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Influence of contrast and texture
based image modifications on
the performance and attention
shift of U-Net models for brain
tissue segmentation
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Contrast and texture modifications applied during training or test-time have

recently shown promising results to enhance the generalization performance

of deep learning segmentation methods in medical image analysis. However,

a deeper understanding of this phenomenon has not been investigated. In

this study, we investigated this phenomenon using a controlled experimental

setting, using datasets from the Human Connectome Project and a large set of

simulated MR protocols, in order to mitigate data confounders and investigate

possible explanations as to why model performance changes when applying

di�erent levels of contrast and texture-based modifications. Our experiments

confirm previous findings regarding the improved performance of models

subjected to contrast and texture modifications employed during training

and/or testing time, but further show the interplay when these operations

are combined, as well as the regimes of model improvement/worsening

across scanning parameters. Furthermore, our findings demonstrate a spatial

attention shift phenomenon of trained models, occurring for di�erent levels

of model performance, and varying in relation to the type of applied image

modification.

KEYWORDS
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1. Introduction

To date, deep learning has become the state-of-the-art technology to solve problems

in medical image analysis (Ker et al., 2017; Litjens et al., 2017; Biswas et al., 2019).

However, among the main existing challenges to successfully translate this technology

to the clinics, generalization to unseen datasets remains a critical issue (Zhou et al.,

2021). Several factors contribute to the issue of model generalization. Among them,

one is particularly characteristic of medical imaging applications: protocol variability

makes model generalization in medical imaging applications difficult (Glocker et al.,

2019). This issue, known as domain shift (Pooch et al., 2019; Stacke et al., 2019;

Yan et al., 2019), is an active area of research, and many different approaches and
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strategies have been proposed in the literature. Among these

approaches, they are either applied during the training or testing

process. During model training, data augmentation is notably

the most popular one, where the objective is to artificially inject

variability of intensity patterns, so trained models can cope

with unseen variations during testing (Pereira et al., 2016; Liu

et al., 2017; Chaitanya et al., 2019; Billot et al., 2020; Sánchez-

Peralta et al., 2020). Other approaches applied during training

involve a harmonization process that removes protocol-specific

patterns (Drozdzal et al., 2018; Delisle et al., 2021; Yu et al.,

2021; Zuo et al., 2021). Differently, during test time, proposed

methods modify the input test image such that its appearance

matches the distribution of a targeted domain (Matsunaga

et al., 2017; Jin et al., 2018; Wang et al., 2019), or include

a test-time optimization process encoding specific inductive

biases known to improve model performance (Wang et al.,

2020; Karani et al., 2021). Specifically for Magnetic Resonance

(MR) image segmentation, these approaches have focused on

data augmentations applied either during training or test time,

whereas the effects of data augmentation, generally referred

hereafter as image modifications, applied during training and

test time have not been investigated. We postulate this is

important since in practical applications performance benefits

can be obtained when using both train and test time image

modifications. Recently, the work of Sheikh and Schultz

(2020) reported interesting results showing that a smoothing

operation on training images can lead to improved segmentation

performance. However, the limits or regimes of improvement

of this type of operation have not been fully studied, as well

as approaches that used image modification to achieve better

performance during train and test time.

Moreover, the literature has essentially focused on

attaining performance improvement using train or test time

augmentations. While this is an important objective, we

intended to look beyond performance metrics and study the

patterns within trained models to further understand why

such operations can lead to improved performance. To this

end, we turned to interpretability methods to further extract

information on models subjected to different combinations of

train and test time image modifications.

In order to investigate the effects of image modifications

applied during training and test time on model performance,

we designed an experimental setup under controlled conditions,

constructing a large dataset of 21,000 synthetically generated

brain MRI datasets, stemming from 500 real brain images

from the Human Connectome Project (Van Essen et al.,

2012), and combined with 42 different simulated MR imaging

protocols. Through this controlled experimental setup, we

aimed at mitigating potential confounder effects, such as

the uncontrolled heterogeneity of protocols present on

publicly available multi-center datasets, as well as other

confounder effects, such as patient-specific variables (e.g., age,

gender, etc.) known to potentially bias models (Zhao et al.,

2020).

Contrast and texture are two important properties in

medical MR images that are dependant on tissue properties

and tissue-specific parameters. Early work has shown the

importance of texture features as discriminate factors between

different tissue types in MRI (Herlidou-Meme et al., 2003).

Similarly, Lee et al. (2020) focused on synthesizing different

types of endogenous MRI contrast (i.e, T1, T2, etc.) via

a GAN-based model to achieve similar levels of agreement

with radiologists, demonstrating the importance of these two

properties for medical diagnostic purposes. In the area of

domain-adaptation, a large body of literature also shows the

importance of contrast and texture based image modifications.

We find methods that explicitly choose contrast or texture

based modifications (Agarwal andMahajan, 2017; Galdran et al.,

2017; Sahnoun et al., 2018; Zhang et al., 2019; Sheikh and

Schultz, 2020), or use a data-driven optimization approach that

select these modifications as the ones yielding the largest effect

on model performance (Drozdzal et al., 2018; Wang et al.,

2019; Delisle et al., 2021; Karani et al., 2021; Yu et al., 2021;

Zuo et al., 2021; Tomar et al., 2022). Recently, Tomar et al.

