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Chapter 1

Introduction

What does modeling and forecasting of realized covariance matrices (RCs) mean,
and why is it a relevant research topic? This introduction aims to answer these
questions. Broadly speaking, RCs contain information about the variability of
price changes of multiple financial assets on a given trading day. Since price
change variability in the financial system is connected to financial market risk, it
is apparent that accurate forecasts of RCs are useful for risk prediction. And in
order to obtain accurate forecasts, we have to devise models that fit the data gen-
erating process as closely as possible. Thus, modelling and forecasting of realized
covariance matrices is a relevant research topic. The following section explains in
more detail what RCs are intuitively, what concretely they can be used for, and
what they measure theoretically. Then, in the final section of this introduction, a
short outline of the thesis is given, highlighting its contributions to the literature.

Realized Covariance Matrices 1.1

Imagine owning a set of financial assets and calculating an asset return on each
trading day for each of these. A realized covariance matrix is a symmetric posi-
tive definite matrix composed of the realized variances (RVs) of and the realized
covariances (RCOVs) between each pair of those asset returns for a given trading
day. The RVs are located on the main diagonal entries of an RC; the RCOVs on
the off-diagonal elements. For example, the RCOV between the return of asset one
and two is located in the first row, second column, and second row, first column
entry of the RC. RCs are computed from high-frequency price data, that is, price
data over the trading day with a frequency of, say, at least one observation every
15 minutes, as recorded on, for example, stock exchanges like the New York Stock
Exchange (NYSE) or the National Association of Securities Dealers Automated
Quotations (NASDAQ). The word realized reflects that RCs are accurate ex-post
measurements of the unobservable “true” covariance matrix of the underlying daily
financial asset returns.
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RCs can be interpreted as making the (co)variances of the underlying finan-
cial assets “effectively observable”, and as such, it is advocated that they can be
modelled directly (see e.g. Andersen et al., 2001, McAleer and Medeiros, 2008,
Andersen et al., 2006, Chiriac and Voev, 2011, Golosnoy, Gribisch, and Liesenfeld,
2012, Opschoor et al., 2018). It is important to note that our objects of interest
are the RCs, not their constituent RVs and RCOVs. In fact, we can not model
the RVs and RCOVs separately and then combine their fitted values and forecasts
because this does not guarantee the positive definiteness of the resulting matrix.
This is because RCs are restricted to be positive definite and thus have to be
modeled directly under this restriction.

1.1.1 Why are Realized Covariance Matrices Important?

As mentioned above, variance, also known as volatility, is often taken as a synonym
for the risk of a financial asset. If we are interested in the risk, or volatility, of an
entire portfolio of assets, it is essential to take not only the idiosyncratic variances
into account but also their covariances, also known as covolatilites, which quantify
the joint variability of two underlying financial asset returns. If, for example, two
assets in the portfolio have a negative covariance, this means that if one has a
negative return, the other is likely to have a positive one, leading to so-called
diversification effects.

Due to RCs’ close connection to financial risk, there are numerous applications
in asset management. For example, given a prediction of the next day’s RC, one
could calculate the portfolio weights, which minimize the overall variance of an
entire portfolio; the resulting allocation is called the global minimum variance
portfolio. Another application is the calculation of the portfolio value at risk.
That is the portfolio loss, which with a certain probability (usually 95%) will
not be exceeded. Furthermore, one can calculate risk-adjusted portfolio returns
with the Sharpe ratio, which, in this context, is simply the (expected) portfolio
return divided by the portfolio’s variance. It scales the expected return by its
risk, reflecting that riskier investments naturally exhibit higher (expected) returns
since investors want to be compensated for the risk they are taking on. Even if one
disagrees with its interpretation as risk, it is evident that, holding all else equal,
investors prefer low over high variance in a financial asset.

Besides risk, variance can also directly impact the expected return itself as
documented by the “low volatility anomaly”, which states that low-variance stocks
are associated with abnormally high returns (Baker, Bradley, and Wurgler, 2011).
This is called an anomaly because stocks with higher variance should offer higher
expected returns. After all, investors want to be compensated for the risk they
take on.

2 ONE: Introduction



Finally, there are small specialized applications in quantitative finance where
accurate volatility modelling is critical. For example, in asset pricing, since, as
we stated before, investors require compensation for the risk that they take on.
Notably, option arbitrage can be done by comparing the volatility implied by the
current option price to the forecasted volatility of the underlying financial asset.

We have outlined several applications of models for RCs and their forecasts,
which can broadly be summarized under the umbrella of asset management. Since
asset management touches any citizen that saves in one form or another for their
retirement or has purchased any insurance coverage, RCs are indirectly relevant
to society as a whole.

Theory 1.1.2

Consider a p-dimensional vector of log-prices p(τ), where τ ∈ R+ represents con-
tinuous time. Assume that p(τ) is a semimartingale,

dp(τ) = µ(τ)dτ +A(τ)dW(τ). (1.1)

with instantaneous drift µ(τ), standard p-variate Wiener process W(τ) and p× p
spot covariance matrix Θ(τ) = A(τ)A(τ)⊤. Without loss of generality, restricting
the trading day to the unit interval, we obtain the “true” integrated covariance
matrix at day t as

ICt =

∫ t

t−1
Θ(τ) dτ.

Now, a realized covariance matrix (RC), which we denote by Rt, is defined as
a non-parametric ex-post estimate of ICt exploiting high-frequency asset return
information.1

The simplest RC is the standard realized covariance matrix, which is based on
m + 1 uniformly spaced intraday log-prices, with the j’th intraday return vector
on day t (t = 1, . . . , T ) given by

rj,t = p

(
t− 1 +

j

m

)
− p

(
t− 1 +

j − 1

m

)
, j = 1, . . . ,m.

It is defined as the sum of outer products of intraday return vectors,

Rt =

m∑

j=1

rj,tr
⊤
j,t.

1. Some authors call a non-parametric ex-post estimate of ICt realized measure and reserve
the name realized covariance matrix for what we call standard realized covariance matrix below.
We prefer our nomenclature, which other authors also choose, since realized covariance matrix
conveys that the object is a matrix, which realized measure does not.
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In the absence of market microstructure noise (bid-ask bounce, price discreteness,
etc.) and discontinuous price jumps (equation (1.1) explicitly excludes discontin-
uous price jumps), it can be shown that the standard realized covariance matrix
is a consistent estimator of ICt as m → ∞ (see Barndorff-Nielsen and Shephard,
2004). In practice, however, we should not let m become very large, i.e. sample
every couple of seconds or so, because then the standard realized covariance ma-
trix is contaminated by market microstructure noise and non-synchronous trading,
which introduce severe biases (see Zhang, 2011, who also derive an optimal sam-
pling frequency). Pragmatically, it is advocated to sample simply at frequencies
of at least one minute and up to 15 minutes (see e.g. Bandi, Russell, and Yang,
2008 and Liu, Patton, and Sheppard, 2015). However, when sampling at these
lower frequencies, for example, every five minutes, log-returns are based only on
the two price observations at the beginning and end of the five-minute interval,
and all price observations in between are discarded. A simple way to use more
data and, consequently, make the standard realized covariance matrix estimator
more efficient is to span multiple sampling grids over the trading hours (e.g. five
five-minute grids starting at 09:00, 09:01, 09:02, 09:03, and 09:04, respectively),
calculate the standard realized covariance matrix for each grid, and then taking
the average. This is known as the subsampled realized covariance matrix. We use
it in our empirical sections of Chapters 2 and 3.
There are numerous more sophisticated RCs than the subsampled or standard

realized covariance matrix that are robust to market microstructure noise, thus
avoiding having to sample at lower frequencies and allowing to use of tick data.
Some RCs are also robust to jumps. That is, if we assume an additional jump
component in the semimartingale (1.1), these estimators are still able to estimate
Σt consistently. Popular examples of sophisticated RCs are the Hayashi-Yoshida
realized covariance (Hayashi and Yoshida, 2005) that uses all ticks of every asset,
but does not guarantee positive definiteness, the realized outlyingness weighted
covariation (Boudt, Croux, and Laurent, 2011) that discards those intraday return
vectors for which a statistical test rejects the null of no jumps. In Chapter 4, we
use the multivariate realized kernel of Barndorff-Nielsen et al. (2011) (see also
Barndorff-Nielsen et al., 2009). It is robust to market microstructure noise and
jumps and is defined as

Rt =

m∑

h=−m

k

(
h

H

)
Γh,t, (1.2)

where for h ≥ 0,

Γh,t = rj,tr
⊤
j−h,t
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is the h-th realized autocovariance matrix with Γ−h = Γ⊤h , and k(·) is a twice
continuously differentiable weight function with k(0) = 1 and k′(0) = 0. The
intraday return vectors rj,t are constructed using refresh time sampling2 and con-
sequently are not on an equally-spaced grid.3 Each mentioned, and the numerous
non-mentioned RCs have its advantages and drawbacks. For an overview of the
large body of literature on RCs, we refer to Jin, Liu, and Yang, 2021 and the
references therein.

Outline of the Thesis 1.2

In this thesis, we use observation-driven models for time-series of daily RCs. That
is, we assume a matrix-variate probability distribution for the daily RCs, whose
parameters are updated based on the RC realizations from previous days.

In particular, the next chapter (Chapter 2) looks at different matrix-variate
probability distributions for the RCs and their theoretical and empirical properties.
Chapter 3 proposes a flexible observation-driven model to update all distribution-
specific time-varying parameters, not just the expected value matrix as is done in
the literature so far. Chapter 4 introduces an observation-driven updating mecha-
nism that is applicable to high-dimensional time-series of RCs. Each of these three
chapters is a self-contained paper. Chapters 2 and 3 are solo-authored working
papers. The last chapter is a version of an article peer-reviewed and published
in Quantitative Finance. It was co-authored with Bastian Gribisch (University of
Cologne).

Probability Distributions for Realized Covariance Matrices

In Chapter 2 we compare theoretically and empirically all probability distribu-
tions hitherto in the literature applied to time-series of RCs, and we propose a
new distribution family of our own. The direct comparison of all the different
distributions has not been the focus of a study so far.

We argue that the choice of the probability distribution is crucial. This is
because the behavioral implications that can be derived from a forecasted proba-
bility distribution of an RC can be different across distributions. A distribution
that better fits the observed characteristics of RCs is likely to provide more useful

2. Refresh time sampling refers to the following. Given an initial intraday price vector, a new
one is created, using previous tick interpolation, as soon as all corresponding assets have at least
one new price observation from an executed trade.

3. Also, the first and last intraday return vectors of a given day, r0,t and rm,t, need to be
constructed from averaged prices over a small time window for the asymptotic theory to work.
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behavioral recommendations. We establish that the probability distributions dif-
fer in various characteristics, and that some mirror the empirical characteristics of
RCs more closely than others. Examples of important empirical characteristics are
that realized variances (i.e. the diagonal elements of the RCs) have high variance,
are fat-tailed, and are right-skewed (see Opschoor and Lucas, 2022). Furthermore,
we show that realized covariances of S&P 500 stocks are more often positive than
negative, and that the determinant of the RCs (as a measure of their sizes) has
a highly fat-tailed empirical distribution. Moreover, we demonstrate that if the
realized variance of one asset is large, the one of another asset is likely to be large
too. We call this last property tail-homogeneity. One could be interested in many
other empirical characteristics, but the point we want to make becomes clear.
RCs are complex objects; some probability distributions are better than others in
mirroring these complexities, and behavioral recommendations from better-fitting
distributions are more useful. Furthermore, from a statistical viewpoint, it is valu-
able in itself to investigate how well different probability distributions can mirror
the RC data.

The specific contributions of this chapter are as follows: We reveal theoreti-
cal similarities and differences among the distributions by collecting the relevant
theory from the literature and presenting them in a common notation. This is
useful for explaining the differences in empirical fit and forecasting performance.
As mentioned above, another contribution is, that we derive a new distribution
family (the t-Riesz distribution family). We show that this distribution family
offers a particularly good fit to the RC data and can be grounded in a realistic
low-level assumption on the data-generating process. Furthermore, we visualize
how all distributions are related to each other, and we theoretically show the re-
lationships many of which have not been previously derived. The paper contains
further minor contributions, for example, a possible formalization of the concept
of fat-tailedness for RCs.

In the empirical part of this paper, we perform fit and forecasting comparisons
of the different distributions with or without the assumption of time-varying pa-
rameters. The empirical results show, that without time-varying parameters, the
t-Riesz distribution family are the only distributions that can accurately mirror
key characteristics of the data. With time-varying parameters, we see that the
F -Riesz distribution, recently introduced to financial econometrics by Blasques
et al. (2021), becomes a close competitor of the Inverse t-Riesz in the in-sample
analysis. One notable difference between the two distributions is that the Inverse
t-Riesz assumes tail-homogeneity while the F -Riesz implies tail-heterogeneity. We
show that the assumption of tail-homogeneity fits very well, especially in more
homogeneous, industry-specific datasets. Out-of-sample forecasting comparisons
favor the Inverse t-Riesz distribution.
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Generalized Autoregressive Score Models for Realized Covariance
Matrices

In Chapter 3, we look at a specific class of observation-driven models called gen-
eralized autoregressive score (GAS) models. This class is very general because it
contains many “traditional” observation-driven models. In it, the scaled score of
the assumed probability distribution drives the time-variation in the parameters.
The score is a non-linear function of the RCs and contains information about the
entire shape of the probability density function. Thus the parameter updating dy-
namics are richer than in “traditional” observation-driven models. Furthermore,
GAS models offer a direct way to make any distributional parameter time-varying.

Probability distributions for RCs can be characterized by their symmetric pos-
itive definite expected value matrix and a set of d.o.f. parameters. A central
contribution of our paper is to endow the distribution-specific degree of freedom
(d.o.f.) parameters with GAS dynamics to make them time-varying. We show
that when estimating time-series models for RCs with static d.o.f. parameters
over different time frames, the estimated d.o.f. parameters exhibit systematic and
interpretable time-variation. Thus assuming they are time-varying is sensible. An-
other main contribution is to derive the scores and Fisher information matrices
of all hitherto used probability distributions. So far, only a small subset of those
have been derived. We further contribute to the literature by deriving a general
across-distributions formula for the scaled scores with respect to (w.r.t.) the ex-
pected value matrix that reduces the computational burden so that the models
can be applied to dimensions of up to 50 assets. We compare our GAS models
across distributions. This is sensible since different probability distributions imply
different parameter updating processes because their scaled scores differ and it is
not clear which one works best.

Empirically, we show that the time-variation in the d.o.f. parameters signifi-
cantly improves fit and forecast performance, and a statistical test confirms that
models without time-varying d.o.f. parameters are too restrictive. Furthermore,
the fitted values of the d.o.f. parameters make economic sense as they imply more
fat-tailed distributions during economic crisis periods.

Our GAS model constitutes very flexible parameter-updating dynamics that
are difficult to generalize further while keeping computational feasibility. Thus
the choice of distributional assumption is all the more important. The comparison
across distributions reveals, as in the previous chapter, that the Inverse t-Riesz
distribution offers the best in- and out-of-sample fit, closely followed by the F -
Riesz distribution. Overall the ranking across distributions is very similar to the
one in the preceding chapter, where simple time-series dynamics were assumed.
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Dynamic Principal Component CAW Models for High-Dimensional
Realized Covariance Matrices

The final chapter of this thesis proposes a model that can be applied to high-
dimensional time-series of RCs. Since portfolios often contain over 50 assets,
high-dimensional models are of considerable practical relevance. At these large
dimensions, the GAS models of the previous chapter become prohibitively slow to
estimate, even with the computationally efficient formula we derived. Models with
simple parameter updating mechanisms, like the scalar-BEKK of Chapter 2, can
still be estimated in high dimensions. However, as explained above, their simple
dynamics are already too restrictive for moderate dimensional settings (say, 10 to
50 assets). They are even more ill-suited to mirror the complex dynamics of more
than 50 asset return (co)variances. Thus, we need models designed explicitly for
high-dimensional time-series of RCs.

One strand of the literature proposes to employ so-called sparsity assumptions.
That is, the high-dimensional RCs are mapped into lower-dimensional objects,
which are assumed to follow rich dynamic models (see e.g. Wang and Zou (2010),
Tao et al. (2011), Shen, Yao, and Li (2020), Sheppard and Xu (2019), Asai and
McAleer (2015), Jin, Maheu, and Yang (2019)). Another option explored in the lit-
erature is to design relatively complex models whose parameters can be estimated
iteratively. For example, the well-known Re-DCC model of Bauwens, Storti, and
Violante (2012) falls into that category. In this chapter, we follow this latter strand
of the literature.

In particular, we propose the dynamic principal component conditional autore-
gressive Wishart (DPC-CAW) model. In the model the expected value matrix of
the Wishart distribution is decomposed into an eigenvector matrix and the cor-
responding eigenvalues; the latter are sometimes called “principal components”.
Then we assume separate but interdependent updating processes for the eigen-
vectors and eigenvalues. The RCs follow a Wishart distribution conditional on
the updated expected value matrix. Our model can be seen as an adaptation of
the multivariate DPC-GARCH model for daily return vectors proposed by Aielli
and Caporin (2015). The decomposition into eigenvectors and eigenvalues is rem-
iniscent of the (Re-)DCC model, where the RCs are decomposed into correlation
matrices and (realized) variances, both endowed with distinct but interdependent
dynamics.

The contributions of our paper are as follows: We propose the DPC-CAW model
and suggest a three-step estimation procedure for its parameters, allowing us to
estimate the model in high-dimensional settings. We perform simulation experi-
ments to confirm the reasonable precision of our three-step estimation procedure.
Furthermore, we apply the model to a 100-dimensional dataset and show in a fore-
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casting experiment that it outperforms its competitors, particularly in forecasting
the correlation structure and the global minimum variance portfolio weights.
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Chapter 2

Probability Distributions for
Realized Covariance Matrices

Introduction 2.1

The covariance matrix of financial asset returns is an essential object in the fi-
nancial econometrics literature because it entails direct implications for efficient
portfolio allocation and can be used in risk management and derivative pricing.
A realized covariance matrix (RC) is an accurate and consistent ex-post estimate
of the integrated covariance matrix over a day of financial asset returns. It is
constructed from high-frequency data and can be interpreted as making the daily
covariance matrix of the underlying financial asset returns “effectively observable”.
As such, it is advocated to model time-series of RCs directly (see e.g. Andersen et
al., 2001, Andersen et al., 2006, McAleer and Medeiros, 2008, Chiriac and Voev,
2011). This direct modelling is in contrast to traditional multivariate volatility
models (pioneered by Engle and Kroner, 1995 and Engle, 2002), which treat the
covariance matrix as latent, and are based on low-frequency daily return data. In
recent years, the increasing availability of high-frequency data has led to an enor-
mous growth of models designed for RCs. These are mostly observation-driven
models, in which RCs are treated as random matrices with time-varying condi-
tional distributions. While many different models that feature different probability
distributions have been proposed, the explicit comparison of the theoretical and
empirical properties of these probability distributions has not been the focus of a
study to the best of our knowledge.
This paper aims to fill this gap in the literature. The comparison is important

since choosing a probability distribution that accurately reflects the characteristics
of RC data is crucial because, depending on the assumed distribution, different
courses of action might result for practitioners. For instance, consider an investor
who wants to invest in the predicted global minimum variance portfolio. If she is
already invested in the underlying assets with some given weights, the covariance
matrix forecast almost surely implies different optimal weights than her current
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allocation. But should she re-weight her portfolio, or is her current allocation
“within reasonable distance” to the optimal weights? To answer this question, she
must know the probability distribution of the forecasted covariance matrix, i.e. of
the forecasted RC. There are many other practical situations like this where the
distribution of the forecasted covariance matrix is of vital importance.

Adopting a well-fitting distribution is also in itself an important aim. After all,
if empirically, the realized variances (RVs), i.e. the diagonal elements of the RCs,
have high variance, are fat-tailed, and are right-skewed (Opschoor and Lucas,
2022), the realized covariances (RCOVs) are more often positive than negative,
and the RV of one asset tends to be large if the one of another asset is large
(as is true in our data), it is logical to choose a probability distribution that can
reflect these properties theoretically. For one-dimensional models for returns, one
might argue that assuming a simple conditional distribution with time-varying
volatility yields unconditional distributions that are fat-tailed and thus fit the
data well (Brownlees, Engle, and Kelly, 2012). However, Bai and Chen (2008)
show that in the traditional multivariate GARCH models for daily return vectors,
the multivariate normal distribution is rejected, whereas the t-distribution is not.
Certainly, distributions that cannot mirror the complex stylized facts of matrix-
variate RC data cannot do so simply by adding time-varying parameters to the
models. Consequently, making an accurate distributional assumption on RCs is
imperative.

In this paragraph we outline the specific contributions of the paper. One of
the contributions is to collate theoretical knowledge about the different hitherto
used probability distributions from the respective papers into one place and com-
mon notation.1 This uncovers theoretical similarities and differences among the
distributions, which is useful in explaining their disparity in empirical fit and fore-
casting performance. Another contribution is that we suggest and derive a new
distribution family, the t-Riesz distribution family, which is based on the t-Wishart
distribution by Sutradhar and Ali (1989). We show that it has desirable theoretical
and empirical properties, is closely related to the previously suggested distribu-
tions, and can be grounded in a distributional assumption on the intraday return
vectors from which an RC is constructed. Furthermore, we demonstrate that the
t-Riesz distribution family offers a particularly good fit for the RC data. We con-
tribute further by showing that all distributions, including the t-Riesz distribution
family, can be regarded as belonging to a common overarching family. In this
context we rigorously show how exactly all distributions are related to each other.

1. We exclude the non-central Wishart distribution, which gives only slight improvements
compared to the Wishart in terms of fit and forecasting ability and is not applicable to dimensions
higher than five due to computational difficulties involving the matrix-variate hypergeometric
function.
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Many of these relations have not been previously derived. In the empirical part
of this paper, we perform fit and forecasting comparisons of the different distri-
butions in different datasets of time-series of RCs and explain how the theoretical
differences translate into differences in fit and forecasting performance. Finally,
other minor contributions of this paper are the formalization of fat-tailedness for
RCs, the discovery and derivation of another distribution (the Inverse F -Riesz),
showing that empirically it suffices to consider one of the two versions of Riesz
distributions2, and giving more straightforward proofs of some previously known
results.

We now present all probability distributions hitherto applied to time-series of
RCs, citing not their original sources, but the ones that introduced them to fi-
nancial econometrics. Probability distributions for RCs must generate symmetric
positive definite random matrices. The first one proposed for RCs was the Wishart
(Gourieroux, Jasiak, and Sufana, 2009, and Golosnoy, Gribisch, and Liesenfeld,
2012). It can be derived as the sum of outer products of independent and identi-
cally distributed (i.i.d.) normally distributed random vectors, and arises naturally
in many areas of statistics. Notably, Golosnoy, Gribisch, and Liesenfeld (2012) pro-
pose the conditional autoregressive Wishart (CAW) model, which assumes that the
conditional expected value matrix of the Wishart distribution follows BEKK dy-
namics (cf. Engle and Kroner, 1995 for BEKK dynamics). Gorgi et al. (2019) also
use the Wishart matrix but assume generalized autoregressive score (GAS) dynam-
ics for the expected value matrix. The Wishart distribution has been well-studied
(see e.g. Gupta and Nagar, 2000) and is attractive because of its relative simplic-
ity. However, it has the disadvantage of being a thin-tailed distribution, which
is in contrast to the empirically fat-tailed RCs. Yu, Li, and Ng (2017) generalize
the CAW model by assuming a Non-Central Wishart distribution, where the non-
centrality matrix depends on the lagged values of the RCs. However, their model
is not applicable to dimensions of, say, more than three assets because the like-
lihood computation of the Non-Central Wishart distribution involves the numer-
ical approximation of the matrix-variate hypergeometric function (see Koev and
Edelman, 2006), which is prohibitively slow. For this reason, we exclude it from
our comparisons. Asai and So (2013) and Jin and Maheu (2016) use the Inverse
Wishart distribution in various model frameworks. Jin and Maheu (2016) show
that the Inverse Wishart distribution is better at modeling the conditional density
of realized covariance matrices than the Wishart distribution. As we explain in
the paper, the Inverse Wishart can be considered fatter tailed than the Wishart
distribution. The first large advancement in distributional fit was accomplished

2. There is a distribution family called Riesz distributions, where each member has two ver-
sions.
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by Opschoor et al. (2018) who propose the matrix-F distribution3 and show that
it implies fatter tails for the RVs than previously used distributions. They employ
the F distribution in a GAS model and demonstrate that it significantly outper-
forms previously proposed (Inverse) Wishart distribution-based models. Zhou et
al. (2019) confirm these results. Recently, Blasques et al. (2021) introduced the
Riesz, Inverse Riesz, and F -Riesz distributions into financial econometrics. These
Riesz-type distributions generalize, respectively, the Wishart, Inverse Wishart and
F distributions by featuring degree of freedom (d.o.f.) parameter vectors instead
of scalars, thus adding flexibility. Blasques et al. (2021) propose an efficient algo-
rithm to estimate the Riesz-type distributions. Furthermore, they show that there
is again a large increase in fit and forecasting ability from the F to the F -Riesz
distribution and attribute this to the fact that the F -Riesz distribution features
heterogeneous tails for the realized variances. Gribisch and Hartkopf (2022) show
that the Riesz distribution for the standard realized covariance matrix can be de-
rived by assuming a normal distribution on the intraday return innovations and
sorting the assets according to their liquidity, where the asset with the most zero
intraday returns is interpreted to be least liquid.

The rest of this chapter is structured as follows. The next section derives all
probability distributions in a unified framework based on their stochastic represen-
tations, analyzes the distribution’s stochastic properties, discusses fat-tailedness,
shows how the distributions relate to each other and derives the probability den-
sity functions. Section 2.3 shows how the newly derived t-Riesz distribution family
can be alternatively derived from a reasonable low-level assumption on the intra-
day return vectors. Section 2.4 introduces time-variation in the expected value
parameter matrix of the distributions, 2.5 discusses estimation and performs the
in-sample fit comparison and out-of-sample forecasting performance analysis of
the different distributions, and 2.6 concludes.

2.2 Probability Distributions

Let R denote the p× p symmetric positive definite realized covariance matrix of p
asset returns on a given day and assume that it follows a probability distribution
D with support on symmetric positive semidefinite matrices. Later on, we will
add a time index t indicating the day t = 1, . . . , T and write Rt; for now, we opt
for better readability.

All hitherto in the literature considered probability distributions for R are char-
acterized by a p×p positive definite parameter matrix Ω and a distribution-specific

3. From now on we call the matrix-F simply the F distribution.
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set of degree of freedom (d.o.f.) parameters θD, such that we write

R ∼ D(Ω,θD). (2.1)

Their characterization in terms of Ω and θD will become apparent by examining
the distributions’ stochastic representations, which we will do next. The stochas-
tic representations are central to this paper since based on them we introduce
the various distributions, analyze their stochastic properties, derive the distribu-
tions’ expected values and probability density functions (p.d.f.s) as well as their
relationships to one another.

Stochastic Representations 2.2.1

All hitherto in the literature considered probability distributions for R and the
ones newly proposed in this paper can be generated from the p× p random trian-
gular matrices

B =




√
χ2
n1−1+1 0√

χ2
n2−2+1

. . .

N (0, 1)
√
χ2
np−p+1




and/or

B̄ =




√
χ2
ν1−p+1 N (0, 1)√

χ2
ν2−p+2

. . .

0
√
χ2
νp−p+p,



,

that is

(B)ij ∼
{
N (0, 1) for i < j,

χni−i+1 for i = j
(2.2)

and/or

(B̄)ij ∼
{
χνi−p+i for i = j,

N (0, 1) for i > j,
(2.3)
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Distribution KD Distribution KD
Wishart (W) BB⊤ Riesz (R) BB⊤

Inv.Wishart (iW) B̄−⊤B̄−1 Inv.Riesz (iR) B̄−⊤B̄−1

t-Wishart (tW) (b̄)−2BB⊤ t-Riesz (tR) (b̄)−2BB⊤

Inv.t-Wishart (itW) (b)2B̄−⊤B̄−1 Inv.t-Riesz (itR) (b)2B̄−⊤B̄−1

F B̄−⊤BB⊤B̄−1 F -Riesz (FR) B̄−⊤BB⊤B̄−1

F BB̄−⊤B̄−1B⊤ Inv.F -Riesz (iFR) BB̄−⊤B̄−1B⊤

Table 2.1: Stochastic representation kernels KD of all distributions for RCs. The com-
plete stochastic representations are given by CΩKDC⊤

Ω , where CΩ is the lower
Cholesky factor of the p × p symmetric positive definite parameter matrix
Ω = CΩC

⊤
Ω . b and b̄ are χn and χν distributed random variables, thus can

be interpreted as one-dimensional B and B̄, respectively. B (B̄) is the special
cases of B (B̄) where for all i, ni = n (νi = ν).

where all random variables inside the matrices are independent of each other.4

We refer to these random matrices as Bartlett matrices in reference to the well-
known Bartlett decomposition of Wishart random matrices. The parameters ni
and νi are the aforementioned d.o.f. parameters, which we collect in the p × 1
vectors n = (n1, . . . , np)

⊤ and ν = (ν1, . . . , νp)
⊤. The special cases of the Bartlett

matrices, where for all i, ni = n and νi = ν, we denote as B and B̄, respectively.
That is B and B̄ are governed by d.o.f. parameters n and ν, and B and B̄ are
governed by d.o.f. parameter vectors n and ν. Note that for p = 1, the Bartlett
matrices reduce to the random variables χn and χν , respectively. For the matrix
distributions to exist, we must restrict ni > i − 1 and νi > p − i since otherwise
the χ distributions on the main diagonals would not exist.5

LetD ∈ (W, iW, tW, itW, F,R, iR, tR, itR, FR, iFR) denote the different prob-
ability distributions (see Table 2.1 for their full names). In Section 2.2.2 below we
will introduce the distributions one by one and analyze their stochastic properties,
but for now we continue to present the general stochastic representations. The
ones in green are the novel distributions derived in this paper. Assuming that R
follows one of the distributions D, its stochastic representation can be written as

R = CΩKDC⊤Ω , (2.4)

4. The χn distribution is given in e.g. Walck (2007), Section 8.14.
5. Note that this does not imply the existence of E [R]. For example the Inverse Wishart

distribution is based on
(
B̄B̄⊤)−1

and its mean only exists if in fact ν > p + 1, whereas the
distribution exists for ν > p− 1.
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Distribution θD Distribution θD
Wishart n Riesz n

Inv.Wishart ν Inv.Riesz ν

t-Wishart (n, ν)⊤ t-Riesz (n⊤, ν)⊤

Inv.t-Wishart (n, ν)⊤ Inv.t-Riesz (n,ν⊤)⊤

F (n, ν)⊤ F -Riesz (n⊤,ν⊤)⊤

F (n, ν)⊤ Inv.F -Riesz (n⊤,ν⊤)⊤

Table 2.2: Degree of freedom parameters of distributions for RCs.

where KD is a distribution-specific function of one or both of the Bartlett matrices
or their special cases, and CΩ denotes the lower Cholesky factor of symmetric
positive definite parameter matrix Ω. We call KD stochastic representation kernel.
The distribution parameters are thus given by the parameter matrix Ω and the
d.o.f. parameter(s) in KD (one or two of the set (n, ν,n,ν)). We collect the
distribution-specific d.o.f. parameters in the vector θD. The exact composition of
θD for the different distributions is given in Table 2.2.6

Characterization in Terms of Expected Value Matrix

We now standardize the distributions; that is, we characterize them in terms of
their p× p symmetric positive definite expected value matrix

Σ = CC⊤ := E [R] , (2.5)

instead of in terms of Ω, where C is the lower Cholesky factor of Σ. This standard-
ization allows for a simple two-step estimation strategy, where the O(p2) expected
value matrix Σ is estimated by its obvious method of moments estimator in the
first step and the d.o.f. parameters in a second step. Furthermore, since Σ has the
same interpretation across distributions (unlike Ω), standardization makes com-
parisons of the distributions easier. Finally, the nesting relationships between the
different distributions (see Figure 2.6 on p. 30) are only valid for the standardized,
i.e. Σ-parameterized, distributions.

We denote the expected value of the stochastic representation kernel by

MD := E [KD] . (2.6)

6. It is easy to see from Table 2.1, which d.o.f. parameter(s) characterize each distribution.
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Distribution MD Distribution MD
Wishart In Riesz dg(n)

Inv.Wishart I 1
ν−p−1 Inv.Riesz dg(

◦
ν)

t-Wishart I n
ν−2 t-Riesz dg(n) 1

ν−2
Inv.t-Wishart I n

ν−p−1 Inv.t-Riesz dg(
◦
ν)n

F I n
ν−p−1 F -Riesz dg(

◦
n)

F I n
ν−p−1 Inv.F -Riesz dg(

◦◦
n)

Table 2.3: Expected values of stochastic representation kernels, MD = E[KD]. For the

definitions of
◦
ν,

◦
n and

◦◦
n, see Theorem 2.2.1.

Then the stochastic representation of the standardized distributions is

R = CM
− 1

2

D KDM
− 1

2

D C⊤, (2.7)

since

E[CM
− 1

2

D KDM
− 1

2

D C⊤] = CM
− 1

2

D E [KD]M
− 1

2

D C⊤ = Σ. (2.8)

This implies that

CΩ = CM
− 1

2

D ⇔ C = CΩM
1
2

D and Ω = CM−1D C⊤ ⇔ Σ = CΩMDCΩ. (2.9)

The expectations MD are straightforward to derive by applying Theorem 2.2.1
(p. 19). They are listed in Table 2.3. Notice that they are all diagonal matrices,

so if all its diagonal elements are non-negative, M
−1/2
D is uniquely defined. If an

element is negative while the conditions for the existence of the distributions are
fulfilled, then the expected value Σ does not exist. In this paper, we assume that
the expected value always exists, and we can thus equivalently characterize the
distribution with Σ and write

R ∼ D(Σ,θD). (2.10)
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Theorem 2.2.1. Let B and B̄ be defined as in equations (2.2) and (2.3). Then

E[BB⊤] = dg(n), (Dı́az-Garćıa, 2013)

E[
(
B̄B̄⊤

)−1
] = dg(

◦
ν), (Louati and Masmoudi, 2015)

E[B̄−⊤BB⊤B̄−1] = dg(
◦
n), (Blasques et al., 2021) and

E[B
(
B̄B̄⊤

)−1
B⊤] = dg(

◦◦
n),

with the p× 1 vectorsa

n = (n1, n2, . . . , np)
⊤
,

◦
ν = (

◦
ν1,

◦
ν2, . . . ,

◦
νp)
⊤,

◦
νi=

{
1

νi−p−1 , for i = 1
1

νi−p+i−2

(
1 +

∑i−1
j=1

◦
νj

)
for i = 2, . . . , p,

(2.11)

◦
n = (

◦
n1,

◦
n2, . . . ,

◦
np)
⊤,

◦
ni=

{
n1

ν1−p−1 , for i = 1
1

νi−p+i−2

(
ni +

∑i−1
j=1

◦
nj

)
for i = 2, . . . , p

and (2.12)

◦◦
n = (

◦◦
n1,

◦◦
n2, . . . ,

◦◦
np)
⊤

◦◦
ni=

{
n1

◦
ν1, for i = 1∑i−1
j=1

◦
νj +(ni − i+ 1)

◦
νi, for i = 2, . . . , p.

(2.13)

Proof in Appendix.

a. If ∀i, ni = n, νi = ν then
◦
νi= (ν − p − 1)−1 and

◦
ni=

◦◦
ni= n(ν − p − 1)−1. For p = 1 we

obtain the expectations of a χ2
n, an inverse χ2

ν , and the χ2
n/χ

2
ν ratio distribution.

The Individual Distributions 2.2.2

To understand the various distributions’ stochastic properties, we now analyze
and compare their stochastic representation kernels (Table 2.1). There are many
properties amongst which we could compare the distributions. We focus on the
marginal distribution of the diagonal elements (RVs) since the RVs are of particular
interest. Furthermore we focus on the dependence amongst all elements in the
stochastic representation kernels. We start with the Wishart distribution (W),
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which we treat as our baseline case,

BB⊤.

The diagonal elements of the stochastic representation kernel of the Wishart follow
independent χ2

n-distributions, which is easy to see by noticing that

(BB⊤)ii =
p∑

k=1

(B)ik(B)ki =
p∑

k=1

(B)2ik =

i∑

k=1

(B)2ik, (2.14)

which is a sum of a χ2
n−i+1 and i − 1 independent (N(0, 1))2 random variables,

which yields a χ2
n random variable. The Riesz distribution (R),

BB⊤,

adds flexibility by allowing for different d.o.f. parameters of the χ-distributions on
the main diagonal of the Bartlett matrix, which leads to the diagonal elements

being distributed as (BB⊤)ii
iid∼ χ2

ni
. The t-Wishart (tW) has stochastic repre-

sentation kernel

(b̄)−2BB⊤,

where the term (b̄)−2 corresponds to an inverse χ2
ν random variable. It is imme-

diately obvious, that the scalar multiplication of every element in BB⊤ by (b̄)−2

creates much more dependence among the individual elements as for the Wishart
distribution. In particular, the diagonal elements of the stochastic representation
kernel are now dependent random variables following a ratio distribution ∼ χ2

n/χ
2
ν ,

where the χ2
ν random variable is common across all diagonal elements and the χ2

n

random variable is specific to the index i. This implies that if one diagonal ele-
ment has a large realization, the others are likely to have a large realization as
well. Again, the Riesz version of the distribution, that is the t-Riesz (tR) with
stochastic representation kernel

(b̄)−2BB⊤,

adds flexibility by allowing for the χ2
ni

random variables to have different d.o.f. pa-
rameters. The F distribution has stochastic representation kernel

B̄−⊤BB⊤B̄−1.

Note that it is related to the t-Wishart in the sense that if the p × p Bartlett
matrix B̄ was of dimension 1× 1, i.e. a scalar, the stochastic representation kernel
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Figure 2.1: Marginal p.d.f.s of the first RV (R1 1) implied by the Riesz, t-Riesz, and
F -Riesz distributions for a two-dimensional RC with the parameter setting
E[R] = I2, n = (15, 30)⊤, and with three different settings for the d.o.f. pa-
rameters, ν = 4, 5, 10 (t-Riesz) and ν = (4, 4)⊤, (5, 5)⊤, (10, 10)⊤ (F -Riesz).

of the t-Wishart would arise. However, it is important to understand, that the F
distribution does not nest the t-Wishart and can thus not be thought of as a more
flexible version of it. Among the notable differences between the two distributions
is that the t-Wishart features much higher dependence among the elements in the
stochastic representation kernel. This is easy to see as for the t-Wishart every
element in BB⊤ is scaled by (b̄)−2, thus all elements are influenced by one random
variable. For the F on the other hand BB⊤ is scaled by B̄ which itself consists of
p(p+1)/2 independent random variables. The Riesz version of the F distribution,
called the F -Riesz (FR) adds flexibility by allowing the χ2

ni
and χ2

νi
random

variables to have different d.o.f. parameters, thus has stochastic representation

B̄−⊤BB⊤B̄−1.

