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1.   Introduction 

Multifactor experiments investigate the impact of two or more factors or input 

parameters on a process' output response. Factorial experiment design, or simply 

factorial design, is a systematic approach for articulating the procedures required to 

successfully run a factorial experiment. Estimating the effects of numerous parameters on 

a process' output with a small number of observations is crucial for process output 

optimization. 

In multifactor experiments, the effects of changing the levels of many factors that 

contributed to the process outcome are investigated. Each entire trial or replication of the 

experiment accounted for all possible combinations of these elements' varied amounts in 

each trial or replication. In order to gather the most information about how input factors 

affect a process output, effective factorial design ensures that the fewest number of 

experiment runs are performed. 

For example, an experiment on rooting of cuttings involving two factors, each at two levels, 

such as two hormones at two doses, is referred to as a 2 x 2 or a 22 factorial experiment. Its 

treatments consist of the following four possible combinations of the two levels in each of 

the two factors. 

Treatment number 
Treatment Combination 

Hormone Dose (ppm) 

1 NAA 10 

2 NAA 20 

3 IBA 10 

4 IBA 20 

1 
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The total number of treatments in a factorial experiment is the product of the number of 

levels of each factor; in the 22 factorial example, the number of treatments is 2 x 2 = 4, in 

the 23 factorial, the number of treatments is 2 x 2 x 2 = 8. With a rise in the number of 

factors or the levels of each factor, the number of treatments rapidly grows. The total 

number of treatments in a factorial experiment with 5 clones, 4 spacing, and 3 weed-control 

strategies would be 5 × 4 x 3 = 60. Because of their large size, complexity, and cost, factorial 

experiments should not be used indiscriminately. Furthermore, it is not advisable to commit 

to a large experiment at the outset of a research project when multiple modest preliminary 

trials may yield promising results. A tree breeder, for example, has brought 30 new clones 

from a neighbouring country and wants to see how they behave in the local environment. 

Because the environment is likely to change in terms of soil fertility, moisture levels, and 

other things, the optimum experiment would be one in which the 30 clones are tested in a 

factorial experiment with other variables such as fertiliser, moisture level, and population 

density. When factors other than clones are introduced, however, such an experiment 

grows exceedingly huge. Even if only one element were introduced, such as nitrogen or 

fertiliser with three levels, the number of treatments would rise from 30 to 90. Financing, 

getting a suitable experimental area, regulating soil heterogeneity, and other issues would 

all be tough with such a vast experiment. As a result, a more feasible method would be to 

test the 30 clones in a single-factor experiment first, then utilise the results to pick a few 

clones for more detailed studies. For example, the initial single-factor experiment may 

reveal that only five clones are worthy of further investigation. These five clones might then 

be used in a factorial experiment with three levels of nitrogen, yielding a 15-treatment 

experiment rather than the 90-treatment experiment needed with 30 clones. 

The'main effect' of a factor is defined as the amount of change in the process output caused 

by a change in the 'level' of that factor. Table 1 illustrates a simple factorial experiment with 

two components, each with two levels. In factorial designs, the two levels of each factor are 

designated by 'low' and 'high,' which are commonly symbolised by '-' and '+,' respectively. 

Table 1. A Simple 2-Factorial Experiment 

 A (-) A (+) 

B (-) 20 40 

B (+) 30 52 

The 'average' change in the output response as a component changes from '-' to '+' 

represents the principal effect of that factor. This is the average of two values in 

mathematics: 1) the change in output when the factor goes from low to high while the other 

factor remains low, and 2) the change in output when the factor goes from low to high while 

the other factor remains high. 

When both A and B are at their '-' level, the process output is simply 20 (lowest output), 

whereas when both A and B are at their '+' level, the process output is 52 (highest output). 
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The average of the change in output response when B remains '-' as A goes from '-' to '+', or 

(40-20) = 20, and the change in output response when B remains '+' as A goes from '-' to '+', 

or (52-30) = 22 is the main effect of A. As a result, the main effect of A is equal to 21. 

Similarly, B's main effect is the average change in output from '-' to'+', i.e. the average of 10 

and 12, or 11. As a result, B's main effect on this process is 11. Here, it can be shown that 

factor A has a bigger impact on the process output, with a major effect of 21 compared to 

only 11 for factor B. It's worth noting that, in addition to'main effect,' elements can also 

cause 'interaction effects.' Changes in the process output induced by two or more factors 

interacting with each other are known as interaction effects. Large interactive effects might 

overshadow the main effects, making it all the more vital to focus on the interaction of the 

involved factors than to investigate them individually. In Table 1, as effects of A (B) is not 

same at all the levels of B (A) hence, A and B are interacting.  