(2022) proposed an optimization-driven image modification

approach for test-time domain adaptation where contrast was

a dominant image modification found by the approach. In Xu

et al. (2020), results on three different datasets showed that

contrast and texture modifications have the largest impact on

test-time domain adaptation. Xu et al. (2020) also pointed

out that compared to global shape features, local textures

affect more deep learning networks than human perception.

Therefore, following the observations from the literature, we

focused in this study on contrast and texture basedmodifications

to study the spectrum of increased and decreased performance

of each type of variation to better characterize and understand

where these regimes of improvement occur in trained models.

Furthermore, next to analyzing these train and test time

regimes, we analyzed how spatial attention of these trained

segmentation models changes using interpretability saliency

maps (Simonyan et al., 2013; Sundararajan et al., 2017). We

adapt in this study interpretability saliency maps to medical

image segmentation, in order to investigate the relation between

model attention and segmentation performance under the

targeted image modification scenarios.

Our experiments show the benefits and interplay

when image modifications are applied during training

and test time, as well as the regimes and patterns of

model improvement/worsening for each type of image

modification. Furthermore, through interpretability, our

findings show a spatial attention shift phenomenon of

trained models, occurring for different levels of model

performance, and varying with respect to the type of applied

image modification.
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2. Materials and methods

In this section, we first describe how the proposed dataset

and experimental design were constructed, followed by detailed

descriptions of the two types of targeted image modifications,

model training procedure, and evaluation metrics.

2.1. Dataset construction

We constructed a synthetic dataset of brain images

simulated across 42 different MR protocols and based on 500

different reference brains from the Human Connectome Project

(HCP) (Van Essen et al., 2012), leading to 21,000 simulated brain

images, see Figure 1 for an overview of the dataset construction.

This construction process is detailed below.

First, simulated BrainWeb (Cocosco et al., 1997) images

were downloaded for 42 different protocols. In BrainWeb,

custom simulations of normal brain MRI data are based

on the anatomical model obtained from the Colin27 brain

atlas (Holmes et al., 1998) (the original version in Talairach

space) and its fuzzy segmentation of different tissue types.

Through BrainWeb, different brain images can be simulated

based on modality, scanning technique, slice thickness, flip

angle, repetition time (TR), echo time (TE), inversion time

(if required by the scanning sequence), and image artifacts

including random gaussian noises and intensity non-uniformity

fields based on observation in real MR scans. During simulation,

we chose to simulate T1-weighted brain images using the

spin-echo scanning technique since the major parameters that

impact image contrast and texture are TR and TE (Jung and

Weigel, 2013). We set 42 combinations of TR and TE pairs,

with TR values ranging from 300 to 800 ms with 100 ms

intervals, and with TE ranging from 10 to 40 ms, with 5

ms intervals. Other parameters were kept as default. This led

to 42 different simulated protocols, which also include labels

for Gray Matter (GM), White Matter (WM), and Cerebro-

Spinal Fluid (CSF). Each image was then mapped to the

Montreal Neurological Institute (MNI) space using a non-linear

transformation, described below.

In order to add realistic anatomical variability to the

dataset, we employed brain MR images from the HCP. From

the HCP dataset, we randomly selected 500 T1-weighted MR

images from young adults. Each structural brain image was also

non-linearly registered to the MNI-152 brain atlas (Grabner

et al., 2006) using Oxford Centre for Functional MRI of the

Brain’s Non-linear Image Registration Tool (FNIRT) (Jenkinson

et al., 2012) produced by the data providers. We used the

FIGURE 1

Data-set construction process. We input di�erent pairs of TR and TE values at the customized BrainWeb engine to synthesize brains in Talairach

space. We then transformed all these brains into MNI space. Finally, we transformed each simulated brain in MNI space to each of the HCP

brains (500 in total) leading to 500 × 42 brains in our data-set.
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inverse of these transformations to map each MNI-normalized

BrainWeb image to the space of each HCP brain, leading

to the final set of 42 × 500 (=21,000) simulated images

with corresponding segmentation labels for GM, WM, and

CSF. The complete dataset will be also made available for

research purposes.

2.2. Model training

Apart from texture and contrast image modifications,

described below, only z-score normalization was employed as

image pre-processing for model training.

In our experiments, we empirically adopted the 4:1 (training

vs. testing) split according to the Pareto principle and selected a

16:4:5 split for training, validation, and test sets resulting in 320

training, 80 validation, and 100 testing datasets.

For the training and validation sets, we randomly selected

brains from 42 different protocols using a uniform probability

distribution to train models under a multi-center configuration,

inspired by findings in Hofmanninger et al. (2020). This setup

allowed us to assess the impact of image modifications applied

during training and test time in a high-throughputmanner while

avoiding center-specific confounder effects that can occur in

practice.

