview of general cell types derived from 
the monocyte lineage. In vitro differentiation of macrophages to-
ward the M1 phenotype is optimally induced with IFN-γ and LPS 
and TNF-α, whereas M2 macrophages are typically produced with 
either IL-4 or IL-13.80 In vitro culture with IL-4 causes upregulation of 
two key M2 markers, TGF-β and arginase, which are largely assumed 
to participate in tissue regeneration.74–77,80 Moreover, IL-4 increases 
expression of the mannose receptor CD206. Since M2 macrophages 
have a wide variety of characteristics as originally defined, more 
recent research has subdivided their classification into M2a/b/c to 
further express the differences found between certain M2 macro-
phages81 (Figure 3). Briefly, the M2a phenotype is produced by expo-
sure to IL-4 + IL-13 acting through IL-4Rα to increase the expression 

F I G U R E  2  Paraffin section from 
human bone immunolabeled for 
CD68. Human bone with bone matrix 
and immature bone marrow after 
augmentation. The large positive cells 
are osteoclasts on bone matrix, whereas 
the other positive cells are CD68+ 
macrophages in roughly a 1–6 ratio.
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of CD206, arginase, and TGF-β.75,82–85 The M2b phenotype has 
been described following exposure to a combination of IgG-immune 
complexes and IL-1R ligands, in turn increasing IL-10 production and 
decreasing IL-12, largely contributing to anti-inflammatory proper-
ties.86,87 Cell culture with IL-10 or glucocorticoids produces the M2c 
phenotype characterized by high IL-10 and low IL-12 production,87 
as well as increased surface receptor CD163.88,89 While the aim 
of this review article is not to give a background on the specificity 
of the various M2 macrophage subgroups, it remains important to 
note that various cell culture models have distinct M2 macrophage 
characteristics. For an excellent overview on this topic, the reader 
is kindly directed to a recent review article on the M1 and M2 para-
digms of macrophage activation.1

These observations as well as others indicate the potential cross-
lineage plasticity and cross talk between osteoblasts and hemato-
poietic cells in vitro,90–92 which makes it difficult to clearly define 
the cells responsible for specific functions reported in primary “os-
teoblast” cultures. This issue is best exemplified in a study by Chang 
et al.,56 who showed that by removing macrophages from primary 
osteoblast cultures, a 23-fold reduction in mineral deposition was 
observed. The researchers concluded that it was the OsteoMacs, 
and not the osteoblasts as originally hypothesized, within these in 
vitro culture systems that responded to pathophysiological concen-
trations of cytokines, and their removal from calvarial cultures sig-
nificantly decreased in vitro mineralization by osteoblasts.56

3.1  |  OsteoMac function in osteoblast 
mineralization

Preliminary findings from primary osteal tissues clearly demonstrated 
that OsteoMacs play a pronounced role in osteoblast function and 

differentiation.56 Interestingly, depletion of OsteoMacs in vivo by 
various knockout systems has also been shown to markedly reduce 
bone formation.56,93 Macrophages may produce a number of po-
tent bioactive growth factors for osteoblasts including transforming 
growth factor β (TGF-β),94 osteopontin,95 1,25-dihydroxy-vitamin 
D3,96 and BMP-2.97 These factors are known inducers of extracellular 
matrix deposition and new bone formation and are classic character-
istics of M2 macrophages. The plasticity of macrophages suggests 
that their trophic role in bone tissues is highly regulated by changes 
to the microenvironment. OsteoMacs are capable of promoting ana-
bolic function in certain conditions, whereas in others, they are re-
sponsible for creating and directing an inflammatory environment.

3.2  |  OsteoMacs and bone modeling

Bone modeling is an anabolic process involving new bone deposi-
tion and is unlike bone remodeling, which involves the careful and 
coordinated balance between osteoclasts and osteoblasts.98,99 A 
previous report showed that macrophages are localized at the bone 
modeling site on cortical diaphyseal endosteal bone surfaces with-
out the presence of osteoclasts in the vicinity.56 This process has 
been described as “forming a canopy-like cell structure” where Os-
teoMacs were found to encapsulate the functionally mature osteo-
blasts, suggesting that they are heavily involved in the bone modeling 
process.56,100 Once again, the functional importance of OsteoMacs 
was demonstrated by knockout systems in which macrophages were 
depleted using a Fas-induced apoptosis (Mafia) transgenic mouse 
model, which can induce macrophage depletion via synthetic ligand 
treatment.101 In this system, the OsteoMac canopy architecture was 
disrupted, leading to a complete loss of mature osteoblasts and bone 
modeling at the bone interface.101

