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Abstract 
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I. Abstract 

Acute myeloid leukemia (AML) represents a genetically heterogeneous group of aggressive 

myeloid malignancies arising from clonal expansion of aberrant, myeloid-primed 

hematopoietic stem or progenitor cells. Intensive chemotherapy efficiently targets 

proliferating blasts and achieves remission in the majority of patients. However, most patients 

relapse, likely due to persisting, slowly proliferating leukemic stem cells (LSCs). A novel flow 

cytometry sorting strategy was recently developed in-house to enrich five different leukemic 

populations, two of them enriched for LSCs (GPR56+NKG2DL-). This strategy was applied to a 

genetically harmonized DNMT3A and NPM1 double-mutant AML cohort. Despite identical 

driver mutations, one group presented with early relapse (ER) while the other achieved long-

term remission (LTR).  

Multi-omics profiling (RNA-seq, DNA methylation, and genetic information) allowed me to 

deeply characterize these sorted leukemic populations and identify biological processes 

associated with ER. This analysis confirmed xenotransplantation experiments and 

demonstrated that the LSC-enriched populations exhibited indeed more stem-like 

characteristics. Still, LSC-enriched populations showed a higher cell cycle activity compared 

to non-engrafting, more differentiated AML populations. The LSC-enriched populations were 

transcriptionally similar, but the CD34+ population retained also healthy hematopoietic stem 

cells (HSCs) while the CD34- population contained exclusively leukemic (stem) cells. This was 

particularly reflected by the distinct mutant allele frequencies of the DNMT3A- and NPM1-

mutations. By analyzing the LSC-enriched populations, I demonstrated a higher 

transcriptomic instability in ER LSCs compared to LTR LSCs that may be initiated by increasing 

hypomethylation associated with an earlier onset of the DNMT3A mutation. Moreover, ER 

LSCs exhibited a more stem-like phenotype, characterized by higher activity of mitochondrial 

oxidative phosphorylation compared to LTR LSCs, which presented enhanced glycolytic 

activity instead. The difference in energy metabolism was partially confirmed by untargeted 

metabolomics analyses. In a technical development project, I also implemented an interactive 

R shiny app (MetaboExtract) and an R package (MetAlyzer) to infer suitable extraction 

protocols for metabolomics studies. In addition, I trained an outcome prediction expression 

signature to stratify patients based on their risk of relapse and hence long-term 

chemotherapy sensitivity. This signature was highly predictive in different AML cohorts and 

was able to stratify AML patients with poor and more favorable overall survival. In summary, 

my work revealed biological mechanisms associated with an early relapse in LSC-enriched 

AML populations and generated a novel outcome prediction signature to stratify patients. 
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II. Zusammenfassung 

Die akute myeloische Leukämie (AML) stellt eine Gruppe genetisch heterogener, aggressiver 

Erkrankungen der myeloiden Hämatopoese, die durch klonale Expansion maligner 

hämatopoetischer Stammzellen (HSC) oder myeloischer Vorläuferzellen entstehen. Eine 

intensive Chemotherapie zielt effizient auf die proliferierenden Blasten ab, sodass bei der 

Mehrheit der Patienten eine Remission erreicht werden kann. Die meisten Patienten erleiden 

jedoch einen Rückfall, der wahrscheinlich auf persistierende, langsam proliferierende 

leukämische Stammzellen (LSCs) zurückzuführen ist. Eine neuartige FACS-Strategie zur 

Anreicherung fünf verschiedener leukämischer Populationen, einschließlich zweier LSC-

angereicherter Populationen (GPR56+NKG2DL-) wurde kürzlich im Labor entwickelt. Diese 

wurde auf eine genetisch harmonisierte AML-Kohorte angewendet, deren Proben 

ausnahmslos Mutationen in den beiden Genen DNMT3A und NPM1 tragen. Trotz identischer 

Treibermutationen erlitt eine Gruppe einen frühen Rückfall (ER), während die andere Gruppe 

eine langfristige Remission (LTR) erreichte.  

 

Durch Multi-omics-Profiling (RNA-seq, Auslesen von DNA-Methylierungs- und genetischer 

Informationen) konnte ich die angereicherten leukämischen Populationen eingehend 

charakterisieren und jene biologischen Prozesse identifizieren, welche einen frühen Rückfall 

begünstigen. Diese umfassende Analyse bestätigte vorangegangene Xenotransplantations-

experimente und zeigte, dass die LSC-angereicherten Populationen HSCs tatsächlich ähneln, 

aber dennoch eine höhere Zellzyklusaktivität aufweisen als die nicht transplantierten, stärker 

differenzierten AML Populationen. Die LSC-angereicherten Populationen waren 

transkriptionell ähnlich, jedoch umfasste die CD34+-Subfraktion weiterhin gesunde HSCs, 

während die CD34--Subfraktion ausschließlich leukämische (Stamm-)Zellen enthielt. Dies 

spiegelte sich insbesondere in den unterschiedlichen Allelfrequenzen der DNMT3A- und 

NPM1-Mutationen wider. Durch die Analyse der LSC-angereicherten Populationen konnte ich 

zeigen, dass ER LSCs im Vergleich zu LTR LSCs eine höhere transkriptomische Instabilität 

besaßen, die möglicherweise eine stärkere Hypomethylierung durch ein früheres Auftreten 

der DNMT3A-Mutation ausgelöst wurde. Zudem wiesen die ER LSCs einen Stammzell-

ähnlicheren Phänotyp auf. Dieser war gekennzeichnet durch eine höhere Aktivität der 

mitochondrialen oxidativen Phosphorylierung im Vergleich zu den LTR LSCs, die eine erhöhte 

glykolytische Aktivität aufwiesen. Der unterschiedliche Energiestoffwechsel konnte teilweise 
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durch die Anwendung von untargeted Metabolomik bestätigt werden. Im Rahmen eines 

technischen Projekts habe ich zudem eine interaktive, R Shiny App (MetaboExtract) 

entwickelt sowie ein R-Paket (MetAlyzer) implementiert, um Nutzern die interaktive 

Identifikation geeigneter Extraktionsprotokolle für Metabolomics-Studien zu ermöglichen. 

