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Abstract 

Cancer is one of the greatest health challenges of the 21st century and one of the 

deadliest diseases in the world. It is a group of different diseases which are caused by 

abnormal cell growth. In the human body, cell division and apoptosis are well regulated 

under normal circumstances so that the number of cells is in a dynamic balance. However, 

normal cells could transform into tumor cells because of genetic mutations. The 

tumorigenesis can happen in almost any cell of the human body. One of the central tools 

to address cancer is the profiling of cancer cell genomes and transcriptomes by next 

generation sequencing (NGS) and subsequent analysis by computational methods. 

The Pan-Cancer Analysis of Whole Genomes (PCAWG) project is the core project of the 

International Cancer Genome Consortium. This project provides massive amounts of 

cancer biological data for analysis. Include more than 2900 patients and 48 types of 

cancer samples. As part of this intensive effort, I have conducted a very detailed analysis 

on the molecular mechanisms of cancers. In particular, I conducted a comprehensive 

study of the relationship between genomic mutations and cancer development. These 

series of studies include the exploration of cancer driver genes, analysis of telomere 

maintenance mechanisms and data visualization at the cohort level. 

First, I explored potential cancer genes by performing statistical analysis of genomic point 

mutations, insertions and deletions, copy number variations and structural variations. 

Further, I analyzed the distribution of point mutations and structure variations in cancer 

genomes. Based on Knudson's two-hit hypothesis, I integrated point mutation and copy 

number variation information to construct a biallelic inactivation map of the cancer 

genome. With the biallelic inactivation information, I analyzed potential cancer drivers and 

applied this finding to synthetic lethality assays associated with cancer driver genes to 

uncover novel genetic targets that could be used to treat cancer patients with certain driver 

gene defects. In addition, I designed and improved the CaSINo model to score the relative 

mutation frequency of chromosomal sequences to screen for potential cancer driver 

mutations, which can be used not only in coding genes but also in non-coding regions. 

Moreover, I analyzed point mutations on promoters, trying to find those mutation sites that 
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play a key role in the up-regulation of gene expression. Finally, I designed and 

improved a scoring method for copy number variation focality to explore the 

association of focal copy number variation with cancer driver genes at the cohort 

level. 

Second, as part of the PCAWG research projects, I analyzed the mechanisms of 

telomere maintenance in cancer cells. After analyzing the differences between 

alternative telomere lengthening and telomerase-positive samples, I designed a 

machine learning model based on repeat sequences, content, and mutation rate to 

determine whether an unknown cancer sample is an alternative lengthening of 

telomere (ALT) or telomerase-positive. 

Finally, for the massive data of the PCAWG project, I designed and implemented two 

bioinformatics visualization tools. TumorPrint is software in R and shell, which can be 

used to visualize genomic mutations and RNA-seq expression levels of a single 

gene or gene pairs, allowing users to quickly search for genes or gene pairs of 

interest. GenomeTornadoPlot is a software written in the R language for visualizing 

focal copy number variants of a single gene or adjacent paired genes, and can 

automatically calculate its copy number variation aggregation score. 

 

 

 

 

 

 

 

 

 

 



 III 

 

Zusammenfassung 

Krebs ist eine der größten gesundheitlichen Herausforderungen des 21. 

Jahrhunderts und eine der tödlichsten Krankheiten der Welt. Genauer gesagt 

handelt sich bei Krebs um eine Gruppe verschiedener Krankheiten, die durch 

abnormales Zellwachstum verursacht werden. Im menschlichen Körper sind 

Zellteilung und Apoptose unter normalen Umständen gut reguliert, so dass sich die 

Zahl der Zellen in einem dynamischen Gleichgewicht befindet. Allerdings können 

sich normale Zellen aufgrund von Genmutationen in Tumorzellen verwandeln. Die 

Tumorentstehung kann in fast jeder Zelle des menschlichen Körpers stattfinden. 

Eines der wichtigsten Instrumente zur Bekämpfung von Krebs ist die Erstellung von 

Profilen der Genome und Transriptome von Krebszellen durch Next-Generation-

Sequencing (NGS) und die anschließende Analyse durch computergestützte 

Methoden. 

Das Projekt Pan-Cancer Analysis of Whole Genomes (PCAWG) ist das Kernprojekt 

des International Cancer Genome Consortium (ICGC). Es stellt enorme Mengen an 

biologischen Krebsdaten zur Analyse bereit, und umfasst mehr als 2900 Patienten 

die sich 48 Arten von Krebs zuordnen lassen. Im Rahmen dieser Doktorarbeit habe 

ich eine detaillierte Analyse der molekularen Mechanismen von Krebserkrankungen 

durchgeführt. Der Schwerpunkt dieser Untersuchungen bildet dabei der 

Zusammenhang zwischen genomischen Mutationen und der Krebsentwicklung. 

Diese Studienreihe umfasst die Erforschung von Krebstreibergenen, die Analyse von 

Telomererhaltungsmechanismen und die Visualisierung von Daten auf 

Kohortenebene. 

Zunächst untersuchte ich potenzielle Krebsgene, indem ich eine statistische Analyse 

von genomischen Punktmutationen, Insertionen und Deletionen, 

Kopienzahlvariationen und Strukturvariationen in Krebsgenomen durchführte. Auf 

der Grundlage der Two-Hit-Hypothese von Knudson habe ich Informationen über 

Punktmutationen und Kopienzahlvariationen integriert, um eine Karte der 

biallelischen Inaktivierung des Krebsgenoms zu erstellen. Diese Informationen 



 IV 

nutzte ich um potenzielle Krebstreiber mit Hilfe von synthetische Letalitätsassays zu 

suchen, und somit neue genetische Ziele zu entdecken, die zur Behandlung von 

Krebspatienten mit bestimmten Treibergen-Defekten verwendet werden könnten. 

Darüber hinaus habe ich das CaSINo-Modell zur Bewertung der relativen 

Mutationshäufigkeit chromosomaler Sequenzen entwickelt und verbessert, um nach 

potenziellen Krebstreibermutationen zu suchen, die nicht nur in kodierenden Genen, 

sondern auch in nicht kodierenden Regionen auftreten können. Außerdem 

analysierte ich Punktmutationen an Promotoren, um diejenigen Mutationsstellen zu 

finden, die eine Schlüsselrolle bei der Hochregulierung der Genexpression spielen. 

Schließlich habe ich eine Scoring-Methode für die Fokalität von 

Kopienzahlvariationen entwickelt und verbessert, um die Assoziation von fokalen 

Kopienzahlvariationen mit Krebstreibergenen auf Kohortenebene zu untersuchen. 

Zweitens analysierte ich im Rahmen der PCAWG-Forschungsprojekte die 

Mechanismen der Telomererhaltung in Krebszellen. Basierend auf 

Telomerelängenvorhersagen, genetischen Mutationen und der Frequenz von 

Telomererepeatvarianten entwickelte ich ein maschinelles Lernmodell, das die 

Aktivierung von alternativer Telomerverlängerung (ALT) vorhersagen kann. 

Schließlich habe ich für die umfangreichen Daten des PCAWG-Projekts zwei 

Bioinformatik-Visualisierungstools entwickelt und implementiert. TumourPrint ist eine 

Software in R und Shell, mit der genomische Mutationen und RNA-seq-

Expressionsniveaus eines einzelnen Gens oder von Genpaaren visualisiert werden 

können, so dass die Benutzer schnell nach Genen oder Genpaaren von Interesse 

suchen können. GenomeTornadoPlot ist eine in R geschriebene Software zur 

Visualisierung von fokalen Kopienzahlvarianten eines einzelnen Gens oder 

benachbarter Genpaare und kann automatisch den Aggregationswert der 

Kopienzahlvariationen berechnen. 
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1 Introduction 
 

1.1 Cancer Research and Bioinformatics 

Cancer is a group of distinct diseases that are caused by abnormal cell growth. 

Under normal circumstances, cell division and apoptosis are regulated programmely 

so that the number of cells is in a dynamic balance. However, normal cells can 

transform into tumor cells because of genetic variations. tumorigenesis can happen 

in almost any cell in the human body. Different from benign tumors, malignant cancer 

cells are able to spread and invade other tissues or parts of the human body. In the 

late stage of cancer progression, the lethal cancer cells disrupt the functions of 

important organs and tissues of the human body, damage normal metabolism, and 

waste plenty of nutrition. Uncontrollable proliferation of tumor cells can be lethal. 

Cancer is one of the deadliest diseases in the world. According to a study by the 

World Health Organization (WHO), 18.1 million new cancer cases were found in 

2018 and more than 9.6 million people died of cancers. (“Erratum,” 2020) Experts 

expected that the prevalence of cancers would increase in the future.  

Bioinformatics has been a very powerful weapon in the fight against cancers. Over 

recent decades, the improving high-throughput technologies provided massive 

amounts of data, including not only traditional clinical information but also -omics 

data. Here -omics refers to genomics, transcriptomics, epigenomics, and other 

information and refers to the complete characterization of a particular layer of cell 

biology with a single molecular biological assay. Scientists integrated data from 

different platforms through bioinformatic approaches. Meanwhile, bioinformatics 

helps them discover insights from these datasets and accelerate biological studies. 

Cancer is caused essentially by the accumulation of DNA variants in the genome. 

Because of this, next-generation sequencing (NGS) plays an important role in cancer 

diagnosis, treatment choice, and as a research tool. NGS has been steadily 

improved in recent decades. This progress made sequencing cheaper, faster, and 
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more accurate. Nowadays, NGS technology is widely used in whole-genome 

sequencing (WGS), whole-exome sequencing (WES), panel sequencing, 

epigenomics sequencing, and RNA sequencing (RNA-seq). By the end of the year 

2020, although the sequencing cost for a single human genome has not yet 

decreased to 1,000 US dollars as predicted, it is significantly lower than before. 

(Gordon et al., 2020; Plöthner et al., 2017) It produces NGS data for cancer patients 

at a steadily increasing rate.  

On the other hand, big biomedical data poses a great challenge to analytical 

methods. Accordingly, a growing relevance is attributed to bioinformatics techniques 

over the last decades. The main focus of cancer bioinformatics nowadays is storing, 

analyzing, integrating, accessing, and visualizing large amounts of biological data 

and related information.(Demir et al., 2004) Higher performance hardware and 

better-optimized analysis methods, like machine learning, accelerate cancer 

research efficiency remarkably.  

 

1.2 Pan-Cancer Analysis of Whole Genomes (PCAWG) project  

In recent decades, along with technological improvement and the decrease in 

sequencing costs, several international cancer genome research projects have been 

launched. The Cancer Genome Atlas (TCGA), which started in 2005, is the pioneer 

of the Cancer Genomics Initiative. In this massive program, researchers have 

collected genomic, epigenomic, transcriptomic, and proteomic data from more than 

20,000 primary cancers and matched normal samples from 33 different cancer 

types. (Tomczak et al., 2015) 

As a reaction to this realization, the Pan-Cancer Analysis of Whole Genomes 

(PCAWG) project was called into life. It is combined with ICGC and TCGA working 

groups’ research results. The project aims to generate catalogs of genome abnormal 

variations in cancer, which include somatic mutations, epigenetic changes and 

expression abnormalities. Scientists can rapidly and freely access data from tumors 

of more than 2,900 patients from 48 different types or subtypes of cancers. (The 

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium et al., 2020)  
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These projects are comprised of WGS data from clinical centers around the world. 

The WGS data of each patient includes at least one tumor sample and one control 

sample, which were sequenced by Illumina HiSeq with 100-150bp paired-end 

sequencing reads and an average coverage of at least 30 reads in tumor samples 

and 25 in control samples. The control samples were collected from blood or healthy 

tumor-adjacent tissues in view of cancer types. In some cases, additional samples 

were collected. For all patients, clinical data, including patient ID, age, sex, survival 

time, etc., are also gathered. Moreover, the dataset provides RNA sequencing data 

for approximately two thirds of the patients. (The ICGC/TCGA Pan-Cancer Analysis 

of Whole Genomes Consortium et al., 2020) 

Compared to the previous The Cancer Genome Atlas (TCGA) project, which is 

mostly focused on coding sequences, the PCAWG project concerns somatic and 

germline sequences for both coding and non-coding regions of cancer genomes. 

The PCAWG dataset provides not only whole genome sequencing data (WGS), 

which can be discovered for somatic mutations like single nucleotide variations 

(SNVs), structural variations (SVs), copy number alterations (CNVs), and gene 

fusions, but also RNA sequencing and methylation data. The collection of multi-

omics data enhances the chance to discover the complicated functions of 

combinations of mutations. 

Because of the artifacts contained in the raw data and lack of standards for dealing 

with them, the mutation calls from different pipelines are not in concordance. (Alioto 

et al., 2015) However, a substantial advantage of PCAWG is that its data is 

reprocessed by a homogenous computational workflow. (The ICGC/TCGA Pan-

Cancer Analysis of Whole Genomes Consortium et al., 2020) The advantage 

guarantees the reliability and reproducibility of the data so that the pan-cancer 

genome comparative analysis is no longer burdened by biases introduced by 

inconsistencies in the computational processing of the data. 

In the year 2021, more than 20 papers based on the PCAWG project were published 

in Nature Research Journals. (The ICGC/TCGA Pan-Cancer Analysis of Whole 

Genomes Consortium et al., 2020) 
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1.3 Cancer Biological Problems 

In past years, scientists exerted a lot of effort in attempting to discover how cancers 

are initiated and how they develop. According to our preliminary knowledge and the 

newest cancer research trend, I listed a few study directions in which we could 

benefit from PCAWG data analysis. 

 

1.3.1 Identification of Cancer Driver Mutations 

Many cancers are the result of somatic mutations in genomes. However, not all the 

mutations found in tumor tissue genomes are carcinogenic. Only a subset called 

driver mutations, either gain of function or loss of function, lead to cell tumorigenesis. 

(Tokheim et al., 2016) The rest of them are harmless and neutral in cancer 

development and are named “passenger” mutations.  

For a long time, due to the diversity of cancer development and the lack of 

sufficiently large datasets low-frequency variations and complicated driver principles 

were often neglected or underestimated. Because of the PCAWG project, now the 

availability of massive data and high-performance algorithms makes it possible to 

identify new potential cancer drivers.  

Since scientists realized the causal relationship between tumor development and 

genetic alterations, they have set their sights on discovering cancer drivers. In 1982, 

the first cancer driver mutation, a G to T transversion in the P21 protein-coding 

region, was found in the T24 human bladder carcinoma oncogene. (Reddy et al., 

1982) In the next thirty-five years, almost 600 genes were identified as cancer driver 

genes. A list of the most relevant cancer drivers includes the genes TP53, MDM2, 

KRAS, PTEN. (Hamarsheh et al., 2020; Hou et al., 2019; Milella et al., 2015; Olivier 

et al., 2010) 

The identification of cancer drivers is very helpful in cancer diagnosis and treatment. 

Because whole-genome sequencing technology is now available for patients, driver 

mutations can be applied as cancer biomarkers in the prediction of cancer 

progression. Additionally, knowledge of cancer drivers promoted the development of 

targeted therapy. For example, the drugs, which were designed to inhibit the 

https://paperpile.com/c/PSpXzJ/WQcyq
https://paperpile.com/c/PSpXzJ/WQcyq
https://paperpile.com/c/PSpXzJ/WQcyq
https://paperpile.com/c/PSpXzJ/WQcyq
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expression of mutated ERFG and ALK genes, had an excellent effect in the 

treatment of non-small cell lung cancer. (Mello et al., 2016) 

The oral drug Alectinib is an interesting instance. It blocks anaplastic lymphoma 

kinase (ALK) activity and is used in the treatment of non-small cell lung cancer 

(NSCLC). The active ingredient in the drug blocks the ALK and is rearranged during 

transfection (RET) proto-oncogenes. Inhibition of ALK results in blockade of cellular 

signaling pathways, including STAT3 and PI3K/AKT/mTOR pathways, and induction 

of tumor cell apoptosis. This drug is highly effective and has low toxicity. (Avrillon 

and Pérol, 2017) 

TERT which plays a key role in cancer formation is another instance. It ensures 

chromosomal stability by maintaining telomere length and provides the possibility for 

unlimited cell proliferation. Therefore, telomerase inhibitors may be given to the 

patient in order to damage tumor cells. Although still in the research stage, cancer 

treatment targeting TERT has great promise. (Liu et al., 2012) 

Validating a “real” cancer driver needs expensive wet-lab experiments. In 

consequence, many bioinformatics tools were designed to identify potential cancer 

drivers to shorten the gene candidate list, which will be later sent to molecular 

biology labs. MutsigCV (Mutation Significance Co-Variates) is one of the advanced 

tools for analyzing mutations in the genome and screening out the genes which are 

mutated more frequently than the background mutation rate (BMR). MutsigCV uses 

patient-specific and gene-specific BMRs individually, which are calculated by non-

silent, non-coding, and silent mutations of a “center” gene and genes nearby. For the 

gene-specific BMR, the genes with similar features, such as expression, replication 

timing, or HiC data, are defined as a bagel and the local BMR will be calculated for 

the “center” gene in the bagel. Genes with a non-silent mutation rate higher than 

BMR and a false discovery rate (FDR) q-value smaller than 0.1 will be identified as a 

significant mutated genes.(Lawrence et al., 2013) There are also other 

computational methods, such as OncodriveFM (Gonzalez-Perez and Lopez-Bigas, 

2012), OncodriveClust (Tamborero et al., 2013), ActiveDriver(Reimand and Bader, 

2013) and MuSIC (Dees et al., 2012), that focus on different aspects such as 

analysis of recurrence, spatial clustering or predicted impact of somatic mutations to 

identify new candidates from whole-genome sequencing data. These statistical and 
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machine learning-based approaches accelerated the research and found several 

interesting genes such as HLA-A, FLNB, GRM1, and POU2F1. (Lawrence et al., 

2013; Reimand and Bader, 2013)  

However, identifying functional cancer driver genes from thousands of genes in the 

whole genome is not a simple task. Many potential candidates remain undetected 

due to the lack of power to discriminate driver mutations from the background 

mutational load. The most direct way to solve this problem is to increase the sample 

size. (Hofree et al., 2016) Another problem is that we don’t have a gold standard for 

“real” cancer driver genes. The lack of ground truth makes many statistical methods 

vulnerable. (Tokheim et al., 2016) Last but not least, these studies mostly focus on 

mutations in coding regions, and thus the variations in functional non-coding 

sequences are neglected. Consequently, driver mutations in non-coding, functional 

elements are like the deep sea that has never been explored before, waiting for us to 

study. 

 

1.3.2 Non-coding Mutations and Cancer 

Non-coding DNA refers to the DNA sequence in the genome that does not encode 

proteins. It is very common in eukaryotic cells. For example, it is reported that 98% 

of the human genome is non-coding sequences. Previously, non-coding DNA was 

thought to be not biologically functional and used to be called “Junk DNA”. Now, it is 

realized that substantial parts of it have strong biological activity and are crucial in 

the biological process. (Comfort, 2015) For example, non-coding DNA contains 

regulatory elements which could upregulate or downregulate gene expression. There 

are special binding sites in these sequences which can be recognized and bound by 

special transcription-related proteins. There are four classes of non-coding functional 

elements: promoters, enhancers, silencers, and insulators. (Figure 1) 

Promoters are typically located ahead of the coding region of genes on the DNA 

strand. They can be recognized by RNA polymerase. The assembly of the RNA 

polymerase complex then launches the process of transcription. 

Enhancers provide binding sites for different types of proteins that help activate 
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transcription. In contrast, silencers are able to bind to proteins for transcription 

repression. These two elements can upregulate and downregulate gene expression. 

They can be either located near their target genes or far away from them. 

Insulators are the regulatory elements of eukaryotic genomes and work as an 

enhancer inhibitors from a distance. They can also impact promoters’ functions by 

binding to specific proteins to regulate expression. 

According to the research on coding gene regions, it is known that the upregulation 

of oncogenes and downregulation of tumor suppressor genes (TSGs) are 

carcinogenic. Therefore, it is easy to understand that genomic abnormalities in the 

non-coding regulatory elements which are impacting cancer-related genes also have 

the potential to be cancer drivers, similar to the functions of copy number changes or 

point mutations in coding regions. (Zhang and Meyerson, 2020) 

 

Figure 1: Mutations on non-coding regions related to cancer  

The mutations on enhancers, promoters, 5’ UTRs, 3’ UTRs, CTCF, or regulatory 

RNA sequences can lead to cancer development. 

 

The Telomerase reverse transcriptase (TERT) gene is the most famous example. 

Telomerase activity is correlated with the number of times a cell can divide. The 

overexpression of TERT spurs the level of telomerase and then lengthens telomeres 

in cells. This abnormality causes immortality of cell lines and leads to 

carcinogenesis. In past years, scientists observed recurrent mutations in TERT 

promoters in more than 50 types of cancers. (Bell et al., 2016) Although these 

mutations do not occur in coding regions, they still have a strong influence on the 

expression level of TERT. (Bell et al., 2016; “Erratum,” 2020) 

TERT promoter mutations are famous because of the extremely high recurrence 

among cancers. There are also other instances of non-coding mutations which drive 

cancer development. The promoter mutation hotspots of FOXA1 are recurrently 

found in breast cancer. (Rheinbay et al., 2017) In various types of cancers, like lung 
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cancer and acute myeloid leukemia (AML), point mutations in enhancers of MYC 

play important roles. (Lancho and Herranz, 2018) 

However, if we talk about the recurrence of these mutations, we noticed that they are 

obviously lower than TERT. It could be because of not only the low coverage of 

promoter sequencing due to the high GC-content, but also because of the 

robustness and mutational endurance of transcription regulatory elements. Without a 

large dataset, it is very difficult to screen the potential non-coding driver mutations by 

recurrency analysis. (Elliott and Larsson, 2021) 

With the development of understanding genomes, scientists realized non-coding 

DNAs are not limited to the cis-regulatory elements. For instance, long non-coding 

RNAs (lncRNAs) are a promising hot topic in cancer research. These genes do not 

encode proteins but the long RNA molecules play crucial roles in the regulation of 

transcription, post-transcription, and epigenetics levels. MALAT1, as a good 

example, plays a role as an oncogene in many different cancer types. It is known as 

a housekeeping gene in splicing progress. Overexpression of MALAT1 is observed 

in multiple cancers. (Carlevaro-Fita et al., 2020) The experiments in vivo showed that 

the suppression of MALAT1 can decrease the efficiency of cell proliferation and 

metastasis. (Gutschner et al., 2013)  

Based on the PCAWG data, we can look into interesting cancer-related non-coding 

mutations even if their recurrences are low. With matched SNV, CNV, and RNA 

sequencing data, we are able to build a complete landscape of non-coding DNA 

mutations and their roles in tumors. 

 

1.3.3 Functional Promoter Mutations 

A promoter is a DNA region that initiates the transcription of genes and is located 

typically the near upstream of the transcription start site. RNA polymerase and 

transcription factors bind to promoters and initiate gene transcription. Although it is 

difficult to identify promoters in eukaryotic cells due to the diversity, we now know 

that there are several functional elements, such as TATA box, BRE, and INR box, 

that occur in many promoters and play an important role in enzyme and transcription 



 9 

factors binding. RNA polymerase II binds to the associated promoter and initiates the 

transcription. (Roy and Singer, 2015) 

Transcription factors are proteins that can bind to a specific nucleotide sequence in 

upstream of a gene and can regulate its transcription. In the region of gene 

promoters, these specific nucleotide sequences are called transcription factor 

binding sites (TFBSs). Generally, transcription factors bind to their target promoters 

through the recognition of short DNA motifs whose length is usually about 6-8 bp. 

(Smith and Matthews, 2016) The transcription factors can upregulate- and 

downregulate the expression of its corresponding gene . These regulations keep the 

steady state of gene expression, especially the functions of TSGs and oncogenes. 

(Figure 2) However, if the transcription factors for cancer driver genes do not work 

well, for example, if the binding of transcription factors are prohibited by other 

proteins or the binding site structure is damaged, cancer development and 

progression may occur. (Capasso et al., 2020) 

 

 

Figure 2: Gene Activation through TFBS altering SNVs 

The TFs that bind a promoter region determine to a large extent the expression level 

of the associated gene. This figure shows the effect of TFBS alterations for a single 

TF, which in turn affects gene transcription, eventually also by interaction with further 

TFs. A promoter mutation creates a new TFBS and subsequently an activating TF 

binds to the promoter causing increased gene expression of the corresponding gene. 

In the initial state, a repressing TF is tightly bound to its TFBS in the promoter 

resulting in gene silencing. The introduction of a disruptive SNV leads to the 

dissociation of the TF and therefore, the respective gene is transcribed. (adapted 

from Irina Glas,2019) 
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Genomic variations in TFBSs are able to destroy the TFBS function and inhibit the 

transcription factor-induced regulation. Unlike large-scaled CNVs, the dysregulation 

of TFBSs can accurately modify the expression of a single gene.  

A study by Vorontsov et al. indicated that mutations in a TFBS are under negative 

selection in cancer, suggesting that TFBS mutations are generally rare in cancer 

compared to other genomic regions. (Vorontsov et al., 2016) As we know, promoter 

regions are conserved more than other non-coding regions, meaning that any 

variations in these areas are slightly interesting in comparison to their neighbors in 

cancer patients. TERT is one of the most well-known oncogenes. The 

overexpression of TERT can disturb the normal function of the telomere and may 

cause the unlimited replication of a tumor cell. The promoter mutation which 

upregulates TERT expression is a classic example. Mutations in TFBS regions of 

this gene may be the root cause of most melanomas. (Horn et al., 2013) In many 

types of cancers, there are two common mutation sites in the promoter region of 

TERT that can up-regulate expression, which are located at -124 and -146 base 

pairs upstream of the transcription initiation site, are known as C228T and C250T 

mutations. These mutations in TERT promoters are reported to be cancerous and 

result in a worse prognosis.(Arantes et al., 2020; Horn et al., 2013; Powter et al., 

2021) These two mutations create an ETS-1 binding motif and thus increase the 

expression of TERT. (Liu et al., 2014) Besides the famous gene TERT, cancer-

related genes such as PLEKHS1, WDR74, SDHD, and FOXA1, are also impacted by 

promoter mutations in TFBSs. (Gan et al., 2018)  

 

1.3.4 Biallelic Inactivation and Cancer 

The two-hit hypothesis, which was put forward by Knudson in 1971, claimed that 

most tumor suppressor genes require two alleles to be inactivated to cause 

phenotypic changes. (Knudson, 1971) At the DNA mutation level, we can look into 

biallelic inactivations and find evidence of a double-hit hypothesis on potential cancer 

driver genes. 

Biallelic inactivations are caused by different types of variations. Normally, one 



 11 

functional mutation of one allele and then gene deletion of the remaining allele leads 

to biallelic inactivation. Moreover, the homozygous deletions or homozygous 

functional mutations can also deactivate both alleles. (Figure 3) 

 

 

Figure 3: Different types of biallelic inactivations 

Gaps stand for deletions and triangles represent functional point mutations, including 

non-synonymous SNVs. 

 

As early as 1998, Veigl et al. claimed that biallelic inactivations of tumor suppressor 

genes can result in many cancers. (Veigl et al., 1998) Many well-known tumor 

suppressor genes were found to be linked with biallelic inactivations. For example, 

the famous TSG TP53 and PTEN are often biallelically inactivated in several types of 

cancers. (Kurose et al., 2000; Malcikova et al., 2009; Molinari and Frattini, 2014) 

FHIT is observed with biallelic deletions in the majority of breast and lung cancers. 