F I G U R E  3  Monocyte differentiation 
includes the expression of markers of 
osteoclasts, M1, M2a, M2b, and M2c 
macrophages and MNGCs. Reprinted with 
permission from Miron and Bosshardt.5
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It was originally proposed that during bone remodeling, osteo-
clasts provide a “coupling signal” to promote and coordinate os-
teoblast activity.98 Interestingly, with the numerous advancements 
made in the field of osteocyte biology, it has recently been proposed 
that osteocytes are also implicated in the bone remodeling pro-
cess by dictating both osteoblast and osteoclast activity.102 Given 
that bone modeling animal models lack osteocytes and osteoclasts 
during the developmental stages of bone modeling, it was proposed 
that OsteoMacs may be the cells responsible for coupling-like signals 
dictating osteoblast function. While evidence from the literature has 
previously suggested that TGF-β and ephrin B2 are possible coupling 
factors between osteoclasts and osteoblasts,98,103–105 macrophages 
have also been shown to produce TGF-β94 and ephrin B2,106,107 
suggesting that OsteoMacs are also capable of fulfilling such roles. 
Nevertheless, more research is still necessary to further understand 
the role of OsteoMacs during bone modeling in the absence of os-
teoclasts and osteocytes.

Interestingly, depletion of OsteoMacs in vivo using the macro-
phage Fas-induced apoptosis (Mafia) mouse caused a complete loss 
of osteoblast bone formation at the bone surface, demonstrating 

that OsteoMacs are an integral component of bone tissues and play 
a pivotal role in bone homeostasis.56 These proposed models show 
that OsteoMacs function to both detect alterations in the local en-
vironment and guide bone formation in vivo. In response to anabolic 
stimuli, these cells function to recruit mesenchymal progenitor cells 
and induce their proliferation and differentiation toward bone-
forming osteoblasts. OsteoMacs subsequently provide ongoing ana-
bolic signals to the underlying osteoblasts.56

3.3  |  OsteoMacs and bone remodeling

As described earlier, bone remodeling involves the fine balance 
between bone-resorbing osteoclasts and bone-forming osteo-
blasts.98,99 Resorption signals, including RANKL and CSF-1, and local 
calcium concentrations,108 are expressed by bone lining cells and 
osteocytes and are necessary for directing osteoclastogenesis and 
bone resorption. It was previously proposed that osteoclasts subse-
quently provide the coupling signal coordinating osteoblast activity 
to facilitate bone deposition and mineralization.98 A previous study 

M1 macrophage M2 macrophage

Activator IFN-γ, TNF-α, LPS IL-4, IL-13

Proinflammatory cytokines IL-1B, TNF-α, IL6, IL12 Low

iNOS High (in rodents only) Low

Anti-inflammatory 
cytokines

Low TGF-B high, IL-10 Low

CD206 Low High

Dectin-1 Low High

Ym1 Low High

Phagocytosis/Endocytosis High Decreased phagocytosis of 
implanted particles

Matrix proteins MMP9 FN, TGFB1, MMP1, 
MMP12, TG, F13A1

Markers

Human CD64, IDO, SOCS1, CXCL10 MRC1, TGM2, CD23, 
CCL22

Mouse CXCL9, CXCL10, CXCL11, NOS2 Mrc1, tgm2, FizzI, Ym1/2, 
Arg1

Transcription factors

Human pSTAT1, IRF5 IRF4, SOCS1*, GAT3* 
SOCS3

Mouse pSTAT1, pSTAT6-ve, Socs1 pSTAT6, pSTAT1-, Soc2

Cytokines

Human TNF, IL6, IL1b, IL12A, IL12b, 
IL23A

IL-10

Mouse TNF, IL-6, IL-27, Tnf23a IL-10, IL-6

Chemokines

Human CXCL10, IL8, CCL5, CXCL9 CCL4, CCL13, CCL17, 
CCL18

Mouse CXCL11, CCL18-ve CCL17 CCL24, CXCL13, 
CCL1, CCL22, CCL20

TA B L E  1  Summary of in vitro culture 
conditions of M1 and M2 macrophages.

