
 

 

 

Aus dem Zentralinstitut für Seelische Gesundheit 
Institut für Neuropsychologie und Klinische Psychologie 

Wissenschaftliche Direktorin: Prof. Dr. Dr. h.c. Dr. h.c. Herta Flor 

Psychobiological mechanisms of endogenous pain modulation by pain 
relief as reward 

Inauguraldissertation 
zur Erlangung des Doctor scientiarum humanarum (Dr. sc. hum.) 

der 
Medizinischen Fakultät Mannheim 
der Ruprecht-Karls-Universität 

zu 
Heidelberg 

vorgelegt von 
Simon Florian Desch 

 
aus 
Mainz 
2023 

 



 

 

 

Dekan: Prof. Dr. med. Sergij Goerdt 
Referentin: Prof. Dr. rer. soc. Susanne Becker 

 



 

 

TABLE OF CONTENTS 

Page 

LIST OF ABBREVIATIONS......................................................................................... 5	

1	 INTRODUCTION ................................................................................................ 7	

1.1	 Acute and chronic pain ............................................................................... 8	

1.2	 Pain and reward ......................................................................................... 9	

1.3	 Neural correlates of pain relief as reward ................................................. 19	

1.4	 Neural correlates of impaired reward processing in chronic pain ............. 20	

1.5	 Summary and aim of the dissertation ....................................................... 21	

2	 STUDY 1 - ENDOGENOUS MODULATION OF PAIN RELIEF: EVIDENCE 

FOR DOPAMINERGIC BUT NOT OPIOIDERGIC INVOLVEMENT ................. 23	

2.1	 Introduction Study 1 ................................................................................. 23	

2.2	 Results Study 1 ........................................................................................ 26	

2.3	 Discussion Study 1 ................................................................................... 37	

2.4	 Materials and Methods Study 1 ................................................................ 42	

2.5	 Supplementary figures Study 1 ................................................................ 57	

3	 STUDY 2 - PAIN RELIEF AS REWARD: ALTERED LEARNING PATTERNS 

AND NEURAL CORRELATES IN CHRONIC PAIN PATIENTS ....................... 61	

3.1	 Introduction Study 2 ................................................................................. 61	

3.2	 Materials and Methods Study 2 ................................................................ 64	

3.3	 Results Study 2 ........................................................................................ 81	

3.4	 Discussion Study 2 ................................................................................... 94	



 

 

4	 GENERAL DISCUSSION ............................................................................... 100	

4.1	 Psychobiological mechanisms of pain modulation by rewarding pain 

relief ....................................................................................................... 102	

4.2	 Reinforcement by pain relief................................................................... 107	

4.3	 Alterations in chronic pain ...................................................................... 109	

4.4	 Implications and perspectives ................................................................ 112	

4.5	 Limitations .............................................................................................. 114	

4.6	 Conclusion ............................................................................................. 117	

5	 SUMMARY ..................................................................................................... 118	

6	 REFERENCES ............................................................................................... 120	

7	 CURRICULUM VITAE .................................................................................... 151	

8	 DANKSAGUNG .............................................................................................. 152	



List of Abbreviations 

  

 
5 

 

LIST OF ABBREVIATIONS 
 

ACC  anterior cingulate cortex 
 pgACC pregenual anterior cingulate cortex 
ANOVA analysis of variance 

BDI-II Beck Depression Inventory II 
BOLD blood oxygen level dependent 

CBP  patients with chronic back pain 
CompCor component-based noise correction 

 aCompCor anatomical component-based noise correction 
 tCompCor temporal component-based noise correction 

CPP  conditioned place preferences 
CSF  cerebrospinal fluid 

DSM-IV Diagnostic and Statistical Manual of Mental Disorders IV 
ELPD expected log pointwise predictive density 

EPI  echo-planar imaging 
FD  framewise displacement 

FM  patients with fibromyalgia 
GM  gray-matter 

HC  healthy controls 
HDI  highest density interval 

MPI  Multidimensional Pain Inventory 
MRI  magnetic resonance imaging 

 fMRI functional magnetic resonance imaging 
NAcc Nucleus Accumbens 

NISS  Need Inventory of Sensation Seeking 
 AR subscale Avoidance of Rest 

 NS subscale Need for Stimulation 
OFC  orbitofrontal cortex 

PAG  periaqueductal grey 
PANAS Positive And Negative Affect Scale 

RL  reinforcement learning 



List of Abbreviations 

  

 
6 

 

RT  response times 

SAM  Self-Assessment Manikin 
SCID Structured Clinical Interview for DSM-IV 

SCL-90-R Symptom Check-List-90-R 
SD  standard deviation 

STAI  State-Trait Anxiety Inventory 
TE  echo time 

TR  repetition time 
VAS  visual analogue scales 

vmPFC ventromedial prefrontal cortex 
VTA  ventral tegmental area 

WM  white-matter 
 



Introduction 

  

 
7 

 

1 INTRODUCTION 

Pain relief is much more than the reduction of pain. Pain is a fundamental and almost 

ubiquitous experience that is a prime example of an aversive event. Just as pain is 

aversive, pain relief is a rewarding and pleasurable experience. Despite its unpleasant 

nature, we need pain – at least acute pain – for survival and well-being, because pain 

creates the urge to escape and avoid harm. Often neglected, this motivation to escape 

pain is crucially promoted by the pleasure of pain relief. There is only a small body of 

research on the psychobiological mechanisms of pain relief that does not account 

adequately for this important function. In particular, the function of pain relief as reward 

and its role in learning by negative reinforcement have only been studied rarely and 

mechanisms are poorly understood yet.  

This dissertation comprises two experimental studies to similar but still clearly distinct 

research questions. For this reason and for the ease of reading, this dissertation starts 

with an overview of the general topic of pain and mechanisms associated with 

endogenous modulation of pain. Comprehensive current theoretical perspectives of 

endogenous pain modulation are described that reflect the present state of the art. 

Based on this overarching theoretical background, the research questions addressed 

in the two studies are described more specifically and the two studies are presented. 

The aim of these two studies was to deepen the understanding of the mechanisms 

underlying pain relief as reward with a focus on neurochemical mechanisms (study 1), 

and neural correlates in terms of brain activations and potential alterations in patients 

suffering from chronic pain compared to healthy individuals (study 2). In addition to the 

specific discussion of the results of each study, finally, a general discussion integrates 

these results into the existing literature and outlines implications and perspectives of 

the findings in an overarching manner. 
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1.1 Acute and chronic pain 

Pain is defined as “an unpleasant sensory and emotional experience associated with 

actual or potential tissue damage, or described in terms of such damage” (International 

Association for the Study of Pain, IASP; Loeser & Treede, 2008). This definition not 

only highlights pain as a sensory and hedonic experience, but it also emphasizes the 

essential functions of acute pain in protecting an organism and encouraging rest in 

injured or damaged states. Thus, pain is highly relevant for survival by constituting an 

alarm system that activates nocifensive reflexes like withdrawal, prepares for 

responding to pain by activating autonomous functions, and guides our behavior based 

on learned predictions (Navratilova, Atcherley, et al., 2015; Seymour, 2019).  

In contrast to acute pain, chronic pain, i.e. pain lasting longer than three months 

(Treede et al., 2019), loses this function as an alarm system. Moreover, chronic pain 

is characterized by disproportionally augmented emotional-motivational perception 

relative to sensory-discriminative aspects (Lethem et al., 1983). As a result, protective 

behaviors become dysfunctional. For example, patients with pain tend to show strongly 

increased and disproportional avoidance behavior. Such exaggerated avoidance 

behavior, although in the acute state it may help to support rest for recovery, can 

worsen pain and may result in anhedonia, aggravating long-term emotional distress 

(Borsook et al., 2016). Moreover, chronic pain patients often show dysfunctional 

attempts to gain relief from pain, resulting in maladaptive coping strategies, for 

example excessive resting or abuse of analgesics. Such maladaptive strategies create 

a vicious circle with facilitation of pain and loss of functioning (such as impaired coping 

with everyday life or muscle deconditioning) in the long term (Flor, Birbaumer, et al., 

1990; Fordyce, 1982).   

Individuals suffering from chronic pain often show comorbid mental disorders (Ohayon 

& Stingl, 2012) and largely reduced quality of life (Joustra et al., 2015). Especially, 

affective and anxiety disorders are common in patients with chronic pain (Castro et al., 

2009). Chronic pain is also associated with increased anhedonia, which is at least 

partially independent of depression (Garland et al., 2020). Such comorbidities highlight 

the close relation between chronic pain and altered emotional as well as motivational 
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states (Bushnell et al., 2013). Not surprising, chronic pain also constitutes a significant 

burden for society by challenging healthcare systems and causing high socioeconomic 

costs (Rask et al., 2017). For example, in Germany chronic pain generates approx. 38 

billion Euro health related costs every year, with only a quarter of these costs being 

caused by direct costs for medical services (German Pain Society [Deutsche 

Schmerzgesellschaft], https://www.dgss.org/patienteninformationen/herausforderung-schmerz/). 

Estimates for the prevalence of chronic pain in the German population range from 3.5-

25 % (Häuser et al., 2013) depending on the exact definition of chronic pain. Despite 

an enormous increase in our knowledge on mechanisms of nociception and pain 

processing in the last years, the pathogenetic mechanisms of chronic pain, in particular 

non-specific or primary chronic pain (World Health Organization, 2019), remain poorly 

understood. Due to this lack of understanding, pain treatment is typically only 

symptom-oriented and lacks efficacy. In fact, effect sizes for therapy of chronic pain 

conditions are small and patients often do not report persistent pain relief (Gatchel et 

al., 2014). 

1.2 Pain and reward 

Pain perception is not static. Instead the perception of pain adapts very dynamically to 

a multitude of factors such as biological, environmental, homeostatic, emotional, and 

motivational influences. This specific feature of the pain system fulfils the purpose of 

pain to function optimally as a warning and alarm system. With that pain not only 

signals potential harm, but adapts the urgency of such alarms to external and internal 

conditions to optimize behavioral outcomes including decision making. One specific 

factor that has a major effect on pain perception is the prospect and the reception of 

reward. As pleasurable stimuli that induce approach behavior, rewards are emotionally 

and motivationally opposite to pain. Maybe because of this, reward can strongly 

modulate how pain is perceived. 

1.2.1 Endogenous modulation of pain perception by rewarding stimuli 

A reward is defined as a stimulus that an individual will work for to achieve it. In 

contrast, a punishment is a stimulus that an individual will try to avoid. Accordingly, 
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receiving the respective stimulus elicits pleasure in the case of a reward, but is aversive 

when a punishment is received. Pain is a prototypic punishing stimulus: it induces a 

strong motivation to avoid it and a negative hedonic feeling when it cannot be avoided. 

Thus, from a motivational perspective pain and reward can be conceptualized as the 

opposite ends of a continuum. Reward and pain both guide behavior in order to 

optimize well-being by balancing homeostatic needs of an organism (Leknes & Tracey, 

2008).  

Specifically, pain has been described as a deviance from homeostatic balance that 

elicits the motivation to restore the bodily equilibrium in a comparable manner to other 

homeostatic drives such as temperature, hunger, or thirst (Craig, 2003). Similarly, 

rewards typically serve the purpose of maintaining or reinstating homeostasis. 

Whether a specific stimulus is experienced as rewarding depends on the current state 

of an individual. For example, being thirsty increases the motivational drive to drink 

and the otherwise neutral taste of water is highly appreciated. Hence, the motivational 

drive and the hedonic value associated with a specific stimulus depend on the current 

needs of the organism. Accordingly, studies have shown, for example, that the 

pleasantness of foods decreases with increasing saturation (Kringelbach et al., 2003; 

Small et al., 2001) and warm temperatures are perceived as more pleasant in cold 

ambient temperatures compared to warm ambient temperatures (Cabanac et al., 1972; 

Mower, 1976). Similarly, even painful stimuli can be perceived as pleasant in case they 

indicate avoidance of relatively greater harm (Leknes et al., 2013).  

The interesting observation that is common to these findings is that perception of a 

specific stimulus is not solely defined by the stimulus characteristics, but depends on 

the needs and the resulting motivation of an individual. Therefore, endogenous 

mechanisms modulate the hedonic experience of a stimulus depending on the current 

state of the organism to convey the subjective utility (Buckland et al., 2015; 

Kurnianingsih & Mullette-Gillman, 2016). This becomes especially evident when 

envisaging situations in which attracting and repelling motivators are present at the 

same time. For example, depending on the current state it might be favorable to endure 

a certain pain to obtain a relatively more important appetitive stimulus (e.g. food) or to 

endure hunger when it appears more important to escape from a painful situation. In 
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such situations, the subjective utility of avoiding or achieving opposing attractors might 

interact and mutually affect each other. Indeed, endogenous modulation of pain 

perception when pleasant stimuli are present at the same time has been shown for a 

number of appetitive stimuli such as palatable food (Foo & Mason, 2009; Zmarzty et 

al., 1997), pleasant odors (Villemure et al., 2003; Villemure & Bushnell, 2009), music 

(Roy et al., 2008; Zhao & Chen, 2009), erotic images (men) (Meagher et al., 2001), 

and sexual behavior (animals) (Forsberg et al., 1987). Rhudy et al. (2005, 2006) 

showed that pleasant emotions induced by pictures decreased perception of pain while 

unpleasant emotions resulted in enhanced pain perception. Endogenous pain 

modulation can also be induced by monetary rewards and losses (Becker, Gandhi, et 

al., 2013; Becker, Gandhi, Pomares, et al., 2017), pointing to a specific role of the 

reward valuation system, as money has no direct effect on the homeostatic state. In a 

choice task with concurrent appetitive and aversive outcomes, Talmi et al. (2009) 

showed that when a monetary reward can only be achieved at the cost of pain, the 

probability to accept the pain is a function of the amount of money that can be obtained, 

implying an interactive (compared to additive) valuation process of the combined 

benefit. While the effect of this valuation process on pain was not assessed in this 

study, Becker, Gandhi, Chen, et al. (2017) showed that endogenous pain inhibition 

induced by monetary wins is stronger, the larger the motivational conflict. That is, 

participants that assigned a higher subjective utility to obtaining money relative to 

avoiding pain, and therefore had a stronger motivational conflict when receiving pain 

and money, showed stronger pain inhibition. These results show that indeed the 

perception of pain can be modulated by the interaction with rewarding stimuli. 

Moreover, the association of subjective utility and pain inhibition suggests that 

endogenous modulation is involved in balancing motivational drives in conflicting 

situations by modulating the pain perception and the associated motivational drive. 

1.2.2 Motivation-decision model of pain 

Endogenous pain modulatory effects in motivational conflicts are more formally 

described in the influential motivation-decision model of pain (Fields, 2006, 2018). 

According to this model, an unconscious process that integrates information about the 
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homeostatic state of the individual, nociceptive and other sensory input, and the 

evaluation of potential rewards and threats, precedes conscious perception of pain. In 

case of conflicting motivations (e.g. avoiding pain or gaining a reward), pain is inhibited 

according to the model if the decision is to respond to the reward, or facilitated, if the 

decision is to respond to the pain. Based on the result of the evaluation process, top-

down modulatory processes control nociceptive upstream from the spinal cord via 

opioidergic ON- and OFF-cells in the periaqueductal grey (PAG), dorsolateral pons, 

and rostral ventromedial medulla (RVM; Fields, 2004, 2007). Such bidirectional control 

of incoming nociceptive signals allows shaping pain perception to support behavior 

that best serves survival and well-being. In other words, anything that in a given 

situation is perceived as more important for survival and well-being than responding to 

pain can induce pain inhibiting effects. In contrast, in situations in which escape or 

avoidance is prioritized, endogenous pain facilitation will occur. For example, response 

to pain is inhibited when a threatening event requires immediate actions that interfere 

with the response to the noxious stimulus (Fanselow, 1986). Pain inhibiting effects of 

rewards have been shown in animals (Dum & Herz, 1984), but also in humans, as 

described above (Becker, Gandhi, et al., 2013; Becker, Gandhi, Pomares, et al., 2017).  

However, for beneficial decisions not only the actual presence of conflicting 

motivations is important. In an extension of the motivation-decision model, Fields 

(2018) emphasized that any cue that predicts a potential reward or threat can have 

similar effects on the modulation of nociceptive transmission. Hence, the expectation 

of a reward is assumed to inhibit pain perception and other pain related responses. 

The most prominent example for the effect of expectations is the pain inhibitory effect 

of placebo treatment. Here, pain inhibition can be conceptualized as a reward that is 

predicted by the placebo (Seymour & Dolan, 2013). Placebo effects have been shown 

to be opioid sensitive and to activate brain areas involved in descending control of 

nociceptive transmission as described by motivation-decision model (Eippert, Bingel, 

et al., 2009; Wager et al., 2007).  

Given that nociceptive input signals actual or potential tissue damage, pain itself and 

any changes of pain intensity can also serve as predictive cues (Fields, 2018). The 

pain of an acute injury often predicts prolonged and sometimes even more intense pain 



Introduction 

Pain and reward 

 
13 

 

before recovery. In contrast, a decrease in nociceptive input predicts reduced threat of 

tissue damage (Fields, 2018). Indeed, it has been shown that relatively small 

reductions in noxious stimulation can lead to a disproportionally strong reduction in 

pain perception (a phenomenon that has been termed “offset analgesia”; Grill & 

Coghill, 2002; Yelle et al., 2008, 2009). Interestingly, the opposite effect, that is, a 

disproportional increase in perceived pain intensity following a small increase in 

noxious stimulation has also been shown (Alter et al., 2020).  

1.2.3 Pain relief as reward 

The above-described findings suggest that endogenous pain modulation may amplify 

changes in pain perception even in absence of a motivational conflict but with the 

anticipation of reward. Nonetheless, it is conceivable that such pain modulation by 

anticipated reward supports the selection of beneficial behavior in line with the 

predictions of the motivation-decision model of pain (i.e. avoidance or escape in the 

case of an increase and relief seeking in case of a reduction of nociceptive input). One 

such anticipated reward in the absence of a motivational conflict might be pain relief 

when being in pain. Although it seems to be trivial that pain relief is an important goal 

when in pain, the way relief acts as a signal for altering subsequent behavior has not 

been investigated often. It has been shown that higher pain intensity induces stronger 

perceived relief (Fust et al., 2020). Further, pain relief is not only characterized by the 

physical reduction in stimulus intensity but is also perceived as pleasant, indicating its 

rewarding properties (Leknes et al., 2008). However, considering the predictive value 

of a decrease in noxious input, the prospect of pain relief when being in pain should 

specifically mediate endogenous pain modulation in case that the reception of pain 

relief is bound to an active decision process. Findings of Becker et al. (2015) 

corroborate this assumption by showing that pain relief that was received after active 

decision making in a motivated state increased the perception of pain relief compared 

to a mere reduction in pain intensity (passive). Similar to placebo effects, the chance 

to achieve relief enhanced the perceptual pain modulation. While one advantage of 

such inhibitory effects may be to increase the salience of the relief to favor related 

actions over alternative motives, increased relief might also promote learning of actions 
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that can lead to pain relief in the future. In this perspective, the informational value of 

pain relief as a learning signal is emphasized (Seymour, 2019) and with that the 

importance of negative reinforcement by pain relief. In humans, it has been shown that 

negative reinforcement by pain relief can induce perceptual sensitization (Becker et 

al., 2008, 2011). Direct evidence for operant conditioning of motivated behavior by pain 

relief comes from studies in animals (Navratilova et al., 2012; Navratilova, Xie, et al., 

2015).  

1.2.4 Neurobiological correlates of pain and reward 

The assumption that common brain circuits integrate motivational aspects of both pain 

and reward is supported by findings showing overlapping neurobiological substrates in 

terms of involved anatomical structures and neurotransmitter systems (Leknes & 

Tracey, 2008). Specifically, the neurotransmitters dopamine and endogenous opioids 

have essential roles for the processing of pain as well as rewards. In addition, several 

brain areas that are involved in the processing of pain have also been implicated in the 

context of rewards. These areas include the amygdala, prefrontal cortex, insula, and 

anterior cingulate cortex (ACC). Although this suggests that these brain systems are 

involved in the interaction of pain and reward, the mechanisms of how this results in 

pain-modulatory effects are still not fully understood (Becker et al., 2012). 

According to the motivation-decision model of pain, the brain circuit, that is thought to 

mediate pain modulatory effects based on the combined evaluation of current needs 

and available rewards and threats, consists of various structures including the 

prefrontal cortex, the hypothalamus, and the amygdala which provide input for the 

brainstem nuclei that exert control on relay neurons in the dorsal horn of the spinal 

cord (Fields, 2007). The decision process that integrates various sources of 

information is thought to be mediated by the dopaminergic mesolimbic pathway, with 

an important role of midbrain dopamine neurons in the ventral tegmental area (VTA) 

that project to the nucleus accumbens (NAcc) in the ventral striatum (Fields, 2006).   
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1.2.4.1 Dopamine and endogenous opioids in pain and reward processing 

Both the neurotransmitters dopamine and endogenous opioids are known to be 

implicated in the processing of pain and reward, but their functions differ. Pain 

inhibitory effects of the activation of opioid receptors are well known (Bagley & Ingram, 

2020). Release of endogenous opioids has been related to a reduction of pain 

sensitivity (Pasternak, 2005; Przewłocki et al., 1999). Further, various studies have 

shown pain modulating effects of endogenous opioids in several types of endogenous 

pain modulation in humans. For example, using positron emission tomography (PET) 

activation of ! -opioid receptors was shown during placebo analgesia and this 

activation was associated with perceived pain reductions due to the placebo 

manipulation (Scott et al., 2008; Wager et al., 2007). Scott et al. (2008) also showed 

that nocebo effects, that is, an increase of perceived pain following a corresponding 

expectation, were associated with a decrease of opioid release. In line with this, 

blocking opioid receptors was found to reduce effects of a placebo treatment (Eippert, 

Bingel, et al., 2009). In addition, endogenous inhibition of the nociceptive flexion reflex 

by concurrent noxious heat stimulation was shown to be reversible using an opioid 

receptor antagonist (Willer et al., 1990). Interestingly, endogenous opioids also seem 

to be involved in the perception of pain relief, which could be shown to be reduced by 

an opioid receptor antagonist (Sirucek et al., 2021). Here, blockade of opioidergic 

transmission using naltrexone not only reduced the perceived relief after the offset of 

a noxious heat stimulation, but also the perceived pleasantness associated with that 

relief.  

This points to a striking similarity to the processing of rewards, where endogenous 

opioids have been associated with the hedonic experience of rewards (“liking”) 

(Berridge et al., 2009; Smith et al., 2011; Tindell et al., 2005). Microinjections of opioid 

agonists in specific “hedonic hotspots” in the NAcc enhanced liking responses to sweet 

taste rewards in rats, an effect that was not observed outside these areas (Peciña & 

Berridge, 2005; Smith & Berridge, 2005, 2007). Furthermore, in both, humans and 

animals, food pleasantness is reduced by opioid antagonists (Fantino et al., 1986; 
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Kelley et al., 1996; Smith & Berridge, 2007; Yeomans & Gray, 1996; Yeomans & 

Wright, 1991).    

In the context of reward processing, dopamine is known for its role in signaling reward 

expectations and related prediction errors (Glimcher, 2011; Schultz, 2016). Midbrain 

dopamine neurons increase their firing rates in response to unexpected rewards 

(positive prediction error). However, once an animal has learned that a specific cue 

predicts a reward to come, dopaminergic neurons increase firing in response to the 

cue, but decrease their firing rate when an expected reward does not occur (negative 

prediction error; Glimcher, 2011). Dopaminergic activity in response to unexpected 

rewards, that shifts to a response to the cue when this reliably predicts a reward, can 

be described by so called temporal difference (TD) models (Sutton & Barto, 1998), a 

class of computational models that describe how reward expectations are acquired 

through reinforcement learning. The fact that activity of dopaminergic neurons closely 

reflects prediction error signals as predicted by these models supports the assumption 

that dopamine plays a crucial role in shaping reward related behavior. 

However, some dopaminergic neurons also increase their activity in response to cues 

predicting both rewarding and aversive stimuli, suggesting that they reflect the 

motivational value of the cues instead of their valence (Matsumoto & Hikosaka, 2009). 

In line with this finding, Hamid et al. (2015) showed that relatively slow (“tonic”) 

changes in dopamine levels in the NAcc were associated with motivational vigor while 

phasic dopamine responses reflected the expected value of rewards. Some authors 

have argued that dopaminergic signaling indicates incentive salience (“wanting”) that 

is the motivational drive to approach or work for a reward (Berridge et al., 2009; Smith 

et al., 2011; Tindell et al., 2005). In line with this view, it has been shown that a lack of 

dopamine impairs motivation to seek reward (Cagniard, Balsam, et al., 2006) while 

increased dopamine enhances efforts to seek reward (Cagniard, Beeler, et al., 2006). 

However, dopaminergic activity related to the predictive value of a cue can be 

dissociated from dopaminergic activity related to motivational value (Mohebi et al., 

2019; Saddoris et al., 2015). Accordingly, dopamine appears to play a crucial role in 

learning as well as in the motivational value of rewards. 
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In pain, dopamine has typically been assumed to have general antinociceptive effects 

(Hagelberg et al., 2003; Jarcho et al., 2012; Potvin et al., 2009). However, the picture 

of dopaminergic effects in pain processing appears to be more complicated (A. M. W. 

Taylor et al., 2016). Using a bidirectional pharmacological manipulation, Becker, Ceko, 

et al. (2013) found that neither increased nor decreased dopamine availability had an 

influence on thermal pain thresholds when compared to a placebo condition. Instead 

of assuming simple antinociceptive effects of dopamine, it is conceivable that 

dopamine instead modulates the motivation to avoid or to endure pain depending on 

the situational context. Supporting this assumption, Becker, Gandhi, et al. (2013) found 

that increasing dopamine availability can also enhance pain faciliatory effects of 

monetary losses on perceived pain with no effects on baseline pain sensitivity without 

monetary losses. Effects of dopamine on pain were only present when pain modulation 

occurred in a motivational conflict, and in that case enhanced perception of the more 

salient stimulus. Dopaminergic effects of motivation and incentive salience in pain fit 

the above described role of dopamine in processing of rewards.  

In summary, dopamine and endogenous opioids appear to be involved in mediating 

motivational and hedonic aspects, respectively, in the interaction of pain and reward. 

Based on the assumption that similar mechanisms mediate pain modulation in 

presence of a motivational conflict but also enhance motivation for pain related 

behavior in absence of a conflict, dopamine and endogenous opioids are also 

candidates for mediating the endogenous modulation of pain that underlies rewarding 

pain relief. 