To illustrate the differences between the Riesz, t-Riesz, and F -Riesz we created
Figures 2.1 and 2.2. Figure 2.1 plots the marginal p.d.f.s of the first RV (R1 1)
implied by each distribution for the parameter setting E[R] = I2, n = (15, 30)⊤,
with three different settings for the d.o.f. parameters, ν = 5, 6, 10 (t-Riesz) and,
correspondingly ν = (5, 5)⊤, (6, 6)⊤, (10, 10)⊤ (F -Riesz). We see that the F -Riesz
and t-Riesz distributions feature similar marginal distributions for the RV, espe-
cially for larger ν. This is not surprising, as the two distributions converge to the
same Riesz distribution as ν goes to infinity (see Section 2.2.5). The F -Riesz and
t-Riesz distributions have fatter tails than the Riesz, which become smaller with
increasing ν. Furthermore, both distributions and have more probability mass on
small RVs than the Riesz. In Figure 2.2 we take the setting with ν = 5 (t-Riesz)
and ν = (5, 5)⊤ (F -Riesz) from above and plot the marginal joint distribution
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t-Riesz F -Riesz Riesz

Figure 2.2: Heatmap of marginal joint p.d.f. of the first RV and second RV (R1 1, R2 2)
implied by the Riesz, t-Riesz, and F -Riesz distributions for a two-dimensional
RC with the parameter setting E[R] = I2, n = (15, 30)⊤, ν = 5 (t-Riesz),
ν = (5, 5)⊤ (F -Riesz).

of the two RVs (R1 1, R2 2). The plots look qualitatively the same for different
settings of ν. We first note the Riesz distribution looks drastically different from
the others in that most of its probability mass lies around the value of one for the
two RVs but the probability mass is less peaked and spread out more (elliptically
around the coordinate (1,1)) than for the other two distributions. Comparing
subplot one and two, the stark differences between the t-Riesz and F -Riesz distri-
bution now become visible. The t-Riesz distributions’ probability mass lies in an
elliptical shape around the diagonal from bottom right to top left with a high peak
in probability mass on values between 0 and 0.5 for both RVs. This shape implies
that the two RVs are more likely to have similar values than drastically different
ones for any size of RV realization. In contrast, the F -Riesz probability mass fans
out in a triangular fashion from the bottom left corner with more probability mass
along the coordinate axes than around the bottom-left to top-right diagonal. It
also peaks on values between 0 and 0.5, but the peak is less pronounced than for
the t-Riesz and for these small values the probability mass is much more spread
out. Furthermore, we see for the F -Riesz, that if one RV is small the probability of
the other being small is not nearly as high as for the t-Riesz and there lies substan-
tial probability mass on large realizations for the other RV. Conversely, if one RV
has a tail realization the other is more likely not to have one, a property Blasques
et al. (2021) call tail-heterogeneity. Consequently we call the t-Riesz distribution
tail-homogeneous. The correlation between the two RVs is 0 for the Riesz, 0.24
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Figure 2.3: Marginal p.d.f.s of the first RV (R1 1) implied by the Inverse Riesz, Inverse
t-Riesz, and Inverse F -Riesz distributions for a two-dimensional RC with
the parameter setting E[R] = I2, ν = (30, 15)⊤, and with three different
settings for the d.o.f. parameters, n = 4, 5, 10 (Inverse t-Riesz) and n =
(4, 4)⊤, (5, 5)⊤, (10, 10)⊤ (Inverse F -Riesz).

for the F -Riesz distribution and 0.87 for the t-Riesz. All these observations are in
line with the intuition we gained above from analyzing the stochastic representa-
tion kernels. The above analysis makes it plausible that the t-Riesz distribution
family would perform better during market-wide crises where all assets experience
high volatility, whereas the F -Riesz distribution could offer benefits when only a
particular asset or subsections of the market experience distress.
To complete the analysis of all distribution, we still have to consider the inverse

versions of the distributions mentioned so far. Unfortunately, it is difficult to gain
an intuition of the stochastic properties of inverse distributions since due to the
inversion of the Bartlett matrices, the marginal distributions of the elements in
KD and their dependencies are not easily derived. However, we can visualize the
same marginal distributions as for non-inverted distributions. Figure 2.3 plots
the marginal p.d.f.s of the first RV (R1 1) implied by the Inverse Riesz, Inverse
t-Riesz, and Inverse F -Riesz distributions for the parameter setting E[R] = I2,
ν = (30, 15)⊤, with three different settings for the d.o.f. parameters, n = 5, 6, 10
(Inverse t-Riesz) and, correspondingly n = (5, 5)⊤, (6, 6)⊤, (10, 10)⊤ (Inverse F -
Riesz). We see that the marginal distribution of the RV is almost identical for
the Inverse F -Riesz and Inverse t-Riesz distributions. The Inverse F -Riesz and
Inverse t-Riesz distributions have is more skewed and has fatter tails than the
Inverse Riesz, which become smaller with increasing n. It is also noteworthy, that
the Inverse Riesz, compared to the Riesz in Figure 2.1, has larger tails. Even
though the Inverse F -Riesz and Inverse t-Riesz have almost identical marginal
distributions for the RV, their joint marginal distributions of the first and second
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Figure 2.4: Heatmap of marginal joint p.d.f. of the first RV and second RV (R1 1, R2 2)
implied by the Inverse Riesz, Inverse t-Riesz, and Inverse F -Riesz distri-
butions for a two-dimensional RC with the parameter setting E[R] = I2,
ν = (30, 15)⊤, n = 5 (Inverse t-Riesz), n = (5, 5)⊤ (Inverse F -Riesz).

RV (R1 1 and R2 2) differ extremely, as we can see in Figure 2.4. In particular,
the Inverse t-Riesz’s probability mass is very concentrated around the lower-left
to upper-right diagonal with a very high peak on values below 0.3 for both RVs.
As for the t-Riesz’s this implies that R1 1 and R2 2 are highly correlated. The
Inverse F -Riesz’s probability mass is spread out in a triangular fashion with a
much lower peak than the Inverse t-Riesz. The correlation between R1 1 and R2 2

is 0.70, 0.017, and 0.023 for the Inverse t-Riesz, Inverse F -Riesz, and Inverse Riesz,
respectively. It is noteworthy, that the Inverse F -Riesz, compared to the F -Riesz
in Figure 2.2, is more spread out and features much lower correlation between the
RVs.

2.2.3 Fat-Tailedness

In the literature, fat-tailedness of RCs has been measured by or considered syn-
onymous to fat-tailedness of their diagonal elements, i.e. the RVs (c.f. Opschoor
et al., 2018 and Blasques et al., 2021). We extend this interpretation by taking the
log-determinant of the RCs as the quantity to determine their fat-tailedness be-
cause the determinant of a matrix can be geometrically interpreted as its volume.
Naturally, we call those matrix-variate distributions fat-tailed that imply fat-tailed
marginal distributions for the log-determinant of their random matrices. Conve-
niently, for random matrices from any distribution for RCs, the log-determinant
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Figure 2.5: Marginal p.d.f. of the log-determinant of the RC for the (Inverse) Riesz, (In-
verse) t-Riesz, and (Inverse) F -Riesz distributions for a two-dimensional RC
with the parameter setting E[R] = I2, and for the non-inverted distributions,
n = (15, 30)⊤, ν = 5 (t-Riesz), ν = (5, 5)⊤ (F -Riesz), and for the inverse
distributions, ν = (30, 15)⊤, n = 5 (Inverse t-Riesz), n = (5, 5)⊤ (Inverse
F -Riesz).

equals the sum of log-χ random variables. This can be seen from the stochas-
tic representations (Table 2.1). For example, for the F -Riesz distribution, the
stochastic representation of the log-determinant, omitting the subscript t, is equal
to

log |R| = log |CΩB̄
−⊤BB⊤B̄−1C⊤Ω | (2.15)

= 2

p∑

i=1

log(CΩ)ii + 2

p∑

i=1

log(χni−i+1)− 2

p∑

i=1

log(χνi−p+i), (2.16)

and for the t-Riesz distribution it is

log |R| = log |CΩ(b̄)
−2BB⊤C⊤Ω | (2.17)

= 2

p∑

i=1

log(CΩ)ii + 2

p∑

i=1

log(χni−i+1)− 2 p log(χν). (2.18)

Thus for all distributions for RCs the marginal distribution of the log-determinant
can be theoretically derived along with its tail properties. A distribution D1 is then
considered to be more fat-tailed than another, D2, if there exists some real number
x, such that for all real y > x, the p.d.f.s are such that plog |R|,D1

(y) > plog |R|,D2
(y).

For the case of 1 × 1 random matrices, i.e. random variables, this definition cor-
responds to the classical definition of fat-tailedness for random variables as the
determinant of a random variable is simply the random variable itself. We leave
for future research the further theoretical investigation of fat-tailedness for RCs.
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In Figure 2.5 we plot the marginal p.d.f.s of the log-determinant implied by the
Riesz-type distributions. We see, that the (Inverse) F -Riesz and (Inverse) t-Riesz
distributions can indeed be considered fat-tailed, as they feature fatter right tails
than the (Inverse) Riesz distribution. It is noteworthy that the t-Riesz distribution
features a fatter right tail than the F -Riesz.

2.2.4 Asset Ordering

For all Riesz-type distributions, a different ordering of the assets in the RCs yields
a different version of the respective probability distribution. That is, if we assume
R ∼ D(Ω,θD), then any other ordering the assets, PRP⊤, where P denotes an
arbitrary permutation matrix7, has stochastic representation PCΩKD(CΩ)

⊤P⊤.8

This new stochastic representation yields for Riesz-type distributions a different
and generally unknown probability distribution, which we denote by DP(Ω,θD).
The next section covers a special permutation matrix for which we do know the
probability distributions.

In practice, we are given a randomly ordered RC PRP⊤ for which the model
D(Ω,θD) is only correctly specified if, by chance, the random ordering corresponds
to the true one (P = I). To recover the true ordering, we can treat the ordering
as a parameter to optimize over. Blasques et al. (2021) have proposed an effi-
cient algorithm to optimize the likelihood for many different orderings9 and then
choosing the ordering with the highest estimated likelihood value. In a simulation
experiment, they find that their algorithms’ estimated likelihood values come close
to the likelihood value of the true data-generating process and that the ordering
of the assets gets close to the true ordering.

Riesz Distribution Versions

For any Riesz-type distribution there are two versions; we call them version-I and
version-II (c.f. Blasques et al., 2021, who call them type-I and type-II, respec-
tively). In this subsection we contribute to the literature by showing that the two
versions are closely related since assuming R follows a version-I Riesz distribution

is equivalent to assuming that R with the asset order reversed, denoted by
←−
R,

follows the corresponding version-II distribution with “reversed” parameters. See
Table 2.4 for the exact relationships.

7. A permutation matrix is a square matrix that has exactly one entry of one in each row and
each column and zeros elsewhere.

8. Recall the stochastic representation of R is R = CΩKD(CΩ)
⊤.

9. As the number of possible orderings explodes with increasing p, trying all possible orderings
is infeasible.
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Our versions Alternative versions

R ∼ RI(Ω,n) ⇔ ←−
R ∼ RII(

←−
Ω ,←−n )

R ∼ iRII(Ω,ν) ⇔ ←−
R ∼ iRI(

←−
Ω ,←−ν )

R ∼ tRI(Ω,n, ν) ⇔ ←−
R ∼ tRII(

←−
Ω , ν,←−n )

R ∼ itRII(Ω, n,ν) ⇔ ←−
R ∼ itRI(

←−
Ω ,←−ν , n)

R ∼ FRI(Ω,n,ν) ⇔ ←−
R ∼ FRII(

←−
Ω ,←−ν ,←−n )

R ∼ iFRII(Ω,n,ν) ⇔ ←−
R ∼ iFRI(

←−
Ω ,←−ν ,←−n )

Table 2.4: Equivalence between the Riesz distribution versions. In this paper we choose
version-I for the non-inverted distribution and version-II for the inverse ones.
Outside of this subsection we do not refer to the different versions and conse-
quently drop the version superscripts for better readability.

To derive the equivalence we have to introduce some concepts. First note that
the permutation matrix which achieves a reversal of the asset order in R is the
is the exchange matrix, i.e. a matrix with ones on the diagonal from the upper
right-hand corner to the lower left-hand corner and zeros elsewhere,

Pe =



0 1

. .
.

1 0


 .

We can visualize
←−
R := PeRP⊤e as the original matrix rotated by 180 degrees.

Furthermore, note that PeB̄Pe is equal to B but with degrees of freedom ←−ν =
(νp, νp−1, . . . , ν1) instead of n. We denote it by B←−ν . Similarly, PeBPe is equal
to B̄ but with ←−n instead of ν, denoted by B̄←−n . Next, note that Pe = P⊤e , and
PePe = I, such that Pe = P−1e . Finally, note that we can write the reverse order
Ω as

←−
Ω = PeΩPe = PeCΩPePeC

⊤
ΩPe = U←−

Ω
U⊤←−

Ω
,

where PeCΩPe = U←−
Ω

is the upper Cholesky factor of
←−
Ω , since the decomposition

of a symmetric positive definite matrix into an upper triangular matrix post-
multiplied by its transpose, i.e. the Cholesky decomposition, is unique.

We now show the equivalence between the two versions using the example of the
F -Riesz distribution. Assume that R follows our version-I F -Riesz distribution,
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R ∼ FR(Ω,n,ν). Then

PeRPe = PeCΩB̄
−⊤BB⊤B̄−1C⊤ΩPe

= PeCΩPePeB̄
−⊤PePeBPePeB

⊤PePeB̄
−1PePeC

⊤
ΩPe

= PeCΩPe(PeB̄Pe)
−⊤PeBPePeB

⊤Pe(PeB̄Pe)
−1(PeCΩPe)

⊤

= U←−
Ω
B−⊤←−ν B̄←−n B̄

⊤←−nB
−1
←−ν U⊤←−

Ω
,

which is the stochastic representation of the version-II F -Riesz distribution with

parameters
←−
Ω , ←−ν , and ←−n , FRII(

←−
Ω ,←−ν ,←−n ) (Theorem 8 in Blasques et al., 2021).

We can derive the distributions of
←−
R for all other Riesz-type distributions in

similar fashion. Regarding the stochastic representation Kernel KD we come to
the conclusion, that the alternative versions not used in this paper (Table 2.4) are
equal to the ones in our stochastic representation (Table 2.1) where B and B̄ (and
their special cases) are interchanged.
Empirically it does not matter which distribution version we assume since, as we

mentioned above, we take the asset order as a parameter to optimize over. That
is, assuming one version and estimating it via maximum likelihood should yield
the “reversed” estimates for the asset order and the parameter values as compared
to assuming the other version.

Inverse Distribution Versions

As you can see in Table 2.4, in this paper we choose the version-II distributions for
the inverted ones and the version-I distributions for the non-inverted ones. Why we
choose to switch versions will become clear below. First, note that assuming that
R follows a version-I (version-II) inverse distribution with parameter matrix Ω−1

is equivalent to assuming that R−1 follows the corresponding version-I (version-
II) non-inverted distribution with parameter matrix Ω. This is how the inverse
distributions are defined (e.g. Blasques et al., 2021).
As an example, lets take a version-I Riesz distribution, R ∼ R(Ω−1,n), and

use the stochastic representation to derive its inverse, the version-I Inverse Riesz
distribution, as defined above.

R = CΩ−1BB⊤C⊤Ω−1

⇔R−1 = C−⊤
Ω−1B

−⊤B−1C−1
Ω−1 .

So the stochastic representation of the version-I Inverse Riesz distribution is
C−⊤

Ω−1B
−⊤B−1C−1

Ω−1 . The important thing to note here is, that this stochastic

representation features C−⊤
Ω−1 = UΩ, which is the upper Cholesky factor of Ω.
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In fact, we can derive in similar fashion, that the stochastic representations of all
inverse version-I distributions feature the upper Cholesky factor of Ω, while all in-
verse version-II distributions use the lower Cholesky factor. Thus, in order to have
one general stochastic representation formula based on the lower Cholesky factor
that is valid for all distributions in our paper, i.e. equation (2.4) (R = CΩKDC⊤Ω),
and since empirically it does not matter which distribution version we choose (see
above), we use the version-II for the inverse and version-I for the non-inverted
ones.

Distribution Relationships 2.2.5

Figure 2.6 shows how the distributions are related to each other. Every Wishart-
type distribution is a special case of its Riesz-type counterpart and is obtained by
setting the entries in each d.o.f. parameter vector all equal to each other. This is
easily seen from the stochastic representations in Table 2.1, where the Wishart-
type distributions have the same stochastic representation kernel as their Riesz-
type counterparts but with B and B̄ instead of B and B̄. The proofs for the dashed
arrows are also immediately evident from the stochastic representations since in the
case of B̄ (B) being one-dimensional, the stochastic representation of the (Inverse)
F -Riesz distribution reduces to the one of the (Inverse) t-Riesz distribution. We
derive the remaining relationships in the following Theorem 2.2.2.

Theorem 2.2.2.
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Proof in Appendix.

As they are just special cases, Theorem 2.2.2 also holds for the corresponding
Wishart-type distributions (F → W or iW, tW → W, itW → iW). Finally,
note that an Inverse F distribution is again an F distribution with the degrees of
freedom parameters switched and the expected value matrix inverted, as is easy to
see from their stochastic representations. However, an Inverse F -Riesz distribution
is not again an F -Riesz distribution (see Section 2.7.2 in the appendix). We derive
the novel Inverse F -Riesz distribution in this paper.
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Probability Density Functions 2.2.6

We first need to introduce some special functions used in the probability density
functions.

Definition 2.2.1 (Generalized Power Function). Let X be a real p×p matrix, n =
(n1, . . . , np)

⊤ be a real vector of length p and let X[i] denote the square submatrix
created by taking the first i rows and columns of X. Then the generalized power
function (a.k.a. highest weight vector), denoted by |X|n is defined as

|X|n = |X[1]|n1−n2 |X[2]|n2−n3 . . . |X[p−1]|np−1−np |X|np .

The generalized power function is defined in e.g. Faraut and Korányi (1994). The
determinant-with-subscript notation is taken from Blasques et al. (2021). It makes
immediately visible the close relation of the generalized power function to the de-
terminant since for n1 = n2 = . . . = np = n, |X|n = |X|n. The next lemma
shows that in the case of positive definite X, the generalized power function can
be written as a function of the diagonal elements of the lower Cholesky decompo-
sition of X. Blasques et al. (2021) name this special case power weighted determi-
nant.

Lemma 2.2.1 (Power Weighted Determinant). Let Σ be positive definite and
Σ = TDT⊤ be the unique decomposition into a lower triangular square matrix
with ones on the main diagonal, T and diagonal matrix with positive entries on
the diagonal D. Then we can rewrite

|Σ|n =

p∏

i=1

Dni
ii =

p∏

i=1

C2ni
ii .

Proof in Appendix.

The next lemma lists algebraic equalities for the power weighted determinant. It
corresponds to Lemma 3 in Blasques et al. (2021).10

10. Part (v) below, where U |R|n denotes their upper power weighted determinant, is only
included to see the equivalence between our and their p.d.f. representations.
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Lemma 2.2.2 (Lemma 3, Blasques et al., 2021). Given a scalar n, a vector n
of length p, a vector of ones 1 of length p, and a positive definite matrix R, the
following identities hold.

(i) If n = n · 1, then |R|n·1 = |R|n

(ii) Let n1,n2 be two vectors of length p, then we have |R|n1
· |R|n2

= |R|n1+n2
.

(iii) (|R|n)−1 = |R|−n.

(iv) If Σ = CC⊤, where Σ is positive definite with lower Cholesky factor C, then
|R|n · |Σ|−n = |C−1RC−⊤|n. As a special case we have |Cdg(n)C⊤|ν =∏p

i=1 n
νi
i |Σ|ν .

(v) U |R|n = |R−1|−n.

Next, we define the (multivariate) gamma function as in e.g. equations (5.2.1),
(35.3.4) and (35.3.5) of the NIST Digital Library of Mathematical Functions.

Definition 2.2.2 (Multivariate Gamma Function). Let n be a real vector of
length p. Then the vector-valued multivariate gamma function is defined as

Γp(n) = πp(p−1)/4
p∏

i=1

Γ

(
ni −

i− 1

2

)
,

with 2ni > i− 1, i = 1, . . . p.
Let n be a scalar. Then the scalar-valued multivariate gamma function is defined

as

Γp(n) = πp(p−1)/4
p∏

i=1

Γ

(
n− i− 1

2

)
,

with 2n > p− 1.

Obviously if n1 = n2 = . . . = np = n, then

Γp(n) = Γp(n).

Now that we have introduced all special functions used in the probability density
functions (p.d.f.s), we list the p.d.f.s for all considered probability distributions in
Table 2.5. We derive the ones of the (Inverse) t-Riesz distribution and the Inverse
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Distribution Probability Density Function pD(R|Ω,θD)
Wishart 1

2np/2Γp(n/2)
|Ω|−n

2 |R|n−p−1
2 etr(− 1

2Ω
−1R)

Riesz 1
2pn̄/2Γp(n/2)

|Ω|−n
2
|R|n−p−1

2
etr(− 1

2Ω
−1R)

Inv.Wishart 1
2νp/2Γp(ν/2)

|Ω| ν2 |R|− ν+p+1
2 etr(− 1

2ΩR−1)

Inv.Riesz 1
2pν̄/2Γp(

←−ν /2)
|Ω| ν

2
|R|− ν+p+1

2
etr(− 1

2ΩR−1)

t-Wishart Γ((ν+pn)/2)
Γp(n/2)Γ(ν/2)

|Ω|−n
2 |R|n−p−1

2 (1 + tr(Ω−1R))−
ν+pn

2

t-Riesz Γ((ν+pn̄)/2)
Γp(n/2)Γ(ν/2)

|Ω|−n
2
|R|n−p−1

2
(1 + tr(Ω−1R))−

ν+pn̄
2

Inv.t-Wishart Γ((n+pν)/2)
Γ(n/2)Γp(ν/2)

|Ω| ν2 |R|− ν+p+1
2 (1 + tr(ΩR−1))−

n+pν
2

Inv.t-Riesz Γ((n+pν̄)/2)
Γ(n/2)Γp(

←−ν /2)
|Ω| ν

2
|R|− ν+p+1

2
(1 + tr(ΩR−1))−

n+pν̄
2

F
Γp((n+ν)/2)

Γp(ν/2)Γp(n/2)
|Ω|−n

2 |R|n−p−1
2 |I+C−1Ω RC−⊤Ω |−

n+ν
2

F -Riesz
Γp((
←−n+←−ν )/2)

Γp(n/2)Γp(
←−ν /2)

|Ω|−n
2
|R|n−p−1

2
|I+C−1Ω RC−⊤Ω |−n+ν

2

Inv.F -Riesz
Γp((n+ν)/2)

Γp(n/2)Γp(
←−ν /2)

|Ω| ν
2
|R|− ν+p+1

2
|(I+C⊤ΩR

−1CΩ)
−1|n+ν

2

Table 2.5: Probability density functions of distributions for RCs. Derivations from
stochastic representations are in Section 2.7.2 (appendix). n̄ = 1

p

∑p
i=1 ni.

F -Riesz distribution in Theorem 2.2.3, the ones of the (Inverse) Riesz and F -Riesz
distributions are given in Theorems 4, 7 and 8 of Blasques et al. (2021). See Section
2.7.2 in the appendix for more details.

Theorem 2.2.3 (Probability Density Functions). The probability density func-
tions of CΩKDCΩ for D ∈ (tR, itR, iFR) obtain as

ptR(R|Ω,n, ν) =
Γ ((ν + pn̄)/2)

Γ(ν/2)Γp(n/2)
|Ω|−n

2
|R|n−p−1

2

(
1 + tr

(
Ω−1R

))− ν+pn̄
2 ,

pitR(R|Ω, n,ν) =
Γ ((n+ pν̄)/2)

Γ (n/2) Γp

(←−ν /2
) |Ω| ν

2
|R|− ν+p+1

2

(
1 + tr

(
ΩR−1

))−n+pν̄
2 ,

piFR(R|Ω,n,ν) =
Γp((ν + n)/2)

Γp(
←−ν /2)Γp (n/2)

|Ω| ν
2
|R|− ν+p+1

2

∣∣∣
(
I+C⊤ΩR

−1CΩ

)−1∣∣∣
ν+n

2

.

Proof in Appendix.
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The p.d.f.s of the Wishart-type distributions follow by simply setting all entries
in the d.o.f. vectors equal to each other. The p.d.f.s of the standardized probability
distributions, which we indicate by writing pD(Σ,θD) instead of pD(Ω,θD), are
given in the appendix in Table 2.11. They are easily derived by replacing Ω with
CM−1D C⊤.11

2.3 The t-Riesz Distribution Family Based on
Intraday Return Vectors

This section shows how the newly derived t-Riesz distribution family can be al-
ternatively derived from a reasonable low-level assumption on the intraday return
vectors. In particular, we show that it arises naturally as the distribution of the
standard realized covariance matrix,

R =

m∑

j=1

rjr
⊤
j (2.19)

under a set of assumptions on the underlying intraday return vectors rj . Let us de-
note the mp×1 vector of all intraday returns as r̃ = (r⊤1 , r

⊤
2 , . . . , r

⊤
m)⊤. Under the

assumption that it follows a multivariate elliptically contoured distribution with
zero mean vector and block diagonal dispersion matrix Ω̃ = (I⊗Ω), where Ω is the
same p×p symmetric positive definite parameter matrix as above, the distribution
of the realized covariance matrix R is given by Theorem 2.3.1.

Theorem 2.3.1. Let r̃ follow a multivariate elliptically contoured distribution
(as defined in Gupta, Varga, and Bodnar, 2013, Definition 2.1) with zero mean
vector, dispersion matrix Ω̃ = (I⊗Ω) and p.d.f.

f(r̃) = |Ω|−m/2h(r̃⊤Ω̃r̃). (2.20)

Then the p.d.f. of R =
∑m

j=1 rjr
′
j obtains as

π
pm
2

Γp

(
m
2

) |R|m−p−1
2 f(tr(RΩ−1)). (2.21)

Proof in Appendix.

For the special case, where r̃ is assumed to follow a multivariate normal distri-
bution, it is well known that the Wishart distribution R ∼ W(Ω,m) is obtained.

11. See Section 2.7.2 in the appendix for more details.
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The Wishart is still defined if the d.o.f. parameter is a real number n, rather than
natural number m. However, it is common knowledge that the normality assump-
tion is strongly rejected for financial return data. Furthermore, the multivariate
normality assumption with block-diagonal covariance matrix Ω̃ implicitly assumes
that the individual intraday return vectors rj are independent of each other, which
is a very strong assumption. A more realistic multivariate elliptically contoured
distribution is the multivariate t-distribution, as it accommodates the fat tails ob-
served in financial return data. Furthermore, although due to the block-diagonal
structure of Ω̃ there is no correlation between the rj , the multivariate t distribution

does imply dependence between them. For this special case, i.e. r̃ ∼ mvt(0, Ω̃, ν),
we obtain the t-Wishart distribution, R ∼ tW(Ω,m, ν).12 The more reasonable
assumption of fat tails and inter-j dependence is mirrored in the superior perfor-
mance of the t-Wishart distribution over the Wishart as documented in Section
2.5.13

Next, we are going to derive the t-Riesz distribution in the same way as the
t-Wishart, but with the notion of asset liquidity included, as proposed by Gribisch
and Hartkopf (2022).14 We measure liquidity for a given asset by the number of
intraday intervals where at least one trade occurred, and thus a new price ob-
servation was recorded. Only those intraday returns in r̃ for which there was a
new price observation are assumed to jointly follow a multivariate t-distribution,
while the others are replaced by zeros.15 Since there was no new price obser-
vation, previous-tick interpolation would make these returns zero anyways. Ex-
cluding returns that are zero due to missing price observations is appropriate be-
cause the well-documented excessive frequency of zero returns (c.f. Sucarrat and
Grønneberg, 2020) undermines the assumption of a continuous distribution, such
as the t-distribution, that is commonly used to model returns. Theorem 2.3.2 now
derives the t-Riesz distribution.

12. Another version of the t-Wishart was first introduced by Sutradhar and Ali (1989).
13. We also tried the the multivariate hyperbolic distribution (leading to the hyperbolic-

Wishart), which is a generalization of the multivariate t distribution and the multivariate Laplace
distribution (leading to the Laplace-Wishart). In both a low-dimensional and a high-dimensional
estimation there were no substantial likelihood gains over the t-Wishart. The hyperbolic-Wishart
numerical maximum likelihood parameter estimates converged to almost exactly its special case,
the t-Wishart distribution.
14. Recall that it is a generalization of the t-Wishart distribution with d.o.f. parameter vector

n instead of scalar n, where the two distributions are equal if n = (n, . . . , n)⊤.
15. This treatment of missing new price observations as deterministic zeros is in line with

Gribisch and Hartkopf (2022) and Hassairi, Ktari, and Zine (2022).
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Theorem 2.3.2. Denote by ṙ and Ω̇ the sub-vector of r̃ and sub-matrix of Ω̃ that
are obtained by striking out the rows (and columns) with missing updated prices
observations. Assume that for at least one asset, there is a new price observation
on all intraday intervals m, and that for the j’th most liquid asset, there is a new
price observation on a subset of the intervals of where the (j + 1)’th most liquid
asset has an observation. Furthermore, assume that the assets are sorted from
least to most liquid in all intraday return vectors rj.

If ṙ follows a multivariate t-distribution ṙ ∼ mvt(0, Ω̇, ν), then the realized
covariance matrix R =

∑m
j=1 rjr

⊤
j follows a t-Riesz distribution with scale matrix

Ω, d.o.f. parameter vector m = (m1,m2, . . . ,mp), where mi denotes the number
of return observations of asset i and d.o.f. parameter ν, denoted by

R ∼ tR(Ω,m, ν).

Proof in Appendix.

The t-Riesz distribution is still defined if the d.o.f. parameter vector m is a vector
of reals n = (n1, . . . , np), rather than of natural numbers mi. Note that for the
t-Wishart distribution, which is obtained under the assumption of no missing new
price observations for any of the assets, the liquidity sorted ordering of the assets
is irrelevant since it is invariant to the ordering of the assets. Theorem 2.3.2 is
a generalization (and slight reformulation) of a finding in Gribisch and Hartkopf
(2022) (see also Hassairi, Ktari, and Zine, 2022, and Veleva, 2009). They show
that the standard Riesz distribution can be generated by assuming a normal distri-
bution on the intraday returns with heterogeneous liquidity. As for the t-Wishart
compared to the Wishart, the superior performance of the t-Riesz compared to
the Riesz distribution, shown in the empirical section below, mirrors the more
appropriate assumption of a multivariate t compared to the normal distribution
on the intraday return vectors.

2.4 Time-Varying Mean

Now, let us add subscripts for the days in our sample, t = 1, . . . , T , to represent
the time-series of RCs as {Rt}Tt=1. In the literature, it is standard to assume
time-variation in the mean, i.e., in the Σ matrix of the underlying distribution,
while leaving the d.o.f. parameters fixed over time (see e.g. Golosnoy, Gribisch,
and Liesenfeld, 2012, Opschoor et al., 2018, Blasques et al., 2021). That is

Rt|Ft−1 ∼ D(Σt,θD), (2.22)
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where Ft−1 = {Rt−1,Rt−2, . . . }. A standard updating mechanism for Σt is a
scalar-BEKK16 recursion given by

Σt = (1− a− b)Ξ+ aRt−1 + bΣt−1, (2.23)

where the intercept parameter matrix Ξ is symmetric positive definite of dimension
p × p and a and b are scalar parameters, sometimes called ARCH and GARCH
parameter, respectively. A necessary condition for stationarity is a, b > 0∧(a+b) <
1 under which we have that the unconditional mean

E [Rt] = Ξ. (2.24)

In this paper, we assume stationarity. Note that if we restrict a = b = 0 in
equation (2.23), we end up with a static distribution that is, Σ = Ξ, and

Rt
iid∼ D(Σ,θD).

Note that the parameters Ξ, a, and b are specific to the chosen distribution.
However, as mentioned above, we omit the subscript D for readability.

Empirical Analysis 2.5

Estimation 2.5.1

The total number of parameters is dominated by the order O(p2) matrix Ξ, which
has p(p + 1)/2 unique elements. This makes one-step numerical maximum likeli-
hood estimation for, say, p > 5 very computationally expensive and for, say, p > 10
infeasible. To alleviate this so-called curse of dimensionality, we estimate Ξ (or
Σ in the static model) with its obvious (see equation (2.24)) method-of-moments
estimator

Ξ̂ =
1

T

T∑

t=1

Rt,

and estimate the remaining parameters (θD, a, and b) conditional on Ξ̂ via stan-
dard numerical maximum likelihood estimation. This multi-step estimation pro-
cedure, sometimes called targeting, reduces the size of the numerical optimization
problem to the order of at most O(p), and for the Wishart-type distributions even

16. Named after Yoshi Baba, Robert Engle, Dennis Kraft, and Ken Kroner who wrote an earlier
version of the paper Engle and Kroner (1995) in which the BEKK recursion is proposed.
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to at most four17 parameters. The targeting two-step estimation procedure is com-
mon in the literature (see e.g. Noureldin, Shephard, and Sheppard, 2012, Opschoor
et al., 2018). Its consistency is intuitive and has been shown in the traditional mul-
tivariate GARCH framework by Francq, Horváth, and Zaköıan (2014). We expect
consistency to carry over to the realized multivariate GARCH framework. In the
empirical section of this paper, we always use this two-step estimation procedure,
regardless of the cross-sectional dimension p.

A final complication is that, as mentioned above, the ordering of the assets
matters for the Riesz-type distributions. We follow the algorithm proposed in
Blasques et al. (2021) to optimize over the asset order (see Section 2.2.4).18

2.5.2 Data

Our original data are one-minute close prices from all trading days from 01 January
1998 to 05 February 2021 for every stock that was a constituent of the S&P 500
index during the sample period. A close price is defined as the latest observed
trade price of the respective one-minute interval. So our data can be described
as previous tick interpolation on a fixed one-minute grid. We acquired the data
from Quantquote19, who combine, clean and process data directly obtained from
various exchanges, where the biggest are NYSE, NASDAQ and AMEX20.

The aim is to produce the longest possible time-series of accurately estimated
daily integrated covariance estimators. We exclude dates before 01 January 2002,
because the NYSE fully implemented decimal pricing in 200121 and there are
numerous other trading irregularities during 200122. This leaves 4808 trading
days. We then exclude stocks that have not been traded on one of the remaining
days in the sample, which leaves 465 of 983 stocks. We only keep observations
from official trading hours to be consistent across trading days. We then choose
the 100 stocks with the most one-minute close price observations. Of those, the
one with the least observations has, on average, 385.18 one-minute close price
observations per trading day. Since the typical trading day has 390 minutes, on
average less than five close prices are missing per day. Excluding illiquid stocks
is common practice in creating time-series of RCs (see e.g. Lunde, Shephard, and

17. These are n, and/or ν, a and b.
18. The seed for the random generation of permutations to try initially is kept the same for all

Riesz-type distributions.
19. The Caltech Quantitative Finance Group recommends the company, see http://quant.

caltech.edu/historical-stock-data.html.
20. AMEX was bought by NYSE in 2008, and handled only 10% of trades at its height
21. On 29 January 2001 to be precise.
22. For example the days surrounding the terrorist attacks on 11 September 2001 and ”computer

systems connectivity problems” on 08 June 2001.
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Figure 2.7: Top row: Annualized realized volatilities of Apple (aapl) and Goldman Sachs
(gs), i.e. the square root of two of the elements on the main diagonal of
the 100 asset Rt for the complete sample (01 January 2002 to 05 February
2021). Bottom row: Realized correlation between Apple and Goldman Sachs
RCORRaapl,gs = Raapl,gs/(

√
RVaapl

√
RVgs) and the natural logarithm of

the determinant of the 100 assets Rt over time.

Sheppard, 2016). While this procedure biases the sample towards stocks that
were very liquid over the entire sample period23, it does ensure that the integrated
covariance estimates are accurate for those stocks included.
We follow Opschoor et al. (2018) and Blasques et al. (2021) and use five-minute

returns to construct the 100-dimensional RCs. In particular, we average for each
trading day the five distinct RCs, obtained from constructing five-minute log-
return vectors for each of the five distinct five-minute grids over the trading day.24

This estimator is known as the subsampling realized covariance matrix and has
been introduced by Zhang, Mykland, and Aı̈t-Sahalia (2005) (see also Sheppard,
2012). It has the advantage of being more efficient than the simple realized co-
variance matrix since it uses all our data, not just the data of one of the grids.
Furthermore, it produces positive definite matrices, even for high cross-sectional
dimensions and low sampling frequencies.25

23. Relatively young firms (e.g. Facebook or Tesla) are excluded.
24. The five time-grids start (on a typical trading day) at 09:00, 09:01, 09:02, 09:03 and 09:04,

respectively.
25. On a typical trading day we have 390/5=70 intraday return vectors on a five-minute grid.

This allows for a maximum 70 assets to generate positive definite RCs. With subsampling,
however, RCs are based on 385 five-minute return vectors, so for up to 385 assets the resulting
RCs are positive definite.
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For a view of the data, see Figure 2.7, which shows the annualized realized
volatility for Apple (appl) and Goldman Sachs (gs), as well as their realized cor-
relation and the log-determinant of the 100-asset RCs. We see that the spikes
in volatility are of similar magnitude for Apple and Goldman Sachs in the recent
COVID-19-induced market turmoil, while the global financial crises of 2008/2009
caused volatility to spike much higher for Goldman Sachs than for Apple. The
dot-com crisis (early 2000s), on the other hand, causes more volatility for Apple.
We see that correlations are mainly positive and more stable around crisis peri-
ods. Finally, we see that the log-determinant of Rt, as a measure of the size of the
RCs, does indeed spike in the aforementioned market turmoil periods (dot-com,
COVID-19, global financial crisis).
From the 100-dimensional dataset described, we randomly choose a 5, 10, and

25-dimensional principal submatrix, as well as the three principal submatrices
corresponding to companies with SIC codes of the (1) Financial, Insurance and
Real Estate, (2) Mining and (3) High-End Manufacturing division, for a total of
six datasets. The division-specific datasets are chosen to investigate whether the
tail-homogeneous distributions better fit more homogeneous data.

2.5.3 In-Sample

Static Distributions

As a first empirical exercise, we fit the different static distributions (i.e. Σt =
Ξ) to the data. We use the two-step estimation method described above for all
distributions and datasets. While it is clear, that a time-varying mean drastically
improves the fit of all distributions, it is still imperative to investigate the static
distributions first to understand how well their distributional properties match
the data. In fact, after adding a time-varying mean we would not be able to
dissect anymore, if the differences in fit come from the time-varying mean path,
or the distributional properties. For maximum likelihood estimation there would
be a different estimated time-varying mean path for each distribution. Even if
we imposed the same time-varying mean path for all distributions we would not
be sure if the one chosen favors one distribution over another. Furthermore, if
one wants to model a time-series of RCs there are several choices to be made.
Which distribution? Which time-series structure? Which distribution parameters
should be time-varying? We cannot find a good reason to start with one of these
decisions before another. In this paper, however, the focus lies on the comparison
between distributions; so it is natural to start our empirical investigation with a
comparison of the static distributions.
Table 2.12 in the appendix shows the estimated d.o.f. parameters. We focus now

on Table 2.6, which shows the estimated log-likelihood values. The distribution
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart -67794 -84692 -168435 -527223 -537407 -381884
Riesz -55534 -70180 -108027 -345020 -180751 -124508
Inv.Wishart -50721 -53737 -111648 -255628 -162663 -78492
Inv.Riesz -45490 -46495 -77633 -180138 36136 45223
t-Wishart -24687 -30461 -38384 -25481 86847 233668
t-Riesz -17543 -23263 -1941 49699 295409 355966
Inv.t-Wishart -24761 -27528 -40690 -11924 191946 387973
Inv.t-Riesz -20829 -19584 -8057 57397 376512 445333
F -48758 -51941 -97299 -221813 -55002 14633
F -Riesz -26402 -29242 -13809 -30051 307936 333553
Inv.F -Riesz -29622 -29930 -22537 -70305 276602 308721

Table 2.6: Log-likelihood values for the estimated static distributions on various datasets.
The background shades are to be read column-wise, with the lowest log-
likelihood value shaded black and the highest shaded white, with linear gray-
scaling in between. Largest values in red.

rankings according to log-likelihood values are robust across the different datasets.
We see a clustered pattern, where the (Inverse) Wishart, (Inverse) Riesz and F
distribution could be considered as a group of similar fit and the (Inverse) t-
Wishart, (Inverse) t-Riesz and (Inverse) F -Riesz as another group. The t-Riesz and
Inverse t-Riesz distribution stand out from this second group since, for all datasets,
one of the two obtains the best log-likelihood value. The industry-specific datasets
(Mining, Finance, and High-End Manufacturing) show a clear pattern favoring the
t-Riesz distribution family. The F -Riesz and Inverse F -Riesz distributions also fit
quite well overall, especially in the randomly drawn datasets. The Riesz and its
special case, the Wishart, are the worst-fitting static distributions.

Next, we investigate how the different distributions for RCs match specific
marginal characteristics of the data. First, in Figure 2.8, we plot the histograms
of the log-determinant and the first diagonal element (RV of Amgen) of the ten-
dimensional dataset, as well as the corresponding marginal p.d.f.s for the fitted
probability distributions for RCs. The choices of dataset and company are arbi-
trarily made, but the plots for other datasets and companies look similar. The
first obvious observation is that the t-Wishart and t-Riesz distributions are clearly
mirror the empirical distribution of both the log-determinant and the RVs best.
Secondly, only the t-Riesz distribution family (last row of the figure) exhibits a
reasonable marginal distribution of the log-determinant; all other distributions
have too much probability mass around their center and too little in the tails.
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Figure 2.8: Histograms, normed to reflect p.d.f.s, of log |Rt|, and of the realized variance
of Amgen, RVamgn = (Rt)1 1 of the ten-dimensional dataset, as well as the
respective marginal p.d.f.s implied by the fitted static matrix distributions.
The p.d.f.s are kernel density estimates on 1.000.000 simulated realizations.

The reason why the F and F -Riesz distributions (second row, first column of the
figure) do not match the (tail)-distribution of the log-determinant of the t-Wishart
and t-Riesz is that their ν and ν d.o.f. parameter estimates are much higher in
comparison (see Table 2.12 in the appendix). The d.o.f. parameters influence on
the distribution of the log-determinant can be seen in the equations (2.15) and
(2.17). In fact, the estimated ν parameter is fairly constant and close to 5 across
all cross-sectional dimensions, whereas it increases for the F distribution from 11
for the five-dimensional dataset to 46 for the 25-dimensional dataset. A similar
pattern is visible for the corresponding Riesz-type distributions.

For the RVs the t-Riesz distribution family also clearly fits best. All other
distributions assume too little probability mass on RVs below one and too much
on values between one and four. In particular, the match of the t-Riesz and t-
Wishart distribution marginal p.d.f.s for the empirical RVs are extremely good,
also in the tails. Regarding the tail behavior, we can see that in our definition of
fat-tailedness, only the t-Riesz distribution family can be considered fat-tailed, as
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Figure 2.9: Histograms, normed to reflect p.d.f.s, of the realized variance of Cisco,
RVcsco = (Rt)2 2, and of the realized covariance between Cisco and Amgen,
RVamgen = (Rt)2 1, in the ten-dimensional dataset, as well as the respective
marginal p.d.f.s implied by the fitted static matrix distributions. The p.d.f.s
are kernel density estimates on 1.000.000 simulated realizations.

the other distributions do not have sufficient probability mass on large (> 10) log-
determinants. In fact, especially the t-Riesz and t-Wishart match the empirical
distribution in the tails very well. The F and (Inverse) F -Riesz distributions do
imply more probability mass on larger log-determinants than the (Inverse) Wishart
and (Inverse) Riesz distribution, and thus are comparatively more fat-tailed, but
do not come close to the fat-tailedness of the data or the t-Riesz distribution family.
Considering the fat-tailedness of the RVs, the small subplots on the right column
in Figure 2.8 show that all but the Wishart and Riesz distribution reasonably well
match their empirical tail behavior. Again we note that the t-Riesz distribution
family implies the most probability mass on large RVs with the t-Riesz and t-
Wishart matching the empirical distribution in the tails best.