 16000757, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/prd.12519 by U

niversität B
ern, W

iley O
nline L

ibrary on [04/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7MIRON et al.

showed that during this process, osteoclasts are only located at the 
leading edge of the formation phase and have moved or undergone 
apoptosis before new bone formation is completed.109 Therefore, 
certain investigators have posed the question: “what cellular/mo-
lecular mechanism drives osteoblasts to initiate mineralization and 
complete the remodeling cycle following osteoclast apoptosis?”110

As previously mentioned, OsteoMacs have been shown to form 
a cellular canopy structure around osteoblasts during bone model-
ing. This process was postulated to create an enclosed compartment 
for local communication and coordination during the complex re-
modeling process.100 Although osteoclasts have been proposed to 
have a dominant role in orchestrating the recruitment, proliferation 
and initial differentiation of preosteoblasts during bone remodeling 
based on the release of cytokines from resorbed bone, the various 
roles of OsteoMacs in combination with their anatomical location 
and canopy architecture have recently suggested that they may also 
be necessary for optimal mineralization by osteoblasts.56 Further-
more, due to their close proximity to bone surfaces and well-known 
ability to detect dying cells,111 OsteoMacs are an obvious candidate 
to detect and respond to bone damage, a critical event for osteoclast 
recruitment, thus initiating the bone remodeling phase.112

Alexander et al.113 demonstrated that osteal macrophages pro-
mote intramembranous bone healing in vivo in a mouse tibial model. 
The authors used a very similar approach to the previous study by 
knocking out macrophage populations using Mafia mice and clo-
dronate liposome delivery. Following tibial injury, these researchers 
demonstrated that the depletion of OsteoMacs led to significantly 
reduced intramembranous ossification bone healing, whereas ad-
ministration of CSF-1 in animal models led to an increase in Osteo-
Mac number at the injury site, which concurrently increased new 
matrix deposition and mineralization.113 A study with a similar animal 
model also demonstrated that fracture healing via periosteal callus 
formation also requires OsteoMacs for both the initiation and pro-
gression of early endochondral ossification.93 Furthermore, a sepa-
rate group found that depletion of macrophages using Mafia mice 
led to early skeletal growth retardation and progressive osteoporo-
sis (25% reduction in bone mineral density, 60% reduction in num-
ber of mesenchymal progenitor cells) by 3 months.114 Of particular 
interest, animals that were treated with anabolic factors such as PTH 
showed a significantly higher level of OsteoMacs, further suggesting 
their important role in bone remodeling.115

It is difficult to technically assess whether osteoclasts or mac-
rophages are more important for bone remodeling and regulating 
osteoblast activity. The main reason is that most of the mutations to 
date that affect macrophages also have a large impact on osteoclasts 
since they are derived from the same precursor cells.116 It is therefore 
extremely difficult to knock down only macrophages without com-
promising osteoclast activity.116 In contrast, it is possible to abolish 
osteoclasts by specifically targeting OPG by blocking the actions of 
RANKL.117 Since there is a close lineage relationship between mac-
rophages and osteoclasts,118 the current in vivo models could bene-
fit from future refinement, as considerable cellular plasticity is found 
between these two cell types.119 Further specific investigation on 

the role of OsteoMacs versus osteoclasts and their contribution to 
bone remodeling is needed to clearly delineate all the cellular partic-
ipants and molecular factors in osteoblast coupling.

3.4  |  OsteoMacs: Key players around bone 
biomaterials

As major advancements have been made in the field of osteoimmu-
nology over the past decade, further elucidation of the response of 
these cell types to various bone biomaterials is critical. Immune cells 
play a pivotal role in determining the in vivo fate of bone biomateri-
als by either facilitating new bone formation around bone-implanted 
devices or creating an inflammatory fibrous tissue encapsulation. 
Macrophages are known to be the major effector cells in immune re-
actions to biomaterials, where they are indispensable for osteogene-
sis. Knockout models have demonstrated that a loss of macrophages 
around bone grafting materials may entirely abolish their osteoin-
ductive potential, thus confirming their primary role in the immune 
system modulation later responsible for guiding osteogenesis.120

Over the years, complex studies from basic research have re-
vealed the dynamic interactions between the skeletal system and 
immune system.10,55,56 Furthermore, the main factors responsible 
for directing their phenotypes toward more specialized cell types in 
response to biomaterials also remains poorly characterized.