Due to the compute-intensive nature of our experiments, we

adopted a standard 2D U-Net architecture (Ronneberger et al.,

2015), for which we selected five slices per brain at 10th, 30th,

50th, 70th, and 90th percentile in the cranio-caudal direction to

cover the brain anatomy while avoiding selection of empty slices

(i.e., only background). Training details are provided below in

Section 2.5.

2.3. Image intensity modifications:
Contrast and texture

Instead of focusing on searching parameters of image

modifications leading to optimal performance, as done in

previous works, we explored a wide range of positive

(i.e., leading to improvements) and negative (i.e, leading to

performance decrease) regimes.

For each of the modification we explored a wide range

of parameters that drive the modification. Figures 2B, 3 show

examples of variations for contrast and texture, respectively.

In order to facilitate visualization of increased and decreased

effects, throughout the manuscript, we present figures including

a central point with performance level for the original image and

increased and decreased levels of image modification on each

side of this central point.

FIGURE 2

Example of contrast modifications. (A) Red curves correspond to G > 0 for increased contrast. Blue curves correspond to G < 0, or decreased

contrast. The green curve is the identity function. Notice that for |G| ≤ 1 the filters are visually very close to an equal mapping and overlap on

the green curve (identity function) in the figure. (B) Example of brain images with contrast modification under di�erent parameter values G. The

central column corresponds to the original (unmodified) image, and images to its left correspond to decreased contrast. Images to its right

correspond to increased contrast. From top to bottom are brain in di�erent protocol settings: TR = 300 ms, TE = 10 ms; TR = 500 ms, TE = 25

ms; TR = 800 ms, and TE = 40 ms.
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FIGURE 3

Examples of brain images with di�erent levels of texture

modifications. Left column with α = −4, displays increased

texture, while the rightmost column with α = 4 displays

decreased texture. Original denotes the image without any

modification. From top to bottom are brain in di�erent protocol

settings: TR = 300 ms, TE = 10 ms; TR = 500 ms, TE = 25 ms;

TR = 800 ms, and TE = 40 ms.

2.3.1. Contrast modifications

Contrast modification is based on gamma correction,

which has been used in previous works to enhance model

performance (Wang et al., 2018; Yu et al., 2021). In order to

cover the span of negative and positive intensity values, we

employed a sigmoidal-logistic filter applied to the foreground of

the image being modified. Given an image f ∈ R
n, the contrast

modified image fc ∈ � is defined as:

fc =











max(f ) ·
h( f

max(f ) ·G)

h(G) G > 0
2max(f )

G ln
max(f )+f ·h(G)
max(f )−f ·h(G) G < 0

,

h(G) =
1− exp(−0.5 · G)

1+ exp(−0.5 · G)
,

(1)

where G 6= 0 ∈ R is the gain factor. max(f ) output the

maximum intensity of the input image f . When G > 0, contrast

is increased, and when G < 0, contrast is decreased. Figure 2A

shows examples of contrast-modified images and corresponding

sigmoid-logistic modification curves.

2.3.2. Texture modifications

In our study, we chose Total Variation (TV) smoothing

for texture modifications, building on the findings of Sheikh

and Schultz (2020), where it was shown that TV smoothing

leads to a better improved model performance than Gaussian

smoothing. To study the opposite (i.e., negative) effect of

smoothing, we applied a sharpening filter (Malin, 1977). Below,

we briefly describe Total Variation smoothing and sharpening

modifications.

TV smoothing is based on image denoising from Rudin et al.

(1992). Given an image f ∈ R
n, the smoothed image u ∈ � ⊂

R
n is found by minimizing,

argmin
u∈BV(�)

‖u‖TV(�) + α

∫

�
(f (x)− u(x))2dx, (2)

where BV(�) are the bounded variations of domain � and

the operator ‖ · ‖TV(�) =
∫

ω ‖∇u‖dx denotes the TV norm

of u. The TV smoothing parameter α ∈ R is a weight

parameter. In our experiments, we used the split-Bregman-

based implementation (Getreuer, 2012) in which a smaller α

(α ∈ R
+) corresponds to a larger texture modification being

applied to the image.

To create the opposite effect of smoothing, we used

the sharpening approach from Malin (1977), which creates

sharpened images by subtracting the TV smoothed image

from 2. The texture-modified image ft ∈ � ⊂ R
n in our study is

defined as:

ft =







u(α) α > 0

2 · f − u(−α) α < 0,
(3)

where now α 6= 0 ∈ R. For α > 0 is equivalent to applying

Equation (2) and for α < 0, the modified image ft ’s texture is

increased.

2.3.3. Model training schemes under training-
and test-time image modifications

Beyond the state of the art focusing on model performance,

under image modifications performed either during training or

test time, in this study we analyzed the interplay when applying

different levels of image modifications. Common knowledge

states that optimal model performance would be obtained when

the intensity distributions of training and testing images match.

We aimed at verifying this expectation, as well as analyzing the

regime of improvement and worsening under different levels of

image modifications performed during training and testing.