(Ismail et al., 2011; Yang et al., 2002) In clear cell renal cell carcinoma, melanoma, 

and neuroblastoma, CDKN2A/B are often biallelically inactivated. (Girgis, 2017; Zeng 

et al., 2018)  

In the past, biallelic inactivations were widely believed to be very rare in cancer 

genomes. However, Sabarinathan et al. conducted a comprehensive analysis to 
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determine the frequency of these biallelic mutations affecting tumor suppressor 

genes in both germline and somatic contexts across various tumor types in PCAWG 

cancer patients. According to their report, over 90% of tumors harbored at least one 

“double hit” in quite a few cohorts, such as bladder transitional cell carcinomas 

(Bladder-TCC), lung squamous cell adenocarcinomas (Lung-SCC), and Pancreatic 

adenocarcinomas (Panc-AdenoCA). (Sabarinathan et al., 2017)  

Compared to monoallelic functional mutations or deletions, the biallelic inactivations 

are more likely to be true hits. They are less impacted by sequencing artifacts and 

passenger mutations than point mutations or monoallelic deletions. Therefore, the 

analysis of biallelic inactivation is a powerful instrument for cancer driver 

identification. In their study, Cheng et al. compiled a comprehensive collection of 

2,218 primary tumors spanning 12 different human cancer types. Their primary 

objective was to systematically investigate homozygous deletions with the aim of 

discovering infrequent tumor suppressor genes. Through their analysis, they 

successfully identified 16 well-established tumor suppressors and put forward 27 

potential candidate tumor suppressor genes. Notably, among these genes, MGMT, 

RAD17, and USP44 were already recognized as tumor suppressor genes prior to 

this study. (Cheng et al., 2017)  

These exciting studies make us eager to perform biallelic inactivation analysis on 

PCAWG data. We will have the opportunity to explore the difference between the 

effects of gene expression of monoallelic inactivation and biallelic inactivation. It is 

also possible to understand the frequency of repeated occurrences in different 

cancer types through simple statistical methods in an attempt to identify new cancer 

driver genes. 

 

1.3.5 Synthetic Lethality of Cancer-Related Genes 

Synthetic lethality is defined as the “simultaneous perturbation of two genes, which 

results in cellular or organismal death”. (Nijman, 2011) In the housekeeping 

pathways of human cells, a perturbation of inactivation of one gene would inhibit the 

whole pathway. In this case, one or several alternative pathways would be activated 

and proceed with normal cell function. However, if the key genes in the alternative 
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pathways are deactivated as well, these housekeeping pathways will become 

dysfunctional causing the cell to die. (Figure 4) 

 

 

Figure 4:  Schematic diagram of synthetic lethality. 

If any one of gene A or gene B remained activated, the cell would survive. If both 

gene A and gene B were deactivated, the cell dies.  

 

The concept of synthetic lethality has garnered considerable interest in recent times 

due to its potential for a novel class of cancer medications. In the past, the majority 

of molecularly targeted cancer drugs focused on a single cancer gene or protein. 

However, not all of these genes are treatable with conventional approaches. 

In 1997, Lee Hartwell and Stephen Friend proposed the idea that cancer cells have 

already suffered from molecular changes that distinguish them from normal body 

cells. Hence, cancer cells have different genetic vulnerabilities from healthy tissues. 

Scientists have the opportunity to develop drugs that target these weaknesses of 

cancer cells so that healthy cells would be free of damage. (Hartwell et al., 1997)  

The loss of functionality of TSGs like TP53, RB1, and BRCA1 are crucial causes for 

many cancer patients. Unlike the overexpression of oncogenes, the loss of TSGs 

cannot be treated by traditional targeted drugs because the biological molecular 
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functions are already lost. In this case, the idea of inhibition of their synthetic lethality 

partners seems to be a promising alternative. So, the identification of their SL partner 

genes becomes a valuable research goal. 

PARP inhibitors in BRCA-mutant ovarian cancers was the earliest application of 

synthetic lethality to target defection of tumor suppressor gene. According to Farmer 

H. et al., PARP, BRCA1, and BRCA2 are components of two efficient DNA repair 

pathways. Those tumor cells with functional BRCA1 or BRCA2 mutations are more 

sensitive to PARP inhibition compared to the healthy ones with at least one copy of 

BRCA1 or BRCA2. (Farmer et al., 2005) While the precise mechanism behind the 

synthetic lethality of PARP-BRCA1 and PARP-BRCA2 remains unclear, it did not 

prevent the FDA from approving four PARP inhibitors for clinical medicine with 

BRCA-mutant cancers: niraparib, olaparib, rucaparib and talazoparib. (Huang et al., 

2020) A similar application was also developed for MTAP deficient patients. PRMT5 

inhibitors have proved useful in their treatments. (Kryukov et al., 2016) 

In chapter 3 of this thesis, we are interested in Phosphatase and tensin homolog 

gene (PTEN). Mutations in the PTEN gene are known to play a crucial role in the 

pathogenesis of various cancer types, including glioblastoma, lung cancer, breast 

cancer, and prostate cancer. The PCAWG dataset provides a sufficient cohort size 

of PTEN-deficient samples, which allows us to perform a robust, mutually exclusive 

statistical model for analysis.  

 

1.3.6 Mutations and Telomere Lengthening Mechanisms  

Telomeres are the regions located at the linear chromosome both ends of eukaryotic 

cells. In the mid-1980s, telomerase was discovered by scientists. (Greider and 

Blackburn, 1985) When cell DNA replication is terminated by telomerase, DNA can 

replicate through the telomere-dependent template to compensate for the shortening 

of the ends caused by the removal of primers. Therefore, telomerase is essential in 

the maintenance of telomeres. As the number of cell divisions increases, the length 

of telomeres gradually shortens. When telomere length approaches a critical value, a 

checkpoint is triggered and the cells will stop dividing or even undergo apoptosis. 
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Scientists believe that the shortening of telomeres is directly related to the onset of 

several diseases. Many studies have shown that human telomeres can show 

deletions, fusions, or shortened sequences when gene mutations and tumors are 

formed. Telomerase, a critical enzyme for maintaining telomere length, is found to be 

upregulated in approximate 85% of human cancers. This upregulation is achieved 

through diverse mechanisms, such as TERT (telomerase reverse transcriptase) 

amplifications, rearrangements, or mutations occurring in the TERT promoter 

region.(Horn et al., 2013; Huang et al., 2013)  

Meanwhile, in some other tumors, there is an alternative lengthening of telomeres 

(ALT) pathway, which uses the DNA recombination of telomeric sequences. This 

mechanism is linked to with loss-of-function variants in the chromatin remodeling 

genes ATRX  (-thalassaemia/mental retardation syndrome X-linked) and DAXX 

(death-domain associated protein). In ALT cells, telomeres frequently contain a 

range of telomere variant repeats (TVRs) and are thus in heterogeneous lengths. 

(Sieverling et al., 2020) 

Although both telomere maintenance mechanisms resulted in the equivalent fact that 

tumor cells have unlimited replicative potential, telomerase and ALT have different 

impacts to the clinical outcome of cancer patients. (Recagni et al., 2020) For 

example, the overall survival (OS) of patients is related to telomere maintenance 

mechanisms (TMMs) in osteosarcoma, breast cancers, CNS, and soft tissue tumors. 

(Gaspar et al., 2018) 

It is not far to seek that the different TMMs require alternative treatments. 

Telomerase inhibitor molecules have been widely used. In addition to the ongoing 

discovery of new molecular targets in modern pharmacy industry, drugs for ALT-

targeted therapy will hopefully be developed in the near future. (Guterres and 

Villanueva, 2020)  

Therefore, predicting the TMM of cancer patients is beneficial. Precise identification 

of tumors with active TMM is a prerequisite for the selection of treatment, such as 

the use of telomerase inhibitors, anti-telomerase immunotherapies, and anti-

telomerase viral therapies. (Buseman et al., 2012) ALT has several different 

hallmarks, such as ALT-associated promyelocytic leukemia (PML) bodies, 

heterogeneous telomere length, and abundant extrachromosomal telomere repeat. 
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Nevertheless, the technology limitation of short-read whole-genome sequencing 

workflow cannot detect these sequences. However, if we use ATRX/DAXXtrunc as 

indicators of ALT and smartly select a few genomic variations as features, a robust 

machine learning model based on WGS data might be an ideal approach to solve 

this problem. (Conomos et al., 2012; Heaphy et al., 2011; Lee et al., 2014; Varley et 

al., 2002) 

 

1.3.7 Focal CNVs and Drivers 

Copy number variations (CNVs), which can result in amplification, loss of 

heterozygosity, or complete loss of gene functions are known to have a significant 

impact on the development of various cancer types. The CNVs can upregulate gain-

of-expression in oncogenes and launch a deficiency or dysfunction in tumor 

suppressors. (Zhang et al., 2016) Meanwhile, CNVs can lead to other complicated 

genomic abnormalities such as gene fusions or regulation elements abbreviation. 

CNVs can be classified into two major types according to their lengths. The broad 

CNVs are long and extend to a large fraction of a chromosome arm. On the other 

hand, focal CNVs are comparatively short and focus on a small region. It is also 

believed that these two modes arise from different mechanisms. Broad CNVs are 

caused by the incorrect segregation of chromosomes during mitosis and focal CNVs 

occur more likely from DNA repair errors. (Van Gent et al., 2001; Zhang et al., 2016) 

The concept of focality has gained significance as a criterion for distinguishing true 

tumor-driving alterations from functionally insignificant changes in cancer-related 

CNV analysis. Differing from broad CNVs, focal CNVs are more likely to be a 

consequence of selective pressure during cancer development. (Guichard et al., 

2012) The recent publications used the threshold of focal CNVs as copy number 

changes which are below 1 or 3 Mb in length. (Bierkens et al., 2013; Bignell et al., 

2010) These focal events have been observed in various cancers, including lung, 

colon, and breast cancer, where recurrent focal copy number variations (CNVs) 

below this thresholds are associated with well-known cancer driver genes such as 

PTEN, CDKN2A, and RB1.(Bierkens et al., 2013; Garnis et al., 2006; Leary et al., 

2008; Zhang et al., 2016) 
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Similar to identifying potential cancer drivers by point mutations, it is still a great 

challenge for driver mining in CNVs. For example, according to Beroukhim et al., a 

total of 150 focal regions have been identified as potential hotspots for cancer driver 

genes, from which a broad analysis of more than 3,000 patients but only one fourth 

of the regions are linked to oncogenes or TSGs which are already known. 

(Beroukhim et al., 2010) Many theories have tried to explain this phenomenon. The 

distribution of focal CNVs is quite imbalanced in regions of chromosomes. These 

events may not act as traditional TSG or oncogenes but they affect tumor promotion 

with a collective of minor functions from different places in the genome. (Solimini et 

al., 2012) 

 

1.4 Overview of the Study 

Throughout the research of this thesis, which is based on the massive cancer cohort 

data and high-quality analysis pipeline from the PCAWG project, I conducted a 

series of in-depth analyses of correlations between genomic mutations in cancer. My 

idea was to start with the identification of mutations in cancer driver genes and then 

explore the origin of cancers step by step.  

First of all, I developed highly efficient data storage, query and visualization 

solutions. After that, I used mutation recurrency enrichment algorithms to deeply 

analyze potential cancer driver mutations in both gene coding regions and non-

coding DNA. After that I established the overall landscape for cancer driver 

mutations, I further studied the function of biallelic inactivation in cancer 

development. I applied our knowledge of variations in non-coding regions to the 

studies of promoter mutations and lncRNAs. Besides analyzing single-gene 

mutations, I also turned our attention to the interactions between multiple genes, 

using mutually exclusive analysis to the study of synthetic lethality among cancer 

gene mutations, providing support for screening new generations of cancer drug 

targets. In another chapter of the thesis, I looked into cancer-related focal CNVs. To 

better understand and visualize them, I developed a new bioinformatics tool called 

GenomeTornadoPlot. In addition, I also studied the PCAWG data to support the 

study of activated telomere maintenance mechanisms. Moreover, a random forest-
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based classifier has been implemented to distinguish between telomerase and ALT 

patients. This informative research insight will provide new explanations for the 

complex story of cancer development and gene mutation in several aspects. 
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2 Computational material and data preprocessing 

2.1 Computational Materials 

The operating system I used on the local computer is openSUSE Linux version 

2.6.37.6-24-default and later changed into CentOS-7.8-DKFZ. 

I used the DKFZ TBI-cluster with 44 nodes of AMD Opterons, 16-256 GB RAM, 16 

GB swap space, and a clock frequency of 2.0-2.7 GHz in the first phase. Later, I 

changed it into the DKFZ LSF-cluster. 

The programs of this study are mainly coded in R and Python. I coded R in the R 

studio on the DKFZ server and the version was 3.5.1. The Python code is under 

version 2.7. The used R and python packages will be introduced in each section. 

 

2.2 Data 

The PCAWG dataset was collected and unified by ICGC. The original data set 

contains more than 2,900 patients from 48 cancer research projects. The dataset 

comprises WGS data from clinical centers around the world.  

The WGS data of each patient includes at least one tumor sample and one control 

sample, which were sequenced by Illumina HiSeq with 100-150bp paired-end 

sequencing reads and an average coverage of at least 30 reads in the tumor and 25 

in the control sample. The control samples were collected from blood or healthy 

tumor-adjacent tissues depending on cancer type. In some cases, additional 

samples were collected. For all patients, clinical data, including patient ID, age, sex, 

and survival time, are also concluded. Moreover, the dataset provides RNA 

sequencing data for approximately two-thirds of the patients. The data is available in 

ICGC data portal (https://dcc.icgc.org/). 
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2.3 Data Preprocessing 

The WGS data was downloaded from the ICGC-PCAWG data portal 

(https://dcc.icgc.org/pcawg) and WGS data were preprocessed by the DKFZ. The 

SNV/MNV/INDEL calling and functional annotation were performed by Ivo 

Buchhalter. (https://github.com/DKFZ-ODCF/SNVCallingWorkflow) The CNV and SV 

callings were performed by members of the previous Computational Oncology group. 

(The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium et al., 2020)  

From the DKFZ variant calling pipelines, I obtained the VCF format files as output. 

Aiming for fast querying and highly efficient storage of the data, I converted the VCF 

files into a new data structure. In this data format, I encoded detailed information on 

all point mutations, CNVs, and SVs as simple strings in order to compress the file 

size.  

These strings are coded by the following format: 

SNV_A_B_C; CNV_D_E,F 

where A is the category of SNV/INDEL types:  

0 - synonymous SNV, 1 - unknown INDEL, 2 - non-frameshift INDEL, 3 - frameshift 

INDEL, 4 - nonsynonymous SNV, 5 - stop-gain SNV; B is the chromosome index; C 

is the coordinate of SNV; D is the copy number; E and F are the starts and ends 

coordinate of CNV. 

The WGS variations from all PCAWG patients are saved in one file. The data were 

stored in the form of a matrix. In this matrix, each row represents a gene and each 

column represents a patient. This gene-centric presentation makes it very easy to 

subtract interesting parts of data, no matter if the users wanted to analyze whole 

genome variants of certain cohorts or if they were interested in a specific gene’s 

function among all cancer types. SNV/MNV/INDEL information and CNV/SV are 

combined in the same file so that it is convenient to analyze their interactions, such 

as bi-allelic inactivations. (Figure 5) 

https://dcc.icgc.org/pcawg
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Figure 5: The data structure for storage of PCAWG mutation information. 

In this matrix, each row represents a gene and each column represents a patient. 

The mutation information is stored in the cells with mutation types, positions, and 

other detailed information.(adapted from (Hong, 2016)) 

 

The preprocessing of RNA sequencing data was done in collaboration with Sandra 

Koser from the Applied Bioinformatics Department of DKFZ. Similar to WGS files, I 

preserved the Fragments Per Kilobase Million (FPKM) value of all data-available 

patients in a matrix format file. On the other hand, considering that the PCAWG 

dataset was collected from different projects all around the world, the batch effect of 

RNA sequencing cannot be ignored. Because of this, Sandra Koser and I normalized 

the FPKM values for each gene within every single cohort and we saved the z-

scores as the adjusted expression level of genes. In a few cases, there are more 

than one RNA sequencing batch for one single patient. In this situation, the average 

of the expression value of this patient is calculated. The RNA sequencing data is 

saved in both python pickle files which can access with query in python script and 

matrix based data structure. 
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2.4 Code Availability 

Part of my codes including python, R, shell scripts and documentations for the 

research project can be found in https://github.com/chenhong-dkfz. 
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3 Driver Mutations 

Research on cancer driver genes is an important part of the PCAWG project. For this 

part, I explored the driver genes in the pan-cancer NGS data in terms of point 

mutation frequency, biallelic inactivation, chromosomal copy number variation, 

promoter mutations, etc. with multiple statistical methods, and tried to discover new 

driver gene candidates and explored their potential in cancer therapy. 

 

3.1 SNV/CNV recurrence analysis of multiple cancer types 

3.1.1 Overviews of SNVs in PCAWG data 

I statistically analyzed the number of contributions of SNVs in each patient in 

different cancer types. (Figure 6-7) As it is shown in figure 6, I noticed that the 

number of SNVs per cohort differs significantly among different cohorts.  

SKCM-US (Skin Cutaneous melanoma), LUSC-US (Lung Squamous Cell 

Carcinoma) and ESAD-UK (Esophageal Adenocarcinoma) have extremely high 

frequencies of SNVs in patients (mean > 30000 SNVs/patient). This might be the 

result of artifacts from SNV calling. Breast cancer (BRCA-US, BRCA-UK), Acute 

Myeloid Leukemia (LAML-US, LAML-UK) and ovarian cancer (OV-US, OV-AU) 

share similar SNV frequencies respectively. This similarity clearly indicates that 

cohorts of the same cancer types which were independently sequenced on different 

continents show low technical bias.  
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Figure 6: Distribution of SNV numbers per patient. 

(a) Boxplot of total numbers of SNVs in WGS by PCAWG cohorts. Cohorts are 

ordered by the median number of SNVs per sample. (b) Barplot of total patient 

numbers of each PCAWG cohort. Cohorts are ordered as the same as that in (a). 

(Adapted from (Hong, 2016)) 
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Figure 7: Distribution of CNV lengths per patient. 

(a) Boxplot of total lengths in bp of CNV deletions in WGS by PCAWG cohorts. 

Cohorts are ordered by the median total lengths of CNV deletions per sample. (b) 

Barplot of total patient numbers of each PCAWG cohort. Cohorts are ordered as the 

same as that in (a). (Adapted from (Hong, 2016)) 
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3.2 Biallelic Inactivation Analysis and Applications 

The inactivations of tumor suppressor genes can be carcinogenic. In diploid cells, 

the two alleles of genes denote expression levels. Mutations on either allele are 

possible to inactivate the gene and decrease expression. Compared to monoallelic 

inactivations, biallelic inactivations have stronger effects, as they are guaranteed to 

lead to a loss of genetic information. 

It is not trivial to filter out biallelic mutations from VCF files, especially in cohort-

based analysis. A Variant Call Format (VCF) file is a file format used in 

bioinformatics for storing genetic sequence variants. It records information including 

the technical information of the sequencing experiment as well as the position, 

reference, alteration, quality, and other information of each mutation. In this study, I 

focused on a special case of biallelic inactivations where structural variation, deletion 

(or copy number variation loss) and an SNV occurring in one gene region at the 

same time. In principle, the lengths of gene element regions are shorter than normal 

sizes of structural variations or copy number variations. So, in the case that both SV 

deletion (or CNV loss) and an SNV occur simultaneously in the region, it is unlikely 

that both of them are in one allele. Firstly, I define the “disruptive” SNVs as point 

mutations that actually inactivate the function of gene elements and they are defined 

slightly differently in different types of gene elements. Then I defined that if there 

exists at least one “disruptive” SNV and one deletion overlapping together in a gene 

element in one sample, this sample is a “potential biallelic inactivation” sample for 

this gene element. A homozygous CNV deletion is also considered as a potential 

biallelic inactivation because the function of genes is removed both alleles. In coding 

region sequences (CDS), nonsynonymous, splicing, and stop gain SNVs are 

involved. In 3’ UTR and 5’UTR regions, UTR SNVs are also considered as effective. 

While in core promoters and enhancers, all SNVs belong to “effective SNVs”. 

If there exist copy number gains overlapping the region of a gene element, this 

sample is defined as a “potential gene amplification” sample for this gene element. 
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According to the copy number count of the region, I divided the potential gene 

amplification samples into three groups: genome duplication (CNV gain 3-4), double 

genome duplication (CNV gain 5-8) and “octoploid and events that are high-level 

amplifications” (CNV gain over 8). In general, the over-expression of genes is often 

linked to high copy numbers. The abnormally high expression of these genes is very 

interesting in cancer research. 

Analysis of potential biallelic inactivations and gene amplifications provides insight 

between gene mutations and expressions and it is very helpful for predicting new 

cancer drivers. 

 

3.2.1 Overview of Biallelic Inactivations in PCAWG Data 

3.2.2.1 Overview 

To discriminate pan-cancer drivers from mutations that are entity-specific, I counted 

the total number of potential biallelic inactivations in all patients and calculated the 

entropy of inactivation distributions among cohorts. 

The Shannon entropy is calculated by: 

𝐻 = −∑

𝑚

𝑖=1

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖 

where pi is the percentage of patients of cohort i in total patients. 

For each gene, the entropy is calculated. If the Shannon entropy is high, the 

corresponding genes are likely to involve CNVs distributed in different cohorts.  

From Table 1, there are some known TSGs such as TP53, CDKN2A, and PTEN in 

the list. And some of their neighbor genes appear on this list as well because they 

are affected by the homozygous deletion. Therefore, it is necessary to rule out the 

effect of broad CNV deletion, thereby eliminating false-positive candidates. 

Meanwhile, I also looked into the top candidates from each chromosome. There are 

several interesting genes which have more bi-allelic inactivations than any other 

genes in the same chromosome, such as CSMD1, WWOX, CCSER1, and 

MACROD2. 
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I calculated the entropy of histology distribution of bi-allelic inactivations of CGC 

genes in the PCAWG data (Figure 8). CDKN2A and TP53 have the most events and 

they have high entropies, which suggests that they are more likely to distributed 

dispersedly in different histologist. While the genes like SMAD4, VHL, DCC, and 

PBRM1 have the trends of focus in a few specific histological types. 

 

Table 1: Top 30 bi-allelic inactivated gene. 

Gene name Ch

r 

Gene start Gene end Entropy Sum Role 

RP11-145E5.5 9 21802635 22032985 2.20914072244596 307 NA 

CDKN2A 9 21967751 21995300 2.21260178249442 304 TSG 

C9orf53 9 21967137 21967738 2.23744325098634 265 NA 

CDKN2B-AS1 9 21994777 22121096 2.21702864289586 262 NA 

RP11-149I2.4 9 21995481 21996012 2.21662955697574 260 NA 

CDKN2B 9 22002902 22009362 2.20632524516232 256 NA 

UBA52P6 9 22012154 22012535 2.18959444788354 248 NA 

MTAP 9 21802542 21931646 2.1939739073248 243 NA 

RP11-149I2.5 9 21929456 21931072 2.19235275972528 240 NA 

TP53 17 7565097 7590856 2.29055453558936 239 oncogene, TSG, fusion 

RP11-70L8.4 9 21858909 21861925 2.15601998687196 207 NA 

TUBB8P1 9 21811620 21812346 2.08179371332763 181 NA 

RP11-408N14.1 9 22203989 22214671 2.16082816658821 168 NA 

KHSRPP1 9 21695175 21696942 2.16285833634615 142 NA 

DMRTA1 9 22446840 22455739 2.14295972979971 132 NA 

FHIT 3 59735036 61237133 1.70019938189912 132 TSG, fusion 

RP11-344A7.1 9 21638284 21638675 2.17837845334424 130 NA 

MIR31HG 9 21455641 21559668 2.25844393703536 124 NA 

RP11-399D6.2 9 22646199 22824212 2.15036895763009 113 NA 

RP11-370B11.1 9 22747699 22748233 2.13703134241512 107 NA 

SMAD4 18 48494410 48611415 1.26108178914847 107 TSG 

IFNE 9 21480841 21482312 2.15298169834888 106 NA 

RP11-370B11.3 9 22767174 22768315 2.13798235585408 105 NA 

PTEN 10 89622870 89731687 2.37614595831218 102 TSG 

IFNWP19 9 21455483 21456048 2.17068334238048 101 NA 
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IFNA8 9 21409146 21410184 2.17258343931578 100 NA 

IFNA1 9 21440440 21441315 2.17272951810876 99 NA 

IFNA2 9 21384254 21385396 2.19129070055303 99 NA 

IFNWP2 9 21420233 21420812 2.17272951810876 99 NA 

IFNA11P 9 21398613 21399138 2.1841948403504 98 NA 

Notes: Each column represent gene names, chromosome, gene start position, gene 

end position, bi-allelic inactivation entropies, total numbers of bi-allelic inactivations 

and the roles of gene in CGC list. 

 

 

Figure 8: Bi-allelic inactivation and entropy of CGC genes. 

The x-axis represents the total number of bi-allelic inactivations in all PCAWG 

patients. The y-axis represents the entropy of histology distribution of these bi-allelic 

inactivations. 
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3.2.1.2 Discussion 

Similar to any other mutation-based study, the influence of lengths cannot be 

neglected from the bi-allelic inactivation analysis because the length the gene is the 

more likely the gene get mutated, even by 2 different variations. More studies are 

needed to establish a convincing correlation between these genes with high bi-allelic 

inactivations and cancers. 

 

3.2.2 Biallelic Inactivation and Cancer Driver Long, Non-coding RNAs 

3.2.2.1 Motivation 

The Cancer LncRNA Census (CLC) genes are defined by Joana Carlevaro-Fita et al. 

as a set of LncRNAs that are directly impacting cancer progress as shown by 

experiment or genetic proof. In the CLC gene list, there are 122 LncRNA genes, 

including 77 oncogenes, 36 tumor suppressor genes and 9 genes with both 

functions. (Carlevaro-Fita et al., 2020) 

In this study, I wanted to determine the biallelic inactivation and copy number 

amplification features of these LncRNAs.  

 

3.2.2.2 Biallelic Inactivation on CLC genes 

The CLC genes were preliminarily predicted and classified as T (tumor suppressor) 

genes, O(onco-) genes, and pt (complex functions) genes. 100 out of 117 CLC 

genes are long, noncoding RNAs. I calculated the potential biallelic activations, 

potential monoallelic activations and gene amplifications for all lncRNAs in gencode 

v19 (13848 genes) and compared the CLC genes to the remaining lncRNAs. 

In this study, I observed that both CLC tumor suppressor genes and CLC oncogenes 

have more potential biallelic activations than background (unadjusted p-value: 

0.000136 for O genes against background, 0.000749 for T genes, one-sided 

Wilcoxon rank-sum test). For potential monoallelic inactivations, only T genes have a 

significant difference (unadjusted p-value: 0.0176, one-sided Wilcoxon rank-sum 

test) and are higher than the background. (Figure 9) 
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Figure 9: Comparison of counts of biallelic/monoallelic inactivations between 

predicted CLC genes and background. 

Y-axis represents the count of bi/mono-allelic inactivations of genes in all patients. 

(a) bi-allelic inactivations between background (red) and oncogenes (cyan). (b) bi-

allelic inactivations between background (red) and complex functional genes 

(TSG+oncogenes, cyan). (c) bi-allelic inactivations between background (red) and 

TSGs (cyan). (d) mono-allelic inactivations between background (red) and 

oncogenes (cyan). (e) mono-allelic inactivations between background (red) and 

complex functional genes (TSG+oncogenes, cyan). (f) mono-allelic inactivations 

between background (red) and TSGs (cyan).  

 

Between CLC genes and background, I didn’t observe significant differences of gene 

amplifications with lower than 8 copies. For hyper gene amplification with more than 

8 copies, however, the O genes have more amplification cases than the background 

group (unadjusted p-value: 0.0371, one-sided Wilcoxon rank-sum test) (figure 10). 

The result validated the prediction of oncogenes because these genes are very 

possible to unregulated in cancer samples. (Figure 10) 
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Figure 10: Comparison of counts of different levels of gene amplifications between 

predicted CLC genes and background. 

Y-axis represents the count of CNV amplification of genes in all patients. The p-

values of one-sided Wilcoxon rank-sum test are not significant between any cancer-

related groups and controls except oncogenes vs control group with CNV gain above 

8 (bottom left). 

 

 

3.2.2.3 Most frequently bi-allelic inactivated and amplificated genes 

I listed the top candidates in both CLC and background groups. The predicted CLC 

tumor suppressor genes with frequent potential biallelic inactivation and oncogenes 

with frequent hyper gene amplifications are more convincing cancer related lncRNA 

candidates.  
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Table 2: Top 10 LncRNAs with most frequent bi-allelic inactivations. 