1.2.4.2 Neural correlates of pain and reward interactions 

Despite a large body of research that shows overlapping brain regions implicated in 

the processing of pain and reward (Leknes & Tracey, 2008), only a few studies have 

investigated neural correlates of an interaction between pain and reward directly. In 

healthy volunteers, Talmi et al. (2009) investigated neural correlates of the integration 

of monetary rewards that were associated with concurrent painful stimulation in a 

choice task. Using functional magnetic resonance imaging (fMRI), they found that 

activation in the ACC and the NAcc, that was positively related to the expected 
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probability of winning money, was attenuated by the expectation of pain. This 

paralleled findings on the behavioral level that indicated attenuated sensitivity to 

rewards (that is, with a high compared to a low probability of a concurrent painful 

stimulation higher monetary rewards were needed for a respective choice). Becker, 

Gandhi, Pomares, et al. (2017) found that the pain modulatory effect of monetary wins 

on pain perception was associated with activation in the orbitofrontal cortex (OFC). 

Interestingly, this activation in the OFC was correlated with activation in other brain 

regions, such as somatosensory cortex, insula, and ACC that are associated with pain 

processing (Apkarian et al., 2005).  

Furthermore, several fMRI studies that investigated the effects of expectations on pain 

perception point to a mediator role of the pregenual anterior cingulate cortex (pgACC) 

in the modulation of perceived pain (Atlas et al., 2010; Leknes et al., 2013). This area 

has also been implicated in mediating placebo induced modulation of pain (Bingel et 

al., 2006; Eippert, Bingel, et al., 2009; Wager et al., 2007; Zubieta et al., 2005). 

Moreover, these studies also showed that placebo related activity is mediated by 

opioidergic neurotransmission and involves activation of descending control pathways 

including PAG and VTA (Eippert, Bingel, et al., 2009; Wager et al., 2007), but also 

activation in the NAcc, a key structure of the mesolimbic reward circuit (Wager et al., 

2007; Zubieta et al., 2005). Activations in brainstem structures involved in descending 

pain control such as the PAG and the VTA have also been found during offset 

analgesia (Derbyshire & Osborn, 2009; Yelle et al., 2009). This finding might suggest 

that pain inhibitory effects during offset analgesia are mediated by the same 

descending pain inhibitory system as other kinds of pain modulation. However, one 

study that directly tested the hypothesis that offset analgesia is mediated by 

endogenous opioids found no effect of an opioid receptor antagonist on the magnitude 

of offset analgesia (Martucci et al., 2012). Evidence for an involvement of the reward 

circuitry comes from a study that used fMRI to compare brain activity during offset 

analgesia between pain patients and healthy controls: Zhang et al. (2018) found 

relatively higher activity in controls not only in areas associated with endogenous pain 

modulation, such as ACC and brainstem, but also in the medial prefrontal cortex and 

the NAcc. 
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While these results support the assumption that integrating competing motivations and 

relief related information is mediated by activations in midbrain reward and decision 

circuits and subsequent descending control of nociceptive input, it is less clear how 

the resultant endogenous pain modulation is involved in shaping behavior to optimally 

respond in a given situation. 

1.3 Neural correlates of pain relief as reward 

In a series of animal studies, it has been demonstrated that relief from ongoing pain 

induces conditioned behavior (T. King et al., 2009; Navratilova et al., 2012; Navratilova, 

Xie, et al., 2015). This was shown using a conditioned place preferences (CPP) 

paradigm in which rodents showed a preference for a chamber associated relief from 

ongoing pain induced by a drug (T. King et al., 2009). Importantly, animals that were 

not in pain did not show the same preference, indicating that this behavior was not 

induced by inherently rewarding effects of the drug, but elicited by rewarding effects of 

the pain relief. Interestingly, CPP induced by pain relief was associated with activation 

of the mesolimbic reward system: CPP in animal models of post-surgical pain and 

migraine was accompanied by activation dopaminergic cells in the ventral tegmental 

area and dopamine release in the NAcc (De Felice et al., 2013; Navratilova et al., 

2012). Moreover, Navratilova, Xie et al. (2015) showed that negative reinforcement by 

pain relief and associated activation of dopaminergic cells in the NAcc depend on 

opioid signaling in the rostral ACC (Navratilova, Xie, et al., 2015), suggesting that both 

dopaminergic and opioidergic neurotransmission are involved in negative 

reinforcement by pain relief. Independent of a role as a reward, studies in humans 

have shown that pain relief is associated with activation in regions commonly found to 

be involved in processing of rewards (Gerber et al., 2014; Leknes et al., 2011). For 

example, increased activation in the NAcc, which is known for its central role in 

reinforcement learning (Schultz, 2016), has been found in response to (passive) pain 

offset (Baliki et al., 2010; Becerra et al., 2013; Becerra & Borsook, 2008). Further, an 

association of reinforcement by pain relief with activation in the ACC (Navratilova, Xie, 

et al., 2015) suggests that the affective component of the pain perception is closely 
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related to the motivational component. The ACC has been related to the perception of 

pain aversiveness (Rainville et al., 1997). 

Specifically, Becker et al. (2015) showed that pain relief obtained in a motivated state 

increased perceives pain relief as compared to a mere (passive) reduction in pain 

intensity, confirming that rewarding pain relief engages endogenous pain inhibition. 

Interestingly, the magnitude of pain inhibition in this study was associated with 

participants’ personality trait of novelty seeking, which has been associated with 

enhanced midbrain dopamine availability (Leyton et al., 2002; Savage et al., 2014; 

Zald et al., 2008). However, the specific neural mechanisms underlying the pain 

inhibitory effect of rewarding pain relief have not been investigated so far. 

1.4 Neural correlates of impaired reward processing in chronic pain 

Changes in how endogenous mechanisms control the translation of nociceptive input 

to perceived pain, and specifically the midbrain dopamine network have been related 

to affective symptoms in patients with chronic pain (Baliki & Apkarian, 2015; Mitsi & 

Zachariou, 2016). Specifically, impaired emotional decision making and altered fear 

related learning have been shown in patients with chronic pain (Apkarian et al., 2004; 

Meulders et al., 2015, 2018), but overall findings on reward processing in chronic pain 

are heterogenous (Kim et al., 2020; Martucci et al., 2018). Activation of the reward 

circuitry in response to passive pain onset and offset have been shown to be altered 

in patients with chronic pain (Baliki et al., 2010; Loggia et al., 2014). Further, functional 

connectivity between the NAcc and the medial prefrontal cortex has been shown to 

predict the transition of subacute to chronic back pain (Baliki et al., 2012). Such 

observations may suggest that pain related activations in the reward circuitry are 

affected in chronic pain, but the relation to changes in pain perception and pain related 

behavior is not clear. In addition, these studies did not investigate reward processing 

directly.  

In general, impaired endogenous pain inhibition has been hypothesized to contribute 

to exaggerated pain perception in chronic pain (B. K. Taylor & Corder, 2014). As 

described above, expectations of pain and pain relief provide a link between the reward 
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and decision system and descending control of pain perception. A reduced magnitude 

of pain inhibition during offset analgesia has been shown in patients with chronic pain 

(Kobinata et al., 2017; S. Zhang, Li, et al., 2018). Specifically, Zhang et al. (2018) 

showed that healthy controls showed higher activation in the NAcc, medial prefrontal 

cortex, ACC, and brainstem during offset analgesia compared to patients with chronic 

pain. This is interesting because this suggests that indeed impaired responses in the 

reward circuitry are related to impaired endogenous pain inhibition. Specifically, in 

chronic pain, obtaining pain relief is much sought after and an attenuation of perceived 

pain relief when obtained might have consequences on relief related motivation and 

behavior. Yet, if impaired endogenous modulation in chronic pain has direct effects on 

relief seeking in chronic pain has not been investigated. 

1.5 Summary and aim of the dissertation 

Based on previous results that showed pain inhibitory effects of pain relief gained in a 

motivated state the aim of the studies presented in this thesis was to investigate 

reinforcement learning induced by pain relief as reward and its effects on perceptual 

modulation. Exploiting that fact that engaging in a gambling task induces a motivated 

state Becker et al. (2015) showed that winning pain relief induces pain inhibition 

resulting in lower perceived pain compared to a control condition in which pain relief 

was not bound to an active decision. Active decisions were operationalized in a wheel 

of fortune game in which participants could choose between two colors and would win 

pain relief if the wheel landed on the color they had chosen. In contrast, in a control 

condition the outcome of the game (pain relief or pain increase) was not bound to an 

active decision. This paradigm allows to assess endogenous modulation caused by 

the perceived controllability that is given by the influence on subsequent outcomes. 

However, in that previous study outcomes of the game choices were equally 

associated with chances to win pain relief. For the studies described in this 

dissertation, the experimental paradigm was extended by implementing a probabilistic 

reward schedule that provided the chance to learn reward contingencies based on pain 

relief and pain increases as outcomes of the wheel of fortune game. This modification 

of the experimental task allowed to test whether pain relief as reward is capable of 



Introduction 

Summary and aim of the dissertation 

 
22 

 

inducing reinforcement learning. In addition, using computational modelling of choice 

behavior in the relief seeking task allowed to specifically investigate how endogenous 

modulation supports reinforcement learning.  

Two studies were implemented that focused on neurochemical underpinnings of the 

interaction of pain and reward (study 1) and brain activation associated with increased 

pain inhibition (study 2). Study 2 further had the aim to investigate a potential 

impairment of reward related pain inhibition in patients with chronic pain. 



Study 1 

Introduction 

 
23 

2 STUDY 1 - ENDOGENOUS MODULATION OF PAIN RELIEF: 
EVIDENCE FOR DOPAMINERGIC BUT NOT OPIOIDERGIC 
INVOLVEMENT1 

2.1 Introduction Study 1 

When we are in pain, our desire for pain relief and the pleasure of pain relief are 

universally appreciated. However, research into the state of pain has gained 

considerably more attention than that of relief. Theoretical perspectives on pain 

typically focus on its aversiveness, reflecting the powerful incentive to avoid harm 

wherever possible. Perceived pain is highly sensitive to the motivational context, with 

modulatory processes appearing to endogenously tune pain perception to help 

optimize the way in which it controls responses and action (Fields, 2018; Seymour, 

2019). However if pain is ongoing, there is an equally potent new incentive to reduce 

or escape from it, in which pain relief arises as a strong positive motivational force and 

a reinforcement signal in its own right (Leknes, Brooks, Wiech, & Tracey, 2008; Becker, 

Gandhi, Kwan, Ahmed, & Schweinhardt, 2015). However, how relief acts as a signal 

for shaping behavior is less studied: in particular, it is not clear the extent to which the 

perception of relief is also sensitive to endogenous modulation; and if so, how such 

modulation is neurally mediated. 

In general, endogenous modulation of pain involves a number of different processes 

mediated by distinct descending signaling pathways (Bannister, 2019). Opioid-based 

mechanisms are important for many of these. Work in rodents has shown that 

endogenous opioid activity in the anterior cingulate cortex is necessary and sufficient 

to induce the rewarding effects of relief from pain (Navratilova, Xie, et al., 2015). In 

humans, the perceived pleasantness and magnitude of pain relief has been shown to 

decrease with administration of the opioid antagonist naltrexone, confirming a role of 

opioids in pain relief perception (Sirucek et al., 2021). Other forms of endogenous 

                                            

1 Desch, S., Schweinhardt, P., Seymour, B., Flor, H., & Becker, S. (in revision). Endogenous modulation 
of pain relief: evidence for dopaminergic but not opioidergic involvement.  
In revision at eLife. 
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modulation, such as the placebo effect, are also opioid-sensitive (Benedetti, 1996; 

Eippert, Bingel, et al., 2009; C. D. King et al., 2013). Alongside this, however, 

dopaminergic-based mechanisms also have a clear role. For instance conditioned 

place preference induced by pain relief is associated with activity in midbrain 

dopaminergic neurons (Navratilova et al., 2012; Navratilova, Xie, et al., 2015; Xie et 

al., 2014). In the case of primary rewards, dopamine is implicated in the active 

motivation to obtain reward (“wanting”), while endogenous opioids mediate the hedonic 

experience of reward (“liking”). (Barbano & Cador, 2006, 2007; Berridge et al., 2009; 

Sherdell et al., 2012; Smith et al., 2011; Tindell et al., 2005). However, the extent to 

which this distinction might hold for pain relief is not clear.  

In theoretical models of pain motivation, endogenous modulation of pain is considered 

an action in its own right, with the pain system making active ‘decisions’ to tune 

incoming pain signals so as to optimize responding in a given situation (the ‘Motivation 

Decision Model of Pain’: Fields, 2006, 2007, 2018). One example of this is in inhibition 

of pain of external rewards, which allows suppression of immediate nocifensive 

responses that could interfere with more important goals. Studies in humans indicate 

that this is dopamine sensitive (Becker, Gandhi, et al., 2013). But whether purely 

endogenous modulation of pain relief is dopamine sensitive is not known, not least 

because relief modulation is not well characterized to begin with. Evidence does exist 

that active pain relief-seeking, when compared to passive relief receipt, is associated 

with enhanced pain relief perception, and this phenomenon is associated with novelty-

seeking traits (Becker et al., 2015). This would fit with information-processing accounts 

of endogenous modulation (Seymour, 2019), which propose that pain is modulated to 

optimize prospective control of behavior. Whether this is sensitive to opioidergic or 

dopaminergic (or both) signaling is not known. 

The aim of the present study was therefore first to better characterize information 

processing aspects of relief motivation, and second to investigate the roles of 

dopaminergic and opioidergic signaling. We expected that pain relief would be 

modulated by the value of information it carries, as hence enhanced by i) active vs 

passive reception and thus controllability, since this reflects potential to exploit relief 

information; ii) unpredictability, since this reflects the extra information carried by 

surprising events, and iii) trait novelty-seeking, since this reflects individual information 
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sensitivity. At the same time, we aimed to identify the potential role of dopamine and 

opioids for each of these factors, in particular to explore whether increased dopamine 

availability would enhance endogenous pain relief under these conditions, and whether 

modulation could be reduced by blocking opioid receptors. Finally, we aimed to identify 

whether modulation of relief was also apparent in the explicit decisions that arise in 

probabilistic learning, to determine whether perception of relief can be dissociated from 

instrumental choice. 

To test these hypotheses, we employed a previously developed wheel of fortune task 

utilizing relief of a tonic capsaicin-sensitive thermal pain stimulus as ‘wins’, and 

allowing to quantify endogenous pain inhibition induced by gaining pain relief in active 

versus passive conditions (Becker et al., 2015). To test the roles of dopamine and 

opioids, healthy volunteers ingested either a single dose of the dopamine precursor 

levodopa (150mg), the opioid antagonist naltrexone (50mg), or placebo in separate 

testing sessions (double-blinded, placebo controlled cross-over design). To allow also 

the assessment of reinforcement learning, a probabilistic reward schedule associated 

with the participants’ choices in the wheel of fortune was implemented. 
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2.2 Results Study 1 

2.2.1 Endogenous modulation of active pain relief seeking under placebo 

To test whether playing the wheel of fortune induced endogenous pain inhibition by 

gaining pain relief during active (controllable) decision making, a test condition in which 

participants ‘won’ relief of a tonic thermal pain stimulus in the game was compared to 

a control condition with passive receipt of the same outcomes (Figure 1). As a further 

comparator the game included an opposite condition in which participants received 

increases of the thermal stimulation as punishment. This loss condition was also 

complemented by a passive condition involving receipt of the same nociceptive input. 

Figure 1: Time line of one trial with active decision making (test trials) of the wheel of fortune game. In each test 
session, one of the two colors (pink and blue) of the wheel was associated with a higher chance to win pain relief 
(counterbalanced across subjects and drug conditions). Pain relief (win) as outcome of the wheel of fortune game 
is depicted in green, pain increase (loss) in red. In passive control trials and neutral trials subjects did not play the 
game but had to press a black button after which the wheel started spinning and landed on a random position with 
no pointer on the wheel. Trials with active decision making were complemented by passive control trials without 
decision making but the same nociceptive input (control trials), resulting in the same number of pain increase and 
pain decrease trials as in the active condition. In neutral trials the temperature did not change during the outcome 
interval of the wheel. In all trial types, participants had to adjust the temperature to the memorized sensation at the 
beginning of the trial as an operationalization of a behavioral assessment of pain sensitization and habituation 
across the course of one trial. Adapted from (Becker et al., 2015). 

2.2.1.1 Ratings of perceived pain 

Replicating previous results, in the placebo (i.e. non-drug) condition participants rated 

the thermal stimulation as less intense after actively winning pain relief compared to 

the passive control condition, as rated on visual analogue scales (VAS) from “no 

sensation” (0) over “just painful” (100) to “most intense pain tolerable” (200). 

Furthermore, participants also rated the stimulation as more intense after actively 

losing compared to the passive control condition (Figure 2 A; interaction ‘outcome × 

trial type’, F(1,1040) = 64.14, p < 0.001; pairwise comparisons: win: test vs. control 
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p < .001; lose: test vs. control, p < 0.001). This shows that perception of both relief and 

pain are enhanced by active (instrumental) controllability, as hypothesized. 

2.2.1.2 Behaviorally assessed pain perception 

In addition to the VAS ratings, participants performed a validated perceptual task 

(Becker et al., 2011; Kleinböhl et al., 1999) allowing to assess perception of the 

underlying tonic pain stimulus, which is specifically sensitive to perceptual sensitization 

and habituation. In this procedure, participants re-adjust the stimulation temperature 

themselves after the outcome of the wheel of fortune to match their perception at the 

beginning of trial. Negative values (i.e. higher re-adjusted temperatures compared to 

the stimulation intensity at the beginning of the trial) indicate habituation across the 

course of one trial of the game, positive values indicate sensitization. In contrast to the 

VAS ratings, behaviorally assessed pain perception did not differ between test and 

control trials after winning as well as after losing in the placebo condition (Figure 2 D; 

interaction ‘outcome × trial type’, F(1, 1040) = 2.53, p = 0.112). 

 

 

Figure 2: Means and 95% confidence intervals of means for VAS pain intensity ratings (A, B, C) and behaviorally 
assessed pain perception (D, E, F; within-trial sensitization in pain perception in °C) for each drug session (placebo: 
n = 28, levodopa: n = 27, naltrexone: n = 28). d indicates Cohen’s d as standardized effect-size of estimated effects. 
** p < 0.01, *** p < 0.001, for post-hoc comparisons of test versus control trials. 



Study 1 

Results 

 
28 

 

2.2.2 Levodopa increases endogenous pain modulation by active relief, naltrexone 

has no influence on the modulation 

We next examined whether endogenous modulation of pain perception within the 

wheel of fortune game was affected by a levodopa and naltrexone.  

2.2.2.1 Manipulation check: successful blinding of drug conditions 

After the intake of levodopa, one participant reported a weak feeling of nausea and 

headaches at the end of the experimental session. In 32 out of 83 experimental 

sessions subjects reported tiredness at the end of the session. However, the frequency 

did not significantly differ between drugs (#$(2) = 2.17, p = 0.337). No other side effects 

were reported. To ensure that participants were kept blinded throughout the testing, 

they were asked to report at the end of each testing session whether they thought they 

received levodopa, naltrexone, placebo, or did not know. In 43 out of 83 sessions that 

were included in the analysis (52%), participants reported that they did not know which 

drug they received. In 12 out of 28 sessions (43%), participants were correct in 

assuming that they had ingested the placebo, in 6 out of 27 sessions (22%) levodopa, 

and in 2 out of 28 sessions (7%) naltrexone. The amount of correct assumptions 

differed between drug (#$(2) = 7.70, p = 0.021). However, post-hoc tests revealed that 

neither in the levodopa nor in the naltrexone condition participants guessed the correct 

pharmacological manipulation above chance level (p’s > 0.997), indicating that blinding 

was successful. 

2.2.2.2 Ratings of perceived pain 

As in the placebo condition, participants rated the thermal stimulation as less intense 

after active relief winning in the wheel of fortune task, and as more intense after 

receiving phasic pain increases (‘losing’) compared to the respective passive control 

condition under levodopa as well as naltrexone (Figure 2 B & Figure 2 C).  

Moreover, the effect of active relief or increases on pain modulation was differentially 

modulated by the drugs (interaction ‘drug × outcome’, F(2, 1587.30) = 4.52, p = 0.011). 
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Specifically, the effect of active relief on perception was larger in the levodopa 

condition compared to the placebo condition (post-hoc comparison p = 0.007; Figure 

3 A). No such difference was found for the naltrexone condition (p = 0.252). 

Endogenous modulation did not significantly differ between the levodopa and the 

naltrexone condition (p = 0.368). Endogenous pain facilitation induced by actively 

receiving pain increases assessed with VAS ratings did not significantly differ between 

any drug conditions (all post-hoc comparisons p’s > 0.591). 

 

 

Figure 3: Effects of drug manipulation on endogenous pain modulation assessed by VAS ratings of pain intensity 
(A) and behaviorally assessed pain perception (B) after winning and losing in the wheel of fortune game, 
respectively (placebo: n = 28, levodopa: n = 27, naltrexone: n = 28). Error bars show 95% confidence interval of 
the mean. d indicates Cohen’s d as standardized effect-size of estimated effects. While the temporal order of 
sessions did affect pain modulation (supplementary figure 1: Figure 9), measures of pain sensitivity, that were not 
experimentally manipulated (supplementary figure 2: Figure 10), and measures of mood (supplementary figure 3: 
Figure 11) did not significantly differ between drug conditions. 

 

Table 1: Means (M) and standard deviation (SD) of means for pain modulation in VAS ratings of perceived intensity 
and the behaviorally assessed pain perception (negative values indicate pain inhibition; positive values indicate 
pain facilitation). 

 pain modulation in VAS ratings of pain intensity pain modulation in behavioral measure (°C) 

 placebo  levodopa naltrexone placebo  levodopa naltrexone 
 n = 28 n = 27 n = 28 n = 28 n = 27 n = 28 

outcome M SD M SD M SD M SD M SD M SD 

win -7.31 21.51 -12.98 23.54 -10.09 23.79 -0.09 0.64 -0.14 0.66 -0.05 0.74 

lose 12.21 21.12 13.29 20.48 12.26 22.27 0.03 0.59 0.03 0.54 0.06 0.68 

 

Endogenous pain inhibition under placebo and levodopa showed a high positive 

correlation (r = 0.591, p = 0.001). This correlation suggests that levodopa linearly 
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increased endogenous pain-inhibitory effects of actively winning relief in the game 

dependent on endogenous pain inhibition mechanism in the placebo condition. In 

summary, the levodopa results show that the enhanced of relief perception during 

active controllability is dopamine-sensitive. 

2.2.2.3 Behaviorally assessed pain perception 

In contrast to the placebo condition, participants showed less behaviorally assessed 

sensitization in active compared to passive trials when obtaining pain relief under 

levodopa (Figure 2 E) consistent with an extension of pain-inhibitory effects of winning 

pain relief through to the underlying tonic pain stimulus. Under naltrexone, test and 

control trials did not significantly differ in the behaviorally assessed pain perception 

(Figure 2  F) as for the placebo condition. Across drugs, behaviorally assessed pain 

modulation did not significantly differ between placebo, levodopa, and naltrexone 

(interaction ‘drug × outcome’: F(2, 1592.73) = 1. 87, p = 0.154; Figure 3 B). 

2.2.3 Levodopa and naltrexone influence relief reinforcement learning in the wheel of 

fortune task 

To investigate whether pain relief gained in active relief seeking was associated with 

an impact on choice related to reinforcement learning, one of the 2 choices in the wheel 

of fortune was associated with a fixed 75% chance of winning pain relief 

(%ℎ'(%)*+,*	./01)	while the other choice only had a 25% chance to win pain relief 

(%ℎ'(%)304	./01). Participants were not informed of these probabilities in advance. We 

tested if the proportion of choices of the more rewarding option was higher in the last 

two out of five blocks of four test trials each of the game, when the subjects already 

had the chance to explore and learn the different outcome probabilities.  

Participants selected the color of the wheel of fortune associated with a higher 

likelihood for winning relief in 64% (SD = 28%) of in the placebo condition, consistent 

with a reinforcement learning effect. Thus, participants chose the color associated with 

the higher likelihood for winning above chance (#2(1) = 6.64, p = 0.010) on a group 

level, indicating successful learning. 
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However, participants’ performance significantly differed between the placebo and the 

drug conditions (main effect of ‘drug’: #$(2) = 11.89, p = 0.003). In contrast to the 

placebo condition (post-hoc comparison p < 0.001), under levodopa and under 

naltrexone participants’ choices did not significantly differ from chance (post-hoc 

comparisons p’s > 0.759). Correspondingly, post-hoc comparisons show that choice 

behavior significantly differed in the placebo compared to the levodopa condition 

(p = 0.015) and compared to the naltrexone condition (post-hoc comparison p = 0.004), 

while choices did not significantly differ between levodopa and naltrexone (post-hoc 

comparison p = 0.915; Figure 4). This shows that both, dopamine and opioids, may 

have an influence on relief-related learning and choice. 

 

Figure 4: Proportion of choices of the color associated with a higher chance of winning pain relief (placebo: n = 28, 
levodopa: n = 27, naltrexone: n = 28). OR indicates odds ratios as effect size of estimated effects between drugs. 
*p<0.05, ** p<0.01. 

In an additional exit interview at the end of each session, participants were asked 

whether they believed that one color of the wheel was associated with a higher chance 

of winning pain relief. The proportion of participants who reported this color correctly 

was not above chance (binomial test: p’s > 0.5; placebo: 50%, levodopa: 37%, 

naltrexone: 39.3%). Nevertheless, participants’ belief whether one color of the wheel 

of fortune task was associated with a higher chance of winning or not significantly 

influenced their choices (p < 0.001) and this influence on choices, and thus on learning, 

depended on the drug condition (interaction ‘drug × belief’: F(2) = 6.91, p = 0.032). 

Group effects of successful learning, i.e. selecting the color with a higher chance of 

winning, were driven by participants who were able to report this association 

(7(%ℎ'(%)*+,*	./01|%'99)%:	;)<()=) = 0.737,  

 7>%ℎ'(%)*+,*	./01?=@<A)	'9	B'	;)<()=) = 0.545; post-hoc comparison: p = 0.007) 
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under placebo and naltrexone (p’s < 0.001) but not under levodopa (p = 0.922). This 

suggests that successful decision making was at least partly dependent on explicit 

contingency awareness. 

2.2.4 Unpredictability and endogenous pain modulation 

We next tested whether outcome unpredictability was associated with endogenous 

pain modulation, and whether this prediction differed between drugs. Prediction errors 

describe the difference between an expected and a received outcome for positive (here 

pain relief) as well as negative outcomes (here phasic pain increases) (Glimcher, 2011; 

Schultz, 2016), and thus capture a measure of unpredictability or surprise, that 

determines how much learned values need to be updated. To obtain estimates for such 

prediction errors, we fit different reward learning models, with a drift diffusion process 

as the choice rule to participants’ choice and reaction time data. The best predictive 

accuracy was found for model 4 that used an individually scaled outcome sensitivity, 

and a sigmoid function to map expected values for the two choices to the drift rate of 

the diffusion process (Table 2; see Methods and Materials, section Estimation of 

prediction errors and their role in endogenous pain modulation for details on 

parametrization of reward learning models). 

Table 2: Model comparison. Models are ordered by their expected log pointwise predictive density (ELPD). ELPDdiff: 
difference to the ELPD of winning model 4. se(ELPDdiff): standard error of the difference in ELPD. 