For contrast modification experiments, training images

were contrast-modified (Equation 1). For one model training

trial, the gain factor G of the filter was kept equal during

training and validation. Empirically, we set G ranging from

−21 to −2 and from 2 to 21 to study how contrast affects

Frontiers inNeuroimaging 05 frontiersin.org

https://doi.org/10.3389/fnimg.2022.1012639
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


You and Reyes 10.3389/fnimg.2022.1012639

model performance. This range of G was selected based on

visual assessments to yield a large coverage of modifications.

Examples are shown in Figure 2B. This led to 41 different

training-time contrast modification settings (including training

with unmodified images). Similarly, test images were contrast-

modified with the same range of parameters G, leading to 41

different test-time image modifications (including unmodified

test images). This led to a total of 41 × 41 = 1681 trained

models featuring different combinations of contrast-modified

images during training and testing (training details presented

below in Section 2.5.

Similarly for texture modifications, training images were

texture-modified with the filter described in Equation (3) upon

feeding the data to the network. For one training trial, the

weighting factor α of the filter was the same during training

and validation. We set α from −21 to −2 and from 2 to 21 to

study the texture enhanced and texture reduced scenarios, which

led to 41 different training-time image modification settings

including training without any modification. Similarly, for test-

time modifications, images were texture-modified, leading to

41 different test-time image modifications including test images

without any modification. This range of weighting factor was

empirically chosen based on visual assessments to yield a large

coverage of modifications. This led to a total of 41× 41 = 1, 681

trained models featuring different combinations of texture-

modified images during training and testing.

For every combination of training and test-time

modification, model performance was measured using the dice

coefficient for each tissue type and averaged across all 42 pseudo

protocols (100 testing images per protocol) to characterize

performance for every tissue type. This was performed for

contrast and texture based modification experiments.

2.4. Interpretability saliency maps for
segmentation

Saliency or pixel attribution is a useful tool to analyze

relevant pixels for image classification (Simonyan et al., 2013).

Integrated Gradient (IG) (Sundararajan et al., 2017) has been

widely used in recent research due to its good sensitivity

and attribution invariance to model architecture (i.e., given

two functionally equivalent models, feature attributions are

also equivalent), its implementation simplicity, and efficient

computation. In addition, IG not only satisfies the completeness

property but also has shown to be a metric that captures global

non-linear effects and cross-interactions between different

features as discussed in Ancona et al. (2017). In our study,

we used IG to calculate saliency maps to analyze how spatial

attention of trained models changes under different regimes

of image modifications. We adapted the original approach

proposed for image classification tasks to medical image

segmentation. We first describe the original IG approach and

then its extension to medical image segmentation.

For a binary CNN classification model F :Rn → [0, 1], the

saliency map for a label of input image x ∈ R
n in the IG method

is defined as,

IGl
i(x) = (xi − xi

′) ·

∫ 1

β=0

∂Fl(x′ − β(x− x′))

∂xi
dβ , (4)

where x′ is the baseline image and IGi(x) is the integrated

gradients for pixel i of input image x for class l. Fl(·)mn is

the probability at the output of class l. β ∈ [0, 1] is a scalar

used for interpolating between the input image (β = 1), and

the baseline image (β = 0). Integrated gradients are obtained

by accumulating gradients along the path between the baseline

image x′ and the input image x.

To extend IG to segmentation models, we modified IG

to integrate gradients from each output pixel to the input

image. In order to reduce the computational burden of this

task in practice, and benefit from calculations of gradient

in deep neuron network platforms, we directly select output

tensor to calculate the IG that Tensorflow (Abadi et al., 2015)

automatically aggregates the gradients for multiple selections of

pixels (i.e., selection of a probability slice for one label instead of

a probability pixel for one class). The segmentation IG thus can

be denoted as:

IGl
i(x) =

M
∑

m=1

N
∑

n=1

IGl
i(x)

mn

=

M
∑

m=1

N
∑

n=1

(x− x′) ·

∫ 1

β=0

∂Fl(x′ − β(x− x′))mn

∂xi
dβ

= (x− x′) ·

∫ 1

β=0

∑M
m=1

∑N
n=1 ∂Fl(x′ − β(x− x′))mn

∂xi
dβ

= (x− x′) ·

∫ 1

β=0

∂Fl(x′ − β(x− x′))

∂xi
dβ

(5)

The term IGl
i(x) is the integrated gradients of the label l

for input pixel i, and IGl
i(x)

mn corresponds to the integrated

gradients of the input pixel i for the output that indexed mn in

the label l. The operator · denotes element-wise multiplication.

Fl(·)mn is the probability at the output indexed mn for label l,

which we omit in the equation for clarity. M and N are the size

in pixels of the input image x thatM = N = 288.