Several leukocytes (T lymphocytes, B lymphocytes, dendritic 
cells [DCs], natural killer [NK] cells, macrophages, monocytes, and 
neutrophils) hosted in bone121 are involved in the inflammatory pro-
cess as well as in the subsequent bone repair and remodeling stages 
after biomaterial implantation (Figure 4). However, OsteoMacs and 
their plastic phenotype have been the most studied, leading to M1 
and M2 phenotypes dictating the integration of various bone bioma-
terials. Macrophages are key modulators of both inflammation and 
bone remodeling with an ability to adapt to exogenous stimuli that 
influences the healing cascade.122–126

These cells also have the ability to engulf particles below 5 μm127 
or fuse together into multinucleated giant cells (MNGCs) to engulf 
particles up to 100 μm.128 The effects of these differences as well 
as various subsets of M1-MNGCs and M2-MNGCs were recently 
proposed.129,130 Thus, both macrophages and MNGCs and poten-
tially other subsets of immune-related cells can shift between var-
ious phenotypes depending on external stimuli. This phenomenon 
largely impacts their secretion of proinflammatory versus pro-tissue 
resolution cytokines.129,130

More recently, the acquired phenotypes that can rapidly shift 
from M1 to M2 have been studied for timing during successful 
bone healing.131 Thus, the key is the timing of the switch between 
them, which depends on the composition and kinetics of the total 
biochemical milieu to which they are exposed. M1 macrophages 
predominantly exist during the early stages of acute inflammation, 
where they perform cleaning duties and release oxidative metab-
olites,126 proinflammatory cytokines such as IL-1β, IL-6, TNF-α, and 
ROS.132 At later stages, their plasticity allows a rapid shift toward 
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8  |    MIRON et al.

M2 macrophages, which are predominantly responsible for healing 
and express important anti-inflammatory cytokines such as IL-4 or 
IL-10 or enzymes such as arginase-1. M2 macrophages are divided 
into four subsets, as highlighted in Figure 2, depending on their role 
during repair. Generally, they are classified as M2a, stimulating fibro-
blast and extracellular matrix formation (ECM)80,82; M2b, responsi-
ble for balancing the inflammatory process133; M2c, responsible for 
matrix renovation and vascularization81,134; and M2d, important pro-
angiogenic modulators.135

3.5  |  In vitro testing of OsteoMacs on bone cells

Multiple cell types within the family of immune cells, both primary 
and cell lines, have been used to study the osteoimmunomodulatory 
properties of biomaterials. Among the immune cells, the commer-
cially available monocyte/macrophage cell line RAW 264.7 is most 
common. The main reasons to investigate macrophages are that they 
are one of the first cell types involved during biomaterial integration 
and play a major role in osteoimmunology.136

Unfortunately, the typical experimental setups used to assess 
the biological properties of biomaterials are still strongly centered on 
conventional approaches that involve standard tissue culture plastic. 

Regardless of the experimental setup, more specific evaluations 
should focus first on determining the immune cell response upon 
biomaterial contact and subsequently examine how this response 
affects the differentiation of osteoblasts/MSCs.8 The immune re-
sponse is assessed by identifying the inflammatory profile of mac-
rophages as either M1 (proinflammatory) or M2 (anti-inflammatory) 
through the study of expressed genes, released cytokines, or sur-
face markers.8

More importantly, the immune system and skeletal system inter-
act with one another constantly, and previous reports on OsteoMacs 
have shown up to a 23-fold decrease in osteoblast differentiation 
and mineralization when OsteoMacs were removed from culture. 
Therefore, there is great interest in further evaluating biomaterials 
using coculture systems. Typically, three main methods are utilized 
to investigate coculture systems (Figure 5).

1.	 Immune cells are cultured directly on the biomaterial. Following 
a period of time, the culture medium is collected (termed 
conditioned medium) and then applied to osteoblasts seeded 
on biomaterial surfaces. This process allows immune cells to 
indirectly impact osteoblasts.