Ensembl gene ID gene name role 

ENSG00000253535 RP11-624C23.1 NA 

ENSG00000271860 RP11-436D23.1 NA 

ENSG00000237647 ERICH1-AS1 NA 

ENSG00000253642 RP11-436D12.1 NA 

ENSG00000240498 CDKN2B-AS1 oncogenes in 

CLC 

ENSG00000231535 LINC00278 NA 

ENSG00000251574 RP11-6N13.1 NA 

ENSG00000180910 TTTY11 NA 

ENSG00000229308 AC010084.1 NA 

ENSG00000265533 RP11-638L3.1 NA 

Notes: Each column represents ensemble gene ID, gene name and predicted roles 

in CLC list. 

 

For biallelic inactivations analysis, I found that many genes in the X chromosome 

have higher biallelic mutations due to the phenomenon of X chromosome 

hypermutations. Interestingly, it has been documented that the non-functioning X 

chromosome in many cancer genomes of female patients shows a significant 

increase in somatic mutations rates. (Jäger et al., 2013) Moreover, due to the 

specific nature of the X chromosome (males have only one X chromosome while in 

females one of the X chromosomes is randomly inactivated), I excluded X 

chromosome genes from the top candidates to remove the false positives. In the top 

10 genes, I found one oncogene (CDKN2B-AS1) in the CLC list. 
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Table 3: Top 10 LncRNAs with most frequent amplifications (CN>5). 

Ensembl gene ID gene name role 

ENSG00000249375 CASC11 cancer susceptibility candidate 

ENSG00000249859 PVT1 oncogenes in CLC 

ENSG00000246228 CASC8 cancer susceptibility candidate 

ENSG00000247844 CCAT1 oncogenes in CLC 

ENSG00000253929 CASC21 cancer susceptibility candidate 

ENSG00000254166 CASC19 cancer susceptibility candidate 

ENSG00000253264 PCAT2 prostate cancer-associated transcript 2 

ENSG00000254275 LINC00824 NA 

ENSG00000253438 PCAT1 oncogenes in CLC 

ENSG00000254286 RP11-89K10.1 NA 

Notes: Each column represents ensemble gene ID, gene name and predicted roles 

in CLC list. 

 

For gene amplification, I found three CLC oncogenes in the top 10 list as expected. 

This result would support the prediction of CLC genes. The rest of the candidates 

are also interesting, including CASC11, CASC8, CASC8, CASC19, and PCAT2, 

which are already known as cancer susceptibility candidates genes and prostate 

cancer-associated transcripts. 

 

3.2.2.4 Discussion 

Long non-coding RNAs play some roles in cancer development. However, the 

functions of most LncRNAs are still unclear. It is not even clear if some LncRNAs are 

primary “driver” genes whose mutations lead to cell tumorigenesis or if they are just 

playing a downstream role which accelerates tumor development and progresses 

with changing the expression levels (secondary driver). Therefore, I computed 

statistics of the recurrence of bi-allelic inactivations or hyper amplifications in these 
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gene regions. Due to the uncertainty of function and alternative splicing, it is still hard 

to address the functional changes of SNVs or CNVs in the LncRNAs. To this end, a 

thoroughly conducted analysis of the secondary structure of the mutated lncRNAs 

would be required. My results can help to prioritize new targets for this type of 

analysis. 

Comparing the CLC gene set and background, I found that tumor suppressor CLC 

genes have a significantly higher bi-allelic inactivation frequency (p-value=0.0007) 

than the background group while the mono-allelic inactivation frequency is only 

slightly significant different (p-value=0.0176). It may mean that mono-allelic 

inactivation could not change the functions of tumor suppressor lncRNAs, and thus, 

do not provide a selective advantage for cancer cells. Interestingly, I found that the 

CLC oncogenes also have significantly more bi-allelic inactivation than the 

background. This observation is counter-intuitive and requires further investigation. A 

detailed study of each entry is necessary in the future. 

In the bi-allelic activation gene group, RP11-624C23.1 is involved in DNA damage 

response and is downregulated in childhood acute lymphoblastic leukemia. (Gioia et 

al., 2017) ERICH1-AS1 is an negative prognostic factor for gastric cancer and it is 

already used as a biomarker for predicting non-small-cell lung cancer. (Chen et al., 

2020; Tang et al., 2015) LINC00278 is involved in esophageal squamous cell 

carcinoma and influence the androgen receptor signaling pathway. (Wu et al., 2020)  

In the amplification group, I found several cancer susceptibility candidates in the list. 

These genes are not included in the CLC are awaiting more experimentally proof. 

CASC11, which is involved in WNT pathway, is linked to Glioma Susceptibility 1, 

Hepatocellular Carcinoma, colorectal cancer, and ovarian and rectum squamous cell 

carcinoma. (Luo et al., 2017) CASC8 is reported to be upregulated in colorectal 

cancer and breast carcinoma. (Wang et al., 2020; Yao et al., 2015) CASC21 is linked 

with chronic lymphocytic leukemia and prostate cancer. (Calin and Croce, 2009; Kim 

and Croce, 2018) CASC19 and PCAT2 are prostate cancer-related LncRNAs. (Bawa 

et al., 2018; Ramnarine et al., 2019; Wang et al., 2019)  

In summary, for the top candidates in the bi-allelic inactivation list and amplification 

list, further research is required. Some genes in the list are also interesting and have 

already shown some functional correlation to cancers. 
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3.2.3 Synthetic lethality of cancer driver genes 

3.2.3.1 Motivation 

In the past decades of development, people have gradually realized the significance 

of synthetic lethality analysis for finding new cancer drugs. In this study, I mainly 

conducted an analysis on the PTEN gene, trying to find drug target genes that 

potentially can be used to cure PTEN-deficient cancer cells. 

Phosphatase and tensin homolog (PTEN) is a protein encoded by the PTEN gene in 

the human genome. Mutations in this gene often link to the progression of many 

cancers. In general, the PTEN plays a central role in RET signaling, PI3K/AKT 

activation, and p53 signaling pathways. In the sense of biological functions, PTEN 

regulates cell proliferation, cell survival, cell migration, genome stability, and stem 

cell self-renewals. In many types of cancers, such as prostate cancer, breast cancer 

and liver cancer, the functions of PTEN are often inactivated and thus the cells 

transform into cancer cells.  

Although PTEN is a very important gene, it is still not druggable. However, now the 

synthetic lethality analysis provides us with the probability to find PTEN’s SL partner. 

Once silencing the SL partner genes, the PTEN-deficient cell will die.  

 

3.2.3.2 Pipeline design 

In different cancer types, PTEN gene mutation rates differ. To avoid statistical bias, it 

is necessary to select the cancer cohorts which are enriched in PTEN-deficient 

patients.  

Within the PCAWG data, there are originally 48 cohorts. I first calculated the PTEN 

loss-of-function mutation rate of each cohort. In this step, I defined three types of 

loss-of-function mutation levels and two types of amplification levels. 

Loss-of-function mutation means there are functional point mutations or copy 

number deletions in this gene region: 
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- Monoallelic inactivations: a functional point mutation or a heterozygous copy 

number deletion occur in the same position in the gene region. 

- Potential biallelic inactivations: (1). a point mutation and a heterozygous copy 

number deletion occur in different positions without overlaps in the gene 

region, and (2) two functional point mutations occur in the gene region. In 

these situations, it is not necessarily possible to identify if the mutations are in 

the same allele, so I defined them as ‘potential’ biallelic inactivations. 

- Biallelic inactivations: (1) a functional point mutation and a heterozygous copy 

number deletion occur in the same position in the gene region, (2) a 

homozygous copy number deletion in the gene region. 

Amplification means the copy number gain of the gene region.  

- Copy number between 5 and 8 (5 and 8 inclusive) 

- Copy number > 8 

Copy number gain less than 5 was not considered as amplification here to make 

sure of the confidence of events because it may not have any effect to expression 

change. 

For PTEN, a significant tumor suppressor, I was interested in the deletions and 

SNVs. Because of this, I calculated the mutation rates of each loss-of-function 

mutation type in all cohorts. (Figure 11) 
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Figure 11: Overview of different types of mutations of PTEN in cohorts. 

Blue represents for amplifications between copy numbers 4 to 8, pink represents 

monoallelic inactivations, orange stands for potential biallelic inactivations, and red 

stands for real biallelic inactivations. 

 

Any cohorts in which at least 15% of patients have loss-of-function mutations of 

PTEN were selected as highly frequently mutated cohorts. To ensure that a sufficient 

number of patients are involved into the analysis, I also selected other cohorts which 

are histologically similar to the highly frequently mutated cohorts. Next, I performed 

analysis for all patients in the selected cohorts. For example, the proportion of 

mutated samples in the BRCA-EU project does not reach the threshold but this was 

still selected because other breast cancer cohorts met the requirement. 
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Table 4: an example of meta-cohort selection. 

 

 

 

Finally, I selected 13 histological meta-cohorts with 868 samples. The meta-cohorts 

are listed in table 5. 

 

Table 5: the selected meta-cohorts for synthetic lethality analysis project. 

Bone/soft tissue Ovary 

Breast Pancreas 

Cervix Prostate 

CNS Skin 

Colon/ Rectum Stomach 

Kidney Uterus 

Lung  

 

 

3.2.3.3 Mutual Exclusive Analysis 

I apply mutual exclusivity analysis for PTEN with 3 loss-of-function alteration 
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combinations against all mutations of all other genes. 

They include three basic types of mutations: bi-allelic inactivations (bi), potential bi-

allelic inactivations (po_bi) and mono-allelic inactivations (mi). According to the 

credibility of the mutation level, the PTEN mutations can be divided into three 

combinations: bi, bi+po_bi and bi+po_bi+mi. Each level is a subset of next level. The 

most convincing level is only the real bi-allelic inactivations. (Table 6) 

 

Table 6: Schematic of mutually exclusive matrix. 

 Gene X 
bi+po_bi+m
i (mut) 

Gene X 
bi+po_bi 
(pb) 

Gene X bi 
(rb) 

Gene X 
amp>4 
(nam) 

Gene X 
amp>8 
(pam) 

PTEN 
bi+po_bi+m
i (mut) 

x x x x x 

PTEN 
bi+po_bi 
(pb) 

x x x x x 

PTEN bi 
(rb) 

x x x x x 

Notes: bi = bi-allelic inactivations, po_bi = potential bi, mi = mono-allelic 

inactivations, amp = amplifications. 

 

For each combination of any gene and PTEN, I calculate the p-values of the 

hypergeometric distribution, which identifies mutually exclusive situations in the 

cohorts. I get 3x5=15 p-values for each gene pair. I didn’t apply multiple testing 

because the purpose of this step is to rank the genes and find a few top candidates. 

The hypergeometric distribution is used for sampling without replacement. The 

density of this distribution with parameters m,n,k is given by: 

 

for x=0,...,k, where m is the number of gene A deficient patients in the cohort, n is the 

number of gene B deficient patients in the cohort and k is the number of patients with 
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both A and B deficiency. 

I applied the phyper function from the basic stats package in R to our data and 

calculated the p-values for all possible gene pairs. 

 

3.2.3.4 Filters 

After calculating the p-values, we designed four filters to screen out target gene 

candidates.  

- All protein coding genes in pan-cancer list, events >= 5 & p-

values >0.77 in bi and potential bi list. 

- Genes on X only if mutated in prostate 

- No large overlap in one indication (all OR < 2) 

- >=6 events in selected indications of interest 

There are 54 genes that meet all four requirements. (Supplemented Table 5) As a 

follow-up, these candidates were studied by analyzing pathway information, their 

mutational patterns in the cBIO database and the scientific literature. 

 

3.2.3.5 Pathway Information, cBIO, and Literature. 

The following databases were used for the functional annotation of all candidate 

genes and done by my colleagues Tobias Bauer and Daniel Hübschmann in DKFZ. 

1. Gene function and annotation – GeneCards(https://www.genecards.org/) 

2. Detailed gene function – PubMed 

3. Literature link to cancer – PubMed 

4. Confirmation of ME in other/larger cohorts of relevant indication – 

CBioPortal(https://www.cbioportal.org/) 

5. Assessment of co-deletion events with known TSs – UCSC Genome Browser and 

CBioPortal(https://genome.ucsc.edu/; https://www.cbioportal.org/) 

https://genome.ucsc.edu/
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6. Availability of tool molecules/competition and available X-ray structures– ClinTrials 

and PDB(https://www.clinicaltrials.gov/;https://www.rcsb.org/) 

 

3.2.3.6 Result 

Finally, we kept 10 genes as the final candidates. (Supplemented table 5)  

MED12 (mediator complex subunit 12), located on chromosome X, is amplified in 

neuroendocrine prostate cancer and castration-resistant prostate cancer. It may be 

oncogenically L1224F mutated in prostate cancer. This gene participates in the 

structure of the mediator which activates the CDK8 kinase and plays an important 

role in transcription regulation. (Zhang et al., 2020)  

BAP1 (BRCA1 Associated Protein 1) binds to the RING finger domain of BRCA1, 

which is encoded by the BAP1 gene in chromosome 3. (Jensen et al., 1998) It 

locates in the same chromosome arms with VHL and they are often co-deleted. In 

this study, BAP1 gene is mutated in 9 (11%) kidney cancer patients and 10 samples 

in other cancer types.  

CBFB (Core-Binding Factor Subunit Beta), located in chromosome 16, forms a 

heterodimeric complex core-binding factor (CBF) with RUNX family proteins.  CBFB 

genes are significantly mutated in cancers such as breast cancer and intestinal 

cancer. The CBFB gene is a highly mutated driver in many human cancers, including 

breast cancer. (Malik et al., 2019; Speck, 2001) 

GPR98, located in chromosome 5, encodes the G protein-coupled receptor 98, 

whose aberrant expression and activity of G proteins and G protein-coupled 

receptors (GPCRs). These proteins are frequently associated with tumorigenesis. 

Nearly 20% of human tumors have mutations in GPCRs. GPR98 is one of the most 

frequently mutated GPCRs in cancer. (O’Hayre et al., 2013; Sriram et al., 2019)  

WNK3 is a gene located on the X chromosome that encodes a protein belonging to 

the 'with no lysine' (WNK) family of serine-threonine protein kinases. Proteins within 

this family are characterized by the absence of the catalytic lysine in subdomain II 

and instead possess a conserved lysine in subdomain I. Although there are not 

many studies about the direct crosslinks between WNK and cancers, WNK proteins, 
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along with their associated proteins, play a role in the modulation of several signaling 

pathways, including PI3K-AKT, TGF-β, and NF-κB signaling. They interact with these 

pathways and can influence their activity, which are known as tumor-related 

pathways. (Gallolu Kankanamalage et al., 2018; Lai et al., 2014; Moniz and Jordan, 

2010)  

SMARCA1 locates on chromosome X. The protein encoded by SMARCA1 belongs 

to the SWI/SNF family. SWI/SNF family actives ATPase and helicase. It has ablity to 

change the chromatin structure nearby. Disordered chromatin remodeling regulation 

is related to cancer initiation. SMARCA1 plays both oncogene and TSG roles in 

many types of cancers, such as stomach, breast, lung, and cervical cancers. (A Patil 

et al., 2018; Li et al., 2021)  

ZMYM3, also known as zinc finger, myeloproliferative, and mental retardation-type 3, 

is a gene that codes for a chromatin-interacting protein. It plays a critical role in 

promoting DNA repair through the process of homologous recombination. ZMYM3 is 

involved in regulating the localization of BRCA1, which is a key protein involved in 

DNA repair in damaged chromatin, thereby facilitating efficient DNA repair 

mechanisms. This gene is located on the X chromosome and is subject to X 

inactivation. (Brancaleoni et al., 2016) ZMYM3 deficiency resulted the instability of 

DNA repairing and possible cancer development, including ovarian and breast 

cancers. (Leung et al., 2017) 

CYSLTR2, Cysteinyl leukotriene receptor 2, locates on the long arm of chromosome 

13. It can bind to cysteinyl LTs such as LTC4, LTD4, LTE4) which are envolved in 

functions in endocrine and cardiovascular systems.  It recurrently mutated in uveal 

melanoma. (Möller et al., 2017; Nell et al., 2021) 

NCOR1 (nuclear receptor corepressor 1) is known to be implicated in thyroid 

development and thyroid cancer. (Fozzatti et al., 2013) This gene locates on 

chromosomes  17 and pseudogenes of this gene are found on chromosomes 17 and 

20. It is linked to not only thyroid cancer, but also bladder cancer, breast cancer and 

prostate cancer. (Fozzatti et al., 2013; Lin et al., 2021; Noblejas-López et al., 2018; 

Tang et al., 2020)  

STS on chromomsome X encodes Steroid sulfatase which is involved in the 
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metabolism of steroids. Recent studies revealled that STS functions are involved in 

the pathways of a few cancers espacially hormon-dependent cancers such as breast 

cancer and prostate cancer. (McNamara et al., 2013; Shimizu et al., 2018) The 

inhibition of STS can lead to significance decrease hormone levels for cancer cells 

and therefore can be a potential drug target. (Daśko et al., 2020; McNamara et al., 

2013; Shimizu et al., 2018)  

Events in these genes are not only mutually exclusive with PTEN deletions, but they 

are also linked with cancers or other important biological functions. Additionally, 

according to literature, they have a large likelihood to be druggable. As a result, they 

represent promising PTEN synthetic lethality partners for cancer drug design. 

 

3.2.3.7 Discussion 

The bioinformatics screening of synthetic lethality partners of the cancer suppressor 

gene PTEN is the first step of new drug target gene discovery. It speeds up the 

progress of searching for new targets and saves time and resources for biological 

validation.  

However, this method still has some disadvantages. The hypergeometric distribution 

test works only for frequently mutated genes If a “real” synthetic lethality partner is 

rarely mutated, the p-value would not be significant due to a lack of statistical power, 

so it will be missing. An increase of the cohort size would compensate for that effect. 

Moreover, synthetic lethality analysis for new targets is not a perfect idea. It is known 

that human cells can have alternative repair pathways and they are likely to become 

drug resistant cells to the new drugs. Also, the new target genes are possible to play 

other important roles in related pathways, and therefore treatments with inhibitors 

might cause extra cell damage to normal cells.  

Similar to other new drug screening projects, this study needs more detailed analysis 

of target gene biology to strengthen the result. The next steps are operated by our 

partner Proteros Biostructures GmbH. 
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3.3 CaSINo - A Scoring Algorithm to Interpret Mutation 

Significance 

3.3.1 Motivation 

Gene mutations play an important role in cancer initiation and progression. A few 

bioinformatics tools, such as Genome Music and MutSigCV, are developed for 

identifying significant cancer driver mutations in genomes, especially for coding 

genes. However, these tools are not designed for non-coding regions, codons or 

single nucleotides. Applying these existing tools to these objects is not 

straightforward. (Hong, 2016) 

 

3.3.2 Method and pipeline implementation 

In this study, huge quantities of NGS data from multiple cancer cohorts were 

obtained from The Pan-Cancer Analysis of Whole Genomes project of the 

International Cancer Genome Consortium (ICGC-PCAWG). Based on this data, I 

parsed all SNV information from 2962 patients of 48 different cohorts. ANNOVAR 

was then used for mutation functional annotation. I formatted the data into BED files 

for the follow-up analysis.  

I implemented the CaSINo (Cancer SIgnificance analysis for Non-coding genomes) 

which calculates scores for each position/codon based on point mutation 

frequencies, but weights the information content by the mutation burden of the 

samples in which mutations are observed. Therefore, mutations from samples with 

few overall mutations have a stronger impact on the CaSINo score than mutations 

from samples with many mutations. I then selected the top-100 candidates with the 

highest scores as possible cancer drivers. (Hong, 2016) 

To assess the ability of the CaSINo score to identify relevant mutations, I compared 

these top candidates with known cancer driver genes from Cancer Gene Census. 

Additionally, for the remaining candidates, I performed Qiagen Ingenuity Pathway 
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Analysis (IPA) and sorted out the related pathways and diseases. The result 

indicates a strong enrichment of the selected candidates in cancer-related pathways. 

(Hong, 2016) 

Table 7: Selected cohorts for CaSINo analysis. 

Cohort Size Cohort Size Cohort Size 

BLCA-US 23 KICH-US 49 OV-US 45 

BOCA-UK 76 KIRC-US 40 PACA-AU 99 

BRCA-EU 79 KIRP-US 34 PACA-CA 150 

BRCA-UK 46 LAML-KR 10 PAEN-AU 105 

BRCA-US 92 LAML-US 33 PBCA-DE 251 

BTCA-SG 12 LGG-US 19 PRAD-CA 124 

CESC-US 20 LICA-FR 6 PRAD-UK 83 

CLLE-ES 100 LIHC-US 54 PRAD-US 20 

CMDI-UK 70 LINC-JP 31 READ-US 16 

COAD-US 46 LIRI-JP 269 RECA-EU 95 

DLBC-US 7 LUAD-US 42 SARC-US 34 

EOPC-DE 71 LUSC-US 48 SKCM-US 38 

ESAD-UK 100 MALY-DE 101 STAD-US 39 

GACA-CN 42 MELA-AU 70 THCA-US 50 

GBM-US 41 ORCA-IN 13 UCEC-US 51 

HNSC-US 44 OV-AU 73 READ-US 16 

 

The SNVs are called through the DKFZ SNV calling workflow by Ivo Buchhalter and 

annotated through ANNOVAR. (Jäger et al., 2013; The ICGC/TCGA Pan-Cancer 

Analysis of Whole Genomes Consortium et al., 2020) In this study, all of the SNVs 

with a confidence below 8 were neglected. 

In this study, I developed a statistical model called "CaSINo" to assign scores to 

each position, codon, gene, and other relevant elements. Regions showing a 

significantly higher point mutation rate across the entire cohort receive higher scores. 

Conversely, mutations in patients with fewer overall mutations are considered more 

informative. The output of this algorithm provides a list of candidate functional 

elements, ranked based on their CaSINo scores. (Figure 12) (Hong, 2016) 
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Figure 12: Schematic diagram of CaSINo. 

For each functional element, a score was calculated not only by the cohortwise 

mutation recurrences but also by the individual patient background mutation rate. 

(Adapted from (Hong, 2016)) 

 

 

 

In this formula, r refers to a genome region, which can be either a single nucleotide, 

a codon, a non-coding element, or a gene. p refers to mutations from one patient 

mutation/normal pair. “cohort” refers to a set of patient samples. SNVs(p) refers to 

the total number of SNVs in one patient. SNVs(r,p) refers to the number of functional 

mutations that occur in region r and Ncohort refers to the total patient number of the 

cohort. (Hong, 2016) 
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In this study, I used functional SNVs, such as non-synonymous mutations, stop-gain 

or stop-loss mutations as SNVs(r,p) and used all types of SNVs as SNVs(p) as the 

background mutational rate. 

 

3.3.3 Results 

I calculated the CaSINo score for both mutated positions and mutated codons. 

(Table 8-9) 

 

 

 

Table 8: Top 20 mutated positions with highest CaSINo scores. 

gene position score role 

TIPIN 15:66641448:TIPIN 0.00557872475374628 NA 

BRAF 7:140453136:BRAF 0.00513523465793539 oncogene, fusion 

KRAS 12:25398284:KRAS 0.00477408641543645 oncogene 

FAM174B 15:93198688:FAM174B 0.00438019804840099 NA 

JAK2 9:5073770:JAK2 0.00435965029916284 oncogene, fusion 

FAM174B 15:93198687:FAM174B 0.00280929488876375 NA 

GBP4 1:89652088:GBP4 0.0021676901083092 NA 

RP1L1 8:10467628:RP1L1 0.00216157424648286 NA 

GBP4 1:89652090:GBP4 0.00213293319459771 NA 

IGFN1 1:201180317:IGFN1 0.00204246380040236 NA 

TPRXL 3:14106332:TPRXL 0.00202385850681739 NA 

PIK3CA 3:178952085:PIK3CA 0.00199396549476417 oncogene 

HLA-DRB1 6:32552060:HLA-DRB1 0.00185079665532673 NA 

QRICH2 17:74288410:QRICH2 0.00172987345714036 NA 

HLA-DQA1 6:32609271:HLA-DQA1 0.00171383483680916 NA 

ATP1A3 19:42470962:ATP1A3 0.00170070475958498 NA 

GBP4 1:89652087:GBP4 0.00169760940310457 NA 

HLA-DQA1 6:32609278:HLA-DQA1 0.00167795226265418 NA 

KRTAP9-1 17:39346622:KRTAP9-1 0.00167076299295663 NA 

HLA-DQA2 6:32714125:HLA-DQA2 0.00166051511514349 NA 

Notes: Each column represents the gene names, mutation positions, CaSINo socres and 

the roles of genes in CGC list. 

 

 

 

 

 

 

 



 49 

 

 

 

 

 

 

Table 9: Top 20 mutated codons with highest CaSINo scores. 

gene codon score role 

FAM174B FAM174B:p.S68 0.00718949293716475 NA 

KRAS KRAS:p.G12 0.00603122834678532 oncogene 

TIPIN TIPIN:p.R142 0.00557872475374628 NA 

TIPIN TIPIN:p.R41 0.00557872475374628 NA 

BRAF BRAF:p.V600 0.00515421412977671 oncogene, fusion 

BRAF BRAF:p.V28 0.00515421412977671 oncogene, fusion 

JAK2 JAK2:p.V617 0.00435965029916284 oncogene, fusion 

JAK2 JAK2:p.V468 0.00435965029916284 oncogene, fusion 

GBP4 GBP4:p.M545 0.0043006233029069 NA 

DSPP DSPP:p.D673 0.00282263267249971 NA 

HLA-DQA1 HLA-DQA1:p.A92 0.00252451047643133 NA 

HLA-DQB1 HLA-DQB1:p.G121 0.00229541431993378 NA 

RP1L1 RP1L1:p.T1327 0.00223969938866847 NA 

IDH1 IDH1:p.R132 0.00211030292005979 oncogene 

PIK3CA PIK3CA:p.H1047 0.00207690802875385 oncogene 

IGFN1 IGFN1:p.E2099 0.00204246380040236 NA 

TPRXL TPRXL:p.S219 0.00202385850681739 NA 

HLA-DRB1 HLA-DRB1:p.S66 0.00185079665532673 NA 

C2orf82 C2orf82:p.A10 0.00184432670543624 NA 

DPP7 DPP7:p.L47 0.00184432670543624 NA 

Notes: Each column represents the gene names, names of codons, CaSINo scores and the 

roles of genes in CGC list. 

 

 

 

 

To check the plausibility of the results, I compared the top 100 candidates of both 

mutation levels to the Cancer Gene Census list. The Cancer Gene Census (CGC, 

https://cancer.sanger.ac.uk/census) provides a list to catalogue the cancer driver 

genes and this list explains the roles these genes play in cancer development. The 

CGC list contains two tiers of confidences. I used both categories in the comparison. 
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(The CGC gene list mentioned in the paper refers to both tier 1 and tier 2 genes in 

the list. The version of CGC used in the thesis is v95.) 

As of November 2020, the list includes 723 cancer related genes containing 

oncogenes, tumor suppressor genes and other genes with complicated functions. 

In our study, I found 37 codon candidates out of our top 100 that can be found in the 

CGC list of genes. For the top 100 single nucleotide positions, I found 18 of them are 

involved in the CGC list. 

Considering the CGC list is a very strict standard, I selected all the functional regions 

which are not listed in CGC from the top 100 lists and analyzed them in Qiagen 

Ingenuity Pathway Analysis (IPA® , QIAGEN Redwood 

City,www.qiagen.com/ingenuity).  

IPA is a web-based pathway analysis software, which reports pathway details, 

biological processes and molecule function networks for a given gene list. The genes 

are annotated with high-quality gene ontology information and mapped into known 

pathways. A P-value of Fisher's Exact Test is calculated for each pathway and 

function. The P-value cutoff was set to 0.05 and a P-value closer to 0 implies that 

sample genes are enriched in the pathway or function. (Table 10-11) 

 

 

 

 

 

 

Table 10: Functions and disease associations for the unknown genes from the top 

20 codon gene list. 