Figure 2.9, column one, depicts the RVs of Cisco and confirms our previous
observations on RVs, while in column two, we plot the histogram of the empirical
realized covariances (RCOVs) between Cisco and Amgen ((Rt)2 1). The t-Riesz
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Figure 2.10: Histograms of real data, normed to reflect p.d.f.s, and the respective p.d.f.s
of the realized variance of companies Amgen (first row, RVamgn = (Rt)1 1)
and Cisco, (second row, RVcsco = (Rt)2 2), conditional on the respective RV
of the other company having a tail-realization (left column) or not (right col-
umn). The data comes from the random ten-dimensional dataset described
in 2.5.2. The respective conditional p.d.f.s come from the fitted t-Riesz and
F -Riesz distribution and are kernel density estimates on 1.000.000 simulated
realizations.

family also clearly fits best for the covariances, while the other distributions allo-
cate too little probability mass RCOVs between 0 and 0.5 and too much probability
mass on negative RCOVs and on RCOVs between 0.5 and 2.

Next, we turn to tail-heterogeneity versus tail-homogeneity. For this, we plot
in Figure 2.10 histograms of the RV of Amgen (Cisco) given that the RV of Cisco
(Amgen) has a tail-realization and given that it does not. We plot on top of each
histogram the conditional p.d.f.s implied by the t-Riesz and F -Riesz distribution.
A tail-realization is defined as an RV of a given asset that exceeds its empirical
95% quantile. As a first observation, comparing the histograms in the left column
to those in the right, we see that the empirical distribution of an RV has a much
higher probability of large realizations if another RV has a tail-realization (i.e. tail-
homogeneity). The next striking observation is that the t-Riesz distribution can
mirror this property of the data much better than the F -Riesz. While the F -
Riesz has more probability mass on large RVs if another RV has a tail-realization,
compared to if the other RV does not, this right-shift in probability mass is not
as large as for the t-Riesz. Thus, as we explained intuitively by looking at the
respective stochastic representation of the t-Riesz and F -Riesz in Section 2.3,
it does make sense to call the t-Riesz tail-homogeneous and the F -Riesz tail-
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Figure 2.11: Difference in estimated log-likelihood contributions between Inverse t-Riesz
and F -Riesz distributions, log pitR(Rt|Σ̂, θ̂) − log pFR(Rt|Σ̂, θ̂). Least-
squares line is in gray.

heterogeneous and our data favours tail-homogeneity.

Finally, we examine the differences in log-likelihood values between the tail-
homogeneous Inverse t-Riesz and the tail-heterogeneous F -Riesz distribution more
closely.26 Figure 2.11 shows the difference in log-likelihood contributions between
the two distributions depending on the log-determinant of the RCs for the random
ten-dimensional and the Finance 15-dimensional dataset. We see that the Inverse
t-Riesz distribution gains its advantage in static fit mainly from the RCs with larger
log-determinants. This is in line with our expectation that tail-heterogeneity is
disadvantageous for crisis periods. The Inverse t-Riesz also fits better for very
small RCs, which can be rationalized by the fact that in times of a very calm
market, financial assets behave very homogeneously as well.

Time-Varying Mean

Now we fit the dynamic time-varying mean models for the different distributions
to the datasets. The estimated d.o.f. parameters can be found in Table 2.13 in
the appendix. Table 2.7 contains the estimated ARCH parameters (â). They

are all highly significant. The estimated persistence parameters (â + b̂) are very
close across distributions and datasets and range from 0.976 (Wishart, dataset

26. We take the Inverse t-Riesz distribution in this comparison because, in the dynamic setting,
it will turn out to be the distribution of the t-Riesz distribution family with the best log-likelihood
values and will be in close competition with the F -Riesz.
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â
Assets: Random Mining Random Finance Random Manuf.

#Assets: 5 6 10 15 25 25
Wishart 0.364 0.306 0.284 0.299 0.189 0.188
Riesz 0.339 0.286 0.259 0.275 0.161 0.160
Inv.Wishart 0.238 0.211 0.183 0.177 0.115 0.098
Inv.Riesz 0.242 0.206 0.181 0.168 0.108 0.094
t-Wishart 0.196 0.150 0.127 0.090 0.080 0.066
t-Riesz 0.186 0.132 0.117 0.072 0.070 0.052
Inv.t-Wishart 0.153 0.127 0.101 0.074 0.065 0.053
Inv.t-Riesz 0.154 0.122 0.097 0.067 0.059 0.050
F 0.257 0.231 0.198 0.192 0.126 0.110
F -Riesz 0.200 0.166 0.145 0.136 0.091 0.078
Inv.F -Riesz 0.215 0.179 0.156 0.147 0.095 0.084

Table 2.7: Estimated ARCH â parameters of the models in equations (2.22) and (2.23)
for the different datasets and all distributions for RCs. All estimated â are
highly significant, with the median (smallest) t-stat equalling 552 (123). The
estimated persistence (â+ b̂) is very similar across datasets and distributions
and ranges from 0.976 (Wishart, dataset “Random 5”) to 0.999 (Inverse t-
Wishart, dataset “Finance 15”). All estimated b̂ are highly significant, with
the median (smallest) t-stat equalling 3060 (399).

“Random 5”) to 0.999 (Inverse t-Wishart, dataset “Finance 15”) with all GARCH

parameters (b̂) being highly significant. We see several clear patterns.

First, the estimated ARCH parameters become smaller with increasing cross-
sectional dimension p for all distributions. This pattern has been documented by
Pakel et al. (2021) to be estimation bias. It is larger, the larger the dimension p

and is caused by the method-of-moments estimator Ξ̂. They show that composite
likelihood estimation can mitigate the bias. Unfortunately, composite likelihood
estimation is not straightforward to apply on Riesz-type distributions due to their
d.o.f. parameter vector(s). Another solution might be to use a shrinkage estimator
as in Engle, Ledoit, and Wolf (2019). In this paper, however, we focus on differ-
ences between assumed probability distributions for RCs. We do not expect the
relative ranking results to change if we use one of the above-mentioned methods
to estimate the intercept matrix Ξ.

The second pattern we observe is, that the estimated a are smallest for the
t-Riesz distribution family across all dimensions, followed by the F -Riesz distribu-
tions and largest for the Riesz distributions and the F distribution. That is, the
t-Riesz distribution family reacts least to the previous realizations Rt−1 to update
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart -15599 -11314 -1397 55874 333549 330537
Riesz -11866 -6289 13107 88881 423237 423510
Inv.Wishart -7668 1693 32727 132311 541567 547719
Inv.Riesz -5813 4154 39879 148338 574711 583946
t-Wishart -5298 5910 33588 149496 469265 467948
t-Riesz -2650 8572 44108 178339 539295 541439
Inv.t-Wishart -1422 11277 55196 195532 639630 655575
Inv.t-Riesz 440 13286 62134 213268 666312 684209
F -6908 2468 35627 142413 571495 572881
F -Riesz 721 12621 62436 190194 669628 674391
Inv.F -Riesz -122 11619 59471 185342 662615 665143

Table 2.8: Log-likelihood values for the estimated dynamic distributions and different
datasets. The background shades are to be read column-wise, with the lowest
log-likelihood value shaded black and the highest shaded white, with linear
gray-scaling in between. Largest values in red.

the mean Σt, which we interpret as an indication of the excellent (unconditional)
fit of these distributions. In contrast, the Wishart distribution reacts most to the
previous Rt−1, indicating a worse fit of the distributional assumption. We note
here that in terms of fit and forecasting performance, a large mean-shifting re-
action to previous RCs (as for the Wishart model) is actually beneficial in crisis
periods, where RCs suddenly spike in size and stay large for a short time. The
good overall distributional fit of other distributions causes them to react more
slowly to those volatility bursts.

Table 2.8 contains the log-likelihood values for the estimated distributions with
time-varying mean. As for the static distributions, the ranking across distributions
is relatively stable over the cross-sectional dimension p. However, now in the
dynamic setting, the ranking across distributions is less clustered. The Inverse
t-Riesz and the F -Riesz distributions emerge as the clear winners exhibiting the
largest likelihood values. They are very close, with the former winning the three
industry-specific datasets and the latter winning the three random datasets. This
is again in line with our economic intuition that tail-homogeneity is advantageous
for RCs of homogeneous assets. One hypothesis why the Inverse t-Riesz now clearly
beats the t-Riesz compared to the static case, can be constructed by recalling
Figures 2.2 and 2.4. There it is visible, that the probability mass of the Inverse t-
Riesz is more concentrated than for the t-Riesz with similar parameters. So, if our
dynamic mean-shifting model approximates the conditional mean reasonably well,
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Figure 2.12: Difference in estimated log-likelihood contributions between Inverse t-
Riesz and F -Riesz distributions with time-varying expected value matrix,
log pitR(Rt|Σ̂t, θ̂)− log pFR(Rt|Σ̂t, θ̂). Least-squares line in gray.

the higher dispersion of probability mass of the t-Riesz might be disadvantageous.

The Riesz and its special case, the Wishart distribution, are unambiguously
the worst-fitting distributions. In general, inverse distributions fit better than
non-inverted ones. This is not surprising since fitting the inverse distributions to
{R1,R2, . . . ,RT } is equivalent to fitting the corresponding non-inverted ones to
{R−11 ,R−12 , . . . ,R−1T }. The inverted RCs, also known as precision or concentration
matrices, exhibit much thinner tails; hence the good fit of inverse distributions.
Through this reasoning, we can call all inverse distributions fat-tailed distribu-
tions. Furthermore, by construction, every Wishart-type distribution has a lower
estimated likelihood value than its Riesz-type counterpart. However, it is note-
worthy that the difference in likelihood values is particularly large between the
(Inverse) F -Riesz distribution and the F distribution.

Finally, Figure 2.12 compares the log-likelihood contributions of the Inverse t-
Riesz and F -Riesz distributions similar to Figure 2.11 but for the time-varying
mean specification. As in the static case, larger RCs are associated with higher
log-likelihood contributions for the tail-homogeneous Inverse t-Riesz distributions,
in line with our economic intuition that more volatile trading days exhibit more
dependence among financial assets, favoring tail-homogeneity. As in the static
case the smallest RCs are associated with higher log-likelihood contributions for
the Inverse t-Riesz distribution, indicating that when markets are very calm, tail-
homogeneity might be favored as well.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 319 616 541 1565 1870 900
Riesz 282 559 413 1061 1066 103
Inv.Wishart 224 425 174 -32 -101 -999
Inv.Riesz 214 404 126 -226 -423 -1271
t-Wishart 153 327 15 -685 -274 -972
t-Riesz 139 307 -44 -869 -662 -1432
Inv.t-Wishart 135 304 -94 -912 -1137 -1978
Inv.t-Riesz 128 292 -128 -1026 -1302 -2162
F 210 414 136 -230 -396 -1172
F -Riesz 147 319 -89 -715 -1173 -1959
Inv.F -Riesz 155 332 -59 -651 -1112 -1876

Table 2.9: Average of log-score loss over one-month forecasting period (22 trading days),

−
∑22

j=1 pD(Rt+j |Σ̂j+1, θ̂D,j+1), for the entire forecasting window; each model
is re-estimated every ten trading days; 90% model confidence sets in red.

2.5.4 Out-of-Sample Forecasting Performance

We re-estimate the models every ten trading days on a rolling window of 1250
observations (roughly five years of data). The forecasting window starts at obser-
vation 1251 (18 December 2006) and ends on 05 February 2021.

For out-of-sample comparisons between different probability distributions, a nat-
ural loss function is the log-score, also known as the log posterior predictive likeli-
hood, since it indicates how much probability mass the predictive distribution as-
signs to the observed outcome (compare e.g. Hautsch and Voigt, 2019 and Blasques
et al., 2021). The log-score can also be justified as the consistent choice of loss
function for maximum likelihood estimation in the following sense. It evaluates
the out-of-sample data with the same loss function used to estimate the models
in-sample. This is in line with Hansen and Dumitrescu (2022), who show that
coherency between the estimation criterion and the actual objective is essential.

Since we are interested in overall distribution fit, it is important to not only
look at the t + 1 forecasting performance of the different distributions. To this
end, Table 2.9 contains the log-score losses over a one-month forecasting period
(22 trading days) for the entire forecasting window. The 90% model confidence
sets (MCS, see Hansen, Lunde, and Nason, 2011) are shaded in gray.27

27. For calculation of the MCS, we choose 5000 stationary bootstrap replications with block
length set equal to the maximum number of consecutive significant partial autocorrelations of
the losses. We use the MFE toolbox by Kevin Sheppard for MCS calculation.
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We see that the Inverse t-Riesz distribution emerges as the clear winner for
log-score losses over a one-month forecasting period as it is the only member of
the MCS for all datasets. Across datasets, the entire t-Riesz distribution family
fits very well out-of-sample, and slightly better than the F -Riesz, except for the
25-dimensional datasets.

If we take a volatile period (2007 - 2011) and a calm period (2012 - 2019)
forecasting window (see Tables 2.14 and 2.15 in the appendix), the Inverse t-
Riesz distribution remains the sole member of the MCS except for the random
25-dimensional dataset in the calm period (even here it has the lowest loss value),
where also the F -Riesz distribution is in the MCS.

For completeness, in Table 2.10 we also report the one-day-ahead log-score loss
results for the entire sample. Here the Inverse t-Riesz distribution is the sole
member of the MCS for the industry-specific Mining and Finance datasets, while
for the other datasets, the F -Riesz distribution is also in the MCS. Still the Inverse
t-Riesz distribution has lower losses for all datasets than the F -Riesz.

The above observations confirm our intuition that tail-homogeneity is a rea-
sonable assumption. Clearly, the worst fitting distributions out-of-sample are the
Riesz and its special case the Wishart distributions.

Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 7.22 15.97 3.51 -18.61 -0.79 -29.75
Riesz 6.53 15.08 0.60 -25.22 -19.40 -49.70
Inv.Wishart 5.35 12.94 -4.84 -35.97 -49.62 -83.52
Inv.Riesz 5.04 12.52 -6.14 -39.49 -56.69 -91.34
t-Wishart 4.85 12.23 -4.79 -40.61 -32.63 -61.30
t-Riesz 4.38 11.67 -6.95 -46.42 -46.68 -76.80
Inv.t-Wishart 4.01 11.02 -9.59 -50.55 -70.32 -104.08
Inv.t-Riesz 3.70 10.67 -10.86 -53.90 -75.18 -110.57
F 5.18 12.85 -5.44 -38.59 -56.51 -87.99
F -Riesz 3.75 10.85 -10.81 -48.56 -76.43 -109.33
Inv.F -Riesz 3.93 11.09 -10.16 -47.36 -74.87 -107.25

Table 2.10: Average of log-score loss, −pD(Rt+1|Σ̂t+1, θ̂D,t+1), for the entire forecasting
window, where each model is re-estimated every 10 trading days. 90% model
confidence sets in red.
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Conclusion 2.6

In conclusion, this paper provides a comprehensive comparison of probability dis-
tributions used to model realized covariance matrices (RCs) in financial applica-
tions. We reveal theoretical similarities and differences among the distributions,
which are useful in explaining their disparity in empirical fit and forecasting per-
formance. We formalize the concept of fat-tailedness for RCs and introduce the
notion of tail-homogeneity as opposed to the tail-heterogeneity implied by the F -
Riesz distribution. Furthermore, we derive the novel t-Riesz distribution family,
which features tail-homogeneity. We show that the novel t-Riesz distribution fam-
ily can be rooted in a realistic low-level assumption on the intraday return vectors
from which the realized covariance matrices are constructed. The empirical part
of the paper performs fit and forecasting comparisons of the different distributions
in different datasets of time-series of RCs and explains how the theoretical differ-
ences translate into differences in fit and forecasting performance. It emerges that
when assuming a static distribution for the RCs, the t-Riesz distribution fits best
in terms of log-likelihood values and matching the fat-tails, the marginal distri-
butions of the RVs and covariances, and the tail-homogeneity that financial data
exhibits. In the dynamic setting where the mean of the distributions is assumed
to be time-varying, the distribution rankings are less pronounced. Here, the In-
verse t-Riesz and F -Riesz distribution fit best in-sample and out-of-sample with
an advantage in favor of the former. We show that, especially in times of high
market volatility and for assets of the same industry sector, tail-homogeneity is a
more fitting assumption to the RC time-series data. Overall, the paper provides
important insights for practitioners and researchers who want to model RCs of
financial asset returns.
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2.7 Appendix

2.7.1 Proofs

Proof of Theorem 2.2.1

Proof.

Proof of E[BB⊤]: This result has been proven in Dı́az-Garćıa (2013). However,
our proof is more straightforward as it directly uses the stochastic representations
in terms of the Bartlett matrices. We have

(BB⊤)ij =

p∑

k=1

Bik(B
⊤)kj =

p∑

k=1

BikBjk. (2.25)

For the off-diagonal elements, i.e. i ̸= j, we have

E[(BB⊤)ij ] =

p∑

k=1

E[BikBjk] =

p∑

k=1

E[Bik]E[Bjk] = 0, (2.26)

where we have used independence of the elements in B and the fact that at least
one of the elements in each summand above is a mean zero normal random variable.
For the diagonal elements, i.e. i = j, we have

(BB⊤)ii =

p∑

k=1

B2
ik =

i∑

k=1

B2
ik, (2.27)

which is the sum of a χ2
ni−i+1 and (i− 1) independent N (0, 1)2 random variables,

which implies that

i∑

k=1

B2
ik ∼ χ2

ni
(2.28)

with expectation ni. Thus

E[(BB⊤)ii] = ni. (2.29)

Proof of E[(B̄B̄⊤)−1]: See Louati and Masmoudi (2015).

Proof of E[B̄−⊤BB⊤B̄−1]: See Theorem 10 in Blasques et al. (2021).

Proof of E[B(B̄B̄⊤)−1B⊤]: Due to independence, we have

E[BB̄−⊤B̄−1B⊤] = E[Bdg(
◦
ν)B⊤],
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where
◦
ν is given in (2.11). Denote

T = B(
◦
ν)1/2,

with elements Tij = Bij

√
◦
νj . The (i, j)’th element of R = TT⊤ is

Rij =

p∑

k=1

Tik(T
⊤)kj =

p∑

k=1

TikTjk =

p∑

k=1

◦
νk BikBjk,

which for i ̸= j we have

E[Rij ] =

p∑

k=1

◦
νk E[BikBjk] =

p∑

k=1

◦
νk E[Bik]E[Bjk] = 0,

because of the independence of the elements in B and the fact that at least one of
the elements in each summand is mean zero. Furthermore, for i = j we have

E[Rii] =

p∑

k=1

◦
νk E[B2

ik] =

i∑

k=1

◦
νk E[B2

ik],

with

E[B2
ik] =

{
1, for i ̸= k

nk − k + 1 for i = k.

Thus the elements of EiFR[R] = dg(
◦◦
n) are given by

E[R1 1] = (n1 − 1 + 1)
◦
ν1,

E[R2 2] =
◦
ν1 +(n2 − 2 + 1)

◦
ν2,

E[R3 3] =
◦
ν1 +

◦
ν2 +(n3 − 3 + 1)

◦
ν3,

...

or

◦
νi=

i−1∑

j=1

◦
νj +(ni − i+ 1)

◦
νi

or more precisely

◦
νi=

{
n1

◦
ν1, for i = 1∑i−1
j=1

◦
νj +(ni + i− 1)

◦
νi, for i > 1,

(2.30)

which for ni = n and νi = ν for all i equals n
ν−p−1 .
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Proof of Lemma 2.2.1

Proof. The equivalence between the two different representations is proofed in
Maaß (1971), pp. 69-70. This proof is closely based on it. Using the LDL and
Cholesky decomposition of Σ,

Σ = TDT⊤ = CC⊤.

Then

Σ[j] = C[j]C
⊤
[j] = T[j]D[j]T

⊤
[j],

where X[i] denotes the square submatrix created by taking the first i rows and
columns of X. So

|Σ[j]| =
j∏

i=1

Dii

and thus

|Σ[1]| = D1 1 and for j > 1 we have |Σ[j]|/|Σ[j−1]| = Djj .

Finally

p∏

i=1

Dsi
ii = |Σ[1]|s1

p∏

i=2

(|Σ[i]|/|Σ[i−1]|)si = |Σ[1]|s1−s2 |Σ[2]|s2−s3 . . . |Σ[p]|sp .

Proof of Theorem 2.2.2

Proof. We will make use of properties of probability limits of products of (inverse)
random matrices and of Slutzky’s Theorems for random matrices (see e.g. Theo-
rems 5.6, 5.9 and 5.10 in Mittelhammer, 2013).

The non-zero off-diagonal elements of the lower triangular matrix dg(n)−
1
2B,

i < j are given by

(dg(n)−
1
2B)ij =

(B)ij√
ni

p→ 0, as ni →∞,

since (B)ij ∼ N (0, 1) for i < j.

54 TWO: Probability Distributions for Realized Covariance Matrices



Furthermore, note that for the squared diagonal (i = j) elements we have for
ni →∞,

E
[
((B)ii)

2

ni

]
=
ni − i+ 1

ni
→ 1 and

Var

(
((B)ii)

2

ni

)
= 2

ni − i+ 1

n2i
→ 0,

since ((B)ii)
2 is χ2

ni−i+1 distributed, and thus as ni →∞

((B)ii)
2

ni

p→ 1⇔ (B)ii√
ni

p→ 1,

where the equivalence follows from the Continuous Mapping Theorem. Finally, we
can conclude that as ni →∞ for all i,

plim
n→∞

(dg(n)−
1
2B) = I, (2.31)

where n → ∞ means that all elements in n converge to infinity and the plim
operator on a matrix is to be understood element-wise. By similar arguments we
get that as νi →∞ for all i,

plim
ν→∞

(B̄dg(ν)−
1
2 ) = I

and consequently

plim
ν→∞

((B̄dg(ν)−
1
2 )−1) = I. (2.32)

Now, we have

dg(
◦
n)−

1
2 B̄−⊤B = dg(

◦
n)−

1
2 dg(ν)−

1
2

︸ ︷︷ ︸ dg(ν)
1
2 B̄−⊤︸ ︷︷ ︸ B

d−−−−→
ν→∞

dg(n)−
1
2B

−−−−→
ν→∞

dg(n)−
1
2

p−−−−→
ν→∞

I

and

dg(
◦◦
n)−

1
2BB̄−⊤ = dg(

◦◦
n)−

1
2 dg(n)

1
2

︸ ︷︷ ︸ dg(n)−
1
2B︸ ︷︷ ︸ B̄−⊤

d−−−−→
n→∞

dg(
◦
ν)

1
2 B̄−⊤

−−−−→
n→∞

dg(
◦
ν)

1
2

p−−−−→
n→∞

I.
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Finally,

dg(
◦
n)−

1
2 B̄−⊤BB⊤B̄−1dg(

◦
n)−

1
2

d−−−−→
ν→∞

dg(n)−
1
2BB⊤dg(n)−

1
2 and

dg(
◦◦
n)−

1
2BB̄−⊤B̄−1B⊤dg(

◦◦
n)−

1
2

d−−−−→
n→∞

dg(
◦
ν)

1
2 B̄−⊤B̄−1dg(

◦
ν)

1
2 ,

which are the stochastic representations of the Riesz and Inverse Riesz, respec-
tively.
The proofs for

(ν − 2)(χ2
ν)
−1dg(n)−

1
2BB⊤dg(n)−

1
2

d−−−−→
ν→∞

dg(n)−
1
2BB⊤dg(n)−

1
2 and

χ2
n

n
dg(

◦
ν)

1
2 B̄−⊤B̄−1dg(

◦
ν)

1
2

d−−−−→
n→∞

dg(
◦
ν)

1
2 B̄−⊤B̄−1dg(

◦
ν)

1
2

are very easy, noticing that (ν − 2)(χ2
ν)
−1 and χ2

n/n converge in probability to 1.

Proof of Theorem 2.2.3

Proof. All proofs start from the stochastic representations given in Table 2.1. The
two integrals in the following lemma are important for the derivation of the p.d.f.s
of the Riesz-type distributions.

Lemma 2.7.1. (Faraut and Korányi, 1994) For n with ni > i− 1 we have,

∫

A>0

|A|n−p−1
2

etr

(
−1

2
BA

)
dA = 2pn̄/2Γp

(n
2

)
|B−1|n

2
(2.33)

and for ni < i− p we have,

∫

A>0

|A−1|n+p+1
2

etr

(
−1

2
BA

)
dA =

1

2pn̄/2
Γp

(
−
←−n
2

)
|B|n

2
. (2.34)

Proof. The proofs can be found in Faraut and Korányi (1994) chapter VII.28.
Throughout, according to their table on p. 97, for the cone of symmetric positive
definite matrices, we have the dimension n = p(p + 1)/2, the rank r = p and
d = 1.29 Throughout their book, they use the Euclidean measure on a Euclidean

28. Further references are Dı́az-Garćıa (2014), Maaß (1971) p. 76, Gupta and Nagar (2000),
Theorem 1.4.7, which is based on Olkin (1959), which in turn is based on the generalized Ingham
formula in Bellman (1956).
29. For the notation see their Example 2 on p. 8 and p. 9.
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space, which translated into our notation is dx =
∏p

i=1 aii2
p(p−1)/4∏

i<j aij =

2p(p−1)/4dA and leads to a slightly different multivariate gamma function.30 In
particular, from their Theorem VII.1.1.

ΓΩ(n) = 2p(p−1)/4Γp(n), (2.35)

with Γp(n) as in Definition 2.2.2. Their Proposition VII.1.2., with x = A, y = 1
2B

and s = n
2 translates to

∫

A>0

|A|n−p−1
2

etr

(
−1

2
BA

)
2p(p−1)/4dA = 2p(p−1)/4Γp

(n
2

)
|2B−1|n

2

= 2p(p−1)/4Γp

(n
2

)
2pn̄/2|B−1|n

2
.

Their last equation on page 129, together with Proposition VII.1.5 (ii) and x = A,
y = 1

2B and s = n
2 translates to

∫

A>0

|A−1|n+p+1
2

etr

(
−1

2
BA

)
2p(p−1)/4dA = 2p(p−1)/4Γp

(
−
←−n
2

) ∣∣∣∣
1

2
B

∣∣∣∣
n
2

= 2p(p−1)/4Γp

(
−
←−n
2

)
1

2pn̄/2
|B|n

2
.

t-Riesz distribution: The stochastic representation isR = CΩ(b̄)
−2BB⊤C⊤Ω , which

can be written as R = w−1A, with A ∼ R(Ω,n) independent of w ∼ χ2
ν . The

joint p.d.f. of w and A is given by

1

Γ (ν/2) 2ν/2
w

ν
2−1 exp

(
−w

2

) |A|n−p−1
2

exp
(
− 1

2 tr
(
Ω−1A

))

|Ω|n
2
Γp (n/2) 2pn̄/2

.

Transforming R = w−1A, with Jacobian J(w,A → w,R) = wp(p+1)/2 (see
e.g. Gupta and Nagar, 2000, equation 1.3.5.), we get the joint density of w and R
as

1

Γ (ν/2) 2ν/2
w

ν
2−1 exp

(
−w

2

) |wR|n−p−1
2

exp
(
−w

2 tr
(
Ω−1R

))

|Ω|n
2
Γp (n/2) 2pn̄/2

w
p(p+1)

2

=
|Ω|−n

2
|R|n−p−1

2

Γ (ν/2) Γp (n/2) 2(ν+pn̄)/2
w

ν+pn̄
2 −1 exp

(
−w

2

(
1 + tr

(
Ω−1R

)))
,

30. I thank Jacques Faraut for pointing this out to me.
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where

|wR|n−p−1
2

= |R|n−p−1
2

p∏

i=1

w
ni−p−1

2 = |R|n−p−1
2

wp
n̄−(p+1)

2 .

Now integrating out w we get the p.d.f. of R as

ptR(R|Ω,n, ν) =
|Ω|−n

2
|R|n−p−1

2

Γ (ν/2) Γp (n/2) 2(ν+pn̄)/2

×
∫ ∞

0

w
ν+pn̄

2 −1 exp
(
−w

2

(
1 + tr

(
Ω−1R

)))
dw

=
|Ω|−n

2
|R|n−p−1

2

Γ (ν/2) Γp (n/2) 2(ν+pn̄)/2
Γ ((ν + pn̄)/2)

[
1

2

(
1 + tr

(
Ω−1R

))]−(ν+pn̄)/2

=
Γ ((ν + pn̄)/2)

Γ(ν/2)Γp(n/2)
|Ω|−n

2
|R|n−p−1

2

(
1 + tr

(
Ω−1R

))− ν+pn̄
2 ,

where we used equation (5.9.1) of the NIST Digital Library of Mathematical Func-
tions.

Inverse t-Riesz distribution: We have R = CΩ(b)
2
(
B̄B̄⊤

)−1
C⊤Ω , which can be

written as R = wA, with A ∼ iR(Ω,ν) independent of w ∼ χ2
n. The joint

p.d.f. of w and A is given by

1

Γ (n/2) 2n/2
w

n
2−1 exp

(
−w

2

) |Ω| ν
2
|A|− ν+p+1

2

Γp

(←−ν /2
)
2pν̄/2

exp

(
−1

2
tr
(
ΩA−1

))
.

Transforming R = wA, with Jacobian J(w,A → w,R) = w−p(p+1)/2 (see e.g.
Gupta and Nagar, 2000, equation 1.3.5.), we get the joint density of w and R as

wn/2−1

Γ (n/2) 2n/2
exp

(
−w

2

) |Ω| ν
2
|w−1R|− ν+p+1

2

Γp

(←−ν /2
)
2pν̄/2

exp

(
−1

2
tr
(
wΩR−1

))
w−

p(p+1)
2

=
|Ω| ν

2
|R|− ν+p+1

2

Γ (n/2) Γp

(←−ν /2
)
2(n+pν̄)/2

w
n+pν̄

2 −1 exp
(
−w

2

(
1 + tr

(
ΩR−1

)))
,

where

|wR|− ν+p+1
2

= |R|− ν+p+1
2

p∏

i=1

w
νi+p+1

2 = |R|− ν+p+1
2

wp
ν̄+(p+1)

2 .
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Now integrating out w we get the p.d.f. of R as

pitR(R|Ω, n,ν) =
|Ω| ν

2
|R|− ν+p+1

2

Γ (n/2) Γp

(←−ν /2
)
2(n+pν̄)/2

×
∫ ∞

0

w
n+pν̄

2 −1 exp
(
−w

2

(
1 + tr

(
ΩR−1

)))
dw

=
|Ω| ν

2
|R|− ν+p+1

2

Γ (n/2) Γp

(←−ν /2
)
2(n+pν̄)/2

Γ ((n+ pν̄)/2)

(
1

2

(
1 + tr

(
ΩR−1

)))−n+pν̄
2

=
Γ ((n+ pν̄)/2)

Γ (n/2) Γp

(←−ν /2
) |Ω| ν

2
|R|− ν+p+1

2

((
1 + tr

(
ΩR−1

)))−n+pν̄
2 ,

where we used equation (5.9.1) of the NIST Digital Library of Mathematical Func-
tions.

Inverse F -Riesz distribution: The stochastic representation an F -Riesz distribu-
tion of type II with scale matrix Ω−1, and d.o.f. parameter vectors ν and n is
UΩ−1B−1B̄B̄⊤B−1U⊤

Ω−1 , where UΩ−1 is the upper Cholesky factor of Ω−1.31

Thus the stochastic representation of the Inverse F -Riesz distribution of type II
is given by

R = CΩBB̄−⊤B̄−1B⊤C⊤Ω , (2.36)

which translate to R ∼ iRII(Y,ν), Y ∼ RI(Ω,n).32 For the p.d.f. we can

31. See Blasques et al. (2021).

32. Recall that U−⊤
Ω−1 = CΩ.
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consequently use

piFR(R|Ω,n,ν) =
∫

Y>0

piRII(R|Y,ν)pRI(Y|Ω,n)dY

=

∫

Y>0

(
|R|− ν+p+1

2
|Y| ν

2
etr

(
−1

2
YR−1

)
1

Γp(
←−ν /2)2pν̄/2

× |Y|n−p−1
2
|Ω|−n

2
etr

(
−1

2
Ω−1Y

)
1

Γp (n/2) 2pn̄/2

)
dY

=
1

Γp(
←−ν /2)Γp (n/2) 2p(ν̄+n̄)/2

|R|− ν+p+1
2
|Ω|−n

2

×
∫

Y>0

|Y|n+ν−p−1
2

etr

(
−1

2
Y(Ω−1 +R−1)

)
dY

=
2p(ν̄+n̄)/2Γp((ν + n)/2)

Γp(
←−ν /2)Γp (n/2) 2p(ν̄+n̄)/2

|R|− ν+p+1
2
|Ω|−n

2

∣∣∣
(
Ω−1 +R−1

)−1∣∣∣
ν+n

2

=
Γp((ν + n)/2)

Γp(
←−ν /2)Γp (n/2)

|R|− ν+p+1
2
|Ω|−n

2
|(Ω−1 +R−1)−1| ν+n

2
, (2.37)

where we used Theorem 2.7.1. Now rewrite using Lemma 2.2.2.

Proof of Theorem 2.3.2

Proof. It is well-known that ṙ has stochastic representation ṙ =
√
yCΩ̇ż with

żi
iid∼ N (0, 1) and y ∼ Γ(ν/2, 2/ν). Equivalently, we can fix all entries with missing

observations in r̃ equal to zero and write r̃ =
√
yCΩ̃z̃, with

z̃i =

{
0 if there is a missing observation,
iid∼ N (0, 1) else.

The RC can be written as

R =

n∑

j=1

rjr
⊤
j = yCΩZZ

⊤C⊤Ω ,

where the p× n matrix Z = (z1, z2, . . . zn) with zj = C−1Ω rj . Hassairi, Ktari, and
Zine (2022) show that if the assets in Z are sorted according to their liquidity
with the least liquid asset in the first row, then ZZ⊤ follows a Riesz distribution
with parameter matrix Ω = I and d.o.f. parameter vector n, which implies that
CΩZZ

⊤C⊤Ω ∼ R(Ω,n) follows a Riesz distribution with parameter matrix Ω and
d.o.f. parameter vector n. Then according to Theorem 2.2.3 R ∼ tR(Ω,n, ν).
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Proof of Theorem 2.3.1

Proof. This Theorem is closely based on Gupta, Varga, and Bodnar (2013). If r̃
follows an elliptically contoured distribution, r̃ ∼ Enp(0, In⊗Ω, ψ), then according
to their Theorem 2.1X⊤ ∼ En,p(0, In⊗Ω, ψ) and then according to their Theorem
2.3 X ∼ Ep,n(0,Ω ⊗ In, ψ). Then our Theorem follows from their Corollary 5.1
and by noticing that

tr
(
X⊤Ω−1X

) (3.14)
= vec(X)⊤vec(Ω−1X)

(3.12)
= vec(X)⊤(I⊗Ω−1)vec(X)

= r̃⊤(I⊗Ω−1)r̃ and

R = XX⊤ =

n∑

j=1

rjr
⊤
j .

Probability Density Functions 2.7.2

Our first aim is to derive the p.d.f.s in Table 2.5 from the stochastic representations
of the respective distribution given by equation (2.4) in conjunction with Table
2.1.
For the derivation of the Riesz, Inverse Riesz and F -Riesz p.d.f.s we refer to

Blasques et al. (2021), where to translate their notation to ours we use Γ̄U (n) =
Γp(
←−n ) (Lemma 2.7.2), U |X|n = |X−1|−n (Lemma 2.2.2 (iv)) and ΣBlasques =

Ω.

Lemma 2.7.2. Let the upper generalized multivariate gamma function, Γ̄U (·),
be defined as in Blasques et al. (2021) and denote a vector with its elements in
reverse order by a superscript left arrow, e.g. ←−n = (np, np−1, . . . , n1)

⊤, then

Γp

(←−n
)
= Γ̄U (n) .

Proof. We have (←−n )i = np−i+1, such that

Γp

(←−n
)
= πp(p−1)/2

p∏

i=1

Γ

(
np−i+1 −

i− 1

2

)

= πp(p−1)/2
p∏

i=1

Γ

(
ni −

p− 1

2

)
= Γ̄U (n) .
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In particular, the p.d.f. of the Riesz distribution (CΩBB⊤C⊤Ω) has been derived
in Theorems 4 (i) of Blasques et al. (2021).

Our stochastic representation of the Inverse Riesz distribution (CΩB̄
−⊤B̄−1C⊤Ω)

is the same as the one of the Inverse Riesz type II in Blasques et al. (2021)
(U−⊤B̄−⊤B̄−1U−1) (see their Theorem 4 (ii) and Definition 6 (ii)), because U
is the upper Cholesky factor of Ω−1 and consequently U−⊤ = CΩ is the lower
Cholesky factor of Ω. The corresponding p.d.f. is given in their Theorem 7 (ii).

For the F -Riesz distribution (CΩB̄
−⊤BB⊤B̄−1C⊤Ω) use their Theorem 8 (i) and

notice that their Y = CΩB̄
−⊤B̄−1C⊤Ω and thus, according to their Theorem 4 (i)

their X|Y = CΩB̄
−⊤BB⊤B̄−1C⊤Ω . So the stochastic representations are identical,

and the corresponding p.d.f. is given in their Theorem 8 (i) and can be rewritten
using Lemma 2.2.2 (iv) as

pFR =
Γp((
←−n +←−ν )/2)

Γp(n/2)Γp(
←−ν /2) |Ω|

ν
2
|R|n−p−1

2
|Ω+R|−n+ν

2
(2.38)

=
Γp((
←−n +←−ν )/2)

Γp(n/2)Γp(
←−ν /2) |Ω|−

n
2
|R|n−p−1

2
|I+C−1Ω RC−⊤Ω |−n+ν

2
.

The p.d.f.s of the t-Riesz, Inverse t-Riesz, and Inverse F -Riesz distributions are
derived in Theorem 2.2.3. The one of the Inverse F -Riesz can be rewritten using
Lemma 2.2.2 (iv) as

piFR =
Γp((ν + n)/2)

Γp(
←−ν /2)Γp(n/2)

|Ω|−n
2
|R|− ν+p+1

2
|(Ω−1 +R−1)−1| ν+n

2

=
Γp((ν + n)/2)

Γp(
←−ν /2)Γp(n/2)

|Ω|−n
2
|R|n−p−1

2
|(I+C⊤RΩ

−1CR)
−1| ν+n

2

=
Γp((ν + n)/2)

Γp(
←−ν /2)Γp(n/2)

|Ω| ν
2
|R|− ν+p+1

2
|(I+C⊤ΩR

−1CΩ)
−1| ν+n

2
.

Now that we have derived all Riesz-type p.d.f.s, it is easy to get the Wishart-type
p.d.f.s since they are just special cases where all elements in the d.o.f. parameter
vectors are equal to each other and using that for n = (n, n, . . . , n), Γp(n) = Γp(n)
and |X|n| = |X|n (see Definitions 2.2.1 and 2.2.2).

Notice that the stochastic representations of the F -Riesz and Inverse F -Riesz
are, if ∀i, ni = n and νi = ν, (i.e. in case of an F distribution) CΩB̄−⊤BB⊤B̄−1C⊤Ω
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and CΩBB̄−⊤B̄−1B⊤C⊤Ω , respectively, and their p.d.f.s are identical,

pFR(R|Ω, (n, . . . , n), (ν, . . . , ν))

=
Γp((n+ ν)/2)

Γp(n/2)Γp(ν/2)
|Ω|−n

2 |R|n−p−1
2 |I+C−1Ω RC−⊤Ω |−

n+ν
2

=
Γp((n+ ν)/2)

Γp(n/2)Γp(ν/2)
|Ω| ν2 |R|n−p−1

2 |Ω+R|−n+ν
2

=
Γp((n+ ν)/2)

Γp(n/2)Γp(ν/2)
|Ω| ν2 |R|− ν+p+1

2 |ΩR−1 + I|−n+ν
2

=
Γp((n+ ν)/2)

Γp(n/2)Γp(ν/2)
|Ω| ν2 |R|− ν+p+1

2 |(I+C⊤ΩR
−1CΩ)

−1| ν+n
2

= piFR(R|Ω, (n, . . . , n), (ν, . . . , ν))
= pF (R|Ω, n, ν).

This proves that both its alternative stochastic representations given in Table 2.1
yield the F distribution. Note that R ∼ FR(Ω−1,n,ν) ⇏ R−1 ∼ FR(Ω,ν,n)
for either type.33 This is in contrast to the F distribution. Also, note that the
standardized F -Riesz distribution cannot be obtained by mixing a standardized
Riesz with a standardized Inverse Riesz but only by mixing the non-standardized
versions and then standardizing the resulting distribution, as done above. This is
also in contrast to the F distribution and can be seen since

Cdg(
◦
n)−

1
2 B̄−⊤BB⊤B̄−1dg(

◦
n)−

1
2C⊤

̸= Cdg(
◦
ν)−

1
2 B̄−⊤dg(n)−

1
2BB⊤dg(n)−

1
2 B̄−1dg(

◦
ν)−

1
2C⊤.

Next, in Table 2.11 we list the p.d.f.s of the standardized distributions pD(R|Σ,θD).
They can be derived by replacing in the non-standardized p.d.f.s Ω = CM−1D C,
where C is the lower Cholesky factor of Σ = CC⊤ and using Lemma 2.2.2 (iv).

They are interesting because (1) in the GAS models we use ∂pD(R|Σ,θD)
∂vech(Σ)⊤

, not
∂pD(R|Ω,θD)
∂vech(Ω)⊤

, (2) the presence of |R|−(p+1)/2 in all standardized p.d.f.s makes clear

that the likelihood value and likelihood-based information criteria can be manipu-
lated, given an estimated expected value Σ̂, by choosing a different scaling of the
RCs, and (3) programming their explicit functional form gives computational effi-
ciency gains as opposed to simply inputting Ω = CM−1D C in the non-standardized
p.d.f. programs.