Darüber hinaus konnte ich eine Gensignatur trainieren, um Patienten anhand ihres 

Rückfallrisikos und damit ihrer langfristigen Sensitivität gegenüber Chemotherapie zu 

stratifizieren. Diese Signatur zeigte in verschiedenen unabhängigen AML-Kohorten eine hohe 

Vorhersagekraft und war in der Lage, AML-Patienten mit schlechtem und günstigem 

Gesamtüberleben zu stratifizieren. 

 

Zusammenfassend zeigt meine Arbeit biologische Mechanismen auf, die mit einem frühen 

Rückfall in LSC-angereicherten AML-Populationen assoziiert sind, und präsentiert eine neue 

Genexpressions-Signatur zur Stratifizierung von Patienten anhand ihrer voraussichtlichen 

Überlebenswahrscheinlichkeit. 
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1 Introduction 

1.1 Acute Myeloid Leukemia 

Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an 

incidence of 4.3 cases per 100,000 people in the US.1 The incidence increases with age leading 

to a median age at diagnosis of about 65 years.2 Intensive research has allowed an increasingly 

precise classification of AML based on molecular and cytogenetic abnormalities and 

treatment has been improved over the past decades.3 Still, AML has high mortality rates. The 

estimated 5-year survival is about 25% with a significantly poorer prognosis in the elderly.4 

While 35-40% of patients younger than 60 years are cured, only 5-15% of older patients 

present long-term therapeutic success.3 The origin of AML is heterogeneous; in some 

patients, exposure to DNA-damaging agents or chemotherapy is the suspected cause of the 

disease or AML arises as a progression of other hematologic malignancies. However, most 

cases appear de novo without clear etiology.1,5 With intensive induction therapy, complete 

remission can be achieved in 60-85% of cases, still, most patients ultimately relapse.1 One 

main explanation is the incomplete eradication of leukemic stem cells (LSCs). These cells are 

either primarily resistant to standard therapy or develop secondary resistance mechanisms 

and have an ability to self-renew and reinitiate the disease.6–10 

1.2 The origin of AML 

1.2.1 Hematopoiesis  

Blood has a multitude of different functions, from oxygen transport and supply of nutrients 

to the various tasks of the immune system.11 Most of the mature blood cells are relatively 

short-lived and constant replenishment is needed to ensure homeostasis and functionality of 

the system.12 Hematopoiesis is hierarchically organized with hematopoietic stem cells (HSCs) 

at the apex (Figure 1). HSCs are multipotent cells that differentiate into progenitor cells by an 

asymmetric division which produces one daughter progenitor cell while maintaining one stem 

cell.13 By differentiation, progenitors become increasingly specialized and finally give rise to 

mature functional blood cells which show a great morphological and functional diversity.14 

The hierarchical tree is divided into a lymphoid branch which differentiates into, e.g., T, B, 

and natural killer (NK) cells while the erythrocyte-myeloid lineage gives rise to, e.g., 

monocytes, megakaryocytes, and erythrocytes.15 The cells of the hematopoietic system have 

been intensively studied and well characterized by phenotypic marker genes presented on 
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their surface. These markers can be used to isolate specific cells via fluorescence-activated 

cell sorting (FACS). For example, hematopoietic stem and progenitor cells (HSPCs) are 

characterized by a CD34+ immunophenotype.16,17 The tree presented in Figure 1 is a simplified 

model of hematopoiesis. Indeed, the hierarchy is more plastic and complex with shortcuts 

and return paths.18 Furthermore, with the advent of single-cell technologies, a rather 

continuous than discrete differentiation model was proposed.19  

 
Figure 1: Simplified hematopoietic hierarchy. The multipotent HSC is located at the apex of the 
hierarchy giving rise to different progenitor cells which progressively differentiate into the 
lymphoid lineage and the erythrocyte-myeloid lineage. In healthy hematopoiesis, stem and 
progenitor cells (HSPCs) are characterized by a CD34+ immunophenotype. HSC: hematopoietic 
stem cells; MPP: multipotent progenitor; LMPP: lymphoid-primed multipotent progenitor; CMP: 
common myeloid progenitor; CLP: common lymphoid progenitor; GMP: granulocyte-macrophage 
progenitor; MEP: megakaryocyte-erythroid progenitor; NK: natural killer cells. (Adapted from 
Corces et al.20) 

 

HSCs reside in the bone marrow where hematopoiesis and maturation of blood cells mainly 

take place. The bone marrow provides a physically and molecularly protective 

microenvironment for these crucial cells and has been shown to be essential for HSC 

function.21,22 The low abundant HSCs population is characterized by their ability to self-renew, 
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allowing these cells to generate new, identical daughter HSCs after cell division.23 Based on 

the immunophenotype of these cells, different FACS-sorting strategies were proposed and it 

became apparent that HSCs themselves are a heterogeneous group of cells.24–28 Even though 

some HSCs cycle to replenish the progenitor pool, most of them are in a quiescent state.28,29 