Diseases or Functions Annotation p-value Molecules 
Susceptibility to multiple sclerosis 9.86E-06 HLA-DQB1,HLA-DRB1 

Head and neck squamous cell carcinoma 1.14E-05 ACTC1,ACTR3C,AKAP17A,ATP1A3,DSPP,FAM186A,FA

M8A1,HLA-DQA1,HLA-DQA2,HLA-DQB1, 
HLA-DRB1,IGFN1,KRTAP1-1,KRTAP4-5,KRTAP9-

1,PABPC3,PLIN4,QRICH2,RP1L1,SIRPB1 
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Hypersomnia 3.28E-05 HLA-DQB1,HLA-DRB1 
Extrapulmonary squamous cell carcinoma 1.25E-04 ACTC1,ACTR3C,AKAP17A,ATP1A3,DSPP,FAM186A,FA

M8A1,HLA-DQA1,HLA-DQA2,HLA-DQB1, 
HLA-DRB1,IGFN1,KRTAP1-1,KRTAP4-5,KRTAP9-

1,MUC22,PABPC3,PLIN4,QRICH2,RP1L1,SIRPB1 
Pediatric inflammatory bowel disease 2.95E-04 HLA-DQA1,ICOSLG/LOC102723996 
Embryonal rhabdomyosarcoma in  
striated muscle 

4.53E-04 DSPP,FAM186A,HLA-DRB1,IGFN1,PLIN4,RP1L1 

Muscle tumor 4.63E-04 ACTC1,DSPP,FAM186A,HLA-DQA1,HLA-

DRB1,IGFN1,PLIN4,RP1L1 
Dystrophy of muscle 4.81E-04 ACTA1,HLA-DQA1,HLA-DQB1,HLA-DRB1,IGFN1 
Familial restrictive cardiomyopathy 4.94E-04 ACTA1,ACTC1 
Hereditary myopathy 1.08E-03 ACTA1,ACTC1,ATP1A3,HLA-DQA1,HLA-DQB1,HLA-

DRB1,IGFN1 
Early-onset high myopia 1.21E-03 DSPP,KRTAP9-1 
Celiac disease 1.39E-03 HLA-DQA1,HLA-DQB1 

Duchenne muscular dystrophy 1.56E-03 HLA-DQA1,HLA-DQB1,HLA-DRB1 
Acute myeloid leukemia 1.66E-03 ACTC1,ACTR3C,AKAP17A,DSPP,HLA-DQA1,HLA-

DQB1,HLA-DRB1,KRTAP1-

1,PABPC3,PLIN4,QRICH2,RP1L1,SIRPB1 

 

Notes: The p-value here is calculated by Fisher’s Exact Test and adjusted with methods 

based on the Benjamini-Hochberg. The detail algorithm can be found in IPA manual 

online. 

(https://qiagen.secure.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5

nQCAS) 

 

 

 

 

 

 

 

 

Table 11: Functions and diseases for the unknown genes from the top 20 mut 

positions gene list. 

Diseases or Functions Annotation p-value Molecules 
Squamous-cell carcinoma 2.26E-07 ADGRE2,ATP1A3,ATXN1,C6,CES1,DSPP,FAM186A,FA

M8A1,HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA-DRB1, 
IGFN1,IGSF9B,KRT18,KRTAP4-5,KRTAP9-
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1,MACF1,MUC17,OR1L4,OR4A16,PABPC3,PLIN4,QRI

CH2,RP1L1,SIRPB1 
Skin carcinoma 5.42E-07 ADGRE2,ATXN1,C6,DSPP,FAM186A,FAM8A1,GBP4,H

LA-DRB1,IGFN1,KRT18,KRTAP9-

1,MUC17,OR1L4,OR4A16,RP1L1 
Extrapulmonary squamous cell carcinoma 8.19E-07 ADGRE2,ATP1A3,ATXN1,C6,CES1,DSPP,FAM186A,FA

M8A1,HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA-DRB1, 
IGFN1,KRT18,KRTAP4-5,KRTAP9-

1,MACF1,MUC17,OR1L4,PABPC3,PLIN4,QRICH2,RP1L

1,SIRPB1 
Head and neck squamous cell carcinoma 1.36E-06 ATP1A3,ATXN1,DSPP,FAM186A,FAM8A1,HLA-

DQA1,HLA-DQA2,HLA-DQB1,HLA-

DRB1,IGFN1,KRT18,KRTAP4-5,KRTAP9-1, 
MACF1,MUC17,OR1L4,PABPC3,PLIN4,QRICH2,RP1L1,

SIRPB1 
Embryonal rhabdomyosarcoma in striated muscle 4.54E-06 ATXN1,DSPP,FAM186A,HLA-

DRB1,IGFN1,MACF1,PLIN4,RP1L1 
Cancer of cells 4.57E-06 ADGRE2,ATP1A3,ATXN1,C6,CES1,DSPP,FAM186A,FA

M8A1,GZMB,HLA-DQA1,HLA-DQA2,HLA-DQB1, 
HLA-DRB1,IGFN1,IGSF9B,KRT18,KRTAP4-5,KRTAP9-

1,MACF1,MUC17,OR1L4,OR4A16,PABPC3,PLIN4,QRI

CH2,RP1L1,SIRPB1 
Susceptibility to multiple sclerosis 9.34E-06 HLA-DQB1,HLA-DRB1 
Hypersomnia 3.11E-05 HLA-DQB1,HLA-DRB1 
Muscle tumor 6.22E-05 ATXN1,DSPP,FAM186A,HLA-DQA1,HLA-

DRB1,IGFN1,MACF1,PLIN4,RP1L1 
Soft tissue sarcoma 1.04E-04 ATXN1,DSPP,FAM186A,HLA-

DRB1,IGFN1,KRT18,MACF1,MUC17,OR4A16,PLIN4,RP

1L1 
Severe COVID-19 1.74E-04 C6,GZMB,HLA-DQB1,HLA-DRB1 
Familial combined hyperlipidemia 2.03E-04 ATXN1,HLA-DQA1 
Malignant myeloid neoplasm 2.06E-04 ATXN1,C6,DSPP,GZMB,HLA-DQA1,HLA-DQB1,HLA-

DRB1,KRT18,OR1L4,OR4A16,PABPC3,PLIN4,QRICH2,

RP1L1,SIRPB1 
Bone marrow cancer 2.19E-04 ATXN1,C6,DSPP,GZMB,HLA-DQA1,HLA-DQB1,HLA-

DRB1,KRT18,OR1L4,OR4A16,PABPC3,PLIN4,QRICH2,

RP1L1,SIRPB1 

Notes: The p-value here is calculated by Fisher’s Exact Test and adjusted with methods 

based on the Benjamini-Hochberg. The detail algorithm can be found in IPA manual 

online. 

(https://qiagen.secure.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5

nQCAS) 

 

 

 

 

 

These genes are involved in quite a number of cancer pathways with significant p-values. 

It provides strong evidence that our findings are interesting. 
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3.3.4 Discussion 

CaSINo scores are based on basic statistics and can analyze point mutations that 

occur in any region of the gene. This flexible method enables the analysis of many 

genetic elements including promoters, gene bodies or enhancers, and even codons. 

By downweighting information from hypermutated cases, the score improves over a 

pure mutation frequency analysis. Clearly, mutations, especially those in non-coding 

regions, have a complex impact on gene function. While it can't definitively tell us 

which genes are "potential cancer driver genes," it can tell us which genes are more 

likely candidates by ranking the scores. 

Other approaches such as MutSigCV require very specific information that is not 

available for all cell types. Furthermore, this information is highly parametrized and 

therefore represents a strong bias. In contrast, CaSINo relies on very few 

assumptions and still is very powerful. 

However, the CaSINo algorithm does not take into account the more complex 

biological functions of genes and does not explore complex covariant contexts. This 

makes this method currently only available as a complement to other feature-based 

methods. To further improve the performance of the algorithm, firstly, it is necessary 

to establish a more credible background mutation frequency model by means of 

simulation. Secondly, it is important to further quantify the biological significance of 

all functional modules. Finally, it is also necessary to quantify the obtained Score to 

establish a reasonable threshold. 

 

 

 

 

 

3.4 Functional Promoter Mutations 

Certain point mutations in promoters can significantly alter gene expression levels. If 
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these mutations happen to act on cancer genes, they have potential implications for 

cancer development. The understanding of functional promoter mutations gives us 

an opportunity to improve our understanding of cancer etiology and may lead to new 

therapeutic options. It is valuable work to find similar cases based on big data from 

PCAWG. In this project, I set up an analysis pipeline to screen for specific promoter 

mutations that may upregulate gene expression. 

 

3.4.1 Promoter Mutations and Expression Upregulation of TERT 

 

Figure 13: The promoter point mutations and expressions of TERT. 

The x-axis represents the histological meta-cohorts and the y-axis stands for the 

expression value in z scores. The cyan boxplots represent samples with CNV in the 

TERT promoter and red boxplots represent the wild type. The numbers indicate how 

many samples there are in each group. 

 

As shown in Figure 13, a few TERT promoter mutations are likely to be linked to 

expression upregulation, especially in bladder, bone, soft tissue, and kidney cancer. 

However, there are not too many patients with promoter mutations, which suggests 

that the promoter functional mutations are low-frequent.  
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3.4.2 Pipeline Design 

With this idea, I developed a filter-based pipeline to screen out candidates of genes 

which fulfill all the following criteria: 

- Point mutations occur in the promoter region. 

- Expression is upregulated significantly. 

- The gene coding region is not covered by CNV gains 

- The point mutations change the motifs. 

 

3.4.2.1 Data Preprocessing 

Firstly, I defined the range of promoters in the whole genome. According to the gene 

coordinates in the HG19 database, I confirmed the boundaries of the TSS for each 

gene. I defined a promoter to start 2000bp upstream of the TSS. Then, I applied 

BED tools to identify point mutations that occur in the promoter regions in the 

PCAWG dataset. 

The expression data was originally in FPKM format. In order to avoid batch effects 

from different cohorts, the FPKM values should be normalized. The normalization is 

based on: 

Z = (Xi-Mcohort)/σcohort 

where Xi is the expression value in FPKM of a given gene for patient i, Mcohort is the 

mean expression value of the given gene in the cohort and the σcohort is the standard 

deviation of expression value from each patient within the cohort. 

The expressions is often upregulated by copy number duplications in gene regions. 

To mitigate the impact of CNVs, I excluded the gene/patient-pairs in which the gene 

coding region is affected by a copy number change above 2. 

 

3.4.2.2 FPKM selected list 

In this study, I studied the 37,139 original whole genome genes, which are listed in 

the HG19 database. To filter for the false positive candidates, which are statistically 
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upregulated but lack abundance for biological meaning, if the average expression 

value in FPKM of a gene is lower than 1. In this step, I kept 20,681 genes in our 

FPKM selected list.  

 

3.4.2.3 Expression Filter 

I set the Z-score threshold to 2. Genes exceeding this threshold were considered 

significantly upregulated, and SNVs and Indels in the corresponding promoter were 

kept in the potential candidate list. 

 

3.4.2.4 Amplification Filter 

The patient-gene-pairs that are annotated with CNV amplification above 4 were 

excluded from our candidate list. Amplifications are a stronger mechanism to 

upregulate genes than SNVs. Therefore, the Amplification Filter should exclude 

SNVs in promoter regions of amplified genes.  

 

3.4.2.5 CGC Filter 

In this study, I was interested in cancer driver genes so I have to narrow down our 

candidates in this direction. One of the best golden standards of cancer genes is the 

Cancer Gene Census (CGC) list, which is created by the Catalogue of Somatic 

Mutations in Cancer (COSMIC) (ttps://cancer.sanger.ac.uk/cosmic/download). In 

total 719 genes are recorded on the CGC list that have been shown to be cancer 

driver genes. (Sondka et al., 2018) The CGC Filter selects the mutations which lie in 

promoter regions of cancer-driving genes from the CGC list.  

 

3.4.2.6 Motif Filter 

The destruction or creation of a motif is considered to be the most important 

mechanism behind promoter mutational upregulation of gene expression. I applied 

the FIMO software with HOCOMOCO database to identify if the SNVs are located in 
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TFBS-related motifs. (Sondka et al., 2018) 

 

3.4.3 Preliminary Results 

Table 12: The preliminary result of functional promoter mutation analysis. 

 

 

Notes: Each column represents the patient id, expression in z score, amplification 

(0-normal, 1-amplificated), gene names, CGC list (0-not in CGC list, 1-in CGC list, 

here the non-CGC genes are neglected), project code in PCAWG, mutation types 

and chromosomes of genes. 

 

In the preliminary results, I obtained 566 SNVs in the candidate list. There are 551 

non-recurrent SNVs in the whole database. Four recurrent SNVs were found. They 

are located in the promoters of the genes TERT, PIM1, BCL2 and EBF1. This result 

is currently referred to as a "preliminary result" since my colleague, Irina Glas, has 

taken over the subsequent analysis, and the new findings are not yet clear at the 

time of writing the thesis. 
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3.4.4 Discussion 

In this project I used several different filters. These filters bring our results one step 

closer to real discovery. The first thing I have to say is that even with so many ways 

to eliminate irrelevant genes, there still exists a lot of problems. In terms of gene 

expression, in addition to our selected point mutations, gene expression is still 

affected by many other factors, such as epigenetics or the control of distant 

regulators. So here, I can't be sure that our filter will get the candidates which are 

needed without omission. 

The first filter we employ here is the expression filter. I set a threshold of z larger or 

equal to 2. This relatively high threshold is set to reduce false-positive results caused 

by abnormal up-regulation of patient expression caused by other factors. On the 

other hand, since I need to actually find significant examples like TERT, after I 

evaluate the overall candidate size, I set 2 as the threshold. 

In the design of the amplification filter, I considered that the causal relationship 

between amplification and gene expression up-regulation of many large copy 

numbers is more obvious. I think the up-regulation of gene expression with a copy 

number of 4 or more is likely to come from CNV. The lower copy number gains may 

not cause significant changes in gene expression. Based on this assumption, I 

screened out all genes that met this criterion.  

The CGC filter is a very important step in the whole analysis process, because my 

research direction is limited to the research of cancer-related genes, so I hope to find 

the cancer driver genes that have been proven. This option may indeed give up 

some potential new SNVs, but given the sheer size of the potential candidates, I 

think adding a CGC filter is very sensible. 

The motif filter is integral to this pipeline. I think it is only from this step that I can 

move from the black box of statistics to the analysis of biological functional modules. 

The motif scores report the likelihood of the potential binding sites or protein motifs 

and it can help us understand the biological function of sequence. Since my work 

was handed over to my colleagues at this step, I wasn't able to dig deeper into the 

performance and results of the motif filter, but I think this step will greatly eliminate 

the impact of false positives. 
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In the follow-up analysis, I think researchers should analyze from the impact of 

TFBS, these potential functional modules will greatly affect the level of gene 

expression. On the other hand, if it is possible to find high frequency mutation sites 

like TERT C228T and C250T, then this study will achieve greater scientific 

significance. Therefore, if possible, it is undoubtedly a very meaningful analysis to 

consider the mutation frequency of mutation points. 

 

3.5 Focality Analysis of Copy Number Variations 

3.5.1 Definition of Focal CNVs 

In this study, focal CNVs are defined as the CNV deletions and amplifications that 

are longer than 1kb and shorter than 10Mb. 

 

3.5.2 Overview of Focal CNVs in PCAWG Data 

The lengths of CNVs differ greatly in genomes. The distribution diversity of CNV 

deletions in different cohorts is shown in Figure 14. Thyroid carcinoma and acute 

myeloid leukemia have shorter average CNV deletions while breast cancer and 

kidney cancer display longer deletions. This is possibly caused by different 

mechanisms of genomic variation in various cancer types. For example, in renal cell 

carcinoma, the short arm of chromosome 3 is often deleted and causes broad CNV 

deletion. (Quddus et al., 2019)  

 



 60 

 

Figure 14: Overview of CNV deletion length distribution in different cohorts. 

The y-axis represents the sum of CNV deletion length in one patient and the x-axis 

represents the cohort. The boxplots are sorted by the median length of CNV 

deletions. It is shown that CNVs influence differently among cancer types. (Adapted 

from (Hong, 2016)) 

 

Focal CNVs are enriched in certain regions in the human genome. These regions 

are believed to be fragile sites inside chromosomes. (Le Tallec et al., 2013) 

In the view of genes, I found that focal deletions are more abundant in cancer-related 

genes such as FHIT, CSMD1, WWOX, and PTPRD. 
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Table 13: Top 20 most frequently CNV loss genes.  

chromosome start end gene 
Number of 
patients with 
deletion 

3 59735036 61237133 FHIT 1104 

8 2792875 4852494 CSMD1 889 

16 78133310 79246564 WWOX 834 

9 21802635 22032985 RP11-145E5.5 776 

8 163186 182231 RPL23AP53 754 

9 8314246 10612723 PTPRD 710 

8 13947373 15095848 SGCZ 695 

8 22570769 22857513 PEBP4 689 

8 22877646 22926692 TNFRSF10B 686 

8 24153327 24769586 RP11-624C23.1 685 

8 22547663 22656129 RP11-459E5.1 683 

8 22941868 22974950 TNFRSF10C 679 

8 18384811 18942240 PSD3 677 

8 22993101 23021543 TNFRSF10D 677 

16 88781751 88851619 PIEZO1 677 

8 22224762 22291642 SLC39A14 676 

8 22925742 22941132 RP11-875O11.2 676 

8 22928890 22932001 RP11-875O11.3 676 

8 23047965 23082639 TNFRSF10A 676 

8 15965387 16424999 MSR1 675 

8 22132810 22215076 PIWIL2 675 

Notes: Each column represents the chromosome, gene start position, gene end 

position, gene name and the nubmer of patients with deletion in gene. 

 

 Among the gene candidates shown in Table 13 in addition to some of the genes 

listed in CGC, I can also find other genes that are not related to cancer, but are only 

chromosomally close to these CGC genes. Therefore, to identify potential cancer 

driver genes, it is required to devise more precise statistical methods.  

I also analyzed the lengths of focal CNV deletions in tumor suppressor genes 
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(TSGs) and genes which are not listed in CGC (non-cancer-related genes). I applied 

the Wilcoxon test to the counts of focal deletions (0-1Mb and 0-10Mb) and I found 

that shorter CNVs are more enriched in TSGs (2.2e-16) than longer ones (0.015). In 

both groups, the differences between the TSG group and the control group are 

significant. A shorter threshold causes more significant difference because longer 

events are more likely to effect neighbors of TSGs. (Figure 15) 

 

Figure 15: Focal CNV deletions in tumor suppressor genes (TSGs) and non-cancer-

related genes with different length thresholds for focal CNV definition. 

(a) CNVs shorter than 106 base pairs. (b) CNVs shorter than 107 base pairs. The 

difference of distributions of focal CNVs are significant between TSGs and non-

cancer-related genes, especially if the definition length is shorter. 

 

 

3.5.3 Focality Score Model 

The statistical recurrence analysis indicates that focal CNV deletions tend to be 

enriched in TSGs. However, this study lacks accuracy. According to our previous 

study, shorter CNVs are more likely to be abundant than the longer ones. 

Additionally, even focal CNVs are sometimes comparatively longer than or similar to 

the sizes of genes. In this case, one CNV event could influence more than one gene. 
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If we use focal CNV enrichment to screen out possible cancer driver genes, it would 

result in a lot of potential false positives. I developed a simple mathematical method, 

which I called the ‘focality score’, to identify the short CNVs enrichment in cancer 

cohorts. The focality score is calculated as follows: 

𝑆 = ∑𝑚
𝑖=1 (𝑙𝑜𝑔(𝐿𝑚𝑎𝑥 − 𝐿𝑖)), 

where Lmax is the defined focal CNV length upper limit (1Mb or 10Mb). Li is the 

length of the ith focal CNV which affects the gene. 

The higher the focality score is, the more the gene is affected by shorter focal CNVs.  

To solve the problems of neighboring genes sharing CNVs, I have to update the 

focality score by comparing the gene with its neighbors. So I defined the edge score: 

score.edge = (2*Sgene - Sneighbour_1 -Sneighbour_2)/2 

where neighbour_1 and neighbour_2 are neighboring genes of the target gene, if the 

target gene is at the edge of chromosome, the only neighbor gene counts as both 

neighbour_1 and neighbout_2. 

In brief, the edge score represents the average difference between the standard 

focality score of a gene and the scores of its neighboring genes. 

 

3.5.4 Focality Analysis for Driver Genes in PCAWG 

I applied the focality score to the PCAWG dataset and I compared the focality score 

for CNV deletions of TSGs and the group of control genes. 



 64 

 

Figure 16: Focality scores in TSGs and non-cancer-related genes. 

Significant differences between the two groups are shown in different length 

thresholds of 1Mb and 10 Mb. 

 

The TSG genes have significantly higher focality scores than the control group (two-

sided wilcoxon test p-value<2.2e-16 for CNVs shorter than 1Mb and p-value=1.6e-13 

for CNVs shorter than 10Mb). The significance in Figure 16 is greater than the CNV 

deletion counts comparison of these groups which is shown in Figure 15. 
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I also tested the edge scores of the two groups. (Figure 17) 

 

Figure 17: Edge scores in TSGs and non-cancer-related genes. 

Significant differences between the two groups are shown in different length 

thresholds of 1Mb and 10Mb. The two-sided Wilcoxon test p-values are below 2.2e-

16 in both tests. 

 

According to these analyses, I concluded that focal CNV deletions are enriched in 

TSGs, especially the shorter events. Edge scores are more significant than original 

focality scores. Like SNV or CNV recurrence analysis, the focality score system can 

be used in potential cancer driver gene screening.  

I applied the edge score to PCAWG data and ranked the gene list in descending 

order. I have to consider the fragile site of the chromosomes. “Chromosomal fragile 

sites are specific loci that preferentially exhibit gaps and breaks on metaphase 

chromosomes following partial inhibition of DNA synthesis.” (Durkin and Glover, 

2007) Genes located in these regions can also be involved in CNV deletions but it 

might not relate to cancer progress. I have to filter out the genes in fragile sites from 

our candidate list. The fragile sites data can be found online. (Figure 18) 
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Figure 18: Webpage of HumCFS: A database of human chromosomal fragile sites. 

This database provides coordinates and cytoband information of potential fragile 

sites. (Kumar et al., 2019)(https://webs.iiitd.edu.in/raghava/humcfs/)  

 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/PSpXzJ/PPfF
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Table 14: Top 30 genes with highest focality scores.  

chr gene focality score length cgc tsg edge score 

X ARHGEF9 1605.16695187 150579 none none 1507.1866407483 

3 FHIT 983.081020351 1502097 cgc tsg 723.06667374 

16 WWOX 702.885882163 1113254 none none 574.6395711025 

20 MACROD2 419.008793511 2057827 none none 392.0484454311 

2 LRP1B 468.266307734 1900278 cgc tsg 377.23439454875 

4 CCSER1 514.096053126 1474378 none none 370.346370954 

16 PIEZO1 545.981268777 69868 none none 359.916265197 

9 PTPRD 523.842247213 2298477 none none 358.722721107 

5 PDE4D 513.872046231 1553082 none none 337.7375715865 

X DMD 471.26291887 2241764 none none 320.812832895 

13 DCUN1D2 426.548420828 35133 none none 300.301219457 

6 PARK2 462.806541116 1380351 none none 297.7487389495 

9 RP11-143M1.7 801.29063767 20871 none none 271.6443630845 

9 RP11-145E5.5 816.881232864 230350 none none 266.877221766 

8 CSMD1 529.889931497 2059619 none none 265.3359261175 

19 OR4G1P 499.095780377 936 none none 247.7431919 

3 LSAMP 266.159193365 2194860 none none 218.9999028209 

22 TTC28 314.454388867 701849 none none 213.4616675411 

22 CECR2 216.463585853 197013 none none 211.39076194082 

9 CBWD1 815.021236355 67938 none none 208.0689789125 

18 RP11-451L19.1 551.401327872 4318 none none 198.8106330885 

16 CDT1 539.040613098 6045 none none 174.8831704375 

17 KSR1 185.391112767 169791 none none 173.8951568951 

3 NAALADL2 214.090323188 1367065 none none 170.8018854681 

10 PTEN 510.098596345 108817 cgc tsg 169.5712707035 

7 IMMP2L 243.489201756 899463 none none 166.87010840805 

13 TMCO3 432.504336804 59232 none none 154.621341026 

16 RBFOX1 200.942476258 1694245 none none 154.2319972564 

18 GREB1L 160.870797931 283175 none none 151.8470848907 

6 EYS 261.241127135 1987242 none none 146.240906015 

Notes: Each column represents chromosome, gene name, focality score, length of 

CNV, CGC list info, tumor suppressor gene info and edge score. 

 

At the top of this list, I found a large number of known cancer driver genes, like FHIT, 

LRP1B and PTEN. These genes are highlighted in the CGC list. Moreover, the 

remaining genes are also interesting even if they are not listed in the CGC. For 

example, the ARHGEF9 gene is linked to the GPCR pathway, which plays a role in 

Pancreatic Adenocarcinoma and breast cancer regulation by Stathmin1. (Sriram et 

al., 2020)  
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3.5.5 Discussion 

Copy number variation has strong effect on expression levels. From this logic, I can 

indeed deduce which genes may have a role in the development of cancer from the 

degree of CNV enrichment, especially the enrichment degree of focal CNV, which 

can reduce the interference of many false positive genes. The edge score method 

can effectively avoid genes with smaller lengths from being affected by neighboring 

genes, preventing us from misidentifying false positives around some hotspots in the 

analysis. 

CNV deletion, thus present strong evidence for discovering new tumor suppressor 

genes. On the other hand, I found that the situation of CNV amplification is much 

more complicated, because it is difficult to determine what effect these CNVs 

appearing inside genes have on gene expression. 

Moreover, the edge score and the CaSINO score, which were mentioned previously, 

complement each other and are based on some shared ideas. Both essentially use 

frequency information but take into account that the counts need to be weighted. In 

one case the overall mutation load is considered in the other case the length of the 

deletions. 

I propose an algorithm for the quantification of enrichment for focal CNV deletion. 

This algorithm takes into account the length and frequency of copy number variation, 

and can effectively ignore the influence of excessively long CNVs to remove random 

interference. I realized that since this model does not take into account the effects of 

gene length and chromosomal local fragility, it does not perfectly represent the 

importance of CNVs. Even with edge score methods, it is difficult for us to find 

interesting candidates in some densely arranged shorter genes. To quantitatively 

analyze the impact of focal CNVs, more complex models and larger amounts of data 

is required. 

I am delighted that many scientists have developed a strong interest in focal CNVs, 

which has also led me to a keen interest in how these analyses can be used for data 

visualization and standardization of software development. For this reason, I later 

developed a visualization tool GenomeTornadoPlot based on the R package, which 

allows each user to easily view the Focal CNV enrichment in a specific region of the 
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chromosome and calculate its focus score. This work will be presented in Chapter 5. 
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4 Telomere Analysis 

4.1 Background 

Telomerase is up-regulated in about 85% of human cancers by different 

mechanisms, including TERT amplifications, structural variations or mutations in the 

TERT promoter. The remaining tumors utilize an alternative lengthening of telomeres 

(ALT) pathway, which involves DNA recombination of telomeric sequences. (Horn et 

al., 2013; Huang et al., 2013) Identifying distinct telomere maintenance mechanisms 

(TMMs) could provide greater insight into cancer initiation and progression. Based 

on different TMMs, scientists can try to develop corresponding diagnostic tools and 

anti-cancer therapies. Therefore, I can devise methods to determine the type of 

TMMs in a particular cancer patient through NGS data input. (Jafri et al., 2016)  

At the molecular biology level, we can identify ALT with several different markers. 

However, most of them could not be directly detected in the short-read WGS data. 

While specific details regarding the ALT mechanism are not fully understood, it has 

been linked to loss-of-function mutations in chromatin remodeling genes ATRX 

(alpha-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-

domain associated protein). (Heaphy et al., 2020) In this study, we used ATRX and 

DAXX trunc mutations (ATRX/DAXXtrunc) as ALT indicators. I can use this as the 

ground truth to train machine learning models which train on features that can be 

measured in short-sequence NGS to effectively predict ALT. To be noticed, 

ATRX/DAXXtrunc samples do not cover all the ALL samples. (De Nonneville and 

Reddel, 2021) However they can be identified through NGS technology from 

PCAWG dataset. Therefore, I used these samples as a strong subset of ALT 

samples to train the classifier. 

Non-supervised clustering of normalized TGAGGG, TCAGGG, TTGGGG, TTCGGG, 

and TTTGGG singleton repeat counts effectively separates most ATRX/DAXXtrunc 

samples from TERT modifications (TERTmod, such as amplifications, deletions, 

structural variations and point mutations) samples. The ATRX/DAXXtrunc clusters 

exhibit higher telomere content and a greater number of telomere insertions 

compared to the total number of breakpoints, which is not surprising. (Figure 19) 

(Sieverling et al., 2020) 
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Figure 19: Telomere variant repeat in telomere. 