33. See the derivation of the Inverse F -Riesz type II. The derivation of the Inverse F -Riesz
type I is very similar.
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Distribution Probability Density Function pD(R|Σ,θD)
Wishart nnp/2

2np/2
1

Γp(n/2)
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ν−2 tr(Z))
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2
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i
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2 |Z|− ν

2
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◦
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2
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np
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|R|− p+1
2 |Z|n2 |I+ n

ν−p−1Z|−
ν+n

2

F -Riesz
∏p

i=1

◦
n

ni
2

i
Γp((
←−n+←−ν )/2)

Γp(n/2)Γp(
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|R|− p+1
2 |Z|n

2
|I+ dg(

◦
n)

1
2Zdg(

◦
n)

1
2 |−n+ν

2

Inv.F -Riesz
∏p

i=1

◦◦
n
− νi

2

i
Γp((n+ν)/2)

Γp(n/2)Γp(
←−ν /2)
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2 |Z|− ν

2
|(I+ dg(

◦◦
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1
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◦◦
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1
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2

Table 2.11: Standardized probability density functions. We define Z = C−1RC−⊤, where C is the lower Cholesky factor
of Σ. For the definition of

◦
ν,

◦
n and

◦◦
n Theorem 2.2.1. To derive these representations from the ones in Table

2.5 use Lemma 2.2.2 (iv).
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Additional Material 2.7.3

Empirical Results

Assets: Rnd Mngn Rnd Fin Rnd Manf
#Assets: 5 6 10 15 25 25

Wishart n 7.0 8.3 12.8 15.0 27.7 29.4
Riesz nmin 1.4 1.9 1.2 0.8 1.1 1.5

n̄ 6.9 7.9 12.8 12.8 25.0 25.9
nmax 12.4 16.0 24.4 27.8 49.5 52.5

t-Wishart n 17.1 17.5 22.7 28.4 38.2 42.3
t-Riesz nmin 3.9 4.4 2.2 2.2 2.1 4.4

n̄ 17.5 16.8 23.1 27.5 35.5 37.4
nmax 30.8 31.0 43.3 51.3 63.9 68.2

Inv.t-Wishart n 3.1 4.1 3.6 1.7 3.8 3.5
Inv.t-Riesz n 3.3 4.1 3.8 1.8 3.9 3.7
F n 30.1 45.8 40.6 53.1 78.7 85.0
F -Riesz nmin 3.1 4.6 2.7 1.7 5.2 2.3

n̄ 43.3 41.9 57.5 63.6 74.5 75.0
nmax 110.4 108.8 168.0 191.2 180.5 190.4

Inv.F -Riesz nmin 1.7 2.8 1.5 1.0 3.2 2.6
n̄ 1297.5 1098.2 1658.0 981.2 697.4 700.0
nmax 6429.7 6344.4 8213.8 5285.6 7480.9 7440.0

Inv.Wishart ν 9.2 11.2 16.2 19.3 34.6 36.3
Inv.Riesz νmin 4.0 4.2 4.2 4.1 4.2 4.3

ν̄ 8.5 11.0 15.7 19.3 31.7 32.4
νmax 11.9 16.8 24.1 31.0 48.2 46.6

t-Wishart ν 4.1 4.8 4.9 3.0 5.2 5.3
t-Riesz νmin 4.3 4.5 5.4 3.1 5.7 5.5
Inv.t-Wishart ν 17.3 18.4 22.6 29.4 41.2 47.7
Inv.t-Riesz νmin 8.0 5.3 3.9 6.2 4.4 6.7

ν̄ 18.7 19.6 24.3 32.8 42.3 45.5
νmax 27.9 30.9 36.4 50.5 70.3 67.9

F ν 10.9 12.9 20.7 21.5 43.1 45.9
F -Riesz νmin 4.0 4.2 5.0 3.7 3.6 3.8

ν̄ 7.9 9.8 14.1 15.1 31.8 31.8
νmax 10.7 13.7 18.6 25.2 51.4 53.8

Inv.F -Riesz νmin 4.1 3.6 4.6 4.2 3.6 3.9
ν̄ 22.4 25.2 34.6 33.2 47.5 50.4
νmax 49.4 62.3 83.9 77.4 103.7 111.3

Table 2.12: Estimated degree of freedom parameters of static distributions for the differ-
ent datasets.
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Assets: Rnd Mngn Rnd Fin Rnd Manf
#Assets: 5 6 10 15 25 25

Wishart n 17.6 20.9 26.3 33.2 45.2 45.1
Riesz nmin 6.3 7.6 6.0 5.4 5.0 5.0

n̄ 16.6 19.6 24.0 29.7 39.5 39.5
nmax 26.4 33.2 41.0 51.1 66.9 66.9

t-Wishart n 24.8 30.4 33.4 42.8 50.7 50.7
t-Riesz nmin 8.3 10.3 7.9 7.1 6.3 6.2

n̄ 23.1 27.9 30.1 38.5 44.3 44.3
nmax 35.2 41.1 49.0 64.5 71.7 73.2

Inv.t-Wishart n 24.2 24.3 23.9 16.5 24.2 21.8
Inv.t-Riesz n 23.1 23.9 22.1 14.4 22.5 20.9
F n 81.6 109.4 122.1 134.2 171.3 179.4
F -Riesz nmin 17.2 18.5 14.5 12.8 16.2 12.9

n̄ 71.1 84.7 93.9 100.5 117.3 124.4
nmax 142.4 169.3 203.2 210.3 225.8 264.6

Inv.F -Riesz nmin 10.2 12.4 8.5 7.8 6.8 6.7
n̄ 3078.3 2237.5 1005.8 1604.8 1965.0 1187.7
nmax 15248.2 13161.6 9356.7 12236.0 21896.1 10330.9

Inv.Wishart ν 20.9 25.4 31.9 39.9 54.1 54.4
Inv.Riesz νmin 9.9 11.1 10.1 8.7 9.2 9.7

ν̄ 19.6 23.8 29.0 35.8 48.1 48.9
νmax 25.2 32.6 38.7 46.3 62.7 64.7

t-Wishart ν 19.8 20.3 20.6 15.3 23.7 20.4
t-Riesz ν 19.8 18.8 20.6 13.7 23.7 19.9
Inv.t-Wishart ν 26.8 33.0 37.9 48.3 58.7 59.6
Inv.t-Riesz νmin 11.0 13.5 11.2 8.7 10.5 11.7

ν̄ 25.5 31.3 35.5 45.7 54.1 55.2
νmax 34.1 42.7 46.9 61.6 70.6 74.0

F νmin 27.3 32.3 41.1 53.4 70.8 69.7
F -Riesz νmin 9.3 10.4 9.5 10.6 10.7 10.5

ν̄ 19.2 22.6 27.4 35.7 50.0 49.7
νmax 26.0 28.6 34.7 53.3 73.2 72.7

Inv.F -Riesz νmin 9.0 10.1 9.5 10.1 9.5 9.5
ν̄ 33.5 39.3 45.1 51.3 63.4 63.5
νmax 56.8 82.1 79.0 83.7 102.3 102.1

Table 2.13: Estimated degree of freedom parameters of dynamic mean shifting distribu-
tions for the different datasets.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 485 600 1121 5104 4829 3769
Riesz 449 552 984 4305 4066 2986
Inv.Wishart 420 497 775 2526 3052 2201
Inv.Riesz 407 475 730 2269 2630 1891
t-Wishart 344 364 548 1697 2423 1723
t-Riesz 330 347 510 1491 2104 1344
Inv.t-Wishart 335 346 468 1538 1809 1018
Inv.t-Riesz 325 335 445 1357 1610 848
F 410 484 738 2341 2656 1979
F -Riesz 346 389 494 1765 1833 1164
Inv.F -Riesz 355 400 533 1847 1885 1237

Table 2.14: Average of log-score loss over a one-month forecasting period (22 trading

days), −
∑22

j=1 pD(Rt+j |Σ̂j+1, θ̂D,j+1), for the forecasting window from 1
January 2007 to 31 December 2011, where each model is re-estimated ev-
ery ten trading days. 90% model confidence sets in red.

Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 117 357 -87 -1467 -1502 -1940
Riesz 89 324 -197 -1695 -2160 -2611
Inv.Wishart 76 290 -295 -1786 -2823 -3534
Inv.Riesz 67 270 -349 -1948 -3075 -3792
t-Wishart 15 227 -393 -2302 -2548 -3037
t-Riesz 0 203 -468 -2483 -2994 -3561
Inv.t-Wishart -14 192 -528 -2586 -3584 -4297
Inv.t-Riesz -21 180 -571 -2667 -3729 -4490
F 57 280 -340 -2026 -3058 -3655
F -Riesz -5 189 -554 -2455 -3764 -4428
Inv.F -Riesz -1 198 -537 -2414 -3711 -4343

Table 2.15: Average of log-score loss over a one month forecasting period (22 trading

days), −
∑22

j=1 pD(Rt+j |Σ̂j+1, θ̂D,j+1), for the forecasting window from 1
January 2012 to 31 December 2019, where each model is re-estimated ev-
ery ten trading days. 90% model confidence sets in red.
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Riesz Covariance

For the derivation of the Fisher information matrix of the t-Riesz distribution in
Chapter 3 we need the covariance matrix of vech(R), if R ∼ R(Σ,n).

Lemma 2.7.3. Let R follow a Riesz distribution, R ∼ R(Σ,n) and let KR be
its stochastic representation kernel as defined in Table 2.1. Then

E[vech2(KR)] = vech2(dg(n)) + 2G+(dg(n)⊗ I)(G+)⊤,

Cov (vech (KR)) = 2G+ (dg(n)⊗ I)
(
G+
)⊤
,

E[vech2(R)] = vech2(Σ) + 2G+(Σ⊗Cdg(n)−1C⊤)(G+)⊤, and

Cov (vech(R)) = 2G+
(
Σ⊗Cdg(n)−1C⊤

) (
G+
)⊤
.

Proof. First, see §2.1.2 of Kollo and von Rosen (2005) for the characteristic func-
tion of a patterned (in our case symmetric) matrix-variate distribution. Note there
are two approaches here. Either we ignore symmetry and get the characteristic
function of vec(R), or we take it into account by getting the characteristic function
of e.g. vech (R). In consistency with the rest of this paper, we take symmetry into
account. Dı́az-Garćıa (2013) and Gribisch and Hartkopf (2022) don’t. Gupta and
Nagar (2000) and Kollo and von Rosen (2005) do. The characteristic function of
vech (KR) where, as defined in Table 2.1, KR = BB⊤ is given by

ϕ(Z) = E
[
ei vech(Z)⊤vech(KR)

]

= E
[
etr

(
i
1

2
(Z+ Z)KR

)]
p. 244 Kollo and von Rosen (2005)

=
1

2pn̄/2Γp (n/2)

∫

KR>0

|KR|n−p−1
2

etr

(
i
1

2
(Z+ Z)KR

)
etr

(
−1

2
IKR

)

=
1

2pn̄/2Γp (n/2)

∫

KR>0

|KR|n−p−1
2

etr

(
−1

2
(I− i (Z+ Z))KR

)

=
1

2pn̄/2Γp (n/2)
Γp (n/2)

∣∣∣∣
1

2
(I− i (Z+ Z))

−1
∣∣∣∣
n
2

=
1

2pn̄/2
2pn̄/2

∣∣∣(I− i (Z+ Z))
−1
∣∣∣
n
2

=
∣∣∣(I− i (Z+ Z))

−1
∣∣∣
n
2

,

where Z is a diagonal matrix with elements dg(Z) and where we used Lemma
(2.7.1). See also Dı́az-Garćıa (2013), Lemma 1.
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Denote Ξ = I− i (Z+ Z), then

∂vech(Ξ)

∂vech(Z)⊤
= −i2(G⊤G)−1 = −i2(G⊤G)−⊤

Then

∂2ϕ(Z)

∂vech(Z)∂vech(Z)⊤
= i

∂

∂vech(Z)
|Ξ−1|n

2
vech(Ċξ dg(n)Ċξ

⊤
)⊤

= i
∂|Ξ−1|n

2

∂vech(Z)
vech(Ċξ dg(n)Ċξ

⊤
)⊤ + i|Ξ−1|n

2

∂vec(Ċξ dg(n)Ċξ
⊤
)

∂vech(Z)
(G+)⊤

= i2|Ξ−1|n
2
vech2(Ċξdg(n)Ċξ

⊤
)

− i|Ξ−1|n
2

(
∂vec(Ċξ dg(n)Ċξ

⊤
)

∂vech(Ξ)⊤
∂vech(Ξ)

∂vech(Z)⊤

)⊤
(G+)⊤

= i2|Ξ−1|n
2
vech2(Ċξdg(n)Ċξ

⊤
) + i22|Ξ−1|n

2

× (GG+(Ċξ dg(n)⊗ I)F⊤(G+(Ċξ
−⊤ ⊗Ξ)F⊤)−1(G⊤G)−⊤)⊤(G+)⊤

= i2|Ξ−1|n
2
vech2(Ċξdg(n)Ċξ

⊤
) + i22|Ξ−1|n

2

× (G⊤G)−1(GG+(Ċξ dg(n)⊗ I)F⊤(G+(Ċξ
−⊤ ⊗Ξ)F⊤)−1)⊤(G+)⊤,

where Ċξ is the lower Cholesky factor of Ξ−1, such that

E[vech2(KR)] =
∂2ϕ(Z)

i2∂vech(Z)∂vech(Z)⊤

∣∣∣∣
Z=0

= vech2(dg(n)) + 2(G⊤G)−1(GG+(dg(n)⊗ I)F⊤(G+I⊗2F⊤)−1)⊤(G+)
⊤

= vech2(dg(n)) + 2G+((dg(n)⊗ I)GG+F⊤(G+F⊤)−1)⊤(G+)
⊤

= vech2(dg(n)) + 2G+(dg(n)⊗ I)(G+)⊤,

and

E[vec2(R)] = C⊗2Ω E[vec2(KR)](C⊗2Ω )⊤

= C⊗2Ω GE[vech2(KR)]G⊤(C⊗2Ω )⊤

= C⊗2Ω vec2(dg(n))(C⊗2Ω )⊤ + 2(C⊗2Ω )GG+(dg(n)⊗ I)(C⊗2Ω GG+)⊤

= vec2(CΩdg(n)C
⊤
Ω) + 2GG+(CΩdg(n)C

⊤
Ω ⊗Ω)GG+, (2.39)
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and consequently

E[vech2(R)] = G+E[vec2(R)](G+)⊤

= vech2(CΩdg(n)C
⊤
Ω) + 2G+(CΩdg(n)C

⊤
Ω ⊗Ω)(G+)⊤

= vech2(Σ) + 2G+(Σ⊗Cdg(n)−1C⊤)(G+)⊤.

Thus

Cov(vech(KR)) = 2G+(dg(n)⊗ I)(G+)⊤,

and

Cov(vech(R)) = Cov(vech(CΩKRC⊤Ω))
= G+C⊗2Ω GCov((vech(KR)))(G+C⊗2Ω G)⊤

= 2G+C⊗2Ω GG+(dg(n)⊗ I)(G+)⊤(G+C⊗2Ω G)⊤

= 2G+C⊗2Ω (dg(n)⊗ I)(C⊗2Ω )⊤(G+)⊤

= 2G+(Σ⊗Cdg(n)−1C⊤)(G+)⊤.
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Chapter 3

Generalized Autoregressive Score
Models for Realized Covariance
Matrices

Introduction 3.1

The covariance matrix of financial asset returns is a crucial concept in financial
econometrics, with direct implications for efficient portfolio allocation, risk man-
agement, and derivative pricing. A realized covariance matrix (RC) is an ex-post
estimate of the daily integrated covariance matrix constructed from high-frequency
data. It can be interpreted as providing an “effectively observable” daily covari-
ance matrix of the underlying financial asset returns, and consequently, directly
modeling the time-series of RCs has been advocated in the literature (e.g., An-
dersen et al., 2001, Andersen et al., 2006, McAleer and Medeiros, 2008, Chiriac
and Voev, 2011).

One way to model time-series of RCs is the class of observation-driven models as
defined by Cox (1981). In this class of models, the RC of a given day is assumed to
follow a conditional probability distribution with time-varying parameters, where
the parameters are updated using the previous RC realization(s). Probability
distributions for RCs can be characterized by their p×p symmetric positive definite
expected value matrix and a set of degree of freedom (d.o.f.) parameters (see
Chapter 2). In the literature on observation-driven models for RCs, it is assumed
that only the expected value matrix is time-varying, while the d.o.f. parameters are
constant (see e.g. Golosnoy, Gribisch, and Liesenfeld, 2012, Noureldin, Shephard,
and Sheppard, 2012 and Opschoor et al., 2018).

To make the models applicable to reasonable data dimension the updating pro-
cess typically has to be restricted to scalar dynamics. That is, next day’s expected
value matrix is determined by the previous RC(s) multiplied by scalar parameters,
which implies that the conditional expected value of any element in the RC on a
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given day depends only on the realizations of this element in the previous RCs.
This represents a very strong assumption, as there can be no spillovers between
the realized (co)variances.
A very general subclass of observation-driven models that avoids this assump-

tion is given by the generalized autoregressive score (GAS) models, introduced
by Creal, Koopman, and Lucas (2011), Creal, Koopman, and Lucas (2013) and
Harvey (2013). In GAS models, information about the entire shape of the as-
sumed conditional probability distribution is incorporated directly into the pa-
rameter updating process, by using the distribution-specific score, often scaled by
the corresponding inverse of the Fisher information matrix (FIM), as the forcing
variable.1 Advantages of GAS models over traditional observation-driven mod-
els are as follows. First, GAS models feature rich dynamic updating dynamics
even if scalar dynamics are assumed. Second, they offer an intuitive way to make
any parameter of a probability distribution time-varying, not just those that have
an obvious observable forcing variable like the expected value matrix of distri-
butions for RCs. Furthermore, GAS models have been shown to possess desir-
able information-theoretic optimality (see Blasques, Koopman, and Lucas, 2015).
Finally, it is noteworthy that GAS models contain some traditional observation-
driven models as special cases. One of these special cases is discovered in this
paper.2

While the general literature on GAS models is very extensive (see Harvey, 2022
and www.gasmodel.com), and for time-series of RCs, the literature on traditional
observation-driven is quite large (see references above and, among others, Asai
and So, 2013, Jin and Maheu, 2016 and Zhou et al., 2019), the literature on GAS
models for time-series of RCs is very scarce. To the best of our knowledge, there
are only two papers. The first is by Opschoor et al. (2018), who propose to model
the daily return vectors and the RCs jointly. They assume that the daily return
vectors follow a multivariate standardized t-distribution with a covariance matrix
that is equal to the expected value matrix of the standardized matrix-F distribu-
tion, assumed for the RCs. This parameter matrix follows GAS dynamics. The
authors show that their model significantly outperforms all previously proposed
competitors in terms of in-sample fit and out-of-sample forecasting ability. The
second paper on GAS models for RCs is by Gorgi et al. (2019). They propose a
model that is similar to the one in Opschoor et al. (2018). However, they assume
a multivariate standardized normal (nested by the t) and Wishart (nested by the
matrix-F ) distribution for the daily returns and RCs, respectively. They general-
ize the GAS dynamics of Opschoor et al. (2018) by assuming that the covariance
matrix of the normal distribution is equal to the scaled expected value matrix of

1. We call the variable that drives the updating process the “forcing variable”.
2. See Lemma 3.3.1.
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the Wishart, and by assuming full GAS rather than scalar-GAS dynamics. While
the full GAS dynamics make their model more flexible, it also makes it infeasible
even for moderate cross-sectional dimensions.
The scarcity of literature on GAS models for RCs is despite there having been

proposed many different probability distributions for RCs (see Chapter 2). Each
distribution would entail a different parameter updating forcing variable in a GAS
model since the score is distribution-specific. This paper aims to extend the lit-
erature by deriving GAS models for RCs for all probability distributions used in
the literature. This extension is important because, in GAS models the natural
question arises which distributions and their scores work best in practice. We
contribute to the literature by deriving a general (across all distributions) repre-
sentation of the scaled score w.r.t. the expected value matrix that makes the GAS
models computationally feasible for medium to large RCs (say, five to 50 assets).

Furthermore, we provide empirical evidence consistent with economic intuition,
which suggests that the d.o.f. parameters should also be modeled as time-varying.
Consequently, another contribution we make is to assume time-varying d.o.f. pa-
rameters by endowing them with GAS dynamics. For realized variances, i.e. one-
dimensional RCs, time-varying d.o.f. parameters with GAS dynamics have been
proposed by Opschoor and Lucas (2022), who consider the special case of the F
distribution. Using various loss functions, they show that their model outperforms
competitors without time-varying d.o.f. parameters in an out-of-sample forecast-
ing exercise. For RCs there is, to the best of our knowledge, no study to date
considering time-varying d.o.f. parameters.
We contribute by deriving all the necessary theoretical inputs for GAS models

with time-varying expected value matrix and time-varying d.o.f. parameters. That
is, we derive the scores and the FIMs w.r.t. the expected value matrix and the
d.o.f. parameters for all probability distributions for RCs.3. To the best of our
knowledge, only a very small subset of these quantities (e.g. the score and FIM
w.r.t. the expected value matrix of the Wishart and the score w.r.t. the expected
value matrix of the matrix-F ) have been derived before.
Finally, in the empirical section, likelihood ratio tests and forecast comparisons

reveal that time-varying d.o.f. parameters are indeed important for all distribu-
tions. Furthermore, we show that in our model as in Chapter 2, which features
much simpler parameter updating dynamics, the t-Riesz distribution family and
the F -Riesz distribution family are the best distributions in terms of fit and fore-
casting performance.
The rest of this paper is structured as follows. The next section examines the

drawbacks of non-GAS observation-driven models for RCs and explains how the

3. We do not obtain the FIMs w.r.t. the expected value matrix for the Inverse t-Riesz and the
(Inverse) F -Riesz distributions.
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GAS models alleviate them. Section 3.3 introduces the GAS model framework
for time-series of RCs in general and presents, in particular, (the derivations for)
our GAS models for all distributions for RCs. Section 3.4 contains the empirical
application with in-sample fit and out-of-sample forecasting comparison that in-
vestigates among others the relevance of time-varying d.o.f. parameters across all
distributions. Section 3.5 concludes.

3.2 Drawbacks of Traditional Observation-Driven
Models for RCs

To be more precise on the traditional observation-driven model setup, that is a
model without GAS dynamics, remember that all probability distributions D for
RCs can be characterized by a symmetric positive definite expected value matrix
Σ and their distribution-specific d.o.f. parameters, which we collect in θD. Thus,
the distributional assumption can be written as,

Rt|Ft−1 ∼ D(Σt,θD), (3.1)

where Rt denotes an RC at time t and Ft−1 = {Rt−1,Rt−2 . . .}. The scalar
dynamics for the conditional expected value matrix in a traditional observation-
driven model might be, for example, a scalar-BEKK specification:

Σt+1 = (1− a− b)Ξ+ aRt + bΣt. (3.2)

This scalar-dynamic assumption, which is necessary to make the models applicable
to more than, say, five assets, restrictively implies that each element in Σt+1 only
depends on the corresponding previous element in Σt and the corresponding pre-
vious realization in Rt. That is, there is no possibility for (co)volatility spillovers,
which is a very strong assumption. In reality there is complex non-linear interde-
pendence between different firms. On the other hand, a scalar-GAS model, where
Rt in equation (3.2) is replaced by the score of the observational density, naturally
accommodates volatility spillovers, since Rt enters non-linearly in the score.
The second drawback of traditional observation-driven models for RCs is the

central assumption of constant d.o.f. parameters. To illustrate this we estimated
the scalar-BEKK model given by equations (3.1) and (3.2) for all distributions for
RCs D on a rolling window of 1250 observations for the ten-dimensional dataset
described in Section 3.4.1. We plot the resulting d.o.f. parameter estimates in
Figure 3.1. We see that the estimated d.o.f. parameters vary substantially over
time for all distributions, even if we introduce time-variation in the expected value
matrix (Σt) via the scalar-BEKK specification. For an intuition, recall that the
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Figure 3.1: (Average) estimated d.o.f. parameters n and ν from estimation on a moving
window of 1250 observations of scalar-BEKK model for all distributions for
the ten-dimensional dataset described in 3.4.1. All time-series are normed
to the first estimated (average) degree of freedom. The plotted points cor-
respond to the mid-point of the moving window sample. The color coding
is: Riesz, Wishart, Inv.Riesz, Inv.Wishart, t-Riesz, t-Wishart, Inv.t-Riesz,
Inv.t-Wishart, F -Riesz, F. The thick line corresponds to the Riesz-type dis-
tributions, for which we plot the average of their d.o.f. parameter vectors, the
thin line to the corresponding Wishart-named (and the F ) ones.

d.o.f. parameter ν of the t-Wishart distribution regulates its fat-tailedness, with
lower values implying a more fat-tailed distribution. In Figure 3.1, we indeed see,
as we would expect, that ν̂ of the t-Wishart decreases substantially (around 30 %)
during the 2008 global financial crisis and in the COVID-19 crisis. We conclude
that the assumption of static d.o.f. parameters is restrictive and that there is
statistical and economic value in exploring time-variation in the d.o.f. parameters.
For the d.o.f. parameters in an observation-driven model, there is no observable
realization to use in an updating mechanism. Here, GAS models, with their use
of the lagged score as the forcing variable, offer an intuitive way to dynamically
update the d.o.f. parameters.

GAS Model Setup 3.3

As mentioned above, probability distributions for RCs can be characterized by
a symmetric positive definite expected value matrix Σ and their distribution-
specific d.o.f. parameters (one or two of the set (n, ν,n,ν)), which we collect in the
vector θD. For example, for the F -Riesz distribution we have θFR = (n⊤,ν⊤)⊤

with d.o.f. parameter vectors n = (n1, . . . , np)
⊤ and ν = (ν1, . . . , νp)

⊤, the t-
Riesz distribution has d.o.f. parameter vector n and scalar d.o.f. ν, thus θtR =
(n⊤, ν)⊤, and the Wishart distribution has just one d.o.f. parameter, thus θW = n.
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Assuming that all parameters are time-varying, the conditional distribution can
be written as

Rt|Ft−1 ∼ D(Σt,θD,t). (3.3)

In the GAS model framework, the parameter updating at time t + 1 is based on
the score vector of the respective distribution D at time t,

∇D,t =

(
∂ log pD(Σt,θD,t|R)

∂vech(Σt)⊤
,
∂ log pD(Σt,θD,t|R)

∂θ⊤D,t

)⊤
,

where pD(·) is the probability density function (p.d.f.) of distribution D, and the
vech(·)-operator takes a lower-triangular or symmetric matrix as input and stacks
its elements on and below the main diagonal column-wise into a column vector.
We denote the distinct parts of the score by

∇Σ
D,t =

(
∂ log pD(Σt,θD,t|R)

∂vech(Σt)⊤

)⊤
and

∇θ
D,t =

(
∂ log pD(Σt,θD,t|R)

∂θ⊤D,t

)⊤
.

See Section 3.6.1 in the appendix for a treatment of multivariate derivatives.4

The time-t score vector gives the parameter updating direction in which the
log-likelihood at time t can be improved most. Thus, it is a natural choice for a
forcing variable in a dynamic updating equation. However, empirically, it behaves
too erratically in order to extract valuable signals, and thus it is usually advocated
to scale the score in some way (c.f. Creal, Koopman, and Lucas, 2013). A widely
used scaling matrix is the inverse Fisher information matrix (FIM) (Gorgi et al.,
2019, Blasques et al., 2022), which embodies information about the curvature of
the log-likelihood,

ID,t = E
[∇Σ
D,t(∇Σ

D,t)
⊤ ∇Σ

D,t(∇θ
D,t)

⊤

∇θ
D,t(∇Σ

D,t)
⊤ ∇θ

D,t(∇θ
D,t)

⊤

]
, (3.4)

to obtain the scaled score vector

sD,t = I−1D,t∇D,t.

4. It is not immediately obvious how to arrange the individual derivatives
∂ log pD(Σt,θD,t|R)

∂(Σt)ij
.

Also, it is important to take the derivative w.r.t. vech(Σ), not vec(Σ), to take the symmetry of
Σ into account. Both points are explained in more detail in Section 3.6.1.
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In order to be able to estimate the parameters of the updating equation, one has
to choose scalar dynamics, akin to the scalar-BEKK model, because full matrix dy-
namics suffer from the curse of dimensionality. However, since it seems unrealistic
that Σt and the d.o.f. parameters (nt, nt,νt, νt) follow the same scalar dynamics,
we assume separate scalar-GAS updating equations for them. The scaled score
w.r.t. Σt is defined as

SΣ
D,t = ivech((IΣD,t)

−1∇Σ
D,t), (3.5)

with IΣD,t = E[∇Σ
D,t(∇Σ

D,t)
⊤], (3.6)

where ivech(·) is the inverse vech operator that creates a symmetric matrix from a
vector of suitable size. For the d.o.f. parameters in θD,t we assume separate scalar-
GAS updating equations for nt, nt,νt and νt, with the scaled scores w.r.t. nt and
nt given by

snD,t = (InD,t)
−1∇n

D,t

and snD,t =
∇n
D,t

InD,t

,

where

∇n
D,t =

(
∂ log pD(·)
∂n⊤t

)⊤
,

∇n
D,t =

∂ log pD(·)
∂nt

,

and

InD,t = E[∇n
D,t(∇n

D,t)
⊤],

InD,t = E[(∇n
D,t)

2].

The scaled scores w.r.t νt and νt are defined analogously to those of nt and nt.
Which of the d.o.f. parameter updating equations is present in the respective model
depends, of course, on the chosen distribution.
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Distribution 2△Ω
D

Wishart Ω−1RΩ−1 − nΩ−1

Riesz Ω−1RΩ−1 −C−⊤Ω dg(n)C−1Ω

Inv.Wishart νΩ−1 −R−1

Inv.Riesz C−⊤Ω dg(ν)C−1Ω −R−1

t-Wishart ν+pn
1+tr(Ω−1R)

Ω−1RΩ−1 − nΩ−1

t-Riesz ν+pn̄
1+tr(Ω−1R)

Ω−1RΩ−1 −C−⊤Ω dg(n)C−1Ω

Inv.t-Wishart νΩ−1 − ν+pn
1+tr(ΩR−1)R

−1

Inv.t-Riesz C−⊤Ω dg(ν)C−1Ω − n+pν̄
1+tr(ΩR−1)R

−1

F C−⊤Ω dg(ν)C−1Ω −C−⊤H dg(ν + n)C−1H

F -Riesz C−⊤Ω dg(ν)C−1Ω −C−⊤H dg(ν + n)C−1H

Inv.F -Riesz C−⊤Ω dg(n)C−1Ω −Ω−1CJdg(n+ ν)C⊤J Ω
−1

Table 3.1: △Ω
D is the p × p score matrix w.r.t. Ω, as defined in equation (3.33) in the

appendix, with subscripts t omitted for readability. The scores w.r.t. Ω are
given by ∇Ω

D = G⊤vec(△Ω
D) and the ones w.r.t. Σ then easily follow from

Lemma 3.6.9. The proofs are straightforward using Lemmas 3.6.6 and 3.6.7.
As an example, see Section 3.6.2 in the appendix for the derivation of the
F -Riesz score. CH and CJ denote the lower Cholesky factor of H = Ω + R
and J = (Ω−1 +R−1)−1, respectively.

3.3.1 Expected Value Matrix Recursion

The scores and FIMs w.r.t. Σt for the different distributions are given in Tables
3.1 and 3.2. The derivations are given in Section 3.6.2 in the appendix. The
formulas for the FIMs contain p2×p2 matrix multiplications and inversions which
makes the direct calculation of the scaled score (equation (3.5)) prohibitively slow.
Thus, we propose to scale the score w.r.t. Σt of all Riesz-type distributions with
the FIMs of the corresponding Wishart-type distributions. That is, for example,
we scale the F -Riesz distribution score (∇Σ

FR,t) by the F distribution inverse FIM

(IΣF,t) instead of its own (IΣFR,t), by setting nF,t = n̄FR,t and νF,t = ν̄FR,t.

We can be flexible with the scaling of the scores since the most important
information is contained in the score itself, which at time t defines the steepest
ascend direction of the log-likelihood in which the parameters should be updated
in t+ 1. The scaling just serves to stabilize the time-series behavior of the scores.
In fact, in a small dimensional example using the t-Riesz distribution we found
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Distribution IΣD
Wishart n

2G
⊤Σ−⊗2G

Inv.Wishart ν
2G
⊤Σ−⊗2G

t-Wishart n
2G
⊤
(

ν+pn
ν+pn+2Σ

−⊗2 − n
(ν+pn+2)vec

2
(
Σ−1

))
G

Inv.t-Wishart ν
2G
⊤
(

n+pν
n+pν+2Σ

−⊗2 − ν
(n+pν+2)vec

2
(
Σ−1

))
G

F 1
2G
⊤ ((ν + (n+ ν)(c3 + c4))Σ

−⊗2 + (n+ ν)c4vec
2
(
Σ−1

))
G

Table 3.2: Fisher information matrices w.r.t Σ of Wishart-type distributions. The sub-
scripts t are omitted for readability. For the derivations (and the definitions
of c3 and c4) see Section 3.6.2 in the appendix. The Fisher information ma-
trices of the (inverse) Riesz and t-Riesz distributions are also derived in the
appendix.

that the Σt-dynamics obtained from scaling with the “correct” t-Riesz FIM are
very similar to the ones obtained from scaling with the t-Wishart FIM. Opschoor
et al. (2018) scale the matrix F distribution with the inverse FIM of the Wishart
distribution. Furthermore, Blasques, Francq, and Laurent (2022) show that it
is possible to disentangle the distributional assumption from the score dynamics
completely, i.e. one could update the parameters with a scaled score from a different
distribution than the conditional distributional assumption on the data.

In Theorem 3.3.1 we show that in the formulas for the scaled scores that result
from this scaling scheme, only p × p matrix operations remain, which makes the
models empirically feasible again.

Theorem 3.3.1. Consider the scaled score w.r.t. Σt,

SΣ
D,t = ivech((IΣD,t)

−1∇Σ
D,t),

as defined in equation (3.5). If, for any Riesz-type distribution, we use IΣD,t of its
Wishart-type counterpart, instead of its own, by setting the degree(s) of freedom
equal to the average of the corresponding d.o.f. parameter vector(s). Then, for all
distributions for RCs the scaled score w.r.t. Σt can be written as

ṠΣ
D,t = αDΣt△Σ

D,tΣt + βDtr
(
Σt△Σ

D,t

)
Σt,

where △Σ
D,t is the p× p score matrix w.r.t. Σt ignoring symmetry (as defined in

equation (3.30)), and αD and βD are scalars that depend only on the d.o.f. pa-
rameters of the respective distribution. Proof in Appendix.
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We omit the FIMs w.r.t.Σt for the Riesz-type distributions in Table 3.2 since using
Theorem 3.3.1 we don’t need them and their formulas are long and cumbersome.5

Now we present our specification for the expected value matrix equation. We
assume

Σt+1 = (1− b1 − b2 − b3)Ξ+ a1Σt△Σ
D,tΣt + a2tr(Σt△Σ

D,t)Σt

+ b1Σt + b2Σ̄t:t−4 + b3Σ̄t:t−21, (3.7)

where Ξ is a p× p symmetric positive definite parameter matrix and a1, a2, b1, b2
and b3 are scalar parameters. Following Opschoor et al. (2018), we assume a HAR-

type (see Corsi, 2009) structure, where Σ̄t:t−4 = 1/5
∑4

j=0 Σt−j and Σ̄t:t−21 =

1/22
∑21

j=0 Σt−j are the average expected value matrix of the previous trading week
and month, respectively. In our empirical analysis, the HAR structure improved
the fit and forecasting ability substantially over the version where only Σt goes
into the updating process. Note that our scaling nest the one in Opschoor et
al. (2018) by setting a2 = 0. It is important to see, that instead of straightforwardly
incorporating Theorem 3.3.1 by using aṠΣ

D,t = a(αDΣt△Σ
D,tΣt+βDtr(Σt△Σ

D,t)Σt)
as the forcing variable in our updating equation, we allow for different stand-alone
parameters (a1,a2) for the two terms that constitute ṠΣ

D,t. This comes at the small
cost of adding one more parameter but has the advantage of adding flexibility and
making the updating equation completely independent of the FIMs such that we
don’t need to calculate the complicated formulas for αD and βD.

6 Note that
under this small generalization the mean-zero property of the two scaled score
terms is preserved since E[△Σ

D,t|Ft−1] = 0. Furthermore, it is directly visible that
for all distributions, even for scalar parameters there are spillovers of the realized
(co)variances of all assets to the expected realized (co)variances of all other assets.
Note that our specification endows the expected value matrix Σt with GAS

dynamics which is different from a model that assumes GAS dynamics for time-
varying parameter matrix Ωt (recall from Chapter 2, that the probability distri-
butions can be parameterized in terms of expected value matrix Σt or parameter
matrix Ωt). This is because the score w.r.t. Ω is not simply a multiple of the score
w.r.t. Σ. In contrast, in a scalar-BEKK specification as in Blasques et al. (2021),
it does not matter if the distributions are parameterized in terms of Ωt or Σt.
We choose the model Σt with a GAS specification instead of Ωt because there are
several advantages to it. First, unlike Ωt, the Σt parameter has the same mean-
ing across distributions and an intuitive interpretation of yielding a mean-shifting
process. Second, the distributions when parameterized in terms of Σt nest each

5. You can find the FIMs for some Riesz-type distributions expressions in Section 3.6.2 in the
appendix.

6. These formulas are especially complicated for the F distribution.
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other according to the distribution family tree in figure 2.6 of Chapter 2, and this
nesting translates over to the GAS models. This makes comparisons of likelihood
values via information criteria valid and opens the possibility of likelihood ratio
tests. One could also use the optimized parameters of a GAS model with nested
distributions as starting points for the estimation of the GAS models with nest-
ing distributions. Third, the targeting estimation of the intercept matrix in the
Σt-GAS recursion is feasible and very easy. In fact, if we introduce time-variation
in the d.o.f. parameters, like we do in the next section, it is impossible to target
the intercept matrix of a Ωt-GAS specification since the unconditional mean of
Ωt depends on the d.o.f. parameters.

As an interesting side note, in Lemma 3.3.1, we show that, for the case of the
Riesz (and Wishart) distribution, the original scaled score SΣ

D,t boils down to the

difference between Rt and Σt (and thus also does not require p2 × p2 matrix
multiplications).

Lemma 3.3.1. For the Riesz (and consequently also the Wishart) distribution,
we have that the scaled score w.r.t. Σ, SΣ

D,t, in equation (3.5) can be rewritten as

SΣ
R,t = Rt −Σt.

Proof in Appendix.

Consequently, a scalar-GAS (1,1) specification would simplify to

Σt+1 = (1− b)Ξ+ aSΣ
R,t + bΣt

= (1− b)Ξ+ aRt + (b− a)Σt,

which is equivalent to the well-known scalar-BEKK specification in equation (3.2).
For the other Riesz-type distributions, however, such simplifications are not pos-
sible.

Degree of Freedom Parameters Recursion 3.3.2

We assume that the time-varying d.o.f. parameters in θD,t follow GARCH-type
recursions,

nt+1 = (1− bn)ξn + ansnD,t + bnnt, (3.8)

nt+1 = (1− bn)ξn + ansnD,t + bnnt, (3.9)

where ξn is a parameter vector of size p × 1, ξn, an, bn, an and bn are scalar pa-
rameters, and snD,t (p × 1) and snD,t (scalar) are the scaled scores with respect
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to nt and nt, respectively.7 The specifications for νt and νt are analogous to
those of nt and nt. Of course, which of the recursions (nt,νt, nt and/or νt) are
present in the respective model depends on the chosen distribution D. We collect
all distribution-specific d.o.f.-recursion parameters in the vector ϑD. For example,
ϑW = (ξn, an, bn)⊤ and ϑFR = ((ξn)⊤, an, bn, (ξν)⊤, aν , bν)⊤. The scores and
FIMs w.r.t. nt, nt,νt and νt, which are needed to construct the forcing variables
(scaled scores) in the recursions, are listed in Tables 3.3 and 3.4, respectively, and
are derived in Section 3.6.2 in the appendix. Note that for the special case that
the non-intercept parameters (an, an, aν , aν , bn, bn, bν , bν) are set to equal zero, we
recover a restricted GAS model with constant d.o.f. parameters (GAS dynamics
only in Σt).

To give some intuition on the interpretation of the d.o.f. parameters, consider
omitting the subscript t, the one-dimensional case, i.e. R being of size 1 × 1. In
that case the stochastic representation of all distributions8 can be written as

R =





ΣΓ(n2 ,
n
2 ) (W,R)

ΣΓ−1(ν2 ,
ν−2
2 ) (iW, iR)

ΣΓ(n2 ,
n
2 )Γ
−1(ν2 ,

ν−2
2 ) (tW, tR, itW, itR, F, FR, iFR),

where Σ is the 1× 1 expected value and Γ(n/2, n/2) and Γ−1(ν/2, (ν − 2)/2) are
mean-zero Gamma and Inverse Gamma distributions, respectively. The variance
and excess kurtosis of both the Γ(n/2, n/2) and the Γ−1(ν/2, (ν−2)/2) increases, if
the d.o.f. parameters n and ν decrease. That is, the distributions get “wider” and
more “fat-tailed”, which carries over to the distribution of the one-dimensional Rt.
This is economically important because if we are interested in predicting Rt+1,
simple point predictions are of limited use without an accompanying statement
about the distributional properties of this forecast, either in the form of confi-
dence bands or by stating variance and tail-measures. Because of the outlined
interpretation, we expect the d.o.f. parameters to fall during times of crisis. Thus
forecasts of the d.o.f. parameters could also be used to identify upcoming market
turmoil.