So-called dormant HSCs have been characterized as the most potent HSCs by long-term label-

retaining assays and serial transplantation.28,29 These cells divide only a few times per lifetime, 

which protects them from stress and the risk of accumulation of mutations.28 However, in 

response to excessive stress and injury signals (e.g. induced by infections or chemotherapy) 

dormant HSCs also get activated to maintain the essential functions and homeostasis of the 

hematopoietic system.28,30 

1.2.2 Leukemogenesis and leukemic stem cells 

AML is a heterogeneous hematopoietic malignancy that arises from clonal expansion of 

genetically aberrant HSCs or myeloid-committed progenitors as cells of origin (Figure 2).8,31–

33 Leukemogenesis of AML is based on multiple causes, steps, and pathways.34 Over their 

lifespan, individuals accumulate mutations that are linked to the division and proliferation of 

cells also in the slow-cycling HSPCs.29 Hence, mutations in HSPCs increase with age. AML can 

arise de novo or develop from pre-leukemic conditions such as myelodysplastic or 

myeloproliferative disorders.34,35 Clonal hematopoiesis of indeterminate potential (CHIP) 

describes the clonal expansion of mutated HSCs and also has increasing prevalence with 

increasing age. Even though it does not necessarily entail clinically relevant consequences, it 

increases the risk of developing AML if pre-leukemic HSCs acquire further mutations.36,37 Early 

driver mutations are often epigenetic regulators (e.g., DNMT3A or TET2) that prime the cells 

before additional, later mutations initiate a leukemia (Figure 2).38,39 

 

Similar to the healthy hematopoietic system, a hierarchical organization has been observed 

for AML.40–42 In AML, LSCs reside at the apex of the hierarchic tree, but instead of 

differentiating into functional cells, a large number of immature leukemic blasts is 

produced.43 Accumulation of these non-functional blood cells leads to severe clinical 

symptoms attributable to the loss of mature blood cells.33,44 LSCs have been characterized by 

their self-renewal capacity, relative quiescence, and resistance to apoptosis. Additionally, 

LSCs are often more resistant to conventional chemotherapy which rather targets the more 

proliferative leukemic progenitors and blasts, but also increased drug efflux mechanisms have 

been described for LSCs.7 Hence, while chemotherapy is often successful to eliminate the 
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leukemic bulk, reflected by a complete remission, LSCs survive and initiate a relapse, the cells 

of which are often even more resistant to therapeutic interventions (Figure 2). Consequently, 

based on this cancer stem cell model, eradication of LSCs is essential for long-term remission 

or cure.6,45,46 Studies have shown that LSCs  share similar characteristics with HSCs, however 

it is crucial to study these leukemic cells in order to identify therapies specifically targeting 

LSCs.47,48 

 

 
Figure 2: Schematic development, therapy, and relapse of de novo AML. A healthy HSPC (green) 
acquires a pre-leukemic (orange) phenotype (e.g., mutation of DNMT3A). Subsequent mutations 
(e.g., NPM1) give rise to AML. LSCs (red) differentiate into non-functional leukemic blasts (grey). 
Therapy eradicates the blast fraction but resistant LSCs persist and initiate the relapse. A black 
asterisk indicates the potential development of resistance mechanisms or the proliferation of a 
dominant (potentially therapy-induced) subclone. 

 

Like HSCs, LSCs are a rare population with an estimated number of 1 LSC per 1 million 

leukemic blasts. Experimentally, LSCs have been defined by their capacity to engraft in 

xenotransplantation assays which can be propagated multiple times in serial transplants, as 

well as their ability to produce leukemic progeny that lacks the ability to engraft.49,50 Using 

this definition, Ng et al. could show that LSCs, defined by a 17-gene stemness score (LSC17), 

are indicative for the survival of patients.51 In addition, many studies aimed to identify 

markers that immunophenotypically characterize LSCs to ultimately target or isolate and 

study these cells.52–56  
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1.2.3 The genetic landscape of AML 

With advancements in next-generation sequencing (NGS) technologies, various studies have 

been set up aiming to investigate the genomic landscape of AML in more detail based on 

whole genome sequencing (WGS).57,58 As compared to other adult cancers, AML genomes 

have a relatively low number of mutations (13 on average), some of which have a high 

recurrence.59 The most commonly mutated genes are FLT3 (˜28%), NPM1 (˜27%), DNMT3A 

(˜26%), IDH1 or IDH2 (˜20%), and NRAS or KRAS (˜12%).59 As shown in table Table 1, 

mutations often affect similar biological processes.  