2.	 The second method involves a transwell assay where immune 
cells are seeded in the upper compartment and the osteoblasts 

F I G U R E  4  Biomaterials elicit immune 
reactions. As the implantation proceeds, 
the blood clots consist of protein, growth 
factors, cytokines, and MMPs adsorbed 
on the biomaterial surface and the injured 
area, which trigger a series of reactions 
in the immune system. Neutrophils 
are recruited, and then, monocytes 
accumulate and differentiate into 
activated macrophages, which lead to the 
secretion of various cytokines and take up 
biomaterials as foreign bodies by forming 
a fibrin matrix around the biomaterials. 
Reprinted with permission from Xie et al.138

F I G U R E  5  Schematic of the main 
experimental configurations to study the 
osteoimmunomodulatory properties of 
biomaterials: Simplified methods, indirect 
coculture using conditioned medium or 
transwells, and direct coculture. Reprinted 
with permission from Mestres et al.8
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    |  9MIRON et al.

are seeded on the biomaterial surface in the lower compartment. 
This technique allows a more back-and-forth communication 
style between both cell types and evaluates their relationship in a 
second indirect model.

3.	 The third way is in direct coculture systems where osteoblasts 
and immune cells are cultured simultaneously on biomaterials. 
Typically, cells are seeded in a 6:1 ratio of osteoblasts/immune 
cells since these are the typical ratios found in human bone tissues.

4  |  OSTEOINDUC TIVE BIOMATERIAL S

The field of osteoinduction has seen major progress over the past 
decade. In 2012, a review article by our group titled “Osteoinduc-
tion: a Review of Old Concepts with New Standards” highlighted 
many features related to both bone biomaterials and growth factors 
and their ability to induce ectopic bone formation.137 The osteoin-
ductive potential of bone biomaterials was summarized as requiring 
three main criteria (Figure 6).137

1.	 The biomaterial and/or its combination with growth factors should 
be able to rapidly recruit mesenchymal stem cells to its surface.

2.	 These stem cells should then differentiate toward the osteoblast 
lineage.

3.	 These cells show ectopic bone formation.

While the article summarized the research to date on the topic, 
10 years ago, this represented a quite simplistic understanding of the 
events required during osteoinduction as well as the pronounced 
role of immune cells during these interactions.

Today, it is known that immune cells are the first to come into 
contact with biomaterials, with increasing research specifically on 
the interaction of immune cells and biomaterials. Properties of bio-
materials such as topography, wettability, surface charge, and the 
release of cytokines, mediators, ions, and other bioactive molecules 
can affect the immune responses to interfere with the skeletal sys-
tem (Figure 7). An excellent review article recently summarized all 
the events that take place and modifications to biomaterials to im-
prove their osteoimmunomodulatory properties.138

4.1  |  Osteoimmunomodulation by surface 
topography and architecture

One of the goals of designing biomaterials is to trigger appropriate im-
mune responses with the goal of facilitating and lowering inflammation 
and increasing integration. The design and modifications to biomaterial 
surfaces have drawn the most attention since the osteoimmunomod-
ulatory properties can be largely manipulated to stimulate immune 
cell function with the aim of improving bone formation.139 The abil-
ity of macrophages to polarize on biomaterial surfaces has therefore 
been largely studied and is sensitive to their physicochemical prop-
erties. Therefore, the regulation of immunomodulatory properties on 

biomaterial surfaces has been an excellent strategy to meditate the 
local environment for bone regeneration.140 Surface roughness is an 
important modification method to regulate osteoblast and osteoclast 
behavior, which has previously been highly researched, including sand 
blasting and acid etching of various biomaterial surfaces.141 Addition-
ally, surface roughness not only influences the secretion of cytokines 
but also has an effect on angiogenesis and BMSC function, enhancing 
the function of CD206, Arg1 (M2 marker), and the anti-inflammatory 
factors IL-4, IL-10, and IL-1ra.142 Interestingly, much research has now 
demonstrated that regulating surface properties such as surface 
roughness has a major impact on protein layer adsorption, which af-
fects downstream cellular events.140 In this regard, modification of the 
physical surface properties of biomaterials can regulate the activation 
of immune cells, especially macrophages.