Model ELPD ELPDdiff se(ELPDdiff) 

Model 4 -837.71 0 0 

Model 3 -845.44 -7.73 1.51 
Model 2 -997.33 -159.62 15.77 

Model 1 -998.33 -160.62 15.95 
 

Posterior predictive simulations from the best-fitting model appropriately describe the 

observed choices (Figure 5). However, none of the model parameters could 

exclusively explain the differences between levodopa and naltrexone compared to 

placebo: the 95% highest density intervals (HDI) for the difference between all group 

level parameters of the drug effect enclosed zero (see Figure 12 on page 60). Among 

the parameters affecting value updating (positive (CD) and negative (CE) learning rate 

and outcome sensitivity (F)) only CE showed marginally higher central tendency for 
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naltrexone compared to placebo, indicating a higher learning rate for punishments, but 

the 95% HDI still enclosed zero. The parameters affecting the mapping of expected 

values to the drift rate (G, GHIJ) as well the other parameters affecting the drift diffusion 

decision process (non-decision time K, boundary separation L, and a-priori bias M) 

were comparable in the placebo, levodopa, and naltrexone conditions. 

 

 

Figure 5: Posterior distribution of the proportion of choices in favor of %ℎ'(%)*+,*	./01 (placebo: n = 28, levodopa: n 
= 27, naltrexone: n = 28). Colored areas show 95% highest density interval (HDI95). Dashed lines indicate observed 
proportion of choices in favor of %ℎ'(%)*+,*	./01 . Placebo: 7>%ℎ'(%)*+,*	./01N  = 0.641, HDI95 = [0.614,0.655], 
posterior p-value (pp) = 0.320); levodopa: 7>%ℎ'(%)*+,*	./01N = 0.507, HDI95 = [0.491,0.530], pp = 0.679; naltrexone: 
7>%ℎ'(%)*+,*	./01N = 0.467, HDI95 = [0.443,0.494], pp = 0.611. Figure 12 on page 60 shows comparison of drug 
conditions for each parameter of winning model 4. 

Prediction errors estimated by using subject level parameters of the model showed a 

significant main effect for the prediction of endogenous pain modulation indicated by 

VAS ratings (F(1, 1600.3) = 452.9, p < 0.001). A negative estimate of the prediction 

error (MOP  = -0.36) indicates that outcomes that are better than expected (positive 

prediction errors, which occur when receiving relief) were related to increased relief 

perception (pain inhibition). Conversely outcomes that are worse than expected 

(negative prediction errors, occurring with pain increases) were associated with 

increased pain facilitation (Figure 6). In other words, the more unexpected the relief, 
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the greater the perception of that relief; and the more unexpected the pain increase, 

the greater the perception of that pain. 

The effect of prediction errors on pain modulation showed a significant interaction with 

the drug condition (F(2, 1599.5) = 7.529, p < 0.001). Post-hoc analysis confirmed that 

the negative linear relationship significantly differed from zero for all conditions 

(p’s < 0.001), but this relationship was significantly stronger for levodopa compared to 

placebo (p < 0.001) with no significant differences for naltrexone compared to placebo 

(p = 0.083). Overall, this shows that relief is enhanced to unpredictability, and this effect 

is sensitive to dopamine. 

Estimated prediction errors also showed a significant main effect for the prediction of 

behaviorally assessed pain modulation (F(1, 1602.1) = 9.00, p = 0.003), with a negative 

estimate (MOP = -0.06) suggesting that sensitization decreased with smaller prediction 

errors. No significant interaction with of prediction error with drug conditions was found 

for behaviorally assessed pain perception (interaction ‘PE × drug’: F(2, 1600.1) = 0.96, 

p = 0.384).  

 

 

Figure 6: Pain modulation in VAS ratings predicted by prediction error for each condition (placebo: n = 28, levodopa: 
n = 27, naltrexone: n = 28). Regression lines indicate prediction from the mixed effects model with predictors ‘PE’, 
‘drug’, and their interaction. 
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2.2.5 Novelty seeking is linearly associated with increased endogenous pain 

modulation by pain relief under levodopa 

Previous data suggest that endogenous pain inhibition induced by actively winning 

pain relief is associated with a novelty seeking personality trait: greater individual 

novelty seeking is associated with greater relief perception (pain inhibition) induced by 

winning pain relief (Becker et al., 2015). Replicating these results, we found here that 

endogenous pain modulation, assessed using self-reported pain intensity, induced by 

winning was correlated with participants’ scores on novelty seeking in the NISS 

questionnaire (Need Inventory of Sensation Seeking; Roth & Hammelstein, 2012; 

subscale ‘need for stimulation’ (NS); r = -0.412, p = 0.036). A similar association 

between novelty seeking and endogenous pain modulation was found in the levodopa 

condition (r = -0.551, p = 0.004). More importantly, the higher a participants’ novelty 

seeking score in the NISS questionnaire, the greater the levodopa-related endogenous 

pain modulation when winning compared to placebo (NISS NS: r = -0.483, p = 0.017, 

Figure 7). Pain modulation after losing was not associated with novelty seeking in 

placebo (r = 0.083, p = 0.687) and levodopa (r = -0.164, p = 0.433).  

 

 

Figure 7: Correlation of changes in endogenous pain modulation induced by winning pain relief under levodopa 
compared to placebo with individuals’ scores on the ‘need for stimulation’ subscale of the NISS questionnaire, n = 
24. 

No significant correlations with NISS novelty seeking score were found for behaviorally 

assessed pain modulation in the placebo and levodopa conditions during pain relief or 
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pain increase (|r|’s < 0.24, p’s > 0.266). Similarly, the difference in pain modulation 

during pain relief or pain increase between the levodopa and the placebo condition did 

also not correlate with novelty seeking (|r|’s < 0.22, p’s > 0.295). 
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2.3 Discussion Study 1 

The results show that i) the perception of relief is sensitive to endogenous modulation 

during motivated behavior, ii) this modulation scales with the informational content of 

the relief, being enhanced when relief is actively controllable, more unexpected, and 

especially in high trait novelty seeking individuals, iii) this information-specific 

modulation is sensitive to manipulation of dopamine signaling, with no evidence of a 

role of opioidergic signaling; iv) however both dopaminergic and opioidergic signaling 

have an influence on relief-seeking, which may be at least in part dissociable from 

relief perception. Overall, this shows that dopaminergic signaling is involved in a 

fundamental component of the endogenous modulation of pain relief.  

Theories of the endogenous modulation of pain propose that one of the reasons that 

pain is modulated is to optimize motivational behavior, in terms of responding, learning, 

and decision making (Fields, 2018; Seymour, 2019). That is, pain is increased in 

situations in which it has a more important role in shaping behavior – for instance when 

it directs a change in behavior (instrumentally controllable), when it is partly 

unpredictable (i.e. contains new information), and 

in otherwise dangerous contexts. This theory centralizes the functional role of pain as 

a signal for behavioral control i.e. concerned with the prospective control of behavior. 

In principle, this can be extended as a potential account for the modulation of relief, 

because the offset of pain is also important as a control signal for guiding behavior, 

one which occurs in the context of an ongoing noxious event, such as an injury of some 

sort. We have previously found preliminary evidence of this, by showing that relief 

perception is enhanced by active controllability (Becker et al., 2015). Here we intended 

to test this more precisely, by looking at the role of controllability as well as 

unpredictability, and also compare to the modulation of phasic increases in tonic pain. 

We also set an additional prediction, in that we expected to find that modulation by 

information content would be greater in novelty-seeking individuals (Becker et al., 

2015). This is because novelty seeking describes an explicit information-seeking 

tendency, in which new information is explored with the potential to lead to knowledge 

of better outcomes that can be exploited in the future (Wittmann et al., 2008). This 
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illustrates the common basis for intrinsic motivation for novelty and information-seeking 

for exploitable benefit, and hence we can predict that high trait novelty seekers might 

be more sensitive to information that occurs through relief outcomes. 

Overall, all three predictions were borne out by the data: relief perception as measured 

by VAS ratings was enhanced by controllability, unpredictability and novelty-seeking 

tendency, consistent with the hypothesis that relief is sensitive to the exploitable 

information it carries. This provides the first clear formal framework for understanding 

a key component of relief perception. The principles for controllability and 

unpredictability also extended to increases in pain, consistent with the notion that 

increases in tonic pain act in a similar way to phasic pain operating from a pain-free 

baseline.  

Both dopamine and opioids are implicated in relief processing, although their precise 

roles remain unclear. We found endogenous relief modulation here was modulated by 

enhanced dopamine availability induced by the intake of levodopa. Importantly, all 

three core aspects of informational-sensitivity were modulated by levodopa: active 

controllability, unpredictability, and association with novelty seeking. In contrast to our 

hypothesis, pharmacologically blocking opioid receptors using naltrexone did not 

modulate endogenous pain inhibition in the context of the task. The doses and 

methods used here are comparable to those used in other contexts which have 

identified opioidergic effects (Chelnokova et al., 2014; Eikemo et al., 2017; C. D. King 

et al., 2013; Sirucek et al., 2021), suggesting that opioidergic effects on relief 

information are at least not substantial. 

These findings also illustrate potential parallels with the previous observation of 

endogenous pain inhibition by extrinsic monetary reward co-occurring with 

experimental pain (Becker, Gandhi, et al., 2013). In this context, monetary reward 

represents an independent and potentially competing incentive, and when this co-

occurs with pain, it means that optimal responding may require suppression of pain 

responses, especially innate responses that could interfere with reward acquisition. In 

both cases, the common principle may be the active ‘decision’ by the pain system to 

tune incoming pain signals to optimize behavior. Note that the personality trait of 

novelty seeking has also been associated with enhanced dopaminergic activity due to 
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lower midbrain (auto)receptor availability (Leyton et al., 2002; Savage et al., 2014; Zald 

et al., 2008), which further supports a general role for dopamine in information-

sensitive behavior (Kakade & Dayan, 2002; Vellani et al., 2020). 

The role of dopamine in pain relief in the context of reinforcement is supported by 

findings of increased dopamine release induced by pain relief in the Nucleus 

accumbens of rats (Navratilova et al., 2012; Xie et al., 2014). Dopamine release was 

related to the development of conditioned place preference that could be blocked by 

dopamine antagonists (Navratilova et al., 2012). Further, Navratilova, Xie, et al. (2015) 

showed that dopamine release in the Nucleus accumbens and conditioned place 

preference in response to pain relief depend on opioidergic signaling: both were 

blocked by opioid antagonism in the anterior cingulate cortex, an area encoding pain 

aversiveness. In humans, Sirucek et al. (2021) showed that perception of passively 

received pain relief is at least partly mediated by opioidergic neurotransmission. 

However, in that task, received pain relief did not carry behaviorally relevant 

information. Increased opioid activity in the anterior cingulate cortex has been shown 

to be associated with selectively decreased pain aversiveness with unaltered sensory 

pain components (Gomtsian et al., 2019; Maruyama et al., 2018; Navratilova, Xie, et 

al., 2015). In contrast, the present study aimed at quantifying the effect of controllability 

on the relief perception, with these methods possibly not capturing the effects of opioid 

blockade on positive affective quality components of the relief experience. Overall, the 

finding that the modulation of pain relief was not modulated by naltrexone may suggest 

the possibility that a genuinely opioid-independent mechanism causes this type of pain 

inhibition.  

One key difference in the current version of the wheel of fortune task, compared to the 

previous version described in (Becker et al., 2015), is that participants’ choices had a 

non-random association with outcomes i.e. this was a true instrumental (operant) 

contingency between actions and outcomes. This allowed us to assess a basic 

measure of learning – whether subjects are able to learn to select more frequently the 

option with the better (75% chance of relief) over worse (25% chance of relief) 

outcome. That both levodopa and naltrexone conditions were associated with a 

reduction of the frequency of choosing the better option, indicates that signals 

mediated by both neurotransmitters may be involved in choice. However, the data 
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argue against a simple transposition of experienced relief (measured by VAS) into 

decision value, which for a stationary task such as this, should lead to more 

deterministic actions in the levodopa condition but no effect under naltrexone 

compared to placebo. The association of explicit contingency awareness and choice 

in our task illustrates the fact that multiple decision systems (‘model-based’ and ‘model-

free’) might be involved in even simple instrumental tasks, and hence that more 

sophisticated task manipulations are needed to decompose these different 

components (Langdon et al., 2018). However, our key finding is that there is at least a 

simple dissociation between the drug effects on experienced relief and decision 

making. 

Such dissociation may be due to differential involvement of dopamine and endogenous 

opioids in different yet interacting aspects of reward and punishment processing. 

Dopamine has been related to instrumental learning due to its prominent role in 

mediating reward and aversive prediction errors (Glimcher, 2011; Matsumoto & 

Hikosaka, 2009; Schultz, 2007, 2016). Correspondingly, effects of dopaminergic 

modulation on value-based decision making and brain activity related to reward 

prediction errors in the Nucleus accumbens have been reported (Pessiglione et al., 

2006). On the other hand, impaired learning functions under dopaminergic medication 

are known from research in Parkinson’s disease (Breitenstein et al., 2006; Pizzagalli 

et al., 2008; Santesso et al., 2009; Vo et al., 2016) and have been attributed to 

dopamine overstimulation (Cools et al., 2001; Vaillancourt et al., 2013). Others argued 

that dopamine overstimulation does not impair learning of associations or reward 

expectations, but only the transfer to overt actions (choice behavior) (Beeler, 2012; 

Beeler et al., 2010). Accordingly, Kroemer et al. (2019) found reduced model-free 

control of choice behavior under levodopa (i.e. a decrease in direct reinforcement of 

actions by rewards) while both, neural reward prediction error signals and also model-

based learning remained unaffected. Given the involvement of multiple decision 

systems in our task a potential overstimulation with dopamine could have led here to 

choices not being guided by values learned from reinforcement. At the same time, 

dopamine has also been implicated in motivational aspects (incentive salience) of 

reward processing (Berridge et al., 2009; Smith et al., 2011; Tindell et al., 2005). 

Hence, dopamine may have increased motivational drive and related facilitation of pain 
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modulation in the present task, while at the same time increased dopamine availability 

may have interfered with reinforcement learning. Opioids have been related to both, 

incentive salience and the hedonic value of rewards (Berridge et al., 2009; Meier et al., 

2021). In humans, bidirectional manipulations have shown that opioid agonism 

increases while opioid antagonism decreases “wanting” (i.e. incentive salience) as well 

as “liking” of attractive faces (Chelnokova et al., 2014). The same mechanism was also 

shown for the effort to work for and the response bias for higher monetary rewards 

indicating that opioid manipulations affect motivation but also choice behavior (Eikemo 

et al., 2017). Such effects could explain here why the participants in this study did not 

develop a preference for choosing more frequently the option associated with a higher 

chance to win pain relief under naltrexone. 

The data may have clinical implications. Reward learning has recently been shown to 

play a role in the transition of acute to chronic pain with a specific pattern of Nucleus 

accumbens activity in response to a cue predicting pain relief being predictive for 

chronification (Löffler et al., 2022). This makes pain relief processing a potential 

leverage point for prevention strategies. Although levodopa or dopamine agonists are 

not generally used as analgesics in the clinical management of chronic pain, it may be 

that they could have a potential adjuvant role in management programs, for example 

when used in the context of rehabilitation strategies that aim to harness endogenous 

control mechanisms. It is also worth noting that Parkinson’s disease has a well-

recognized association with chronic pain, beyond that which can be explained by motor 

effects, and in keeping with a potential core role for dopamine in the pathogenesis of 

chronic pain in some contexts (Beiske et al., 2009). 

In summary, our study shows that dopamine has a core role in pain relief information 

processing, by which it modulates the way in which information tunes the modulation 

of pain to meet motivational demands. 
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2.4 Materials and Methods Study 1 

2.4.1 Participants  

Thirty healthy volunteers (16 female, 14 male; age: mean = 27.1 years; SD = 7.9 

years) participated in this study. Exclusion criteria were present pain or pain conditions 

in the last 12 months, mental disorders, excessive gambling, substance abuse 

behaviors, alcohol consumption of 100 ml or more of alcohol per week, regular night 

shifts, or sleep disorders. Based on previous studies a medium effect size was 

expected (Becker et al., 2015). The a priori sample size calculation for an 80% chance 

to detect such an effect at a significance level of L=0.05 yielded a sample size of 28 

participants (estimation performed using GPower version 3.1; (Faul et al., 2007) for a 

repeated-measures analysis of variance (ANOVA) with within-subject factors). The 

study was approved by the Ethics Committee of the Medical Faculty Mannheim, 

Heidelberg University, and written informed consent was obtained from all participants 

prior to participation according to the revised Declaration of Helsinki (World Medical 

Association, 2013). 

2.4.2 Testing sessions 

Each participant performed three testing sessions on separate days. Each session 

comprised a pharmacological intervention and a wheel of fortune game to assess 

modulation of reward-induced endogenous pain modulation by the interventions. 

Participants received in one session levodopa to transiently increase the availability of 

dopamine, in one session the opioid receptor antagonist naltrexone to block opioid 

receptors, and in one session a placebo for control. To ensure complete washout of 

the drugs, the testing sessions were separated by at least 2 days (plasma half-life for 

levodopa: 1.4 hrs (Nyholm et al., 2012); plasma half-life for naltrexone: 8 hrs (Wall et 

al., 1981)). After obtaining written consent in the first testing session, participants were 

familiarized with the thermal stimuli, the rating scale, and the wheel of fortune game to 

decrease unspecific effects of novelty and saliency. In each testing session the thermal 

pain threshold and pain tolerance were assessed prior to playing the wheel of fortune 

game to determine the stimulation intensities in the wheel of fortune game. 
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2.4.3 Thermal stimulation 

All heat stimuli were applied using a 25 x 50 mm contact thermode (SENSELab—MSA 

Thermotest, SOMEDIC Sales AB, Sweden). The baseline temperature was set to 

30°C. Rise and fall rates of the temperature were set to 5°C/s. All thermal stimuli were 

applied to the inner forearm of participants’ non-dominant hand after sensitization of 

the skin using 0.075% topical capsaicin cream to allow for potent pain relief as reward 

and pain increase as punishment without the risk of skin damage (Becker et al., 2015; 

Gandhi et al., 2013). By activating temperature-dependent TRPV1 (vanilloid transient 

receptor potential 1) ion channels capsaicin as the active ingredient of chili pepper 

induces heat sensitization (Holzer, 1991). To ensure that the entire area of thermal 

stimulation during the wheel of fortune game was sensitized the cream was applied to 

an area on the forearm exceeding the area of stimulation by about 1 cm on each side. 

After 20 min, the capsaicin cream was removed (Dirks et al., 2003; Gandhi et al., 2013) 

and the thermode was applied. If participants reported the baseline temperature of the 

thermode (30°C) as painful because of the preceding sensitization this temperature 

was lowered until it was perceived as non-painful, which was needed in 8 out of 83 

sessions (3 placebo sessions, 1 levodopa session, and 4 naltrexone sessions) that 

were finally entered into the analysis (see below). The temperature was decreased to 

28°C (1 placebo session, 4 naltrexone sessions) or 26°C (1 placebo session, 1 

levodopa session). The need to lower the baseline temperature was not significantly 

different between drug conditions (Fisher’s exact test, p = 0.52). 

2.4.4 Determination of stimulation intensities 

Participants’ heat pain threshold and heat pain tolerance were assessed using the 

method of limits three times prior to the wheel of fortune game. The temperature of the 

thermode increased from baseline with 1°C/s. Participants were instructed to press the 

left button of a three-button computer mouse when the pain threshold was reached. 

The respective temperature was recorded while the temperature further increased. 

Participants were instructed to press the button again when the pain tolerance 

threshold was reached. The respective temperature was recorded and the temperature 

immediately returned to baseline. The arithmetic mean of the temperatures 

corresponding to the recorded pain threshold and tolerance in the three trials was used 
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as an estimate of the individual heat pain threshold and heat pain tolerance, 

respectively. 

After this threshold and tolerance assessment, an adjustment procedure resembling a 

staircase method was implemented to determine the stimulation intensities in the 

wheel of fortune game. Participants received heat stimuli of 20s duration and 

continuously rated the perceived intensity of these stimuli on a computerized visual 

analogue scale (VAS) ranging from “no sensation” (0) over “just painful” (100) to “most 

intense pain tolerable” (200) (Becker et al., 2013; Villemure et al., 2003) while the 

stimuli where presented. The temperature of the first trial was set to the mean of the 

previously determined pain threshold and tolerance. If the rating at the end of the 

stimulation was outside a range of 150±10 on the VAS, the temperature for the next 

trial was adjusted according to the difference to a target rating of 150. This adjustment 

was determined by multiplying the difference (150 – current rating) by 0.02 and adding 

the result in °C to the previous temperature. Further, temperature increases between 

trials were limited to a maximum of 0.5°C to avoid overshooting of ratings. The 

procedure was repeated until a rating between 140 and 160 on the VAS was achieved, 

aiming at a temperature perceived as moderately painful. The corresponding 

temperature was used as the stimulation intensity in the wheel of fortune game. 

2.4.5 Wheel of fortune game 

A wheel of fortune game, adapted from a previously established version (Becker et al., 

2015), was used to provide participants with the possibility of winning pain relief. The 

game comprised three types of trials: test trials, in which participants played the wheel 

of fortune game and received pain relief or pain increases according to the outcome of 

the game; control trials, in which participants did not play the game, but received pain 

relief or pain increases as in the test trials; and neutral trials, in which participant did 

not play the game and no pain relief or pain increases were implemented. A trial always 

started with an increase of the temperature to the previously determined tonic pain 

stimulation intensity. When the stimulation intensity was reached, participants were 

instructed to memorize the temperature perceived at this moment (Figure 1). After this 

memorization interval, participants were presented with a wheel of fortune display that 

was divided into three sections of equal size but different color.  
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In the test trials, participants were asked to select one of two colors (pink or blue) of 

the wheel by pressing a corresponding button (left or right) on the mouse. This started 

the wheel spinning (4.3 s) until it stopped on either the blue or pink section. When the 

wheel came to a stop and the pointer of the wheel indicated the color the participant 

had chosen, the stimulation temperature decreased with the aim to induce pain relief 

(win condition). If the pointer indicated the color the participant had not chosen, the 

temperature was increased (lose condition). In the control trials, participants had to 

press a black button unrelated to the sections of the wheel of fortune using the middle 

mouse button, after which the wheel started spinning as in the test trials. In contrast to 

the test trials, no pointer was displayed in the control trials and the wheel stopped at a 

random position. After the wheel came to a stop, the stimulation temperature 

decreased or increased, resembling the course of stimulation in the test trials, but 

without winning or losing. By this procedure, nociceptive input in test and control trials 

was kept the same, allowing to test specifically for endogenous pain modulation 

induced by winning and losing in the wheel of fortune game. 

In neutral trials, participants had to press a black button, as in the control trials, after 

which the wheel also started spinning. In these neutral trials, the pointer of the wheel 

always landed the third color of the wheel (white), which could not be selected in test 

trials, and the stimulation temperature did not change. Neutral trials were used to 

estimate changes in pain perception occurring over the course of the experiment due 

to habituation or sensitization independent of the outcomes of the wheel of fortune 

game.  

After the interval of the temperature change (in the test trials: outcome of the wheel), 

participants rated the perceived intensity of the current temperature using the same 

VAS as described above (Figure 1). After this rating, participants had to adjust the 

stimulation temperature themselves to match the temperature they had memorized at 

the beginning of the trial. This self-adjustment operationalizes a behavioral 

assessment of perceptual sensitization and habituation within one trial (Becker et al., 

2011, 2015; Kleinböhl et al., 1999). Participants adjusted the temperature using the 

left and right button of the mouse to increase and decrease the stimulation 

temperature. Self-adjusted temperatures lower than the stimulation intensity at the 

beginning of the trial indicate sensitization across the trial, while higher temperatures 
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indicate habituation. After this behavioral assessment, the stimulation temperature 

went back to baseline and after a short break (5 s) the next trial started. 

In total, the wheel of fortune game comprised of 45 trials, split into five blocks. Each 

block consisted of 4 test and 4 control trials followed by one neutral trial. Test and 

control trials were presented in a predefined, pseudorandomized sequence. In contrast 

to the previous version of the wheel of fortune (Becker et al., 2015), the outcome of 

the wheel occurred with certain likelihood to allow for learning to optimize the outcomes 

of the wheel of fortune. One of the colors (pink or blue) was associated with a 75% 

chance of winning, while the other was associated with a 25% chance of winning 

(counterbalanced across participants and testing sessions). If participants did not 

select a color in the test trials, the neutral outcome (white) of the wheel was displayed 

and the temperature did not change. The temperature changes in the control trials 

(pain relief or increase) were matched to the outcomes of the test trials to ensure that 

the same number of pain relief and pain increase trials were presented in test and 

control trials. 

Pain relief was implemented by a reduction of the stimulation intensity of 3°C and pain 

increase was implemented by a rise of 1°C. The magnitude of these temperature steps 

was determined and optimized in pilot experiments with the aim of inducing potent pain 

relief and pain increase without inducing ceiling and floor effects. 

Although the main focus of the study was to test different effects on pain relief as 

implemented in win trials and their corresponding control trials with a decrease in 

nociceptive input, lose trials and their complementing control trials were crucial to the 

experimental design. First, for playing the game lose trials were an integral part 

because of the implemented likelihood for winning which necessarily needs to be 

accompanied by the chance of losing. Additionally, the risk of losing was thought to 

increase the participants’ engagement in the game, which in turn was expected to 

enhance the motivated state induced by playing the wheel of fortune game. Second, 

they allowed for testing whether pain modulation was driven by controllability or 

unspecific effects such as arousal and distraction in test compared to control trials of 

the wheel of fortune game (c.f. Becker et al., 2015).  
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All experimental procedures involving thermal stimulation were controlled by custom-

programmed Presentation scripts (Presentation® software, Version 17.0, 

http://www.neurobs.com) providing instructions and other visual cues on a computer 

screen in front of the participants. 

2.4.6 Pharmacological manipulations 

Participants ingested in one testing session levodopa, in another naltrexone, and in 

another a placebo (microcrystalline cellulose), following a double-blind, cross-over 

design with counterbalanced order. Levodopa is an amino acid precursor of dopamine 

leading to a transient systemic increase of dopamine availability. To inhibit peripheral 

synthesis of dopamine from levodopa, the single dose of 150 mg levodopa (p.o.) was 

combined with 62.5 mg of a benserazide to prevent peripheral side effects such as 

nausea (Rinne et al., 1975). Naltrexone is an opioid receptor antagonist with 

predominant receptor binding affinity at µ-opioid receptors together with a lower 

binding affinity at κ-opioid receptors and a much lower affinity at δ-opioid receptors 

(Raynor et al., 1994). Participants received a single dose of 50 mg naltrexone (p.o.) 

that has been shown to induce more than 90% receptor blockade (Weerts et al., 2013).  