  

Table 1: Frequently mutated genes in AML by functional categories. (Adapted from Döhner et 
al.3) 

Functional Catagory Gene (Frequency [%]) 
Nucleophosmin NPM1 (25-35) 
Tumor suppressor genes TP53 (~8), PTEN, NRAS (~12)59, KRAS (~12)59 
DNA methylation  DNMT3A (18-22), IDH1 (7-14), IDH2 (8-19), TET2 (7-25) 
Splicosome complex SRSF2, SRF3B, U2AF1, ZRSR2 
Cohesin complex STAG2, RAD21 
Transcription factor fusions RUNX1 (5-15), RUNX2 
Activated signaling FLT3-ITD (~20) [RAS-RAF, JAK-STAT, PI3K-AKT] 
Chromatin modifications DOT1L, KMT2A (~5), MLLT3, EZH2, ASXL1 (5-17) 
Others CEBPA (6-10), KIT (<5) 

  

Analyses of the mutational landscape also revealed clonal heterogeneity at diagnosis; and 

clonal evolution observed at relapse is suspected to contribute to therapy resistance.59,60 

Based on studies analyzing the clonal evolution, it is assumed that mutations in genes involved 

in epigenetic regulation often occur early in AML progression and contribute to a pre-

leukemic phenotype.32,39 One of the most frequently mutated epigenetic modifiers is DNA 

(cytosine-5)-Methyltransferase 3A (DNMT3A). This gene is involved in the establishment of 

de novo methylation.3,61 Mutations at various positions in the gene have been described. 

Depending on the position of mutation, different functional changes and entailed altered 

methylation patterns have been observed.62,63 However, DNMT3A is most frequently 

mutated at protein position p.R882 which probably causes a loss of function.64,65 The loss of 

Dnmt3a immortalizes HSCs by hypomethylation of regions associated with self-renewal 

genes.66 Therefore, Dnmt3a loss of function skews HSC division towards self-renewal and to 

an increasing outcompetition against normal HSCs, particularly in older individuals.66 In 
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general, DNMT3A mutations have been associated with poor overall survival.67 However, this 

might depend on the mutation, and a worse outcome was observed only for patients with 

R882 mutations but not with non-R882 mutations.68 Mutations of DNMT3A frequently co-

occur with mutations of NPM1 and FLT3. 60-80% of DNMT3A-mutated cases also harbor an 

NPM1 mutation and about 30% are triple-mutant for DNMT3A, NPM1, and FLT3.65,69 

 

Nucleophosmin (NPM1) is one of the most frequent driver mutations in AML.70 Wild type 

NPM1 is usually located in the nucleolus but can also be found in the cytoplasm and 

nucleoplasma.71 Many functions of the gene have been discussed. Its involvement in cellular 

processes can be summarized into four major areas: ribosome biogenesis, p53-dependent 

stress response, genomic stability (e.g., centrosome duplication), and modulation of growth-

suppressive pathways.72 Observed pathogenic mutations in NPM1 cause a frameshift in the 

C-terminus, which lead to a stronger nuclear export and therefore aberrant cytoplasmic 

localization of the protein. These mutations are also referred to as NPM1c.70,72,73 These 

mutations are always heterozygous, which in turn is in line with embryonic lethality upon 

double knockout Npm1 mice.74 Even though NPM1 has been identified as a frequent driver, 

the exact mechanism in leukemogenesis remains elusive. Since NPM1 has been linked to 

various cellular processes, both loss and gain of gene function have been proposed to drive 

AML development. In general, NPM1 mutations are associated with a favorable prognosis 

depending on co-occurring events.75 

 

Apart from mutations, cytogenetic alterations are frequently observed in AML patients and 

have been used to define genomic subgroups.76 For example, the karyotype is a strong 

prognostic factor defining a subgroup of so-called complex karyotype AML with a highly 

unfavorable prognosis.77 

1.3 Clinical aspects of a complex disease 

1.3.1 Classification and prognostic factors 

Historically, AML was classified based on the morphologic phenotype by the French-

American-British (FAB) groups. These groups are based on myeloid lineage involvement and 

differentiation presented in histochemically stained blood smears.44 More recently, the 

“World Health Organization (WHO) Classification of Tumours of Haematopoietic and 

Lymphoid Tissues” classified AML based on molecular genetic lesions. This classification, 
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updated in 2016, defines six main AML-related groups, including “AML with recurrent genetic 

abnormalities”.31 

 

The prognosis of the disease depends primarily on the combination of genetic drivers, 

molecular and cytogenetic risk, as well as patient-associated factors such as age.78 The ELN 

(European LeukemiaNet) stratifies AML into three subgroups (favorable, intermediate, 

adverse) based on molecular genetics and cytogenetic alterations (Table 2). 

 

Table 2: Risk stratification according to 2017 ELN recommendations. Classification based on 
molecular genetics and cytogenetic alterations. (Adapted from Döhner et al.79) 

Risk category Genetic abnormality 
Favorable  t(8;21)(q22;q22.1); RUNX1-RUNX1T1  

inv(16)(p13.1;q22) or t(16;16)(p13.1;q22); CBFB-MYH11  
Mutated NPM1 without FLT3-ITD or with FLT3-ITDlow 
Biallelically mutated CEBPA  

Intermediate  Mutated NPM1 and FLT3-ITDhigh 
Wild type NPM1 without FLT3-ITD or with FLT3-ITDlow (without adverse-risk 
genetic lesions)  
t(9;11)(p21.3;q23.3); MLLT3-KMT2A 
Cytogenetic abnormalities not classified as favorable or adverse  

Adverse  t(6;9)(p23;q34.1); DEK-NUP214  
t(v;11q23.3); KMT2A rearranged  
t(9;22)(q34.1;q11.2); BCR-ABL1  
inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)  
−5 or del(5q); −7; −17/abn(17p)  
Complex karyotype, monosomal karyotype 
Wild type NPM1 and FLT3-ITDhigh 
Mutated RUNX1 
Mutated ASXL1 
Mutated TP53 

 

Besides patient age (60+ years), negative prognostic factors include, e.g., coexisting 

conditions and illnesses, high white blood cell count, and female sex. In clinical practice, 

particularly age, correlated with general health, is an important clinical stratification since 

older patients are often unable to receive intensive chemotherapy.3,44 In addition, supportive 

care is essential to increase survival during intensive therapy and greatly influences patient 

outcome. This includes transfusion of red blood cells and platelets as well as antibiotic and 

anti-fungal treatment in immunocompromised patients.1,80,81 

 



Introduction 

 8 

1.3.2 Clinical presentation and diagnosis 

AML leads to symptoms derived from cytopenia of all normal mature hematopoietic cells. 