4.2  |  Osteoimmunomodulation by wettability

Surface wettability has been another prominent area of research to 
improve biomaterial integration. Hamlet et al.143 demonstrated that 
titanium implants that were made more hydrophilic (modSLA) were 
better able to integrate into the body. The improved hydrophilic im-
plant surfaces promoted the expression of CD163 and Arg1, favor-
ing M2 macrophage polarization.143 In another similar study, it was 
found that macrophages cultured on hydrophilic implant surfaces 
decreased proinflammatory mediators, including TNF-α, IL-1, and 
CCL2.144 Additionally, it was reported that these surfaces allowed 
less contamination, which improved osseointegration.141 Similar to 
surface roughness, wettability impacts surface protein adsorption, 
clot formation, and immune system responses.

4.3  |  Osteoimmunomodulation by surface charge

The surface charge of biomaterials has also been reported as an 
important factor dictating protein adsorption and immune cell re-
sponses.145 Interestingly, Brodbeck and colleagues compared bio-
materials with an anionic functional group of poly(acrylic acid) and a 
cationic functional group of poly(dimethylamino propyl acrylamide) 
and determined that the anionic group increased IL-10 and decreased 
IL-8 expression. Thereafter, this group also impacted the positive out-
comes in osteoblast differentiation.146 Therefore, the surface charge 
can affect many immune responses via various modifications to 
chemical groups or roughness. More future work is required to better 
understand how various factors affect surface charge characteristics.

4.4  |  Osteoimmunomodulation by 
decellularized ECM

Surface protein adsorption is highly implicated in biomaterial integra-
tion. Therefore, a strategy involving directly coating biomaterials with 
various extracellular matrix (ECM) components has been developed.147 
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10  |    MIRON et al.

The ECM matrix has the ability to modify signaling molecules, ac-
tivate various enzymes, and regulate cytokine release and behav-
ior.148 Therefore, and in summary, ECM decellularization and protein 

adsorption is a promising strategy to decrease immune responses and 
control protein adsorption to the surface of biomaterials prior to their 
implantation.149,150

F I G U R E  6  Principles of osteoinductive 
materials. Principle 1: Osteoinductive 
materials should be capable of recruiting 
MSCs to bone graft surfaces through 
growth factor release. Principle 2: 
The material should promote MSC 
differentiation into osteoblasts. Principle 
3: Osteoblasts must be capable of forming 
ectopic bone in vivo. Reprinted with 
permission from Miron and Zhang.137
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    |  11MIRON et al.

4.5  |  Osteoimmunomodulation by delivering 
cytokines and bioactive molecules

The final strategy that has been well investigated has been the deliv-
ery of biomolecules onto implantable biomaterials. Therefore, vari-
ous cytokines have shown antiosteoclastogenic properties and have 
been used in various research projects.151 Risser et al.152 designed bi-
omaterials with the release of IL-4 to control immune cell responses. 
While this remains a novel strategy that requires further research, 
various approaches have been investigated to modulate immune cell 
behavior using bioactive molecules (such as drugs, mediators, or ions).

4.6  |  Osteoinduction of synthetic bone grafts

Perhaps, the most studied biomaterials to date with respect to their 
osteoinductive potential has been the development of synthetic 
bone grafts fabricated from various calcium phosphates. These 
materials, when transplanted into intramuscular and subcutaneous 
areas, lead to ectopic and orthotopic bone formation in preclinical 
studies and effective fracture healing in clinical trials.

Years ago, it was initially thought that the dissolution and pre-
cipitation of an apatite layer on CaP materials was the trigger in-
ducing bone formation.153 It was further proposed that either direct 
application of BMPs or bone growth factors from body fluids could 
adsorb on the surface of CaPs, thereby attracting stem cells to their 
surface to induce bone.154

In an article titled “A proposed mechanism for material-induced 
heterotopic ossification,” the authors propose and demonstrate that 
intrinsic osteoinduction is the result of calcium and/or phosphate 
depletion, thus explaining why not only the material (surface) com-
position but also the material volume and architecture (e.g., porosity, 
pore size) play a decisive role in this process.6