Interaction is defined as the failure of differences in response to changes in one factor's 

levels to maintain the same order and magnitude of performance across all levels of other 

factors, OR the factors are said to interact if the effect of one factor changes as the levels of 

other factor(s) change. 

Graphical representation of lack of interaction between factors and interaction between 

factors are shown below. In case of two parallel lines, the factors are non-interacting. 

 

     

 

If there are interactions, which is rather typical, we should design our studies so that they 

can be estimated and tested. It is obvious that we will not be able to accomplish so if we 

simply change one factor at a time. Multilevel, multifactor studies are required for this. 

The basis of factorial experiments is the execution of factorial combinations and the 

mathematical interpretation of the process' output responses to such combinations. It gives 
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for a better understanding of which aspects have the greatest impact on the process, 

allowing for improvements (or corrective actions) to be targeted towards these areas. 

We may define factorial experiments as experiments in which the effects (main effects and 

interactions) of more then one factor are studied together. In general if there are ‘n’ factors, 

say, F1, F2,..., Fn and ith factor has si levels, i=1,...,n, then total number of treatment 

combinations is si

n

i


1

. Factorial experiments are of two types. 

Asymmetrical factorial experiments are those in which all of the factors have the same 

number of levels, i.e. all si's are equal, whereas symmetrical factorial experiments are those 

in which at least two of the si's are different. Factorial experiments allow researchers to 

investigate both the individual effects of each element as well as their interactions. They 

also offer the benefit of conserving experimental resources. When experiments are carried 

out factor by factor, substantially more resources are needed to achieve the same precision 

as when they are carried out in factorial studies. 

Confounding in Factorial Experiments 

When the number of factors and/or their levels increase, the number of treatment 

combinations increases rapidly, and all of these treatment combinations cannot be 

accommodated in a single homogenous block. A 25 factorial, for example, would contain 32 

treatment combinations, and 32 plot blocks are rather large to maintain homogeneity 

within them. For developing trials with a high number of treatments, a new technique is 

required. One such device is to use blocks that are smaller than the number of treatments 

and replicate them multiple times. After that, the treatment combinations are separated 

into groups equal to the number of blocks in each replication.The different groups of 

treatments are allocated to the blocks. 

There are a number of ways to divide the treatments into as many groups as the number of 

blocks in each replication. It is well known that in a factorial experiment with two levels of 

each factor, the treatment combinations are separated into two groups in order to achieve 

the interaction contrast. Such two groups, each comprising half of the entire number of 

treatments, can be used to create the contrasts of two blocks, each holding half of the total 

number of treatments. The interaction contrast and the contrast between the two block 

totals are both generated by the same function in this situation. As a result, they are mixed 

and unable to be separated. To put it another way, the interaction has been confounded by 

the blocks. Because of the reduced block size, the interaction confounded has been lost, but 

the other interactions and main effects can now be estimated with greater precision. 

Confounding is a technique for reducing block size by using one or more interaction 

contrasts that are identical to block contrasts. Only higher order interactions, i.e. 
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interactions involving three or more components, should be confounded because their loss 

is insignificant. As an experimenter is generally interested in main effects and two factor 

interactions, these should not be confounded as far as possible. 

When there are two or more replications, complete confounding occurs when the same set 

of interactions is confounded in all replications, while partial confounding occurs when 

different sets of interactions are confounded in various replications. Complete confounding 

eliminates all information about confounded interactions. However, in partial confounding, 

the confounded interactions can be recovered from non-confounded replications. 

Fractional Factorial 

When the number of components to be examined in a factorial experiment increases, the 

total number of factorial treatments may become too high to test simultaneously in a single 

experiment. An experimental design that permits only a subset of the entire number of 

treatments to be tested is a logical alternative. The fractional factorial is a design that is 

particularly well suited to studies with a large number of variables. It allows you to pick and 

test a subset of the total number of factorial treatment options in a systematic fashion. 

However, there is a loss of information on some pre-selected effects in exchange. Although 

this information loss can be significant in studies with only one or two factors, it becomes 

more manageable when there are many. The number of interaction effects increases rapidly 

with the number of factors involved, which allows flexibility in the choice of the particular 

effects to be sacrificed. In fact, in cases where some specific effects are known beforehand 

to be small or unimportant, use of the fractional factorial results in minimal loss of 

information.  