(a) Normalizaed count of tumor/control log2 ratios of all patients plotted against 

telomere content tumor/control log2 ratios for selected singletons. The regression 

line through the TERTmod samples is shown in green. (b) Distance to the expected 

singleton repeat count in ATRX/DAXXtrunc and TERTmod samples. ****p < 0.0001; 

**p < 0.01, two-sided Wilcoxon rank-sum tests after Bonferroni correction.  (reprinted 

with original captions from Sieverling, Lina, et al. “Genomic Footprints of Activated 

Telomere Maintenance Mechanisms in Cancer.” Nature Communications, vol. 11, p. 

733, 2020) 
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4.2 Predictive Model for Identification of Telomerase/ALT 

In this research, I built a random forest classifier. Through the R script, I used 

ATRX/DAXXtrunc (class I) and TERTmod (class II) samples as training datasets, 

with features including singleton divergence to expect count of TTTGGG, TTCGGG, 

TGAGGG, TCAGGG, TTGGGG, and breakpoint count, telomere insertion count and 

telomere content tumor/control log2 ratio for training. Considering that the sizes of 

two classes of sample are different, I used a down-sampling technique to subset 

telomerase samples before training, to solve the imbalance problem. After carefully 

tuning the parameters, I built a reliable classifier model. After 10-fold cross-

validation, the classifier had an average area under the curve of 0.96, a sensitivity of 

0.72, and a specificity of 0.98. The variables of highest importance for classification 

were the observed difference from expected counts of TTTGGG and TTCGGG 

singleton TVRs, the number of breakpoints, and the number of telomere insertions. 

(Sieverling et al., 2020) 

 

Table 15: Feature importance in random forest classifier trained on 

ATRX/DAXXtrunc and TERTmod tumor samples.  

Feature Importance 

TTTGGG singleton divergence to expected count 13.59 

TTCGGG singleton divergence to expected count 11.92 

Brekpoint count 11.01 

Telomere insertion count 10.03 

Telomere content tumor/control log2 ration 5.34 

TGAGGG singleton divergence to expected count 5.02 

TCAGGG singleton divergence to expected count 3.25 

TTGGGG singleton divergence to expected count 2.83 

 

The random forest model can not only classify, but also calculate a score for each 



 73 

test sample. This score can be interpreted as an ALT probability. As I expected, 

ATRX/DAXXtrunc had high ALT probability (mean = 0.92) in the test set, while 

TERTmod samples had low ALT probability (mean = 0.13). A total of 18 samples 

without ATRX/DAXXtrunc mutations had ALT probabilities over 0.9, two of which had 

non-truncating ATRX/DAXX mutations, and one had a frameshift insertion and TERT 

amplification in ATRX (11 TERT copies, triploid). (Figure 20-23) (Sieverling et al., 

2020) 

 

In the PCAWG dataset, the majority of cancer types displayed low probabilities of 

alternative lengthening of telomeres (ALT), indicating that their telomere 

maintenance mechanisms (TMMs) are primarily telomerase-based. This observation 

held true even for samples with ATRX/DAXX missense mutations, suggesting that 

these mutations may have a limited functional relevance and might be more 

incidental in nature. However, certain tumor types, such as leiomyosarcoma, 

osteosarcoma, and pancreatic endocrine tumors, exhibited high probabilities of ALT, 

which aligns with the well-documented prevalence of ALT in these particular cancer 

entities. (Sieverling et al., 2020) 
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Figure 20: The proportion of variance explained in PCA analysis with selected 

features. 

The selected features include telomere content tumor/control log2 ratio, number of 

telomere insertions, number of breakpoints and the distance of TGAGGG, TCAGGG, 

TTGGGG, TTCGGG and TTTGGG singletons. Top four Pcs explained more than 

75% of variance. 
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Figure 21: PCA analysis of the selected ALT features. 

The selected features include telomere content tumor/control log2 ratio, number of 

telomere insertions, number of breakpoints and the distance of TGAGGG, TCAGGG, 

TTGGGG, TTCGGG and TTTGGG singletons. The red points represent ALT 

samples and cyan points for telomerase samples.  
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Figure 22: ALT prediction score of tumor samples with different TMM-associated 

mutations. 

The ALT probability was derived from a random forest classifier trained to distinguish 

ATRX/DAXXtrunc from TERTmod samples based on the following features: telomere 

content tumor/control log2 ratio, number of telomere insertions, number of 

breakpoints and the distance of TGAGGG, TCAGGG, TTGGGG, TTCGGG and 

TTTGGG singletons to their expected occurrence. The classifier was only applied to 

samples without missing data. The center line of the boxplot is the median, the 

bounds of the box represent the first and third quartiles, the upper and lower 

whiskers extend from the hinge to the largest or smallest value, respectively, no 

further than 1.5 * interquartile range (IQR) from the hinge. (reprinted with original 

captions from Sieverling, Lina, et al. “Genomic Footprints of Activated Telomere 

Maintenance Mechanisms in Cancer.” Nature Communications, vol. 11, p. 733, 

2020) 
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Figure 23: Prediction of ALT probability in different tumor types. 

For each tumor sample, the ALT probability predicted by a random forest classifier is 

shown. Red represents high probability of ALT while cyan represents high probability 

of telomerase cases. The tumor types are sorted by mean telomere content 

tumor/control log2 ratio from left to right. Cohorts with sample sizes below 15 are not 

shown. (reprinted with original captions from Sieverling, Lina, et al. “Genomic 

Footprints of Activated Telomere Maintenance Mechanisms in Cancer.” Nature 

Communications, vol. 11, p. 733, 2020) 

 

 

4.3 Discussion 

 
In the prediction of telomerase/ALT samples, I used a random forest model as a 
classifier and preprocessed the training set with a down-sampling method. The 
selected features are not only biologically molecularly meaningful, but also 
demonstrate representativeness by means of unsupervised clustering. The model 
has a good performance, achieving high AUC (0.96) and specificity (0.98). 
 
However, in the calculation of this model, I found that the sensitivity is only 0.72, 
which is significantly lower than the specificity. This suggests that the model may 
mistake some ALT for telomerase samples. The reason for this result is probably 
due to the imbalance of the data or the scattered distribution of features in the ALT 
sample. 
 
In addition, considering that the distribution of different TVRs in different cancer 
types is also different, in the case of sufficient data, if a separate classifier can be 
established according to different cancer types, the classification results can be 
better. 
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In an updated study, I found additional issues with this classifier. More important is 
the study from Nonneville and Reddel, who believe that the definition of ALT 
samples on which this model is based is not rigorous. (de Nonneville and Reddel, 
2021) Since the notion that loss of ATRX/DAXX is essentially equivalent to the 
presence of ALT activity may only apply to specific types of tumors, it is not accurate 
to treat ATRX/DAXX as ALT globally. They believe that the ratio of ALT associated 
with ATRX/DAXXtrunc was overestimated in this study and misclassified ALT tumors 
when these mutations were absent. Therefore, although this classifier classified 
ATRX/DAXXtrunc and TERTmod, it could not perfectly distinguish ALT/telomerase. 
(De Nonneville and Reddel, 2021; Feuerbach, 2021)  
 
However, the performance of the ALT probability score proposed with this classifier 
was also tested with the C-circle assay data as target variable in the new ROC curve 
analysis. The performance is also considered as robust. (Figure 24) (Feuerbach, 
2021)  
 
This work was completed in 2017, when only partial data was available for PCAWG. 
I believe that as more data becomes available and more accurate ground truth for 
ALT/Telomerase can be determined, this method will achieve more accurate results. 
 

https://paperpile.com/c/PSpXzJ/LmjC3
https://paperpile.com/c/PSpXzJ/LmjC3
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Figure 24:  The curve of the true positive rate (sensitivity) versus the false positive 

rate (1 – specificity) for all possible thresholds on the ALT probability score. 

The predicted class label is the C-circle status reported from Lee et al. (Lee et al., 

2018), while the red cross depicts the performance of the classifier proposed in the 

Matters Arising article for which classification results are reported for only one 

threshold. (reprinted with original captions from Feuerbach, L. ‘Formal reply to 

“Alternative lengthening of telomeres is not synonymous with mutations in 

ATRX/DAXX”’, Nature communications, 12(1), pp. 1–3. 2021) 
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5 Visualization 

Visualization is an integral part of data science nowadays. PCAWG data is collected 

from large numbers of patients and contains different types of data. It is very 

valuable for letting biologists and bioinformaticians quickly browse and query 

information from the database. Based on our solid understanding of the data, I 

implemented two powerful visualization systems: the TumorPrint and The 

GenomeTornadoPlot. 

  

5.1 tumorPrint 

5.1.1 Background 

The motivation of TumorPrint is to quickly query and visualize gene mutation 

information. The TumorPrint has the following functions: 

- showing the cohort distribution of gene mutations (both mono-allelic and bi-

allelic inactivations; different levels of copy number amplifications) 

- showing the gene variants and gene expression in every patient 

- showing the entropy and CaSINo score of the gene 

- showing the detail mutation information in each PCAWG cohort or meta-

cohort based on histology 

TumorPrint provides not only the mutations in genes and patients like Oncoprint, 

which is a widely used cancer variation visulaztion package, but also the detail 

information of variation types and RNA sequencing data. It helps users get intuitive 

insights of correlation between different mutation types and expression data. (Gu et 

al., 2016)  

 

5.1.2 Basic Layout 
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The TumorPrint basical layout is shown in Figure 25. 

 

Figure 25: Schematic of TumorPrint plot of the mutation and expression in gene 

SMAD4. 

The upper panel shows the expression (z-score, y-axis) of each sample (x-axis). The 

bottom panel shows the mutation types (including CNV loss, CNV gain and point 

mutations, y-axis) of each sample(x-axis). The colors represent the cohort origin of 

these patients. In this plot, the patients without genome mutations are neglected. 

 

 

 

5.1.3 Implementation and Performance 

The TumorPrint tool is coded in Python 2.7 and R 3.5.1 and can run in the DKFZ 

server by called with shell script. The parameters are simple, including gene or gene 

pair names, types of mutations, and file paths. 
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Figure 26: The workflow of the TumorPrint pipeline. 

The input files include a PCAWG data matrix which is previously calculated and 

saved in cluster and configure shell script with the gene or gene pair name. The 

calculation pipeline is coded in Python. It extracts genome variations and RNA 

expression levels from the PCAWG data matrix for the given genes or gene pairs. It 

also transforms the raw mutation information into categories including mono-allelic 

inactivations, bi-allelic inactivations, and different levels of amplification. The 

visualization pipeline generates plots from the output of the calculation pipeline. It 

matches the z-scores of expression data and mutation categories for each individual 

patient and sorts them by expressions within each cohort. The result includes plots 

and a text file with stats of mutations. 

 

For any gene or gene pair, the TumorPrint pipeline can generate the plots in less 

than 120 seconds with 1G RAM on DKFZ-ODCF server. The workflow of TumorPrint 

pipeline is shown in figure 26. 

 

5.1.4 Applications and Examples 

5.1.4.1 Single Gene Tumorprint 

The single-gene TumorPrint is used to illustrate the bi-allelic inactivation, mono-

allelic inactivation, amplification and expression levels from a single gene in cohorts. 

It also reports the distribution of genes in each cohort by calculating the entropy and 

generating a pie plot. The method of entropy calculation is the same as section 
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3.2.1. A few example are shown in Figure 27-30. 

 

 

Figure 27: TumorPrint for bi-allelic inactivation of TP53.  
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TP53 is one of the most frequently inactivated TSG in multiple types of cancers. The 

bi-allelic inactivation cases are mainly resulted by the heterozygous deletion and 

nonsynonymous SNVs. The pie plot represents the number of patients with TP53 

biallelic inactivations in each cohort. The barplot represent the z score of gene 

expression level of patient within cohort. 
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Figure 28: TumorPrint for bi-allelic inactivation of PTEN.  

PTEN is one of the most frequently inactivated TSG in multiple types of cancers. The 

bi-allelic inactivation cases are resulted by both heterozygous 

deletion/nonsynonymous SNVs and homozygous deletions. The pie plot represents 

the number of patients with PTEN biallelic inactivations in each cohort. The barplot 

represent the z score of gene expression level of patient within cohort. 
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Figure 29: TumorPrint for FHIT.  

 

FHIT is the top candidate in focality score analysis for focal CNV deletions. 

Homozygous deletions are commonly observed in FHIT in multiple cancer types, 

especially Esophageal Adenocarcinoma patients. The pie plot represents the 
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number of patients with FHIT biallelic inactivations in each cohort. The barplot 

represent the z score of gene expression level of patient within cohort. 
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Figure 30: TumorPrint for WWOX.  

 

WWOX is the second candidate in focality score analysis for focal CNV deletions. 

Similar to FHIT, WWOX is also frequently deleted in both allele in Esophageal 

Adenocarcinoma. The pie plot represents the number of patients with WWOX 
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biallelic inactivations in each cohort. The barplot represent the z score of gene 

expression level of patient within cohort. 

 

 

5.1.4.2 Bi-gene TumorPrint 

The Bi-gene TumorPrint can be used for show co-mutations or mutual exclusive of a 

gene pair in cohorts. I used this tool for visualize the synthetic lethality analysis for 

cancer genes.  

In bi-gene TumorPrint, plus represents amplification and minus represents 

inactivation. In detail: 

+++: amplification with copy number greater than 8 

++: amplification with copy number greater than 4 and not greater than 8 

+: amplification with copy number not greater than 4 

 - - - : bi-allelic inactivation (homozygous deletion or heterozygous deletion with 

functional SNV in the same location) 

- -: potential bi-allelic inactivation (heterozygous deletion with functional SNV or more 

than one functional SNVs but not in the same location) 

-: mono-allelic inactivation (single heterozygous deletion or functional SNV) 

Figure 31 to Figure 35 provide a few examples of bi-gene TumorPrint. The barplots 

represent the expression z scores of both genes. The calculation of z scores is 

presented in previous sections. In the alteration panel, each row represents one 

gene and each color represents one cohort. The shade of color represents the levels 

of alterations where a darker color stands for more convincing deletion or stronger 

amplification. 
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Figure 31: Bi-gene TumorPrint for MED12 and PTEN in lung cancer. 

 

 

Figure 32: Bi-gene TumorPrint for MED12 and PTEN in breast cancer. 
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Figure 33: Bi-gene TumorPrint for PTEN and CBFB in breast cancer. 

 

 

Figure 34: Bi-gene TumorPrint for SMARCA1 and PTEN in breast cancer. 



 92 

 

Figure 35: Bi-gene TumorPrint for SMARCA1 and PTEN in lymphoid cancer. 

 

 

 

 

 

 

5.1.5 Discussion 

TumorPrint is a very useful visualization tool for genome variations and expressions 

in any genes of interests in large cohort. With this tool, the users can very fast query 

and understand the overview of alterations in a particular gene.  

The bi-gene TumorPrint can compare two genes which provides an convenient way 

to look into interactions between cancer genes. The phenomenon like co-deletions 

and mutual exclusivities can be shown in the figures clearly. It can also be used to 

understand the correlation between genomic variations and expressions.  

The TumorPrint is very user-friendly. It works without many complicated parameters 

and heavy computational load. The wet-lab researchers can easily query interested 
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genes and understand their abbreviations in PCAWG data to support their 

experiment discoveries or get shortcuts for their work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 94 

 

5.2 Genome Tornado Plot 

5.2.1 Background 

Gains-of-function and losses-of-function of genes caused by CNVs play a pivotal role 

in the process of cell carcinogenesis. (Zhang et al., 2016) In the analysis of cancer 

genome data, many cancer-related genes and CNV associations have been found. 

(Zhang et al., 2016) Enrichment analysis of CNVs provides a reliable way to explore 

cancer-driver genes. However, because the lengths of CNVs vary, many CNV 

events cover a large number of gene regions and even entire chromosome arms are 

amplificated or deleted. It is therefore difficult to distinguish convincing cancer driver 

mutated genes from neighboring genes that are functionally not associated with 

cancer. The study of focal CNV addresses this issue. In this study, I defined Focal 

CNV as 1Mb-3Mb according to some publications. (Bierkens et al., 2013; Bignell et 

al., 2010) Amplifications and especially deletions of focal CNV are associated with 

many well-known cancer-associated genes, such as PTEN, CDNK2A, and RB1. 

(Garnis et al., 2006; Leary et al., 2008) These variations are commonly found in 

many cancer types such as breast, lung, and colon cancers. (Bierkens et al., 2013; 

Garnis et al., 2006)  

In order to be able to quantitatively analyze and visualize the enrichment status of 

focal CNVs near genes of interest, I designed and implemented an R package 

"GenomeTornadoPlot". Nowadays, large-scale international research collaborations 

such as TCGA and ICGC provided massive cohort-level genomic data on multiple 

genomics analysis. (Tate et al., 2019; The ICGC/TCGA Pan-Cancer Analysis of 

Whole Genomes Consortium et al., 2020) "GenomeTornadoPlot" can not only 

analyze specific genes based on these public databases and provide statistically 

powerful variation information but also visualize experimental data from users and 

provide intuitive Focal CNV distribution information. In addition to visualizing single 

genes and calculating focality scores, this package can also perform a comparative 

analysis of paired genes on the same chromosome to find the most likely potential 

candidates of cancer drivers among neighboring genes. (Hong et al., 2022) 
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5.2.2 Implementation 

5.2.2.1 Data Input 

The input data of the GenomeTornadoPlot package is CNV information. The 

standard input format is an extended BED-like text file. The file requires strictly 

defined column names that include chromosome identifier (Chromosome), start 

position (Start), end position (End), score (Score), cohort-of-origin (Cohort), and 

patient ID (PID). The score column is generally used to store ploidy information, but 

can also be other user-defined data. The input data can not only consist of pre-

extracted CNV information that only impact the gene of interest, but the users can 

also input genome-wide CNV data and the name of the target gene. A gene model 

embedded in the GenomeTornadoPlot package will automatically find the nearby 

coordinates according to the gene and then process the data. (Hong et al., 2022) 

Users can input CNV data generated by themselves, or directly analyze target genes 

with ICGC-PCAWG data. The PCWAG data has been uploaded on the GitHub 

server, including 2976 samples from all 46 cancer cohorts. (The ICGC/TCGA Pan-

Cancer Analysis of Whole Genomes Consortium et al., 2020) 

<https://github.com/chenhong-dkfz/GenomeTornadoPlot-files>. The data are saved 

in RData format and have been processed into the format that GenomeTornadoPlot 

can read directly. Users can download the data for the whole genome or by a 

specified chromosome. (Hong et al., 2022) 

5.2.2.2 Visualization 

The name of GenomeTornadoPlot was inspired by the shape of the tornado that 

occurs when the CNV segments in the cohort are arranged by length next to the 

chromosome. In the plots, chromosomes are displayed as ideograms, with CNV 

event spans displayed next to them. By default, CNVs will be sorted by lengths in 

ascending order. Through different parameter settings, users can also select sorting 

methods according to cohort, ploidy, or CNV type (amplification or deletion). 

GenomeTornadoPlot can also adjust the display positions of chromosomes and 

CNVs to meet different needs. In the "twin plot" mode, for genes with complex 

functions, the amplifications and deletions can be displayed on both sides of the 

chromosome ideograms respectively. For neighboring genes located on the same 



 96 

chromosome, CNVs that affect two genes separately will also be displayed on each 

side of the chromosome. If users want to understand the co-deletion or co-

amplification of two genes, they can also set the parameter to "mixed plot" and at 

this point, all shared CNVs and individually matched CNVs for each gene are 

displayed separately with different colors. In addition, for relatively short genes or 

CNVs, the GenomeTornadoPlot package also provides zoom-in and rotation 

functions, which can display subtle variations more clearly. The entropy value and 

focality score of CNVs will also be displayed on the graph. GenomeTornadoPlot also 

allows users to save the output in different file formats. Generated plots can be 

saved as R objects, JPEG files, or vector graphics. (Hong et al., 2022) 

5.2.2.3 Focality Score and Entropy 

5.2.2.3 Focality Score and Entropy 

In order to be able to quantify and compare the enrichment of focal CNVs between 

different genes, I defined the “focality score”. This value can provide a reference 

when screening potential cancer driver genes. “The default focality score is defined 

as: 

𝑆 = ∑𝑚
𝑖=1 (𝑙𝑜𝑔(𝐿𝑚𝑎𝑥 − 𝐿𝑖)), 

 

where m is the total number of focal variation events and the capping value Lmax is 

the length of the longest event that is defined as focal CNVs in order to exclude large 

events such as chromosomal arm losses.” (Hong et al., 2022) 

In shorter gene regions, focal CNVs may affect adjacent genes. In order to reduce 

this effect, based on the focality score, I implemented the edge score. “It is defined 

as 

scoreedge = (2*Sgene - Sneighbour_1 -Sneighbour_2)/2 

 

where Neighbour_1 and Neighbour_2 are neighboring genes of the target gene. If 

the target gene is at the edge of the chromosome, the only neighbor gene counts as 

both Neighbor 1 and 2. In short, the edge score is the average difference between 
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the standard focality score of one gene with its neighbors.” (Hong et al., 2022) 

Edge score calculates the relative enrichment status of the gene in the local focal 

CNV by calculating the average value of the focality score difference between the 

gene of interest and the neighboring genes on both sides. (Hong et al., 2022) 

In the current version, GenomeTornadoPlot also provides the possibility for users to 

define their own focality score according to their requirements. The users can input 

their self-defined focality score calculated in advance through the score column of 

the input data. User-defined scores will be displayed on the graph. (Hong et al., 

2022) 

GenomeTornadoPlot plots were used to process CNV data at the cohort level. 

Therefore, the distribution of CNV among different cancer sub-types has also 

become an interesting question. The GenomeTornadoPlot package calculates the 

Shannon entropy value to quantitatively evaluate the distribution trend of focal CNV 

events among different cancer cohorts-of-origin. (Hong et al., 2022) 

The Shannon entropy is defined as:  

𝐻 = −∑

𝑚

𝑖=1

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖 

where pi is the portion of patients of the i-th cohort in total patients from the cohorts. 

The closer the Shannon entropy value is to 1, the more CNV events tend to be 

distributed in a specific cohort. In contrast, a large Shannon entropy value 

corresponds to an even distribution of CNV events across different patient groups. 

(Hong et al., 2022) 

5.2.2.4 ShinyApp 

The GeomeTornadoPlot is an R console-based software so it may not convenient for 

users who are not familiar with R programming. To solve this problem, the 

GenomeTornadoPlot package provides a user-friendly ShinyApp graphic user 

interface. (Figure 36) The users can load the file and set the parameters with a 

mouse click. The plots and quantitive information will be shown in the app and can 

be easily exported to JPEG and vector images by clicking the download button.  
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(Hong et al., 2022) 

 

Figure 36: The shiny user interface of GenomeTornadoPlot. 

The parameters including score types, length threshold of focal CNVs and plot types 

can be given by users in the user-interface. The gene list of Gene A and B will be 

generated automatically from the input CSV file and user can select the genes of 

interest from the drop-down menu. Users can click “Tornado!” button and generate 

the plot. The plot can be downloaded by right click. 

 

5.2.3 Download, Installation, and Usage 

5.2.3.1 Download 

The GenomeTornadoPlot package is available on https://github.com/chenhong-

dkfz/GenomeTornadoPlot, and the data for the test are available on 

https://github.com/chenhong-dkfz/GenomeTornadoPlot-files. 

 

 

 

https://github.com/chenhong-dkfz/GenomeTornadoPlot
https://github.com/chenhong-dkfz/GenomeTornadoPlot
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5.2.3.2 Installation 

Prior to installing GenomeTornadoPlot, the following dependencies are required: 

Table 16: R requirements for GenomeTornadoPlot 

ggplot2 data.table devtools 

gridExtra tiff grid 

entropy shiny shinydashboard 

GenomicRanges quantsmooth IRanges 

 

The GenomeTornadoPlot can be installed with the following steps 

1 In the Git repository click on "Clone or Download". 

2 Copy the HTTPS link. 

3 Open a terminal and type or paste: 

> git clone https://github.com/chenhong-dkfz/GenomeTornadoPlot 

4 Open the folder GenomeTornadoPlot and open the “GenomeTornadoPlot.Rproj” 

file in RStudio. 

5 In the RStudio console, install the package with function:  

> devtools::install() 

To successfully install the GenomeTornadoPlot package, R with a version higher 

than 3.5.0 is necessary. 

 



 100 

5.2.3.3 Usage 

 

Figure 37: Workflow of the GenomeTornadoPlot package. 

The MakeData function generates the intermedia data and calculates the focality 

score. The TornadoPlot function generates different types of tornado plots. 

 

The workflow of GenomeTornadoPlot is shown in Figure 37. For the input data, 

users can prepare BED-like data and import it to the R session. (the real PCAWG 

data for test can be downloaded from https://github.com/chenhong-

dkfz/GenomeTornadoPlot-files) In R, it should be a data frame and look like as 

following: 

 

 

 

 

https://github.com/chenhong-dkfz/GenomeTornadoPlot-files
https://github.com/chenhong-dkfz/GenomeTornadoPlot-files
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Table 17: An example of input data format of the GenomeTornadoPlot package. 

Chromo
some  

Start  End  Scor
e
  

Gene Cohort
  

PID 

17 6 18318423 3 DOC2B BLCA-US 0c7aca3f 

17 12499 14755572 3 DOC2B BLCA-US 2b142863 

17 827 22199998 1 DOC2B BLCA-US 301d6ce3 

17 6 10573886 3 DOC2B BLCA-US 418a3dec 

17 12499 521774 4 DOC2B BLCA-US 448fe471 

17 833 10272085 1 DOC2B BLCA-US 8c619cbc 

17 1868 5317402 3 DOC2B BLCA-US 94108975 

17 2800 19995288 3 DOC2B BLCA-US 973d0577 

17 833 22199998 1 DOC2B BLCA-US acc629cb 

The Score column records copy numbers of each CNV event as default. It is 

important to make sure that column names of the data frame are exactly as in the 

example. Please pay attention to the first capital letter of each column name 

because of the case sensitivity of R. 

 

There are two main functions in this package - the MakeData and TornadoPlot 

functions. 

The MakeData function is used to transform the input data frame into an 

intermediate R objective and calculate entropies and focality scores.  

> MakeData(CNV, gene_name_1, gene_name_2, score.type, max.length, score.method, 

cohort_thredshold, gene_score_1, gene_score_2) 

The parameters are defined as following: 

CNV: the input data frame with six columns: Chromosome, Start, End, Score, Gene, 

Cohort, PID 

gene_name_1: the name of the first gene. 

gene_name_2: the name of the second gene. 

score.type: if the value is "del", calculate focality score of deletions. If the value is 

"amp", calculate focality score of amplifications. 

max.length:if the value is "normal", calculate standard focality score.If the value is 

"edge", calculate the edge score. 
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score.method: if the value is "normal", calculate the standard focality score. If the 

value is "edge", calculate the edge score. 

cohort_threshold: the names of cohorts whose event frequencies are below this 

value in all patients will not be shown in the plot. (default 5%)  

gene_score_1: if the value is given by the user, use this input value as focality score 

of 1st gene in visualization. (optional) 

gene_score_2: if the value is given by the user, use this input value as focality score 

of 2nd gene in visualization. (optional) 

The tornadoPlot function generates different types of tornado-shaped plots according 

to the requirements of users. The input of the function is the R objective which is 

generated by MakeData function and the output can be either an R list objective that 

contains plots or graphic files in jpeg, tiff, or eps formats. 

> TornadoPlots(object, pids, title, legend.type, path, format, color, color.method, 

SaveAsObject, multi_panel, orient, zoomed, drop.low.amp, font.size.factor) 

object: R object generated by MakeData() function. 

legend: could be set to “pie”(default) or "barplot" (optional). 

color: a vector of CNV colors, optional. 

color.method: how to color the CNVs. It could be “cohort”(default) or 

“ploidy”(optional). 

sort.method: how to sort the CNVs. It could be “length”(defult), "cohort" or "ploidy" 

(optional). 