After drug intake, a waiting period of one hour started. This waiting time was chosen 

based on peak plasma concentrations of levodopa and naltrexone at approximately 1 

h to 1.5 h after ingestion (Nyholm et al., 2012; Wall et al., 1981). At the end of each 

testing session, participants indicated whether they thought that they had received the 

placebo or one of the drugs (response alternatives: ‘placebo’, ‘levodopa’, ‘naltrexone’, 

or ‘don’t know’) to test for potential unblinding. 

2.4.7 Questionnaire and exit interview 

Novelty seeking as personality trait was assessed using the Need Inventory of 

Sensation Seeking (NISS; Roth and Hammelstein, 2012). The NISS consists of the 

subscales Need for Stimulation (NS) and Avoidance of Rest (AR). We used the NS 

subscale as a measure for novelty seeking as it reflects the “need for novelty and 

intensity” (Roth & Hammelstein, 2012). Before playing the wheel of fortune game the 

affective state of subjects was assessed using computerized versions of the Self-

Assessment Manikin (SAM Bradley & Lang, 1994; Lang, 1980) and a German version 
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(Krohne et al., 1996) of the Positive And Negative Affect Scale (PANAS; Watson, 

Clark, & Tellegen, 1988). At the of each session, an exit interview was performed, 

asking for the following information: (1) which drug participants believed to have 

ingested; (2) if participants believed that choosing one of the two colors was associated 

with a higher chance to win pain relief; (3) whether participants perceived a difference 

between test and control trials; (4) whether participants had the impression that the 

stimulation temperature at the beginning of each trial varied across trials; (5) whether 

participants had problems indicating their perception on the VAS scale; and (6) 

whether participants had problems readjusting the initial temperature. Participants 

gave first yes/no answers and then were asked to specify their answers using open-

ended questions.  

2.4.8 Statistical analysis 

For the statistical analysis, 2 participants were excluded, one participant due to the 

failure to comply with experimental procedures and one due to technical failure of the 

equipment. For one additional participant, data of one session (levodopa) are missing 

due to drop-out. Thirty-two out of 3735 single trials of all the remaining sessions were 

not recorded due to technical failures. In 42 trials, participants did not press a button 

within the respective interval in the wheel of fortune game. These trials were excluded 

from the analyses. Note that the NISS questionnaire was missing for two additional 

subjects due to initial issues at the beginning of the data collection. 

To test if blinding was successful we fit a mixed-effects logistic regression with the 

subjects’ assumption on the ingested drug (as reported in the exit interview, see above) 

being correct as dependent variable. We used ‘drug’ as a fixed factor and to account 

for repeated measures we modelled a random intercept for each subject. Post-hoc 

general linear hypothesis tests were used to compare estimated proportions of correct 

assumptions against chance. 

To confirm that the manipulation of the motivated state (test vs. control trials) of the 

participants by playing the wheel of fortune game did induce pain modulation as 

intended in each session, we analyzed the VAS ratings and the behavioral pain 

measure as outcome measures separately for each session with ‘trial type’ and 

‘outcome’ as well as their interaction as fixed effects. To account for the repeated 
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measures design we modelled a random intercept for each participant and a random 

slope for outcome of the wheel within each participant. 

To obtain an estimate for endogenous pain modulation in each test trial, we subtracted 

the mean value of all control trials of either the pain relief or the pain increase trials 

from the value of the winning or losing test trials separately for each session for both 

the VAS ratings and the behavioral pain measure. Using these differences, negative 

values indicate pain inhibition and positive values indicate pain facilitation. Estimates 

for pain modulation were analyzed using linear mixed model procedures with the fixed 

factors ‘drug’ (levodopa, naltrexone, placebo), ‘outcome’ (win, lose), ‘order’ of sessions 

(1, 2, 3), and their interaction separately for ratings and behaviorally assessed pain 

perception as dependent variables. The factor ‘session number’ was added to control 

for effects of temporal order independent of the drug manipulation that was found to 

influence pain modulation (see Figure 9 on page 57). Other factors such as baseline 

pain perception or mood did not affect pain modulation and were not included in further 

analysis (see Figure 10 and Figure 11 on pages 58 ff). To account for the repeated 

measures design we modelled a random intercept for each participant and a random 

slope for outcome within each participant. 

Unbeknown to the subjects, one of the colors in the wheel of fortune was associated 

with a higher chance to win pain relief. To test whether participants learned to select 

this color from the implemented reward contingencies we looked at choice behavior in 

the last 2 blocks of trials only. In this latter phase of the task subjects already had the 

chance to explore differences in outcomes associated with their choices and were 

thought show exploitation if they had learned about the contingency. We fit a mixed-

effects logistic regression with the subjects’ choices as dependent variable. For a 

single session we fit an intercept only model where the intercept represents the group 

level estimate for the probability to choose the color associated with a higher chance 

of winning pain relief (%ℎ'(%)*+,*	./01). Drug was used as an additional within-subject 

factor when testing for differences among levodopa, naltrexone, and placebo. To 

account for repeated measures, we modelled a random intercept for each subject. To 

assess the effect of the subjects’ belief about which color was associated with a higher 

chance to win pain relief (as reported in the exit interview, see above) we added the 

factor ‘belief’ (either “correct belief” or “false or no belief”) to this model. 
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To test whether endogenous pain modulation due to winning pain relief was related to 

participants’ personality trait of novelty seeking, pain modulation represented by the 

differences between test and control trials in the wheel of fortune in VAS ratings and 

the behaviorally assessed pain perception of the placebo and the levodopa condition 

were correlated with the NISS NS scores. To test further whether increases in pain 

modulation induced by levodopa were associated with novelty seeking, differences in 

pain modulation between the levodopa and placebo session were also correlated with 

the NISS NS scores. Before calculating these correlations, multivariate outliers were 

tested using a chi-square test on the squared Mahalanobis distance using an ⍺ of 

0.025 (Filzmoser, 2016), leading to the exclusion of one value for the correlation with 

the difference of pain modulation between the levodopa and placebo session. 

The significance level was set to 5% for all analyses. All statistical analyses were 

performed using statistical computing software R version 3.5.3 (R Core Team, 2019). 

Mixed model analyses were performed using the lme4 package (Bates et al., 2015). 

All linear mixed models were estimated using restricted maximum likelihood. Kenward-

Roger correction as implemented in the lmerTest package (Kuznetsova et al., 2017) 

was used to calculate test statistics and degrees of freedom to account for the sample 

size. For general linear mixed-effects models Wald #$ 	was calculated using car 

package (Fox, John & Weisberg, 2011). Post-hoc tests and effect sizes were 

calculated on estimated marginal means using the emmeans package (Lenth, 2020) 

where appropriate. Tukey adjustment was used to account for multiple comparisons in 

post-hoc tests.  

2.4.9 Estimation of prediction errors and their role in endogenous pain modulation 

To analyze how mechanisms of instrumental learning contribute to the observed 

choice behavior and how this related to reward-induced pain modulation we fitted 

reinforcement learning (RL) models to participants’ choices in test trials of the wheel 

of fortune game. Such models were initially formulated for associative learning (Bush 

& Mosteller, 1951; Rescorla & Wagner, 1972) and adapted for instrumental learning 

(Sutton & Barto, 1998). RL models assume that actions are chosen based on the 

expected outcome. Learning is described as the adaptation of expectations based on 

experiences. Thus, learning is driven by the discrepancy between a present 
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expectation and the obtained outcome, namely the prediction error. The speed of 

adaption of the expectation is described by the learning rate, which defines the 

exponential decay of the influence of previous outcomes on the currently present 

expectation. For trial-by-trial instrumental learning paradigms, the update of the 

expectation of an outcome related to a given action (in the present study: choice in the 

wheel of fortune) is operationalized by calculating the expected value V of a choice as 

follows: 

 Qchoice,t+1=Qchoice,t+η×δt	 (1) 

where Vc*0+cd is the reward expectation for a given choice, : denotes the trial, C is the 

learning rate, and ef is the prediction error in trial :. The learning rate C determines the 

speed of adaption; the higher C  the more is the expectation influenced by recent 

compared to former experiences. Since updating of expectations has been shown to 

differ dependent on the sign of the prediction error (Fontanesi et al., 2019; Gershman, 

2015; Pedersen et al., 2017), we modelled independent learning rates for positive (CD) 

and negative (CE) prediction errors:   

 Vc*0+cd,fDg = Vc*0+cd,f + CD × ef, (=	ef > 0 (2) 

 Vc*0+cd,fDg = Vc*0+cd,f + CE × ef, (=	ef ≤ 0 (3) 

The prediction error as the difference between the actual and the expected outcome 

in trial : is formulated as follows: 

 ef = jf − Vc*0+cd,f (4) 

with jf as the outcome of the choice in trial :.  

In the wheel of fortune game, outcomes were implemented as changes in stimulation 

intensities. Accordingly, jf was positive (+1) for temperature decreases in win trials or 

negative (-1) for temperature increases in lose trials. The formula shown above 

assumes a constant outcome sensitivity. To capture potential modulation of the 

outcome sensitivity, we implemented a scaled outcome sensitivity so that the reward 

in trial :	was multiplied by an individual scaling factor F yielding a scaled prediction 

error: 

 ef = (F × jf) − Vc*0+cd,f (5) 
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Q values were initiated to zero and calculated separately for choices of the color 

associated with a higher chance to win pain relief (V*+,*	./01) and choices of the color 

associated with a lower chance to win pain relief (V304	./01). 

While RL models traditionally used a softmax choice rule (Daw & Doya, 2006; Luce, 

1959), recent studies on value-based decision making have implemented variants of 

the drift diffusion model (Ratcliff, 1978; Ratcliff & Rouder, 1998) to map expected 

values to choices (Fontanesi et al., 2019; Pedersen et al., 2017; Peters & D’Esposito, 

2020). The drift diffusion model describes decisions as accumulation of noisy evidence 

for two choice options until a predefined threshold, representing either of the two 

options, is reached. Such drift diffusion models take response times (RT) of decisions 

into account and model mathematically cognitive processes underlying the decision 

process. Figure 8 depicts such a decision process. The range between the decision 

boundaries is represented by the boundary separation parameter L. Higher values of 

L lead to slower but more accurate decisions, that is, L represents the speed vs. 

accuracy tradeoff. The position of the starting point z between the boundaries is 

determined by a priori biases M  toward one of the two options. This parameter M 

represents the relative distance of l between the boundaries. It can range from 0 to 1 

where a value of 0.5 indicates no bias, values below indicate a bias for the lower choice 

and values above 0.5 a bias for the upper choice. The non-decision time K describes 

time needed for processes that are unrelated to the decision process (e.g. stimulus 

processing). Correspondingly, the reaction time is defined as jm = K + n)%(A('B	:(o). 

Acquisition of evidence starts from the starting point z at time K	as a random walk. The 

slope of this random walk is determined by the drift rate G and a decision is made when 

either the upper or lower boundary is reached. Higher drift rates result in faster and 

more accurate decisions. The probability of the RT when choosing option p can then 

be calculated using the Wiener first-passage time distribution (Ratcliff, 1978): 

 jm(p) = q()B)9(L, K, M, G) (6) 

where q()B)9() returns the probability that p is chosen with the observed RT.  
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Figure 8: Schematic depiction of the drift diffusion model. Accumulation of evidence starts at point l which is defined 
by the a-priori bias M and the boundary separation L. Noisy evidence is integrated over time (represented by sample 
paths in blue and orange, for upper and lower boundary choices, respectively).  

Most variants of reward learning models that use the drift diffusion process as a choice 

rule replace the constant drift rate by an individually scaled difference of expected 

values for the both options (Fontanesi et al., 2019; Pedersen et al., 2017; Peters & 

D’Esposito, 2020). Thus, the drift rate Gf , varies across trials as a function of the 

difference between expected values of the two choice options that in the wheel of 

fortune corresponded to V*+,*	./01  and V304	./01 , respectively. We implemented a 

linear mapping of the difference in expected values like Pedersen  al. (2017) where 

this difference is multiplied by the scaling factor G: 

 Gf = (V*+,*	./01 − V304	./01) × G (7) 

As an alternative scaling method we implemented a non-linear function as suggested 

by Fontanesi et al. (2019) in which the scaled difference in expected values is mapped 

to the drift rate using a sigmoid function, which more closely resembles the non-linear 

mapping of the softmax function: 

 Gf = r((V*+,*	./01,f − V304	./01,f) × G) (8) 

where r(p) is defined as: 



Study 1 

Materials and Methods 

 
54 

 r(p) =
2 × Gstu
1 + )Eu

− Gstu  (9) 

With that, ±GHIJ defines the upper and lower limit of the drift rate, respectively, while 

the shape or slope of the sigmoid function depends on the scaled difference of 

expected values. 

In summary, we combined different parameterizations of the outcome sensitivity (static 

or scaled) and the mapping of expected values to the drift rate (linear or sigmoidal) into 

different models (Table 3).  

Table 3: Model specification. Models 1-4 were defined using different combinations of parameters for reward 
sensitivity and the mapping of expected values to the drift rate. A ‘static’ reward sensitivity means that pain increase 
and pain decrease were defined as -1 and 1, respectively (see Equation 4). A ‘scaled’ outcome sensitivity means 
that pain decrease was defined as −F and pain decrease as F (see Equation 5). A ‘linear’ drift rate mapping means 
that the drift rate Gf for each trial was defined as the difference of expected values multiplied by G (see Equation 7). 
A sigmoid mapping of the drift rate means that Gf  was defined by a sigmoid function bounded at ±GHIJ . (see 
Equation 8 und Equation 9). All models included two learning rates (CD, CE), the non-decision time K, the boundary 
separation L, and the a priori bias M. 

Model outcome sensitivity drift rate mapping 

Model 1 static linear 

Model 2 scaled linear 

Model 3 static sigmoid 

Model 4 scaled sigmoid 

 

We used hierarchical Bayesian modeling to fit the reward learning models to the 

choices of the participants in the test trials. Hierarchical models estimate group and 

individual parameters simultaneously to mutually inform and constrain each other, 

which yields reliable estimates for both, individual and group level parameters (Gelman 

et al., 2013; Kruschke, 2014). Posterior distributions of the parameters were estimated 

using Hamiltonian Monte Carlo sampling with a No-U-Turn sampler as implemented in 

the probabilistic language Stan (Carpenter et al., 2017) via its R interface rstan (Stan 

Development Team, 2020). For each model parameter, we included a global intercept 

and the main effect of drug (levodopa, naltrexone, placebo). Both, intercept and main 

effect were allowed to vary for each participant and we modelled a correlation of 

individual terms for the drug effect across participants to account for repeated 

measures. We used a non-centered parameterization to reduce dependency between 
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group and individual level parameters  (Betancourt & Girolami, 2015). Therefore, both 

intercept and drug effect were defined by their location (group level effect), scale, and 

error (individual effects) distributions. A logistic transformation was applied to the 

learning rate (CD, CE) and a-priori bias (M) parameters to restrict values to the range of 

[0, 1]. The location parameters for the intercept of the learning rate were given standard 

normal priors (y(0,1)) and the scale of these parameters were given half-normal priors 

(ℋy(0,1)). The location of the drug effect on learning rate parameters were also given 

standard normal priors while the scale was given a half-normal prior of ℋy(0,0.1) to 

prevent allocation of high prior density at the edges of the range after logistic 

transformation, resulting in an almost flat prior. The location parameter for the intercept 

of the a-priori bias was given a normal prior of y(0, 0.5) and the scale was given a 

half-normal prior ℋy(0,0.1). The location parameter for the drug effect was given a 

normal prior of y(0,0.5) and the scale was given a half-normal prior of ℋy(0,0.1). To 

ensure that the non-decision time (K) was bounded to be lower than the reaction time 

the parameter was equivalently transformed to the range [0,1] and multiplied with each 

subject’s individual minimum reaction time in a given session. Priors were the same 

as for the learning rate, i.e. yielding a flat prior after transformation. We used an 

exponential transformation to constrain the reward sensitivity parameter (F ), the 

boundary separation (L), drift rate scaling factor (G), and the boundary of the drift rate 

(GHIJ) to be greater than 0. The location of the global intercept was given a normal 

prior of y(0.1,0.1)  for the reward sensitivity, a normal prior of y(0,0.1 ) for the 

boundary separation, a normal prior of y(0.2,0.2) for the drift rate, and a normal prior 

of y(0.5,0.2) for the drift rate boundary. For the exponentially transformed parameters 

the scale of the global intercept was given a half-normal prior of ℋy(0,0.1), the 

location of the drug effect was given a normal prior of y(0,0.5), and the scale of the 

drug effect was given a half-normal prior of y(0,0.1). Individual effects for the intercept 

as well as for the drug effect were all given standard normal priors. The correlation 

matrix of individual drug-level effects for each parameter was given a LKJ prior 

(Lewandowski et al., 2009) of ℒ|}%'99(1). All models were run on four chains with 

4000 samples each. The first 1000 iterations were discarded as warm-up samples for 

each chain. The convergence of chains was confirmed by the potential scale reduction 

factor j~.  
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The fitted models were compared for their best predictive accuracy using K-fold cross-

validation (Vehtari et al., 2017). For the cross-validation, we split data into � = 10 

subsets with each subset containing data of 2-3 participants and calculated the 

expected log pointwise predictive density (ELPD) based on simulations for each hold-

out set ÄÅ using parameters estimated from re-fitting the model to the training data set 

Ä(EÅ). We calculated ÇÉÑÖs, their differences, and the standard error of the differences 

using the R package loo (Vehtari et al., 2020). A higher ÇÉÑÖ  indicates a better 

predictive accuracy. Such a better predictive accuracy was assumed if the difference 

in ÇÉÑÖ (ÇÉÑÖÜ+áá ) for two models was at least 2 times the standard error of that 

difference (A)(ÇÉÑÖÜ+áá)).  

For the best fitting model, we performed posterior predictive checks by simulating 

replicated data sets from posterior draws. As the test statistic for the posterior 

predictive check we examined the proportion of choices in favor of the option 

associated with a higher chance to win pain relief (%ℎ'(%)*+,*	./01) in the last 2 blocks 

of the wheel of fortune game and compared the proportions observed in this data to 

the distribution of proportions found in the simulated data sets.  

From the best fitting model, we used group level estimates for the main effect of ‘drug’ 

to compare model parameters between drug conditions using the 95% highest density 

interval (HDI) of the difference of their posterior distributions. 

The means of individual parameter posterior distributions were used to estimate 

prediction errors for single trials. To test whether these prediction errors predict 

endogenous pain modulation induced by the wheel of fortune task, we used linear 

mixed models with the fixed factors ‘prediction error’ and ‘drug’, and their interaction. 

A random intercept for each subject was included to account for repeated measures. 

Separate models for VAS ratings and behaviorally assessed pain perception as 

dependent variables were calculated. 
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2.5 Supplementary figures Study 1 

 
Figure 9 (supplementary figure 1 of Figure 3): Means and 95% confidence intervals of the mean for pain modulation 
in (A) VAS ratings and (B) behaviorally assessed pain modulation for each testing session. Mixed-effects models 
testing whether the temporal order of the testing sessions, independent of the order of the application of the drugs, 
had an effect on pain modulation in win and lose trials of the wheel of fortune did not show a main effect of ‘session 
number’ (pain modulation VAS ratings: F(2, 1593.70) = 1.28, p = 0.279; behaviorally assessed pain modulation: 
F(2, 1599.84) = 0.86, p = 0.425) but point to a differential effect of temporal order for win and lose outcomes 
(interaction ‘outcome × session number’: pain modulation VAS ratings: F(2, 1593.77) = 3.00, p = 0.050; behaviorally 
assessed pain perception: F(2, 1597.27) = 7.94, p < 0.001). Hence, temporal order was included as an additional 
main effect when testing the effect of ‘drug’ on pain modulation. 
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Figure 10 (supplementary figure 2 of Figure 3): Bars show means and error bars 95% confidence intervals of the 
mean for (A) pain threshold, (B) pain tolerance, (C) stimulation intensity, (D) VAS ratings in neutral trials (in which 
participants did not play the game and the temperature stayed constant), and (E) behaviorally assessed pain 
perception in neutral trials for each drug condition. Mixed-effects models using drug condition (placebo: n = 28, 
levodopa: n = 27, naltrexone: n = 28) to predict measures of baseline pain sensitivity showed no significant main 
effect for ‘drug’: pain threshold: F(2,53.21) = 0.64, p=0.529; pain tolerance: F(2,53.18) = 0.31, p = 0.736; stimulation 
intensity: F(2,53.2) = 0.30, p = 0.745. Mixed-effects models using drug condition to predict VAS ratings and 
behaviorally assessed pain perception in the neutral condition of the wheel of fortune task showed no significant 
main effect for ‘drug’: VAS ratings: F(2,53.31) = 2.12, p = 0.131; behaviorally assessed pain perception: 
F(2,53.13) = 0.01, p = 0.990 
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Figure 11 (supplementary figure 3 of  Figure 3):	Mood was assessed over the course of each experimental session 
before drug intake, before playing the wheel of fortune game, and after playing the game using computerized 
versions of the Self-Assessment Manikin (SAM; Bradley & Lang, 1994; Lang, 1980) and a German version (Krohne 
et al., 1996) of the Positive And Negative Affect Scale (PANAS; Watson, Clark, & Tellegen, 1988). Bars show 
means and error bars 95% confidence intervals of the mean for SAM subscale (A) arousal, (B) dominance, (C) 
valence, and PANAS subscales (D) positive affect, and (E) negative affect at each time point. To test whether drug 
conditions (placebo: n = 28, levodopa: n = 27, naltrexone: n = 28) differentially affected mood we fit separate mixed-
effects models predicting subscales of SAM and PANAS by ‘drug’, ‘time’, and their interaction. SAM ratings for 
arousal, dominance, and valence did not show any significant main effects of ‘drug’ (arousal: F(2,213.2) = 1.56, 
p=0.214); dominance: F(2,213.29) = 1.03, p = 0.359; valence: F(2,213.41) = 0.74, p = 0.479) nor significant 
interactions for ‘drug × time’ (arousal: F(4,213.0) = 0.69, p = 0.599; dominance: F(4,213.00) = 0.88, p = 0.4771; 
valence: F(4,213.00) = 2.28, p = 0.062). Participants’ positive affect assed with the PANAS did not show a significant 
main effect of ‘drug’ (F(2,213.25 = 0.05, p = 0.954) nor a significant interaction of ‘drug x time’ (F(2,  213.00) = 1.60, 
p = 0.176). Similarly, negative affect assessed with the PANAS did not show a significant main effect of ‘drug’ (F(2, 
213.51) = 0.93, p = 0.376) nor a significant interaction of ‘drug × time’ (F(2, 213.00) = 0.79, p = 0.533). 
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Figure 12 (supplementary figure 1 of Figure 5): Differences of the posterior distributions of group level parameters 
for the main effect of drug in model 4. Thick black bars indicate the 85% HDI, thin bars indicate the 95% HDI. CD: 
learning rate for positive prediction errors; CE: learning rate for negative prediction errors; L: boundary separation; 
K: non-decision time; M: a-priori bias; G: drift-rate scale factor; Gstu: drift-rate boundary; F: outcome sensitivity. 
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3 STUDY 2 - PAIN RELIEF AS REWARD: ALTERED LEARNING 
PATTERNS AND NEURAL CORRELATES IN CHRONIC PAIN 
PATIENTS2 

3.1 Introduction Study 2 

Almost everybody knows pain and with that the pleasure of pain relief. When we are 

in pain, we desire pain relief. In particular in chronic pain, seeking pain relief can 

become an all dominating goal. The aversiveness of pain fulfills essential functions for 

survival and well-being, because it guides behavior to escape from pain, to rest for 

recovery, and to avoid harm in the future (Seymour, 2019). Adaptively responding to 

nociceptive signals involves numerous processes ranging from nociceptive reflexes to 

active behavior based on learned predictions. When in pain, the rewarding nature of 

pain relief further motivates such adaptive behavior and facilitates learning 

(Navratilova, Atcherley, et al., 2015; Seymour, 2019). This highlights that pain relief is 

more than a mere reduction in nociceptive input. Accordingly, research in humans and 

animals has demonstrated its rewarding properties and its capability to induce learning 

as negative reinforcement (Becker et al., 2008; Leknes et al., 2008; Navratilova et al., 

2012; Navratilova, Xie, et al., 2015). With such rewarding properties, pain relief should 

have the capacity to modulate pain perception endogenously, fostering optimal 

decision making (cf. Fields, 2006, 2018). Correspondingly, Becker et al (2015) showed 

that pain relief gained in a motivated, active decision making state compared to 

reductions of pain intensity in a passive state amplifies relief perception. Replicating 

and extending these results, we recently showed that such endogenous pain 

modulation scaled with prediction errors (Desch et al., 2022), suggesting that the better 

than expected the outcome the stronger endogenous pain inhibition. Prediction errors 

induce learning and thus, this relationship suggests that reward-induced endogenous 

pain modulation promotes learning of harm avoidance (Seymour, 2019). Pain inhibition 

                                            

2 Desch, S., Schweinhardt, P., Flor, H., & Becker, S. (in preparation). Pain relief as reward: Altered 
learning patterns and neural correlates in chronic pain patients.  
Manuscript prepared for submission at Scientific Reports. 
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induced by pain relief achieved in a motivated, active state as well as its association 

with prediction errors were both increased by dopamine (induced by levodopa intake). 

These findings highlight the role of dopamine in the effects of pain relief in line with 

dopamine’s known fundamental role in reward processing (Glimcher, 2011; 

Matsumoto & Hikosaka, 2009; Schultz, 2016). Nevertheless, the neural correlates of 

the modulatory effects of pain relief as reward on pain perception have not been 

investigated so far. 

Independent of a rewarding context or motivated state, passive pain and pain relief 

reception have been shown to activate brain structures of the reward valuation system, 

namely the Nucleus Accumbens (NAcc) and anterior cingulate cortex (ACC) (Becerra 

et al., 2013; Becerra & Borsook, 2008). Further, altered activation in the mesolimbic 

reward system in anticipation of pain onset and offset (Loggia et al., 2014) and 

changes in functional connectivity between core regions of the reward circuitry (Yu et 

al., 2020) have been found in chronic pain. Specifically, the transition from subacute 

to chronic could be predicted by increased functional connectivity between the 

ventromedial prefrontal cortex (vmPFC) and the NAcc (Baliki et al., 2012). Importantly, 

Löffler et al. (2022) recently extended this result by showing a relation to reward 

prediction errors in this prediction of the transition to chronic pain. This result supports 

the assumption that reward processing changes with chronic pain (Mitsi & Zachariou, 

2016). Accordingly, maladaptive reward processing has been suggested as a core 

characteristic underlying chronic pain and comorbid motivational and emotional 

disturbances (Borsook et al., 2016). Focusing specifically on established chronic pain, 

Löffler et al. (2022) further showed that in chronic pain not the same pattern of 

increased functional connectivity in response to reward prediction errors is present, but 

decreased responses in the vmPFC. However, findings on neural correlates of reward 

processing in chronic pain are mixed. While Martucci et al. (2018) described decreased 

activation during reward anticipation and increased activation in response to loss 

avoidance in the vmPFC in patients with fibromyalgia compared to healthy controls, 

they did not find any difference in brain responses to monetary wins. Using a very 

similar task, Kim et al. (2020) could not replicate these findings in a mixed sample with 

fibromyalgia and back pain patients. Instead they found reduced activation of striatal 

areas during anticipation of rewards and losses in these patients compared to healthy 
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controls, which were associated with response times as indicators of incentive related 

behavior. In addition to these inconsistent results, it remains unclear how the observed 

alterations in reward processing relate to pain perception and pain-related behavior in 

chronic pain. Increased motivation to seek relief might render pain relief a more 

relevant reward in chronic pain. Accordingly, reduced endogenous pain modulation 

during offset analgesia as a form of passive relief reception has been related to 

dampened activation in the reward circuitry, with ACC activation being associated with 

clinical pain in patients with neuropathic pain (S. Zhang, Li, et al., 2018). Specifically 

the pregenual anterior cingulate cortex (pgACC) has been related to pain modulation 

in an instrumental relief seeking task in healthy participants (Zhang et al.,  2018).  