In our experiments, we calculated saliency maps according

to each of the labels of interest, i.e., CSF, Gray Matter, andWhite

Matter. To implement Equation (5), we used a trapezoidal-

based interpolation, using 1β = 1
16 as a trade-off between

accuracy and calculation time and GPU memory. In order

to normalize pixel attribution values so they are not affected

by tissue intensities (i.e, high intensity pixels having larger

attribution), we re-scaled IG gradients using the 5% and 95%

percentile of calculated IG values to−1 and 1.
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Due to the compute-intensive nature of IG for segmentation

(Equation 5 for all the brains and protocols we simulated, we

randomly selected a subset of brain images from a representative

protocol with settings TR = 500 ms and TE = 25 ms, and

calculated saliency maps of each label on cases yielding the

best, worst performances, and the original (unmodified) case for

comparison purposes.We chose this protocol as a representative

one since it is situated in the center of all simulated protocol

parameter values. Calculated saliency maps for each type of

image modification were then averaged across trained models

for each label and selected slice.

2.5. Implementation details

We used the U-Net architecture (Ronneberger et al., 2015)

and modified its output to multi-class segmentation to segment

CSF, GM, and WM. We modified the input size to 288x288

based on the largest size of the bounding box of all slices in the

training and testing set. We also added a dropout layer before

each pooling layer. As loss function, we calculated the mean

cross-entropy of each output class for each input batch.

Trained models were saved at the end of each epoch and

were evaluated via the corresponding validation set. We selected

models with the lowest validation loss among all training

epochs of that trial. Models were trained with 250 epochs. We

operated all experiments on Tensorflow (Abadi et al., 2015)

2.4. To reduce stochasticity during training and to make a

fair comparison across trained models we implemented three

strategies: (i) all training trials used the same initialization and

seed, (ii) we set training to the deterministic operation mode

in Tensorflow (Abadi et al., 2015), and (iii) we used the same

training data but used different random shuffles during training,

and performance across all 20 runs (one run evaluated on 42 ×

100 cases) was then averaged for analysis purposes. We used

Adam optimizer with a learning rate of 1e-4 during training and

set the dropout rate to 0.5 for generalization purposes. We used

GeForce GTX 1080Ti GPUs during experiments. The synthetic

data repository and the code to calculate integrated gradients in

segmentation models will be made available.

3. Results

In this section, we describe the main results divided into

(i) effect of contrast modifications on performance of trained

models, (ii) effect of texture modifications on performance of

trained models, and (iii) interpretability analysis of U-Net’s

spatial attention levels for different regimes of contrast and

texture modifications. The first two experiments (i) and (ii)

aim at analyzing the interplay when applying different levels

of image modifications. Particularly, these two experiments

also aim at verifying whether optimal performance occurs

when the intensity distribution of training and testing images

match. Furthermore, these two experiments aim at analyzing

the regime of improvement and worsening under different

combinations of image modifications performed during training

and testing. The third experiment, on the interpretability of

the U-Net’s spatial attention, aims at analyzing how spatial

attention of trained models changes under different regimes of

image modifications, and their application during training and

test time.

3.1. E�ect of contrast modifications

Figure 4 shows results of the mean DSC across all 42

protocols under different contrast modifications, for a total of

42×41×41 = 72, 324 evaluations, which are summarized as grid

points on Figure 4 (see Supplementary material for an animated

version including saliency maps).

From the mean DSC heatmap, we first noticed that the

best DSC performance did not occur for models trained and

tested on unmodified data (i.e., central point in Figure 4).

We observed that optimal performance occurs for contrast

modifications applied during training and testing. We also

observed that optimal performance did not occur on matching

intensity distributions (i.e., indicated with a thin line in

Figure 4), but an upward shift of the anti-diagonal was

observed for models yielding improved DSC values across

all three tissue types. The upward shift impact can be

also observed in Figure 6, where for the unmodified pair

(original), the U-net tends to yield an under-segmentation

of GM and over-segmentation of WM, leading to sub-

optimal performance across the column denoted ’Ori’ in

Figure 4.

Considering the specific scenario where contrast

modifications are only applied either during training (i.e.,

central columns on each heatmap of Figure 4) or only during

test-time (i.e., central rows on the heatmap of Figure 4),

results show that contrast modifications can boost model

performance. Moreover, combining these two scenarios, to

perform contrast modification during training and test-time,

the best performance across all configurations could be found,

as indicated by the blue-framed squares in Figure 4. Details

of DSC values are shown in Table 1. Concerning the central

point of reference, the best performance corresponds to an up

to 10% performance improvement for GM, 8% for WM, and

1.5% for CSF. However, improvements cannot be attained by

continuously increasing contrast, as shown in Figure 4.

These results show the importance of considering

both training and test time modifications to boost model

performance.

At the top right corner of the heatmaps in Figure 4, we

observe a broadening of the region where improvement occurs,

mostly noticeable for WM. When increasing the contrast of
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FIGURE 4

Mean DSC of all protocols under di�erent contrast modifications. From left to right, each heatmap denotes DSC performance for CSF, Gray

Matter, and White Matter. On each heatmap, the vertical axis denotes di�erent levels of contrast modification, with parameter G ranging from

−20 to 2 and from 2 to 20, to train models. In the vertical axis, “Ori” denotes models trained with original (unmodified) training images. The

horizontal axis denotes di�erent levels of contrast modification, ranging from −21 to 2 and from 2 to 21, to test models. Similarly, “Ori” in the

horizontal axis denotes models tested on original (unmodified) images. For G < 0, the contrast decreases and for G > 0, the contrast increases.