These symptoms are often unspecific and include fatigue, pallor, hemorrhage, and recurrent 

infections. Patients typically present with reduced mature hematopoietic cell counts, e.g., for 

erythrocytes and platelets. The primary diagnosis includes the morphological assessment of 

a peripheral blood smear stained with Wright-Giemsa, however, a definitive diagnosis 

requires bone marrow examination and >20% infiltration with leukemic blasts. These 

leukemic myeloblasts display distinct morphological aberrations such as irregular nuclei, little 

cytoplasm, and presence of azurophilic granules called Auer bodies or rods. It is essential to 

make the correct diagnosis in order to identify appropriate therapeutic strategies. Hence, 

immunohistochemical examination and genetic evaluation require careful analysis to 

diagnose the AML subtype, and distinguish from similar diseases such as acute lymphoblastic 

leukemia (ALL) and myelodysplastic syndrome (MDS).3,44,79 

 

1.3.3 Treatment 

First-line treatment of AML has not substantially changed in the last decades and still consists 

of intensive chemotherapy divided into induction therapy and consolidation phase. This first 

phase aims to reach a complete remission in patients defined by a <5% bone marrow blast 

count, recovery to normal peripheral blood cell counts and absence of signs and 

symptoms.3,44 In AML, the standard chemotherapy for patients in good physical shape follows 

the so-called “7+3” regimen consisting of seven days cytarabine treatment and then three 

days of treatment with an anthracycline (usually daunorubicin or idarubicin).4 After complete 

remission, low numbers of leukemic cells are still present and lead to a relapse in almost all 

patients. Therefore, the consolidation phase is essential to reach long-term remission or even 

cure of the disease. This phase mainly depends on the diagnosis, risk stratification, and 

patient-related prognostic factors. Besides intensive chemotherapy, the consolidation might 

include allogeneic stem cell transplantation. However, only a minority of younger and fit 

patients are eligible for transplantation even if a donor is available.1,3 

 

In recent years, particularly for unfit and relapsed patients, novel targeted therapies have 

been approved such as hypomethylating agents (decitabine, azacitidine) or IDH1 inhibitors 

(ivosidenib). More recently, the BCL2-inhibitor venetoclax demonstrated anti-leukemic 

efficacy and synergy with other therapeutic agents for AML.82–84 Further studies proposed 
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that venetoclax in combination with azacitidine might specifically target LSCs.85,86 More 

experimental approaches also aim to render dormant HSCs or LSCs sensitive to 

chemotherapeutic approaches.87–89  

1.4 Studying AML and LSCs 

In recent decades, technological advances have facilitated more sophisticated investigation 

at an increasing rate. Particularly, high-throughput technologies have enabled precise 

characterization of biological samples, also in AML research. For example, sequencing 

methods allowed the identification of common driver genes and investigation of the genetic, 

epigenetic and transcriptional landscape of the disease.57,59,90 Laboratory techniques have 

also become more advanced and new software solutions have been developed to support the 

analysis of large data sets. 

 

1.4.1 Marker genes 

Characterization of the hematopoietic system has been driven by immunophenotyping of 

cells. Because they are mostly in liquid phase, blood cells are ideal for FACS analysis and in 

recent years a variety of surface markers have been established to enrich or isolate certain 

cell populations.16 Large efforts have been made to identify and phenotypically characterize 

LSCs based on the cell surface phenotype. Since complete eradication of these cells with 

disease-initiating capacity may ultimately prevent relapse and therapy resistance, 

identification and isolation of LSCs is of highest importance.52–56 Many studies applied FACS-

sorting strategies to enrich for LSCs derived from experience gained in the healthy 

hematopoietic system (CD34+CD38-).42,91,92 However, cell phenotypes show high variability 

between specimens and genetic subgroups, and markers used within healthy hematopoiesis 

cannot always be transferred to the diseased system.93 Here, several markers have been 

suggested, e.g., CD123, CD47, TIM3, CD25, CD32, and ALDH. However, studies demonstrated 

high intra-patient heterogeneity. Some samples contained LSCs in non-LSC populations while 

other AML samples did not engraft at all.52–56,93 Hence, enrichment for LSCs by cell surface 

phenotype must be validated by xenotransplantation assays, the defined standard method to 

prove LSC activity.50  
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Recently, two novel potential markers for LSCs were proposed that enrich for LSCs 

independent from the classic CD34 marker for healthy HSCPs. Papst et al. described that high 

expression of adhesion G Protein-Coupled Receptor 56 (GPR56, encoded by ADGRG1) is 

indicative of engraftment potential in both the CD34+ and CD34- populations. In addition, they 

showed significant association of GRP56 expression with high-risk genetic AML subgroups and 

poor disease outcome.94 The gene GPR56 is also part of the LSC17 signature associated with 

outcome and stemness.51 This receptor is expressed in various tissues and best studied in the 

nervous system, but also in HSPCs.95 In mice, GRP56 is expressed in HSPCs with decreasing 

levels upon differentiation. It is potentially involved in overcoming proliferative stress, but 

seemed to be dispensable in steady state since no significant changes regarding maintenance 

or migration of HSPC could be observed.96 Other studies showed expression of GPR56 in 

cytotoxic lymphocytes, particularly in NK and different T cells.97 

 