7. To mirror the Σt specification, we also tried HAR-type recursions for the d.o.f. parameters.
However, in the empirical application, it turned out that the lagged weekly and monthly average
d.o.f. parameters were insignificant, and their estimates were often close to zero.

8. Recall equation (2.7): R = CM
− 1

2
D KDM

− 1
2

D C⊤.
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Distribution 2∇n or 2∇n

Wishart −p log(2)−∑p
j=1 ψ(

n−j+1
2 ) + log |Ω−1R|

Riesz − log(2)−ψ(n2 ) + 2 log vecd(C−1Ω CR)

Inv.Wishart -

Inv.Riesz -

t-Wishart pψ(ν+pn
2 )−∑p

j=1 ψ(
n−j+1

2 )− log |Ω−1R| − p log(1 + tr(Ω−1R))

t-Riesz ψ(ν+pn̄
2 )−ψ(n2 ) + 2 log vecd(C−1Ω CR)− log(1 + tr(Ω−1R))

Inv.t-Wishart ψ(n+pν
2 )− ψ(n2 )− log(1 + tr(ΩR−1))

Inv.t-Riesz ψ(n+pν̄
2 )− ψ(n2 )− log(1 + tr(ΩR−1))

F
∑p

j=1 ψ(
ν+n−j+1

2 )− ψ(n−j+1
2 ) + log |R| − log |H|

F -Riesz
←−
ψ (
←−n+←−ν

2 )−ψ(n2 ) + 2 log vecd(CR)− 2 log vecd(CH)

Inv.F -Riesz ψ(n+ν2 )−ψ(n2 )− 2 log vecd(CΩ) + 2 log vecd(CJ)
Distribution 2∇ν or 2∇ν

Wishart -

Riesz -

Inv.Wishart −p log(2)−∑p
j=1 ψ(

ν−j+1
2 ) + log |ΩR−1|

Inv.Riesz − log(2)−←−ψ (
←−ν
2 ) + 2 log vecd(C−1R CΩ)

t-Wishart ψ(ν+pn
2 )− ψ(ν2 )− log(1 + tr(Ω−1R))

t-Riesz ψ(ν+pn̄
2 )− ψ(ν2 )− log(1 + tr(Ω−1R))

Inv.t-Wishart pψ(n+pν
2 )−∑p

j=1 ψ(
ν−j+1

2 ) + log |ΩR−1| − p log(1 + tr(ΩR−1))

Inv.t-Riesz ψ(n+pν̄
2 )−←−ψ (

←−ν
2 ) + 2 log vecd(C−1R CΩ)− log(1 + tr(ΩR−1))

F
∑p

j=1 ψ(
ν+n−j+1

2 )− ψ(ν−j+1
2 ) + log |Ω| − log |H|

F -Riesz
←−
ψ (
←−n+←−ν

2 )−←−ψ (
←−ν
2 ) + 2 log vecd(CΩ)− 2 log vecd(CH)

Inv.F -Riesz ψ(n+ν2 )−←−ψ (
←−ν
2 )− 2 log vecd(CR) + 2 log vecd(CJ)

Table 3.3: Scores w.r.t. n, n, ν and ν of all distributions for RCs. CH and CJ denote the
lower Cholesky factors of H = Ω +R and J = (Ω−1 +R−1)−1, respectively.
The derivations are straightforward by applying Lemmas 3.6.10 and 3.6.12
(appendix) directly on the log of the p.d.f.s given in Table 2.5. Also note
Lemma 3.6.11.
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Distribution 4In or 4In 4Iν or 4Iν
Wishart

∑p
j=1 ψ

′(n−j+1
2 ) -

Riesz ψ′(n2 ) -

Inv.Wishart -
∑p

j=1 ψ
′(ν−j+1

2 )

Inv.Riesz -
←−
ψ ′(

←−ν
2 )

t-Wishart
∑p

j=1 ψ
′(n−j+1

2 )− p2ψ′(ν+pn
2 ) ψ′(ν2 )− ψ′(

ν+pn
2 )

t-Riesz ψ′(n2 )− ψ′(
ν+pn̄

2 ) ψ′(ν2 )− ψ′(
ν+pn̄

2 )

Inv.t-Wishart ψ′(n2 )− ψ′(
n+pν

2 )
∑p

j=1 ψ
′(ν−j+1

2 )− p2ψ′(n+pν
2 )

Inv.t-Riesz ψ′(n2 )− ψ′(
n+pν̄

2 )
←−
ψ′(
←−ν
2 )− ψ′(

n+pν̄
2 )

F ψ′(n−j+1
2 )−∑p

j=1 ψ
′(ν+n−j+1

2 ) ψ′(ν−j+1
2 )−∑p

j=1 ψ
′(ν+n−j+1

2 )

F -Riesz ψ′(n2 )−
←−
ψ ′(

←−n+←−ν
2 )

←−
ψ ′(

←−ν
2 )−

←−
ψ ′(

←−n+←−ν
2 )

Inv.F -Riesz ψ′(n2 )−ψ
′(n+ν2 )

←−
ψ ′(

←−ν
2 )−ψ

′(n+ν2 )

Table 3.4: Fisher information matrices w.r.t. n, n, ν and ν directly obtained by applying
Lemma 3.6.12 (appendix) on the scores in Table 3.3.

3.3.3 Summary

To summarize, we collect all model parameters in the vector

δD = (vech(Ξ)⊤, a1, a2, b1, b2, b3,ϑ
⊤
D)
⊤,

such that we can write

Rt|Ft−1 ∼ D (Σt(δD),θD,t(δD)) .

Both hyperparameters Σt and θD,t are dependent on all model parameters δD
since their scaled scores on both Σt and θD,t.
With our assumed specifications forΣt and θt, we believe that we have made the

time-variation of the parameter space as rich as feasible while avoiding the curse
of dimensionality. Thus, the remaining differences in fit and forecasting ability
reflect mainly the appropriateness of the distributional assumption.
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Empirical Application 3.4

Data 3.4.1

We take the same datasets as in the previous chapter for the same reasons as
stated there (see Section 2.5.2).

Estimation of the GAS Models 3.4.2

Since E[△Σ
D,t|Ft−1] = 0, it is easy to show (see equation (3.7)) that

E[Rt] = Ξ. (3.10)

We thus choose the well-established two-step estimation method where we “target”
Ξ in the first step; that is, we apply the obvious method of moments estimator

Ξ̂ =
1

T

T∑

t=1

Rt, (3.11)

and we estimate the rest of the parameters in a second step via standard numerical
maximum likelihood estimation, conditional on our estimate for Ξ. As in the
previous chapter, we follow the algorithm proposed in Blasques et al. (2021) to
optimize over the asset ordering for Riesz-type distributions.
Note that the overall number of parameters that must be estimated via numer-

ical maximum likelihood is constant for Wishart-type distributions and is of order
O(p) for Riesz-type distributions. This is because the intercepts of the d.o.f. re-
cursions in the Riesz-type distributions (ξn and/or ξν) contain p elements, while
they are scalars for Wishart-type distributions.
In our empirical analysis, we noticed that the estimation of the dynamic d.o.f. re-

cursion parameters (the a’s and b’s in equations (3.8) and (3.9)) is very sensitive
to the chosen starting values since the likelihood is relatively flat in their direc-
tions. A “bottom-up” estimation method that proved to recover sensible esti-
mates relatively reliably is to first estimate the restricted model with constant
d.o.f. parameters, that is, restricting all present a and b d.o.f. recursion parame-
ters (an, an, aν , aν , bn, bn, bν , bν) to be equal to zero. This provides good estimates
for the rest of the parameters (i.e. for Ξ, a1, a2, b1, b2 and b3 and for the intercepts
in the d.o.f. recursions ξn, ξν , ξn and ξν). Then, we set the obtained estimates as
starting values for a second restriction-less optimization. As a useful by-product,
we receive the estimated restricted GAS models with constant d.o.f. parameters,
which we can compare via likelihood ratio test and forecast comparison to the non-
restricted versions to determine the importance of time-varying d.o.f. parameters.
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Figure 3.2: Time frame: 05 August 2015 - 14 August 2015. Blue line: Realized variance
of American Express (AXP). Grey line: Median realized variance of the 15
stocks in Financial dataset. Both the yellow and the red line assume the best-
fitting Inverse t-Riesz distribution (Rt|Ft−1 ∼ itR(Σt,n,ν)) and depict the

estimated conditional expected variance (Σ̂t)3 3.) Yellow line: scalar-BEKK
model (Σt+1 = (1 − a − b)Ξ + aRt + bΣt). Red line: scalar-GAS model
(Σt+1 = (1− a− b)Ξ+ a1Σt△Σ

itR,tΣt + a2tr
(
Σt△Σ

itR,t

)
Σt + bΣt).

3.4.3 Illustration of GAS Advantages in Σt Updating Equation

In Figure 3.2, we plot an illustration of the advantages of scalar-GAS model over
scalar-BEKK dynamics in the updating equation for Σt. There, we take the
15-dimensional “Financial” dataset, assume the best-fitting distribution (Inverse
t-Riesz, see Section 3.4), and consider the estimated model with scalar-BEKK and
scalar-GAS dynamics for Σt. The scalar-GAS model does not feature the HAR-
type structure (only Σt−1 goes into updating Σt) and has constant d.o.f. parame-
ters to make the comparison as fair as possible. The blue line corresponds to the
realized variance (RV) of American Express (AXP), and the yellow and red lines

correspond to the estimated expected conditional RV (Σ̂t)3 3 of the scalar-BEKK
and scalar-GAS model, respectively. The gray line depicts the median RV of the
15 financial assets. On 07 August 2015, “reports emerged activist investor Value
Act Capital had acquired an undisclosed stake in the credit card issuer with plans
to pursue shareholder-friendly changes at the company.”9 This constitutes an id-
iosyncratic one-day event, which only influences the RV of AXP on the 07 August
2015, and should not affect the financial system. Consequently, the conditional

9. See https://www.nasdaq.com/articles/financial-sector-update-08072015-axphtgcalex-2015-
08-07.
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expected RV of AXP should not be updated strongly. However, the scalar-BEKK
model cannot capture this, as it updates the RV too strongly. This overestimation
takes a long time to revert back downwards. In contrast, the GAS model takes
into account that the entire RC matrix on 07 August was not a tail event, as only
AXP had a tail-realization and updates the conditional expected RV of AXP only
slightly upwards. The ability to take into account the entire RC in order to update
the individual constituent time-series is also visible in the more complex updating
dynamics of the scalar-GAS model in the relatively calm period from 10 August
to 14 August. The median RV increased relatively much from 11 to 12 August.
The GAS model takes this into account and updates upwards its expected RV of
AXP from 12 August to 13 August, even while AXP’s RV dropped a little. The
BEKK model on the other hand just incorporates the decrease in RV of AXP and
updates its expected RV for AXP downwards accordingly.
In general, for fat-tailed distributions, GAS models inherently down-weight the

impact of extreme realizations of the RCs on the updating process since extreme
realizations are less unexpected by fat-tailed distributions and thus yield less ex-
treme score realizations. This type of modeling behavior has also been advocated
for in the literature on modeling RCs by e.g. Bollerslev, Patton, and Quaedvlieg
(2018), whose dynamic attenuation model down-weights the impact of extreme RC
realizations by incorporating the fact that they are more inaccurate estimates of
integrated covariance.

In-Sample Fit 3.4.4

For the in-sample fit comparison we add two competitor models, namely those of
the only other two papers featuring GAS models for RCs. These are the model
by Gorgi et al. (2019) based on the Wishart distribution and the one by Opschoor
et al. (2018) based on the F distribution. Note that our model does not model
the daily return vectors, but both of these competitors do. In order to keep
comparability we drop the daily return vector equations from their models and
only take their RC specification. Furthermore, note that the main difference to
our model is that Gorgi et al. (2019) and Opschoor et al. (2018) take the Wishart
distribution FIM to scale the score. Thus, their models are nested by our restricted
GAS model. That is, if we impose the restriction that α2 = 0 in equation (3.7),
we arrive at their models.10

Table 3.5 displays the log-likelihood values of our estimated restricted GAS
model, i.e. the model where the d.o.f.s are restricted to be constant, for the different
datasets and distributions. The Bayes information criterion (BIC) rankings are

10. Actually the model of Gorgi et al. (2019) does not feature the HAR structure, but we
impose it for their model to keep the comparison fair.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart (GHJK) -14742 -9977 1784 64253 349331 348292
Wishart -13984 -8426 5831 83409 384626 382252
Riesz -10915 -4285 18362 112218 462677 463780
Inv.Wishart -8228 6367 46776 169822 634566 645663
Inv.Riesz -6340 8319 52720 182317 658765 669844
t-Wishart -3290 8612 39554 161069 496899 495073
t-Riesz -1392 10657 48182 184176 554587 554640
Inv.t-Wishart 1510 15169 63864 216533 690170 702292
Inv.t-Riesz 3068 16519 69474 228078 708591 721055
F (OJLV) -4231 5197 44130 161781 618250 626190
F -3076 7132 49361 178930 650237 657571
F -Riesz 2691 15007 68534 213218 716322 726208
Inv.F -Riesz 1877 14259 66107 209555 710940 719874

Table 3.5: Log-likelihood values for the estimated restricted GAS model where d.o.f. pa-
rameters are restricted to be constant. As competitor models we have (GHJK),
which resembles the model of Gorgi et al. (2019), and (OJLV) resembles the
one of Opschoor et al. (2018). The background shades are to be read column-
wise, with the lowest log-likelihood value being shaded black and the highest
one being shaded white, with a linear scaling in between.

equal to those of the log-likelihood since the BIC penalty term for the number of
parameters is dominated by the number of parameters in Σ, which is common to
all distributions and is of order p2.
The first thing to note is that our restricted GAS model, i.e. including the a2

parameter, assuming the Wishart and F distribution do indeed improve the fit
of significantly over the models of Gorgi et al. (2019) and Opschoor et al. (2018)
(a2 = 0). When comparing the fit across distributions, note that nested dis-
tributions11 must have a lower estimated log-likelihood values than the nesting
ones. However, it is not clear if the differences are statistically significant and how
non-nested distributions, e.g. the (Inverse) F -Riesz versus the (Inverse) t-Riesz
distributions compare to each other. The Inverse t-Riesz and the F -Riesz distri-
butions emerge as the clear winners. The former wins the four lower-dimensional
datasets, and the latter wins the two 25-dimensional datasets. Both distributions
are very close in terms of fitted log-likelihood values, thus the difference in terms
of fit between tail-homogeneity (Inverse t-Riesz) and tail-heterogeneity (F -Riesz)
is very slim. The gap favoring the Inverse t-Riesz distribution is larger for the

11. See Figure 2.6.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart -13814 -8409 6501 83541 386600 387104
Riesz -10741 -4230 18813 112455 465362 469443
Inv.Wishart -6979 6425 46776 172471 635234 646137
Inv.Riesz -6053 8342 52727 182444 658864 669930
t-Wishart -3113 8870 40283 162996 500667 501338
t-Riesz -1241 10760 48554 184606 557429 559547
Inv.t-Wishart 1641 15351 64294 217966 692004 704941
Inv.t-Riesz 3157 16590 69656 228469 709889 722258
F -3030 7213 49563 180031 651463 658949
F -Riesz 2776 15044 68572 213372 716891 726828
Inv.F -Riesz 2014 14356 66405 210311 712416 721365

Table 3.6: Log-likelihood values for the estimated GAS models with time-varying
d.o.f. parameters and different datasets. The background shades are to be
read column-wise, with the lowest log-likelihood value being shaded black and
the highest one being shaded white, with a linear gray-scaling in between.
Largest values in red.

industry-specific Mining and Finance datasets. This aligns with our economic in-
tuition that having homogeneous tails is beneficial in more homogeneous datasets.
The F -Riesz distribution has the advantage for both high-dimensional (25 assets)
datasets, suggesting that in higher dimensions, the tail-homogeneity imposed by
the Inverse t-Riesz distribution could be too restrictive. The Riesz and its special
case, the Wishart distribution, are unequivocally the worst-fitting distributions.

Now we return to our unrestricted GAS model, i.e. the one where the d.o.f. pa-
rameters are assumed to be time varying as well. Table 3.6 displays the corre-
sponding log-likelihood values. Comparing this table to the one for our restricted
GAS model, it becomes clear that the likelihood-gains from assuming time-varying
d.o.f. parameters are very small. Furthermore, the ranking across distributions
stays the same as for the restricted GAS model. Thus, it is not that some dis-
tributions gain more from time-varying d.o.f.s than others. This is surprising
since one could think that the worst fitting distributions could gain more from
dynamically changing their shape via time-varying d.o.f. parameters than those
distributions whose shape fits the RC data already quite well.

Additionally we see that the distribution ranking and relative distances be-
tween distributions are also very similar to those of the previous chapter’s simple
scalar-BEKK parameter updating process (compare Table 2.8). This indicates that
adding the most flexible dynamic parameter specification with GAS dynamics in
both the Σt and d.o.f. parameter recursions does not influence the ranking in fit
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across distributions. It is noteworthy that the Inverse t-Wishart distribution with
only two d.o.f. parameters12 provides a reasonably good fit across datasets and
gets closer to the best-fitting distributions with increasing cross-sectional dimen-
sion. It is thus a natural candidate for empirical applications on vast-dimensional
(say 50 or more assets) RCs, where, for the Riesz-type distributions, the num-
ber of d.o.f. recursion parameters (of order p) becomes problematic for numerical
maximum likelihood estimation.

Although the likelihood gains from time-varying d.o.f.s are rather small we still
want to test statistically whether the data supports the GAS models with the
d.o.f. parameters constraint to be constant. To this end we perform the simple
likelihood-ratio test with the test statistic

λLR = −2
(

T∑

t=1

log pD

(
Σt(ϑ̂

R

D),θD,t(ϑ̂
R

D)
)
−

T∑

t=1

log pD

(
Σt(ϑ̂D),θD,t(ϑ̂D)

))
,

where ϑ̂
R

D is the parameter vector with the non-intercept d.o.f. recursion parame-
ters restricted to be equal to zero. As T →∞,

λLR ∼ χ2
d,

where d = dim(ϑD)− dim(ϑR
D) is the difference of dimensionality between the re-

stricted and unrestricted parameter vector. Across all distributions and datasets
the median (largest) p-value we obtain equals 0 (0.0009) up to computer preci-
sion. Thus, even though the likelihood gains are small from assuming time-varying
d.o.f. parameters, we can still reject the models where the d.o.f. parameters are
constant. This provides strong evidence in favor of time-varying d.o.f. parameters.

Next, we are interested in the time-evolution of the d.o.f. parameters to de-
termine if it makes sense economically. For this, we present the estimated nt
and νt of all Wishart-based distributions from our estimated GAS model for the
ten-dimensional dataset in Figure 3.3. The time-series are normed to their first
values to make them comparable. We see substantial time-variation, supporting
the importance of time-varying d.o.f. parameters. Furthermore, we see that the es-
timated ν̂t does indeed drop down substantially, making the distributions “wider”
and more “fat-tailed”, in economically sensible time-periods, for example, during
the 2008 financial crisis, the 2015 European sovereign debt crisis and the 2020
COVID-19 crises.

12. In total, the GAS models with Wishart-type distributions contain only 10 to 15 parameters
(depending on whether they feature one or two d.o.f. parameters) that have to be estimated via
numerical maximum likelihood.
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Figure 3.3: Estimated dynamic d.o.f. parameters n̂t and ν̂t from estimation of our GAS
model describe in Section 3.3 for all distributions for the ten-dimensional
dataset described in 3.4.1. All time-series are normed to the first estimated
d.o.f. The color coding is: Wishart, Inv.Wishart, t-Wishart, Inv.t-Wishart,
F. The Riesz-type distributions have been left out for clarity of the plot,
but their average d.o.f. vectors behave very similarly to their Wishart-based
counterpart d.o.f. parameters.

Next, we look at the model parameter estimates. Table 3.7 shows the estimated
score parameters â1 and â2. All are highly significant. It is interesting to note
that the estimated parameters are similar across distributions. Furthermore, we
see that the higher the cross-sectional dimension p, the smaller the estimated
parameters, which, according to Pakel et al. (2021), is estimation bias caused
by the targeting estimator for Ξ. The estimated GARCH (b1, b2 and b3) and
persistence (b1 + b2 + b3) parameters are highly significant as well and very close
to each other across cross-sectional dimensions and distributions, with the lowest
(highest) estimated persistence amounting to 0.983 (0.9994). See Table 3.13 in
Section of the appendix. This aligns with the empirical observation that realized
(co)variances exhibit persistent time-series behavior.
For the estimated score parameters of the d.o.f. parameter recursions, see Table

3.8. We note that even with our “bottom-up” estimation method described in Sec-
tion 3.4.2 we can, in a few cases, not come up with sensible estimates. However,
in the overwhelming majority of cases, we obtain sensible estimates, that is, the
estimated d.o.f. recursions exhibit high persistence, as for the Σt recursion param-
eters. For these cases, estimated d.o.f. recursion parameters, that is, the intercepts,
the score parameters, and the GARCH parameters are significant at the 1% level.
We thus think that insignificant results are only due to the technical difficulty of
obtaining reasonable estimates. We tried multiple solvers, solver specifications,
and starting points but have yet to develop a robust estimation method. As we
can see in Table 3.8, the F , F -Riesz, and Inverse F -Riesz distributions are the
most difficult to estimate as the solver does not come up with sensible estimates
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25

â1 × 100
Wishart 1.610 1.193 0.872 0.517 0.340 0.335
Riesz 1.135 0.809 0.588 0.336 0.236 0.218
Inv.Wishart 0.197 0.541 0.332 0.157 0.167 0.166
Inv.Riesz 0.121 0.480 0.299 0.113 0.144 0.155
t-Wishart 0.998 0.767 0.651 0.419 0.341 0.325
t-Riesz 0.813 0.663 0.527 0.292 0.247 0.233
Inv.t-Wishart 0.711 0.575 0.456 0.302 0.220 0.210
Inv.t-Riesz 0.636 0.527 0.398 0.258 0.192 0.185
F 0.890 0.704 0.536 0.332 0.248 0.235
F -Riesz 0.477 0.371 0.300 0.207 0.168 0.156
Inv.F -Riesz 0.548 0.416 0.344 0.221 0.169 0.166

â2 × 100
Wishart 0.607 0.517 0.249 0.204 0.085 0.080
Riesz 0.791 0.630 0.346 0.251 0.103 0.097
Inv.Wishart 0.328 0.418 0.212 0.149 0.067 0.071
Inv.Riesz 0.399 0.435 0.237 0.149 0.074 0.076
t-Wishart 4.249 4.198 3.370 3.703 2.146 2.221
t-Riesz 4.084 4.285 3.283 3.950 2.238 2.184
Inv.t-Wishart 3.598 3.474 2.851 3.192 1.600 1.756
Inv.t-Riesz 3.409 3.231 2.768 3.134 1.493 1.686
F 0.623 0.477 0.276 0.179 0.089 0.086
F -Riesz 1.183 0.915 0.490 0.293 0.141 0.138
Inv.F -Riesz 1.121 0.884 0.478 0.280 0.133 0.129

Table 3.7: Estimated scaled score parameters â1 × 100 and â2 × 100. All estimates are
highly significant. The median (smallest) t-statistic for â1 is 114 (68), and for
â2 is 150 (42).

for the d.o.f.-recursions most often for these distributions. In our opinion, this is
an argument in favor of the (Inverse) t-Riesz or (Inverse) t-Wishart distribution,
which are analytically (see the score and FIM derivations in the appendix) and
numerically more tractable.
Finally, we estimated a more general GAS model for the Wishart distribution

for the five-dimensional “Random” dataset, where we generalized the dynamics in
the Σt-equation to diagonal matrices instead of scalars. The Wishart, providing
the worst fit for all distributions, should benefit most from such a generalization.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25

ân × 100 (ân × 100)
Wishart 0.827 0.707 1.633 0.598 1.002 1.235
Riesz 0.863 1.096 1.292 0.507 0.691 0.917
Inv.Wishart - - - - - -
Inv.Riesz - - - - - -
t-Wishart 6.735 8.149 6.658 12.561 8.098 9.925
t-Riesz 1.533 1.500 0.955 1.905 0.829 1.002
Inv.t-Wishart 1.591 1.892 1.076 0.987 1.323 1.183
Inv.t-Riesz 1.824 1.904 0.992 1.093 1.295 1.223
F 13.723 5.032 0.570 0.000 2.893 0.003
F -Riesz 7.017 2.612 2.647 0.842 1.535 1.524
Inv.F -Riesz 2.549 5.600 0.273 0.001 3.422 3.325

âν × 100 (âν × 100)
Wishart - - - - - -
Riesz - - - - - -
Inv.Wishart 3.077 3.595 2.794 2.408 1.230 3.486
Inv.Riesz 6.687 59.902 5.449 1.677 2.503 4.108
t-Wishart 1.071 1.078 1.548 1.816 1.274 2.108
t-Riesz 1.347 1.025 1.396 1.654 1.049 2.392
Inv.t-Wishart 12.924 12.572 14.124 20.952 16.173 19.947
Inv.t-Riesz 8.756 7.097 5.356 1.917 0.645 0.456
F 14.264 11.900 13.637 17.600 10.968 10.406
F -Riesz 9.910 7.857 0.934 4.683 1.093 2.213
Inv.F -Riesz 9.924 9.946 9.327 8.631 6.056 6.188

Table 3.8: Estimated score parameter ân × 100 and âν × 100 (ân × 100 and âν × 100
for Wishart-type distributions). No background color indicates significance at
the 1% level, light gray and mid-light gray indicate significance at the 5% and
10% level, dark gray indicates insignificance.

We wanted to investigate if the significance of our dynamic d.o.f. specification
comes from a too restrictive specification in the mean-shifting process Σt. This
does not seem to be the case. In each diagonal parameter matrix, the estimated
parameters are very close to each other, and the d.o.f. recursion parameters stayed
highly significant.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25

BEKK
Inv.t-Riesz 3.70 10.67 -10.86 -53.90 -75.18 -110.57
F -Riesz 3.75 10.85 -10.81 -48.56 -76.43 -109.33

Restricted GAS
Inv.t-Riesz 3.13 10.05 -12.52 -57.12 -85.48 -118.53
F -Riesz 3.28 10.46 -12.12 -53.44 -86.20 -119.24

GAS
Inv.t-Riesz 3.11 10.05 -12.55 -57.19 -85.57 -118.56
F -Riesz 3.27 10.45 -12.13 -53.51 -86.23 -119.26

Table 3.9: Average of log-score loss, −pD(Rt+1|Σ̂t+1, θ̂D,t+1), for the entire forecasting
window, where each model is re-estimated every ten trading days. 90% model
confidence sets in red. BEKK refers to the scalar-BEKK model from Chapter
2 (see equation (2.23)), Restricted GAS is our GAS model, where the d.o.f. pa-
rameters are constant, GAS is our full GAS model.

Out-of-Sample Forecasting Performance 3.4.5

We re-estimate the models every ten trading days on a rolling window of 1250
observations (roughly five years of data). The forecasting window starts at obser-
vation 1251 (18 December 2006) and ends on 05 February 2021.
We take the log-score as the natural loss function since, as Hansen and Du-

mitrescu (2022) show, coherency between the estimation criterion, that is, the loss
function chosen to obtain the estimates, and the actual objective, i.e. the out-of
sample quantity we want to forecast, is essential. We only consider the Inverse t-
Riesz and the F -Riesz distribution to save computational resources, and since it is
evident from the Chapter 2 and the in-sample analysis that these two distributions
provide the best out-of-sample forecasting results. Table 3.9 contains the log-score
one-day-ahead forecast losses for the entire forecasting window. The 90% model
confidence sets (MCS, see Hansen, Lunde, and Nason, 2011) are shaded in gray.13

We see that our unrestricted GAS model with dynamic d.o.f. parameters is the
clear winner in this comparison as it is the only member of the MCS for all datasets
except the Mining dataset, where also the GAS model with d.o.f. parameters re-
stricted to be constant is a member of the MCS. The scalar-BEKK model, with
its simple mean shifting dynamics, is rejected out-of-sample by the data. Further-

13. For calculation of the MCS, we choose 5000 stationary bootstrap replications with block
length set equal to the maximum number of consecutive significant partial autocorrelations of
the losses. We use the MFE toolbox by Kevin Sheppard for MCS calculation.

94 THREE: Generalized Autoregressive Score Models for Realized Covariance Matrices



Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25

BEKK
Inv.t-Riesz 1.368 2.046 0.736 1.403 0.687 0.836
F -Riesz 1.369 2.042 0.735 1.375 0.678 0.824

Restricted GAS
Inv.t-Riesz 1.368 2.045 0.738 1.441 0.698 0.841
F -Riesz 1.391 2.073 0.758 1.468 0.705 0.859

GAS
Inv.t-Riesz 1.368 2.045 0.738 1.440 0.698 0.841
F -Riesz 1.392 2.073 0.757 1.472 0.704 0.859

Table 3.10: Average GMVP loss, RVGMPV,t+1, for the entire forecasting window, where
each model is re-estimated every ten trading days. 90% model confidence sets
in red. BEKK refers to the scalar-BEKK model from Chapter 2 (see equation
(2.23)), Restricted GAS is our GAS model, where the d.o.f. parameters are
constant, GAS is our full GAS model.

more, it is apparent that for the datasets with smaller cross-sectional dimensions
p, the Inverse t-Riesz distribution provides the best forecasts. In contrast, for the
25-dimensional dataset, the F -Riesz distribution is the sole member of the MCS.
This aligns with the in-sample fit (see Table 3.6). We conjecture that with increas-
ing cross-sectional dimension, the assumption of tail-homogeneity (Inverse t-Riesz)
might become too restrictive since it imposes too much dependence between the
different elements in the RCs.

Finally, we consider an economic loss function by computing the realized vari-
ance of the forecasted global minimum variance portfolio (GMVP). That is, sup-

pose we want to minimize the portfolio variance given our forecasted RC, Σ̂t+1,
by choosing the optimal weights,

min
w

w⊤Σ̂t+1w, given w⊤1 = 1,

where 1 is an p-dimensional vector of ones. The optimal weights that solve this
minimization problem are given by

ŵ =
Σ̂t+11

(1⊤Σ̂
−1
t+11)

.

Now for each forecast the GMVP loss is equal to the actually realized variance if
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an investor had chosen these weights,

RVGMPV,t+1 = ŵ⊤Rt+1ŵ.

Table 3.10 contains the average GMVP loss for all datasets and models. We
see that for the three datasets of dimension 10 or lower, there emerges no clear
winner across time-series specifications since the BEKK, Restricted GAS and GAS
all are members of the MCS. Comparing distributions, for these three datasets the
Inverse t-Riesz distribution performs better since it is in the MCS for all three
times versus one time for the F -Riesz. For the higher dimensional dataset the
picture is more clear. Here the F -Riesz with BEKK dynamics is the sole member
of the MCS. However, due to the nonlinear formula of the GMVP loss function it
is difficult to speculate which distributional features might lead to the advantage
of the F -Riesz for high-dimensional datasets.

3.5 Conclusion

In this paper, we propose a novel GAS model for time-series of realized covariance
matrices. This model features a time-varying expected value matrix and allows for
time-varying degree of freedom parameters, thus making all distribution parame-
ters dynamic. We derive the model for all hitherto used probability distributions
in order to understand which distributions’ score yields the best fit and forecasting
performance. In particular we derive all necessary scores and Fisher information
matrices for all probability distributions hitherto used for RCs. Our model fea-
tures an easy-to-compute closed-form formula for the scaled scores, making the
model computationally feasible.
Empirically, we find evidence for time-varying degree of freedom parameters.

We show that their time-variation is economically interpretable and is in line with
the notion that realized covariance matrices become more fat-tailed during crises
periods. Our GAS model with time-varying d.o.f. parameters performs best in-
and out-of-sample against the competitor with constant d.o.f. parameters using
the log-likelihood as the loss-function. Using the economically relevant global
minimum variance portfolio loss function we see no advantage for our GAS model.
Furthermore, we confirm the finding from the last chapter that the Inverse t-
Riesz and F -Riesz distributions exhibit the best in-sample fit for time-series of
RCs. No clear winner between these two distributions can be made out, but there
seems to be a relation to the cross-sectional dimension. In particular, the F -
Riesz is more often preferred in higher-dimensional settings, whereas the t-Riesz
outperforms in low- to medium-dimensional settings. Furthermore, we show using
an illustrative example that GAS models imply richer dynamic updating properties
than traditional models, even for scalar dynamics.
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Appendix 3.6

Preliminaries 3.6.1

Some Matrix Relations

For matrices W, X, Y and Z with appropriate dimensions we have (Magnus and
Neudecker (2019), p.12, p. 35)

vec(XYZ) = (Z⊤ ⊗X)vec(Y), (3.12)

tr(XYZ) = tr(YZX) = tr(ZXY), (3.13)

tr(X⊤Y) = vec(X)⊤vec(Y) and (3.14)

tr(WXYZ) = vec(W)⊤vec(XYZ) = vec(W)⊤(X⊗ Z)vec(Y), (3.15)

where for the last equality we used (3.14) and (3.12).

Special Functions

Definition 3.6.1. Let X be a square matrix, then the function ◩ (X) returns
a lower triangular matrix by setting all elements of X above the main diagonal
equal to zero,

◩ ij (X) =

{
Xij for i ≥ j and

0 for i < j.

Definition 3.6.2. Let X be a square matrix, then the function ¯◩ (X) returns
a lower triangular matrix by setting all elements of X above the main diagonal
equal to zero and halving all elements on the main diagonal,

¯◩ ij (X) =





Xij for i > j,
1
2Xii for i = j and

0 for i < j.

That is, ¯◩ (X) = ◩

(
X− 1

2I⊙X
)
.
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Definition 3.6.3. Let X be a square matrix, then the function ˜◩ (X) returns a
symmetric matrix by setting all elements above the main diagonal equal to the
elements of X below the diagonal,

˜◩ ij (X) =

{
Xij for i ≥ j,
Xji for i < j.

That is, ˜◩ (X) = ¯◩ (X) + ¯◩ (X)⊤.

Duplication, Elimination, and Commutation Matrices

As a reference, see Lütkepohl (2005), A.12.2. Gp denotes the duplication matrix
defined by

vec(X) = Gpvech(X), (3.16)

where X is an arbitrary symmetric p× p matrix.
For symmetric X, the duplication matrix G is unique. However, the so-called

elimination matrix, which converts vec(X) to vech(X), is not unique (since for
every lower-diagonal element of X, we can take a fraction c of the corresponding
upper- and a fraction 1 − c of the lower-diagonal element of X). One possible
choice is the Moore-Penrose inverse of Gp,

G+
p = (G⊤p Gp)

−1G⊤p , (3.17)

for which obviously

G+
p vec(X) = G+

p Gpvech(X) = vech(X). (3.18)

Another possible choice is the canonical elimination matrix Fp, which sets the
aforementioned fraction c = 0.
For lower-triangular p×pmatrixY Magnus and Neudecker (1980) note (Lemma

3.3 (i)) that the unique elimination and duplication matrices are given by

vec(Y) = F⊤p vech(Y) and (3.19)

vech(Y) = Fpvec(Y). (3.20)

Kpq denotes the commutation matrix defined by

vec(Z⊤) = Kpqvec(Z), (3.21)
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for arbitrary p × q matrix Z. Note that the exact size and structure of Gp, Fp

and Kpq depends on the size of X, but for better readability, we choose to omit
the size-indicating subscripts in the rest of this paper.
Magnus and Neudecker (2019) show (Theorem 3.12) that

(I+K) = 2GG+. (3.22)

Furthermore, it holds that

GG+ = G(G⊤G)−1G⊤ = (G(G⊤G)−1G⊤)⊤ = (GG+)⊤ (3.23)

and

(G+)⊤G⊤vec(X) = ((G⊤G)−1G⊤)⊤G⊤Gvech(X) (3.24)

= Gvech(X) = vec(X). (3.25)

For square matrix X we have (see Magnus and Neudecker, 2019, p.57)

GG+X⊗2 = X⊗2GG+. (3.26)

For nonsingular matrix X it holds that (see Lütkepohl, 2005, p. 664 or Magnus
and Neudecker (2019), Theorem 3.13)

(G⊤X⊗2G)−1 = G+X−⊗2(G+)⊤. (3.27)

Lemma 3.6.1. For scalar α we have

(G⊤(Σ⊗2 + αvec2(Σ))G)−1 = G+

(
Σ−⊗2 +

α

1 + αp
vec2(Σ−1)

)
G+.

Proof. Using Magnus and Neudecker (1980) Lemma 4.4 (i) and Lemma 4.7 (iv),
we have

(F(Σ⊗2 + αvec2(Σ)))−1 = (G+GF(Σ⊗2 + αvec2(Σ))G)−1

= (G+GF(Σ⊗2 + αvec2(Σ))G)−1

= (G+(Σ⊗2 + αvec2(Σ))G)−1

= (G⊤(Σ⊗2 + αvec2(Σ))G)−1G⊤G (3.28)

= F

(
Σ−⊗2 +

α

1 + αp
vec2

(
Σ−1

))
G

= G+

(
Σ−⊗2 +

α

1 + αp
vec2

(
Σ−1

))
G. (3.29)
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Then

(3.28) = (3.29)

⇔

(G⊤(Σ⊗2 + αvec2(Σ))G)−1 = G+

(
Σ−⊗2 +

α

1 + αp
vec2(Σ−1)

)
G+.

Matrix Derivatives

We first want to clarify exactly how we take the derivative of a (matrix) function
of a matrix of variables since there is no inherently “right” way to arrange the
individual univariate derivatives. Throughout, we follow Magnus (2010), who
recommend for an m × p matrix function F of an n × q matrix of variables X to
define the derivative as the mp× nq matrix

∂vec(F(X))

∂vec(X)⊤
.

In this derivative matrix, for example, in its third row and second column, we have
the derivative of the third element of vec(F(X)) with respect to the second element
in vec(X). Hence the column vector notation in the nominator (vec(F(X))) and
the row vector notation in the denominator (vec(X)⊤).
For our scalar-valued log-likelihood function (m = p = 1), we have, in accor-

dance with this definition, that its derivative with respect to Σ is a row vector,

∂ log pD(Σ,θD|R)

∂vec(Σ)⊤
= vec(△Σ

D)
⊤,

with

(△Σ
D)ij =

∂ log pD(Σ,θD|R)

∂(Σ)ij
, (3.30)

where we omit the time subscript t for readability in this and the following section.
However, we still have to consider that Σ is a symmetric matrix. That is, for i ̸= j,
an infinitesimally small change in Σ(i,j), changes Σ(j,i) by the same amount. To
do so, we can use the chain rule,

∂ log pD(Σ,θD|R)

∂vech(Σ)⊤
=
∂ log pD(Σ,θD|R)

∂vec(Σ)⊤
∂vec(Σ)

∂vech(Σ)⊤
.
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For symmetric Σ we have according to Lemma 3.6.2 (see p. 101) that

∂vec (Σ)

∂vech (Σ)
⊤ = G,

where G is the duplication matrix. Finally, it is usually the case that the score is
defined as a column vector, such that we write

∇Σ
D =

(
∂ log pD(Σ,θD|R)

∂vech(Σ)⊤

)⊤
.

In summary, for a given distribution D,
∇Σ
D(∇Ω

D) is the p(p + 1)/2 × 1 score vector w.r.t. Σ (Ω) taking symmetry
into account, and

△Σ
D(△Ω

D) is the p× p score matrix w.r.t. Σ (Ω) ignoring symmetry (used in
e.g. Theorem 3.3.1 and Table 3.1).

Lemma 3.6.2. (Magnus and Neudecker, 1980, Lemma 3.8). Let X be a square
matrix of variables. Then

∂vec(X)

∂vech(X)⊤
=

{
F⊤, for lower triangular X,

G, for symmetric X,

Lemma 3.6.3. (Harville, 1997, p. 371). For non-singular symmetric matrix X,

∂vech(X−1)

∂vech(X)⊤
= −G+X−⊗2G.

Lemma 3.6.4. (Lütkepohl, 1989, Lemma 1 and Murray, 2016, equation (15).)
For lower triangular matrix C we have

∂vech(C)

∂vech(CC⊤)⊤
=

1

2
(G+(C⊗ I)F⊤)−1 = F(I⊗C)ZC−⊗2G,

where Z is a diagonal matrix defined such that for any square matrix A, Zvec(A) =
vec(¯◩ (A)) with ¯◩ (·) defined in Definition 3.6.2. In fact it can be shown that
Z = 1

2 (GF)⊤(GF).
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Lemma 3.6.5. Let X be a non-singular symmetric matrix, C its lower Cholesky
factor, and Y be a diagonal matrix. Then

∂vec(CYC⊤)

∂vech(X)⊤
= GG+(CY ⊗ I)F⊤(G+(C−⊤ ⊗X−1)F⊤)−1G+X−⊗2G

= GG+(CY ⊗ I)F⊤(G+(C⊗ I)F⊤)−1,

∂vec(CYC⊤)

∂vech(X−1)⊤
= −GG+(CY ⊗ I)F⊤(G+(C⊗ I)F⊤)−1G+X⊗2G

= −GG+(CY ⊗ I)F⊤(G+(C−⊤ ⊗X−1)F⊤)−1,

∂vec(C−⊤YC−1)

∂vech(X−1)⊤

= GG+(C−⊤ ⊗C−⊤YC−1)F⊤(G+(C⊗ I)F⊤)−1G+X⊗2G

= GG+(C−⊤ ⊗C−⊤YC−1)F⊤(G+(C−⊤ ⊗X−1)F⊤)−1,

∂vec(C−⊤YC−1)

∂vech(X)⊤

= −GG+(C−⊤ ⊗C−⊤YC−1)F⊤(G+(C−⊤ ⊗X−1)F⊤)−1G+X−⊗2G

= −GG+(C−⊤ ⊗C−⊤YC−1)F⊤(G+(C⊗ I)F⊤)−1.