SaveAsObject: if TRUE, returns an rastergrob object. if FALSE the function only 

saves the plot. 

format: if SaveAsObject is FALSE, the packge will save the plots in files. if this value 

is "tiff", the plot will be saved as a tiff image. if this value is "eps", the plot will be 

saved as an EPS vector image. 

path: if SaveAsObject is FALSE, the packge will save the plots in files. the image will 
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be saved in the path in disk. 

multi_panel: if TRUE, a multiple panel plot will be displayed. 

zoomed: the value should be "global", "region" or "gene". It indicates how the plot will 

be zoomed in. 

orient: if the value is "v", vertically arranged plots will be displayed. if the value is "h", 

horizontally arranged plots will be displayed. 

drop.low.amp: if the value is TRUE, the amplifications with CN<5 will be not shown in 

the plots. 

font.size.factor: rescale of fonts shown in the plots. 

 

5.2.3.4 Applications and Examples 

With the GenomeTornadoPlot packages, the users can visualize and analyze 

different types of cancer CNVs in patients. I analyzed some genes of interest in 

PCAWG data. Here I raise a few examples of visualizations in Figure 38-42. 

 

Figure 38: CNVs of PTEN throughout cohorts. 
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PTEN plays a key role as a tumor suppressor gene in many cancer entities (Chu and 

Tarnawski 2004). The tornado shape illustrates how the focal deletions are enriched 

in PTEN locus. The color of events and the respective pie chart shows the origin of 

these deletions. It is shown in the pie plot, that Breast cancer, prostate cancer, and 

melanoma are highlighted as cohorts with most focally deleted PTEN. (reprinted 

from Hong et al., 2022, GenomeTornadoPlot: a novel R package for CNV 

visualization and focality analysis, Bioinformatics, Volume 38, Issue 7, Pages 2036–

2038, 2022) 

 

 

Figure 39: Different levels of deletions and amplifications of PTEN are shown in the 

tornado plot. 

The deletions are in red shades on left side and the amplifications are in blue shades 

on the right side. As a typical TSG, PTEN has strong focal bi-allelic deletions signals 

in many cancer patients which is also identified in previous chapters of this thesis. 

(reprinted with original captions from Hong et al., 2022, GenomeTornadoPlot: a 

novel R package for CNV visualization and focality analysis, Bioinformatics, Volume 

38, Issue 7, Pages 2036–2038, 2022) 
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Figure 40: Zoomed-in Mixed Plot Example.  

Co-deletion patterns in ERG and TMPRSS2 are shown: ERG is a well-known proto-

oncogene. The promoter of TMPRSS2 and the gene body of ERG are located close 

on chromosome 21 and are frequently fused by the genomic deletion in prostate 

cancer. (Liu et al., 2001; Weischenfeldt et al., 2013) Gene fusions lead to oncogenic 

upregulation of ERGs and result in an opportunity for cancer development. In this 

figure, the co-mutation pattern dominates the single-locus event, implying a co-effect 

rather than the function of two separate driver mutations. Interestingly, the CNV 

deletions of ERG and TMPRSS2 are found very similar lengths among the patients. 

It may have resulted from the positive selection pressure for gain-of-function events. 

(reprinted with original captions from Hong et al., 2022, GenomeTornadoPlot: a 

novel R package for CNV visualization and focality analysis, Bioinformatics, Volume 

38, Issue 7, Pages 2036–2038, 2022) 
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Figure 41: CNVs of LRP1B throughout cohort. 

GenomeTornadoPlot provides strong functions for the alignment of the plot. This 

zoomed-in and vertically arranged plot clearly shows intragenic deletions and 

amplification in the gene region of LPR1B. Known as a tumor suppressor, LRP1B is 

functionally related to the clearance of extracellular ligands and signal transduction 

(Liu et al. 2001). The dashed lines indicate the gene boundaries. (reprinted with 

original captions from Hong et al., 2022, GenomeTornadoPlot: a novel R package for 

CNV visualization and focality analysis, Bioinformatics, Volume 38, Issue 7, Pages 

2036–2038, 2022) 
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Figure 42: Example of the multi-panel plot. 

The complex illustration has five panels. They are the information panel, simple 

genome tornado plot panel, pie plot panel, twin plot panel, and bar plot panel (in 

clockwise order). The multi-panel plot provides gene locations, focality scores, 

duplication/deletion entropies, and focal CNV definitions in the information panel. 

Tornado-shaped plots, pie plots and bar plots are generated automatically for 

different tasks. 

 

 

5.2.3.5 Discussion 

The GenomeTornadoPlot is a useful tool for visualizing and quantitative analysis of 

focal CNVs. It is helpful to identify cancer-related genes and explore the selection-

driven accumulation of focal CNVs in cancer. 

This tool uses BED-like files as input and can output in different formats to facilitate 

the different needs of users. Whether it's an R object or a high-definition vector 

illustration, users can easily set parameters to achieve the goals. In both scientific 

and aesthetic views, GenomeTornadoPlot is a high-quality R package. 

Of course, the current version of GenomeTornadoPlot also has certain limitations. 

First, since this package is powerful, it requires users to set a lot of parameters. To 
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take care of aesthetics, the users may have to fine-tune certain parameters. Second, 

due to limited data, the current version of GenomeTornadoPlot only provides basic 

focality score calculation methods. More sophisticated calculation methods are 

needed, which beyond the scope of the current study. 
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6. Conclusion 

 

In this study, I integrated NGS data from more than 2900 patients from 48 different 

cohorts and implemented a pipeline to convert genomic variation information and 

transcriptome expression information into a new data structure. Based on this data 

structure, I tried to answer many questions about cancer from different perspectives.  

 

Firstly, I performed an analysis of bi-allelic inactivation in cancer genomes. Through 

the statistical analysis, similar to the expected conclusions, I found that the 

frequency of bi-allelic inactivation was significantly higher in tumor suppressor genes 

than in other genes. Since bi-allelic inactivation is less susceptible to noise 

interference than mono-allelic inactivation, I applied bi-allelic inactivation to analysis 

such as driver gene and synthetic lethality partner screening. I identified some 

potential tumor suppressor genes that were not listed in the COSMIC Cancer Gene 

Census database. These interesting genes include CSMD1, WWOX, CCSER1 and 

MACROD2.  

 

I have also applied the bi-allelic inactivation analysis approach beyond coding genes, 

such as to lncRNAs. Through bi-allelic inactivation analysis, I provide auxiliary 

arguments for the establishment of the Cancer LncRNA database. Some LncRNAs 

are found with more bi-allelic inactivations than control group, such as RP11-

624C23.1, RP11-436D23.1, ERICH1-AS1, RP11-317N12.1, and CDKN2B-AS1. 

Their functions are not clear but RP11-624C23.1, RP11-436D23.1, ERICH1-AS1, 

RP11-317N12.1, and CDKN2B-AS1 are listed in the CLC. I also analyzed the 

amplifications of LncRNAs and found the top 10 candidates with the highest 

amplification rates are mostly involved in the CLC list (PVT, CCAT1, and PCAT1) or 

cancer susceptibility candidates (CASC11, CASC8, CASC21, CASC19). Although 

these arguments did not explain in principle why these lncRNAs are indeed 

responsible for cancer development, significant statistical trends are still obtained 

that bi-allelic inactivations and amplifications are linked to their experiment results.  
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In screening for synthetic lethality partners of PTEN, I combined bi-allelic inactivation 

and hypergeometric distribution tests to screen for these genes as potential drug 

targets. My colleagues assisted me in gene function annotation to filter unrealistic 

candidates from my result, and I finally got the following 10 most reliable candidate 

genes: MED12, BAP1, CBFB, GPR98, WNK3, SMARCA1, ZMYM3, CYSLTR2, 

NCOR1, and STS. This list of genes will be put into the laboratory for further 

validation to select the most promising drug targets for PTEN-deficient cancer 

patients. 

 

In addition to bi-allelic inactivation analysis, I also used statistical methods for 

functional SNVs to identify the codons and nucleotide positions with high-frequency 

mutations and tried to find potential cancer driver mutation hotspots in the pan-

cancer database. I applied the CaSINo, a statistical method for identification of 

cancer-related non-coding mutations based on gene mutation frequencies and 

individual background mutation rates. By analyzing all patient data, I found many 

potential driver mutation sites, including mutation sites on BRAF(7:140453136), 

KRAS(12:25398284), JAK2(9:5073770), and PIK3CA(3:178952085), and codons on 

KRAS:p.G12, BRAF:p.V600, V28, JAK2:p.V617, V468, M545, IDH1:p.R132. Of 

course, this analysis method has many limitations, the function of many mutation 

sites is not clear, and the low mutation rate may also lead to a large number of false 

positives. However, as the first step of mutation hotspot screening, the CaSINo 

pipeline is undoubtedly fast and interpretive. Like the application of other 

computational biology methods in the project, the results obtained by the CaSINo still 

need to be confirmed by further validation such as gene function annotation and 

laboratory work. 

 

In order to find promoter mutations that alter gene expression at two sites like TERT 

C228T and C250T, I implemented a pipeline and applied it to the PCAWG data. After 

filtering through the expression filter, amplification filter, CGC filter, etc., I finally 

selected specific loci of 551 non-recurrent SNVs, four of the genes have recurrent 

mutation positions linked to the high expression: TERT, PIM1, BCL2, and EBF1. My 

colleague Irina Glas conducted a follow-up analysis and finally substituted more 

accurate results into the laboratory for validation. 
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In the study of focal CNV, I designed a pipeline to quantitatively analyze the CNV 

data of PCAWG. In collaboration with Dr. Lars Feuerbach, I designed the pipeline to 

calculate the focality score. This algorithm can quickly generate the score of how a 

gene is affected by focal CNVs. Through this algorithm, I not only provided evidence 

for some known cancer genes, such as FHIT, LRP1B, and PTEN but also potential 

cancer-related genes such as ARHGEF9, WWOX, and DMD. 

 

Besides the exploration of potential cancer driver genes, I have also implemented a 

machine learning pipeline and performed it on the PCAWG data for the studies of 

telomere maintenance mechanisms. In order to be able to distinguish patients with 

ALT and Telomerase, I designed a random forest-based classifier to classify by the 

features of TTTGGG, TTCGGG, TGAGGG, TCAGGG, TTGGGG, and breakpoint 

count, telomere insertion count, and telomere content tumor/control log2 ratio. This 

classifier had an average area under the curve of 0.96, a sensitivity of 0.72, and a 

specificity of 0.98. To distinguish ATRX/DAXXtrunc from TERTmod samples, this 

performance is quite good. Although subsequent studies have shown that 

ATRX/DAXXtrunc do not fully represent ALT, this method still provides promising 

ideas for research in this direction. 

 

In the last part of this thesis, based on my understanding of the content and 

application scenarios of the PCAWG data, I developed two data visualization tools. 

One of them is TumorPrint. With this tool, users can quickly display various types of 

mutations and corresponding expression levels of any gene or gene pairs. This tool 

also includes functions for calculating CaSINo scores and entropies. Users can 

simultaneously qualitatively and quantitatively observe different levels of variations 

such as bi-allelic inactivations and functional SNVs in any gene in the overall 

PCAWG data. Another powerful tool is GenomeTornadoPlot. This R-based package 

is used to visualize the distribution of focal CNVs on chromosomes. It not only 

displays the CNV events in cohorts, but also allows users to customize parameters, 

enabling dual-gene comparisons, image scaling, and multiple panel visualizations. 

The aforementioned focality scores can also be calculated by this package. 

 

In summary, I designed and implemented several methods to analyze different levels 

of genomic variations and expression changes and provided a series of answers to 



 112 

the question of potential cancer drivers and telomere maintenance mechanism 

studies. Meanwhile, I created visualization tools to interpret and display the PCAWG 

data. Parts of the work are already published. (Carlevaro-Fita et al., 2020; Hong et 

al., 2022; Sieverling et al., 2020; The ICGC/TCGA Pan-Cancer Analysis of Whole 

Genomes Consortium et al., 2020) During the study, I found that more open 

questions to solve in the future and these methods are still to be improved. For 

example, the frequency-based cancer genome mutation analysis are still lack in data 

and golden standard of cancer-related genes. The correlation of SNVs or CNVs and 

cancers are still not clear. The computational methods of CaSINo and 

GenomeTornadoPlot can also be improved. More concerns about biological 

functions should be added into the computational approaches. In future, along with 

more state-of-art methods performed on data, more insights of gene mutations and 

cancers will be discovered. 
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Supplement 
 

 

Supplemented_Table 1: Bi-allelic inactivation and entropy of CGC genes 

gene_name chr gene_start gene_end entropy sum role 

CDKN2A 9 21967751 21995300 2.21260178249442 304 TSG 

TP53 17 7565097 7590856 2.29055453558936 239 oncogene, TSG, fusion 

FHIT 3 59735036 61237133 1.70019938189912 132 TSG, fusion 

SMAD4 18 48494410 48611415 1.26108178914847 107 TSG 

PTEN 10 89622870 89731687 2.37614595831218 102 TSG 

PTPRD 9 8314246 10612723 2.07352799380496 63 TSG 

MAP2K4 17 11924141 12047147 1.91298755126949 37 oncogene, TSG 

MLLT3 9 20341663 20622542 1.78307381513079 35 fusion 

RB1 13 48877887 49056122 2.24619948328564 34 TSG 

LRP1B 2 140988992 142889270 2.42736868324076 31 TSG 

VHL 3 10182692 10193904 0.142505867392738 31 TSG 

DCC 18 49866542 51057784 1.3068894077018 28  

FAT1 4 187508937 187647876 2.26891294638815 23 TSG 

MUC16 19 8959520 9092018 1.75172691992395 23 oncogene 

FAS 10 90750414 90775542 2.26038344273221 22 TSG 

PBRM1 3 52579368 52719933 1.15312285025421 21 TSG 

KRAS 12 25357723 25403870 0.425848449238581 18 oncogene 

NF1 17 29421945 29709134 1.79810550262427 18 TSG, fusion 

TGFBR2 3 30647994 30735634 1.20008732276787 17 TSG 

APC 5 112043195 112181936 2.07944154167984 16 TSG 

ARHGEF10 8 1772142 1906807 2.04673853269455 16 TSG 

BRCA2 13 32889611 32973805 1.89892678933633 15 TSG 

NCOR1 17 15932471 16121499 2.04493117484959 14 TSG 
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RUNX1 21 36160098 37376965 1.25276296849537 14 oncogene, TSG, fusion 

CYSLTR2 13 49280951 49283498 1.8446214763655 13 oncogene 

ERBB4 2 212240446 213403565 1.23426786607908 12 oncogene, TSG 

NFIB 9 14081842 14398982 1.863679987341 12 fusion 

NUTM2D 10 89117425 89130452 1.79175946922805 12 fusion 

SETD2 3 47057919 47205457 1.23426786607908 12 TSG 

ARID1A 1 27022524 27108595 1.59416669911802 11 TSG, fusion 

AXIN1 16 337440 402673 0.304636097349238 11 TSG 

ATM 11 108093211 108239829 1.47080847632211 10 TSG 

MAP3K1 5 56111401 56191979 1.6094379124341 10 oncogene, TSG 

ROBO2 3 75955846 77699115 1.6094379124341 10 TSG 

B2M 15 45003675 45011075 1.58109375017182 9 TSG 

CBFB 16 67063019 67134961 1.00271826451752 9 TSG, fusion 

ITGAV 2 187454792 187545628 1.67698777432242 9  

JAK2 9 4985033 5128183 1.67698777432242 9 oncogene, fusion 

NBEA 13 35516424 36247159 1.52295506753132 9  

PRDM16 1 2985732 3355185 1.52295506753132 9 oncogene, fusion 

FOXP1 3 71003844 71633140 1.49417513828931 8 oncogene, fusion 

JAK1 1 65298912 65432187 0.974314752869349 8 oncogene, TSG 

ARID1B 6 157099063 157531913 1.74786809746676 7 TSG 

CNTNAP2 7 145813453 148118090 1.94591014905531 7 TSG 

CYP2C8 10 96796530 96829254 1.15374194270109 7  

IL6ST 5 55230923 55290821 0.955699891112534 7 oncogene 

KAT6B 10 76585340 76792380 1.5498260458782 7 TSG, fusion 

MEN1 11 64570982 64578766 0 7 TSG 

TMPRSS2 21 42836478 42903043 0.955699891112534 7 fusion 

TSC1 9 135766735 135820020 1.47507631105469 7 TSG 
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ZNF521 18 22641890 22932154 1.07899220787758 7 oncogene, fusion 

BAP1 3 52435029 52444366 1.56071040904141 6 TSG 

CBFA2T3 16 88941266 89043612 1.56071040904141 6 TSG, fusion 

CDH1 16 68771128 68869451 1.242453324894 6 TSG 

CYLD 16 50775961 50835846 1.242453324894 6 TSG 

EED 11 85955586 85989855 1.32966134885476 6 TSG 

GPHN 14 66974125 67648520 1.56071040904141 6 fusion 

KMT2C 7 151832010 152133090 1.56071040904141 6 TSG 

LATS1 6 149979289 150039392 1.32966134885476 6 TSG 

MTOR 1 11166592 11322564 1.242453324894 6 oncogene 

NCOR2 12 124808961 125052135 1.79175946922805 6 TSG 

NRG1 8 31496902 32622548 1.79175946922805 6 TSG, fusion 

PER1 17 8043790 8059824 1.79175946922805 6 TSG, fusion 

SETBP1 18 42260138 42648475 1.32966134885476 6 oncogene, fusion 

YWHAE 17 1247566 1303672 1.56071040904141 6 TSG, fusion 

ZBTB16 11 113930315 114121398 0.867563228481461 6 TSG, fusion 

ZFHX3 16 72816784 73093597 1.32966134885476 6 TSG 

ZNRF3 22 29279580 29453475 1.56071040904141 6 TSG 

ASXL2 2 25956622 26101385 1.05492016798614 5 TSG 

CAMTA1 1 6845384 7829766 1.33217904021012 5 TSG, fusion 

CASP8 2 202098166 202152434 1.33217904021012 5 TSG 

CDKN2C 1 51426417 51440305 1.33217904021012 5 TSG 

CIC 19 42772689 42799949 0.950270539233235 5 oncogene, TSG, fusion 

CTNNB1 3 41236328 41301587 1.33217904021012 5 oncogene, fusion 

FAT4 4 126237554 126414087 1.33217904021012 5 TSG 

FBXW7 4 153242410 153457253 1.6094379124341 5 TSG 

GOPC 6 117639374 117923691 1.6094379124341 5 fusion 
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GPC5 13 92050929 93519490 1.6094379124341 5 TSG 

KEAP1 19 10596796 10614417 0.950270539233235 5 TSG 

N4BP2 4 40058446 40159872 0.950270539233235 5 TSG 

QKI 6 163835032 163999628 1.05492016798614 5 oncogene, TSG 

RABEP1 17 5185558 5289129 1.33217904021012 5 fusion 

RNF43 17 56429861 56494956 0.500402423538188 5 TSG 

ROS1 6 117609463 117747018 1.33217904021012 5 oncogene, fusion 

SPECC1 17 19912657 20222339 1.6094379124341 5 fusion 

STK11 19 1189406 1228428 1.05492016798614 5 TSG 

USP6 17 5019733 5078329 1.6094379124341 5 oncogene, fusion 

VAV1 19 6772725 6857377 0.950270539233235 5 fusion 

ARID2 12 46123448 46301823 1.38629436111989 4 TSG 

CASP3 4 185548850 185570663 1.03972077083992 4 TSG 

CD274 9 5450503 5470566 1.03972077083992 4 TSG, fusion 

DICER1 14 95552565 95624347 1.03972077083992 4 TSG 

EPHA3 3 89156674 89531284 0.562335144618808 4  

FANCA 16 89803957 89883065 1.03972077083992 4 TSG 

FSTL3 19 676392 683385 1.38629436111989 4 oncogene, fusion 

GAS7 17 9813926 10101868 1.38629436111989 4 fusion 

KCNJ5 11 128761251 128790930 1.38629436111989 4 oncogene 

NUTM1 15 34635516 34649938 1.38629436111989 4 oncogene, fusion 

PAX7 1 18957500 19075360 1.03972077083992 4 fusion 

PDCD1LG2 9 5510545 5571282 1.38629436111989 4 oncogene, fusion 

PICALM 11 85668727 85780924 1.03972077083992 4 fusion 

PIK3CA 3 178865902 178957881 1.38629436111989 4 oncogene 

PRDM1 6 106534195 106557814 1.03972077083992 4 TSG 

RALGDS 9 135973107 136039301 0.693147180559945 4 fusion 

RHOH 4 40192673 40248587 0.562335144618808 4 TSG, fusion 
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SKI 1 2160134 2241558 1.38629436111989 4 oncogene 

SMARCA4 19 11071598 11176071 1.38629436111989 4 TSG 

TCF3 19 1609291 1652604 1.03972077083992 4 oncogene, TSG, fusion 

TCF7L2 10 114710009 114927437 1.03972077083992 4 oncogene, fusion 

TNC 9 117782806 117880536 1.03972077083992 4 oncogene 

A1CF 10 52559169 52645435 0 3 oncogene 

ACSL6 5 131142683 131347936 1.09861228866811 3 fusion 

ACVR2A 2 148602086 148688393 0.636514168294813 3 TSG 

BRD4 19 15347647 15443356 0.636514168294813 3 oncogene, fusion 

CDH11 16 64977656 65160015 0.636514168294813 3 TSG, fusion 

CDKN1B 12 12867992 12875305 0.636514168294813 3 TSG 

CTCF 16 67596310 67673086 0 3 TSG 

CTNNA2 2 79412357 80875905 0.636514168294813 3 oncogene 

DNM2 19 10828755 10944164 0.636514168294813 3 TSG 

ELK4 1 205577071 205601090 0 3 oncogene, fusion 

ESR1 6 151977826 152450754 1.09861228866811 3 oncogene, TSG, fusion 

FLCN 17 17115526 17140502 1.09861228866811 3 TSG 

FOXO1 13 41129804 41240734 1.09861228866811 3 oncogene, TSG, fusion 

FUBP1 1 78409740 78444794 0 3 oncogene 

ID3 1 23884409 23886285 0 3 TSG 

JUN 1 59246465 59249785 1.09861228866811 3 oncogene 

LARP4B 10 855484 977564 0.636514168294813 3 TSG 

MAF 16 79619740 79634611 1.09861228866811 3 oncogene, fusion 

MAML2 11 95709762 96076344 0.636514168294813 3 oncogene, fusion 

MAP2K2 19 4090319 4124126 1.09861228866811 3 oncogene 

MDS2 1 23907985 23967058 0.636514168294813 3 fusion 
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MLLT1 19 6212966 6279959 1.09861228866811 3 fusion 

MLLT10 10 21823094 22032559 1.09861228866811 3 oncogene, fusion 

MN1 22 28144265 28197486 1.09861228866811 3 oncogene, fusion 

NF2 22 29999545 30094587 1.09861228866811 3 TSG 

NR4A3 9 102584137 102629173 1.09861228866811 3 oncogene, fusion 

PAX5 9 36833272 37034103 0.636514168294813 3 oncogene, TSG, fusion 

POLE 12 133200348 133263951 1.09861228866811 3 TSG 

PRDM2 1 14026693 14151574 1.09861228866811 3 TSG 

RHOA 3 49396578 49450431 1.09861228866811 3 oncogene, TSG 

RNF213 17 78234665 78372586 0.636514168294813 3 fusion 

SH3GL1 19 4360367 4400544 1.09861228866811 3 oncogene, fusion 

SPEN 1 16174359 16266955 0.636514168294813 3 TSG 

SRGAP3 3 9022275 9404737 1.09861228866811 3 fusion 

SS18 18 23596578 23671181 1.09861228866811 3 fusion 

SUFU 10 104263744 104393292 1.09861228866811 3 TSG 

TET1 10 70320413 70454239 0.636514168294813 3 oncogene, TSG, fusion 

TET2 4 106067032 106200973 0.636514168294813 3 TSG 

TNFRSF14 1 2487078 2496821 0 3 TSG 

TSC2 16 2097466 2138716 0.636514168294813 3 TSG 

TSHR 14 81421333 81612646 0.636514168294813 3 oncogene 

WNK2 9 95947198 96082854 0.636514168294813 3 TSG 

XPC 3 14186647 14220283 1.09861228866811 3 TSG 

ABL1 9 133589333 133763062 0.693147180559945 2 oncogene, fusion 

ANK1 8 41510739 41754280 0.693147180559945 2  

ARHGAP26 5 142149949 142608576 0.693147180559945 2 TSG, fusion 

ARHGAP5 14 32545320 32628934 0.693147180559945 2 oncogene 

ARHGEF10L 1 17866330 18024369 0 2 TSG 
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ARHGEF12 11 120207787 120360645 0.693147180559945 2 TSG, fusion 

ASPSCR1 17 79934683 79975282 0.693147180559945 2 fusion 

BAZ1A 14 35221937 35344853 0 2 TSG 

BCL11A 2 60678302 60780702 0.693147180559945 2 oncogene, fusion 

CALR 19 13049392 13055303 0.693147180559945 2 oncogene 

CARD11 7 2945775 3083579 0.693147180559945 2 oncogene 

CBLB 3 105374305 105588396 0.693147180559945 2 TSG 

CCDC6 10 61548521 61666414 0.693147180559945 2 TSG, fusion 

CCR4 3 32993066 32997841 0.693147180559945 2 oncogene 

CD209 19 7804879 7812464 0.693147180559945 2  

CHEK2 22 29083731 29138410 0.693147180559945 2 TSG 

CLTCL1 22 19166986 19279239 0.693147180559945 2 TSG, fusion 

COL3A1 2 189839046 189877472 0.693147180559945 2 fusion 

CREB3L1 11 46299212 46342972 0.693147180559945 2 TSG, fusion 

CREBBP 16 3775055 3930727 0.693147180559945 2 oncogene, TSG, fusion 

CSF1R 5 149432854 149492935 0.693147180559945 2 oncogene 

CSMD3 8 113235157 114449328 0.693147180559945 2 TSG 

CUL3 2 225334867 225450110 0.693147180559945 2 TSG 

CUX1 7 101458959 101927249 0.693147180559945 2 oncogene, TSG 

DAXX 6 33286335 33297046 0 2 oncogene, TSG 

EPHA7 6 93949738 94129265 0.693147180559945 2  

ERCC2 19 45853095 45874176 0.693147180559945 2 TSG 

ERG 21 39751949 40033704 0.693147180559945 2 oncogene, fusion 

ETV6 12 11802788 12048336 0 2 TSG, fusion 

EWSR1 22 29663998 29696515 0.693147180559945 2 oncogene, fusion 

FAT3 11 92085262 92629618 0 2  

FBXO11 2 48016455 48132932 0.693147180559945 2 TSG 
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FGFR1OP 6 167412670 167466201 0.693147180559945 2 fusion 

FGFR3 4 1795034 1810599 0.693147180559945 2 oncogene, fusion 

FIP1L1 4 54243810 55161439 0 2 fusion 

FLT3 13 28577411 28674729 0.693147180559945 2 oncogene 

FNBP1 9 132649466 132805473 0.693147180559945 2 fusion 

FOXO3 6 108881038 109005977 0.693147180559945 2 oncogene, TSG, fusion 

GATA3 10 8095567 8117161 0.693147180559945 2 oncogene, TSG 

GNA11 19 3094408 3124002 0.693147180559945 2 oncogene 

HSP90AA1 14 102547075 102606036 0.693147180559945 2 fusion 

IKZF1 7 50343720 50472799 0.693147180559945 2 TSG, fusion 

ISX 22 35462129 35483380 0.693147180559945 2  

KLF4 9 110247133 110252763 0.693147180559945 2 oncogene, TSG 

KTN1 14 56025790 56168244 0.693147180559945 2 fusion 

LEF1 4 108968701 109090112 0.693147180559945 2 oncogene, TSG 

LEPROTL1 8 29952914 30034724 0.693147180559945 2 TSG 

LPP 3 187871072 188608460 0.693147180559945 2 oncogene, fusion 

LYL1 19 13209847 13213975 0 2 oncogene, fusion 

MALT1 18 56338618 56417371 0 2 oncogene, fusion 

MECOM 3 168801287 169381406 0 2 oncogene, fusion 

MITF 3 69788586 70017488 0.693147180559945 2 oncogene 

MLH1 3 37034823 37107380 0.693147180559945 2 TSG 

MYC 8 128747680 128753674 0.693147180559945 2 oncogene, fusion 

MYH11 16 15797029 15950890 0.693147180559945 2 fusion 

NOTCH1 9 139388896 139440314 0.693147180559945 2 oncogene, TSG, fusion 

NSD1 5 176560026 176727216 0 2 fusion 

NTHL1 16 2089816 2097867 0.693147180559945 2 TSG 

PCM1 8 17780349 17885478 0.693147180559945 2 fusion 
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PDE4DIP 1 144836157 145076186 0.693147180559945 2 fusion 