Moreover, Paczulla et al. identified ligands of the Killer Cell Lectin Like Receptor K1 (NKG2D, 

encoded by KLRK1) as a novel marker for LSCs. Cells negative for NKG2D ligands (MICA, MICB, 

ULBP1, ULBP2, ULBP5 and ULBP6) were isolated using a NKG2D-Fc chimeric protein. Even 

though some cell types in AML samples did express NKG2DL (NKG2D ligands), this was never 

the case for LSCs. Hence, NKG2DL- populations were identified as enriched for LSCs, again in 

both the CD34+ and CD34- populations. The study also showed that negativity for NKG2D 

ligands facilitates immune evasion of the LSC population.98 Of note, the receptor NKG2D is 

expressed by NK cells and a subset of T cells and acts as danger detector that mediates 

elimination of transformed or infected cells. Usually ligands of NKG2D are lowly expressed 

but can be induced by different pathways activated upon infection or during 

tumorigenensis.99,100 

 

These novel phenotypic markers for LSCs are of particular interest when studying CD34- AMLs 

defined by CD34 present on <10% of all leukemic blasts. The low expression of CD34 is 

especially prevalent in NPM1-mutated AMLs and makes up about 25% of all AML cases.93,101 

 

1.4.2 Methylation 

DNA methylation is a crucial epigenetic modification, which allows changing the activity of a 

sequence element without changing the sequence itself and provides a mechanism to pass 

on gene expression patterns across cell divisions and to progeny cells.102 A very important 
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fraction of human DNA methylation occurs in the context of CpG nucleotides (dinucleopair 

cytosine and guanosine), forming 5-methylcytosine by the addition of a methyl group (CH3) 

to the nucleoside cytosine.102 This modification is often associated with the silencing of genes 

by either directly interfering with the binding of regulatory proteins or the activation of 

chromatin remodeling into inactive heterochromatin.102–104 

 

When averaging across various cell types, about 70% of CpGs in the human genome are 

methylated. However, there are CpG-rich clusters, so-called CpG islands, which are 

predominantly unmethylated. CpG islands are regulatory units in the DNA often located in 

the promoter regions of genes.103,105 However, DNA methylation also occurs in other regions 

than CpG islands. These regions are often defined as “shore”, “shelf”, and “open sea” 

depending on the distance to CpG islands (Figure 3).106 

 

 
Figure 3: Scheme of methylated regions and distances to CpG islands. 

Particularly during cell development and differentiation, methylation is dynamic and essential 

for maintaining cellular identity.107 Methylation patterns are maintained during replication by 

certain DNA methyltransferases (e.g., DNMT1), whereas de novo DNA methyltransferases 

(e.g., DNMT3A), modify unmethylated CpG nucleotides later in the development or 

differentiation.102,104 In general, DNA methylation increases with differentiation from stem 

cells to more committed cells.107 This pattern is also observed in lymphoid differentiation 

during hematopoiesis. An exception from the general rule is myeloid differentiation, in which 

DNA methylation generally decreases, although it is dynamically regulated at different 

stages.108,109 

 

Aberrant DNA methylation in cancer has been widely described and focuses primarily on 

promoter hypermethylation causing the silencing of tumor suppressor genes.104,110 In AML, 

global hypomethylation has been observed and associated with genomic instability.111 In 

DNMT3A-R882H-mutated cells, CpG island hypomethylation has been described, while other 

DNMT3A mutations caused CpG island hypermethylation, potentially as a consequence of 

AML progression.62 
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1.4.3 Alternative Splicing 

Splicing describes the crucial processing from precursor messenger RNA (mRNA) to mature 

mRNA by removal of non-coding intronic regions and subsequent fusion of coding exons 

before protein translation. This process is mostly carried out by the spliceosome, which is a 

tightly regulated machinery of small ribonucleoprotein complexes (snRNPs). The spliceosome 

recognizes 5ʹ and 3ʹ splice sites which are conserved cis-elements at exon-intron boundaries. 

While mRNA splicing removes non-coding introns, exonic regions may be alternatively 

retained or excluded from the final transcript (Figure 4). This process is referred to as 

“alternative splicing”, leading to alternative isoforms of mRNA which can translate into 

proteins with distinct cellular functions.112,113 Hence, alternative splicing greatly diversifies the 

human proteome.114  

 

The regulation of alternative splicing is influenced by cis-regulatory regions in exons or introns 

which act as enhancers or silencers. These regions are targeted by trans-acting RNA-binding 

proteins (RBPs), heterogeneous nuclear ribonucleoproteins (hnRNPs), and serine and argine-

rich proteins (SR proteins).112,115 Additionally, the relevance of secondary structure of the 

precursor mRNA, sequence modifications and epigenetic changes such as DNA methylation 

for the regulation of alternative splicing have been investigated.115–117 

 