High order interactions, such as four-factor or five-factor interactions, and even three-factor 

interactions, are generally sacrificed when using the fractional factorial in practise. Unless 

the researcher has prior evidence to indicate otherwise, a set of treatments should be 

chosen to be evaluated in almost all cases so that all main effects and two-factor 

interactions may be approximated. 

The fractional factorial is used in forestry research in exploratory experiments where the 

main goal is to study the relationships between components. Fractional factorials that 

sacrifice only interactions involving more than two components are the most suited 

fractional factorials for such experiments. 

With the fractional factorial, the number of effects that can be measured decreases rapidly 

with the reduction in the number of treatments to be tested. When the number of effects 

to be measured is large, the number of treatments to be tested may still be too great, even 

when fractional factorial is used. In such circumstances, limiting the number of replications 
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can help reduce the size of the experiment even further. Although fractional factorial 

without replication is not commonly used in forestry studies, when it is used in exploratory 

trials, the number of replications necessary can be decreased to a bare minimum. 

Another advantage of fractional factorial is that it allows for smaller blocks because it does 

not require each block to contain all of the treatments to be evaluated. The homogeneity of 

experimental units within a block can be increased in this way. However, in addition to the 

information already lost due to the reduction in the number of treatments, a reduction in 

block size results in a loss of information. 

Analysis using R 

Sample data taken from Design Resource Server 

https://drs.icar.gov.in/Analysis%20of%20data/Analysis%20of%20Data.html 

(steps are similar for partially confounded factorial experiments) 

attach(factorial)  

names(factorial)  

rep<-factor(REP)  

fym<-factor(FYM)  

p<-factor(P)  

psb<-factor(PSB) 

lm1<-lm(Yield~rep+fym+p+psb+fym:p+fym:psb+p:psb+fym:p:psb)  

anova(lm1) 

https://drs.icar.gov.in/Analysis%20of%20data/Analysis%20of%20Data.html
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# To provide pairwise comparison, need to install the package lsmeans or emmeans 

install.packages("lsmeans") 

library(lsmeans)  

lsm1<-lsmeans(lm1,"fym")  

lsm1  

#All pairs statement are optional# 

pairs(lsm1) 
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lsm2<-lsmeans(lm1,"p") 

lsm2 

pairs(lsm2) 

 

lsm3<-lsmeans(lm1,"psb")  

lsm3 

pairs(lsm3)  

 

lsm4<-lsmeans(lm1,~fym:p)  

lsm4 

pairs(lsm4)  
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lsm5<-lsmeans(lm1,~fym:psb)  

lsm5 

pairs(lsm5)  

 

lsm6<-lsmeans(lm1,~p:psb)  
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lsm6 

pairs(lsm6)  

 

lsm7<-lsmeans(lm1,~fym:p:psb)  

lsm7 

pairs(lsm7) 
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# To provide letter grouping, need to install the package multcomp# 

install.packages("multcomp") 
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library(multcomp) 

cld(lsm1, Letters="ABCDEF") 

cld(lsm2, Letters="ABCDEF")  

cld(lsm3,Letters="ABCDEF")  

cld(lsm4,Letters="ABCDEFGHI")  

cld(lsm5,Letters="ABCDEFGHI") 

cld(lsm6,Letters="ABCDEFGHI")  

cld(lsm7,Letters="ABCDEFGHIJKLM")  

detach(factorial) 
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Fractional Factorial Experiment 

Datafile: fractional.csv 

trt A B C D E F yield 

1 0 0 0 0 0 0 15 

ab 1 1 0 0 0 0 4 

ac 1 0 1 0 0 0 7 

ad 1 0 0 1 0 0 12 

ae 1 0 0 0 1 0 13 

af 1 0 0 0 0 1 15 

bc 0 1 1 0 0 0 17 

bd 0 1 0 1 0 0 5 

be 0 1 0 0 1 0 6 

bf 0 1 0 0 0 1 14 

cd 0 0 1 1 0 0 9 

ce 0 0 1 0 1 0 12 

cf 0 0 1 0 0 1 11 

de 0 0 0 1 1 0 5 

df 0 0 0 1 0 1 13 

ef 0 0 0 0 1 1 6 

abcd 1 1 1 1 0 0 3 

abce 1 1 1 0 1 0 11 

abcf 1 1 1 0 0 1 6 

abde 1 1 0 1 1 0 4 

abdf 1 1 0 1 0 1 10 

abef 1 1 0 0 1 1 4 

acde 1 0 1 1 1 0 9 

acdf 1 0 1 1 0 1 1 

acef 1 0 1 0 1 1 8 

adef 1 0 0 1 1 1 1 

bcde 0 1 1 1 1 0 6 

bcdf 0 1 1 1 0 1 10 

bdef 0 1 0 1 1 1 5 

bcef 0 1 1 0 1 1 2 

cdef 0 0 1 1 1 1 1 

abcdef 1 1 1 1 1 1 5 

 

attach(fractional) 

names(fractional)  