Thus, the popular belief used to explain intrinsic osteoin-
duction is based on the assumption that there is at some point 

during implantation the release of calcium and phosphate ions, 
thus leading to supraphysiological calcium and phosphate concen-
trations. These supraphysiological concentrations are assumed 
to drive stem cells into the osteogenic lineage. The opposite ef-
fect seems to be much more likely.6,108 This statement is based 
not only on in vitro and in vivo data but also on thermodynamic 
considerations. Indeed, calcium and phosphate concentrations de-
crease in cell culture media in contact with osteoinductive mate-
rials due to apatite precipitation.155–160 In vivo, the formation of a 
biomimetic layer (observation “a” herein), which by definition con-
sumes calcium and phosphate ions, is a prerequisite for intrinsic 
osteoinduction.161–165 Thermodynamically, physiological fluids are 
supersaturated toward hydroxyapatite at pH 7.4.166–168 According 
to Bohner and Lemaître,166 the supersaturation of serum is in the 
range of 101.4 (≈ 25), which means a very crude approximation that 
96% of all calcium and phosphate ions could precipitate to reach 
the chemical equilibrium between hydroxyapatite and serum. 
Assuming that this concept is correct, designing a material that 
triggers a strong mineralization reaction should lead to a strongly 
osteoinductive material. In support of this statement, the osteoin-
ductive potential of eight calcium phosphate bone graft substi-
tutes was recently predicted by an in vitro mineralization test.169

4.7  |  Intrinsic osteoinduction relies on physical, 
chemical and biological factors (reprinted with 
permission from Bohner and Miron6)

The observations made over the past 50 years in the field of intrinsic 
osteoinduction underline the importance of physical, chemical, and 
biological factors for this currently unexplained phenomenon:

	 1.	 The formation of a biomimetic apatite layer on the material 
is a prerequisite161–165,170 but not a determinant for intrinsic 
osteoinduction.171,172

F I G U R E  7  Modification strategies 
such as topography, wettability, surface 
charge, cytokines, and bioactive molecule 
release of bone biomaterials can modulate 
the osteoimmune environment. Reprinted 
with permission from Xie et al.138
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12  |    MIRON et al.

	 2.	 Intrinsic osteoinduction occurs first on the surface of pores pre-
sent in the core of a material and then spreads toward the periph
ery.154,164,170,173–175 This contrasts with osteoconduction, which 
starts first at the periphery and then spreads into the material 
(Figure 1).176

	 3.	 Intrinsic osteoinduction is more often observed in large animals 
than in small animals.176–180

	 4.	 The scaffold architecture plays a very important role in intrin-
sic osteoinduction. Bone is generally found in concavities rather 
than convexities, and an increase in microporosity positively af-
fects osteoinduction.171,181–186

	 5.	 Intrinsic osteoinduction does not depend on the chemical com-
position because it has been observed in polymers,165 met-
als,163,187,188 calcium phosphate-polymer composites,161 and 
calcium phosphates. However, calcium phosphates are particu-
larly prone to induce bone formation.162,189

	 6.	 Ingrowth of blood vessels into the material is a necessary184,186 
but not sufficient condition for intrinsic osteoinduction.

	 7.	 Intrinsic osteoinduction is a very slow process: Bone formation 
may take a few weeks up to 1 year to occur.162,174,190 This pro-
cess is in contrast with the very rapid (1–3 days) woven bone for-
mation in bone defect healing.191

	 8.	 Although both calcium and phosphate ions are considered to 
play a key role in intrinsic osteoinduction,154,164,171,180,189,192 
many studies have noted the importance of Ca ions and the Ca 
sensing receptor.157,182,185,186,193–197

	 9.	 Cartilage formation has been observed and suggested to occur 
during intrinsic osteoinduction,181,198 but it is generally ac-
cepted that intrinsic osteoinduction provokes intramembra-
nous ossification180,189,199,200 with the formation of woven 
bone165,171,173,175,178,193,200,201 and then lamellar bone.