DSCs of the best and worst, and another exemplary bad model performance, opposite to worst in terms of the combination of modifications,

are labeled with red, blue, and green frames, respectively. Interestingly, and di�erently from what one would expect, best performance is not

occurring when there is a matching between train and test time modification (i.e., anti-diagonal). See Table 1 for details.

TABLE 1 Mean and standard deviation of best models achieved in the settings of contrast and texture modifications to the original settings

(unmodified).

CSF Gray matter White matter

Original 0.877± 0.007 0.813± 0.032 0.841± 0.026

Contrast modification best 0.89(↑ 1.5%)± 0.005 0.897(↑ 10%)± 0.003 0.908(↑ 8%)± 0.005

Texture modification best 0.881(↑ 0.5%)± 0.006 0.839(↑ 3%)± 0.024 0.859(↑ 2%)± 0.019

The two “best” results correspond to the blue framed grid points in Figures 4, 5. ↑ describes relative improvements with respect to results on the original images. Interestingly, and

differently from what one would expect, best performance is not occurring when there is a matching between train and test time modification (see anti-diagonal on Figures 4, 5).

the training and testing images, the intensity difference among

tissues increases, resulting in a larger area of performance

improvement (shown as a slightly broader red-colored area in

Figure 4).

For contrast-based modifications, we observed that sub-

optimal results occur when different directions of modifications

are used (e.g., increase contrast during training and decreased

contrast during testing). This is illustrated on the main

diagonals in Figures 4, 5. We also observed that the region

of performance improvement is different for different tissue

types. For GM, the performance drops more rapidly than for

WM in the regions where contrast is decreased during training

and increased during test time. This is caused by an under-

segmentation of GM and an over-segmentation of WM, as

shown in Figures 6, 7, top rows. Conversely, in the top-left

regions of Figure 4, where contrast is increased during training

but decreased during test time, WM is under-segmented and

its DSC value drastically drops to values close to 0. As we

approach the top-left corner of the heatmaps, WM is first

falsely predicted as GM. However, when further approaching

the top-left corner, both tissues are falsely predicted as CSF or

background.

3.2. E�ect of texture modifications

Figure 5 shows results of the mean DSC across all 42

protocols under different texture modifications, for a total of

42 × 41 × 41 = 72, 324 evaluations, which are summarized as

grid points on Figure 5. Performance improvements for texture-

based modifications are summarized in Table 1. In comparison

to contrast, texture-based modifications yielded in average a

lower level of performance improvement of 3% (GM), 2%

(WM), and 0.5% (CSF) with respect to models trained on

original (unmodified) images.

Similarly as for the contrast modification experiments

presented above, for texture modification we found that the best

DSC did not occur for models trained and tested on unmodified

images. However, compared to the contrast modification

experiments, we found a different pattern of performance

improvement and worsening. As shown in Figure 5, the best

performance was found for images modified during training,

using a negative texture α parameter value (i.e., smoothing). This

aligns with the findings from Sheikh and Schultz (2020) and

further suggests that no major benefits occur when images are

texture-modified during test-time.
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FIGURE 5

Mean DSC of all protocols under di�erent texture modifications. From left to right, each heatmap denotes DSC performance for CSF, Gray

Matter, and White Matter. On each heatmap, the vertical axis denotes di�erent levels of texture modification, ranging from −4 to −20 and from

20 to 4, to train models. In the vertical axis, “Ori” denotes models trained with original (unmodified) training images. The horizontal axis denotes

di�erent levels of texture modification, ranging from −4 to −20 and from 20 to 4, to test models. Similarly, “Ori” in the horizontal axis denotes

models tested on original (unmodified) images. Note that in texture modification, smaller |α| corresponds to smaller modification e�ect thus the

reversed order in indexing. For α < 0, the texture is enhanced (sharpened) and for α > 0, the texture is reduced (smoothed). DSCs of the best

and worst, and another exemplary bad model performance, opposite to worst in terms of the combination of modifications, are labeled with

red, blue, and green frames, respectively. Interestingly, and di�erently from what one would expect, best performance is not occurring when

there is a matching between train and test time modification (i.e., anti-diagonal). See Table 1 for details.

From Figure 5, we also observed a cross-like pattern, not

observed for contrast-based modifications. This is due to the

non-linear effect of the parameter α on the optimization process

of Equation (2). These results suggest that in comparison

to contrast-based modifications, texture-based modifications

have a more unstable behavior. This is for instance seen at

several areas in Figure 5 presenting non-monotonic patterns of

performance change. In terms of tissue types, CSF showed a

similar level of benefit to contrast-based modifications, while

contrast modifications yielded larger levels of improvement for

GM and WM than texture-based modifications, as shown in

Table 1.