A<-factor(A)  

B<-factor(B)  

C<-factor(C)  
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D<-factor(D)  

E<-factor(E) 

F<-factor(F)  

lm1<-lm(yield~A+B+C+D+E+F+A:B+A:C+A:D+A:E+A:F+B:C+B:D+B:E+B:F 

                   +C:D+C:E+C:F+D:E+D:F+E:F)  

anova(lm1) 

 

# To provide pairwise comparison, need to install the package lsmeans or emmeans# 

install.packages("lsmeans") 

library(lsmeans)  

lsm1<-lsmeans(lm1,"A")  

lsm1 

pairs(lsm1)  



122 
 

 

lsm2<-lsmeans(lm1,"B") 

lsm2  

pairs(lsm2) 

 

lsm3<-lsmeans(lm1,"C")  

lsm3 

pairs(lsm3)  

 

lsm4<-lsmeans(lm1,"D")  

lsm4 

pairs(lsm4)  
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lsm5<-lsmeans(lm1,"E")  

lsm5 

pairs(lsm5)  

 

lsm6<-lsmeans(lm1,"F")  

lsm6 

pairs(lsm6)  

 

lsm7<-lsmeans(lm1,~A:B)  

lsm7 

pairs(lsm7)  
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lsm8<-lsmeans(lm1,~A:C)  

lsm8 

pairs(lsm8)  

 

lsm9<-lsmeans(lm1,~A:D)  

lsm9 

pairs(lsm9)  
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lsm10<-lsmeans(lm1,~A:E)  

lsm10 

pairs(lsm10)  

 

lsm11<-lsmeans(lm1,~A:F)  

lsm11 

pairs(lsm11)  
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lsm12<-lsmeans(lm1,~B:C)  

lsm12 

pairs(lsm12)  

 

lsm13<-lsmeans(lm1,~B:D)  

lsm13 

pairs(lsm13)  
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lsm14<-lsmeans(lm1,~B:E)  

lsm14 

pairs(lsm14) 

 

lsm15<-lsmeans(lm1,~B:F)  

lsm15 

pairs(lsm15)  
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lsm16<-lsmeans(lm1,~C:D)  

lsm16 

pairs(lsm16)  

 

lsm17<-lsmeans(lm1,~C:E)  

lsm17 

pairs(lsm17)  
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lsm18<-lsmeans(lm1,~C:F)  

lsm18 

pairs(lsm18)  

 

lsm19<-lsmeans(lm1,~D:E)  

lsm19 

pairs(lsm19)  
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lsm20<-lsmeans(lm1,~D:F)  

lsm20 

pairs(lsm20)  

 

lsm21<-lsmeans(lm1,~E:F)  

lsm21 

pairs(lsm21) 
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# To provide letter grouping, need to install the package multcomp# 

install.packages("multcomp") 

library(multcomp)  

cld(lsm1,Letters="ab")  

 

cld(lsm2,Letters="ab")  

 

cld(lsm3,Letters="ab")  

 

cld(lsm4,Letters="ab")  
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cld(lsm5,Letters="ab")  

 

cld(lsm6,Letters="ab")  

 

cld(lsm7,Letters="abcd")  

 

cld(lsm8,Letters="abcd")  

 

cld(lsm9,Letters="abcd")  
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cld(lsm10,Letters="abcd") 

 

cld(lsm11,Letters="abcd")  

 

cld(lsm12,Letters="abcd")  

 

cld(lsm13,Letters="abcd")  
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cld(lsm14,Letters="abcd")  

 

cld(lsm15,Letters="abcd")  

 

cld(lsm16,Letters="abcd")  

 

cld(lsm17,Letters="abcd")  
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cld(lsm18,Letters="abcd")  

 

cld(lsm19,Letters="abcd")  

 

cld(lsm20,Letters="abcd")  

 

cld(lsm21,Letters="abcd") 

detach(fractional) 
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