	10.	 Macrophages and osteoclasts120,175,202–208 are considered to 
play an essential role in intrinsic osteoinduction.

Therefore, the geometry of the biomaterial is certainly a criti-
cal parameter for bone induction. Studies have demonstrated that 
for CaPs to exhibit osteoinductive properties, both a macroporous 
structure and surface microporosity are prerequisites.175 Macrop-
ores are needed primarily to produce concavities,209 whereas mi-
croporosity is controlled by the sintering temperature, with lower 
sintering temperatures resulting in higher surface microporosity. It 
has further been speculated that low oxygen tension in the central 
region of the implants might provoke osteoinduction and depletion 
of calcium and/or phosphate ions in the center of an implanted mate-
rial could induce bone formation via the calcium-sensing of immune 
and bone cells.6,108

4.8  |  Bone regeneration enhanced by M2 
macrophages

Today, it has been well established that the immune response to 
bone biomaterials is critical for optimal implantation. While an 

increasing number of studies have indicated that bone biomateri-
als cause foreign responses and create inflammation, the host-to-
scaffold immune response has been highly studied to improve 
clinical outcomes. Therefore, modifications to surfaces have become 
common study points to improve biomaterials through macrophage 
polarization.210,211 Advancements in nanoporous structures have 
facilitated a shift toward the M2 phenotype by releasing higher lev-
els of osteogenic factors, including BMP2, BMP6, TGF-B1, VEGF, 
and WNT10b.212 Similar strategies have been adapted on titanium 
implant surfaces, whereby nanotubes (NTs) with small diameters 
(NT-30) favored better osteoblast differentiation than NT-100 via 
macrophage polarization.213 Ma and colleagues fabricated hydro-
philic NT TiO2 surfaces with tube sizes of 30 and 80 nm via anodi-
zation at 5 and 20 V. NT20 favored an M1 macrophage phenotype, 
whereas polarization toward the M2 phenotype was found in the 
NT5 group.214

Another strategy used to favor M2 macrophage polarization has 
been the use of small biomaterials attached to biomaterial surfaces. 
Wendler and colleagues utilized iloprost, a prostacyclin (PG12) ana-
log with anti-inflammatory properties, leading to an improvement in 
bone regeneration in an in vivo model.215 Further groups have uti-
lized proregenerative mediators such as saffron, an antioxidant and 
anti-inflammatory molecule, as well as lithium chloride to favor bone 
regeneration via M2 macrophage polarization.216,217 Additional bio-
materials added to various bone grafts include hierarchical intra-
fibrillar mineralized collagen embedded with strontium-incorporated 
calcium silicate (Sr-CS), which was shown to have a profound bone 
regenerative ability via polarization of M2 macrophages via IL-4 se-
cretion.218,219 These combined studies highlight the fact that mac-
rophage polarization toward an M2 phenotype has routinely been 
found to favor greater osteogenic differentiation.

5  |  DISCUSSION

The interplay between the skeletal and immune systems has been 
increasingly researched, identifying very early key players in the reg-
ulation of osteoclasts.220–223 Later, Arron and Choi defined the field 
of osteoimmunology when demonstrating that T lymphocytes regu-
late osteoclast activation.10 Since then, osteoimmunology has been 
one of the fastest growing fields of active research that focuses on 
the cross talk between the immune system and skeletal cells.

The field of osteoimmunology aims to modulate the local im-
mune response to quickly shift from a proinflammatory state in favor 
of proresolution and regeneration.7 This review article focused on 
the intimate connection between these two systems and further 
discussed strategies to improve biomaterials. Thus, in summary, 
novel strategies should focus on providing more effective bone bio-
materials by focusing on immune responses and not only osteoblast 
behavior.

While current research has attempted to regulate immune re-
sponses to biomaterials, the field remains in its infancy with a lack 
of clear understanding of precise ways to optimize immune cell 
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    |  13MIRON et al.

behavior on bone biomaterials. Thus, future studies focusing on 
the roles of various immune cells discussed in this article and their 
behavior specific to bone regeneration will provide more effective 
strategies for the future treatment of bone loss.

Furthermore, small biomolecules can substantially impact im-
mune systems. For instance, monoclonal antibodies and resolvins 
have been utilized for the treatment of bone damage caused by 
immune-related diseases such as rheumatoid arthritis. Drugs such 
as tocilizumab (target: IL-6R) and adalimumab (target: TNF-α) have 
been approved and shown to be successful for the management of 
rheumatoid arthritis.224,225 Potentially, the adsorption of specific 
immune-related small biomaterials may further enhance bone re-
generation by targeting immune system responses. Exosomes, for 
instance (and as discussed in later articles in this issue), are further 
therapeutic targets that may contribute to meaningful new thera-
peutic strategies that may aid in bone regeneration via the modula-
tion of immune cells.
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