3.3. Interpretability analysis of U-Net’s
spatial attention levels for di�erent
regimes of contrast and texture
modifications

In Figures 6, 7, we show examples of GM segmentation

results and corresponding saliency maps for best and worst

performance for protocol with TR = 500 ms and TE = 25 ms of

contrast modification and texture modification. As a reference,

we also show segmentation results and corresponding saliency

maps for the original (unmodified) image. The segmentation

results are averaged among 20 trained models for one parameter

setting. Additionally, following the findings from Figures 4, 5,

where we observed two areas of performance worsening (top-

left and bottom-right quadrants), we complemented Figure 6

with another example of bad performance, opposite to the

position of the worst performance in terms of the combination

of modifications. This was performed in order to further

investigate how the model’s attention changes under opposite

schemes of image modifications.

In terms of saliency maps for contrast-based modifications

(Figure 6), we observed a general attention shift of trained

models under different image modifications. Particularly, we

observed that such attention shift seems to be related to spatial

redistribution of attended areas: for GM segmentation, the

best performance models yielded a more concentrated spatial

distribution to the edgy area between GM and WM, whereas

worst and the second bad performance models tend to falsely

yield areas of increased attention to the unrelated area, e.g., the

inner area of white matter. We also noticed that there is an

’inverted’ value change of the saliency maps between GM and

WM under the same parameter setting, shown in Figure 6 and

the Supplementary materials.

For texture-based modifications, similarly as for contrast,

we observed performance improvements when trained models

shifted their attention (see Supplementary material). Similar

to contrast, such an attention shift seems to enhance the

attention to attended areas. However, since the performance

change is relatively small compared to contrast experiments,

the effect is less strong. Strikingly, a shift occurs toward

edge areas of tissues, which might be related to the nature

of texture modifications mostly affecting edge areas. We also

observe the ’inverted’ or complementary pattern of saliency

maps which relate to the miss-segmentation between two

tissues. In Supplementary material, we include several other

Frontiers inNeuroimaging 09 frontiersin.org

https://doi.org/10.3389/fnimg.2022.1012639
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


You and Reyes 10.3389/fnimg.2022.1012639

FIGURE 6

Contrast modifications. GM segmentation results (top), saliency maps (middle), and saliency di�erence maps (bottom), for best (first column),

original (second column), worst (third column), and another exemplary bad model performance (fourth column) opposite to worst in terms of

the combination of modifications, for protocol TR = 500 ms; TE = 25 ms. The best, worst, and second bad cases corresponded to the blue, red-,

and green-framed squares on heatmaps in Figure 4. As a reference, the DSC values for best, original, worst, and other bad result models are

included for each segmentation result that are averaged among 20 trained models with the same modification setting pair. An attention shift or

redistribution of pixel attribution is observed between the original, best, and worst performances. Compared to the ground truth, the unmodified

pair (original) tends to have an under-segmentation of GM and over-segmentation of WM.

brain cases showing similar results of the found attention shift

phenomenon. In the next section, we discuss and summarize our

results in light of the state of the art and include limitations and

future work.

4. Discussion

Model generalization is a crucial aspect of training deep

learning models. In these regards, domain shift stemming from

differences in protocols is one of the most difficult problems

negatively affecting model generalization. Among the most

successful approaches proposed to ensure model generalization,

methods modifying intensity patterns during training or test

time have shown promising results (Liu et al., 2017; Matsunaga

et al., 2017; Drozdzal et al., 2018; Jin et al., 2018; Chaitanya et al.,

2019; Wang et al., 2019, 2020; Billot et al., 2020; Sánchez-Peralta

et al., 2020; Sheikh and Schultz, 2020; Delisle et al., 2021; Karani

et al., 2021; Yu et al., 2021; Zuo et al., 2021), with contrast-

and texture-based modifications being the most impactful image

modifications applied either explicitly (i.e., direct modification)

or implicitly (i.e., via a data-driven pipeline).

Differently from the state of the art, mainly focusing on

performance objectives, in this study we aimed at further

analyzing and leveraging our understanding as to how and to

which extent, these two types of image modifications affect the

performance of trained models, when applied during training

and/or test time. Furthermore, beyond performance metrics, we

believe interpretability can play an important role in leveraging

the generalization capability of models for medical applications.

Toward these objectives, in this study, we designed a controlled

experiment, consisting of a large synthetic dataset of 21,000

brain MR images based on 500 datasets from the Human

Connectome Project, and 42 different MR protocols, designed in

relation to the major parameters impacting image contrast and

texture in MRI (Jung and Weigel, 2013).

Overall, our study highlights the benefits of utilizing contrast

and texture-based modifications for improved performance,

with contrast-based modifications yielding larger performance

improvements than texture-based modifications. This finding
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FIGURE 7

Texture modifications. GM segmentation results (top), saliency maps (middle), and saliency di�erence maps (bottom), for best (left column),

original (middle column), worst (third column), and another exemplary bad model performance opposite to worst in terms of the combination

of modifications, for protocol TR = 500 ms; TE = 25 ms. The best, worst, and second bad cases corresponded to the blue, red-, and

green-framed squares on heatmaps in Figure 4. As a reference, the DSC values for best, original, worst, and other bad result models are also

included. An attention shift or redistribution of pixel attribution is observed among the di�erent performances. Compared to the ground truth,

the unmodified pair (original) tends to have an under-segmentation of GM and over-segmentation of WM.

aligns with recent data-driven approaches, wherein an

optimization process modifies images till the best performance

is attained, resulting in images characterized by a contrast

change (Drozdzal et al., 2018; Delisle et al., 2021; Yu et al., 2021)

(see Figure 2 middle in Delisle et al. (2021) as a notable example

of this). We note that this strategy has proved successful for

both training and test-time modifications, but has not been

analyzed in conjunction, as done in this study, which has shown

the benefits of combining them during training and test time.