Based on these considerations, we aimed to investigate reward related endogenous 

modulation of pain perception and its underlying neural mechanisms in patients with 

chronic pain. We implemented a probabilistic relief seeking task combined with 

functional magnetic resonance imaging to identify neural correlates of reward 

processing and endogenous modulation. Specifically, we expected patients with 

chronic pain to exhibit reduced endogenous pain inhibition by rewarding pain relief and 

corresponding differences in neural activation within the reward processing network.  
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3.2 Materials and Methods Study 2 

3.2.1 Participants  

We recruited 29 healthy controls (HC, 26 patients with fibromyalgia (FM), and 11 

patients with chronic back pain (CBP). Participants were recruited through press 

releases of the Central Institute for Mental Health (CIMH), Mannheim, and 

announcements on the institute’s website as well as through flyers put on display at 

general practitioners, physiotherapy practices, local supermarkets, fitness centers, and 

cultural institutions, and distributed via support groups. In addition, back pain patients 

were recruited from samples of two different previous studies conducted at the same 

institute, if they had agreed to be contacted again for further recruitment. In addition to 

the safety criteria for the magnetic resonance imaging (MRI) such as metal implants 

or claustrophobia, general inclusion criteria were age above 17 years and sufficient 

command of the German language to understand task instructions and fill in 

questionnaires. Exclusion criteria for all participants were opioidergic or dopaminergic 

medication, neurological conditions, and dermatologic conditions. Healthy controls 

were excluded, if they reported regular use of pain medication, any medical condition, 

acute or ongoing pain or any psychological. Patients with fibromyalgia were included, 

if they fulfilled the diagnosis criteria according to Wolfe et al. (2010). Patients with back 

pain were included, if they reported an ongoing episode of back pain of at least three 

months duration. Patients were excluded if they reported any physical condition that 

could explain their most severe pain symptoms or if they fulfilled the criteria of a 

borderline personality disorder due to known alterations in pain perception in borderline 

personality disorder (Fales et al., 2021) and a known comorbidity with fibromyalgia 

(Penfold et al., 2016).  

General eligibility was assessed in a telephone screening covering MRI safety criteria, 

current medication, and physical conditions prior to study participation. If participants 

reported any current or past psychological symptoms, a screening for psychological 

conditions based on the German version of the Structured Clinical Interview for DSM-

IV (SCID) axis I (Wittchen et al., 1997) was performed. Due to known high 

comorbidities, the German version SCID axis I (Wittchen et al., 1997) and axis II 

(Fydrich et al., 1997) was performed in all patients with fibromyalgia prior to the testing 
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session. In patients with back pain this interview had been performed in the previous 

studies from which they were recruited and the respective information was used with 

patients’ written consent. For FM, it was confirmed that they fulfilled the criterion of 

either a widespread pain index (WPI) score ≥ 7 and a symptom severity (SS) score ≥ 

5 or a WPI score of 3–6 and a SS score ≥ 9 (Wolfe et al., 2010). In total, two patients 

were excluded from study participation due to indications of comorbid borderline 

personality disorder. Another five participants dropped out before an appointment for 

the experimental session could be scheduled, resulting in 29 HC, 19 FM, and 11 CBP 

who completed the testing. Characteristics of the sample included in the statistical 

analysis are reported in Table 5.  

Regular use of medication was not an exclusion criterion in patients and intake was 

assessed via self-reports. Regular use was reported for angiotensin-converting-

enzyme (ACE) inhibitors (1 FM), anticonvulsants (1 FM), antidepressants (6 FM), 

tumor-necrosis-factor-L (TNF-L) blocker (1 FM), L-type calcium channel blockers (1 

FM), NSAIDs (17 FM, 1 CBP), other non-opioid analgesics (1 FM), quinines (1 FM), 

thyroid hormones (4 HC, 4 FM, 2 CBP), insulin (1 HC, 1 CBP), beta blockers (1 CBP), 

and proton-pump inhibitors (1 CBP). In the FM group, 14 participants fulfilled the 

criteria of a major depressive disorder (9 currently remitted), 3 participants fulfilled 

criteria of an anxiety disorder, 1 participant fulfilled the criteria of an eating disorder, 

and 1 participant fulfilled the criteria of a substance dependence in the past. 

Based on a previous study with a similar design, a medium effect size was expected 

(Becker et al., 2015). Originally, it was planned to recruit patients with fibromyalgia and 

healthy controls. A corresponding a priori sample size calculation for an 80% chance 

to detect such an effect size at a significance level of L=0.05 yielded a sample size of 

28 participants per group  (estimation performed using GPower version 3.1; (Faul et 

al., 2007) for a ANOVA with repeated measures and between-within interaction). Due 

to problems recruiting a sufficient number of fibromyalgia patients, we decided to also 

include participants with chronic back pain based on studies suggesting comparable 

alterations in reward processing and dopaminergic signaling in patients with chronic 

back pain and fibromyalgia (Albrecht et al., 2016; Kim et al., 2020; Martikainen et al., 

2015; Wood et al., 2007).  
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The study was approved by the Ethics Committee of the Medical Faculty Mannheim, 

Heidelberg University, and written informed consent was obtained from all participants 

prior to participation according to the revised Declaration of Helsinki (World Medical 

Association, 2013). 

3.2.2 Testing session 

Each participant performed one testing session comprising familiarization and 

preparation in the laboratory and an MRI scanning session. In the laboratory part, after 

obtaining written consent, capsaicin cream was applied at the stimulation site as a pre-

treatment to prepare the participants’ skin for the thermal stimulation used in the main 

experimental paradigm (see details below). Participants were familiarized with the 

rating scale and the wheel of fortune game to decrease unspecific effects of novelty 

and saliency and they filled in several computerized and paper-pencil questionnaires. 

The MRI part started with an introduction to the thermal stimulation device, the 

response unit, and the visual display once participants were positioned on the MRI 

scanner bed. Threshold procedures and determination of stimulation intensities were 

followed by three training trials to familiarize participants with the experimental task 

(see details below). Image acquisition then started with the wheel of fortune task with 

functional magnetic resonance imaging (fMRI), followed by the acquisition of a 

structural image. At the end of the MRI session, participants completed an exit 

interview (see below) outside the scanner.   

3.2.3 Wheel of fortune game 

A probabilistic relief-seeking task was carried out during fMRI. This task was adapted 

from (Becker et al., 2015) and is described in detail in Desch et al. (2022). In each trial 

of the task,  participants played a ‘wheel of fortune’ gambling task in which, unbeknown 

to the participants, the choice of one out of two colors (blue and pink) was associated 

with a higher chance (75%) to win pain relief and a lower chance (25%) of a pain 

increase as outcome of the game while the other color was associated with reversed 

outcome probabilities (counter-balanced across participants within each experimental 

group) while receiving a tonic heat-pain stimulus. The condition of active choice was 

accompanied by a passive control condition in which participants could not decide 
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between the two colors, but received the same nociceptive input. An additional neutral 

condition with no change in stimulation intensity served as control condition to estimate 

changes in pain perception over the course of the experiment.  

 

Figure 13: Time line of one trial with active decision making (test trials) of the wheel of fortune game. For each 
participant, one of the two colors (pink and blue) of the wheel was associated with a higher chance (75%) to win 
pain relief (counterbalanced across participants within each group). Pain relief (win) as outcome of the wheel of 
fortune game is depicted in green, pain increase (loss) in red. Trials with active decision making were complemented 
by passive control trials without decision making. Outcomes of active trials were repeated in subsequent control 
trials, resulting in the same number of pain increase and pain decrease trials as in the active condition. In passive 
and additional neutral trials participants did not play the game, but had to press a black button after which the wheel 
started spinning and landed on a random position with no pointer on the wheel. In the neutral trials, the temperature 
did not change during the outcome interval of the wheel. In all trial types, participants had to adjust the temperature 
to the sensation memorized at the beginning of the trial which provided a behavioral assessment of pain 
sensitization and habituation across the course of one trial. Adapted from (Becker et al., 2015). 

Figure 13 depicts the course of one active decision making trial in the wheel of fortune 

game. After thermal stimulation increased from baseline temperature to a 

predetermined, moderately painful intensity at the beginning of each trial, participants 

were asked to memorize their current sensation (2s). In the active decision making 

condition (test trials), a wheel of fortune that was divided into three sections of equal 

size but different color (blue, pink, and white) and two buttons (blue and pink) were 

displayed on the screen. Participants were asked choose between blue and pink to bet 

on the outcome of the wheel of fortune (max. 4s) by selecting a respective button using 

a 4-button response unit. After pressing the button their choice was indicated by a red 

frame around the chosen button displayed for 0.5s before the wheel started spinning 

(3.6-4s). When the wheel came to a stop the pointer of the wheel indicated the 

outcome. If the outcome color matched the color the participants had chosen, the 

temperature was decreased by 3°C (pain relief, win trials), otherwise the temperature 

was increased by 1°C (pain increase, lose trials). In the passive condition (control 

trials) as well as in neutral trials, only a single black button was displayed which 
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participants had to press. As in the active condition, the wheel started spinning after 

this button press, but the wheel had no pointer and landed randomly on a color. In the 

passive condition (control trials), temperature changes after the wheel stopped 

spinning mirrored outcomes of previous trials of the active condition (test trial) to 

ensure the same nociceptive input across the active and the passive condition. In 

neutral trials the temperature did not change after the wheel came to a stop. In a 5s 

rating period following the outcome display of the wheel of fortune game and the 

respective temperature change, participants were asked to report their current 

perception on a visual analogue scale (VAS) scale ranging from “no sensation” (0) over 

“just painful” (100) to “most intense pain tolerable” (200) (Becker, Gandhi, et al., 2013; 

Villemure et al., 2003). After this rating, participants were instructed to re-adjust the 

temperature to match the sensation they had memorized at the beginning of the trial, 

thereby allowing for a behavioral assessment of perceptual sensitization or habituation 

within one trial (Becker et al., 2011, 2015; Kleinböhl et al., 1999). At the end of this 10s 

self-adjustment interval the temperature returned to baseline. Trials were intermitted 

by 5s inter-trial intervals with thermal stimulation at baseline temperature and a fixation 

cross on the screen. In total the experiment consisted of 45 trial split into five blocks. 

Each block comprised of four trials of the active condition, four control trials, and one 

neutral trial. 

3.2.4 Thermal stimulation 

All heat stimuli were applied using a 27 mm diameter contact thermode (Contact Heat 

Evoked Potentials, CHEPS; PATHWAY Pain & Sensory Evaluation System, Medoc 

Ltd. Advanced Medical System, Israel). The baseline temperature was set to 30°C. 

Rise and fall rates of the temperature were set to 20°C/s. To allow for potent pain relief 

as reward and pain increase as punishment without the risk of skin damage, all thermal 

stimuli were applied to the inner forearm of participants’ non-dominant hand after 

sensitization of the skin using 0.075% topical capsaicin cream (Becker et al., 2015; 

Gandhi et al., 2013). Capsaicin as the active ingredient of chili pepper induces heat 

sensitization of the skin by activating temperature-dependent TRPV1 (vanilloid 

transient receptor potential 1) ion channels (Holzer, 1991). The cream was applied to 

a circular area with a diameter of approximately 5cm to ensure that the entire area of 
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thermal stimulation was sensitized. After 20 min, the capsaicin cream was removed 

(Dirks et al., 2003; Gandhi et al., 2013).  

3.2.5 Determination of stimulation intensities 

The thermode was applied after participants were positioned on the MRI scanner bed. 

Before any MRI measurements started, the participants’ heat pain threshold and heat 

pain tolerance were assessed three times each using the method of limits. The 

temperature of the thermode increased from baseline with 1°C/s. Participants were 

instructed to press the upper middle button of a 4-button response unit when they 

perceived the temperature as painful (pain threshold) in the first three trials and when 

could not tolerate stronger stimulation (pain tolerance) in the second three trials. The 

respective temperatures were recorded and the temperature immediately returned to 

baseline. The arithmetic mean of the temperatures corresponding to the recorded pain 

threshold and tolerance in the three trials was used as an estimate of the individual 

heat pain threshold and heat pain tolerance, respectively.  

To obtain a stimulation intensity in the wheel of fortune task that was perceived as 

moderately painful, we used an additional adjustment procedure, resembling a 

staircase method. In each trial participants received heat stimulation of 20s duration 

and continuously rated the perceived intensity of the ongoing stimuli on the VAS scale 

described above. In the first trial, stimulation intensity was set to the mean temperature 

of the obtained pain threshold and pain tolerance. In each subsequent trial the 

temperature was adjusted until a trial a rating of 150±10 on the VAS was obtained, 

indicated a moderately painful stimulation intensity (for details see Desch et al., 2022). 

3.2.6 Questionnaire and exit interview 

To assess psychological symptoms and personality traits, all participants filled in 

several questionnaires. To assess depressive symptoms and depression severity, we 

used the German version (Hautzinger et al., 2006) of the Beck Depression Inventory 

II (BDI-II; Beck, Steer, & Brown, 1996), to assess general psychological strain the 

German version (Franke, 2000) of the Symptom Check-List-90-R (SCL-90-R; 

Derogatis & Cleary, 1977) and the German version (Laux, Glanzmann, Schaffner, & 

Spielberger, 1981) of the State-Trait Anxiety Inventory (STAI; Spielberger, Goruch, 
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Lushene, Vagg, & Jacobs, 1983). Subjects with chronic pain also completed the 

German version of the West Haven-Yale Multidimensional Pain Inventory (MPI; Flor, 

Rudy, Birbaumer, Streit, & Schugens, 1990) to assess components of the chronic pain 

experience. The affective state of participants was assessed using computerized 

versions of the Self-Assessment Manikin (SAM; Bradley & Lang, 1994; Lang, 1980) 

and a German version (Krohne et al., 1996) of the Positive And Negative Affect Scale 

(PANAS; Watson, Clark, & Tellegen, 1988). At the end of each session, after MRI 

scanning was completed, an exit interview was performed, asking for the following 

information: (1) whether participants believed that choosing one of the two colors was 

associated with a higher chance to win pain relief; (2) whether participants perceived 

a difference between test and control trials; (3) whether participants had the impression 

that the stimulation temperature at the beginning of each trial varied across trials; (4) 

whether participants had problems indicating their perception on the VAS scale; and 

(5) whether participants had problems readjusting the initial temperature. For all 

questions, participants gave first yes/no answers and then were asked to specify their 

answers using open-ended questions.  

3.2.7 Magnetic resonance imaging acquisition 

Magnetic resonance imaging was performed on a 3 Tesla Tim TRIO whole body 

scanner (SIEMENS Healthineers, Erlangen, Germany), equipped with a 32-channel 

head coil. All experimental procedures were controlled via custom-programmed 

Presentation scripts (Presentation® software, Version 18.3, http://www.neurobs.com/). 

For visual presentation we used an 18.5’’ screen (G922 HDL, BenQ Corporation, 

Taipeh, Taiwan) located at the rear of the tube that participants could look at via a 

mirror construction mounted on the head coil. For all experimental procedures (pain 

thresholds, VAS scales, choices) participants used a 4-Button Diamond Fiber Optic 

Response Pad (HHSC-1X4-D, Current Designs, Inc., Philadelphia, USA). Shimming 

of the scanner was done to account for maximum magnetic field homogeneity and a 

standard gradient field map was recorded at the beginning of each measurement. 

For the task-based functional MRI protocol, 51 contiguous axial slices (slice thickness: 

2.5 mm, no gap, in-plain voxel size: 2 × 2 mm) were acquired using a T2*-weighted 

gradient-echo echo-planar imaging (EPI) sequence with generalized autocalibrating 
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partial parallel acquisition (GRAPPA) technique (acceleration factor 2, repetition time 

(TR) = 3200 ms, echo time (TE) = 30 ms, matrix size = 96 × 96, field of view (FoV) = 

192 × 192 mm2, flip angle (L) = 90°, bandwidth (BW) = 2368 Hz/px). Slices were tilted 

30° clockwise from the AC-PC plane to reduce signal drop-out in orbitofrontal areas. 

For structural reference, we used a T1-weighted magnetization prepared rapid 

gradient echo (MPRAGE) sequence (TR = 2530 ms, TE = 3.26 ms, TI = 1100 ms, 

matrix size = 256 × 256, FoV = 256 × 256 mm2, flip angle (L) = 7°, bandwidth (BW) = 

200 Hz/px) with 176 sagittal slices. 

Field maps were obtained using a gradient echo sequence (TR = 530 ms, 

TE 1 = 4.92 ms, TE 2 = 7.38 ms, FoV and matrix identical to EPI). 

3.2.8 Statistical analysis 

3.2.8.1 Behavioral data  

For the statistical analysis, 5 participants were excluded because more than 10% of 

the test trials (active decision making condition) were missing (due to technical failure 

and/or participants not responding in time). Of the remaining participants, 19 out of 

2430 single trials were not recorded due to technical failure. Further, in 26 trials, 

participants did not press a button in time to make a choice in the wheel of fortune 

game. These trials were excluded from the analyses. One participant did not fill in the 

STAI state subscale (STAI-S). 

Pain threshold and stimulation temperature as well as state measures of mood (SAM, 

PANAS, STAI-S) were compared between groups using standard linear models. 

Sample characteristics (age, BDI-II, SCL-90, STAI trait subscale) were also compared 

using standard linear models. The distribution of gender was compared between 

groups using a #$ test based on Monte Carlo simulation. MPI scores were compared 

between FM and CBP using Welch’s t-test to account for unequal variances.  

To confirm that the controllability manipulation by the active decision making vs. the 

passive condition (test vs. control trials) in the wheel of fortune game did induce 

endogenous pain modulation as intended, we analyzed the VAS ratings and the 

behavioral pain assessment as outcome measures separately within each group with 
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‘trial type’ and ‘outcome’ as well as their interaction as fixed effects. To account for the 

repeated measures design we modelled a random intercept for each participant and a 

random slope for outcome of the wheel within each participant. 

To obtain an estimate for endogenous pain modulation in each test trial, we subtracted 

the mean value of all control trials of either the pain relief or the pain increase trials 

from the value of the winning or losing test trials for each participant for both the VAS 

ratings and the behavioral pain measure. For these differences, negative values 

indicate endogenous pain inhibition and positive values indicate endogenous pain 

facilitation. To compare this endogenous pain modulation, as the primary outcome 

measure, between the t wo groups of patients we fit linear mixed models with the fixed 

factors ‘group’ (HC, FM, CBP), ‘outcome’ (win, lose), and their interaction in separate 

models for ratings and behaviorally assessed pain perception as dependent variables. 

To account for the repeated measures design we modelled a random intercept for each 

participant. Since we did find any differences in pain modulation between the two 

chronic pain conditions (see Results section) all subsequent analyses were performed 

with three levels for the group factor (HC, FM, CBP). 

To test whether participants learned to select this color preferentially based on the 

implemented reward contingencies, we analyzed choice behavior in the last 2 blocks 

of trials only. In this later phase of the task, participants already had the chance to 

explore differences in outcomes associated with their choices and to learn the 

contingencies. For this purpose, we fit a mixed-effects logistic regression with the 

participants’ choices as dependent variable. We fit an intercept only models for the 

group of healthy controls, where the intercept represents the group level estimate for 

the probability to choose the color associated with a higher chance of winning pain 

relief (%ℎ'(%)*+,*	./01). We fit an additional mixed-effects logistic regression to test for 

differences between groups in choosing %ℎ'(%)*+,*	./01 between groups. To account 

for repeated measures, we modelled a random intercept for each subject.  

The significance level was set to 5% for all analyses. All statistical analyses were 

performed using statistical computing software R version 3.5.3 (R Core Team, 2019). 

Mixed model analyses were performed using the lme4 package (Bates et al., 2015). 

All linear mixed models were estimated using restricted maximum likelihood. Kenward-
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Roger correction as implemented in the lmerTest package (Kuznetsova et al., 2017) 

was used to calculate test statistics and degrees of freedom to account for the sample 

size. For general linear mixed-effects models Wald #$ 	was calculated using car 

package (Fox, John & Weisberg, 2011). Post-hoc tests and effect sizes were 

calculated on estimated marginal means using the emmeans package (Lenth, 2020) 

where appropriate. Tukey adjustment was used to account for multiple comparisons in 

post-hoc tests.  

3.2.8.2 Estimation of prediction errors and their role in endogenous pain modulation 

The active condition of the wheel of fortune is a two alternative forced choice task. 

Because of the implemented a probabilistic reward schedule, participants had the 

chance to learn from reinforcement by the outcomes of the wheel of fortune to choose 

the color associated with a higher chance to win pain relief (%ℎ'(%)*+,*	./01). We used 

reinforcement learning (RL) models (Rescorla & Wagner, 1972; Sutton & Barto, 1998) 

to model such instrumental learning processes and to obtain trial-wise estimates of the 

expected value (Q-value) associated with a given choice and prediction errors 

associated with the actual outcome. Trial-wise updates of Q-values were modelled by 

multiplying the prediction error ef  (defined as the difference between the current 

expectation Vf  and the actual outcome jf) with separate learning rates (CD, CE) for 

positive and negative prediction errors, respectively. As the choice rule we 

implemented a drift diffusion process (Ratcliff, 1978; Ratcliff & Rouder, 1998), which 

has been shown to supersede the traditionally used soft-max choice rule (Fontanesi et 

al., 2019; Pedersen et al., 2017). Such drift diffusion models take response times into 

account and describe decisions as the accumulation of noisy evidence for two choice 

options until a predefined threshold (boundary), representing either of the two options, 

is reached. The preference for one of the two options depends on the a priori bias M 

for one of the options, the boundary separation L, that describes the speed versus 

accuracy tradeoff, and the drift rate G towards one of the options. RL models that use 

the drift diffusion process as the choice rule map the difference between expected 

values for the two choice alternatives to the drift rate Gf of the diffusion process in each 

single trial (Fontanesi et al., 2019; Pedersen et al., 2017). We fitted and compared the 

same models as in a previous study with the same experimental task (Desch et al., 
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2022). Accordingly, we varied two parts of the parametrization of the RL models to test 

which combination of parameters would best fit the data. First, the prediction error 

could either be static, meaning that it was calculated as the mere difference between 

the outcome (coded as 1 for pain relief and -1 for pain increase) and the expected 

value, or scaled, meaning that the outcome was multiplied with an individual reward 

sensitivity parameter F. Second, we varied the way that the difference of expected 

values was mapped to the drift rate. This could either be a linear mapping, for which 

this difference was scaled with a single parameter G to obtain the drift rate Gf  for a 

single trial (Pedersen et al., 2017), or non-linear, using a sigmoid function as suggested 

by Fontanesi et al. (2019). The upper and lower limit of this function are defined by 

±Gstu , respectively, while its shape depends on the scaled difference of expected 

values. This variation resulted in four different models as depicted in Table 4.  

Table 4: Model specification. Models 1-4 were defined using different combinations of parameters for reward 
sensitivity and the mapping of expected values to the drift rate. A ‘static’ reward sensitivity means that pain increase 
and pain decrease were defined as -1 and 1, respectively. A ‘scaled’ outcome sensitivity means that the outcome 
was multiplied by a reward sensitivity parameter F. A ‘linear’ drift rate mapping means that the drift rate Gf for each 
trial was defined as the difference of expected values multiplied by the model parameter G. A sigmoid mapping of 
the drift rate means that Gf was defined by a sigmoid function bounded at ±GHIJ. All models included two learning 
rates (CD, CE), the non-decision time K, the boundary separation L, and the a priori bias M. 

Model outcome sensitivity drift rate mapping 

Model 1 static linear 

Model 2 scaled linear 

Model 3 static sigmoid 

Model 4 scaled sigmoid 

 

The models were fitted to the participants’ choices and response times in active 

decision making trials using hierarchical Bayesian modeling which provides reliable 

estimates for individual and group level parameters (Gelman et al., 2013; Kruschke, 

2014). We used Hamiltonian Monte Carlo sampling with a No-U-Turn sampler as 

implemented in the probabilistic language Stan (Carpenter et al., 2017) via its R 

interface rstan (Stan Development Team, 2020) to estimate posterior distributions of 

the parameters. For each model parameter, we included a global intercept and the 

main effect of group (HC, FM, CBP). Both, intercept and main effect were allowed to 

vary for each participant. We used a non-centered parameterization to reduce 

dependency between group and individual level parameters  (Betancourt & Girolami, 
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2015). We used the same transformations and priors as described in (Desch et al., 

2022). Priors used for the main effect of group were the same as those used for the 

main effect of drug in the previous study and no correlation between parameters was 

modelled (because there were no repeated measures in this study). All models were 

run on four chains with 4000 samples each. The first 1000 iterations were discarded 

as warm-up samples for each chain. The convergence of chains was confirmed by the 

potential scale reduction factor j~.  

The fitted models were compared for their best predictive accuracy using tenfold cross-

validation (Vehtari et al., 2017). From the cross validation we calculated the expected 

log pointwise predictive density (ÇÉÑÖ) based on simulations for each hold-out set ÄÅ 

using parameters estimated from re-fitting the model to the training data set Ä(EÅ). We 

calculated ÇÉÑÖs, their differences, and the standard error of the differences using the 

R package loo (Vehtari et al., 2020). A higher ÇÉÑÖ  indicates a better predictive 

accuracy. Such a better predictive accuracy was assumed if the difference in ÇÉÑÖ 

(ÇÉÑÖÜ+áá) for two models was at least 2 times the standard error of that difference 

(A)(ÇÉÑÖÜ+áá)).  

For the best fitting model, we performed posterior predictive checks by simulating 

replicated data sets from posterior draws. As the test statistic for the posterior 

predictive check we examined the proportion of choices in favor of the option 

associated with a higher chance to win pain relief (%ℎ'(%)*+,*	./01) in the last two blocks 

of the wheel of fortune game and compared the proportions observed in this data to 

the distribution of proportions found in the simulated data sets.  

From the best fitting model, we used group level estimates for the main effect of ‘group’ 

to compare model parameters between groups using the 95% highest density interval 

(HDI) of the difference of their posterior distributions. 