Proof. We have

dvec(CYC⊤) = vec(dCYC⊤) + vec(CYdC⊤)

= (I+Kpp)vec(dCYC⊤)

= (I+Kpp)(CY ⊗ I)vec(dC)

= 2GG+(CY ⊗ I)F⊤dvech(C),

dvec(C−⊤YC−1) = vec(dC−⊤YC−1) + vec(C−⊤YdC−1)

= −Kppvec(C
−⊤YC−1dCC−1)− vec(C−⊤YC−1dCC−1)

= −(I+Kpp)vec(C
−⊤YC−1dCC−1)

= −(I+Kpp)(C
−⊤ ⊗C−⊤YC−1)vec(dC)

= −2GG+(C−⊤ ⊗C−⊤YC−1)F⊤dvech(C),
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where we used (3.21), (3.12) and (3.22), such that

∂vec(CYC⊤)

∂vech(C)⊤
= 2GG+(CY ⊗ I)F⊤ (3.31)

and

∂vec(C−⊤YC−1)

∂vech(C)⊤
= −2GG+(C−⊤ ⊗C−⊤YC−1)F⊤. (3.32)

Furthermore,

dvech(X−1) = G+dvec(C−⊤C−1)

= −G+vec([C−1dCC−1]⊤C⊤)−G+vec(C−⊤C−1dCC−1)

= −G+(I+Kpp)vec(C
−⊤C−1dCC−1)

= −G+GG+vec(C−⊤C−1dCC−1)

= −2G+(C−⊤ ⊗C−⊤C−1)vec(dC)

= −2G+(C−⊤ ⊗X−1)F⊤dvech(C).

such that

∂vech(C)

∂vech(X−1)⊤
= −1

2
(G+(C−⊤ ⊗X−1)F⊤)−1.

Finally, recall Lemma 3.6.4, then the lemma follows by applying the chain rule,

∂vec(CYC⊤)

∂vech(X)⊤
=
∂vec(CYC⊤)

∂vech(C)⊤
∂vech(C)

∂vech(X−1)⊤
∂vech(X−1)

∂vech(X)⊤

=
∂vec(CYC⊤)

∂vech(C)⊤
∂vech(C)

∂vech(X)⊤
,

∂vec(CYC⊤)

∂vech(X−1)⊤
=
∂vec(CYC⊤)

∂vech(C)⊤
∂vech(C)

∂vech(X)⊤
∂vech(X)

∂vech(X−1)⊤

=
∂vec(CYC⊤)

∂vech(C)⊤
∂vech(C)

∂vech(X−1)⊤
,

∂vec(C−⊤YC−1)

∂vech(X−1)⊤
=
∂vec(C−⊤YC−1)

∂vech(C)⊤
∂vech(C)

∂vech(X)⊤
∂vech(X)

∂vech(X−1)⊤

=
∂vec(C−⊤YC−1)

∂vech(C)⊤
∂vech(C)

∂vech(X−1)⊤
,
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∂vec(C−⊤YC−1)

∂vech(X)⊤
=
∂vec(C−⊤YC−1)

∂vech(C)⊤
∂vech(C)

∂vech(X−1)⊤
∂vech(X−1)

∂vech(X)⊤

=
∂vec(C−⊤YC−1)

∂vech(C)⊤
∂vech(C)

∂vech(X)⊤
.

There are two versions for each derivative. The longer versions immediately
make obvious the nesting of the case where Y = cI. The equality between the
two versions can be derived based on the two different chain rule applications or
by noticing that

(G+(C−⊤ ⊗X−1)F⊤)−1G+X−⊗2G

=(G⊤(C−⊤ ⊗X−1)F⊤)−1G⊤GG+X−⊗2G

=(G⊤(C−⊤ ⊗X−1)F⊤)−1G⊤X−⊗2G

=(G⊤(C−⊤ ⊗X−1)F⊤)−1(G+X⊗2(G+)⊤)−1

=(G+X⊗2(G+)⊤G⊤(C−⊤ ⊗X−1)F⊤)−1

=(G+X⊗2(GG+)⊤(C−⊤ ⊗X−1)F⊤)−1

=(G+GG+X⊗2(C−⊤ ⊗X−1)F⊤)−1

=(G+X⊗2(C−⊤ ⊗X−1)F⊤)−1

=(G+(C⊗ I)F⊤)−1,

and

(G+(C⊗ I)F⊤)−1G+X⊗2G

= (G⊤(C⊗ I)F⊤)−1G⊤GG+X⊗2G

= (G⊤(C⊗ I)F⊤)−1G⊤X⊗2G

= (G⊤(C⊗ I)F⊤)−1(G+X−⊗2(G+)⊤)−1

= (G+X−⊗2(G+)⊤G⊤(C⊗ I)F⊤)−1

= (G+X−⊗2(GG+)⊤(C⊗ I)F⊤)−1

= (G+GG+X−⊗2(C⊗ I)F⊤)−1

= (G+(C−⊤ ⊗X−1)F⊤)−1,

where we have used Theorem 3.13 (c) of Magnus and Neudecker (2019) for the
third equality.
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Lemma 3.6.6. Let X be a non-singular symmetric matrix, C its lower Cholesky
factor, and Y and Z be square matrices. Then

∂tr(XY)

∂vech(X)⊤
= vec(Y)⊤G,

∂tr(X−1Y)

∂vech(X)⊤
= −vec(X−1YX−1)⊤G,

∂tr(C−⊤YC−1Z)

∂vech(C)⊤
= −2vec(C−⊤YC−1ZC−⊤)⊤F⊤,

and

∂2tr(XY)

∂vech(X)∂vech(X)⊤
= 0.

Proof. We have

dtr(XY) = tr(YdX)

= vec(Y)⊤vec(dX)

= vec(Y)⊤Gdvech(X),

using (3.14) and (3.16),

dtr(X−1Y) = −tr(X−1dXX−1Y)

= −tr(X−1YX−1dX)

= −vec(X−1YX−1)⊤vec(dX)

= −vec(X−1YX−1)⊤Gdvech(X),

using (3.13), (3.14) and (3.16),

d2tr(XY) = dtr(YdX) = 0.
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Furthermore,

dtr(C−⊤YC−1Z) = −tr((C−1dCC−1)−⊤YC−1Z+C−⊤YC−1dCC−1Z)

= −tr(dC⊤C−⊤YC−1ZC−⊤ +C−1ZC−⊤YC−1dC)

= −2tr(C−1ZC−⊤YC−1dC)

= −2vec(C−1ZC−⊤YC−1)⊤dvec(C)

= −2vec(C−1ZC−⊤YC−1)⊤F⊤dvech(C),

For properties of the differential “d”, see Magnus and Neudecker (2019) pp.
163-169 and pp. 434-436. To convert differentials to derivatives, see Tables 9.2
and 10.1 in Magnus and Neudecker (2019).

Lemma 3.6.7. Let Σ be a symmetric positive definite matrix and C its lower
Cholesky factor. Then

∂ log |Σ|n
∂vech(Σ)⊤

= vec(C−⊤dg(n)C−1)⊤G,

∂ log |Σ|n
∂vech(Σ−1)⊤

= −vec(C dg(n)C⊤)⊤G,

∂2 log |Σ|n
∂vech(Σ)∂vech(Σ)⊤

= −G⊤(C−⊤ ⊗C−⊤dg(n)C−1)F⊤(G⊤(C−⊤ ⊗Σ−1)F⊤)−1G⊤Σ−⊗2G

= −G⊤(C−⊤ ⊗C−⊤dg(n)C−1)F⊤(G+(C⊗ I)F⊤)−1,

∂2 log |Σ|n
∂vech(Σ−1)∂vech(Σ−1)⊤

= G⊤(Cdg(n)⊗ I)F⊤(G+(C⊗ I)F⊤)−1G+Σ⊗2G

= G⊤(Cdg(n)⊗ I)F⊤(G+(C−⊤ ⊗Σ−1)F⊤)−1.

Proof. DecomposeΣ = TDT⊤, whereT is a lower triangular matrix with diagonal
elements being 1 and D is a diagonal matrix with positive diagonal elements, such
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that C = TD
1
2 is the lower Cholesky factor. Note that

∂
∑p

i=1 ni log(Dii)

∂D
=




n1

D1 1
n2

D2 2

. . .
np

Dpp


 = D−

1
2 dg(n)D−

1
2 ,

such that

∂
∑p

i=1 ni log(Dii)

∂vec(D)⊤
= vec(D−

1
2 dg(n)D−

1
2 )⊤

and

dvec(Σ) = dvec(TDT⊤) = (T⊗2)dvec(D),

such that

∂vec(D)

∂vec(Σ)⊤
= (T⊗2)−1.

Then

∂ log |Σ|n
∂vech(Σ)⊤

=
∂
∑p

i=1 ni log(Dii)

∂vec(D)⊤
∂vec(D)

∂vec(Σ)⊤
∂vec(Σ)

∂vech(Σ)⊤

= vec(D−
1
2 dg(n)D−

1
2 )⊤(T⊗2)−1G

= vec(D−
1
2 dg(n)D−

1
2 )⊤(T−⊤ ⊗T−⊤)⊤G

= vec(T−⊤D−
1
2 dg(n)D−

1
2T−1)⊤G

= vec(C−⊤dg(n)C−1)⊤G,

where we used (3.12). Furthermore

∂ log |Σ|n
∂vech(Σ−1)⊤

=
∂ log |Σ|n
∂vech(Σ)⊤

∂vech(Σ)

∂vech(Σ−1)⊤

= −vec(C−⊤dg(n)C−1)⊤GG+Σ⊗2G

= −vec(ΣC−⊤dg(n)C−1Σ)⊤G

= −vec(Cdg(n)C⊤)⊤G,

where we used Lemma 3.6.3 and equation (3.12). Now applying Lemma 3.6.5 on

∂ log |Σ|n
∂vech(Σ)vech(Σ)⊤

= G⊤
∂vec(C−⊤dg(n)C−1)

∂vech(Σ)⊤
and

∂ log |Σ|n
∂vech(Σ−1)vech(Σ−1)⊤

= −G⊤ ∂vec(Cdg(n)C⊤)

∂vech(Σ−1)⊤
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and using G⊤GG+ = G⊤ directly gives the desired results.

Lemma 3.6.8. Let X be a square matrix. Then

F⊤Fvec(X) = vec( ◩ (X))

Proof. F eliminates those elements from vec(X) which are on X’s upper triangular
part. Then F⊤ we know from equation (3.19) is the matrix which for a triangular
matrix maps its half-vectorization vech(·) to its vectorization vec(·).

Finally, this helps us with rewriting the scores in a format that is quick to
evaluate since it avoids Kronecker product products or inversions. To see this,
consider

Lemma 3.6.9. Let D ∈ (W, iW, tW, itW, F,R, iR, tR, itR, FR, iFR) be one of
the distributions for RCs. Then

∇Σ
D = G⊤vec(△Σ

D),

with

△Σ
D = C−⊤˜◩ (C⊤ ◩ (△Ω

DCM−1D ))C−1,

where △Ω
D is symmetric with elements

(△Ω
D)ij =

∂pD
∂(Ω)ij

, (3.33)

MD is the expectation of the stochastic representation kernel for the respective
distribution (see Table 2.3), C is the lower Cholesky factor of the expected value

matrix Σ and ◩ (·) and ˜◩ (·) are defined in 3.6.1 and 3.6.3. For all Wishart-type
distributions MD = mDI, with scalar mD, and the expression for △Σ

D reduces to

△Σ
D =

1

mD
△Ω
D.
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Proof.

∂pD
∂vech(Σ)⊤

=
∂pD

∂vech(Ω)⊤
∂vech(Ω)

∂vech(Σ)⊤

= vec(△Ω
D)
⊤G

∂vech(CM−1D C⊤)

∂vech(CC⊤)⊤

= vec(△Ω
D)
⊤GG+(CM−1D ⊗ I)F⊤(G+(C⊗ I)F⊤)−1

= vec(△Ω
D)
⊤(CM−1D ⊗ I)F⊤(G+(C⊗ I)F⊤)−1

= vec(△Ω
DCM−1D )⊤F⊤(G+(C⊗ I)F⊤)−1

= 2vec(△Ω
DCM−1D )⊤F⊤F(I⊗C)ZC−⊗2G

= 2vec( ◩ (△Ω
DC)M−1D )⊤(I⊗C)ZC−⊗2G

= 2vec(C⊤ ◩ (△Ω
DC)M−1D )⊤ZC−⊗2G

= 2vec(¯◩ (C⊤ ◩ (△Ω
DC)M−1D ))⊤C−⊗2G

= 2vec(C−⊤¯◩ (C⊤ ◩ (△Ω
DC)M−1D )C−1)⊤G

= 2vec(C−⊤¯◩ (C⊤ ◩ (△Ω
DCM−1D ))C−1)⊤G,

where we used Lemmas 3.6.5, 3.6.8, and 3.6.4, Definition 3.6.2 and equation (3.25).
For ¯◩ (·) see Definition 3.6.2. Note that, even though

vec(△Σ
D)
⊤G =

∂ log pD
∂vech(Σ)⊤

= 2vec(C−⊤¯◩ (C⊤ ◩ (△Ω
DCM−1D ))C−1)⊤G,

this does not imply that

△Σ
D = 2C−⊤¯◩ (C⊤ ◩ (△Ω

DCM−1D ))C−1

since △Σ
D is symmetric, but the r.h.s. is not necessarily symmetric. However,

since we know that △Σ
D is the unique symmetric matrix for which ∂pD

∂vech(Σ)⊤
=

vec(△Σ
D)
⊤G holds, it must be true that

△Σ
D = C−⊤¯◩ (C⊤ ◩ (△Ω

DCM−1D ))C−1 + (C−⊤¯◩ (C⊤ ◩ (△Ω
DCM−1D ))C−1)⊤

= C−⊤˜◩ (C⊤ ◩ (△Ω
DCM−1D ))C−1.

Furthermore, note that

C−⊤¯◩ (C⊤ ◩ (C−⊤dg(n)))C−1 = C−⊤¯◩ (C⊤dg(C−⊤)dg(n))C−1

= C−⊤dg(C⊤)dg(C−⊤)dg(n)C−1

= C−⊤dg(n)C−1.
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Lemma 3.6.10. Let n be a real column vector of length p, then

∂ log |Σ|n
∂n⊤

= 2 log vecd(C)⊤.

Proof.

∂ log |Σ|n
∂n⊤

=
∂ log(

∏p
i=1 C

2ni
ii )

∂n⊤
=
∂
∑p

i=1 2ni log(Cii)

∂n⊤
= 2 log vecd(C)⊤.

The following Lemma is just for rewriting of the scores in Table 3.3.

Lemma 3.6.11. Let X and Y be symmetric p× p positive definite matrices with
lower Cholesky factors CX and CY , respectively, and let n be a real vector of
length p. Then

log vecd(CX)− log vecd(CY ) = log vecd(C−1Y CX)

Proof.

log vecd(CX)− log vecd(CY ) =
1

2

∂(log |X|n − log |Y|n)
∂n⊤

=
1

2

∂ log(|X|n|Y|−n)
∂n⊤

=
1

2

∂ log(|C−1Y CXC⊤XC−⊤X |n)
∂n⊤

= log vecd(C−1Y CX),

where we used Lemma 2.2.2.
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Lemma 3.6.12. Consider the multivariate gamma function as in Definition
2.2.2. We have

∂ log Γp(n)

∂n⊤
=

[
ψ (n1) , ψ

(
n2 −

1

2

)
, . . . , ψ

(
np −

1

2
(p− 1)

)]
= ψ(n)⊤,

∂ log Γp(
←−n )

∂n⊤
=
←−
ψ (←−n )⊤,

with ψi(n) = ψ(ni − 1
2 (i− 1)) and

←−
ψ i(
←−n ) = ψ(np−i+1 − 1

2 (p− i)), where ψ(·) is
defined in equation (5.2.2) of NIST Digital Library of Mathematical Functions.
Furthermore

∂2 log Γp(n)

∂n∂n⊤
= dg(ψ′(n)), and

∂2 log Γp(n)

∂n∂n⊤
= dg(

←−
ψ ′(←−n ))

with ψ′(n) =
[
ψ′ (n1) , ψ

′ (n2 − 1
2

)
, . . . , ψ′

(
np − 1

2 (p− 1)
)]⊤

and
←−
ψ ′(←−n ) similar

to
←−
ψ i(
←−n ) above. Finally,

∂ log Γp(n)

∂n
=

p∑

j=1

ψ

(
n− 1

2
(j − 1)

)
,

and

∂2 log Γp(n)

∂n2
=

p∑

j=1

ψ′
(
n− 1

2
(j − 1)

)
.

Proof.

∂ log Γp(n)

∂n⊤
=
∂ log

(
πp(p−1)/4∏p

j=1 Γ
(
nj − 1

2 (j − 1)
))

∂n⊤

=

∑p
j=1 ∂ log

(
Γ
(
nj − 1

2 (j − 1)
))

∂n⊤

=

[
ψ (n1) , ψ

(
n2 −

1

2

)
, . . . , ψ

(
np −

1

2
(p− 1)

)]

= ψ(n)⊤,

with ψi(n) = ψ
(
ni − 1

2 (i− 1)
)
as defined in equation (5.2.2) of NIST Digital
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Library of Mathematical Functions, and

∂2 log Γp(n)

∂n∂n⊤
= dg

([
ψ′ (n1) , ψ

′
(
n2 −

1

2

)
, . . . , ψ′

(
np −

1

2
(p− 1)

)])

= dg
(
ψ′(n)

)

since for i ̸= j,
∂2 log Γp(n)

∂ni∂nj
= 0, with ψ′i(n) = ψ′

(
ni − 1

2 (i− 1)
)
. Obviously, we

have

∂ log Γp(
←−n )

∂←−n⊤ = ψ(←−n )⊤,

such that

∂ log Γp(
←−n )

∂n⊤
=

←−−−−−−−−
∂ log Γp(

←−n )

∂←−n⊤ =:
←−
ψ (←−n )⊤.

Similarly for

∂2 log Γp(n)

∂n∂n⊤
= dg(

←−
ψ ′(←−n )).

Finally,

∂ log Γp(n)

∂n
=

∑p
j=1 ∂ log

(
Γ
(
n− 1

2 (j − 1)
))

∂n

=

p∑

j=1

ψ

(
n− 1

2
(j − 1)

)
,

and

∂2 log Γp(n)

∂n2
=

p∑

j=1

ψ′
(
n− 1

2
(j − 1)

)
.

3.6.2 Scores and Fisher Information Matrices

Scores w.r.t. Ω

We want to derive the scores listed in Table 3.1. The scores w.r.t. Ω of the
Riesz, Inverse Riesz, t-Riesz, and Inverse t-Riesz distributions are easy to derive
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by taking the logarithm of the p.d.f.s given in Table 2.5 and straightforwardly
applying Lemmas 3.6.7 and 3.6.6. For the F -Riesz and Inverse F -Riesz, we have
to start from the p.d.f. representations in equations (2.38) and (2.37), respectively,
because their representations in Table 2.5 contain elements of the form |I +X|n,
which are not necessarily positive definite and for which we can thus not apply
Lemma 3.6.7. We show, as an example, the most complicated derivation, which
is the one of the Inverse F -Riesz. We denote J = (Ω−1 + R−1)−1 with lower
Cholesky factor CJ to derive

∂ log piFR
∂vech(Ω)⊤

=
∂ log |Ω|−n

2

∂vech(Ω)⊤
+
∂ log |J| ν+n

2

∂vech(J)⊤
∂vech(J)

∂vech(Ω)⊤

= −1

2
vec(C−⊤Ω dg(n)C−1Ω )⊤G

+
1

2
vec(C−⊤J dg(n+ ν)C−1J )⊤G

∂vech(J)

∂vech(J−1)⊤
∂vech(J−1)

∂vech(Ω)⊤

= −1

2
vec(C−⊤Ω dg(n)C−1Ω )⊤G

+
1

2
vec(C−⊤J dg(n+ ν)C−1J )⊤GG+(J−1)−⊗2GG+Ω−⊗2G

= −1

2
vec(C−⊤Ω dg(n)C−1Ω )⊤G

+
1

2
vec(C−⊤J dg(n+ ν)C−1J )⊤GG+(JΩ−1)⊗2G

= −1

2
vec(C−⊤Ω dg(n)C−1Ω +Ω−1JC−⊤J dg(n+ ν)C−1J JΩ−1)⊤G

= −1

2
vec(C−⊤Ω dg(n)C−1Ω +Ω−1CJdg(n+ ν)C⊤J Ω

−1)⊤G,

where apart from the aforementioned Lemmas we used Lemma 3.6.3 and equation
(3.26). The scores w.r.t. Ω of the other Riesz-type distributions are, as mentioned
above, much simpler, and the ones of the Wishart-type distributions then follow by
setting all elements in the degree of freedom parameter vectors of the corresponding
Riesz-type score equal to each other. Finally, to construct Table 3.1, recall equation
(3.33).

Scores w.r.t. Σ

The scores w.r.t. Σ are then straightforward to derive using Lemma 3.6.9 and
using the distribution specific maps from Ω to Σ (see equation (2.9) and Table
2.3)
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Fisher Information Matrices w.r.t. Ω

For the Riesz (and Wishart) and t-Riesz (and t-Wishart) distribution we will use

IΩD = E



(

∂ log pD

∂vech
(
Ω−1

)⊤
∂vech

(
Ω−1

)

∂vech (Ω)
⊤

)⊤
∂ log pD

∂vech
(
Ω−1

)⊤
∂vech

(
Ω−1

)

∂vech (Ω)
⊤




=

(
∂vech

(
Ω−1

)

∂vech (Ω)
⊤

)⊤
I(Ω

−1)
D

∂vech
(
Ω−1

)

∂vech (Ω)
⊤ . (3.34)

Riesz

We have

I(Ω
−1)

R = −E
[

∂2 log pR

∂vech
(
Ω−1

)
∂vech

(
Ω−1

)⊤

]

= −E


 ∂2 log |Ω|−n

2

∂vech
(
Ω−1

)
∂vech

(
Ω−1

)⊤ −
∂2

tr(Ω−1R)
2

∂vech
(
Ω−1

)
∂vech

(
Ω−1

)⊤




=
1

2
G⊤ (CΩ dg(n)⊗ I)F⊤

(
G⊤ (CΩ ⊗ I)F⊤

)−1
G⊤Ω⊗2G.

such that using equation (3.34) and Lemma (3.6.3), we have

IΩR = G⊤Ω−⊗2(G+)⊤
1

2
G⊤(CΩ dg(n)⊗ I)F⊤(G⊤(CΩ ⊗ I)F⊤)−1G⊤Ω⊗2G

×G+Ω−⊗2G

=
1

2
G⊤Ω−⊗2GG+(CΩ dg(n)⊗ I)F⊤(G+(CΩ ⊗ I)F⊤)−1 (3.35)

=
1

2
G⊤Ω−⊗2(CΩ dg(n)⊗ I)F⊤(G+(CΩ ⊗ I)F⊤)−1

=
1

2
G⊤(C−⊤Ω dg(n)⊗Ω−1)F⊤(G+(CΩ ⊗ I)F⊤)−1.

Wishart

Starting from equation (3.35) and setting n1, . . . , np = n we have

IΩW =
n

2
G⊤Ω−⊗2GG+(CΩ ⊗ I)F⊤(G+(CΩ ⊗ I)F⊤)−1

=
n

2
G⊤Ω−⊗2G.
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Inverse Riesz

IΩiR = −E


 ∂2 log |Ω| ν

2

∂vech (Ω) ∂vech (Ω)
⊤ −

∂2
tr(ΩR−1)

2

∂vech (Ω) ∂vech (Ω)
⊤




=
1

2
G⊤(C−⊤Ω ⊗C−⊤Ω dg(ν)C−1Ω )F⊤(G⊤(C−⊤Ω ⊗Ω−1)F⊤)−1G⊤Ω−⊗2G (3.36)

=
1

2
G⊤(C−⊤Ω ⊗C−⊤Ω dg(ν)C−1Ω )F⊤(G+(CΩ ⊗ I)F⊤)−1

Inverse Wishart

Starting form equation (3.36) and setting ν1, . . . , νp = ν we have

IΩiW =
ν

2
G⊤(C−⊤Ω ⊗C−⊤Ω C−1Ω )F⊤(G⊤(C−⊤Ω ⊗Ω−1)F⊤)−1G⊤Ω−⊗2G

=
ν

2
G⊤Ω−⊗2G

t-Riesz

We will need the expectation of

∂2 log(1 + tr(Ω−1R))

∂vech(Ω−1)∂vech(Ω−1)⊤

=
∂

∂vech(Ω−1)⊤

[
(1 + tr(Ω−1R))−1

∂tr(Ω−1R)

∂vech(Ω−1)

]

= −(1 + tr(Ω−1R))−2
∂tr(Ω−1R)

∂vech(Ω−1)

∂tr(Ω−1R)

∂vech(Ω−1)⊤

= −(1 + tr(Ω−1R))−2G⊤vec2(R)G.

For a better overview, denote the normalizing constant of the t-Riesz distribution
by

c(ν,n,Ω) =
Γ ((ν + pn̄)/2)

Γ(ν/2)Γp(n/2)
|Ω|−n

2
.
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Then the desired expectation obtains from

E[(1 + tr(Ω−1R))−2vec2(R)]

= c(ν,n,Ω)

∫

R>0

vec2(R)|R|n−p−1
2

(1 + tr(Ω−1R))−
ν+pn̄+4

2 dR

=
c(ν,n,Ω)

c(ν + 4,n,Ω)
E[vec2(R)] for R ∼ tR(n, ν + 4,Ω)

=
Γ((ν + pn̄)/2)

Γp(n/2)Γ(ν/2)

Γp(n/2)Γ((ν + 4)/2)

Γ(((ν + 4) + pn̄)/2)
E[vec2(R)] for R ∼ tR(n, ν + 4,Ω)

=
(ν + 2)ν

(ν + pn̄) (ν + pn̄+ 2)
E[vec2(A)]E[(b̄)−4] for A ∼ R(Ω,n) and b̄ ∼ χν+4

=
1

(ν + pn̄) (ν + pn̄+ 2)
(vec2(CΩdg(n)C

⊤
Ω) + 2GG+(CΩdg(n)C

⊤
Ω ⊗Ω)GG+),

where we used the stochastic representation of the t-Riesz distribution, equation
(2.39) and (b̄)−2 following an Inverse Chi-squared distribution with14

E[(b̄)−2] = (ν + 2)−1 and Var((b̄)−2) =
2

(ν + 2)2ν
,

such that

E[(b̄)−4] = E[(b̄)−2]2 +Var((b̄)−2) = ((ν + 2)ν)−1. (3.37)

Now, using the derived expectation, we have

I(Ω
−1)

tR = −E
[

∂2 log |Ω|−n
2

∂vech(Ω−1)∂vech(Ω−1)⊤
+
ν + pn̄

2

∂2 log
(
1 + tr(Ω−1R)

)

∂vech(Ω−1)∂vech(Ω−1)⊤

]

=
1

2
G⊤(CΩdg(n)⊗ I)F⊤(G+(CΩ ⊗ I)F⊤)−1G+Ω⊗2G

− ν + pn̄

2(ν + pn̄) (ν + pn̄+ 2)

×G⊤(vec2(CΩdg(n)C
⊤
Ω) + 2GG+(CΩdg(n)C

⊤
Ω ⊗Ω)GG+)G

=
1

2
G⊤(CΩdg(n)⊗ I)F⊤(G+(CΩ ⊗ I)F⊤)−1G+Ω⊗2G

− 1

2(ν + pn̄+ 2)
G⊤(vec2(CΩdg(n)C

⊤
Ω) + 2(CΩdg(n)C

⊤
Ω ⊗Ω))G. (3.38)

Finally, use equation (3.34) to arrive at IΩtR.
14. Compare, e.g. Wikipedia.
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t-Wishart

Starting form equation (3.38) and setting n1, . . . , np = n, we have

I(Ω
−1)

tW =
n

2
G⊤Ω⊗2G− n

2(ν + pn+ 2)
G⊤(nvec2(Ω) + 2Ω⊗2)G

=
n

2
G⊤

(
Ω⊗2 − 2

ν + pn+ 2
Ω⊗2 − n

ν + pn+ 2
vec2(Ω)

)
G

=
n

2
G⊤

(
ν + pn

ν + pn+ 2
Ω⊗2 − n

ν + pn+ 2
vec2(Ω)

)
G.

Now, using equations (3.34), (3.26) and (3.23) and Lemma 3.6.3 we have

IΩtW =
n

2
(GG+Ω−⊗2G)⊤

(
ν + pn

ν + pn+ 2
Ω⊗2 − n

ν + pn+ 2
vec2(Ω)

)
GG+Ω−⊗2G

=
n

2
G⊤

(
ν + pn

ν + pn+ 2
Ω−⊗2 − n

ν + pn+ 2
vec2(Ω−1)

)
G.

Inverse t-Riesz

Not derived since we don’t need it in the paper. The derivation should be very
similar to the one of the Inverse t-Wishart below, but at some point, we would
need E[vec2(C−⊤Ω B̄B̄⊤C−1Ω )], which is probably very similar to derive as Lemma
2.7.3.

Inverse t-Wishart

This derivation is similar to the one of the t-Riesz distribution. We will need the
expectation of

∂2 log(1 + tr(ΩR−1))

∂vech(Ω)∂vech(Ω)⊤
=

∂

∂vech(Ω)⊤

[
(1 + tr(ΩR−1))−1

∂tr(ΩR−1)

∂vech(Ω)

]

= −(1 + tr(ΩR−1))−2
∂tr(ΩR−1)

∂vech(Ω)

∂tr(ΩR−1)

∂vech(Ω)⊤

= −(1 + tr(ΩR−1))−2G⊤vec2(R−1)G.

For a better overview, denote the normalizing constant of the Inverse t-Riesz dis-
tribution by

c(n, ν,Ω) =
Γ ((n+ pν)/2)

Γ(n/2)Γp(ν/2)
|Ω| ν2 .
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Then the desired expectation obtains from

E[(1 + tr(ΩR−1))−2vec2(R−1)]

= c(n, ν,Ω)

∫

R>0

vec2(R−1)|R|− ν+p+1
2 (1 + tr(ΩR−1))−

n+pν+4
2 dR

=
c(n, ν,Ω)

c(n+ 4, ν,Ω)
E[vec2(R−1)], for R ∼ itW(Ω, n+ 4, ν)

=
Γ((n+ pν)/2)

Γ((n+ 4 + pν)/2)

Γ((n+ 4)/2)

Γ(n/2)
E[(b)−4]E[vec2(C−⊤Ω B̄B̄⊤C−1Ω )]

=
ν

(n+ pν)(n+ pν + 2)
(2GG+Ω−⊗2(GG+)⊤ + νvec2(Ω−1))

where we used equation (3.37) and the fact that C−⊤Ω B̄B̄⊤C−1Ω ∼ W(Ω−1, ν)15

and thus we used equation (2.39) with n = (ν, . . . , ν). Now, using the derived
expectation we have, using Lemma 3.6.7 with n = (n, . . . , n),

IΩitW = −E
[

∂2 log |Ω| ν2
∂vech(Ω)∂vech(Ω)⊤

]
+
n+ pν

2
E

[
∂2 log

(
1 + tr(ΩR−1)

)

∂vech(Ω)∂vech(Ω)⊤

]

=
ν

2
G⊤Ω−⊗2G− ν

2(n+ pν + 2)
G⊤(2GG+Ω−⊗2(GG+)⊤ + νvec2(Ω−1))G

=
ν

2
G⊤

(
Ω−⊗2 − 2

n+ pν + 2
Ω−⊗2 − ν

n+ pν + 2
vec2(Ω−1)

)
G

=
ν

2
G⊤

(
n+ pν

n+ pν + 2
Ω−⊗2 − ν

n+ pν + 2
vec2(Ω−1)

)
G.

F -Riesz and Inverse F -Riesz

It is not derived since we do not need it in the paper.16

Matrix-F

∂2 log pF
∂vech(Ω)∂vech(Ω)⊤

=
ν

2

∂2 log |Ω|
∂vech(Ω)∂vech(Ω)⊤

− n+ ν

2

∂2 log |Ω+R|
∂vech(Ω)∂vech(Ω)⊤

= −ν
2
G⊤Ω−⊗2G+

n+ ν

2
G⊤(Ω+R)−⊗2G

= −ν
2
G⊤Ω−⊗2G+

n+ ν

2
G⊤

(
C−⊗2Ω

)⊤
(I+C−1Ω RC−⊤Ω )−⊗2C−⊗2Ω G.

15. See Gupta and Nagar (2000).
16. Also, it seems very difficult.
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Now, ZKollo = C−1Ω RC−⊤Ω follows a matrix F distribution with scale matrix I as
defined in Theorem 2.4.9 of Kollo and von Rosen (2005). They derive on p. 265,

E
[(
I+C−1Ω RC−⊤Ω

)−⊗2]
=
(
c3I+ c4Kpp + c4vec

2(I)
)

=
(
(c3 − c4)I+ c4 (I+Kpp) + c4vec

2(I)
)

=
(
(c3 − c4)I+ 2c4GG+ + c4vec

2(I)
)
,

with, according to their p. 263,

c4 =
n− p− 1

(n+ ν − 1)(n+ ν + 2)

((
n− p− 2 +

1

n+ ν

)
c2 −

(
1 +

n− p− 1

n+ ν

)
c1

)
,

c3 =
n− p− 1

n+ ν
((n− p− 2) c2 − c1)− (n+ ν + 1) c4,

c2 =
n(ν − p− 2) + n2 + n

(ν − p)(ν − p− 1)(ν − p− 3)
,

c1 =
n2(ν − p− 2) + 2n

(ν − p)(ν − p− 1)(ν − p− 3)
.

Thus

IΩF = −E
[

∂2 log pF
∂vech(Ω)∂vech(Ω)⊤

]

=
ν

2
G⊤Ω−⊗2G− n+ ν

2
G⊤(C−⊤Ω )⊗2((c3 − c4)I+ 2c4GG+ + c4vec

2(I))C−⊗2Ω G

=
ν

2
G⊤Ω−⊗2G− n+ ν

2
G⊤((c3 − c4)Ω−⊗2 + 2c4Ω

−⊗2 + c4vec
2(Ω−1))G

=
1

2
G⊤((ν − (n+ ν)(c3 + c4))Ω

−⊗2 − (n+ ν)c4vec
2(Ω−1))G.

Fisher Information Matrices w.r.t. Σ

Similar to equation (3.34), we can derive

IΣD =

(
∂vech(Ω)

∂vech(Σ)⊤

)⊤
IΩD

∂vech(Ω)

∂vech(Σ)⊤
, (3.39)

to get the Fisher information matrices w.r.t. Σ.
Recall, that for the Wishart-type distributions, i.e. D ∈ (W,W, tW, itW, F ), we

have Ω = m−1D Σ, with distribution-specific scalar mD and thus

∂vech(Ω)

∂vech(Σ)⊤
= Im−1D .
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Since, for all Wishart-type distributions, Ω−1 enters in quadratic form in IΩD,
applying formula (3.39) with IΩD rewritten in terms of Ω, amounts to just replacing
Ω with Σ. For example,

IΣW = m−2D
n

2
G⊤Ω−⊗2G

= m−2D
n

2
G⊤(m−1D Σ)−⊗2G

=
n

2
G⊤Σ−⊗2G.

Thus, the expressions in Table 3.2 follow.

3.6.3 Proofs of Theorems in Paper

Proof of Theorem 3.3.1

Proof. We omit the subscripts t. Note (Table 3.2) that the IΣ of all Wishart-type
have the form

IΣD = G⊤(αDΣ
⊗2 + cD vec2(Σ))G,

where the scalars αD and cD only depend on the d.o.f. parameter(s) of the respec-
tive distribution. Thus, using Lemma 3.6.1 we have

(IΣ)−1 = αD(G
⊤(Σ⊗2 + α−1D cDvec

2(Σ))G)−1

= αDG
+

(
Σ−⊗2 +

α−1D cD

1 + α−1D cDp
vec2(Σ−1)

)
G+

= G+

(
αDΣ

−⊗2 +
αDcD

αD + cDp
vec2(Σ−1)

)
G+.

Define βD = αDcD
αD+cDp ,

G+(αDΣ
⊗2 + βDvec

2(Σ))(G+)⊤G⊤vec(△Σ
D)

= G+(αDΣ
⊗2 + βDvec

2(Σ))vec(△Σ
D)

= αDG
+vec(Σ△Σ

DΣ) + βDtr(Σ△Σ
D)G

+vec(Σ)

= αDvech(Σ△Σ
DΣ) + βDtr(Σ△Σ

D)vech(Σ)

where we used equations (3.25), (3.12), and (3.14). Now simply apply the ivech
operator.
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Proof of Theorem 3.3.1

Proof. We omit the subscripts t in the proof. We have

(IΣR)−1∇Σ
R = E

[(
∂pR

∂vech(Ω)⊤
∂vech(Ω)

∂vech(Σ)⊤

)⊤
∂pR

∂vech(Ω)⊤
∂vech(Ω)

∂vech(Σ)⊤

]−1

×
(

∂pR
∂vech(Ω)⊤

∂vech(Ω)

∂vech(Σ)⊤

)⊤

=

((
∂vech(Ω)

∂vech(Σ)⊤

)⊤
E

[(
∂pR

∂vech(Ω)⊤

)⊤
∂pR

∂vech(Ω)⊤

]
∂vech(Ω)

∂vech(Σ)⊤

)−1

×
(
∂vech(Ω)

∂vech(Σ)⊤

)⊤(
∂pR

∂vech(Ω)⊤

)⊤

=

(
∂vech(Ω)

∂vech(Σ)⊤

)−1
(IΩR)−1∇Ω

R =
∂vech(Σ)

∂vech(Ω)⊤
(IΩR)−1∇Ω

R

= G+(CΩdg(n)⊗ I)F⊤(G+(CΩ ⊗ I)F⊤)−1

× (G⊤Ω−⊗2GG+(CΩ dg(n)⊗ I)F⊤(G+(CΩ ⊗ I)F⊤)−1)−1

×G⊤vec(Ω−1RΩ−1 −C−⊤Ω dg(n)C−1Ω )

= (G⊤Ω−⊗2G)−1G⊤vec(Ω−1RΩ−1 −C−⊤Ω dg(n)C−1Ω )

= G+Ω⊗2(GG+)⊤vec(Ω−1RΩ−1 −C−⊤Ω dg(n)C−1Ω )

= G+Ω⊗2vec(Ω−1RΩ−1 −C−⊤Ω dg(n)C−1Ω )

= vech(R−CΩdg(n)C
⊤
Ω) = vech(R−Σ),

where IΩR is given in equation (3.35) and we used Lemma 3.6.5, equations (3.27)
and (3.26). Thus, the theorem follows from

SΣ
R = R−Σ.
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3.6.4 Additional Material

Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25

â1 × 100
Wishart 1.704 1.209 0.902 0.515 0.348 0.354
Riesz 1.193 0.824 0.601 0.325 0.239 0.227
Inv.Wishart 0.112 0.556 0.332 0.119 0.161 0.173
Inv.Riesz 0.110 0.478 0.301 0.112 0.143 0.155
t-Wishart 1.038 0.777 0.669 0.439 0.352 0.341
t-Riesz 0.838 0.660 0.535 0.286 0.249 0.241
Inv.t-Wishart 0.708 0.585 0.464 0.311 0.221 0.214
Inv.t-Riesz 0.635 0.522 0.396 0.255 0.191 0.185
F 0.890 0.713 0.538 0.337 0.251 0.239
F -Riesz 0.470 0.366 0.300 0.203 0.168 0.156
Inv.F -Riesz 0.546 0.412 0.332 0.215 0.168 0.165

â2 × 100
Wishart 0.619 0.516 0.263 0.206 0.086 0.083
Riesz 0.818 0.631 0.356 0.256 0.104 0.101
Inv.Wishart 0.319 0.397 0.212 0.142 0.065 0.068
Inv.Riesz 0.357 0.435 0.238 0.149 0.074 0.076
t-Wishart 4.247 4.361 3.278 3.501 2.082 2.194
t-Riesz 4.287 4.505 3.497 4.163 2.261 2.367
Inv.t-Wishart 3.237 3.399 2.713 3.103 1.653 1.733
Inv.t-Riesz 3.412 3.394 2.857 3.343 1.673 1.793
F 0.594 0.454 0.256 0.160 0.083 0.080
F -Riesz 1.152 0.902 0.489 0.290 0.141 0.137
Inv.F -Riesz 1.098 0.871 0.464 0.272 0.131 0.128

Table 3.11: Estimated scaled score parameters â1×100 and â2×100 for our restricted GAS
model where d.o.f. parameters are restricted to be constant. All estimates
are highly significant. The median (smallest) t-statistic of â1 × 100 is 240
(61) and of â2 × 100 is 151 (39).
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 0.983 0.988 0.991 0.997 0.995 0.988
Riesz 0.989 0.992 0.996 0.999 0.997 0.993
Inv.Wishart 0.998 0.996 0.997 1.000 0.998 0.997
Inv.Riesz 0.998 0.996 0.998 1.000 0.999 0.997
t-Wishart 0.992 0.994 0.996 0.999 0.996 0.991
t-Riesz 0.994 0.995 0.996 0.999 0.997 0.994
Inv.t-Wishart 0.994 0.996 0.997 0.999 0.998 0.996
Inv.t-Riesz 0.995 0.996 0.998 1.000 0.998 0.997
F 0.993 0.995 0.996 0.999 0.998 0.996
F -Riesz 0.997 0.998 0.999 1.000 0.999 0.998
Inv.F -Riesz 0.997 0.997 0.999 1.000 0.999 0.998

Table 3.12: Persistence parameter b̂1 + b̂2 + b̂3 for our restricted GAS model where
d.o.f. parameters are restricted to be constant. All estimated parameters
are highly significant, with the median (minimum) t-statistic being 248 (72),
41 (10), and 76 (11), respectively.

Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 0.983 0.989 0.990 0.997 0.995 0.988
Riesz 0.989 0.993 0.996 0.999 0.997 0.994
Inv.Wishart 0.997 0.996 0.997 0.999 0.998 0.997
Inv.Riesz 0.998 0.996 0.998 1.000 0.999 0.997
t-Wishart 0.992 0.994 0.996 0.999 0.997 0.992
t-Riesz 0.994 0.995 0.997 0.999 0.998 0.996
Inv.t-Wishart 0.994 0.996 0.997 0.999 0.998 0.996
Inv.t-Riesz 0.996 0.996 0.998 1.000 0.999 0.997
F 0.994 0.995 0.997 0.999 0.998 0.997
F -Riesz 0.997 0.998 0.999 1.000 0.999 0.998
Inv.F -Riesz 0.997 0.997 0.999 1.000 0.999 0.998

Table 3.13: Persistence parameter b̂1 + b̂2 + b̂3. All estimated parameters are highly
significant, with the median (minimum) t-statistic being 142 (75), 45 (10),
and 75 (11), respectively.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25

ξ̄n, ξn

Wishart 18 21 26 34 46 47
Riesz 17 20 24 31 41 42
Inv.Wishart - - - - - -
Inv.Riesz - - - - - -
t-Wishart 27 32 35 44 53 53
t-Riesz 24 29 31 39 46 46
Inv.t-Wishart 33 32 39 31 48 49
Inv.t-Riesz 33 33 37 30 50 49
F 100 110 156 194 175 256
F -Riesz 80 86 108 125 144 155
Inv.F -Riesz 157 2480 1756 796 976 2539

ξ̄ν , ξν

Wishart - - - - - -
Riesz - - - - - -
Inv.Wishart 31 28 35 52 59 59
Inv.Riesz 21 26 32 41 53 53
t-Wishart 23 24 25 21 31 28
t-Riesz 24 23 27 22 34 31
Inv.t-Wishart 29 35 40 51 61 62
Inv.t-Riesz 27 33 37 47 56 57
F 30 36 44 57 86 81
F -Riesz 22 26 31 41 56 55
Inv.F -Riesz 32 39 45 54 66 67

Table 3.14: (Mean of) estimated intercept of d.o.f. parameters specification, ξ̄n and ξ̄ν

(ξn and ξν for Wishart-type distributions), that is, (mean of) estimated un-
conditional mean of d.o.f parameters. All are significant at the 1 % signifi-
cance level.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25

b̂n, b̂n

Wishart 0.998 0.996 0.998 0.997 0.998 0.998
Riesz 0.997 0.992 0.996 0.996 0.998 0.998
Inv.Wishart - - - - - -
Inv.Riesz - - - - - -
t-Wishart 0.983 0.976 0.979 0.817 0.983 0.978
t-Riesz 0.996 0.993 0.998 0.990 0.998 0.998
Inv.t-Wishart 0.966 0.953 0.939 0.958 0.968 0.953
Inv.t-Riesz 0.913 0.948 0.944 0.959 0.965 0.952
F 0.671 1.000 0.545 0.743 1.000 0.851
F -Riesz 0.940 0.946 0.934 0.943 0.962 0.980
Inv.F -Riesz 0.991 0.961 0.998 0.713 0.964 0.977

b̂ν , b̂ν

Wishart - - - - - -
Riesz - - - - - -
Inv.Wishart 1.000 0.939 0.908 0.999 0.997 0.980
Inv.Riesz 0.997 0.695 0.993 0.996 0.997 0.998
t-Wishart 0.947 0.953 0.969 0.902 0.953 0.936
t-Riesz 0.952 0.969 0.964 0.951 0.976 0.960
Inv.t-Wishart 0.963 0.923 0.930 0.791 0.945 0.939
Inv.t-Riesz 0.982 0.951 0.978 0.990 0.997 0.999
F 0.706 0.864 0.756 0.830 0.999 1.000
F -Riesz 0.002 0.225 0.972 0.924 0.993 0.988
Inv.F -Riesz 0.903 0.798 0.524 0.925 0.969 0.973

Table 3.15: Estimated GARCH parameters b̂n and b̂ν (b̂n and b̂ν for Wishart-type dis-
tributions). No background color indicates significance at the 1% level, light
gray and mid-light gray indicate significance at the 5% and 10% level, dark
gray indicates insignificance.
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Chapter 4

Dynamic Principal Component
CAW Models for
High-Dimensional Realized
Covariance Matrices1

Introduction 4.1

The modeling and forecasting of covariance matrices of asset returns is central
to financial decision making since it provides a measurement of the risk involved
in different investment allocations. It is specifically used in option pricing, risk
management and portfolio allocation.

Traditionally multivariate GARCH (MGARCH) or stochastic volatility (MSV)
models have been applied to estimate conditional covariance matrices from daily
asset return vectors (see e.g. Bauwens, Laurent, and Rombouts, 2006 and Asai,
McAleer, and Yu, 2006 for surveys). Nowadays, the increasing availability of
intraday asset return information enables the computation of consistent ex-post
measures of daily (co)variation of asset prices, so-called realized (co)variances (see
e.g. Andersen et al., 2003 and Barndorff-Nielsen and Shephard, 2004). These
realized measures can then be modeled directly in order to obtain forecasts of the
covariance matrix of asset returns. The literature provides broad evidence that
models for realized covariance matrices (RCs) provide more precise forecasts than
MGARCH and MSV models (see e.g. Golosnoy, Gribisch, and Liesenfeld, 2012 and
the references therein). Pioneering approaches are found in Gourieroux, Jasiak,
and Sufana (2009), Chiriac and Voev (2011), Bauer and Vorkink (2011), Noureldin,
Shephard, and Sheppard (2012), and Golosnoy, Gribisch, and Liesenfeld (2012).

1. This chapter is a version of the equally named article by Gribisch and Stollenwerk (2020)
published in Quantitative Finance. It is joint work with Bastian Gribisch. The notation has
been changed to match the one in previous chapters.
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These models have in common that applications to high-dimensional covariance
matrices (say, for more than ten assets) are complicated if not impossible and
empirical applications typically do not exceed the ten-dimensional case.2 Real-
istic portfolios, however, consist of a large number of assets which makes high-
dimensional covariance matrix forecasting an important field of research. The
development of models for high-dimensional applications is challenging since the
dimension of the object of interest is proportional to the square of the number of
assets. This results in a huge number of model parameters and renders one-step
maximum likelihood (ML) estimation virtually impossible (the so-called curse of
dimensionality). An important task is therefore, to develop multivariate volatility
models which allow for feasible estimation in high-dimensional applications.

One strategy which has been proposed to overcome the curse of dimensional-
ity is the use of sparsity assumptions like, e.g. sparse factor structures for the
assets’ covariance matrix (see e.g. Wang and Zou, 2010, Tao et al., 2011, Shen,
Yao, and Li, 2020, Sheppard and Xu, 2019, Asai and McAleer, 2015, Jin, Maheu,
and Yang, 2019). An alternative is to design multivariate volatility models such
that their parameters can be iteratively estimated by multistep procedures. In
particular, Bauwens, Storti, and Violante (2012) proposed the Realized DCC (Re-
DCC) CAW model (see also Bauwens, Braione, and Storti, 2016 and Bauwens,
Braione, and Storti, 2017 for applications and extensions), which resembles the
DCC GARCH idea of Engle (2002) under the Conditional Autoregressive Wishart
(CAW) setting of Golosnoy, Gribisch, and Liesenfeld (2012) for RCs. The model is
applicable in high-dimensional settings via three-step estimation with correlation
targeting, similar to the corresponding MGARCH model. Bauwens, Storti, and
Violante (2012) provide an empirical application for 50 assets. While the DCC
idea builds on decomposing the conditional covariance matrix in variances and
correlations, which are then estimated independently, an alternative strand of lit-
erature constructs orthogonal components via a spectral decomposition (SD) of
the covariance matrix. The most prominent model here is the orthogonal GARCH
(OGARCH) model of Alexander and Chibumba (1997) and Alexander (2001),
where the estimation output can be readily interpreted in terms of (conditional)
principal component analysis. Aielli and Caporin (2015) introduce additional flex-
ibility via allowing for dynamic loading matrices. The resulting model is then
called Dynamic Principal Component (DPC) GARCH model. Similar to the DCC
approach, the framework assumes the presence of an auxiliary process generating

2. In this paper, we follow the convention of labeling covariance matrices of up to ten assets
as “small dimensional” and covariance matrices of up to 100 assets as “high-dimensional”. We
are not concerned with “vast-dimensional” or “large-dimensional” covariance matrices with more
than 100 assets (compare e.g. Lunde, Shephard, and Sheppard, 2016, Sheppard and Xu, 2019
and Engle, Ledoit, and Wolf, 2019 for similar conventions).
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orthonormal dynamic eigenvectors and allows for three-step estimation in order to
be applicable in high-dimensional settings (the authors provide an application for
up to 30 assets).

In this paper, we adapt the DPC-GARCH model of Aielli and Caporin (2015)
to the modeling of high-dimensional RCs. The model structure is based on the
CAW framework of Golosnoy, Gribisch, and Liesenfeld (2012), assuming a con-
ditional central Wishart distribution for the RC. This particular distributional
assumption allows for a convenient Quasi Maximum Likelihood (QML) interpre-
tation implying consistency of one-step estimation even if the Wishart assumption
is violated. We present a scalar version of the resulting DPC-CAW model and
its estimation via a three-step approach similar to Aielli and Caporin (2015) in
order to enable parameter estimation in high-dimensional settings. The three-step
approach suffers from similar inconsistency problems as the DCC GARCH, the
Re-DCC CAW, and the DPC-GARCH model. We therefore conduct an extensive
simulation experiment which shows that biases are present but mainly affect the
unconditional variances of lower order principal components which are of minor
relevance for covariance forecasting. An out-of-sample forecasting experiment for
100-dimensional RCs finally shows that the DPC-CAWmodel has good forecasting
properties in one-day, five-day, and ten-day-ahead forecasting and outperforms its
competitors in particular in forecasting the correlation structure and the weights
of the global minimum variance portfolio (GMVP), which are of high relevance in
practical portfolio optimization. In particular, the DPC-CAW approach features
significantly lower correlation and GMVP losses compared to up-to-date competi-
tors like the flexible Factor-HEAVY approach of Sheppard and Xu (2019) and the
Factor-CAW of Shen, Yao, and Li (2020).

The rest of the paper is organized as follows. In Section 4.2, we briefly review
the concept of realized covariance matrices. Section 4.3 introduces the scalar-
DPC-CAW model, including one-step and three-step ML estimation. Section 4.4
presents the results of a simulation experiment analyzing the bias and consistency
of estimates obtained via the three-step approach. The empirical application to
RCs for 100 NYSE traded stocks, including in-sample diagnostics and an extensive
out-of-sample forecasting experiment, is presented in Section 4.5. Section 4.6
concludes.

Realized Covariance Matrices 4.2

Consider an p-dimensional vector of log-prices p(τ), where τ ∈ R+ represents
continuous time. Assume that p(τ) is a Brownian stochastic semimartingale with
(p × p) spot covariance matrix Θ(τ). Without loss of generality restricting the
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trading day to the unit interval, we obtain the “true” integrated covariance matrix
at day t as ICt =

∫ t

t−1 Θ(τ) dτ .
Now assume that we observe m+ 1 uniformly spaced intraday log-prices. Then

the j’th intraday return vector on day t (t = 1, . . . , T ) is given by

rj,t = p

(
t− 1 +

j

m

)
− p

(
t− 1 +

j − 1

m

)
, j = 1, . . . ,m.

Let the (p × p) matrix Rt denote an RC, i.e. a non-parametric ex-post estimate
of ICt exploiting high-frequency asset return information. A well-known example
for Rt is the standard realized covariance matrix, which is defined as

Rt =

m∑

j=1

rj,tr
⊤
j,t. (4.1)

In the absence of market microstructure noise and discontinuous price jumps, it can
be shown thatRt is a consistent estimator of ICt asm→∞ (see Barndorff-Nielsen
and Shephard, 2004). If the observed intraday price data contains microstructure
noise, jumps, or non-synchronous trading, one can employ one of several alterna-
tives to the standard realized covariance matrix, such as the multivariate realized
kernel of Barndorff-Nielsen et al. (2011).

4.3 The DPC-CAW Model

We model the time-evolution of p-dimensional stochastic positive-definite RCs
{Rt}Tt=1. Given the filtration Ft−1 = {Rt−1,Rt−2, . . . }, Rt is assumed to fol-
low a central Wishart distribution

Rt|Ft−1 ∼ W(
Σt

n
, n), (4.2)

where n ≥ p is the scalar degrees of freedom, and Σt/n denotes the symmetric,
positive definite p× p scale matrix,3 such that

E[Rt|Ft−1] = Σt. (4.3)

Furthermore, let

Σt = LtDtL
⊤
t (4.4)

3. In this chapter, the Wishart distribution is parameterized by the parameter (a.k.a. scale)
matrix Ωt = Σt/n, where Ω is the same as in Chapter 2.
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denote the SD of the conditional mean of Rt, where the diagonal elements of
Dt = dg(d1,t, d2,t, . . . , dp,t) are the eigenvalues of Σt and the columns of Lt are
the associated orthonormal eigenvectors (see e.g. Lütkepohl, 1996, p. 69). We are
interested in building a forecasting model for Rt where both the eigenvalues and
the eigenvectors are allowed to vary persistently over time and which allows for
convenient sequential estimation in high-dimensional applications.

Eigenvector Driving Process 4.3.1

In order to obtain time-varying orthonormal eigenvectors Lt in equation (4.4), we
introduce a matrix-variate auxiliary process {Qt} from which the eigenvectors Lt

are obtained via computing the conditional SD of Qt. The auxiliary process is
defined as a scalar-BEKK-type recursion (see Engle and Kroner, 1995) for RCs:

Qt = (1− a− b)Ξ+ aRt−1 + bQt−1, (4.5)

Qt = LtGtL
⊤
t . (4.6)

The scalars a and b and the intercept matrix Ξ are parameters to be estimated.
Time-varying orthonormal eigenvectors Lt are generated by the conditional SD
of Qt in equation (4.6). The diagonal matrix of eigenvalues Gt obtains as a
“residual”, which is of no further interest.
We consider model (4.5)-(4.6) as the true data generating process (DGP) for the

loading matrices. Note that we may generalize the scalar dynamics of equation
(4.5) to full BEKK dynamics (see Aielli and Caporin, 2015 and Noureldin, Shep-
hard, and Sheppard, 2014 for details). However, estimation of such a “complete
model” in high-dimensional settings is practically impossible since the number of
autoregressive parameters is of order O(p2) (the curse of dimensionality). We
therefore restrict the model to feasible scalar dynamics similar to the popular
DCC-GARCH approach.
The SD in equation (4.6) is not uniquely identified. Following Aielli and Caporin

(2015) we therefore impose on all SDs within the model except equation (4.4) that
the eigenvalues are arranged in strictly decreasing order.

The sign of each eigenvector is still unidentified. However, within the model,
the eigenvector matrix appears only in quadratic form. Hence there is no need for
imposing a sign restriction. The implicit assumption that the eigenvalues of Qt

are distinct holds almost surely and is thus mild.
In order to ensure that Qt is always positive definite we furthermore impose

that 0 ≤ a, 0 ≤ b, a+ b < 1 and Ξ and Q0 are positive definite.
We require an additional constraint on Ξ in order to ensure a unique sequence

of eigenvectors. To see this intuitively, multiply equation (4.5) by some positive
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constant c. Given the data {Rt}Tt=1 this would produce the same eigenvector ma-
trix series {Lt}Tt=1 since cQt = cLtGtL

⊤
t = LtcGtL

⊤
t = LtG̃tL

⊤
t . Identification

can be ensured by restricting the magnitude of the intercept matrix Ξ as detailed
in Section 4.3.2 below.

4.3.2 Eigenvalue Driving Process

The previous section discussed the eigenvector generating process for the SD in
equation (4.4). What remains in order to define the covariance matrix forecast
(4.4) is a model for the dynamics of the eigenvalues in Dt. We employ p inde-
pendent GARCH-type recursions in order to capture the dynamics of the diagonal
elements of Dt. Let

di,t = (1− αi − βi)γi + αigi,t−1 + βidi,t−1, (4.7)

where gi,t = e⊤i L
⊤
t RtLtei with ei being an p×1 vector of zeros with a 1 at the i’th

position. That is, gi,t is the i’th diagonal element of the random matrix L⊤t RtLt.
Generalizations of model (4.7) obtained by increasing the lag order or e.g. including
HAR-type dynamics (see Corsi, 2009) are straightforward to implement.
Note that

E[L⊤t RtLt|Ft−1] = L⊤t E[Rt|Ft−1]Lt = L⊤t LtDtL
⊤
t Lt = Dt, (4.8)

such that

E[gi,t|Ft−1] = E[e⊤i L⊤t RtLtei|Ft−1] (4.9)

= e⊤i E[L⊤t RtLt|Ft−1] ei = e⊤i Dtei = di,t. (4.10)

Under the usual stationarity condition we then obtain

E[di,t] = γi. (4.11)

We now employ the SD of the intercept matrix Ξ of the eigenvector generating
auxiliary process Qt in equation (4.5), Ξ = LDL⊤, where D = dg({di}pi=1), and
set

γi = di, i = 1, . . . , p. (4.12)

That is {di}ni=1 are the eigenvalues of the intercept matrix in the eigenvector
driving recursion (see equation 4.5). In summary, we impose that γi = di, 0 ≤
αi, 0 ≤ βi, αi + βi < 1, 0 < di,0 ∀i. Since all parameters are restricted to be
positive, this assumption also ensures that di,t is always positive and consequently
Σt is always positive definite.
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The targeting-like constraint of setting γi = di solves the problem of identifying
a unique Lt-sequence via the Qt auxiliary process since it implicitly imposes

tr(E[Rt]) = tr(Ξ). (4.13)

Hence the magnitude of the intercept matrix Ξ is restricted, which precludes the
possibility of scaling the {Qt} sequence by a constant c.

Proof.

tr(E[Rt]) = tr(E[E[Rt|Ft−1]]) = tr(E[Σt]) = E[tr(LtDtL
⊤
t )] = E[tr(DtL

⊤
t Lt)]

= E[tr(Dt)] = tr(D) = tr(DL⊤L) = tr(LDL⊤) = tr(Ξ),

(4.14)

where we used the trace property tr(ABC) = tr(CAB) = tr(BCA) and orthonor-
mality of Lt and L.

While this is not the only way to achieve identification of the eigenvector se-
quence {Lt}, it does entail an appealing interpretation of the model. Specifically,
if a = b = 0, the eigenvector driving process collapses to the constant matrix
Qt = Ξ, such that Lt = L. The resulting specification resembles the popular
orthogonal GARCH model of Alexander and Chibumba (1997) and Alexander
(2001), such that the DPC-CAW is regarded as being a dynamic generalization of
the OGARCH to the modeling of RCs.
Recall that we assumed that the diagonal elements of D are arranged in de-

creasing order in order to identify the model. This implies that

E[d1,t] > E[d2,t] > . . . > E[dn,t]. (4.15)

This, however, does not imply that individual elements of dt themselves are ar-
ranged in decreasing order since the random variables gi,t are not bounded above
(recall that we did not need to impose identifying restrictions on the eigenvalue
ordering for the SD of the covariance matrix forecast Σt in equation 4.4). A situa-
tion where di,t < di−1,t happens particularly often in high dimensional applications
where the elements of d are close to each other. Note that this is not a drawback
but merely reflects the fact that the conditional ordering of the eigenvalues may
deviate from their unconditional ordering. As an example, unconditionally, the
second principal component explains a lower fraction of the total volatility than
the first. But conditionally, there may exist periods where the second component
dominates the first. Such situations are well-known in the context of factor analysis
(see also similar argumentations in Aielli and Caporin, 2015). In fact, it is possi-
ble to restrict the ordering of the conditional eigenvalues by, e.g. modeling their
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positive increments. However, this would impose unnecessary and overidentifying
restrictions on the model.
The conditional Wishart assumption for Rt in equation (4.2) implies a condi-

tional Gamma distribution for gi,t.

gi,t|Ft−1 ∼ Gamma(n/2, 2di,t/n). (4.16)

Proof. Consider the following theorem of Rao (1965):

Theorem 4.3.1. If an p×p random matrix Y has a central Wishart distribution
with n degrees of freedom and scale matrix Ω, that is Y ∼ Wp(Ω, n), and X is a
q × p matrix of rank q, then:

XYX⊤ ∼ Wq(XΩX⊤, n).

Set X = e⊤i L
⊤
t , where ei is defined as above, Ω = Σt/n and Y = Rt to obtain

XYX⊤ = e⊤i L
⊤
t RtLtei = gi,t

and XΩX⊤ =
1

n
e⊤i L

⊤
t ΣtLtei =

1

n
e⊤i L

⊤
t LtDtL

⊤
t Ltei =

1

n
e⊤i Dtei =

1

n
di,t

such that

gi,t|Ft−1 ∼ W1

(
di,t
n
, n

)
. (4.17)

Since the univariate Wishart resembles the Gamma density, gi,t follows a condi-
tional gamma distribution with shape parameter n/2 and scale parameter 2di,t/n:

gi,t|Ft−1 ∼ Gamma(n/2, 2di,t/n).

Equations (4.2) - (4.7) then constitute the scalar-DPC-CAW model, which is
summarized by the distributional assumption Rt|Ft−1 ∼ W(Σt/n, n) together
with the following set of equations for t = 1, . . . , T :

Σt = LtDtL
⊤
t

Qt = (1− a− b)Ξ+ aRt−1 + bQt−1

Qt = LtGtL
⊤
t

di,t = (1− αi − βi)γi + αigi,t−1 + βidi,t−1, γi = di, i = 1, . . . , p

gi,t = e⊤i L
⊤
t RtLtei, i = 1, . . . , p
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where Ξ = LDL⊤, D = dg({di}pi=1). The parameters of the DPC-CAW model
are comprised in the parameter vector θ with θ = (vech(Ξ)⊤, a, b, {αi, βi}pi=1, n)

⊤

and 0 ≤ a, 0 ≤ b, a + b < 1 and Ξ and Q0 are positive definite, 0 ≤ αi, 0 ≤
βi, αi + βi < 1, 0 < di,0 ∀i. In our empirical application below, we initialize the

eigenvector and eigenvalue recursions by Q0 = 1
T

∑T
t=1 Rt and di,0 = 1

T

∑T
t=1 gi,t.

Maximum Likelihood Estimation 4.3.3

One-Step Estimation

Low-dimensional settings (say, up to five assets) allow for one-step estimation of the
model parameters θ = (vech(Ξ)⊤, a, b, {αi, βi}pi=1, n)

⊤ of the DPC-CAW model.
Estimation can then be carried out by maximizing the log-likelihood function

L(θ) =
T∑

t=1

(
np

2
log
(n
2

)
− p(p− 1)

4
log(π)

−
p∑

i=1

log Γ

(
n+ 1− i

2

)
+

(
n− p− 1

2

)
log |Rt|

− n

2

(
log |Σt(ψ)|+ tr(Σt(ψ)

−1Rt)
))

, (4.18)

where ψ summarizes the parameters for the Qt and di,t recursions, such that
θ = (ψ, n)⊤. The parameter n can be treated as a nuisance parameter due to its
irrelevance for the matrix forecast (see equation 4.3). In fact, the first order condi-
tions for the maximization of the log-likelihood with respect to ψ are proportional
to n. Then

ψ̂ = argmax
ψ

L∗(ψ), (4.19)

with

L∗(ψ) =
T∑

t=1

−1

2

(
log |Σt(ψ)|+ tr

(
(Σt(ψ))

−1Rt

))
. (4.20)

The score vector of observation t obtains as

st(ψ) =
1

2

(
(vec(Rt)

⊤ − vec(Σt)
⊤)(Σ−1t ⊗Σ−1t )

∂vec(Σt)

∂ψ⊤

)⊤
. (4.21)

Assuming a correctly specified mean E[Rt|Ft−1] = Σt, st(ψ) is a martingale dif-
ference sequence since

E[st(ψ)|Ft−1] = 0. (4.22)
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Consequently, as noted by Bauwens, Storti, and Violante (2012) and Noureldin,
Shephard, and Sheppard (2012), under the usual regularity conditions (see e.g.

Wooldridge, 1994) ψ̂ is consistent and asymptotically normal even if the Wishart
assumption is violated, provided that the conditional mean is correctly specified.
Hence equation (4.20) can be interpreted as a quasi-log-likelihood (QL). From the
QL function in equation (4.20) we obtain the period-t log-likelihood contribution

ℓ∗t = −1

2

(
log |Σt|+ tr

(
Σ−1t Rt

))

= −1

2

(
log
∣∣LtDtL

⊤
t

∣∣+ tr
(
(LtDtL

⊤
t )
−1Rt

))

= −1

2

(
log |Dt|+ tr

(
LtD

−1
t L⊤t Rt

))

= −1

2

(
p∑

i=1

log (di,t) + tr
(
D−1t L⊤t RtLt

)
)

= −1

2

p∑

i=1

(
log (di,t) +

gi,t
di,t

)
. (4.23)

Standard errors can be obtained by the well-known sandwich formula, e.g. pro-
vided in Bollerslev and Wooldridge (1992). However, initial investigation showed
that the QL function is multi-modal, such that standard local gradient-based op-
timization algorithms fail if the realized covariance measure comprises more than
a few assets. As an alternative, gradient-free global optimization methods like
pattern search (direct search), genetic algorithms, and simulated annealing can be
employed (see e.g. Kelley, 1999 for details). Moreover and even more importantly,
the parameter vector ψ quickly becomes large if the number of assets p increases,
in particular since the parameter matrix Ξ of the Qt process in equation (4.5)
comprises p(p+ 1)/2 model parameters, e.g. 465 intercepts for, say, p = 30 assets
(the so-called curse of dimensionality). This causes additional problems in nu-
merically optimizing the likelihood and makes high-dimensional applications (say,
for p > 10 assets) practically impossible.

The following section therefore proposes a three-step estimation approach, which
solves the curse of dimensionality via multi-step estimation and covariance target-
ing (see e.g. Bauwens, Laurent, and Rombouts, 2006) where the intercept matrix
Ξ is replaced by an ex-ante estimate of the unconditional mean of the covariance
process, similar to the DCC framework of Engle (2002). The three-step approach
can therefore be applied in empirically realistic settings with p > 10 assets and
also provides a convenient solution to the numerical optimization problems arising
for one-step estimation (see above).
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Three-Step Estimation

In high-dimensional scenarios, the curse of dimensionality precludes one-step esti-
mation of the p(p+1)/2+2(p+1)+1 parameters of the DPC-CAW model via the
corresponding Wishart likelihood. Aielli and Caporin (2015) propose a three-step
estimation technique called the DPC estimator, which is easily adapted to the
CAW framework. The procedure works as follows:

1. Estimate Ξ = LDL⊤ via Ξ̂ = T−1
∑T

t=1 Rt (covariance targeting);

2. Conditional on step 1. estimate (a, b)⊤ by fitting a scalar CAW model (see
Golosnoy, Gribisch, and Liesenfeld, 2012) to the sequence of RCs, essentially
(wrongly) assuming Rt|Ft−1 ∼ W(Qt/n, n), where Qt is given by equation

(4.5) and Ξ
!
= Ξ̂. Recover {Q̂t}Tt=1 as the Qt-sequence computed at the

CAW parameter estimates in order to calculate {ĝi,t}Tt=1 for i = 1, . . . , p,

where ĝi,t = e⊤i L̂
⊤
t RtL̂tei with L̂t being the matrix of eigenvectors of Q̂t;

3. Conditional on 1. and 2. estimate {αi, βi}ni=1 via univariate QML based
on equations (4.7) and (4.16) separately ∀i with gi,t replaced by ĝi,t from
estimation step 2. The i’th log-likelihood is given by

Li(αi, βi) =

T∑

t=1

[
(n/2− 1) log(ĝi,t)− log(Γ(n/2))

− (n/2) log(2di,t/n)− 0.5nĝi,t/di,t

]
. (4.24)

Analogous to the Wishart, Li(αi, βi) features a QML interpretation given
the previously estimated {ĝi,t}Tt=1.

Steps 1 and 2 estimate the parameters of the eigenvector driving Qt-process of
the DPC-CAW model by fitting a scalar CAW model to the sequence of RCs and
employing covariance targeting in order to alleviate the curse of dimensionality.
Under the assumption that the true data-generating process for the RCs Rt is a
DPC-CAW, it is clear from equations (4.2) and (4.4) that the conditional mean of
Rt is Σt = LtDtL

⊤
t and not Qt = LtGtL

⊤
t (see equation 4.6). Hence the first two

estimation steps, which essentially assume that the conditional mean of Rt is Qt

rather thanΣt, introduce bias and inconsistency in estimation since ML estimators
of misspecified mean models are inconsistent (see e.g. Bollerslev and Wooldridge
(1992)). However, since standard CAW models (which in the given context can
be interpreted as misspecified conditional volatility models for data generated by
the DPC-CAW) typically provide good approximations to the stochastic behavior
of the RCs Rt (compare e.g. the results of Golosnoy, Gribisch, and Liesenfeld
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Figure 4.1: Black line: Realized variances and covariances rij = (R)ij of A (i = 1), AA
(i = 2) and AAPL (i = 3); Gray line: estimates of the individual Qt elements
obtained via one-step QML estimation of the DPC-CAW model as specified
in Section 4.3 to the according set of three-dimensional RCs.

(2012)), we can argue that the eigenvectors of Qt-sequences obtained as estimated
conditional means from CAW recursions are expected to be rather close to the
eigenvectors of Σt, namely Lt. This result is illustrated in Figure 4.1, which
shows consistent estimates of the individual Qt elements obtained via one-step
QML estimation of the DPC-CAW model to a 3-dimensional realized covariance
subset of the data discussed in Section 4. The Qt-dynamics closely follow the
pattern of the realized (co)variance data, which is effectively approximated by the
CAW in estimation steps 1 and 2.
Recall that steps 1 and 2 result in biased and inconsistent estimates of the

parameters a, b, and Ξ since the scalar CAW likelihood in step 2 is not correctly
specified (the matrix Qt under the DPC-CAW is not the conditional mean of Rt,
as discussed above). Subsequently, conditional on Steps 1 and 2, the parameters of
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the eigenvalue driving processes are estimated. This last estimation step does not
add to the inconsistency due to the QML interpretation of the according likelihoods
given in equation (4.24). Notice that the intercept parameters γi were fixed in step
1, such that step 3 essentially corresponds to univariate GARCH estimation with
variance targeting.

The quasi-likelihood functions in steps 2 and 3 are smooth, hence standard
gradient-based optimization procedures can be applied. However, estimation of
standard errors becomes complicated due to the aforementioned misspecification.
In fact, we may obtain asymptotic standard errors under the assumption of consis-
tency by applying the GMM-framework of Engle (2009) for the three-step approach
(for details, see also Aielli and Caporin, 2015). However, these standard errors are
not valid if the model is inconsistently estimated since the moment conditions (the
likelihood scores) are not valid in this case. In fact, our simulation experiments
in Section 4.4 show signs of inconsistency. However, note that standard errors
are of minor importance for forecasting applications, which are in the focus of the
present paper.

The three-step approach is simple and intuitive but comes with the disadvan-
tage of introducing bias and inconsistency in parameter estimation. This incon-
sistency is unavoidable in high-dimensional applications of the DPC approach and
has already been encountered by Aielli and Caporin (2015) in the corresponding
GARCH framework. Section 4.4 analyzes the properties of obtained estimates in
an extensive simulation experiment. The results suggest that bias is present but
acceptably small or of reduced impact, especially given the huge dimension of the
estimation problem. The forecasting application of Section 4.5 furthermore shows
that these issues do not negatively affect the out-of-sample performance, which is
typically in the focus of empirical applications of multivariate volatility models.

The three-step estimator enables quick estimation in high-dimensional settings.
The according CAW likelihoods are well-behaved as already found by Golosnoy,
Gribisch, and Liesenfeld (2012), resulting in fast convergence of Quasi-Newton
based numerical optimizers. Three-step estimation of a 100-dimensional DPC-
CAW model with T = 2500 takes at most 100 seconds using an Intel Core i7
2.60 GHz processor under Matlab 2018b. However, the estimation of the DPC-
CAW model in large/vast-dimensional settings (>>100 assets) quickly becomes
challenging mainly due to the inversion of the conditional mean Σt in each single
likelihood evaluation of estimation step 2. This shortcoming is well-known in
the literature on multivariate volatility modeling (see e.g. Hafner and Reznikova,
2012). One possibility to overcome this problem is to apply composite likelihood
techniques, as e.g. illustrated by Pakel et al. (2021) and Engle, Ledoit, and Wolf
(2019) under the DCC GARCH framework. Here the composite log-likelihood
is computed by summing up the log-likelihoods of pairs of assets. This greatly
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reduces the dimension of the estimation problem and enables inference for vast-
dimensional covariance matrices. We, however, note that - in contrast to GARCH-
type models - the DPC-CAW model is based on observed RCs, which have been
computed from synchronized intraday asset return observations. The computation
of vast-dimensional RCs is challenging, involves sparsity assumptions like factor
structures, trimming, or eigenvalue cleaning procedures (see e.g. Tao et al., 2011
and Lunde, Shephard, and Sheppard, 2016), which impose ex-ante structures on
the RCs. As an alternative way of dealing with vast-dimensional applications of the
DPC-CAWmodel, this rather suggests to impose a factor structure on the intraday
asset returns and apply the DPC-CAW framework to the factor covariance matrix,
which is typically of low dimension (e.g. 5 to ten-dimensional). See e.g. Asai
and McAleer (2015) and Shen, Yao, and Li (2020) for similar applications of
CAW models to vast-dimensional frameworks. We leave the application of factor
structures in the DPC-CAW framework for future research.

4.4 Simulation Experiment

We conduct an extensive simulation experiment in order to assess the finite sample
properties of the DPC estimator. Since we focus on high-dimensional applications,
the cross-sectional size is set to p = 100.
The following parameter setup is used: The intercept matrix Ξ = LDL⊤ of the

Qt process is set equal to the average RC of the data employed in the empirical
application of Section 4.5.1. We consider nine distinct eigenvector recursion pa-
rameter set-ups, where the ARCH parameter a is set equal to 0.025, 0.035, 0.05 or
0.1 and the GARCH parameter is chosen such that the persistence (a+ b) equals
0.9, 0.95, 0.99, or 0.997. Note that the setting (a, b) = (0.035, 0.997) corresponds
to our empirical results from Table 4.6.
In order to achieve some variability in the eigenvalue recursion parameters, they

are drawn from uniform distributions according to

αi ∼ U(0.22, 0.3), βi|αi ∼ U(0.94− αi, 0.99− αi). (4.25)

Consequently the persistence parameters (αi + βi) ∈ [0.94, 0.99]. The degrees
of freedom parameter n is set to n = 100. This parameter setup is inspired by
parameter estimates obtained in the empirical application of Section 4.5.1. The
whole experiment covers 500 independent simulations for each of the four time-
series lengths T = 1000, T = 2500, T = 5000, T = 10000, and each of the
4× 4 = 16 parameter constellations.
All estimation results in this section and the upcoming empirical application

in Section 4.5 are obtained under the three-step DPC estimator. The CAW-
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125.16 16.39 10.98 9.26 7.99 6.47 6.42 5.57 5.31 5.31
5.22 4.84 4.80 3.97 3.83 3.79 3.69 3.43 3.35 3.22
3.10 3.00 2.95 2.83 2.74 2.71 2.66 2.61 2.55 2.48
2.37 2.28 2.27 2.19 2.17 2.13 2.11 2.07 2.01 1.94
1.93 1.87 1.85 1.82 1.79 1.77 1.72 1.69 1.64 1.62
1.59 1.57 1.54 1.49 1.47 1.47 1.42 1.41 1.37 1.34
1.32 1.29 1.29 1.28 1.25 1.25 1.24 1.23 1.23 1.20
1.19 1.18 1.12 1.12 1.06 1.05 1.05 1.03 1.02 1.00
0.99 0.98 0.97 0.93 0.91 0.88 0.85 0.83 0.83 0.82
0.81 0.81 0.79 0.72 0.68 0.65 0.54 0.51 0.47 0.45

Table 4.1: Sorted eigenvalues obtained from Ξ̂ = T−1 ∑T
t=1 Rt for the dataset described

in Section 4.5.

and Gamma likelihoods are maximized via Quasi-Newton methods with BFGS-
updating of the Hessian under Matlab 2018b. The eigenvector and eigenvalue
recursions are initialized by Q0 = 1

T

∑T
t=1 Rt and di,0 = 1

T

∑T
t=1 gi,t for i =

1, . . . , p. As starting values for the numerical optimization we choose (0.05, 0.9)
for (a, b) and (αi, βi). The numerical optimization, however, appeared robust to
the choice of the starting values.4

Estimation Step 1 Note that the symmetric 100 × 100 parameter matrix Ξ
comprises 5050 distinct model parameters. For this reason, we focus on the analy-
sis of the 100 eigenvalues di, i.e. the diagonal elements of D, which are of particular
importance since they determine the level of the eigenvalue recursions in estima-
tion step 3. Moreover, the di estimates can be interpreted as the unconditional
variances of the asset returns’ principal components, with decreasing fraction of ex-
plained asset return variation for decreasing i. Figure 4.2 shows the average relative
(percentage) estimation errors for the di estimates, 1

500

∑500
j=1 100 · (d̂ij − dij)/dij ,

over the 500 simulated datasets for the 16 parameter set-ups and four sample sizes
outlined above. Note that the setting (a = 0.035, a + b = 0.997) corresponds to
our empirical findings of Section 4.5. The true parameter values for the di’s are
reported in Table 4.1 and show a sharply decreasing pattern with 50% (90%) of
the total asset return variation explained by the first 7 (60) di’s. For the ten high-
est, and therefore most important, eigenvalues, the biases are ranging between
-35% and 2% with rather low values between -2% and +2% for settings with low
a and low eigenvalue persistence. For the setting which comes closest to our em-

4. The Matlab estimation files for the DPC-CAW model are available under
https://github.com/mstollenwerk/dpc caw.
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Figure 4.2: Average relative estimation errors for di (i = 1, . . . , 100) computed as arith-

metic mean 1
500

∑500
j=1 100 · (d̂ij − dij)/dij over the estimates obtained for the

500 simulations. Black: T = 1000; blue: T = 2500; magenta: T = 5000; red:
T = 10000. The results are obtained from the DPC estimator for the simu-
lation experiment of Section 4.4. The DGP parameter values are reported at
the top of the panel for a and on the left side of the panel for (a+ b). Each
line comprises 100 data points, one for each di in descending order, with d1
being displayed on the left.

pirical results, (a = 0.035, a + b = 0.997), the biases of the first ten eigenvalues
range from -0.5 to -10%. For persistencies of 0.99 or higher accompanied with
comparatively large values for the a parameter, we obtain biases of up to 220%.
This trend is particularly obvious for the high ARCH, high persistence parameter
set (a = 0.1, (a + b) = 0.997), which, however, does not appear to be relevant in
practice (see the empirical results of Section 4.5). Also, note that these values
correspond to di’s of very low level (compare Figure 4.2) whose contribution to
the overall asset return volatility is very low. A significant impact of these relative
biases on the forecasting performance of the DPC-CAW model is therefore not
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Figure 4.3: Violin plots of relative estimation errors 100·(â−a)/a obtained from the DPC
estimator for the simulation experiment of Section 4.4. The DGP parameter
values are reported at the top of the panel for a and on the left side of the
panel for (a + b). The first violin plot in each subplot comprises results for
T = 1000, the second for T = 2500, the third for T = 5000, and the fourth
for T = 10000. The white dot within the box indicates the median.

to be expected (see also our further discussion below on the additional results in
Figures 4.6 and 4.7).

Estimation Step 2 Figure 4.3 reports Violin Plots of relative estimation errors
for the ARCH parameter a. The biases range from -9.2% to 12.2% and are positive
for a = 0.025, close to zero for a = 0.035, and negative for high ARCH environ-
ments with a > 0.035. While the biases appear mostly stable for increasing sample
sizes, we observe a decrease in the biases for the (a = 0.035, a+ b = 0.997) setting
but also an increasing relative bias pattern for high persistence / high ARCH set-
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Figure 4.4: Violin plots of relative estimation errors 100 ·(b̂−b)/b obtained from the DPC
estimator for the simulation experiment of Section 4.4. The DGP parameter
values are reported at the top of the panel for b and on the left side of the
panel for (a + b). The first violin plot in each subplot comprises results for
T = 1000, the second for T = 2500, the third for T = 5000, and the fourth
for T = 10000. The white dot within the box indicates the median.

tings. The smallest biases are obtained for the (a = 0.035, a+ b = 0.997) setting,
which corresponds to our empirical results of Section 4.5. The largest biases are
obtained for the low persistence / low ARCH setting (a = 0.025, a+ b = 0.9) and
amount to 12% on average.