These results and findings also contribute to a more general

discussion regarding the design of image acquisition protocols,

that historically have been fine-tuned for human perception, but

might not necessarily be optimal for deep learning models, as

also hinted in the study of Delisle et al. (2021).

The backbone of our experiments is a large dataset

of synthetically generated MR brain images, designed to

train and test an extensive set of segmentation models

utilizing various simulated MR protocols, and contrast and

texture-based modifications. Despite the synthetic nature of

this dataset and the related disadvantages of not using

a real one, we believe that the advantages of using this

dataset for the objectives of this study are superior and

outweigh the utilization of a real dataset wherein different

confounder effects could bias our analyses. While many publicly

multi-protocol datasets are available for research purposes,

most of them do not fully characterize protocol variability,

demographics, etc., or lack important information known

to cause generalization problems. Conversely, other available

datasets have been designed for specific research questions and

imaging protocols, hence limiting analyses of generalization

capability in clinical scenarios. Hence, our interest to design

a controlled and high-throughput experiment. In addition, the

generated dataset also simulates a large set of brains being

scanned over 42 simulated MR protocols, which we think

can be considered for studies where anatomical variability is

relevant. Beyond this study, we believe that this dataset can

be useful in other areas of research, such as in federated

learning where typical data imbalances naturally occur, and

related confounder effects have been pointed out as one of

the issues to be solved (Aledhari et al., 2020; Balachandar

et al., 2020; Willemink et al., 2020; Qu et al., 2021). As

part of this study, we will share the complete dataset,
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along with accompanying parametric information for research

purposes.

Interpretability of deep learning has attracted much

attention in the medical image computing community (Cardoso

et al., 2020; Reyes et al., 2020; Budd et al., 2021; Fuhrman et al.,

2021; Kitamura and Marques, 2021; McCrindle et al., 2021).

The so-called “black box” nature of deep learning networks,

in conjunction with issues of shortcut learning (Geirhos et al.,

2020), confounding effects (Zhao et al., 2020), and other critical

issues in the training of deep learning models, further exacerbate

the need to develop interpretability approaches allowing

developers and end-users of these technologies to audit them

and gain insights on their patterns of functioning. In this study,

we extended the approach of integrated gradients (Sundararajan

et al., 2017), designed for classification tasks, for multi-

class segmentation tasks. However, we acknowledge that

other algorithms for saliency calculation might be extended

for segmentation tasks in different approaches. Results of

this analysis showed an interesting phenomenon, up to our

knowledge not previously analyzed in detail, where an attention

shift occurs as a function of the type of image modification

being used, and follows distinctive patterns for increased

and decreased performance levels. Indeed, although attention

mechanisms have attracted much popularity to improve

model performance (Chaudhari et al., 2021), we believe that

gaining more understanding of these patterns might open new

opportunities to use them as model fingerprints to detect failure

modes, enhance training monitoring, improve quality control of

training datasets, etc.

Some limitations are worth mentioning. The study focused

on analyses for brain MRI imaging studies. Further work is

needed to verify these findings apply to other medical scenarios.

Our analysis in this study remains qualitative via visualizations

of saliency maps across different brain datasets. In this regard,

further research work is needed to design quantification metrics

for the observed attention shift phenomenon. An interesting

avenue of research in these regards concerns the use of these

model’s fingerprints to guide quality assurance of models in a

similar way as it has done before where segmentation outputs

have been used to predict model performance (Kohlberger et al.,

2012; Robinson et al., 2018; Hann et al., 2019; Liu et al., 2019).

The study focused on image modifications based on contrast

and texture, which are popular image modifications used in the

literature. Further research is needed to verify how the observed

attention shift reported here occurs for other types of image

modifications.

5. Conclusion

In this work, we performed a high-throughput analysis

of contrast- and texture-based modifications applied during

training and test-time of deep learning models, using a

controlled experimental setting employing datasets from the

Human Connectome Project and a large set of simulated MR

protocols, in order to mitigate the inhomogeneity of data

confounders, and investigate possible explanations as to why

model performance changes when different levels of contrast

and texture-based modifications are used. Our experiments

confirm previous findings regarding the improved performance

of models subjected to contrast and texture modifications

employed during training and/or testing time, but further show

the interplay when these operations are combined, as well as

the regimes of model improvement/worsening across scanning

parameters. Furthermore, our findings demonstrate a spatial

attention shift phenomenon of trained models, occurring for

different levels of model performance, and varying in relation

to the type of applied image modification. We expect these

findings and data resources to further leverage the generalization

capability and understanding of trained deep learning models

for clinical applications.
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