The means of individual parameter posterior distributions were used to estimate 

prediction errors for single trials. To test whether these prediction errors predict 

endogenous pain modulation induced by the wheel of fortune task, we used linear 

mixed models with the fixed factors ‘prediction error’ and ‘group’, and their interaction. 

A random intercept for each subject was included to account for repeated measures. 
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Separate models for VAS ratings and behaviorally assessed pain perception as 

dependent variables were calculated. 

3.2.8.3 Magnetic resonance imaging data 

3.2.8.3.1 Preprocessing of magnetic resonance imaging data 

Preprocessing of magnetic resonance imaging data was performed using the 

fMRIPrep pipeline, version 20.0.7 (Esteban et al., 2019; Esteban, Ciric, et al., 2020), 

which is based on Nipype 1.4.2 (Esteban, Markiewicz, et al., 2020; Gorgolewski et al., 

2011). Before applying this pipeline, we performed the following preparatory steps: For 

two participants the anatomical T1-weighted images were corrupted. For these 

participants, we replaced the T1-weighted images with a study template. To create this 

template, we registered the T1-weighted images of all remaining participants to the 

structural image of one randomly chosen subject using flirt (FSL 5.0.9; Jenkinson & 

Smith, 2001) and calculated the mean of these images. The resulting mean anatomical 

image was used as replacements of the original corrupted anatomical scans during 

registration of the fMRI data. We confirmed by visual inspection that parcellation and 

registration to the standard space worked well for these participants. In twelve 

participants, the fMRI scanning had to be interrupted due to technical failures of the 

thermode. The scanning was resumed starting with the next the trial after the last trial 

completed in the wheel of fortune game. In such cases, all functional images were 

concatenated into a single four-dimensional image for each subject. 

3.2.8.3.2 Anatomical data preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants et 

al., 2008). The T1w-reference was then skull-stripped with a Nipype implementation of 

the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target 

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) 

and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 

5.0.9; Zhang, Brady, & Smith, 2001). A T1w-reference map was computed after 

registration of 2 T1w images (after INU-correction) using mri_robust_template 

(FreeSurfer 6.0.1; Reuter, Schmansky, Rosas, & Fischl, 2012). Volume-based spatial 
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normalization to one standard space (MNI152NLin2009cAsym) was performed 

through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-

extracted versions of both T1w reference and the T1w template. The following template 

was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template 

version 2009c (Fonov, Evans, McKinstry, Almli, & Collins, 2009; TemplateFlow ID: 

MNI152NLin2009cAsym). 

3.2.8.3.3 Functional data preprocessing 

For the blood oxygen level dependent (BOLD) run the following preprocessing was 

performed. First, a reference volume and its skull-stripped version were generated 

using a custom methodology of fMRIPrep. A B0-nonuniformity map (or fieldmap) was 

estimated based on a phase-difference map calculated with a dual-echo GRE 

(gradient-recall echo) sequence, processed with a custom workflow of SDCFlows 

inspired by the epidewarp.fsl script 

(http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and further improvements in 

HCP Pipelines (Glasser et al., 2013). The fieldmap was then co-registered to the target 

EPI (echo-planar imaging) reference run and converted to a displacements field map 

(amenable to registration tools such as ANTs) with FSL’s fugue and other SDCflows 

tools. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar 

imaging) reference was calculated for a more accurate co-registration with the 

anatomical reference. The BOLD reference was then co-registered to the T1w 

reference using flirt (FSL 5.0.9; Jenkinson & Smith, 2001) with the boundary-based 

registration (Greve & Fischl, 2009) cost-function. Co-registration was configured with 

nine degrees of freedom to account for distortions remaining in the BOLD reference. 

Head-motion parameters with respect to the BOLD reference (transformation matrices, 

and six corresponding rotation and translation parameters) are estimated before any 

spatiotemporal filtering using mcflirt (FSL 5.0.9; Jenkinson, Bannister, Brady, & 

Smith, 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 

20160207 (Cox & Hyde, 1997). The BOLD time-series (including slice-timing 

correction when applied) were resampled onto their original, native space by applying 

a single, composite transform to correct for head-motion and susceptibility distortions. 

These resampled BOLD time-series will be referred to as preprocessed BOLD in 



Study 2 

Materials and Methods 

 
78 

original space, or just preprocessed BOLD. The BOLD time-series were resampled 

into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym 

space. First, a reference volume and its skull-stripped version were generated using a 

custom methodology of fMRIPrep. Several confounding time-series were calculated 

based on the preprocessed BOLD: framewise displacement (FD), DVARS and three 

region-wise global signals. FD and DVARS are calculated for each functional run, both 

using their implementations in Nipype (following the definitions by Power et al., 2014). 

The three global signals are extracted within the CSF, the WM, and the whole-brain 

masks. Additionally, a set of physiological regressors were extracted to allow for 

component-based noise correction (CompCor Behzadi, Restom, Liau, & Liu, 2007). 

Principal components are estimated after high-pass filtering the preprocessed BOLD 

time-series (using a discrete cosine filter with 128s cut-off) for the two CompCor 

variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components 

are then calculated from the top 5% variable voxels within a mask covering the 

subcortical regions. This subcortical mask is obtained by heavily eroding the brain 

mask, which ensures it does not include cortical GM regions. For aCompCor, 

components are calculated within the intersection of the aforementioned mask and the 

union of CSF and WM masks calculated in T1w space, after their projection to the 

native space of each functional run (using the inverse BOLD-to-T1w transformation). 

Components are also calculated separately within the WM and CSF masks. For each 

CompCor decomposition, the k components with the largest singular values are 

retained, such that the retained components’ time series are sufficient to explain 50 

percent of variance across the nuisance mask (CSF, WM, combined, or temporal). The 

remaining components are dropped from consideration. The head-motion estimates 

calculated in the correction step were also placed within the corresponding confounds 

file. The confound time series derived from head motion estimates and global signals 

were expanded with the inclusion of temporal derivatives and quadratic terms for each 

(Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardised DVARS were annotated as motion outliers. All resamplings can be 

performed with a single interpolation step by composing all the pertinent 

transformations (i.e. head-motion transform matrices, susceptibility distortion 

correction when available, and co-registrations to anatomical and output spaces). 
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Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), 

configured with Lanczos interpolation to minimize the smoothing effects of other 

kernels (Lanczos, 1964). Non-gridded (surface) resamplings were performed using 

mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014), mostly 

within the functional processing workflow. For more details of the pipeline, see the 

section corresponding to workflows in fMRIPrep’s documentation 

(https://fmriprep.readthedocs.io/en/latest/workflows.html). 

The above boilerplate text was automatically generated by fMRIPrep with the express 

intention that users should copy and paste this text into their manuscripts unchanged. 

It is released under the creative common license 

(https://creativecommons.org/publicdomain/zero/1.0/). 

3.2.8.4 General Linear Model 

Further fMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) 

Version 6.00, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). The 

following pre-statistics processing was applied: spatial smoothing using a 5-mm full 

width at half maximum Gaussian, grand-mean intensity normalization of the entire 4D 

dataset by a single multiplicative factor. Time-series statistical analysis was carried out 

using FILM with local autocorrelation correction (Woolrich et al., 2001) with regressors 

of interest for the anticipation (time interval when the wheel was spinning) in active 

(@B:tcf+âd ) and passive (@B:.tää+âd ) trials, the outcome interval (starting with the 

temperature change until beginning of the VAS rating) separately for pain relief in 

active (9)<()=tcf+âd ) and passive (9)<()=.tää+âd ) trials, and pain increase in active 

((B%9)@A)tcf+âd) and passive ((B%9)@A).tää+âd) trials. In a second model, we included 

regressors for parametric modulation obtained from RL models. Specifically, we added 

a regressor weighted by Q values for the taken choice for the anticipation interval in 

active trials (@B:tcf+âd,ã ), and regressors weighted by the prediction error for the 

outcome interval in active trials separately for win ( 9)<()=tcf+âd,OP ) and lose 

((B%9)@A)tcf+âd,OP) trials. We included regressors of no interest for time intervals when 

participants memorized the temperature at the beginning of the trials, when they made 
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their choice in active, passive, and neutrals trials, as well as for the intervals of ratings 

and temperature self-adjustment (separately for relief and increase outcomes, and for 

neutral trials), for choice, anticipation, and outcome intervals of discarded trials, and 

for the initial increase of temperature at the beginning and the return to baseline 

temperature at the end of each trial for both models. The model regressors were 

convolved with a double-gamma hemodynamic response function and the first 

temporal derivatives were included. Additionally, we included nuisance regressors for 

framewise displacement (FD), global signal, the first five CompCor components each 

derived from the eroded white matter and CSF masks, respectively, and for time points 

that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS, as extracted by 

fMRIPrep.   

Group level analysis was performed using a mixed-effects model, implemented in 

FLAME (Beckmann et al., 2003; Woolrich et al., 2004) with separate variances for each 

group (HC, FM, CBP). We were interested in changes of brain activation induced by 

the controllability manipulation (active versus passive condition) and the parametric 

modulation by parameters of RL models (Q-values during anticipation and prediction 

errors during pain relief and pain increase). Since we did not expect large changes in 

brain activation related to these aspects, we specifically looked at several regions of 

interest that have been related to pain perception (Apkarian et al., 2005; Treede et al., 

1999) and reward processing (Liu et al., 2011). Specifically, we created anatomically 

defined masks using the Harvard-Oxford Cortical Structural Atlas and the Harvard-

Oxford Subcortical Structural Atlas (signal intensity minimum at 30%) for the primary 

and secondary somatosensory cortex (SI&SII), insula, nucleus accumbens (NAcc), 

and amygdala. Additionally, we used several masks of sub-regions of the medial frontal 

cortex that were found to be significantly associated to pain and/or reward in a large-

scale meta-analysis (De La Vega et al., 2016). Based on this study, these sub-regions 

were labelled ventromedial prefrontal cortex (vmPFC), pregenual anterior cingulate 

cortex (pgACC), posterior dorsal (pdMCC), anterior dorsal (adMCC), posterior ventral 

(pvMCC), and anterior ventral (avMCC) midcingulate cortex, and supplementary motor 

area (SMA. Statistical inference was based on a voxel-based threshold of z = 2.3, 

cluster corrected at p < 0.05. 
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3.3 Results Study 2 

3.3.1 Sample characteristics 

Table 5: Participant characteristics for all participants included in the statistical analysis. Means and standard 
deviations for each group are displayed. BDI-II, Becks Depression Inventory; STAI-T, State-Trait Anxiety Inventory 
– trait subscale; SCL, Symptom Checklist; MPI, West Haven-Yale Multidimensional Pain Inventory. 
 

HC FM CBP 

N 26 18 10 

Age 50.5 (9.41) 51.56 (7.11) 45.7 (16.43) 

Gender (m/f) 8 / 18 1 / 17 3 / 7 

Global Severity Index (SCL-90-R) 0.13 (0.15) 0.76 (0.49) 0.28 (0.28) 

BDI-II 2.54 (2.87) 17.33 (12.29) 7.10 (10.70) 

STAI-T 30.04 (6.12) 44.67 (11.10) 34.00 (12.29) 

Pain severity (MPI)  3.72 (1.00) 2.60 (0.83) 

Interference (MPI)  4.09 (0.96) 1.97 (0.64) 

Negative mood (MPI)  2.99 (1.18) 2.03 (1.44) 

Support (MPI)  4.14 (1.77) 2.30 (1.09) 

Life control (MPI)  3.47 (1.16) 4.40 (1.12) 

 

Age and gender did not differ significantly between healthy controls (HC), patients with 

fibromyalgia syndrome (FM), and patients with chronic back pain (CBP) (Table 5; age: 

F(2,51) = 1.09, p = 0.344; gender: #å  = 4.34, p = 0.139). In contrast, general 

psychological strain (SCL-90-R, global severity index), severity of depressive 

symptoms (BDI-II), and trait anxiety differed significantly between the groups 

(p’s < 0.001). For all these scales, the scores were higher in FM compared to HC 

(p’s < 0.001) and in FM compared to CBP (p’s < 0.015), with no difference between 

CBP and HC (p’s > 0.338). In addition, the chronic pain experience as assessed with 

the MPI differed between FM and CBP. Specifically, FM scored significantly higher on 

pain severity (t(22) = 3.188, p = 0.004), interference (t(25) = 7.00, p < 0.001), and 

support (t(26) = 3.40, p = 0.002), while FM and CBP did not differ significantly in 
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negative mood (t(16) = 1.79, p = 0.093) and life control (t(19) = -2.08, p = 0.052) as 

assessed with the MPI. 

3.3.2 Endogenous modulation of active pain relief seeking in healthy controls 

3.3.2.1 Ratings of perceived pain in the wheel of fortune task 

Replicating previous results, in the group of healthy controls participants rated the 

thermal stimulation as less intense after actively winning pain relief compared to the 

passive control condition on the visual analogue scale. Furthermore, participants rated 

the stimulation as more intense after actively losing compared to the passive control 

condition (Figure 14 A; interaction ‘outcome × trial type’, F(1,960) = 46.39, p < 0.001; 

pairwise comparisons: win: test vs. control p < 0.001; lose: test vs. control, p < 0.001). 

This shows that active (instrumental) controllability modulates both, pain and its relief. 

3.3.2.2 Behaviorally assessed pain perception in the wheel of fortune task 

In contrast to the VAS ratings, behaviorally assessed pain perception did not differ 

significantly between test and control trials after winning as well as after losing in 

healthy participants (Figure 14 D; interaction ‘outcome × trial type’, F(1, 960) = 2.23, 

p = 0.136). 
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Figure 14: Means and 95% confidence intervals of means for VAS pain intensity ratings (A, B, C) and behaviorally 
assessed pain perception (D, E, F; within-trial sensitization in pain perception in °C) for each healthy controls (HC), 
patients with fibromyalgia (FM), and patients with chronic back pain (CBP). d indicates Cohen’s d as standardized 
effect-size of estimated effects. ** p < 0.01, *** p < 0.001, for post-hoc comparisons of test versus control trials. 

 

3.3.3 Endogenous pain modulation by active relief seeking in participants with chronic 

pain 

We next examined whether pain sensitivity and endogenous modulation of pain 

perception within the wheel of fortune game was different between the two groups of 

chronic pain patients and healthy controls.  

3.3.3.1 Pain sensitivity 

HC, FM, and CPB did not show differences in their pain threshold (F(2, 51) = 0.66, p 

= 0.523), pain tolerance (F(2, 51) = 0.24, p = 0.789), and the individually adjusted 

stimulation intensity used in the wheel of fortune task (F(2, 51) = 0.17, p = 0.841). 

Similarly, groups showed no differences in VAS ratings in the neutral trials of the wheel 

of fortune game (F(2,51) = 1.80, p = 0.175) or the behavioral measure in neutral trials 

(F(2,51) = 0.71, p = 0.496) assessing pain perception independent of the game over 

the course of the experiment. 
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3.3.3.2 Ratings of perceived pain in the wheel of fortune task 

As the HC, both FM and CPB rated the thermal stimulation as less intense after active 

compared to passive pain relief in the wheel of fortune task (Figure 14 B, C). In 

contrast, higher intensity ratings after receiving pain increases in the losing condition 

compared to the respective passive control condition were found in patients with 

chronic back pain, but not in participants with fibromyalgia syndrome (Figure 14 B, C). 

Overall, the effect of active relief (win) or increases (lose) of pain on pain modulation 

differed significantly between the three groups (interaction ‘group ×  outcome’, 

F(2, 1041) = 5.39, p = 0.005). However, post-hoc tests revealed that the effect of active 

relief (win) did not differ significantly between the groups (p’s > 0.95). Similarly, effects 

of active pain increases on VAS ratings did not differ between HC and both groups of 

patients (post-hoc comparisons HC vs. FM: p = 0.699; HC vs. CBP: p = 0.162). But 

the post-hoc comparison revealed a significant larger effect of active pain increases in 

CBP compared to FM (p = 0.031), suggesting that endogenous pain facilitation in the 

losing condition is differentially affected in the two chronic pain conditions. Endogenous 

pain modulation did not show any associations with any of the clinical scores in neither 

the win nor the lose condition (p’s > 0.604, Bonferroni corrected for multiple 

comparisons).  

 

 
Figure 15: Endogenous pain modulation assessed by VAS ratings of pain intensity (A) and behaviorally assessed 
pain perception (B) after winning and losing in the wheel of fortune game. HC, healthy controls; FM, patients with 
fibromyalgia; CBP, patients with chronic back pain. Error bars show 95% confidence interval of the mean. d 
indicates Cohen’s d as standardized effect-size of estimated effects.  
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Table 6: Means and standard deviation for pain modulation in VAS ratings of perceived intensity and the 
behaviorally assessed pain perception (negative values indicate pain inhibition; positive values indicate pain 
facilitation). HC, healthy controls; FM, patients with fibromyalgia syndrome; CBP, patients with chronic back pain. 

 pain modulation in VAS ratings of pain intensity pain modulation in behavioral measure (°C) 

 HC FM CBP HC FM CBP 
 n = 26 n = 18 n = 10 n = 26 n = 18 n = 10 

outcome M SD M SD M SD M SD M SD M SD 

win -7.31 21.51 -12.98 23.54 -10.09 23.79 -0.09 0.64 -0.14 0.66 -0.05 0.74 

lose 12.21 21.12 13.29 20.48 12.26 22.27 0.03 0.59 0.03 0.54 0.06 0.68 

 

3.3.3.3 Behaviorally assessed pain perception in the wheel of fortune task 

Similar to the results in healthy controls, no significant differences of the effects of 

active pain relief or increase compared to the passive control conditions were found in 

FM and CBP in the behaviorally assessed pain perception (Figure 14 E & F). Across 

HC, FM, and CBP, behaviorally assessed pain modulation differed significantly 

(interaction ‘group × outcome’: F(2, 1057) = 3.57, p = 0.029; Figure 15 B). However, 

post-hoc comparisons did not reveal any significant differences between these groups 

after either pain decrease (p’s > 0.37) or pain increase (p’s > 0.16) when corrected for 

multiple comparison.  

3.3.4 Reinforcement learning in the wheel of fortune 

Based on the probabilistic reward schedule in the active condition of the wheel of 

fortune task, we were able to investigate whether active relief seeking had an impact 

on choice related to reinforcement learning. Specifically, we tested whether the 

proportion of choices of the more rewarding option (%ℎ'(%)*+,*	./01)  was higher in the 

last two out of five blocks of four test trials each of the game, when the participants 

already had the chance to explore and learn the different outcome probabilities. On 

average, neither HC, nor FM or CBP chose the color associated with higher chance to 

win relief above chance (all p’s > 0.36). Correspondingly, the proportion of choices in 

favor of %ℎ'(%)*+,*	./01 did not differ between the groups (#$(2) = 0.76, p = 0.685). 
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3.3.5 Unpredictability and endogenous pain modulation 

We next tested whether endogenous pain modulation was associated with the 

unpredictability of outcomes in the wheel of fortune game. To this end, we fitted 

different reward learning models, with a drift diffusion process as the choice rule to 

participants’ choice and reaction time data. The best predictive accuracy was found for 

model 3 that modelled pain relief as positive (+1) and pain increases as negative (-1), 

and a sigmoid function to map expected values for the two choices to the drift rate of 

the diffusion process (Table 7; see Methods, section Estimation of prediction errors 

and their role in endogenous pain modulation for details on parametrization of reward 

learning models). 

Table 7: Model comparison. Models are ordered by their expected log pointwise predictive density (ELPD). ELPDdiff: 
difference to the ELPD of winning model 3. se(ELPDdiff): standard error of the difference in ELPD. 

Model ELPD ELPDdiff se(ELPDdiff) 

Model 3 -475.39 0 0 

Model 4 -481.97 -6.58 9.61 

Model 2 -571.97 -96.58 14.38 

Model 1 -572.26 -96.86 14.77 

 

Highest density intervals (HDI) of posterior predictive simulations from the best-fitting 

model cover all the observed proportion of choices in favor of the more rewarding 

option, suggesting that the model adequately describes the data (Figure 16).  
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Figure 16: Posterior distribution of the proportion of choices in favor of %ℎ'(%)*+,*	./01. HC, healthy controls, FM, 
patients with fibromyalgia syndrome, CBP patients with chronic back pain. Colored areas show 95% highest density 
interval (HDI95). Dashed lines indicate observed proportion of choices in favor of 
%ℎ'(%)*+,*	./01   HC: 7>%ℎ'(%)*+,*	./01N  = 0.474, HDI95 = [0.469,0.510], posterior p-value (pp) = 0.936); 
FM: 7>%ℎ'(%)*+,*	./01N  = 0.494, HDI95 = [0.475,0.523], pp = 0.605; CBP: 7>%ℎ'(%)*+,*	./01N  = 0.530, 
HDI95 = [0.500,0.563], pp = 0.663.  

Based on the 95% HDI (HDI95), the posterior distribution of group level differences 

indicated a stronger bias M  for the more favorable option in FM compared to HC, 

indicating that FM needed less information to favor %ℎ'(%)*+,*	./01 (Figure 17). All other 

HDI95 for the difference between group level parameters enclosed zero, indicating no 

strong evidence for group differences. Nevertheless, weak evidence, i.e. 85% HDI of 

differences between group level parameters not covering zero, was found for a higher 

learning rate for positive prediction errors (CD), a shorter non-decision time K (relative 

to the participants’ minimum reaction times), and the shape parameter of the sigmoid 

function G in CBP compared to HC. The shape parameter G in the model has a similar 

effect as the inverse-temperature parameter implemented in models that use a softmax 

function as the choice rule. Higher values of G indicate more deterministic choices of 

the option associated with a higher expected value, while lower values indicate more 

random choices or explorative behavior. Thus, choices in CBP were less 

deterministically based on expected values than in HC. 
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Figure 17: Differences of the posterior distributions of group level parameters for the main effect in model 3. Thick 
black bars indicate the 85% HDI, thin bars indicate the 95% HDI. CD: learning rate for positive prediction errors; CE: 
learning rate for negative prediction errors; L: boundary separation; K: non-decision time; M: a-priori bias; G: shape 
parameter of sigmoid function; Gstu: drift-rate boundary. 

When comparing the distributions of estimated learning rates for positive and negative 

prediction errors between groups (Figure 18), weak evidence suggests a higher 

learning rate for negative compared to positive prediction errors in HC (Figure 18; CD: 

mean = 0.203, HDI95 = [0.119, 0.294]; CE: mean = 0.327, HDI95 = [0.189, 0.477]). HDI95 

of the differences in estimates for the two learning rates in patients all covered zero. 

Nevertheless, they did not show the same asymmetry in the relationship of learning 

rates: in FM estimates showed almost identical learning rates for positive and negative 

prediction errors (CD: mean = 0.287, HDI95 = [0.156, 0.419]; CE: mean = 0.236, HDI95 = 
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[0.111, 0.365]), while in CBP the mean of the learning rate for positive prediction errors 

was higher compared to that for negative prediction errors (CD: mean = 0.366, HDI95 = 

[0.197, 0.549]; CE : mean = 0.242, HDI95 = [0.094, 0.419]), suggesting an inverse 

pattern compared to HC. 

 

 

Figure 18: (A) Posterior distribution of learning rates (unconstrained group level parameters transformed to the 
range of [0,1] using inverse logit transformation) for positive (CD) and negative (CE) prediction errors for healthy 
controls (HC), patients with fibromyalgia (FM), and patients with chronic back pain (CBP). (B) Posterior distribution 
of the difference between learning rates for HC, FM, and CBP. Thick black bars indicate the 85% HDI, thin bars 
indicate the 95% HDI. 

Replicating previous results (Desch et al., 2022), we found that prediction errors 

estimated by using subject level parameters of the model showed a significant main 

effect for the prediction of endogenous pain modulation indicated by VAS ratings 

across all groups (F(1, 1024) = 114.59, p < 0.001). As indicated by the negative 

estimate of the prediction error (MOP = -0.30), better than expected outcomes (positive 

prediction errors) were related to increased relief perception while worse than expected 

outcomes (negative prediction errors) were associated with increased pain facilitation 

(Figure 19). That is, the more unexpected the outcome, the stronger is the endogenous 

modulation towards relief or pain, respectively. 
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The effect of prediction errors on pain modulation differed significantly between groups 

(F(2, 1025) = 4.851, p = 0.008). Post-hoc comparisons confirmed that the negative 

linear relationship significantly differed from zero for all groups (p’s < 0.001) and this 

relationship was significantly stronger in CBP compared to FM (p = 0.005). No 

differences of this relationship were found between HC vs. FM (p = 0.295) and HC vs. 

CBP (p = 0.095).  

Across all groups, the estimated prediction errors did not show a significant main effect 

for the prediction of behaviorally assessed pain modulation (F(1, 1032) = 0.46, 

p = 0.496).  

 
Figure 19: Pain modulation in VAS ratings predicted by prediction error for each group: HC, healthy controls; FM, 
patients with fibromyalgia syndrome; CBP, patients with chronic back pain. Regression lines indicate prediction 
from the mixed effects model with predictors ‘PE’, ‘group’, and their interaction. 

 

3.3.6 Functional magnetic resonance imaging results 

As a manipulation check, we first assessed brain responses to pain increase versus 

pain relief independent of the active and passive condition in the wheel of fortune game 

across the outcome and the rating interval. Pain increase compared to pain relief 

resulted in significant activation in the insular cortex contralateral to the site of 
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stimulation in each of the groups, with no differences in activation between these 

groups (Figure 20, Table 8). 

 

 

Figure 20: Increased activation in response to pain increase compared to pain relief in the insular cortex in healthy 
controls (HC), patients with fibromyalgia (FM), and chronic back pain patients (CBP). Color scale shows z scores 
(corrected within given mask at z > 2.3, cluster-based threshold p < 0.05). Slices are positioned at peak z-values 
for each group, voxel coordinates given w.r.t. to MNI152NLin2009c template (Fonov et al., 2009). 

 

Table 8: Brain activation greater in response to pain increase compared to pain relief (corrected within 
given mask at z > 2.3, cluster-based threshold p < 0.05). Voxel coordinates are given w.r.t. to 
MNI152Nlin2009c template (Fonov et al., 2009). pvMCC, posterior ventral midcingulate cortex. HC, 
healthy controls; FM, patients with fibromyalgia; CBP, patients with chronic back pain. 

Mask 

 

Group 

 

Cluster size 

(voxels) 

z score 

peak 

Peak coordinates (voxels) 

x y z 

Insular 
cortex 

HC 100 3.02 67 70 39 

FM 65 3.28 69 66 42 

CBP 78 3.17 67 66 35 

pvMCC HC 57 3.23 50 70 59 

 

As one main focus, we assessed brain activation induced by the controllability 

manipulation, i.e. the active versus passive condition, looking at the contrasts 

([9)<()=tcf+âd  vs. 9)<()=.tää+âd ] and [(B%9)@A)tcf+âd  vs. increaseëIííìîï ]). No significant 
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brain activations could be found in these contrasts in neither of the a priori defined 

regions of interest.  