PHOX2B 4 41746099 41750987 0 2 TSG 

PIK3R1 5 67511548 67597649 0.693147180559945 2 TSG 

PPP2R1A 19 52693292 52730687 0.693147180559945 2 TSG 

PPP6C 9 127908852 127952218 0.693147180559945 2 TSG 

PRKAR1A 17 66507921 66547460 0.693147180559945 2 oncogene, TSG, fusion 

PRPF40B 12 49962001 50038449 0.693147180559945 2  

PTCH1 9 98205262 98279339 0 2 TSG 

PTPN13 4 87515468 87736324 0.693147180559945 2 TSG 

RAD17 5 68665120 68710628 0.693147180559945 2 TSG 

RAD51B 14 68286496 69196935 0.693147180559945 2 TSG, fusion 

RET 10 43572475 43625799 0.693147180559945 2 oncogene, fusion 

RMI2 16 11343476 11445619 0 2 TSG, fusion 

RSPO3 6 127439749 127518910 0 2 oncogene, fusion 

SDHA 5 218356 256815 0.693147180559945 2 TSG 

SLC45A3 1 205626979 205649587 0 2 fusion 

SMAD2 18 45357922 45457515 0.693147180559945 2 TSG 

SMARCB1 22 24129150 24176703 0.693147180559945 2 TSG 

SOCS1 16 11348262 11350036 0 2 TSG 

STAG1 3 136055077 136471220 0 2 TSG 

SYK 9 93564069 93660831 0.693147180559945 2 oncogene, fusion 

TBL1XR1 3 176737143 176915261 0.693147180559945 2 oncogene, TSG, fusion 

TNFAIP3 6 138188351 138204449 0.693147180559945 2 TSG 

TP63 3 189349205 189615068 0.693147180559945 2 oncogene, TSG 

TRAF7 16 2205699 2228130 0.693147180559945 2 TSG 

TRIP11 14 92432335 92507240 0.693147180559945 2 fusion 

VTI1A 10 114206756 114578503 0.693147180559945 2 fusion 
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WIF1 12 65444406 65515346 0.693147180559945 2 TSG, fusion 

ZEB1 10 31607424 31818742 0.693147180559945 2 oncogene 

ZMYM2 13 20532810 20665968 0.693147180559945 2 fusion 

ZNF331 19 54024235 54083523 0.693147180559945 2 TSG, fusion 

ZNF429 19 21679484 21739072 0.693147180559945 2  

ACVR1 2 158592958 158732374 0 1 oncogene 

AFF3 2 100162323 100759201 0 1 oncogene, fusion 

AKT1 14 105235686 105262088 0 1 oncogene 

ALK 2 29415640 30144432 0 1 oncogene, fusion 

ATP1A1 1 116915290 116952883 0 1 oncogene, TSG 

ATR 3 142168077 142297668 0 1 TSG 

AXIN2 17 63524681 63557765 0 1 TSG 

BAX 19 49458072 49465055 0 1 TSG 

BCL11B 14 99635624 99737861 0 1 oncogene, TSG, fusion 

BCL2 18 60790579 60987361 0 1 oncogene, fusion 

BCL2L12 19 50168823 50177173 0 1 oncogene 

BCL9L 11 118764584 118796317 0 1 oncogene, TSG 

BCLAF1 6 136578001 136610989 0 1  

BCR 22 23521891 23660224 0 1 fusion 

BIRC6 2 32582096 32843966 0 1 oncogene, fusion 

BLM 15 91260558 91358859 0 1 TSG 

BMP5 6 55618443 55740362 0 1  

BMPR1A 10 88516407 88692595 0 1 oncogene, TSG 

BRD3 9 136895427 136933657 0 1 oncogene, fusion 

BRIP1 17 59758627 59940882 0 1 TSG 

C15orf65 15 55700746 55710962 0 1 fusion 

CACNA1D 3 53528683 53847760 0 1 oncogene 
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CASP9 1 15817327 15853029 0 1 TSG 

CCNE1 19 30302805 30315215 0 1 oncogene 

CD74 5 149781200 149792492 0 1 oncogene, fusion 

CD79A 19 42381190 42385439 0 1 oncogene 

CDH10 5 24487209 24645087 0 1 TSG 

CDH17 8 95139399 95229531 0 1 oncogene 

CDKN1A 6 36644305 36655116 0 1 oncogene, TSG 

CHD4 12 6679249 6716642 0 1 oncogene 

CHST11 12 104849073 105155792 0 1 oncogene, fusion 

CIITA 16 10971055 11026079 0 1 TSG, fusion 

CLP 1 11 57416465 57429340 0 1 fusion 

CLTC 17 57697219 57773671 0 1 TSG, fusion 

CNBD1 8 87878670 88627447 0 1  

CNOT3 19 54641444 54659419 0 1 TSG 

COL1A1 17 48260650 48278993 0 1 fusion 

COL2A1 12 48366748 48398269 0 1 fusion 

CPEB3 10 93806449 94050844 0 1 TSG 

CREB1 2 208394461 208468155 0 1 oncogene, fusion 

CREB3L2 7 137559725 137686813 0 1 oncogene, fusion 

CRTC1 19 18794487 18893004 0 1 oncogene, fusion 

CTNND1 11 57520715 57587018 0 1  

DEK 6 18224099 18265054 0 1 oncogene, fusion 

DGCR8 22 20067755 20099400 0 1 oncogene 

DNAJB1 19 14625582 14640582 0 1 fusion 

DNMT3A 2 25455845 25565459 0 1 TSG 

ECT2L 6 139117063 139225207 0 1  

EIF3E 8 109213445 109447562 0 1 TSG, fusion 

EIF4A2 3 186500994 186507689 0 1 fusion 
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ELL 19 18553473 18632937 0 1 TSG, fusion 

EP300 22 41487790 41576081 0 1 TSG, fusion 

EPAS1 2 46520806 46613836 0 1 oncogene, TSG 

ERBB2 17 37844167 37886679 0 1 oncogene, fusion 

ERC1 12 1099675 1605099 0 1 fusion 

ERCC3 2 128014866 128051752 0 1 TSG 

ERCC4 16 14014014 14046202 0 1 TSG 

EZH2 7 148504475 148581413 0 1 oncogene, TSG 

FAM135B 8 139142266 139509065 0 1  

FANCD2 3 10068098 10143614 0 1 TSG 

FANCF 11 22644079 22647387 0 1 TSG 

FANCG 9 35073832 35080013 0 1 TSG 

FBLN2 3 13573824 13679922 0 1 TSG 

FCGR2B 1 161551101 161648444 0 1 oncogene, fusion 

FCRL4 1 157543539 157567870 0 1 oncogene, fusion 

FGFR4 5 176513887 176525145 0 1 oncogene 

FLI1 11 128556430 128683162 0 1 oncogene, fusion 

FLT4 5 180028506 180076624 0 1 oncogene 

FOXR1 11 118842417 118852001 0 1 oncogene, fusion 

GNAQ 9 80331003 80646374 0 1 oncogene 

GRIN2A 16 9852376 10276611 0 1 TSG 

GRM3 7 86273230 86494200 0 1 oncogene 

HERPUD1 16 56965960 56977798 0 1 fusion 

HIP1 7 75162621 75368280 0 1 oncogene, fusion 

HIST1H3B 6 26031817 26032288 0 1 oncogene 

HLA-A 6 29909037 29913661 0 1 fusion 

HNF1A 12 121416346 121440315 0 1 TSG 

HOOK3 8 42752075 42885682 0 1 fusion 
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HOXC11 12 54366910 54371427 0 1 oncogene, fusion 

IL2 4 123372625 123377880 0 1 fusion 

IL21R 16 27413483 27462115 0 1 fusion 

IL7R 5 35852797 35879705 0 1 oncogene 

ITK 5 156569944 156682201 0 1 fusion 

JAK3 19 17935589 17958880 0 1 oncogene 

KAT6A 8 41786997 41909508 0 1 oncogene, fusion 

KDM5A 12 389295 498620 0 1 oncogene, fusion 

KIF5B 10 32297938 32345359 0 1 fusion 

KLF6 10 3818188 3827473 0 1 TSG 

KLK2 19 51364824 51383823 0 1 fusion 

KMT2D 12 49412758 49453557 0 1 oncogene, TSG 

LATS2 13 21547171 21635686 0 1 TSG 

LCP1 13 46700055 46786006 0 1 fusion 

LIFR 5 38475065 38608456 0 1 fusion 

LMO2 11 33880122 33913836 0 1 oncogene, fusion 

LZTR1 22 21333751 21353327 0 1 TSG 

MAFB 20 39314488 39317880 0 1 oncogene, fusion 

MAX 14 65472892 65569413 0 1 TSG 

MGMT 10 131265448 131566271 0 1 TSG 

MNX1 7 156786745 156803345 0 1 fusion 

MSI2 17 55333212 55762046 0 1 oncogene, fusion 

MYB 6 135502453 135540311 0 1 oncogene, fusion 

MYD88 3 38179969 38184513 0 1 oncogene 

MYH9 22 36677327 36784063 0 1 TSG, fusion 

MYO5A 15 52599480 52821247 0 1 fusion 

NAB2 12 57482677 57489259 0 1 TSG, fusion 

NBN 8 90945564 91015456 0 1 TSG 
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NCOA1 2 24714783 24993571 0 1 fusion 

NFKB2 10 104153867 104162281 0 1 oncogene, TSG, fusion 

NFKBIE 6 44225903 44233500 0 1 TSG 

NIN 14 51186481 51297839 0 1 fusion 

NKX2-1 14 36985602 36990354 0 1 oncogene, TSG 

NRAS 1 115247090 115259515 0 1 oncogene 

NUP214 9 134000948 134110057 0 1 fusion 

NUP98 11 3692313 3819022 0 1 oncogene, fusion 

NUTM2B 10 81462983 81474437 0 1 fusion 

OLIG2 21 34398153 34401504 0 1 oncogene, fusion 

PAFAH1B2 11 117014983 117047610 0 1 fusion 

PATZ1 22 31721790 31742218 0 1 TSG, fusion 

PDGFRA 4 55095264 55164414 0 1 oncogene, fusion 

PDGFRB 5 149493400 149535435 0 1 oncogene, fusion 

PMS1 2 190649107 190742355 0 1  

POLD1 19 50887461 50921273 0 1 TSG 

POT1 7 124462440 124570037 0 1 TSG 

PPARG 3 12328867 12475855 0 1 TSG, fusion 

PRKACA 19 14202500 14228896 0 1 oncogene 

PSIP1 9 15464064 15511017 0 1 oncogene, fusion 

PTPRB 12 70910630 71031220 0 1 TSG 

PTPRK 6 128289924 128841870 0 1 TSG, fusion 

PTPRT 20 40701392 41818610 0 1 TSG 

PWWP2A 5 159488808 159546430 0 1 fusion 

RAC1 7 6414154 6443608 0 1 oncogene 

RAD21 8 117858174 117887105 0 1 oncogene, TSG 

RAF1 3 12625100 12705725 0 1 oncogene, fusion 
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RANBP2 2 109335937 109402267 0 1 TSG, fusion 

REL 2 61108656 61158745 0 1 oncogene 

RGS7 1 240931554 241520530 0 1  

RPL5 1 93297582 93307481 0 1 TSG 

SDHD 11 111957627 112064528 0 1 TSG 

SEPT9 17 75276651 75496678 0 1 fusion 

SET 9 131445703 131458679 0 1 oncogene, fusion 

SIRPA 20 1875154 1920543 0 1 TSG 

SIX1 14 61110133 61124977 0 1 oncogene 

SLC34A2 4 25656923 25680370 0 1 TSG, fusion 

SMAD3 15 67356101 67487533 0 1 TSG 

SNX29 16 12070594 12668146 0 1 fusion 

SOX21 13 95361886 95364389 0 1 TSG 

SRC 20 35973088 36034453 0 1 oncogene 

STAT3 17 40465342 40540586 0 1 oncogene 

STAT5B 17 40351186 40428725 0 1 oncogene, TSG, fusion 

TAF15 17 34136459 34191619 0 1 oncogene, fusion 

TAL1 1 47681962 47697892 0 1 oncogene, fusion 

TCF12 15 57210821 57591479 0 1 fusion 

TCL1A 14 96176304 96180533 0 1 oncogene, fusion 

TEC 4 48137800 48271881 0 1 oncogene, fusion 

TERT 5 1253262 1295184 0 1 oncogene, TSG 

TFPT 19 54610320 54619055 0 1 fusion 

TPM4 19 16177831 16213813 0 1 fusion 

WRN 8 30891317 31031285 0 1 TSG 

XPO1 2 61704984 61765761 0 1 oncogene 
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Supplemented_Table 2: Top 3 bi-allelic inactivation in every chromosome 

Gene Bi-allelic 

inactivation  

CGC annotation Chromos

ome 

Gene_start Gene_end 

HSPG2 28 NA 1 22148738 22263790 

ARID1A 20 TSG_fusion 1 27022524 27108595 

PRDM16 13 oncogene_fusion 1 2985732 3355185 

AC096579.7 53 NA 2 89130700 89165653 

AC096579.13 49 NA 2 89109984 89161075 

IGKV4-1 44 NA 2 89184913 89185669 

FHIT 133 TSG_fusion 3 59735036 61237133 

VHL 62 TSG 3 10182692 10193904 

RP11-641C17.4 40 NA 3 60602555 60603812 

FAT1 36 TSG 4 187508937 187647876 

CCSER1 35 NA 4 91048686 92523064 

DCHS2 24 NA 4 155153399 155412930 

PCDHA1 40 NA 5 140165876 140391929 

PCDHA2 40 NA 5 140174444 140391929 

PCDHA3 40 NA 5 140180783 140391929 

PARK2 25 NA 6 161768452 163148803 

SYNE1 21 NA 6 152442819 152958936 

MLLT4 16 NA 6 168227602 168372703 

RP11-715L17.1 13 NA 7 61821869 61822186 

THSD7A 13 NA 7 11409984 11871824 

KMT2C 11 TSG 7 151832010 152133090 

CSMD1 102 NA 8 2792875 4852494 

DLGAP2 25 NA 8 1449532 1656642 

UNC5D 21 NA 8 35092975 35654068 

RP11-145E5.5 331 NA 9 21802635 22032985 

CDKN2A 328 TSG 9 21967751 21995300 

C9orf53 265 NA 9 21967137 21967738 

PTEN 123 TSG 10 89622870 89731687 
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RP11-380G5.3 61 NA 10 89705259 89705781 

MED6P1 60 NA 10 89807892 89809580 

RP11-574M7.2 40 NA 11 50368213 50381487 

ATM 18 TSG 11 108093211 108239829 

HBG2 18 NA 11 5274420 5667019 

KRAS 36 oncogene 12 25357723 25403870 

NCOR2 9 TSG 12 124808961 125052135 

ACVR1B 8 NA 12 52345451 52390862 

RB1 46 TSG 13 48877887 49056122 

BRCA2 24 TSG 13 32889611 32973805 

LPAR6 21 NA 13 48963707 49018840 

IGHJ6 65 NA 14 106329408 106329468 

IGHJ5 54 NA 14 106330024 106330072 

IGHJ2 42 NA 14 106331409 106331460 

RYR3 18 NA 15 33603163 34158303 

B2M 13 TSG 15 45003675 45011075 

RP11-69H14.6 11 NA 15 22278010 22413497 

WWOX 64 NA 16 78133310 79246564 

RBFOX1 23 NA 16 6069095 7763340 

AXIN1 20 TSG 16 337440 402673 

TP53 470 oncogene_tsg_fu

sion 

17 7565097 7590856 

CTC-297N7.11 88 NA 17 10286461 10527203 

RP11-799N11.1 80 NA 17 10286449 10441179 

SMAD4 157 TSG 18 48494410 48611415 

RP11-729L2.2 76 NA 18 48494389 48584514 

MEX3C 47 NA 18 48700920 48744674 

MUC16 43 oncogene 19 8959520 9092018 

ABCA7 10 NA 19 1040102 1065571 

ZNF728 10 NA 19 23158270 23185978 

MACROD2 38 NA 20 13976015 16033842 

MACROD2-AS1 17 NA 20 14864899 14910161 
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RP5-974N19.1 14 NA 20 14914489 14916009 

RUNX1 15 oncogene_tsg_fu

sion 

21 36160098 37376965 

ANKRD30BP1 14 NA 21 14756570 14800094 

FGF7P2 14 NA 21 14721586 14722969 

IGLV3-1 59 NA 22 23222886 23223576 

IGLL5 47 NA 22 23229960 23238287 

IGLV3-10 28 NA 22 23154244 23154782 
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Supplemented_Table 3: Top 100 codons with highest CaSINo scores 

gene codon score role 

FAM174B FAM174B:p.S68 0.00718949293716475 NA 

KRAS KRAS:p.G12 0.00603122834678532 oncogene 

TIPIN TIPIN:p.R142 0.00557872475374628 NA 

TIPIN TIPIN:p.R41 0.00557872475374628 NA 

BRAF BRAF:p.V600 0.00515421412977671 oncogene, fusion 

BRAF BRAF:p.V28 0.00515421412977671 oncogene, fusion 

JAK2 JAK2:p.V617 0.00435965029916284 oncogene, fusion 

JAK2 JAK2:p.V468 0.00435965029916284 oncogene, fusion 

GBP4 GBP4:p.M545 0.0043006233029069 NA 

DSPP DSPP:p.D673 0.00282263267249971 NA 

HLA-DQA1 HLA-DQA1:p.A92 0.00252451047643133 NA 

HLA-DQB1 HLA-DQB1:p.G121 0.00229541431993378 NA 

RP1L1 RP1L1:p.T1327 0.00223969938866847 NA 

IDH1 IDH1:p.R132 0.00211030292005979 oncogene 

PIK3CA PIK3CA:p.H1047 0.00207690802875385 oncogene 

IGFN1 IGFN1:p.E2099 0.00204246380040236 NA 

TPRXL TPRXL:p.S219 0.00202385850681739 NA 

HLA-DRB1 HLA-DRB1:p.S66 0.00185079665532673 NA 

C2orf82 C2orf82:p.A10 0.00184432670543624 NA 

DPP7 DPP7:p.L47 0.00184432670543624 NA 

IGHV3-23 IGHV3-23:p.S76 0.00184261254987945 NA 

AL390778.1 AL390778.1:p.A81 0.00181121893587705 NA 

RP1L1 RP1L1:p.E1328 0.00178890289578971 NA 

IGHV3-23 IGHV3-23:p.A69 0.00177690861158474 NA 
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AKAP17A AKAP17A:p.R416 0.0017585200766246 NA 

RARRES1 RARRES1:p.D42 0.00175597356036723 NA 

SIRPB1 SIRPB1:p.L95 0.0017488424391218 NA 

QRICH2 QRICH2:p.G634 0.00172987345714036 NA 

HLA-DQA1 HLA-DQA1:p.M89 0.00171383483680916 NA 

IGHV3-23 IGHV3-23:p.G72 0.00170889512211672 NA 

ATP1A3 ATP1A3:p.H1151 0.00170070475958498 NA 

GBP4 GBP4:p.E546 0.00169760940310457 NA 

KRTAP9-1 KRTAP9-1:p.C162 0.00167076299295663 NA 

HLA-DQA2 HLA-DQA2:p.Q241 0.00166051511514349 NA 

IGHV3-23 IGHV3-23:p.S73 0.0016226730799879 NA 

IGHV3-23 IGHV3-23:p.S71 0.00161826269820383 NA 

ACTA1 ACTA1:p.M213 0.00155981261179879 NA 

ACTA1 ACTA1:p.M301 0.00155981261179879 NA 

C5orf60 C5orf60:p.D22 0.00155676466354221 NA 

SIRPA SIRPA:p.A57 0.00150193209751132 TSG 

HLA-DQA1 HLA-DQA1:p.G84 0.00143892439514527 NA 

PTCH1 PTCH1:p.E91 0.00143047027118658 TSG 

PTCH1 PTCH1:p.E223 0.00143047027118658 TSG 

PTCH1 PTCH1:p.E253 0.00143047027118658 TSG 

PTCH1 PTCH1:p.E308 0.00143047027118658 TSG 

PTCH1 PTCH1:p.E374 0.00143047027118658 TSG 

PTCH1 PTCH1:p.E373 0.00143047027118658 TSG 

HLA-DQA1 HLA-DQA1:p.I98 0.0014292600904128 NA 

PABPC3 PABPC3:p.Y417 0.00141489296138706 NA 

AL390778.1 AL390778.1:p.T27 0.00140587374091021 NA 

MUC19 MUC19:p.G2758 0.00137987163154403 NA 
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USP8 USP8:p.R763 0.00133031932489563 oncogene 

USP8 USP8:p.R657 0.00133031932489563 oncogene 

USP8 USP8:p.N764 0.00132987313560467 oncogene 

USP8 USP8:p.N658 0.00132987313560467 oncogene 

AL390778.1 AL390778.1:p.H36 0.00132232102940341 NA 

GBP4 GBP4:p.M542 0.00128304381927286 NA 

USP8 USP8:p.L776 0.00128054997202534 oncogene 

USP8 USP8:p.L670 0.00128054997202534 oncogene 

OR51B2 OR51B2:p.R160 0.00127688803856289 NA 

ICOSLG ICOSLG:p.E418 0.00126145527771507 NA 

HLA-DRB1 HLA-DRB1:p.A14 0.00126131098700082 NA 

TP53 TP53:p.R141 0.00126122582184646 oncogene, TSG, 

fusion 

TP53 TP53:p.R273 0.00126122582184646 oncogene, TSG, 

fusion 

MMRN2 MMRN2:p.E421 0.00125856600919755 NA 

KRTAP4-5 KRTAP4-5:p.R87 0.00122546896821448 NA 

FAM8A1 FAM8A1:p.R220 0.00120983569185502 NA 

ACTC1 ACTC1:p.T105 0.0011993639607043 NA 

KRTAP1-1 KRTAP1-1:p.R38 0.00118722948103887 NA 

C16orf3 C16orf3:p.S57 0.00118480007095189 NA 

SPATA20 SPATA20:p.E209 0.00117769339831916 NA 

SPATA20 SPATA20:p.E253 0.00117769339831916 NA 

SPATA20 SPATA20:p.E269 0.00117769339831916 NA 

DSPP DSPP:p.N685 0.00117614573433925 NA 

FGFR1 FGFR1:p.N544 0.00116896300243733 oncogene, fusion 

FGFR1 FGFR1:p.N546 0.00116896300243733 oncogene, fusion 

PLIN4 PLIN4:p.A784 0.00115820637238598 NA 

ZNF132 ZNF132:p.R476 0.00114998267789045 NA 
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FAM186A FAM186A:p.E1586 0.00114909206691322 NA 

FGFR1 FGFR1:p.N536 0.0011397408718363 oncogene, fusion 

FGFR1 FGFR1:p.N457 0.0011397408718363 oncogene, fusion 

FGFR1 FGFR1:p.N577 0.0011397408718363 oncogene, fusion 

FGFR1 FGFR1:p.N455 0.0011397408718363 oncogene, fusion 

MUC22 MUC22:p.A1210 0.00113948998983416 NA 

PIK3CA PIK3CA:p.E545 0.00113805146308361 oncogene 

IGLV3-1 IGLV3-1:p.S70 0.0011336021434307 NA 

ACTR3C ACTR3C:p.Q119 0.00111288209322971 NA 

ACTR3C ACTR3C:p.Q121 0.00111288209322971 NA 

ACTR3C ACTR3C:p.Q220 0.00111288209322971 NA 

KRTAP4-5 KRTAP4-5:p.Q82 0.00110743403711935 NA 

PABPC3 PABPC3:p.R278 0.00110581945966735 NA 

SIRPA SIRPA:p.R54 0.00109830827770534 TSG 

FGFR1 FGFR1:p.K687 0.00109772944982884 oncogene, fusion 

FGFR1 FGFR1:p.K654 0.00109772944982884 oncogene, fusion 

FGFR1 FGFR1:p.K656 0.00109772944982884 oncogene, fusion 

FGFR1 FGFR1:p.K56 0.00109772944982884 oncogene, fusion 

FGFR1 FGFR1:p.K567 0.00109772944982884 oncogene, fusion 

FGFR1 FGFR1:p.K565 0.00109772944982884 oncogene, fusion 

FGFR1 FGFR1:p.K646 0.00109772944982884 oncogene, fusion 

FAM230A FAM230A:p.V238 0.00108996835895924 NA 
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Supplemented_Table 4: Top 100 positions with highest CaSINo scores 

gene position score role 

TIPIN 15:66641448:TIPIN 0.00557872475374628 NA 

BRAF 7:140453136:BRAF 0.00513523465793539 oncogene, fusion 

KRAS 12:25398284:KRAS 0.00477408641543645 oncogene 

FAM174B 15:93198688:FAM174B 0.00438019804840099 NA 

JAK2 9:5073770:JAK2 0.00435965029916284 oncogene, fusion 

FAM174B 15:93198687:FAM174B 0.00280929488876375 NA 

GBP4 1:89652088:GBP4 0.0021676901083092 NA 

RP1L1 8:10467628:RP1L1 0.00216157424648286 NA 

GBP4 1:89652090:GBP4 0.00213293319459771 NA 

IGFN1 1:201180317:IGFN1 0.00204246380040236 NA 

TPRXL 3:14106332:TPRXL 0.00202385850681739 NA 

PIK3CA 3:178952085:PIK3CA 0.00199396549476417 oncogene 

HLA-DRB1 6:32552060:HLA-DRB1 0.00185079665532673 NA 

QRICH2 17:74288410:QRICH2 0.00172987345714036 NA 

HLA-DQA1 6:32609271:HLA-DQA1 0.00171383483680916 NA 

ATP1A3 19:42470962:ATP1A3 0.00170070475958498 NA 

GBP4 1:89652087:GBP4 0.00169760940310457 NA 

HLA-DQA1 6:32609278:HLA-DQA1 0.00167795226265418 NA 

KRTAP9-1 17:39346622:KRTAP9-1 0.00167076299295663 NA 

HLA-DQA2 6:32714125:HLA-DQA2 0.00166051511514349 NA 

IDH1 2:209113112:IDH1 0.00163064204424891 oncogene 

C5orf60 5:179071958:C5orf60 0.00155676466354221 NA 

SIRPA 20:1895835:SIRPA 0.00150193209751132 TSG 

DSPP 4:88535832:DSPP 0.00143677064554804 NA 

HLA-DQA1 6:32609297:HLA-DQA1 0.0014292600904128 NA 

AL390778.1 9:138151197:AL390778.1 0.00140587374091021 NA 
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DSPP 4:88535831:DSPP 0.00138586202695167 NA 

RP1L1 8:10467626:RP1L1 0.00138482799134645 NA 

MUC19 12:40876727:MUC19 0.00137987163154403 NA 

USP8 15:50784950:USP8 0.00133031932489563 oncogene 

USP8 15:50784955:USP8 0.00132987313560467 oncogene 

AL390778.1 9:138151169:AL390778.1 0.00132232102940341 NA 

GBP4 1:89652097:GBP4 0.00128304381927286 NA 

ICOSLG 21:45649582:ICOSLG 0.00126145527771507 NA 

KRAS 12:25398285:KRAS 0.00125714193134887 oncogene 

KRTAP4-5 17:39305760:KRTAP4-5 0.00122546896821448 NA 

FAM8A1 6:17601299:FAM8A1 0.00120983569185502 NA 

AL390778.1 9:138151035:AL390778.1 0.00119181256857061 NA 

HLA-DQB1 6:32632592:HLA-DQB1 0.00119171912174055 NA 

DSPP 4:88535868:DSPP 0.00117614573433925 NA 

PLIN4 19:4511580:PLIN4 0.00115820637238598 NA 

FGFR1 8:38274849:FGFR1 0.0011397408718363 oncogene, fusion 

HLA-DRB1 6:32557480:HLA-DRB1 0.00113446456753267 NA 

C16orf3 16:90095582:C16orf3 0.00112688103413107 NA 

PABPC3 13:25671168:PABPC3 0.00110581945966735 NA 

HLA-DQB1 6:32632593:HLA-DQB1 0.00110369519819323 NA 

SIRPA 20:1895826:SIRPA 0.00109830827770534 TSG 

FGFR1 8:38272308:FGFR1 0.00109772944982884 oncogene, fusion 

FAM230A 22:20708980:FAM230A 0.00108996835895924 NA 

ROS1 6:117622184:ROS1 0.00106647945203623 oncogene, fusion 

ROS1 6:117622188:ROS1 0.00106647945203623 oncogene, fusion 

GZMH 14:25076877:GZMH 0.00102970151745312 NA 

IGSF9B 11:133788992:IGSF9B 0.001025474553459 NA 

KRT18 12:53343099:KRT18 0.0010215163119449 NA 
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OR4A16 11:55111365:OR4A16 0.00101140831992807 NA 