Figure 4.4 depicts the distribution of relative estimation errors for b. The biases
appear small, ranging from -0.61% to 5.1%, and decrease with increasing persis-
tence a+b. For lower values of the GARCH parameter b, the biases tend to increase
for high-persistence scenarios. For increasing sample sizes, the biases are partly di-
verging but come close to zero for our empirical estimates (b = 0.962, a+b = 0.997).
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Figure 4.5: Average relative estimation errors for the eigenvalue persistence αi +βi com-
puted as arithmetic mean 1

500

∑500
j=1 100 · (α̂ij + β̂ij − (αij + βij))/(αij + βij)

over the estimates obtained for the 500 simulations. Black: T = 1000; blue:
T = 2500; magenta: T = 5000; red: T = 10000. The results are obtained
from the DPC estimator for the simulation experiment of Section 4.4. The
DGP parameter values are reported at the top of the panel for a and on the
left side of the panel for (a+ b). Each line comprises 100 data points, one for
each αi + βi in descending order with α1 + β1 corresponding to the highest
eigenvalue being displayed on the left.

Estimation Step 3 Figure 4.5 shows relative biases for the eigenvalue persis-
tencies αi + βi for i = 1, . . . , 100, which appear overall low with values ranging
from -3% to 6%. For the individual αi and βi we find negative and compensating
positive biases between -60% and 10% (α) and -10% and 30% (β) (not reported
here).
In order to investigate the effect of the biases on the estimated asset return

(co)variances, we compute for each of the simulated datasets the sequence of es-
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Figure 4.6: Violin plots of average Euclidean norms (1/T )
∑

t vech(Σ̂t −Σt)
⊤vech(Σ̂t −

Σt) over the 500 simulations. The DGP parameter values are reported at
the top of the panel for a and on the left side of the panel for (a + b). The
first violin plot in each subplot comprises results for T = 1000, the second for
T = 2500, the third for T = 5000, and the fourth for T = 10000. The white
dot within the box indicates the median. The results are obtained from the
DPC estimator for the simulation experiment of Section 4.4.

timated covariance forecasts Σ̂t(θ̂) for t = 1, . . . , T as a function of the param-

eter estimates θ̂ discussed above, and compare these estimates to the true sim-
ulated forecasts Σt(θ). Figure 4.6 reports Violin Plots of the average Euclidean

norms (1/T )
∑

t vech(Σ̂t(θ̂) − Σt(θ))
⊤vech(Σ̂t(θ̂) − Σt(θ)) over the 500 simula-

tions, and Figure 4.7 shows Violin Plots of the corresponding relative (percentage)

biases computed as (1/T )
∑

t(100/5050)
∑

i>j(Σ̂ij(θ̂) −Σij(θ))/Σij(θ). The re-
sults show a pattern of decreasing Euclidean norms for increasing sample sizes,
coming close to zero for T = 10000 and all considered parameter settings. The
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Figure 4.7: Violin plots of average relative biases (1/T )
∑

t(1/5050)
∑

i>j(Σ̂ij−Σij)/Σij

over the 500 simulations. The DGP parameter values are reported at the top
of the panel for a and on the left side of the panel for (a + b). The first
violin plot in each subplot comprises results for T = 1000, the second for
T = 2500, the third for T = 5000, and the fourth for T = 10000. The white
dot within the box indicates the median. The results are obtained from the
DPC estimator for the simulation experiment of Section 4.4.

distribution of relative biases shows low dispersion around zero, and the variation
appears to be decreasing with increasing sample size.
Summarizing the results, the simulation experiment indicates relatively low bi-

ases for the eigenvalue persistencies and the ARCH- and GARCH parameters of
the eigenvector recursions while the biases of the di-estimates in estimation step
1 amount to up to 220% for eigenvalues of very low level. However, these biases
do not significantly affect the covariance forecasts as indicated by the Euclidean
norms and biases for Σt reported in Figures 4.6 and 4.7. Hence the biases are not
expected to significantly affect forecasting performance of the DPC-CAW model.
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4.5 Empirical Application

4.5.1 Data

Mean Min. Max. Range Std. dev. Skewness Kurtosis

Realized variances (100 time-series)

Min. 1.01 0.02 48.39 48.35 1.89 3.75 24.30
Median 3.29 0.10 117.00 116.88 5.04 8.90 146.03
Max. 12.51 0.35 7727.54 7727.50 151.31 43.58 2126.80

Realized covariances (4950 time-series)

Min. 0.20 −126.77 14.07 14.97 0.87 −1.09 33.86
Median 1.05 −3.32 63.42 68.12 2.61 10.08 169.49
Max. 3.90 −0.02 1262.30 1282.60 25.51 38.93 1851.31

Table 4.2: Descriptive statistics for the 5050 realized variance and covariance time-series
of the 100-dimensional dataset described in Section 4.5.

We apply the scalar-DPC-CAW model introduced in Section 4.3 in order to cap-
ture the dynamics of 100-dimensional RCs. The data have been computed from
one-minute intraday asset returns by the microstructure-noise and jump robust
multivariate realized kernel method of Barndorff-Nielsen et al. (2011). The corre-
sponding ticker symbols are shown in Table 4.3 (p. 150). Note that the choice of
the particular type of realized measure is not an important issue since the model
can be fitted to any series of positive-definite RCs. The sample period starts on
01 January 2002 and ends on 03 December 2014, covering 3271 trading days.

Figure 4.8 depicts exemplary time-series plots of variance and covariance series
and according sample autocorrelation functions for four stocks included in the
dataset. Descriptive statistics are provided in Table 4.2. The (co)variance pro-
cesses are highly persistent, skewed to the right, leptokurtic, and tend to move
parallel to each other.

4.5.2 In-Sample Estimation Results

We start with analyzing the in-sample fit of the DPC-CAW model for various
model-order settings using the BIC information criterion. According to Geweke
and Meese (1981) it can be shown that for linear ARMA-type models, the BIC
is consistent in the sense that asymptotically the correct model order is chosen.
This, however, does not hold for nonlinear models such as the CAW of Golosnoy,
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Figure 4.8: Realized (co)variance plots and sample autocorrelation functions (ACFs).
Left panel: Sample of realized variances and covariances rij = (R)ij of A
(i = 1), AA (i = 2), AAPL (i = 3) and ABT (i = 4). Gray shaded areas
indicate the periods covered by the forecasting experiment of Section 4.5.3.
Middle panel: Sample ACFs of realized (co)variances together with 95% con-
fidence bounds under the null of zero serial correlation. Right panel: Sample
ACFs and according 95% confidence bounds of standardized Pearson resid-
uals obtained from the BIC selected DPC-CAW(3,4)-(1,1) model estimated
by the DPC estimator for the 100-dim. dataset illustrated in Section 4.5.
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Symbol Company Symbol Company
a Agilent Technologies Inc. gild Gilead Sciences Inc.
aa Alcoa Inc. glw Corning Incorporated
aapl Apple Inc. gps Gap, Inc.
abt Abbott Laboratories gs Goldman Sachs Group, Inc.
abx Barrick Gold Corporation hal Halliburton Company
adbe Adobe Systems Incorporated hd Home Depot, Inc.
adi Analog Devices Inc. hig Hartford Financial Services Group, Inc.
adp Automatic Data Processing hon Honeywell International Inc.
aig American International Group Inc. hpq Hewlett-Packard Company
all Allstate Corporation ibm International Business Machines Corporation
altr Altera Corporation intc Intel Corporation
amat Applied Materials Inc. intu Intuit Inc.
amd Advanced Micro Devices Inc. ip Internation Paper Company
amgn Amgen Inc. jcp J.C. Penney Company, Inc.
amzn Amazon.com, Inc. jnj Johnson & Johnson
apc Anadarko Petroleum Corporation jnpr Juniper Networks, Inc.
axp American Express Company jpm J P Morgan Chase & Co
ba Boeing Company klac KLA-Tencor Corporation
bac Bank of America Corporation ko Cocoa-Cola Company
bax Baxter International Inc. kr Kroger Company
bbby Bed Bath & Beyond Inc. kss Kohl’s Corporation
bby Best Buy Co., Inc. lb La Barge Inc.
bhi Baker Hughes Incorporated lltc Linear Technology Corporation
bmy Bristol-Myers Squibb Company lly Eli Lilly and Company
brcm Broadcom Corporation lmt Lockheed Martin Corporation
c Citigroup Inc. low Lowe’s Companies, Inc.
cag ConAgra, Inc. luv Southwest Airlines Company
cah Cardinal Health Inc. mas Masco Corporation
cat Caterpillar, Inc. mcd McDonald’s Corporation
cbs CBS Corporation new mdt Medtronic Inc.
cien Ciena Corporation met MetLife, Inc.
cl Colgate-Palmolive Company mmc Marsh & McLennan Companies, Inc.
cop ConocoPhillips mmm 3M Company
cost Costco Wholesale Corporation mo Altria Group
csco Cisco Systems, Inc. mrk Merck & Company, Inc.
ctxs Citrix Systems, Inc. ms Morgan Stanley Dean Witter & Co
cvs CVS Caremark Corp. msft Microsoft Corporation
cvx Chevron Corporation msi Motorola Solutions, Inc.
dd Dupont De Nemours Inc. mu Micron Technology, Inc.
de Deere & Company nem Newmont Mining Corporation
dis Walt Disney Company nke Nike, Inc.
dow Dow Chemical Company ntap NetApp, Inc.
duk Duke Energy Corporation new nvda NVIDIA Corporation
ea Electronic Arts Inc. orcl Oracle Corporation
ebay Ebay Inc. oxy Occidental Petroleum Corporation
emc EMC Corporation MA payx Paychex, Inc.
emr Emerson Electric Company pep Pepsico, Inc.
f Ford Motor Company DEL pfe Pfizer, Inc.
fitb Fifth Third Bancorp pg Procter & Gamble Company
ge General Electric Company qcom QUALCOMM Incorporated

Table 4.3: Dataset of 100 stocks selected by liquidity from the S&P 500.

Gribisch, and Liesenfeld (2012) or, equivalently, the DPC-CAW - even if consis-
tently estimated. Golosnoy, Gribisch, and Liesenfeld (2012) remark that there do
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Order of eigenvector process
(1,0) (1,1) (2,1) (1,2) (2,2) (3,2) (2,3) (3,3)

(1,0) -2.5515 -2.7671 -2.0818 -2.4645 -2.0505 -2.0298 -2.0460 -2.0998
(1,1) -2.6289 -2.8342 -2.1779 -2.5363 -2.1531 -2.1402 -2.1502 -2.1892
(2,1) -2.6287 -2.8340 -2.1778 -2.5361 -2.1531 -2.1404 -2.1503 -2.1890

O
rd
er

o
f
ei
g
en
va
lu
e
p
ro
ce
ss (1,2) -2.6304 -2.8361 -2.1793 -2.5377 -2.1546 -2.1418 -2.1517 -2.1905

(2,2) -2.6303 -2.8360 -2.1793 -2.5376 -2.1546 -2.1420 -2.1518 -2.1904
(3,2) -2.6301 -2.8358 -2.1791 -2.5374 -2.1544 -2.1418 -2.1516 -2.1902
(2,3) -2.6311 -2.8371 -2.1801 -2.5384 -2.1553 -2.1428 -2.1525 -2.1911
(3,3) -2.6309 -2.8370 -2.1799 -2.5382 -2.1552 -2.1426 -2.1524 -2.1909
(4,3) -2.6308 -2.8368 -2.1798 -2.5380 -2.1550 -2.1425 -2.1522 -2.1908
(3,4) -2.6314 -2.8374 -2.1801 -2.5384 -2.1554 -2.1428 -2.1526 -2.1911
(4,4) -2.6313 -2.8372 -2.1800 -2.5383 -2.1553 -2.1427 -2.1524 -2.1910
(5,4) -2.6312 -2.8371 -2.1798 -2.5381 -2.1551 -2.1426 -2.1523 -2.1908
(4,5) -2.6313 -2.8373 -2.1800 -2.5382 -2.1553 -2.1428 -2.1525 -2.1910
(5,5) -2.6312 -2.8372 -2.1799 -2.5381 -2.1552 -2.1426 -2.1524 -2.1908
HAR -2.6280 -2.8341 -2.1773 -2.5357 -2.1525 -2.1397 -2.1497 -2.1883

Table 4.4: Bayes information criteria (BIC) for estimated DPC-CAWmodels with various
lag-order constellations. BIC values: ×10e7. Models are estimated using the
three-step estimation approach.

not seem to exist published results on the consistency of the BIC for nonlinear
time-series models, which would justify its use under the CAW framework. Nev-
ertheless, the BIC is often applied as an “indicator”, although not asymptotically
valid in a strict sense. Here we follow Golosnoy, Gribisch, and Liesenfeld (2012)
and align the BIC-based model selection by model diagnostics based on Ljung-Box
residual autocorrelation tests for the fitted models.
All models are estimated by the three-step approach. We consider both order

selection for the eigenvector- and for the eigenvalue processes given in equations
(4.5) and (4.7), jointly. For the eigenvalues, we restrict the chosen order to be
identical across the 100 assets. Table 4.4 shows the results of the BIC information
criteria. We find a clear indication for the (1,1) specification of the eigenvector
recursion, which corresponds to the typically chosen DCC-GARCH specification
for correlations. The distribution of BIC values over the various eigenvalue order
constellations is much more even and overall results in the preferred (3,4) model.
For comparison, we also report the BIC obtained for a standard HAR specification
of the eigenvalue dynamics (see Corsi, 2009). The model boils down to a restricted
autoregressive specification of order 20. The HAR model, although very popular
in empirical applications, is not preferred in any case.

Table 4.5 shows corresponding model diagnostic results on the in-sample fit to
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Order of eigenvector process
(1,0) (1,1) (2,1) (1,2) (2,2) (3,2) (2,3) (3,3)

(1,0) 472.14 229.53 229.64 229.17 230.23 230.02 230.19 229.99
(1,1) 463.15 229.00 230.11 229.31 229.44 228.57 228.70 227.98
(2,1) 410.37 216.57 216.88 216.40 217.04 216.74 216.82 216.59

O
rd
er

o
f
ei
g
en
va
lu
e
p
ro
ce
ss (1,2) 411.70 216.89 216.90 216.70 216.96 216.89 216.94 216.75

(2,2) 410.12 216.50 216.24 216.24 216.66 216.33 216.57 216.23
(3,2) 413.72 222.43 222.82 222.30 223.76 223.47 223.52 221.87
(2,3) 408.66 216.43 216.28 216.19 216.43 216.68 216.61 216.40
(3,3) 409.83 217.14 216.77 216.74 217.02 216.68 216.71 216.65
(4,3) 417.61 219.02 217.56 218.43 218.08 217.56 218.09 217.61
(3,4) 409.43 216.20 216.27 216.06 216.43 216.30 216.40 216.17
(4,4) 408.87 215.96 216.41 215.76 216.32 216.20 216.29 216.10
(5,4) 409.95 216.47 216.66 216.12 216.82 216.28 216.75 216.24
(4,5) 409.37 216.32 216.47 216.20 216.41 216.25 216.36 216.08
(5,5) 408.90 216.35 216.37 216.06 216.29 216.14 216.26 215.99
HAR 408.75 218.19 224.40 218.02 218.04 223.19 217.90 218.98

Table 4.5: Average Ljung-Box autocorrelation test statistics of the 100 × 101 = 5050
time-series of standardized Martingale differences obtained from DCP-CAW
model for the 100-dimensional dataset. The 5% critical value of the Ljung-Box
test statistic at 200 lags is χ2

200 = 233.99.

the autocorrelation structure of the underlying realized (co)variance data. The
model diagnostics are based on Ljung-Box autocorrelation tests on the standard-
ized Martingale differences (“Pearson residuals”) in the p(p+1)/2 = 5050-dimensional
vector

e∗t = Cov(vech(Rt)|Ft−1)
−1/2 vech(Rt − E[Rt|Ft−1])

=

(
2

n
G+

p (Σt ⊗Σt)(G
+
p )
⊤
)−1/2

vech(Rt −Σt),

where G+
p = (G⊤p Gp)

−1G⊤p is an elimination matrix with Gp being the dupli-
cation matrix as defined by Gpvech(X) = vec(X) for symmetric p × p X (see
e.g. Lütkepohl, 2005, or Section 3.6.1). Under the null of correct model specifica-
tion, these residuals are serially uncorrelated. The table reports averaged values
of the Ljung-Box test statistics at 200 lags computed over the 5050 time-series of
Pearson-residuals in the vector e∗t . The 5% critical value of the Ljung-Box test
statistic at 200 lags is χ2

200 = 233.99. The results give an impression of the overall
fit of the various model constellations to the (co)variance dynamics of the data
since the average Ljung-Box test statistics represent an aggregate of the squared
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Eigenvalue Process

αi,1 αi,2 αi,3 βi,1 βi,2 βi,3 βi,4
r∑

ℓ=1

αi,ℓ +
q∑

ℓ=1

βi,ℓ

Median 0.311 0.074 0.000 0.132 0.068 0.135 0.135 0.978
Min. 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.947
Max. 0.492 0.180 0.116 0.519 0.348 0.373 0.378 0.987

Eigenvector Process
a b a+ b

0.035 0.962 0.997

Table 4.6: Summary of parameter estimates obtained by the DPC estimator for the 100-
dimensional dataset described in Section 4.5 and the BIC selected model order
(3,4)-(1,1).

residual autocorrelations for all variance and covariance series. The minimum
average Ljung-Box test statistic is obtained for a (1,2) specification for the eigen-
vector dynamics combined with a (4,4) lag-order for the eigenvalue processes as
the best-fitting model for the in-sample (co)variance dynamics. Compared to the
BIC results, the residual diagnostics show a tendency for higher lag orders, which
is explained by the absence of a penalty term for the number of model parameters.
Similar to the BIC results, the HAR specification is not preferred in any case.
Moreover, the minimum average Ljung-Box test statistic of 215.76 is very close to
the one obtained for the BIC-preferred (1,1)-(3,4) specification (216.20). Hence
the BIC - although not consistent - appears to be a reasonable advice for selecting
the lag-order of the DPC-CAW.

Table 4.6 reports a summary of the obtained estimates for the BIC-preferred
(3,4)-(1,1) DPC-CAW specification. The estimated persistence for the eigenvector-
and eigenvalue recursions is very high with (a + b) = 0.997 and a median of∑p

ℓ=1 αi,ℓ +
∑q

ℓ=1 βi,ℓ of 0.978. This corresponds to the findings in Aielli and Ca-
porin (2015) and resembles analogous results for scalar DCC-GARCH applications
with intercept targeting.

The right panel of Figure 4.8 (p. 149) shows sample autocorrelation functions
of standardized Pearson residuals from the DPC-CAW(3,4)-(1,1) model for exem-
plary variance and covariance series of four stocks included in the 100-dimensional
dataset. The results presented in the Figure are representative for the complete set
of stocks. The ACFs are depicted together with 95% Bartlett confidence bands
for the variance and covariance series separately and illustrate the overall good
fit of the DPC-CAW approach. The model successfully reduces the serial depen-
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dence to a minimum. We, however, observe some remaining predictability in the
residual series: 441 of the 5050 series do not pass the Ljung-Box test for zero
autocorrelation at the 1% level and 100 lags. The literature reports much worse
fractions for applications of much lower dimension (see e.g. the model diagnostic
results for the flexible CAW specifications in Golosnoy, Gribisch, and Liesenfeld
(2012), for a five-dimensional application). The diagnostics therefore imply a good
fit to the complex dynamics of 5050 distinct variance and covariance series. Also
note that we may interpret some remaining residual predictability as a result of
the sparse scalar model structure of the DPC-CAW, which enables applications
to high-dimensional covariance matrices while avoiding overfitting and spuriously
uncorrelated residuals. The residual ACFs in Figure 4.8 show that remaining pre-
dictability is typically found in variance residuals. This may be related to the
direct modeling of principal component variances rather than return variances.

4.5.3 Out-of-Sample Forecasting

We now compare the out-of-sample one-day, five-day, and ten-day-ahead forecast-
ing performance of the DPC-CAW specification to alternative forecasting models
proposed in the literature on realized covariance modeling. We consider two out-
of-sample windows: The first window starts on 01 January 2009 and ends on 31
December 2011, covering the subprime crisis period. The window exhibits a par-
ticularly high volatility level and pronounced volatility peaks. The second window
covers a period of low to moderate volatility from 01 January 2012 until 31 De-
cember 2014, representing normal stock market fluctuations (see the left panel in
Figure 4.8 (p. 149) for exemplary time-series plots). The models are re-estimated
daily using a rolling window of the previous 1750 covariance measures, i.e. roughly
seven years of data. New forecasts are generated based on the updated parameter
estimates.

Competing Models and Forecast Evaluation

The scalar Re-DCC model of Bauwens, Storti, and Violante (2012) represents the
“natural” competitor for the DPC-CAW approach. The Re-DCC model decouples
correlations and variances, which facilitates three-step estimation similar to the
DPC estimator (see Bauwens, Storti, and Violante, 2012 for details). The model
assumes a conditional central Wishart distribution for the realized covariance mea-
sure and decomposes the scale matrix Σt into

Σt = VtρtVt, (4.26)
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where Vt = dg(
√
(Σt)1 1,

√
(Σt)2 2, . . . ,

√
(Σt)pp) and ρt is the correlation matrix

implied by Σt. We consider GARCH(r, q) recursions for the conditional variances:

(Σt)ii = γi +

r∑

k=1

αk,i(Rt−k)ii +

q∑

l=1

βk,i(Σt−l)ii. (4.27)

The correlation matrix ρt is parameterized as follows:

ρt = (1− a− b)ρ̄+ aPt−1 + bρt−1, (4.28)

where Pt is the realized correlation matrix

Pt = dg(vecd(Rt))
−1/2Rtdg(vecd(Rt))

−1/2, (4.29)

where the vecd operator stacks the diagonal elements of a square matrix into a
column vector and the dg operator creates a diagonal matrix from vector input.
ρ̄ is estimated by the sample mean of realized correlation measures (“correlation
targeting”).
We also consider a constant conditional correlation CAW (CCC-CAW) model

since it represents a restricted Re-DCC specification where a = b = 0. In a similar
fashion, we restrict the DPC-CAW model to a = b = 0 in order to obtain the
CAW-analogue to the OGARCH model (O-CAW). Additionally, we consider the
DPC-CAW0f model, which is obtained by restricting the eigenvalue dynamics of
the DPC-CAW model to αi = α and βi = β ∀i = 1, . . . , p. This particular model
restriction turned out to be favorable in forecasting applications.
We furthermore analyze an exponentially weighted moving average (EWMA)

specification, called RiskMetrics (see Morgan, 1996), which boils down to expo-
nential smoothing of RCs using a preset smoothing parameter λ. The forecast of
the RC is then given by

E[Rt|Ft−1] = (1− λ)Rt−1 + λE[Rt−1|Ft−2], (4.30)

where λ is set to its typical value for daily data, i.e. λ = 0.94.
As further forecasting models, we apply the Factor-HEAVY approach of Shep-

pard and Xu (2019), where we use realized variances of the S&P 500 for the market
factor (see Section 1.1 and in particular equation 12 in Sheppard and Xu (2019)
for details on the model setup), and the PCA based CAW factor approach of Shen,
Yao, and Li (2020) (labeled Factor-CAW ), with seven factors selected by the eigen-
value criterion as discussed by Shen, Yao, and Li (2020). While the Factor-HEAVY
model allows for dynamic loadings and idiosyncratic variances, the Factor-CAW
uses the PCA results of Tao et al. (2011), who restrict the loadings and the id-
iosyncratic covariance matrix to be constant over time. Shen, Yao, and Li (2020)
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first compute the realized factor covariance matrix using PCA techniques and then
employ diagonal CAW(r, q) processes in order to forecast the factor covariances.
Multi-step-ahead forecasts are obtained by iterating the model recursions and

replacing unknown future dependent variables by their forecasts (see the accord-
ing papers for details). The first two columns of Table 4.7 provide an overview
of all considered model specifications. The (r, q) column describes the number of
GARCH lags in the conditional variance specifications (Re-DCC and CCC-CAW)
or in the eigenvalue recursions (DPC-CAW and O-CAW), respectively. For the
Factor-HEAVY model the order refers to the factor-, beta- and idiosyncratic vari-
ance dynamics, and for the Factor-CAW approach to the CAW(r, q) process for
the factor covariance dynamics.
We now turn to the evaluation of the forecasting performance. Let L(X̂,X)

denote the Euclidean distance of the half-vectorization of the forecast error matrix
given by

L(X̂,X) = vech(X̂−X)⊤ vech(X̂−X), (4.31)

where X̂ represents a particular matrix forecast and X the according realization.
We apply five different loss functions in order to evaluate the forecasting perfor-
mance of the considered models:

(i) MSE of predicted covariance matrix: L(R̂t,Rt);

(ii) MSE of predicted variances: vecd(R̂t −Rt)
⊤ vecd(R̂t −Rt);

(iii) MSE of predicted correlation matrix: L(ρ̂t,ρt);

(iv) Variance of predicted global minimum variance portfolio (GMVP): VGMPV,t;

(v) QLIKE: QLIKEt = log |R̂t|+ vec(R̂−1t Rt)
⊤1.

The model-specific forecast of the covariance matrixRt is given by R̂t = E[Rt|Ft−1]

and accordingly ρ̂t = dg(vecd(R̂t))
−1/2R̂tdg(vecd(R̂t))

−1/2. We use the realized
kernel estimate Rt as unbiased proxy for the true covariance matrix at period t.

Loss function (i) considers whole covariance matrix forecasts, while (ii) and
(iii) focus on variances and correlations instead. These quantities are of par-
ticular interest since DCC frameworks model variance and correlation dynamics
separately. Loss function (iv) considers economic losses via computing realized
variance of the forecasted global minimum variance portfolio (GMVP) given by

VGMPV,t = ŵ⊤Rtŵ, with ŵ = R̂t1/(1
⊤R̂−1t 1), where 1 is an p-dimensional vec-

tor of ones. See e.g. Patton (2011) for a discussion of the properties of the QLIKE
loss function (v), which is known to be robust to noisy volatility proxies.
We compute sample averages of the obtained losses over the respective fore-

casting windows and assess the significance of differences in losses via the model
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confidence set (MCS) approach of Hansen, Lunde, and Nason (2011). At a given
confidence level (1 − α), the MCS contains the single model or the set of models
with the best forecasting performance. We select α = 0.1 as suggested by Hansen,
Lunde, and Nason (2011) and compute the confidence sets using the stationary
bootstrap method with window lengths determined by the maximum number of
significant parameters obtained by fitting an AR(r) process on the loss differences
and 5, 000 bootstrap replications.

Forecasting Results

The one-day-ahead forecasting results are summarized in Tables 4.7 and 4.8, the
five-day-ahead results in Tables 4.9 and 4.10 and the ten-day-ahead results in
Tables 4.11 and 4.12 (see pp. 159 – 164).

The DPC-CAW approach (DPC-CAW and DPC-CAW0f ) provides an overall
good forecasting performance over all considered subperiods and forecasting hori-
zons. Moreover, the DPC-CAW model provides the overall best forecasts w.r.t
the correlation- and the economically important GMVP loss functions (with the
exception of ten-day-ahead predictions in the calm period). In particular, the
DPC-CAW approach features significantly lower correlation and GMVP losses
compared to up-to-date competitors like the flexible Factor-HEAVY approach of
Sheppard and Xu (2019) and the Factor-CAW of Shen, Yao, and Li (2020) across
all subperiods and horizons. The DPC-CAW approach with HAR dynamics for
the eigenvalue recursions also appears to be particularly strong in forecasting the
whole covariance matrix, as indicated by the respective MSE results. For the vari-
ance loss, however, the DPC-CAW models are significantly outperformed by the
EWMA approach in calm periods and forecasting horizons of five and ten trading
days ahead. In turbulent periods the MCS for the variance- and covariance matrix
losses are very wide due to a huge dispersion of the Euclidean distances in (4.31),
such that differences in MSE losses across models are not significant in most cases.
We also note that EWMA appears to be a serious competitor in multi-period fore-
casting during calm market phases, while the Factor-HEAVY approach is typically
preferred under the QLIKE and turbulent market conditions. The Factor-CAW,
in contrast, does not appear to be a serious competitor in any case, which may be
explained by the model’s strong restrictions on the covariance dynamics via impos-
ing time-constant idiosyncratic variances and factor loadings. The Re-DCC-CAW,
O-CAW, and CCC-CAW models do not show an overall remarkable performance
and are typically outperformed by their competitors.

Taken all together, the results confirm the presumption that the independent
modeling of principal component variances with time-varying eigenvectors offers
a precise description of covariance and correlation dynamics. In particular, the
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GMVP forecasting results highlight the importance of capturing correlation dy-
namics in the portfolio context. We conclude that the DPC-CAW approach has
particularly good forecasting properties and notably outperforms its competitors,
especially in covariance-, correlation- and GMVP forecasting.

4.6 Conclusion

In this paper, we propose a Dynamic Principal Component (DPC) CAW model
for time-series of high-dimensional realized covariance matrices of asset returns.
The model performs a spectral decomposition of the scale matrix of a central
Wishart distribution and assumes independent dynamics for the principal compo-
nents’ variances and the eigenvector processes. A three-step estimation procedure
similar to the DCC framework for asset returns makes the model applicable to
high-dimensional realized covariance matrices.
We analyze the finite sample properties of the three-step estimation approach in

an extensive simulation experiment and provide an empirical application to real-
ized covariance matrices for 100 assets traded at the NYSE. The DPC-CAW model
has particularly good forecasting properties and outperforms its competitors, in-
cluding DCC-CAW, Factor-HEAVY and Factor-CAW specifications for RCs.
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Volatile Market: 01.01.2009− 31.12.2011

Model (r,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 32289 8322 195.9 37.86 150.8
(2,2) 32036 8296 195.5 37.74 150.4
(3,3) 31943 8316 195.1 37.70 149.8
HAR 31682 8275 194.5 37.72 149.5

DPC-CAW0f (1,1) 32596 8511 193.5 37.76 147.0
(2,2) 32262 8466 193.2 37.67 146.7
(3,3) 32063 8450 192.9 37.65 146.2
HAR 31981 8415 193.0 37.64 146.4

Re-DCC-CAW (1,1) 32346 8222 229.1 39.72 201.5
(2,2) 32196 8155 228.8 39.59 200.4
(3,3) 32335 8239 228.6 39.53 199.3
HAR 33874 8137 235.9 40.37 186.0

O-CAW (1,1) 38834 10116 211.6 49.99 148.3
(2,2) 38626 10112 211.2 49.97 148
(3,3) 38528 10140 211.3 49.99 147.5
HAR 38328 10139 210.4 49.91 147.1

CCC-CAW (1,1) 34359 8222 273.2 41.62 225.2
(2,2) 34223 8155 273.2 41.54 224.7
(3,3) 34371 8239 273.2 41.51 223.9
HAR 35583 8137 273.2 42.40 204.7

EWMA 37178 9823 204.9 38.90 162.9
Factor-HEAVY (1,1) 32374 8056 208.7 55.11 118.3

(2,2) 32191 7997 208.0 54.88 120.3
(3,3) 31968 8047 207.5 54.76 120.8
HAR 31935 8053 206.8 55.00 119.9

Factor-CAW (1,1) 35079 9238 245.4 61.22 216.5
(2,2) 34658 9157 243.8 60.68 212.3
(3,3) 34554 9199 243.5 60.71 211.9
HAR 34237 9118 242.9 60.23 209.6

Table 4.7: Average one-day-ahead forecasting losses for 01.01.2009−31.12.2011. The loss
functions are defined in Section 5.3.1. The smallest value is shown in bold.
Grey shaded values indicate that the 90% model confidence set includes the
respective model.
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Calm Market: 01.01.2012− 31.12.2014

Model (r,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 1586 540.4 226.2 15.48 73.96
(2,2) 1580 539.7 226.3 15.49 74.09
(3,3) 1578 540.1 226.4 15.48 74.32
HAR 1571 538.6 227.0 15.49 74.90

DPC-CAW0f (1,1) 1600 542.4 225.4 15.48 66.76
(2,2) 1590 540.7 225.5 15.49 66.99
(3,3) 1585 540.2 225.4 15.48 67.05
HAR 1577 538.1 225.7 15.49 67.17

Re-DCC-CAW (1,1) 1742 597.8 242.8 16.60 94.67
(2,2) 1732 593.3 242.7 16.59 94.37
(3,3) 1729 592.8 242.6 16.59 94.10
HAR 1799 586.4 244.6 16.92 74.21

O-CAW (1,1) 1756 609.4 243.9 20.08 110.16
(2,2) 1750 608.2 244.2 20.08 110.43
(3,3) 1749 607.6 244.5 20.08 110.59
HAR 1743 605.5 245.2 20.11 111.14

CCC-CAW (1,1) 1840 597.8 265.3 18.11 96.27
(2,2) 1828 593.3 265.3 18.12 96.18
(3,3) 1824 592.8 265.3 18.16 96.23
HAR 1911 586.4 265.3 18.69 72.33

EWMA 1715 556.3 239.8 15.74 82.57
Factor-HEAVY (1,1) 1642 595.9 237.5 22.91 68.84

(2,2) 1639 596.8 237.3 22.93 67.42
(3,3) 1640 598.4 237.4 22.91 67.66
HAR 1624 583.5 237.5 23.00 67.00

Factor-CAW (1,1) 2446 770.9 299.5 41.80 296.47
(2,2) 2455 771.9 297.4 41.19 282.06
(3,3) 2455 772.0 296.5 41.09 277.03
HAR 2435 769.6 299.7 41.52 292.59

Table 4.8: Average one-day-ahead forecasting losses for 01.01.2012−31.12.2014. The loss
functions are defined in Section 5.3.1. The smallest value is shown in bold.
Grey shaded values indicate that the 90% model confidence set includes the
respective model.
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Volatile Market: 01.01.2009− 31.12.2011

Model (r,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 41745 10876 214.3 39.34 162.8
(2,2) 41309 10828 213.1 39.26 162.9
(3,3) 40643 10774 211.8 39.21 164.6
HAR 39061 10642 207.6 39.06 164.8

DPC-CAW0f (1,1) 40177 10741 210.3 39.21 160.3
(2,2) 39928 10701 209.8 39.16 160.4
(3,3) 39719 10671 209.5 39.12 161.0
HAR 38883 10643 207.8 38.93 162.4

Re-DCC-CAW (1,1) 44523 14599 234.6 41.92 209.7
(2,2) 43588 13916 234.3 41.63 206.2
(3,3) 42829 13403 234.0 41.30 202.8
HAR 44485 11301 242.2 44.15 176.9

O-CAW (1,1) 46821 11917 228.7 50.93 158.3
(2,2) 46446 11866 227.8 50.86 158.4
(3,3) 45727 11800 226.6 50.87 159.6
HAR 44256 11737 221.8 50.36 159.2

CCC-CAW (1,1) 46200 14599 274.2 43.68 232.4
(2,2) 45294 13981 274.2 43.52 231.0
(3,3) 44509 13403 274.2 43.34 227.0
HAR 45776 11301 274.2 46.38 193.4

EWMA 39319 10726 213.0 40.10 179.1
Factor-HEAVY (1,1) 46365 15265 240.5 58.82 133.2

(2,2) 45124 14320 238.5 57.62 143.3
(3,3) 43859 13690 236.7 57.43 142.0
HAR 42659 12376 239.5 62.98 120.4

Factor-CAW (1,1) 43528 11866 254.7 62.09 217.7
(2,2) 42886 11713 252.2 61.10 211.0
(3,3) 42600 11630 251.2 60.50 207.2
HAR 41240 11302 248.4 59.02 197.4

Table 4.9: Average five-day-ahead forecasting losses for 01.01.2009−31.12.2011. The loss
functions are defined in Section 5.3.1. The smallest value is shown in bold.
Grey shaded values indicate that the 90% model confidence set includes the
respective model.
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Calm Market: 01.01.2012− 31.12.2014

Model (r,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 1978 595.6 245.0 16.47 69.76
(2,2) 1933 592.4 243.6 16.39 71.55
(3,3) 1879 585.4 242.6 16.29 75.90
HAR 1876 583.2 241.4 16.24 75.02

DPC-CAW0f (1,1) 1927 592.5 243.4 16.39 68.13
(2,2) 1909 589.6 243.1 16.37 68.52
(3,3) 1895 587.2 242.9 16.34 69.12
HAR 1957 590.6 245.5 16.35 68.18

Re-DCC-CAW (1,1) 2121 694.8 247.4 17.57 90.19
(2,2) 2066 670.6 247.2 17.51 88.57
(3,3) 2029 651.7 247.2 17.43 86.91
HAR 2347 640.3 249.0 17.79 73.29

O-CAW (1,1) 2055 651.5 252.3 20.09 102.06
(2,2) 2024 645.9 252.3 20.18 104.34
(3,3) 1975 639.7 254.7 20.18 110.69
HAR 1990 643.7 251.1 20.05 106.14

CCC-CAW (1,1) 2241 694.8 265.5 19.10 87.23
(2,2) 2194 675.5 265.5 19.12 86.32
(3,3) 2140 651.7 265.5 19.12 85.22
HAR 2516 640.3 265.5 19.71 67.64

EWMA 1798 568.3 248.2 16.31 90.37
Factor-HEAVY (1,1) 2001 710.2 258.9 24.89 82.52

(2,2) 1962 683.4 258.2 24.40 85.38
(3,3) 1921 661.5 257.6 24.31 84.34
HAR 1849 610.8 256.9 26.15 74.36

Factor-CAW (1,1) 2659 789.2 298.8 41.41 260.71
(2,2) 2684 791.2 294.7 40.16 239.35
(3,3) 2693 791.5 293.2 39.85 230.35
HAR 2694 789.2 295.3 40.54 234.65

Table 4.10: Average five-day-ahead forecasting losses for 01.01.2012 − 31.12.2014. The
loss functions are defined in Section 5.3.1. The smallest value is shown in bold.
Grey shaded values indicate that the 90% model confidence set includes the
respective model.
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Volatile Market: 01.01.2009− 31.12.2011

Model (r,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 42407 11254 221.5 40.48 171.3
(2,2) 42291 11228 220.6 40.36 172.0
(3,3) 42256 11194 220.0 40.38 175.3
HAR 40828 11211 214.7 40.08 173.6

DPC-CAW0f (1,1) 41765 11145 218.7 40.35 169.4
(2,2) 41672 11126 218.2 40.28 169.6
(3,3) 41618 11123 217.8 40.20 170.2
HAR 41011 11263 215.6 39.80 170.1

Re-DCC-CAW (1,1) 48946 17292 239.7 45.08 221.7
(2,2) 47227 15863 239.4 44.57 218.1
(3,3) 45779 14767 239.1 44.00 214.1
HAR 48323 12257 247.8 46.78 187.9

O-CAW (1,1) 46903 12044 233.0 50.63 164.3
(2,2) 46752 11996 232.3 50.61 164.6
(3,3) 46622 11937 231.9 50.69 167.5
HAR 45254 11974 226.5 50.13 165.3

CCC-CAW (1,1) 50519 17292 274.8 46.29 243.8
(2,2) 48971 16108 274.8 46.01 243.3
(3,3) 47281 14767 274.8 45.52 237.4
HAR 49293 12257 274.8 48.49 201.3

EWMA 41217 11347 223.3 40.92 197.2
Factor-HEAVY (1,1) 53993 21772 263.0 62.15 149.8

(2,2) 50542 18477 259.3 60.19 160.6
(3,3) 48442 16832 256.0 60.35 158.6
HAR 46241 14408 255.0 64.94 136.1

Factor-CAW (1,1) 44877 12192 257.5 64.27 221.0
(2,2) 44265 12067 254.5 62.69 212.6
(3,3) 44012 12008 253.3 61.67 207.1
HAR 42949 11845 253.9 60.70 203.1

Table 4.11: Average ten-day-ahead forecasting losses for 01.01.2009−31.12.2011. The loss
functions are defined in Section 5.3.1. The smallest value is shown in bold.
Grey shaded values indicate that the 90% model confidence set includes the
respective model.
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Calm Market: 01.01.2012− 31.12.2014

Model (r,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 2368 640.9 258.4 17.17 68.59
(2,2) 2250 630.9 254.7 17.04 70.50
(3,3) 2107 614.2 250.8 16.84 76.54
HAR 2104 612.0 249.5 16.78 76.46

DPC-CAW0f (1,1) 2235 632.1 253.5 16.94 69.15
(2,2) 2189 625.4 252.8 16.91 69.44
(3,3) 2143 618.6 251.9 16.87 69.91
HAR 2220 623.4 254.6 16.87 69.67

Re-DCC-CAW (1,1) 2528 761.7 250.7 17.98 93.11
(2,2) 2402 722.2 250.5 17.93 90.65
(3,3) 2320 694.5 250.5 17.84 88.76
HAR 2685 687.7 252.1 18.34 79.24

O-CAW (1,1) 2358 692.5 255.8 20.03 97.69
(2,2) 2275 678.4 255.5 20.16 100.57
(3,3) 2142 662.6 257.1 20.14 109.60
HAR 2180 667.5 254.7 20.11 104.91

CCC-CAW (1,1) 2662 761.7 265.7 19.37 87.89
(2,2) 2558 732.8 265.7 19.39 86.99
(3,3) 2438 694.5 265.7 19.38 84.93
HAR 2859 687.7 265.7 19.90 73.43

EWMA 1889 577.1 255.0 16.77 98.88
Factor-HEAVY (1,1) 2299 828.1 263.8 26.35 91.51

(2,2) 2209 769.0 263.3 25.34 94.09
(3,3) 2122 727.8 262.7 25.37 91.42
HAR 2006 654.6 261.0 26.95 81.64

Factor-CAW (1,1) 2818 804.0 292.7 40.13 224.23
(2,2) 2867 807.5 287.9 38.04 201.12
(3,3) 2882 807.9 286.3 37.52 192.07
HAR 2821 800.4 292.4 39.52 216.50

Table 4.12: Average ten-day-ahead forecasting losses for 01.01.2012−31.12.2014. The loss
functions are defined in Section 5.3.1. The smallest value is shown in bold.
Grey shaded values indicate that the 90% model confidence set includes the
respective model.
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