Nevertheless, when including the parameters derived from the RL models in the fMRI 

analyses (model 2), we found that the expected values (Q values) of the participants’ 

choices were negatively associated with activation in the pgACC in HC (Figure 21, 

Table 9), suggesting that activation in this area decreases the more positive and 

increases the more negative the outcome expectation for the selected choice is. No 

similar association with the expected value (Q value) was found in FM or CBP, but the 

negative association was found to be significantly stronger in HC compared to FM. In 

addition, prediction errors after winning were also negatively associated with activation 

in the pgACC in HC. In other words, expected compared to surprising positive 

outcomes are associated with more activation in this the pgACC. As before, a similar 

but weaker association was found in FM compared to HC.  

 
Figure 21: Parametric modulation of pregenual anterior cingulate cortex (pgACC) activation by expected value (A) 
and prediction errors in pain relief trials (B) in healthy controls (HC) and HC compared to patients with fibromyalgia 
(FM). Color scale shows z scores (corrected within given mask at z > 2.3, cluster-based threshold p < 0.05). 
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Table 9: Cluster sizes and peak z scores (corrected within given mask at z > 2.3, cluster-based threshold p < 0.05) 
for parametric modulation of activation in regions of interest by expected value and prediction errors in pain relief. 
Voxel coordinates are given w.r.t. to MNI152NLin2009c template (Fonov et al., 2009). pgACC, pregenual anterior 
cingulate cortex; NAcc, nucleus accumbens; HC, healthy controls; FM, patients with fibromyalgia. 

Parametric 
modulation 

Mask 
 

Group 
 

Cluster size 
(voxels) 

z score 
peak 

Peak coordinates (voxels) 

x y z 

expected 
value 

pgACC HC 66 -3.19 48 93 42 

 HC > FM 100 -3.19 46 92 37 

prediction 
error 
pain relief 

pgACC HC 110 -3.56 48 92 43 

 HC > FM 42 -3.35 46 93 38 

NAcc HC > FM 16 -3.05 54 69 34 

 

3.3.7 Mood and affect 

The groups did not differ in terms of positive affect (F(2, 51) = 0.175, p = 0.184) but in 

negative affect (F(2, 51) = 7.42, p = 0.002) assessed using the PANAS scales. Post-

hoc tests showed that the negative affect was stronger in FM compared to HC 

(p = 0.002) and compared to CBP (p = 0.013) but did not differ between HC and CBP 

(p = 0.982).  The groups also differed significantly in arousal (F(2, 51) = 4.89, p = 

0.011), dominance (F(2, 51) = 6.11, p = 0.004), and valence (F(2, 51) = 4.55, p = 0.015) 

assessed using the SAM. Post-hoc comparisons showed that arousal was higher in 

FM compared to HC (p = 0.033) and compared to CBP (p = 0.023) with no difference 

between HC and CBP (p = 0.725). Dominance was lower in FM compared to HC (p = 

0.003), with no difference compared to CBP (p = 0.424) and between FM and CBP (p 

= 0.287). Similarly, valence was lower in FM compared to HC (p = 0.011), with no 

difference between HC and CBP (p = 0.700) or between FM and CBP (p = 0.265). 

State anxiety assessed via STAI-S differed significantly between groups (F(2, 50) = 

6.06, p = 0.004), with higher scores in FM compared to HC (p = 0.004), but no 

difference compared to CBP (p = 0.068) and no difference between HC and CBP (p = 

0.914). Importantly, none of these assessments of mood and anxiety was associated 

with endogenous pain modulation after winning or losing in the wheel of fortune (all p’s 

> 0.200, Bonferroni corrected for multiple testing). 
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3.4 Discussion Study 2 

The present results replicate previous findings of endogenously enhanced pain relief 

perception by active decision making, but these effects were unexpectedly not different 

in chronic pain patients. Both, patients with FM and CBP, showed endogenous pain 

inhibition after active vs. passive relief reception comparable to HC. Similarly, an 

association of prediction errors with endogenous pain modulation, as found before, 

was not different between patients with chronic pain and HC. These findings suggest 

that motivationally driven enhancement of relief perception is a robust phenomenon 

that seems to survive maladaptive changes of pain chronification. Nonetheless, neural 

correlates point to dampened activation associated with learning from active pain 

control in chronic pain compared to HC. 

Endogenous modulation of nociceptive signaling likely serves the purpose of 

optimizing its role as a learning signal, thereby facilitating prospective behavior to 

minimize future harm (Seymour, 2019). Accordingly, perception of pain and pain relief 

should be enhanced when this promotes escape from or avoidance of pain depending 

on the situational and motivational context. Hence, the modulatory effect should be 

stronger when pain or relief result from a controllable action (reinforcing the respective 

behavior) and when the result of the action is relatively unexpected (increasing the 

update of expectations) (cf. Seymour, 2019). Correspondingly and confirming our 

hypothesis, we found the modulatory effect of active relief to be enhanced in HC as 

indicated by ratings of perceived intensity.  

However, contrary to our hypothesis, this effect was not impaired in patients with 

chronic pain. This hypothesis was based on the assumption that reward processing is 

impaired in chronic pain (Borsook et al., 2016; Mitsi & Zachariou, 2016). Further, 

conditioned pain modulation (CPM), considered as an indicator of the capacity for 

endogenous pain inhibition (Yarnitsky, 2010), has been found to be impaired in chronic 

pain patients (Lewis et al., 2012), although results are heterogenous, suggesting that 

underlying mechanisms might be differentially affected depending on the specific pain 

condition (Gerhardt et al., 2017). Differential impairments among different pain 

conditions point to a complex picture regarding altered mechanisms of endogenous 
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pain modulation in chronic pain (Fernandes et al., 2019). Accordingly, it could be 

assumed that reward-induced pain inhibition relies on different underlying processes.   

Another example of endogenous pain inhibition resulting from learned expectations of 

pain relief is placebo analgesia. In line with our results, several studies suggest that 

placebo analgesia is not altered in chronic pain patients (Frangos et al., 2021; A. Power 

et al., 2020). Interestingly, placebo-analgesia has been linked to dopaminergic and 

opioidergic neurotransmission in brain areas associated with reward processing such 

as NAcc (Scott et al., 2008). Specifically, opioid receptor antagonists have been shown 

to reduce the pain-inhibitory effects of placebos (Benedetti, 1996; Eippert, Bingel, et 

al., 2009). In contrast, we found in a previous study evidence for the involvement of 

dopamine in endogenous pain modulation by rewarding pain relief, but no evidence for 

the involvement of opioids (Desch et al., 2022), hinting at mechanistic differences 

between these two phenomena. 

Unlike pain inhibition, endogenous pain facilitation induced by receiving pain increases 

in active vs. passive states was found in HC and CBP, but not in FM in the present 

study. A role of endogenous pain facilitation in chronic pain has been discussed, 

implying increased facilitation in FM (O’Brien et al., 2018; Staud et al., 2001, 2003) 

while findings in back pain patients are inconsistent (Aspinall et al., 2020; Den Bandt 

et al., 2019). Endogenous pain facilitation is typically assessed by testing temporal 

summation, in which pain facilitation is reflected by increased perceived pain with 

repeated or tonic stimuli of the same intensity. However, the resulting pain facilitation 

might reflect state-based predictions that increase motivation to escape the painful 

situation rather than providing information relevant to guide prospective behavior. 

Thus, while the comparatively long stimulation in the current paradigm might have 

induced some temporal summation, likely a different mechanism was involved here as 

well.  

Replicating previous results (Desch et al., 2022), endogenous pain modulation in the 

wheel of fortune game scaled with the extent to which changes in pain as the outcomes 

of the game were unexpected (indicated by prediction errors). This supports the view 

that perception of pain is intrinsically modulated according to its informational value 

(Seymour, 2019). We found no evidence that this association differed in pain patients 
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compared to HC, although an increase in the strength of this association was found in 

CBP compared to FM. Albeit the finding has to be interpreted with caution given the 

present sample sizes, this result might give some hints on less impairment of learning 

in CBP compared to FM. Similarly, Kim et al (2020) found stronger impairments of 

reward related behavior in FM compared to CBP that was paralleled by stronger 

depressive symptoms and anhedonia. Even though not related to endogenous pain 

modulation in our study, we also found stronger depressive symptom intensity, higher 

general psychological strain, and higher trait anxiety in our sample of FM compared to 

CBP. 

Despite the fact that none of the groups showed a bias towards selecting the more 

rewarding option in the wheel of fortune, computational modelling results hint at a 

difference in underlying cognitive processes. Such discrepancies between model 

parameters and observed choice behavior have been described before in studies on 

drug effects on reinforcement learning (Chakroun et al., 2020; Jepma et al., 2022) and 

suggest that different underlying processes can results in comparable behavioral 

outcomes. Although not more successful, FM needed less evidence to choose the 

more rewarding option and it seems that CBP updated their expectations stronger 

following pain relief, but at the same time based their decision less strongly on 

expected values. With regard to underlying mechanisms, a recent study suggests that 

positive and negative prediction errors contribute differentially to updating expectations 

based on different underlying neural circuits (Jepma et al., 2022). Specifically, Jepma 

et al. (2022) found stronger learning rates for received compared to avoided pain in a 

pain avoidance task. In line with this finding, we found that in HC negative prediction 

errors when receiving pain had a stronger effect on updating expectations compared 

to positive prediction errors when receiving pain relief. Moreover, this pattern appears 

altered in chronic pain: While we found no considerable difference between learning 

rates in FM, this pattern was reversed in CBP, i.e. these patients showed stronger 

learning based on positive prediction errors. 

Validating the principal strategy of the experimental task used here, we found that 

comparatively small increases vs. decreases in stimulation intensity were reflected in 

increased activation in the insular cortex contralateral to the stimulation site 

independent of the active/passive condition in the wheel of fortune. The insula is known 
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to be a central hub in the processing of painful stimuli (Apkarian et al., 2005; 

Schweinhardt & Bushnell, 2010; Segerdahl et al., 2015; Wiech & Tracey, 2009). In 

contrast and contrary to our hypothesis, we did not find any differences in brain 

activation between the active vs. passive condition corresponding the perceived 

changes in pain, neither pain relief nor in the pain increase trials. However, Becker et 

al. (2017) found as well no brain activation that was directly related to perceived 

reward-induced pain inhibition, but rather a more complex network of brain areas that 

seem mediate this pain reward interaction.  

Nevertheless, changes in brain activation corresponding to experimentally induced 

endogenous pain modulation have been reported in different contexts before, for 

example related to perceptual modulation by expectations (Atlas et al., 2010), the 

context of relative pain relief (Leknes et al., 2013), and viewing positively valued 

images (Younger et al., 2010). One methodological aspect in which our study differed 

was that we compared brain activation related only to a small change in temperature 

during ongoing stimulation while the previous studies all compared longer intervals of 

the complete stimulation phase. Possibly, this has impacted the power in our study to 

find related brain responses. However, the aim of investigating the mechanisms of pain 

relief necessarily comes with such restrictions because it requires the preceding 

induction of pain.  

Modulation of perceived pain intensity by expectations has been associated with 

activations in the anterior cingulate cortex and anterior insula (Atlas et al., 2010; 

Leknes et al., 2013; Younger et al., 2010). We aimed to characterize brain responses 

related to expectations of pain relief and pain increases (anticipation) and violation of 

such expectations (prediction errors during outcome) based on computationally 

modelling of choice behavior. With that, we found that both expectations during 

anticipation and reward prediction errors were inversely related to activation in the 

pgACC in HC. Similarly, Atlas et al. (2010) found pgACC activation to be negatively 

related to perceived pain intensity, suggesting a role of the pgACC in endogenous pain 

modulation. This assumption is supported by several studies on placebo analgesia and 

uncontrollability of pain, in which a role of the pgACC in mediating pain modulation via 

opioidergic activity and/or connectivity to areas such as amygdala and the PAG has 

been reported (Bingel et al., 2006; Eippert, Bingel, et al., 2009; Salomons et al., 2007, 
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2015). Specifically, Atlas et al. (2010) found stronger activation in the pgACC during 

low painful stimulation when low pain was expected (as opposed to moderate and high 

pain) compared to during moderately painful stimulation when high pain was expected 

(i.e. positive prediction error). Similarly, the inverse relationship of pgACC activation 

and positive prediction errors in our study suggests relatively higher activation, when 

relief was expected, and lower activation when the outcome was better than expected. 

Focusing on instrumental relief learning and complementing the results, Zhang et al. 

(2018) found increased activation of the pgACC and decreased perceived pain when 

uncertainty of expected outcomes was high (i.e. high absolute prediction errors). This 

finding suggests that pain modulation mediated by pgACC activation supports learning 

from pain related reinforcement. However, our finding that neural correlates of model-

based parameters of relief learning in the pgACC were dampened in FM compared to 

HC emphasizes the need to investigate the specific brain circuits that mediate 

reinforcement by pain relief engages. Although impaired responses to anticipation of 

passive pain and pain relief (Loggia et al., 2014) and reduced functional connectivity 

in reward related circuits (Park et al., 2022) have been shown in FM, results on neural 

correlates of reward processing remain heterogenous (Kim et al., 2020; Martucci et al., 

2018).    

3.4.1 Limitations 

Difficulties in the recruitment process forced us to include patients with different chronic 

pain conditions, resulting in a heterogenous sample. Hence, the informative value of 

group differences in the current study is limited due to the small sample sizes of the 

patient groups. In addition, the power to detect potential group effects was low. 

Differences between FM and CBP may point to differential impairments in pain 

modulation and relief related learning for these pain conditions, but future studies need 

to replicate these findings. The assumption of interrupted reward processing is 

commonly based on affective symptoms and a high comorbidity with depression 

(Apkarian et al., 2013; Borsook et al., 2016). Similarly, some studies showed an 

association of symptom severity with alterations in reward related tasks (Apkarian et 

al., 2004; Kim et al., 2020). Despite significant differences in psychological burden 
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between FM and CBP in our sample, we found no association of pain modulation and 

symptom severity.  

In contrast to earlier findings (Becker et al., 2015), we found a pain modulatory effect 

in ratings of perceived intensity, but did not find a comparable modulation in our 

behavioral assessment of pain perception. In contrast to this previous study, the 

temperature steps used as outcomes in the current experiment were considerably 

smaller (increases of +1°C instead of +5°C and decreases of -3°C instead of -7°C) 

which may have reduced the effects on the behavioral discrimination task. Similarly, 

while we have previously shown that participants were able to learn from reinforcement 

by pain relief and pain increases in the wheel of fortune game (Desch et al., 2022), we 

could not replicate this finding here. A major difference to that previous study was the 

implementation of the paradigm in the context of the fMRI measurement. The 

environment in the scanner may have distracted participants and thereby prevented 

them from acquiring awareness of differences in reward probabilities. 

In summary our results show that pain modulation by rewarding pain relief is a robust 

phenomenon and that pain inhibition by rewarding pain relief does not appear to be 

affected in chronic pain conditions. Similarly, an association of endogenous pain 

modulation with prediction errors did also not differ in patients with chronic pain. 

However, further research is needed to enhance our understanding of how neural 

mechanisms subserve the effects of reward related endogenous modulation of pain 

perception and learning from pain relief.  
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4 GENERAL DISCUSSION 

The aim of the present thesis was to investigate the specific mechanisms underlying 

the endogenous modulation of pain relief in a motivated state and its role in 

reinforcement learning. Pain is not a constant or static perception. In contrast, 

perceived pain intensity can change from moment to moment. However, these 

fluctuations in perceived pain do not necessarily mirror changes in the nociceptive 

input. Endogenous mechanisms appear to integrate nociceptive input with other 

information to form what is then consciously perceived as pain. The role of the pain 

system in protecting the organism by selecting and adjusting behavioral responses 

based on current needs emphasizes that pain perception serves as a behavioral 

control signal that promotes motivational drives. Hence, endogenous modulation of the 

pain perception enables the pain system to provide optimized signals that guide 

adaptive behavior (Seymour, 2019). Specifically, when in pain there is a strong 

motivation to escape the painful situation. With that pain relief becomes an important 

goal, eliciting a strong positive motivational drive. Endogenous mechanisms should 

therefore enhance the perception of pain relief in behaviorally relevant contexts. 

Endogenous pain modulation plays an important role in solving motivational conflicts 

in case of concurrent and competing motivations. In addition, learning from pain and 

pain relief is also crucial to minimize and avoid harm in the future. To investigate 

psychobiological mechanisms of endogenous pain modulation in the context of relief 

seeking the studies described in this dissertation used a ‘wheel of fortune’ gambling 

task with pain relief and pain increases implemented as wins or losses. The task allows 

to asses endogenous pain modulation by comparing perceived pain between an active 

choice condition and a passive control condition in which outcomes are not related to 

the participants’ behavior. In this task, which represents an extension of the task used 

by Becker et al. (2015), we implemented probabilistic reward contingencies that 

provided the chance to learn over the course of playing the game, which choice was 

associated with a higher chance of winning pain relief. This modification of the 

experimental task allowed investigating whether pain relief as reward is capable of 

inducing reinforcement learning and how endogenous modulation is involved 

mediating learning from pain relief.  
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Based on this experimental task, two studies were implemented to investigate 

neurobiological mechanisms in pain relief as reward and whether endogenous 

modulation of pain relief or relief related learning were altered in chronic pain. The aim 

of the first study was to investigate how the informational content of pain relief affects 

endogenous modulation of relief perception and to scrutinize the contribution of 

dopaminergic and opioidergic signaling in this modulation and related instrumental 

learning. This study showed that pain relief was enhanced when obtained in a 

motivated state and that pain modulation was stronger the more unexpected outcomes 

were, that is when changes in pain intensity carried new information that could aid 

learning of adaptive behavior. Moreover, the effects of active decision making and 

unpredictability were enhanced by dopamine, suggesting that dopamine plays an 

important role in processing informational aspects that are relevant for control of 

prospective behavior. In contrast and contrary to the initial hypothesis, blockade of 

endogenous opioid receptors did not affect endogenous modulation of pain relief. In 

the placebo condition, i.e. with no pharmacological manipulation, participants learned 

to select the choice that was associated with a more favorable outcome more 

frequently, indicating successful reinforcement learning. This effect was not found 

under enhanced dopamine availability or blockade of opioid receptors. 

The second study focused on reward related endogenous modulation of pain and pain 

relief perception and its neural correlates in healthy controls and in patients with 

chronic pain. In this study we replicated the finding of enhanced pain modulation as a 

result of active decision making and the association of stronger pain modulation with 

higher uncertainty of the outcome. Surprisingly, these effects did not differ in patients 

with chronic pain compared to healthy controls. In this study, in which participants 

performed the task during fMRI scanning, we found no impact of relief seeking on 

choice behavior in the sense of reinforcement learning. However, computational 

modelling of instrumental learning and associated neural correlates point to alterations 

of the underlying mechanisms. 
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4.1 Psychobiological mechanisms of pain modulation by rewarding pain relief 

Both studies consistently showed that obtaining pain relief as a result of active decision 

making induces enhanced perception of pain relief when compared to a passive control 

condition. While it was previously shown that pain relief obtained in a motivated state 

results in increased relief perception (Becker et al., 2015), the studies presented here 

demonstrated this effect in a probabilistic relief seeking task, in which there was an 

operant contingency between actions and outcomes. Pain increases obtained during 

active decision making resulted in higher pain ratings compared to the control condition 

with passive increases. This demonstrates that the pain modulation induced by active 

controllability is not comparable to unspecific effects of distraction or arousal caused 

by playing the game, which should have inhibited pain perception in both outcome 

conditions.  

The perceptual modulation of both, pain relief and pain increases, is in line with current 

models of endogenous pain modulation (Fields, 2018; Seymour, 2019). According to 

Fields (2018), a reduction in nociceptive input can be interpreted as predicting 

decreasing threat of tissue damage, while increases in nociceptive input predict 

stronger or prolonged pain. Endogenous modulation that amplifies both pain relief and 

pain increases serves to convey the saliency that changes of nociceptive input have 

for subsequent behavioral decisions. Seymour (2019) conceptualizes pain as a 

behavioral control signal with the main purpose not only to select beneficial responses 

in a current situation, but to also learn from experiences to mitigate and avoid future 

harm (S. Zhang, Mano, et al., 2018). In this perspective modulation of pain perception 

should enhance perception of phasic changes in nociceptive input specifically when 

there is an opportunity to exploit information learned about related actions (Wilson et 

al., 2014; Wittmann et al., 2008) and if actions provide control over pain (Braescher et 

al., 2016; Salomons et al., 2007, 2015; V. A. Taylor et al., 2017).  

To accomplish refined control of behavior the nervous system needs to shape 

perception by modifying peripheral input based on contextual factors. A key pathway 

for endogenous modulation of nociceptive input involves descending control via 

important brainstem nuclei, including the PAG and rostral ventromedial medulla 

(RVM), which project to relay neurons in the dorsal horn of the spinal cord (Bannister, 
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2019; Heinricher et al., 2009). This descending control pathway depends at least in 

part on opioidergic neurotransmission (Fields, 2004). Placebo induced endogenous 

pain inhibition is assumed to activate this descending pathway (Eippert, Bingel, et al., 

2009; Eippert, Finsterbusch, et al., 2009) and has also been shown to increase 

opioidergic activity in supraspinal brain regions including rostral and pgACC, medial 

orbitofrontal cortex, dorsolateral prefrontal cortex, amygdala, and anterior insula 

(Wager et al., 2007). Similarly, Navratilova, Xie, et al. (2015) showed that the effects 

of pain relief as negative reinforcement indicated by conditioned place preference 

depend on endogenous opioids in the ACC in rats. In humans, Sirucek et al. (2021) 

showed that pain relief perception can at least be partly inhibited by the opioid receptor 

antagonist naltrexone. Based on these finding, the hypothesis of Study 1 here was that 

pain inhibiting effects of rewarding pain relief could similarly be blocked by naltrexone. 

However, we found no evidence that pain inhibition in the wheel of fortune task was 

affected by this pharmacological manipulation. One explanation for this finding might 

be that our outcome measures were not optimized to capture the specific aspects of 

pain perception that are influenced by opioidergic activity. Opioid mediated 

neurotransmission in the ACC has been shown to selectively alter affective 

components of pain perception while leaving sensory-discriminative pain components 

unaffected (Gomtsian et al., 2019; Maruyama et al., 2018; Navratilova, Xie, et al., 

2015). In our task we used pain intensity ratings and a sensory discrimination task to 

assess pain and pain relief perception. These methods do not predominantly measure 

affective aspects of the pain experience. Whether endogenous opioids potentially 

mediate a reduced aversiveness induced by gaining rewarding pain relief in active 

decision making needs to be investigated using methods tailored to disentangle 

sensory-discriminative and affective components of pain (Rainville et al., 1992). 

Another explanation for the finding of no effects of the opioid receptor antagonist 

naltrexone on endogenous pain modulation may be that opioid independent, putatively 

supraspinal mechanisms are responsible for increased pain relief perception in active 

decision making compared to passive states. Offset analgesia has been suggested to 

be an example of pain modulation caused by the expectation of pain relief (Fields, 

2018). However, Martucci and colleagues (2012) found that neither the opioid 

antagonist naloxone nor the opioid agonist remifentanil had an influence on the 
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magnitude of offset analgesia. In study 2, we found no decrease of brain activation 

associated with reduced perceived pain intensity due to receiving pain relief in active 

vs. passive states, comparable to Becker, Gandhi, Pomares, et al. (2017). Instead, 

pain modulatory mechanisms that do not involve descending control mechanisms that 

inhibit nociceptive transmission at the level of the spinal cord, but rather depend on 

interactions between cortical areas have been discussed for this type of endogenous 

pain modulation (Becker, Gandhi, Pomares, et al., 2017; Braescher et al., 2016; Wiech 

& Tracey, 2009). In line with this reasoning, several studies found distributed brain 

networks related to endogenous pain modulation with no suggestion of a direct 

engagement of descending control pathways (Atlas et al., 2010; Becker, Gandhi, 

Pomares, et al., 2017; Braescher et al., 2016).  

Further and in line with studies that investigated effects of expectations, uncertainty, 

and pain controllability on the perception of pain (Atlas et al., 2010; Braescher et al., 

2016; S. Zhang, Mano, et al., 2018), our finding that activation in the pgACC was 

associated with anticipation and unexpected reception of pain relief suggests that this 

region is involved in mediating effects of predictability on pain perception. Interestingly, 

Rhudy et al. (2006) found that emotional pictures modulated pain intensity ratings of 

both, predictable and unpredictable pain. However, the magnitude of the nociceptive 

flexion reflex as an indicator of spinal neurotransmission was only affected when pain 

was unpredictable, suggesting that pain modulation of predictable pain does not 

depend on inhibition at the spinal level.  

The enhancement of pain modulation by rewarding pain relief by the dopamine 

precursor levodopa implies that cortico-limbic reward and decision networks play an 

important role in mediating such modulatory effects. In rats, rewarding pain relief has 

been shown to depend on dopaminergic signaling in the VTA and the NAcc 

(Navratilova et al., 2012). In humans, dopamine has previously been shown to mediate 

pain modulatory effects with conflicting motivations: Becker, Gandhi, et al. (2013) 

showed that an dopamine agonist increased pain inhibitory and faciliatory effects of 

monetary wins and losses respectively on pain perception. However, the role of 

dopamine in pain modulating effects of pain relief obtained in a motivated state have 

not been investigated before.  
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In general, dopamine has been suggested to have general antinociceptive effects. This 

assumption is based on several results of animal studies (Burkey et al., 1999; Jensen 

& Yaksh, 1984) as well as human studies that found dopamine related gene variations 

to be associated with clinical and experimental pain (Cevoli et al., 2006; Treister et al., 

2009). While these studies show an association of dopamine related genes with pain 

sensitivity, the exact mechanisms of these associations remain unclear. In contrast to 

studies suggesting antinociceptive effects of dopamine, Becker, Ceko, et al. (2013) 

found no effects of either increasing or decreasing dopamine availability on thermal 

pain thresholds, pain tolerance, and temporal summation. This finding argues against 

a one directional, pain inhibiting effect of dopamine on pain. Instead, dopamine might 

be involved in pain processing by its role in mediating motivational salience, indicating 

the motivational value of both, positive and negative stimuli (A. M. W. Taylor et al., 

2016). The mesolimbic dopamine system has often been associated with responses 

to rewards and reward predictive cues (Glimcher, 2011). However, based on findings 

that dopamine increases “wanting” (i.e. the motivation to work for rewards) rather than 

“liking” (i.e. the hedonic experience of rewards) dopamine has also been suggested to 

signal incentive salience of rewards that promotes approach behavior (Berridge et al., 

2009). Based on the finding of dopamine neuron populations that respond to both 

positive and negative events (Matsumoto & Hikosaka, 2009) it has also been 

suggested that specific subpopulations of dopaminergic neurons code motivational 

salience instead of valence (Bromberg-Martin et al., 2010). If pain modulation serves 

to enhance motivational value as suggested by the motivation-decision model of pain 

(Fields, 2018), a valence independent function of dopaminergic signaling could explain 

opposing effects of dopamine on pain modulation in motivational conflicts (Becker, 

Gandhi, et al., 2013) and during relief seeking as shown here in study 1.  