FAM8A1 6:17601284:FAM8A1 0.0010080118555056 NA 

ICOSLG 21:45649580:ICOSLG 0.00100137226680314 NA 

HLA-DQB1 6:32632601:HLA-DQB1 0.000994302883255517 NA 

FAM230A 22:20708977:FAM230A 0.000982030508409981 NA 

PIK3CA 3:178936091:PIK3CA 0.00097431709779524 oncogene 

SIRPA 20:1895820:SIRPA 0.000968439730501564 TSG 

IGLV3-1 22:23223439:IGLV3-1 0.000966230549682632 NA 

TP53 17:7577120:TP53 0.000962178969941832 oncogene, TSG, 

fusion 

HLA-DQA1 6:32609254:HLA-DQA1 0.000952883236204546 NA 

GZMB 14:25101589:GZMB 0.00093761420894176 NA 

C6 5:41159289:C6 0.000937573899872721 NA 

ICOSLG 21:45649487:ICOSLG 0.000936870601312229 NA 

KRTAP4-5 17:39305769:KRTAP4-5 0.00093545660112285 NA 

IGHV3-23 14:106725347:IGHV3-23 0.000935361027248267 NA 

IGHV3-23 14:106725337:IGHV3-23 0.000928988816217323 NA 

EMR2 19:14877816:EMR2 0.000928722212758647 NA 

HLA-DRB1 6:32552050:HLA-DRB1 0.000927913629026232 NA 

MUC17 7:100680117:MUC17 0.000926470214057068 NA 

KRTAP4-5 17:39305774:KRTAP4-5 0.000921967681059945 NA 

IGHV3-23 14:106725397:IGHV3-23 0.000921652479822614 NA 

MACF1 1:39835746:MACF1 0.000915004413640158 NA 

SIRPB1 20:1592153:SIRPB1 0.000907086436048057 NA 

KRT18 12:53343303:KRT18 0.000904727800990854 NA 

OR1L4 9:125486717:OR1L4 0.000903891723142766 NA 

IGHV3-23 14:106725403:IGHV3-23 0.000901603361392744 NA 

PER1 17:8047060:PER1 0.000896175593954048 TSG, fusion 
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IGHV3-23 14:106725325:IGHV3-23 0.000887888189987088 NA 

IGHV3-23 14:106725328:IGHV3-23 0.000887888189987088 NA 

HLA-DQA2 6:32713771:HLA-DQA2 0.000885988176415229 NA 

ATXN1 6:16327903:ATXN1 0.000878752291386945 NA 

GBP4 1:89652102:GBP4 0.000873474787735532 NA 

HLA-DQB1 6:32632605:HLA-DQB1 0.000863269632587438 NA 

HLA-DQB1 6:32632659:HLA-DQB1 0.000861073135132222 NA 

FAM186A 12:50746414:FAM186A 0.000850298002092954 NA 

HLA-DQA1 6:32609279:HLA-DQA1 0.000846558213777152 NA 

IGHV3-23 14:106725335:IGHV3-23 0.000842766774088507 NA 

SIRPB1 20:1592152:SIRPB1 0.000841756003073742 NA 

IGHV3-23 14:106725346:IGHV3-23 0.000841547584336478 NA 

IGHV3-23 14:106725341:IGHV3-23 0.000838356392304435 NA 

IGHV3-23 14:106725344:IGHV3-23 0.000838356392304435 NA 

HLA-DQB1 6:32632646:HLA-DQB1 0.000830449095787504 NA 

IGHV3-23 14:106725324:IGHV3-23 0.000825027721797978 NA 

CES1 16:55862791:CES1 0.000820958950910637 NA 

MUC17 7:100680120:MUC17 0.000815413541418485 NA 

KRTAP4-5 17:39305773:KRTAP4-5 0.000805871889484953 NA 
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Supplemented_Table 5: Top 200 genes with highest CNV focality peak scores (focal 

deletions below 10Mb) 

chr gene score length cgc tsg peak peak_value 

X ARHGEF9 1605.16695187 150579 none none TRUE 1507.1866407483 

3 FHIT 983.081020351 1502097 cgc tsg TRUE 851.213332309 

16 WWOX 702.885882163 1113254 none none TRUE 589.587174635 

9 RP11-

143M1.7 

801.29063767 20871 none none FALS

E 

554.880504251 

19 OR4G1P 499.095780377 936 none none FALS

E 

499.095780377 

9 CBWD1 815.021236355 67938 none none TRUE 408.273869869 

18 RP11-

451L19.1 

551.401327872 4318 none none FALS

E 

397.621266177 

4 CCSER1 514.096053126 1474378 none none TRUE 396.0853319 

20 MACROD2 419.008793511 2057827 none none TRUE 394.6318504121 

2 LRP1B 468.266307734 1900278 cgc tsg TRUE 379.0055110565 

8 RPL23AP53 758.121098959 19045 none none FALS

E 

368.14272893 

9 PTPRD 523.842247213 2298477 none none TRUE 366.125660343 

16 PIEZO1 545.981268777 69868 none none TRUE 362.291346399 

9 RP11-

145E5.5 

816.881232864 230350 none none TRUE 358.31389795 

5 PDE4D 513.872046231 1553082 none none TRUE 355.272712825 

16 CDT1 539.040613098 6045 none none FALS

E 

351.376712115 

X DMD 471.26291887 2241764 none none TRUE 341.202312843 

6 PARK2 462.806541116 1380351 none none TRUE 323.433735 

13 TMCO3 432.504336804 59232 none none TRUE 306.599718089 

13 DCUN1D2 426.548420828 35133 none none TRUE 300.643802113 

8 CSMD1 529.889931497 2059619 none none TRUE 265.700602655 

22 C22orf34 418.50503147 243014 none none TRUE 262.516957371 
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9 MTAP 641.440687282 129104 none none FALS

E 

262.475774891 

18 RP11-

683L23.2 

268.163004759 552 none none FALS

E 

232.3764314713 

3 LSAMP 266.159193365 2194860 none none TRUE 229.4422784713 

15 HERC2P3 228.897147543 123564 none none TRUE 228.897147543 

12 FAM138D 225.448348371 2277 none none TRUE 223.49362357013 

22 TTC28 314.454388867 701849 none none TRUE 214.6523748092 

22 CECR2 216.463585853 197013 none none TRUE 211.39076194082 

10 OR6L1P 216.876148557 909 none none FALS

E 

210.02995199512 

8 RP11-

585F1.6 

965.811976951 237 none none FALS

E 

207.690877992 

2 AC096579.13 271.37816513 51091 none none FALS

E 

207.4096445568 

X HNRNPDP1 305.266947846 753 none none FALS

E 

207.2866367243 

21 SLC19A1 279.541983631 50839 none none TRUE 206.4478502097 

9 UBA52P6 634.144880311 381 none none FALS

E 

201.931506105 

9 AL953854.2 333.346842128 18467 none none TRUE 201.021815016 

11 ODF3 361.071249459 3523 none none TRUE 198.820180018 

3 NAALADL2 214.090323188 1367065 none none TRUE 187.4105286467 

9 DOCK8 409.961156319 250405 none none TRUE 185.756167513 

17 KSR1 185.391112767 169791 none none TRUE 173.8951568951 

7 IMMP2L 243.489201756 899463 none none TRUE 173.2268774301 

10 PTEN 510.098596345 108817 cgc tsg TRUE 170.554919047 

21 TMPRSS2 231.366671308 66565 cgc none TRUE 167.9189517437 

6 PDCD2 167.409923677 9397 none none FALS

E 

167.409923677 

16 RP11-

488I20.3 

173.579208248 27172 none none TRUE 166.13189229782 

6 EYS 261.241127135 1987242 none none TRUE 159.304579183 

16 RBFOX1 200.942476258 1694245 none none TRUE 155.5126300306 
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X XG 425.162263031 64448 none none TRUE 155.307457767 

6 RP3-416J7.5 408.588463793 3079 none none FALS

E 

154.734720889 

18 GREB1L 160.870797931 283175 none none TRUE 151.8470848907 

X DIAPH2 309.864624657 920334 none none TRUE 149.115974971 

18 RP11-

296E23.1 

157.494152837 70731 none none TRUE 148.4704397967 

19 CTD-

3113P16.7 

447.688006667 102 none none FALS

E 

143.792661091 

6 GMDS 252.706740882 621885 none none TRUE 143.394742457 

5 HMGB1P47 144.913980084 588 none none FALS

E 

143.27997564304 

3 RP11-

451B8.1 

142.516402752 62227 none none FALS

E 

142.516402752 

11 DLG2 199.511344232 2172911 none none TRUE 142.4430271605 

16 RP11-

420N3.2 

177.322492846 1536212 none none TRUE 137.5290720993 

11 AP004550.1 160.578921934 9660 none none FALS

E 

136.3704186531 

Y RP1-85D24.3 164.25720647 198 none none FALS

E 

135.2928063879 

8 RP11-

1134I14.2 

139.922941093 109289 none none TRUE 134.13573602066 

13 PHF2P2 134.702569639 115963 none none TRUE 131.60873917259 

2 AC093642.4 181.077287077 993 none none FALS

E 

130.8805214313 

8 VN1R46P 136.428556477 849 none none FALS

E 

130.64135140466 

13 RB1 353.963323174 178235 cgc tsg TRUE 129.762147722 

3 ROBO2 296.547293581 1743269 none none TRUE 128.485921266 

21 ERG 178.373648902 281755 cgc none TRUE 128.3158152687 

9 EXD3 261.960615067 116366 none none TRUE 128.308590533 

12 ULK1 306.203996284 28516 none none FALS

E 

127.891772029 

12 IQSEC3 222.833677972 111695 none none FALS

E 

126.3452733072 
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3 RP11-

641C17.4 

388.16100518 1257 none none FALS

E 

125.127632455 

22 CLCP1 129.602087307 387 none none TRUE 124.52926339482 

18 ROCK1P1 222.767789549 13154 none none FALS

E 

123.1498753073 

10 KSR1P1 126.805595512 239 none none TRUE 122.65180652804 

6 PRIM2 176.497638756 333772 none none TRUE 122.0764966093 

14 IGHD6-13 484.313822713 20 none none FALS

E 

121.528863126 

11 BET1L 453.00743923 39644 none none TRUE 121.216744912 

4 TEC 121.076620942 134081 none none TRUE 120.098390321093 

2 AC068287.1 196.832234871 294 none none TRUE 117.9683753119 

17 RPTOR 175.11615923 421552 none none TRUE 115.5194568333 

11 RP11-

574M7.2 

174.151133084 13274 none none TRUE 113.8485284029 

1 SMYD3 168.828101588 757972 none none TRUE 111.1278045425 

12 ANKS1B 168.285637695 1258197 none none TRUE 110.885708083 

17 RP11-

285M22.2 

121.539520972 1506 none none FALS

E 

110.0435651001 

17 RP11-

720N19.1 

121.152889029 837 none none FALS

E 

109.6569331571 

17 RP11-28G8.1 165.7002327 3992 none none FALS

E 

106.1035303033 

10 RNLS 360.938563559 310666 none none TRUE 106.093878795 

10 NRG3 227.039464608 1111865 none none TRUE 104.974074907 

7 CNTNAP2 146.363051333 2304637 none none TRUE 102.6547085099 

X KRT8P17 200.273318969 1447 none none TRUE 102.2930078473 

21 AP001464.4 128.482204169 17016 none none TRUE 101.6275091816 

2 AC096579.7 303.15022477 34953 none none TRUE 99.499138889 

7 AUTS2 135.278205248 1194149 none none TRUE 98.7023179108 

2 PARD3B 147.166361176 1074370 none none TRUE 98.312868682 

19 CTD-

3113P16.9 

303.895345576 86 none none FALS

E 

98.061381521 
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4 DCUN1D4 96.370966393 73837 none none TRUE 95.392735772093 

3 SUMF1 218.274356832 766467 none none TRUE 95.069953452 

1 AGBL4 151.829445983 1491058 none none TRUE 95.02113137 

15 DNM1P46 153.257944392 16771 none none TRUE 93.3532921468 

16 ANKRD26P1 99.821848828 99756 none none TRUE 92.37453287782 

6 RP11-

448N11.3 

98.918254891 174 none none TRUE 91.92793286749 

2 ERBB4 149.36804223 1163119 cgc none TRUE 91.480318762 

X TMLHE 298.214316712 179829 none none TRUE 90.466215497 

20 RP5-

974N19.1 

132.829971717 1520 none none FALS

E 

90.1085850902 

21 RUNX1 138.97752117 1216867 cgc none TRUE 87.8886529897 

14 IGHJ6 453.736157896 60 none none FALS

E 

87.728897153 

4 GRID2 195.762943719 1470157 none none TRUE 87.184487208 

8 SGCZ 258.348368361 1148475 none none TRUE 86.904511457 

7 VIPR2 99.7580533899 116783 none none FALS

E 

86.190588756 

8 NRG1 230.202500332 1125646 cgc none TRUE 85.699922428 

11 SHANK2 122.336235683 649662 none none TRUE 85.1648911784 

18 SMAD4 266.445980456 117005 cgc tsg TRUE 85.135169866 

9 RP11-149I2.5 608.909697422 1616 none none FALS

E 

84.1519741980001 

6 RP11-

143A22.1 

90.402072003 24972 none none TRUE 83.41174997949 

3 FOXP1 247.001202827 629296 cgc none TRUE 83.099995985 

17 NF1 229.897396738 287189 cgc none TRUE 82.823798292 

9 CDKN2A 765.193087911 27549 cgc tsg TRUE 82.094326516 

16 PRDM7 504.26064704 35506 none none FALS

E 

81.939987395 

11 CNTN5 147.13504555 1337933 none none TRUE 81.2366615591 

2 ASTL 82.7501689186 14586 none none TRUE 81.18303974033 
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9 RP11-

408N14.1 

432.213374206 10682 none none FALS

E 

81.145366654 

1 NEGR1 144.516531172 886794 none none TRUE 81.1015985073 

9 TUBBP5 86.7570168857 27256 none none FALS

E 

80.40243187855 

3 ROBO1 227.087943262 1170575 none none TRUE 80.006056761 

4 AF146191.4 254.928331794 159936 none none TRUE 79.226149238 

X KDM6A 229.152943935 239090 cgc none TRUE 78.839247815 

10 TUBB8 126.69754793 27275 none none TRUE 78.283556505 

22 IGLC2 191.166818742 461 none none FALS

E 

78.065511512 

15 CTD-

2054N24.2 

159.314799876 70125 none none TRUE 77.3373073331 

8 RP11-

1134I14.4 

82.8719072037 255 none none FALS

E 

77.08470213136 

14 RAD51B 195.284332059 910439 cgc none TRUE 77.011665085 

13 GPC6 160.629490954 1180560 none none TRUE 76.3502984094 

9 FOCAD 270.855102854 337646 none none TRUE 75.93133738 

8 ADAM5 198.938961066 102787 none none TRUE 75.349395094 

X IL1RAPL1 199.907726589 1369324 none none TRUE 75.23974709 

10 PCDH15 171.602659122 1825171 none none TRUE 74.7055985273 

3 RP11-

641C17.1 

247.908434836 492 none none TRUE 74.275971406 

9 C9orf53 683.098761395 601 none none FALS

E 

74.189063973 

6 DUSP22 253.853742904 59725 none none FALS

E 

73.997222206 

5 RP11-6N13.1 209.577654723 1009672 none none TRUE 73.480237561 

3 CADM2 215.336866615 1115447 none none TRUE 71.175086178 

Y RP1-85D24.1 164.25720647 168 none none FALS

E 

70.4801990122 

10 PRKG1 163.809540021 1307165 none none TRUE 70.2217671993 

12 RP11-

297L6.2 

70.7190878032 470 none none FALS

E 

70.101171532163 
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1 RP11-

107G24.3 

122.156644431 678 none none FALS

E 

68.7869728727 

3 PTMAP8 127.890757256 341 none none FALS

E 

68.1841980091 

20 MACROD2-

AS1 

165.831205496 45262 none none TRUE 68.0243944927 

2 AC131097.3 290.038352264 197359 none none TRUE 67.970202779 

10 CTNNA3 156.809331353 1783651 none none TRUE 66.7164209035 

9 CACNA1B 180.681669125 246835 none none TRUE 66.513037923 

9 RP11-70L8.4 524.757723224 3016 none none FALS

E 

66.1903883099999 

10 C10orf11 163.552758745 958927 none none TRUE 65.680725036 

X STS 290.48631554 135354 none none TRUE 65.119211226 

14 OR4K4P 290.273219866 683 none none FALS

E 

64.575234353 

17 CCDC144A 157.488096114 114916 none none FALS

E 

64.4348444786 

17 KANSL1 178.7752674 195451 none none TRUE 64.071945147 

16 IL9RP3 136.509488699 8985 none none FALS

E 

63.8165461372 

11 RP11-

179A16.1 

113.790255055 838231 none none TRUE 63.4705789761 

X HDHD1 313.516551555 99270 none none TRUE 63.372294607 

9 RP11-

160N1.9 

284.108013489 11807 none none TRUE 63.154579999 

1 RP11-

206L10.11 

367.21929363 31838 none none TRUE 62.666714682 

9 RP11-

370B11.3 

310.12120835 1141 none none FALS

E 

62.618036131 

2 AC093642.3 241.935135672 6593 none none TRUE 60.857848595 

1 RERE 312.887496676 465245 none none TRUE 60.458081326 

5 CTD-

2254N19.1 

248.002711034 11771 none none TRUE 60.116736526 

16 ANKRD11 607.332084325 222931 none none TRUE 59.911352804 

16 CTD-

2144E22.8 

160.244070365 1100 none none FALS

E 

59.877187671 
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7 PTPRN2 143.862709051 1048730 none none TRUE 59.8672921705 

11 OR5I1 64.2667945963 944 none none FALS

E 

59.5555224455 

6 RP3-416J7.4 467.432726532 24018 none none TRUE 58.844262739 

2 AC010983.1 95.4372612376 22659 none none TRUE 58.4299475147 

4 LRBA 179.179987665 751285 none none TRUE 58.281903893 

X IL1RAPL2 196.756439107 1200826 none none TRUE 58.215478715 

4 GALNTL6 216.55974076 1229305 none none TRUE 58.01729961 

18 AP005901.1 66.901550282 22619 none none TRUE 57.8778372417 

19 HAVCR1P1 57.5925676883 1055 none none TRUE 57.5925676883 

14 NRXN3 146.089421689 1622028 none none TRUE 56.9926734185 

3 ULK4 132.362462312 715832 none none TRUE 56.9550830037 

16 Z84812.4 128.265965339 17681 none none TRUE 56.8065996106 

2 NCKAP5 129.37216507 896660 none none TRUE 56.7805298513 

6 GRIK2 181.100628623 671294 none none TRUE 56.552278129 

1 FAF1 110.625066051 520785 none none TRUE 55.9263558793 

3 ZNF385D 126.321816659 954897 none none TRUE 55.7151617174 

3 ARMC10P1 55.6831394797 854 none none FALS

E 

55.6831394797 

14 GPHN 156.542514627 674395 cgc none TRUE 55.193035137 

13 LPAR6 279.564443489 55133 none none TRUE 55.133637628 

19 LINC01002 502.705722687 4614 none none FALS

E 

55.01771602 

16 AXIN1 165.777520334 65233 cgc tsg TRUE 54.947553406 

2 NRXN1 78.7227351044 1114031 none none TRUE 54.5633763404 

3 ERC2 183.595178009 960055 none none TRUE 54.280959994 

1 RP11-

417J8.1 

123.731754699 5877 none none FALS

E 

54.1656548334 

17 RP11-

219A15.1 

157.488096114 114192 none none FALS

E 

54.049014471 

7 THSD7A 83.0899978248 461840 none none TRUE 53.7529392028 
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6 RP11-

452D24.1 

151.824409865 162 none none TRUE 53.7069815921 

4 KCNIP4 113.387361925 1220183 none none TRUE 53.6955353305 

5 CTD-

2013M15.1 

55.2624545862 5754 none none TRUE 53.62845014524 

10 ATAD1 320.842579514 89831 none none TRUE 53.596404731 

6 IRF4 179.856520698 19708 cgc none FALS

E 

53.192906625 

4 FSTL5 177.387307186 780138 none none TRUE 53.147911598 

13 RNF219-AS1 157.920210319 697639 none none TRUE 53.141056248 
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Supplemented_Table 6: Potential synthetic lethality partners of PTEN deletions  

c

h

r 

gene_n

ame 
cgc RA_p RA_OR 

sample_

size 

RA_PTEN_mut

ations 

RA_gene_mu

tation 

RA_overl

aps 

RA gene 

mutatio

ns in 

indicati

ons of 

interest 

Of 

interes

t 

3 VHL 

TRU

E 

0,20061213506

9417 

0,4548670177

41067 1741 105 69 2 69 no 

X 

MAGEC

1 

FALS

E 

0,68051481857

6531 

0,8643799868

05011 1741 105 19 1 18 no 

X TM4SF2 

FALS

E 

0,32453003941

5268 0 1741 105 18 0 16 no 

3 SETD2 

TRU

E 

0,36797592028

9565 0 1741 105 16 0 16 no 

X 

MAGEC

3 

FALS

E 

0,39181149809

9808 0 1741 105 15 0 15 no 

X MED12 

TRU

E 

0,39181149809

9808 0 1741 105 15 0 12 

potenti

ally 

3 BAP1 

TRU

E 

0,44416453906

4048 0 1741 105 13 0 12 

potenti

ally 

X HEPH 

FALS

E 

0,81749249215

6675 

1,3010597136

7632 1741 105 13 1 12 no 

5 CHD1 

FALS

E 

0,50343753100

1216 0 1741 105 11 0 11  

1

7 ZNF18 

FALS

E 

0,32453003941

5268 0 1741 105 18 0 10 no 

1

1 OR4A5 

FALS

E 

0,50343753100

1216 0 1741 105 11 0 10 no 

1

6 CBFB 

TRU

E 

0,50343753100

1216 0 1741 105 11 0 10 

potenti

ally 

X PTCHD1 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 9 no 

X DACH2 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 9 no 

X PABPC5 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 9 no 



 173 

5 GPR98 

FALS

E 

0,57053520813

6111 0 1741 105 9 0 9 

potenti

ally 

9 C9orf66 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 8 no 

X WNK3 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 8 

potenti

ally 

X PHKA1 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 8 no 

X SLITRK2 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 8 no 

X AFF2 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 8 no 

3 ROBO2 

FALS

E 

0,57053520813

6111 0 1741 105 9 0 8 no 

1

0 WDFY4 

FALS

E 

0,57053520813

6111 0 1741 105 9 0 8 no 

X 

SMARC

A1 

FALS

E 

0,57053520813

6111 0 1741 105 9 0 8 yes 

X PASD1 

FALS

E 

0,57053520813

6111 0 1741 105 9 0 8 

no-

potenti

ally 

6 PARK2 

FALS

E 

0,41717537436

3976 0 1741 105 14 0 7 no 

X ZMYM3 

FALS

E 

0,47288207391

7327 0 1741 105 12 0 7 

potenti

ally 

1

7 PIK3R5 

FALS

E 

0,50343753100

1216 0 1741 105 11 0 7 no 

1

3 CYSLTR2 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 7 yes 

1

7 MYH1 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 7 no 

1

7 NCOR1 

TRU

E 

0,53594733466

3656 0 1741 105 10 0 7  

X HDX 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 7 no 

1

1 OR4C46 

FALS

E 

0,57053520813

6111 0 1741 105 9 0 7 no 

1

3 FNDC3A 

FALS

E 

0,57053520813

6111 0 1741 105 9 0 7 no 

1

1 ATM 

TRU

E 

0,60733262635

1278 0 1741 105 8 0 7  

1

7 DOC2B 

FALS

E 

0,60733262635

1278 0 1741 105 8 0 7 no 
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1

7 MYH2 

FALS

E 

0,60733262635

1278 0 1741 105 8 0 7 no 

2

2 

MYO18

B 

FALS

E 

0,60733262635

1278 0 1741 105 8 0 7 no 

3 DNAH12 

FALS

E 

0,64647929655

8083 0 1741 105 7 0 7 no 

1

0 

C10orf1

12 

FALS

E 

0,64647929655

8083 0 1741 105 7 0 7 no 

X BTK 

TRU

E 

0,64647929655

8083 0 1741 105 7 0 7  

4 CCSER1 

FALS

E 

0,50343753100

1216 0 1741 105 11 0 6 no 

X STS 

FALS

E 

0,53594733466

3656 0 1741 105 10 0 6 

potenti

ally 

8 SGCZ 

FALS

E 

0,57053520813

6111 0 1741 105 9 0 6 no 

1

7 MYH10 

FALS

E 

0,57053520813

6111 0 1741 105 9 0 6 no 

1

1 MUC5B 

FALS

E 

0,60733262635

1278 0 1741 105 8 0 6  

1

7 

MYO15

A 

FALS

E 

0,60733262635

1278 0 1741 105 8 0 6 no 

5 

SLCO4C

1 

FALS

E 

0,64647929655

8083 0 1741 105 7 0 6 
no 

X 

RPS6KA

6 

FALS

E 

0,64647929655

8083 0 1741 105 7 0 6  

X 

PCDH11

X 

FALS

E 

0,64647929655

8083 0 1741 105 7 0 6 no 

2 XIRP2 

FALS

E 

0,68812366842

2253 0 1741 105 6 0 6  

8 RP1L1 

FALS

E 

0,68812366842

2253 0 1741 105 6 0 6 no 

X 

AMMEC

R1 

FALS

E 

0,68812366842

2253 0 1741 105 6 0 6 no 

X BRS3 

FALS

E 

0,68812366842

2253 0 1741 105 6 0 6 no 

1

7 
DNAH2 

FALS

E 

0,50343753100

1216 
0 1741 105 11 0 5  

2

1 
POTED 

FALS

E 

0,53594733466

3656 
0 1741 105 10 0 5  

1 HSPG2 
FALS

E 

0,57053520813

6111 
0 1741 105 9 0 5  

9 NFIB 
TRU

E 

0,57053520813

6111 
0 1741 105 9 0 5  
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1

0 
SORCS3 

FALS

E 

0,60733262635

1278 
0 1741 105 8 0 5  

X GRPR 
FALS

E 

0,60733262635

1278 
0 1741 105 8 0 5  

9 JAK2 
TRU

E 

0,64647929655

8083 
0 1741 105 7 0 5  

9 BNC2 
FALS

E 

0,64647929655

8083 
0 1741 105 7 0 5  

1

0 
KNDC1 

FALS

E 

0,64647929655

8083 
0 1741 105 7 0 5  

1

3 
MLNR 

FALS

E 

0,64647929655

8083 
0 1741 105 7 0 5  

1

3 
CDADC1 

FALS

E 

0,64647929655

8083 
0 1741 105 7 0 5  

1

7 
EIF4A1 

FALS

E 

0,64647929655

8083 
0 1741 105 7 0 5  

1

7 
KCNJ12 

FALS

E 

0,64647929655

8083 
0 1741 105 7 0 5  

2

1 

TMPRSS

2 

TRU

E 

0,64647929655

8083 
0 1741 105 7 0 5  

2

2 
CELSR1 

FALS

E 

0,64647929655

8083 
0 1741 105 7 0 5  

X SATL1 
FALS

E 

0,64647929655

8083 
0 1741 105 7 0 5  

X CPXCR1 
FALS

E 

0,64647929655

8083 
0 1741 105 7 0 5  
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