 
Figure 4: Different types of alternative splicing events covered by the rMATS software. Exons 
are represented by blocks. Introns are represented by thick lines. Thin lines indicate where splice 
sites are merged to build spliced mRNA. (Adapted from Shen et al.)118 

 

Alternative splicing in AML has been described repeatedly. It acts through different 

mechanisms and could serve as a prognostic marker.119–121 Splicing factors responsible for the 
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assembly of the core spliceosome such as Serine and Arginine-Rich Splicing Factor 2 (SFRS2) 

or Splicing Factor 3b Subunit 1 (SF3B1) are frequently mutated in AML (cf. Table 1).122 Even 

though aberrantly spliced transcripts might be eliminated by RNA control mechanisms like 

nonsense-mediated decay, alternatively spliced transcripts are actually observed frequently 

in AML. Aberrant mRNA transcripts have also been described to correlate with transcriptomic 

instability, the latter being itself associated with DNMT3A mutations.123–125 For example, 

alternative splicing of EZH2 has been described to lead to decay of this tumor suppressor and 

therefore to phenocopy loss-of-function mutations.121,126 Another example is the generation 

of tumor-specific (neo)antigens by alternative splicing, which could act as targets for AML 

immunotherapy.119 Additionally, multiple studies aimed to train predictive splicing signatures 

and proposed improved prognostic classification of AML.120,127–130 Since alternative splicing 

leads to a complex rearrangement of the transcribed sequence, the identification of events 

and quantification of alternative isoforms is not trivial. Various methodological approaches 

have been proposed including exon-based, isoform-based, and event-based methods, while 

more recent approaches focus on the quantification of differential expression of splice 

junctions.131–133 

 

1.4.4 Metabolomics 

Metabolic products are the direct outcome of all cellular processes and thus represent the 

biological endpoint of the omics cascade. Metabolomics is an evolving field of research 

generating data that is complementary to genetic, transcriptomic or proteomic information 
134. Analysis of metabolic data has been used for numerous applications, e.g., for biomarker 

or drug discovery in various areas, including cancer research.135,136,145,146,137–144 Metabolites 

are molecules with very diverse structures and chemical properties. High-throughput 

quantification relies on mass spectrometry coupled to other technologies such as gas or liquid 

chromatography. Metabolomics can be grouped into untargeted and targeted approaches. 
147,148 Untargeted analyses are suited for discovery-driven studies for hypothesis generation. 

This technique allows relative quantification and qualitative identification of spectra based 

on comparison to libraries for metabolite structures. In contrast, targeted approaches focus 

on the analysis of known metabolites by comparison to reference standards. This analysis is 

often more hypothesis-driven by absolute quantification of specific metabolites of interest.149  
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In the past years, commercial kits became available which measure a relatively large number 

of metabolites within relevant pathways and allow absolute quantification by providing 

internal standards and calibrants, such as the MxP® Quant 500 kit (Biocrates). Metabolomic 

measurements are well-established for analysis of body fluids such as blood plasma, 

cerebrospinal fluid (CSF) or urine.150–153 The liquid nature of these samples allows fast sample 

processing. However, the measurement of intracellular metabolites requires more complex 

protocols for pre-analytical extraction including tissue homogenization, removal of 

extracellular compounds, and lysis of cells. This leads to intracellular measurements being 

technically much more challenging since complex pre-processing might introduce technical 

variance. Beside the extraction itself, measurements of metabolites are challenging due to 

the fast turnover of metabolites, the need for normalization to sample cell number, 

comparability, reproducibility and extraction of molecules with heterogeneous chemical 

properties.154,155 

 

Recent publications analyzing small sets of metabolites showed that the metabolome of AML 

is profoundly altered.86,156,157 Particularly for LSCs metabolic vulnerabilities might offer 

potential therapeutic options. As outlined above, designing targeted therapies for LSCs is 

especially challenging since these cells are more quiescent and share characteristics with HSCs 

which must be spared from therapy.158,159 It is therefore necessary to identify features which 

are differential between these two cell types. For example, differences in energy metabolism 

have been described. HSCs rather rely on glycolysis and low activity of oxidative 

phosphorylation and abundance of reactive oxygen species (ROS) have been observed, which 

also protects these quiescent cells from DNA damage. Only the differentiation into progenitor 

cells and accordingly higher energy demand led to a metabolic switch towards oxidative 

phosphorylation.29,160,161 LSCs show a similar metabolic profile as HSCs, however, these cells 

seem to rely on oxidative phosphorylation for energy production. Various studies have shown 

the energy metabolism might be a selective target for LSCs.85,162,163 

1.5 The leukemic hallmarks 

Tumorigenesis is a multistep process and often similar functional aberrations are involved. 

Hanahan & Weinberg conceptualize these underlying principles as the hallmarks of cancer. 

The most recent version includes 14 hallmarks such as evading tumor suppressors, 

deregulation of cellular metabolism, avoiding immune destruction, and sustaining 
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proliferative signaling.164 These mechanisms have also been described to be involved in the 

leukemogenesis of AML. 

 

A proliferative advantage of AML cells seems to be often induced by constitutive activation 

of signaling pathways involved in growth, proliferation, survival, and proliferation. For 

example, PI3K/AKT/mTOR or JAK-STAT signaling is frequently hyperactivated in AML (cf. Table 

1).158,165 Analogously proliferation might be induced by the evasion of growth suppressors. 