In addition to pain modulation induced by active decision making, both studies 

presented here consistently showed an association of trial by trial variation of 

endogenous pain modulation with prediction errors estimated by computational 

modeling participants’ choice behavior in the wheel of fortune task. Higher prediction 

errors were associated with stronger pain modulation across all choices and in both 

studies. This is in line with information processing accounts of endogenous modulation 

of pain perception (Seymour, 2019), which propose that perception of pain is 
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endogenously modulated according to its informational value in order to optimize 

prospective control of behavior. From this perspective, phasic changes in pain intensity 

should specifically be enhanced endogenously when uncertainty (as indicated by 

prediction errors) is high, because new and relevant information can be learned in such 

situations. In contrast, if an outcome is certainty, comparatively less informational value 

is conveyed and, hence, less pain modulation should occur. Whether modulation of 

pain perception according to its value for learning is sensitive to opioidergic and/or 

dopaminergic signaling has not been investigated before. Therefore, the finding of an 

enhanced association between prediction errors and endogenous pain modulation by 

dopamine in study 1 provides new insides into how the pain system achieves refined 

control of behavior through modulatory processes. This finding further supports the 

assumption that dopaminergic transmission plays an important role in mediating pain 

modulatory effects that support learning in the context of pain and pain relief (cf. 

Becker, Gandhi, et al., 2013; A. M. W. Taylor et al., 2016). 

Replicating previous results (Becker et al., 2015), study 1 showed that pain modulation 

was higher in participants high in novelty seeking as a personality trait. More important, 

the present results extend this finding by showing that this relationship was enhanced 

by dopamine as well. Novelty seeking describes a tendency to explore new information 

that may only be valuable for future behavior (Wittmann et al., 2008). An enhanced 

motivation for such exploratory behavior might come with increased sensitivity to 

rewarding outcomes such as pain relief. Endogenously enhanced perception of pain 

relief in high novelty seeking individuals might therefore reflect their higher sensitivity 

to new information. The personality trait of novelty seeking has been associated with 

enhanced dopaminergic activity due to lower midbrain (auto)receptor availability 

(Leyton et al., 2002; Savage et al., 2014; Zald et al., 2008). Further, brain activation in 

the striatum during exploration driven decision making was found to correlate with 

interindividual differences in novelty seeking (Wittmann et al., 2008). These findings 

suggest that exploratory behavior is mediated by midbrain dopaminergic activity. The 

correlation of enhanced endogenous pain modulation by dopamine with novelty 

seeking found in study 1 suggests that dopamine promotes higher sensitivity to the 

informational value of relief outcomes.  
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In sum, the results presented in this dissertation provide novel evidence for an 

important role of dopaminergic transmission in mediating pain modulatory effects of 

rewarding pain relief. In synopsis with previous literature these results strongly suggest 

that mesolimbic reward and decision circuits are in involved in the endogenous 

modulation of pain perception by relief thereby enhancing our current knowledge on 

psychobiological mechanisms of pain perception in healthy states. In contrast, we 

found no evidence for an involvement of opioidergic transmission and descending 

modulatory pathways. 

4.2 Reinforcement by pain relief 

Nociceptive input signals actual or potential tissue damage. Such a threat of body 

integrity is reflected by the aversiveness of pain and the associated powerful motivation 

to escape and avoid harm whenever possible. This motivation to avoid pain has been 

widely recognized in research. However, despite the well-known pleasure of pain relief 

much less attention has been paid to the equally potent motivation to seek pain relief 

when being in pain. Pain has been conceptualized as a homeostatic drive that aims to 

reinstate bodily equilibrium (Craig, 2003). Accordingly, pain should elicit a strong 

motivation to mitigate or escape painful situations. The same principles can be applied 

to pain relief, and hence, behavior with the goal to achieve pain relief. Moreover, the 

aim of the pain system may not only be to cope with current threats, but in addition to 

learn about prospective behavior that protects the organism (Seymour, 2019). 

Accordingly, obtaining pain relief should be reinforcing, strengthening knowledge 

about actions that help to escape from pain. Evidence for the rewarding nature of pain 

relief comes from studies that showed that relief is perceived as pleasant (Leknes et 

al., 2008) and that even painful stimulation is perceived as pleasant, if it indicates 

avoidance of a relatively stronger pain (Leknes et al., 2013). Here, in study 1 we 

demonstrated that pain relief also induces negative reinforcement of choice behavior: 

participants learned to select the option associated with a higher chance to win and 

thus to gain pain relief more frequently. Importantly, participants were not instructed 

that they could optimize their outcomes based on their choices. Interestingly, data of 

the exit interview revealed that the learning effect was in fact driven by those 

participants that were able to report the contingency of choice and likelihood of winning 
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at the end of the task. In line with previous results, this suggests that contingency 

awareness mediates successful learning in the wheel of fortune task used here 

(Cleeremans et al., 1998; Kirsch et al., 2004). 

Despite the fact that levodopa increased the effect of unpredictability on pain 

modulation, thereby amplifying the informational value of outcomes in the wheel of 

fortune task, participants did not show an increased preference for the more rewarding 

option in this condition. While the result is surprising, this finding argues against a 

simple transition of perceived relief into subjective decision value, which in case of a 

stationary reward schedule, as implemented in our task, should have promoted 

choices in favor of the more advantageous option. A possible explanation for this 

finding is the involvement of model-free and model-based decision systems. Model-

free learning refers to direct reinforcement of actions by their consequences, as 

described in traditional reinforcement learning models. In contrast, model-based 

learning refers to the acquisition of an internal model of the task structure that allows 

to plan actions ahead of time based on expected future rewards (Daw et al., 2011). 

Since the present results suggest that relief related learning needed contingency 

awareness, this might suggest that such a model-based learning system build the 

basis of learning in our task. In line with the present results, Kroemer et al. (2019) 

showed that increased dopamine availability by administration of levodopa did not 

affect model-based learning, but rather impaired direct reinforcement of choice 

behavior. However, the increased dopamine availability had no effect on reward 

prediction error signals (measured by BOLD responses). These findings suggest that 

increased dopamine availability only impaired transfer of learned values to overt 

actions. This is in line with the “thrift” hypothesis that supposes that dopamine 

modulates the exploitative versus explorative behavior (Beeler, 2012; Beeler et al., 

2010). This hypothesis states that higher tonic dopamine levels enable explorative 

behavior that deviates from decisions that are directly based on state-based 

predictions (i.e. predictions based on the learned value from previous experiences).  

However, to directly test whether such different decision systems are involved in 

learning by rewarding pain relief requires more sophisticated task manipulations 

(Langdon et al., 2018) and should be followed up in future research. 



General discussion 

Alterations in chronic pain 

 
109 

Similar to levodopa, naltrexone also reduced effects of reinforcement learning 

compared to the placebo condition. Naltrexone did not reduce the informational value 

of outcomes in the wheel of fortune game as indicated by comparable intensity ratings 

in the placebo and naltrexone condition. This emphasizes the notion that perceived 

relief does not directly translate to a decision value, because in that case reinforcement 

should also be comparable between the two conditions. However, endogenous opioids 

have been implicated in different aspects in the context of reward, with enhancing 

effects on “wanting”, “liking”, and choice behavior (Chelnokova et al., 2014; Eikemo et 

al., 2017; Meier et al., 2021). Our results suggest that at least one of these functions 

was disrupted by the blockade of opioid receptors but the specific contribution of 

endogenous opioids to reinforcement learning in the context of pain needs to be 

addressed in future studies.  

Nonetheless, the finding that both drug manipulations impaired reinforcement in our 

task suggests that both, dopamine and endogenous opioids, play a role in relief 

seeking. 

4.3 Alterations in chronic pain  

Theories on the development and maintenance of chronic pain emphasize the 

importance of emotional and motivational aspects that characterize the pathological 

state. For example, the earliest version of the fear-avoidance model of pain (Lethem 

et al., 1983) describes chronic pain as “exaggerated pain perception” caused by 

disproportionally augmented emotional-motivational pain perception relative to 

sensory-discriminative aspects. This emphasizes already the driving and 

pathogenetically highly relevant role of altered emotional and motivational processing 

in the context of chronic pain, with comparatively small or even no effects on sensory-

discriminative pain processing. Borsook et al. (2016) similarly describe that chronic 

pain is characterized by diminished motivation due to impaired function of reward 

circuits and increased negative affective states associated with an over-recruitment of 

limbic structures. Correspondingly, patients with chronic pain often present with 

comorbid affective and anxiety disorders (Castro et al., 2009) and increased anhedonia 

(Garland et al., 2020), which might reflect generalized impairments in emotion and 

reward processing. Indeed, impaired emotional decision making and altered fear 
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related learning have been shown in patients with chronic pain (Apkarian et al., 2004; 

Meulders et al., 2015, 2018). Moreover, altered activation patterns in the reward circuit 

have been found in response to pain onset and offset (Baliki et al., 2010; Loggia et al., 

2014). Baliki et al. (2012) showed that increased functional connectivity within the 

reward circuit, specifically between the NAcc and vmPFC, predicts the transition from 

subacute to chronic pain. However, it is not clear how these changes in the function of 

reward circuitries relate to changes in pain perception. It is conceivable that impaired 

endogenous pain inhibition contributes to exaggerated pain perception in chronic pain 

(B. K. Taylor & Corder, 2014). In a recent fMRI study Zhang, Li, et al.  (2018) found 

that impaired endogenous pain inhibition during offset analgesia was associated with 

altered activation in brain regions involved in reward processing. Yet, this as well does 

not show a causal relationship between altered reward processing and impaired 

endogenous modulation. 

Based on this gap in the literature, one aim of study 2 was to test whether endogenous 

modulation of relief perception induced by active decision making compared to passive 

receipt of relief is impaired in patients with chronic pain. Contrary to our hypothesis, 

we did not find alterations in the endogenous modulation of relief perception in our 

patient sample compared to the healthy controls. This finding suggests that 

motivationally driven enhancement of pain relief perception is a robust phenomenon 

that seems to survive maladaptive changes of perception during pain chronification. 

Nevertheless, this finding of no differences between patients with chronic pain and 

healthy controls was surprising, because other types of endogenous pain modulation 

such as conditioned pain modulation and offset analgesia have been found to be 

impaired in patients with chronic pain (Gerhardt et al., 2017; Kobinata et al., 2017; 

Lewis et al., 2012; S. Zhang, Li, et al., 2018). Moreover, even a causal role of reduced 

endogenous pain inhibition in the development of chronic pain has been discussed 

(Yarnitsky, 2015). On the other hand and in line with the present results, placebo 

analgesia as a form of endogenous pain inhibition based on expectations appears not 

to be impaired in chronic pain patients (Frangos et al., 2021; A. Power et al., 2020). 

This might be interpreted as indicating the implication of similar mechanisms in placebo 

analgesia and endogenous pain modulation during active decision making. However, 

pain-inhibitory effects of placebos were found to be reduced by opioid receptor 
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antagonists (Benedetti, 1996; Eippert, Bingel, et al., 2009), while in study 1 we found 

no corresponding evidence for an involvement of endogenous opioids in endogenous 

pain modulation in active decision making. These heterogenous findings point to a 

complex picture regarding altered mechanisms of endogenous pain modulation in 

chronic pain. Specifically, it is needed to disentangle specific mechanisms that 

distinguish different types of endogenous pain modulation. Moreover, the same pain-

modulatory mechanisms may be differentially affected in different pain conditions 

(Gerhardt et al., 2017). In line with such differential alterations, study 2 of this 

dissertation showed that pain facilitation induced by active decision making was 

stronger in CBP compared to FM and CBP showed a stronger effect of unpredictability 

on endogenous pain modulation compared to FM. In addition, we found a reduced 

association of relief prediction errors with activation in the pgACC in FM but not in CBP 

compared to healthy controls. These findings might suggest that the interaction of 

reward processing and endogenous pain modulation differs between the two 

conditions, but due to the small sample sizes no clear conclusions can be drawn.  

The finding that endogenous modulation of pain relief enhances the informational value 

that it carries suggests that it plays a role in updating of decision values. Although study 

2 did not replicate the finding of successful reinforcement learning by rewarding pain 

relief in neither healthy controls nor patients with chronic pain, results of the 

computational modelling of the cognitive processes underlying decision making in the 

context of pain and pain relief points to differences between these groups. As such, 

HC showed stronger updates of their expectations by negative compared to positive 

prediction errors. This is in line with a recent study that showed higher learning rates 

for received compared to avoided pain and reported separable neural representation 

for positive and negative prediction errors (Jepma et al., 2022). In contrast to HC, CBP 

showed a reversed pattern with higher learning rates for positive prediction errors 

compared to negative prediction errors. Similar to the previous findings on chronic pain 

discussed before, previous findings on the sensitivity for rewards and losses in chronic 

pain are heterogenous. Two studies used a monetary incentive delay task, in which 

response times serve as indicators for the motivation to work for monetary rewards 

and to avoid monetary losses. Martucci et al. (2018) found no differences in response 

times between pain patients and healthy controls while Kim et al. (2020) found longer 
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responses times in patients compared to healthy controls with no differences between 

rewards and losses. However, it is conceivable that increased motivation to seek relief 

in chronic pain might render pain and specifically pain relief as reward for patients more 

relevant than monetary rewards and losses. Stronger updates of expectations driven 

by pain relief compared to pain increases in CBP might reflect such increased 

motivation. Instrumental learning mechanisms and associated alterations in reward 

circuitries are assumed to contribute to the transition of acute to chronic pain (Apkarian 

et al., 2013), therefore a better understanding of impairments might help to develop 

treatment strategies that target and reverse maladaptive changes. 

In summary, these results suggest that pain-inhibitory effects of rewarding pain relief 

seem to be preserved in both pain conditions while differences in learning pattern 

support the widely accepted assumption of impaired reward processing in chronic pain. 

4.4 Implications and perspectives 

The results presented in this dissertation improve the understanding of mechanisms 

that underlie endogenous modulation and instrumental learning induced by pain and 

pain relief. Moreover, the results show how these two key aspects of pain processing 

interact with each other. Bidirectional modulations enhance perception of both, pain 

and pain relief, when these signals hold relevance for behavior and learning. This 

provides support for the most recent theoretical frameworks of endogenous modulation 

of pain perception that emphasize that the main purpose of the pain system is to control 

and optimize current and future behavior that helps to mitigate or avoid pain (Fields, 

2018; Seymour, 2019). The present results delineate psychobiological mechanisms 

that underlie such optimization of behavior. Specifically, the results suggest that 

dopamine plays a central role for the endogenous modulation as it seems to increase 

the informational value of perceived pain and pain relief depending on the external and 

internal factors such as the context and motivational drives. In contrast, opioidergic 

effects on relief information appear to play a minor role. Further, the neural correlate 

of relief expectation and prediction errors in activation of the pgACC suggests that this 

brain area contributes to the mediation of modulatory effects on relief perception. A 

better understanding of motivational effects on endogenous modulation is an important 

basis for novel routes for the optimization of treatment and prevention of chronic pain. 
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Currently available therapeutic strategies are often unspecific and do not achieve 

satisfactory effects in many patients (Gatchel et al., 2014). Specifically, in chronic pain, 

seeking pain relief is a dominating behavioral drive. However, maladaptive strategies 

to seek pain relief may contribute to the transition of acute to chronic pain. In a recent 

study, we provided evidence that reward learning based on prediction errors is 

implicated in the process of chronification of pain (Löffler et al., 2022). Interestingly, 

the activation pattern in the NAcc in response to a cue predicting pain relief 

differentiated patients with subacute back pain that recovered from those who did not 

recover from their pain six month later. This suggests that learning from pain relief 

might contribute to the process of pain chronification. The studies presented here 

provide additional insights in the psychobiological mechanisms that drive learning by 

pain relief. To target maladaptive learning processes prior to the transition to chronic 

pain and thus to prevent the development of chronic pain is a goal that requires more 

research to better understand mechanistic differences of the responding of the reward 

system during and after this transition. Such an approach is further supported by the 

finding that already manifested chronic pain is characterized by different alterations in 

the reward processing network compared to those alterations present at sub-acute 

states that predict the development of chronic pain (Baliki et al., 2012; Löffler et al., 

2022). Our finding that dopamine increases endogenous pain inhibition may be 

exploited for the development of refined multidimensional therapeutic strategies. 

Dopaminergic drugs such as levodopa produce a transient increase of dopamine 

availability with a relatively short half-life of plasma concentrations (Nyholm et al., 

2012). This might offer the possibility to harness pain modulatory effects of the drug in 

specific behavioral or physiotherapeutic treatments with limited side effects outside the 

therapeutic setting. Dopaminergic effects on endogenous pain modulation could be 

used to enhance relief perception with the goal to promote reinforcement of adaptive 

strategies. However, development of such treatment strategies needs further research 

to better understand how learning by pain relief affects clinical pain. Findings from 

experimental pain stimulation cannot directly be transferred to clinical pain. For 

example, based on their experimental findings Baliki et al. (2010) hypothesized that 

patients with chronic back pain experienced their clinical pain as less unpleasant 

during an experimental painful stimulation. They found an inverted NAcc activation in 
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response to the offset of the experimental stimulation in chronic pain patients 

compared to healthy controls and concluded that in patients the offset of the 

experimental stimulation predicted an aversive event, namely the increased perception 

of their clinical pain. Such interactions between experimental findings and clinical pain, 

and specifically, the altered motivational significance of experimental pain in patients 

with chronic pain could be exploited and needs to be considered when translating 

experimental findings into clinical treatment strategies.  

The important role of the pain system in creating predictions that guide behavior has 

been acknowledged in recent theories on pain (Fields, 2018; Seymour, 2019). These 

theoretical accounts allow specifying hypotheses about learning mechanisms that 

underlie behavioral and perceptual observations that can be tested by comparing 

experimental data to mathematical formulations of these mechanisms. These 

mathematical models make assumptions about the processes that are responsible for 

the observed effects, and thus, allow to test whether specific psychological and neural 

processes reflect these theoretical assumptions. Here, we used a mathematical model 

of reinforcement learning that enabled us to test the effects of the theoretically 

predicted process of value updating by prediction errors on endogenous modulation 

and choice behavior. Such computational models have a high potential for novel 

mechanistic insights and with that a great benefit for research. In particular, the 

possibility to specify precise hypotheses not only on behavioral outcomes but also with 

regard to the underlying mechanisms, for example in terms of brain circuits, promise 

valuable insights. Thus, future studies should exploit the opportunities of computational 

modelling as a tool to mechanistically test theory driven hypotheses. 

4.5 Limitations 

The work described here deepens the understanding of mechanisms underlying the 

endogenous modulation of pain and its relief in the context of motivated behavior. Yet, 

the results need to be considered in the light of several limitations. 

The assessments used in the studies of this thesis focused on sensory discriminative 

components of pain perception. This leaves out a key aspect of pain perception, which 

is its affective component. As discussed above affective or emotional-motivational 

components of pain can be separated from sensory-discriminative components and 
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they appear particularly relevant in the context of chronic pain. In human studies, 

assessing the affective component of pain and pain relief is usually operationalized by 

asking for ratings of pleasantness or unpleasantness of a perception, for example, on 

visual analogue scales (Leknes et al., 2008; Sirucek et al., 2021), which was not 

implement in the paradigm used here. Future studies should include such a measure 

to test whether the affective component of pain and relief is similarly modulated by 

motivational aspects. In addition, the findings of endogenous modulation of pain and 

pain relief were found in ratings of perceived stimulus intensity, while the sensory 

discrimination task implemented as a behavioral measure of pain sensitization or 

habituation did not show comparable results. In contrast, Becker et al. (2015) found 

comparable effects of pain relief as reward gained in a motivated state in intensity 

ratings and the same behavioral measure as used here. One methodological 

difference between the study by Becker et al. (2015) and the present studies, are larger 

absolute changes in thermal stimulation intensity for pain relief as reward and pain 

increases as punishment in the present studies. For the intensity ratings participants 

were asked to rate their perception resulting from pain relief and increases. In contrast, 

the sensory discrimination task focused on perceptual modulation of the initial tonic 

pain stimulation before outcomes were delivered. It is conceivable that this measure is 

more sensitive to changes caused by active decision making when phasic intensity 

changes, and with that the informational value of the outcomes, are larger. Whether 

the difference in the magnitude of change in stimulus intensities indeed causes the 

observed differences in the results, needs to be addressed in future studies as the 

sensory discrimination task may provide valuable information about the modulation of 

the underlying tonic painful stimulus.  

In both studies participants were not explicitly instructed that they could optimize their 

outcomes based on their choice in the experimental task, which constitutes a key 

difference to many other studies on reward learning (Jepma et al., 2022; Pessiglione 

et al., 2006; Seymour et al., 2012; S. Zhang, Mano, et al., 2018). Study 1 showed that 

reinforcement by pain relief induced successful learning. Interestingly, information 

obtained from the post-hoc interview suggests that this learning was related to explicit 

contingency awareness. However, the finding of successful reinforcement learning 

was not replicated in study 2. It is conceivable that the implementation of the task in 
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the context of the fMRI scanning was distracting and prevented participants from 

acquiring awareness of reward contingencies. The role explicit awareness of reward 

contingencies in learning by pain relief should be further investigated in future studies. 

Study 1 revealed effects of dopaminergic signaling on endogenous modulation in terms 

of an enhancement of the informational value of pain relief, while no effects of the 

opioid receptor antagonist naltrexone were found. The study did not implement 

sufficient manipulation checks to show that the drug administration truly was effective 

for naltrexone. The dose of 50 mg was shown to induce more than 90% blockade of 

!-opioid receptors (Weerts et al., 2013) and the same dose has been used in several 

previous studies before that found effects of blocking endogenous opioids in the 

context of reward processing, pain inhibition, and relief perception (Chelnokova et al., 

2014; Eikemo et al., 2017; C. D. King et al., 2013; Sirucek et al., 2021). However, we 

cannot rule out the possibility that there are opioidergic effects on pain modulation by 

rewarding pain relief although such effects were not captured by the outcome 

measures in our study. 

Study 2 aimed to find neural correlates of the pain modulatory effects found on the 

behavioral level. Similar to Becker, Gandhi, Pomares, et al. (2017), we found no brain 

activation that was directly related to modulation of the perceived pain intensity in terms 

of differences in pain processing areas between the active and the passive condition. 

While this study also focused on neural correlates of instrumental learning, future 

research might benefit from applying more refined analysis strategies to also uncover 

neural activations associated to the endogenous modulation of pain and pain relief. 

Finally, findings of study 2 on altered endogenous modulation and relief related 

learning in chronic pain patients should be interpreted with caution because of the 

small sample sizes of patient groups. Separating the patient sample into subgroups 

based on their clinical diagnosis further reduced the power of the statistical analyses. 

Nevertheless, the present results hint at altered learning patterns and differences in 

affected mechanisms between FM and CBP. Future studies should with sufficient 

power to detect possible effects should investigate both, general impairments of pain 

relief as a rewarding stimulus, and differences in impaired mechanisms in distinct 

chronic pain conditions.  
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4.6 Conclusion 

The studies presented in this dissertation provide new insights into psychobiological 

mechanisms of pain relief as a reward. They demonstrate the complex interaction of 

cognitive, perceptual, and behavioral processes that forms the basis for the pain 

system to optimally serve homeostatic needs and guide prospective behavior. The 

finding that endogenous modulation of perception enhanced the informational value of 

pain and pain relief during active decision making was shown across both studies with 

no alterations of this effect in patients with chronic pain compared to healthy controls. 

This suggests that motivationally driven enhancement of pain relief perception is a 

robust phenomenon that appears to be spared by maladaptive changes during pain 

chronification. The mediating effect of enhanced dopamine availability on informational 

aspects of endogenous modulation gives new insights into the role of dopaminergic 

signaling in pain perception and might serve as a leverage point to optimize or develop 

new treatment strategies that combine pharmaceutical and behavioral interventions. 

In contrast to the a priori hypothesis of an involvement of the opioidergic system in pain 

inhibitory effects of rewarding pain relief we found no effect of the opioid receptor 

naltrexone on endogenous modulation. In addition, fMRI results did not show neural 

correlates of the behavioral effect of endogenous modulation, while they hint at 

mechanisms relevant in the association of endogenous pain modulation and prediction 

errors, i.e. uncertainty of expected outcomes. In sum, the present results provide a 

comprehensive picture into the psychobiological mechanisms of pain relief perception 

and associated learning in healthy states and in chronic pain, thereby closing some 

imminent gaps in the current literature. Nevertheless, several open questions remain 

and further research is necessary, particularly to elucidate the neural mechanisms of 

endogenous perceptual modulation. The findings presented here provide a basis for 

such future research on the motivational aspects of pain relief and its role in chronic 

pain. 
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5 SUMMARY 

Pain is much more than a sensory experience. Pain has strong emotional and 

motivational components that fulfill crucial functions for survival and well-being, 

because they drive behavior to avoid and escape from pain. This motivation is also 

reflected in the opposite and rewarding nature of the pleasure of pain relief. Both 

endogenous modulation of the perception of pain and pain relief are thought to promote 

the motivational drive and with that behavior that serves homeostatic needs. In contrast 

to pain and despite this crucial role of pain relief as reward, the psychobiological 

mechanisms underlying pain relief perception as well as related learning remain poorly 

understood. The aim of this dissertation was to deepen our understanding of 

psychological and neurobiological mechanisms of pain relief in healthy humans and 

possible alterations of these mechanisms in patients suffering from chronic pain. 

In a first experimental study, the role of the neurotransmitters dopamine and 

endogenous opioids in pain modulation and reinforcement learning were investigated 

using a probabilistic relief seeking task in healthy volunteers. The results showed that 

the informational value of pain and pain relief was endogenously enhanced in states 

of active decision making compared to passive states. This endogenous pain 

modulation scaled with perceived uncertainty of expected outcomes. Dopamine 

increased endogenous pain and pain relief modulation, while no evidence for the 

involvement of endogenous opioids was found. Successful reinforcement learning as 

found in the placebo condition was impaired by dopamine and endogenous opioids.  

The same probabilistic relief seeking task was used in a second study to investigate 

neural correlates of learning driven by pain and pain relief using functional magnetic 

resonance imaging in patients with chronic pain and healthy controls. This study 

replicated the effects of endogenous pain modulation by its informational value, while 

no alterations in patients with chronic pain were found compared to healthy controls. 

This result suggests that motivationally driven enhancement of pain relief perception 

is a robust phenomenon that appears to be spared by maladaptive changes during 

pain chronification. However, compared to healthy controls patients with fibromyalgia 

showed a stronger bias towards relief related cues during learning, but a weaker 
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association of activation in the pregenual anterior cingulate cortex with relief prediction 

errors. These findings suggest that although the informational content of pain relief 

seems to be preserved in patients with chronic pain, subtle differences in the 

underlying mechanisms may reflect altered reward processing in chronic pain, which 

have been discussed before. 

In sum, the results highlight the important role of motivation and prospective control of 

behavior for endogenous modulation of pain and pain relief and provide insights in 

underlying psychobiological mechanisms in healthy states and in chronic pain. 
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