The antiproliferative effects of Transforming Growth Factor b (TGFb) signaling is well studied, 

however, ambiguous role at different cancer stages have been described.166,167 Enhanced 

proliferation implies an increased cell cycle activity. The cell cycle is divided into different 

phases that indicate whether a cell is quiescent (G0), growing (G1 and G2), in the DNA 

replication phase (S) or dividing (M).168 In cancer, the cell cycle is often deregulated by a 

mutation-induced loss-of-function of tumor suppressor genes (e.g. TP53, cf. Table 1). These 

genes are key regulators governing the decision to either proliferate or activate apoptotic 

programs, e.g., when sensing DNA damage or abnormal stress.167,169  

 

Growing and proliferating cells have been shown to adjust their energy metabolism. Under 

aerobic conditions, normal cells mostly metabolize glucose via the tricarboxylic acid (TCA) 

cycle and subsequent oxidative phosphorylation for efficient production of adenosine 

triphosphate (ATP) via the electron transport chain. Cancer cells, but also proliferating cells, 

switch the energy production towards aerobic glycolysis where influx of glucose is increased, 

and glucose is metabolized to lactate. While this alternative metabolic route is less efficient 

to generate ATP, intermediates of increased glycolysis can be fed into various biosynthetic 

pathways to generate molecules needed for proliferation. This function is also referred to as 

the Warburg effect and describes this characteristic of cancer cell energy metabolism (Figure 

5).161,164,170–172 As described above, energy metabolism in AML is subtle as different cells 

within the AML hierarchy utilize different routes of energy metabolism to different extent, 

with specific characteristics for LSCs. 
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Figure 5: Energy metabolism in normal and tumor cells. In differentiated tissue, glucose is mainly 
metabolized via the TCA cycle and subsequent oxidative phosphorylation. In tumors and also 
proliferative tissue, cells consume high levels of glucose, which is metabolized mainly into lactate. 
Of note, the simplified scheme shows the energy metabolism under aerobic conditions. In 
differentiated tissues, pyruvate is also metabolized into lactated when oxygen is not present. In 
Isocitrate Dehydrogenase 1 (IDH1)-mutant cells, isocitric acid is converted into 2-hydroxyglutarate 
instead of a-ketoglutaric acid. NAD+(H): nicotinamide adenine dinucleotide (oxidized/reduced); 
CO2: carbon dioxide; ADP: adenosine diphosphate. (Adapted from Erdem et al. and Fadaka et 
al.)161,171 

 

Beside mechanisms which sense cellular stress and damage such as tumor suppressor genes, 

also the immune system is a first line defense to detect and eliminate aberrant cells.167 These 

mechanisms are impaired in tumor cells and their niche, often due to defects of immune 

checkpoints. A therapeutically very important immune checkpoint is the interaction of 

Programmed Cell Death Protein 1 (PD-1) and its ligand (PD-L1). The interaction inhibits T cell 

response as a mechanism to prevent autoimmunity in normal cells. Many cancer cells utilize 

this and other immune checkpoints to evade the immune system.173,174  
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Unlike in some solid cancers, in AML, inhibition of immune checkpoints showed limited 

response, likely due to the low overall number of mutations, a consecutive lack of neo-

epitopes and thus a lack of actionable targets for the T cells. T cells recognize mutated cancer 

cells by the surface presentation of aberrant peptides, the neo-epitopes, via major 

histocompatibility complex (MHC) I. Hence, low mutational burden correlates with a low 

number of immunogenic antigens on AML cells.119,175 While MHC-I molecules are presented 

by all nucleated cells, MHC-II molecule expression is restricted to antigen presenting cells 

(APCs). Interestingly, recent studies showed that HSPCs constitutively present antigens via 

MHC-II as an immunosurveillance mechanism and loss of antigen surface representation is 

associated with relapse in AML patients.176,177 Taken together, during leukemogenesis, 

various aberrant processes have to act together to overcome cellular safety mechanisms and 

to induce abnormal, malignant proliferation. 

1.6 SyTASC - Systems-based Therapy of AML Stem Cells 

The SyTASC (Systems-based Therapy of AML Stem Cells) consortium has put together a cohort 

of adult AML patients with a homogeneous genetic background. All 38 samples harbor pre-

leukemic mutations in DNMT3A (p.R882) and leukemic driver mutations in NPM1 

(p.W288fs*12). Even though almost identical driver mutations were identified across the 

cohort and patients showed complete remission after chemotherapy, some patients showed 

rapid relapse while others achieved long-term remission. The cohort was therefore stratified 

into two outcome groups; (i) early relapse (ER) patients that relapsed less than 6 months after 

treatment and (ii) long-term remission (LTR) patients (Figure 6). 

 

As part of the SyTASC project, a novel sorting strategy was established by Dr. Nadia Correia 

to particularly study the LSC subpopulations and their differences between the two outcome 

groups as these disease-initiating cells are essential for the relapse of patients. The sorting 

strategy included the novel FACS markers NKG2DL and GPR56 as well as the traditional HSC 

marker CD34 to sort five populations of cells. Xenotransplantation assays functionally 

validated LSC-enrichment in GPR56+ and NKG2DL- populations via engraftment in 

immunocompromised mice. Of note, engraftment was almost exclusively restricted to 

GPR56+ and NKG2DL- populations. These different sorted populations from all SyTASC 

samples were submitted to multi-omics profiling (RNA-seq and DNA methylation) (Figure 6).  
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Figure 6: Simplified overview of the SyTASC project, the FACS sorting strategy, and sample 
profiling. The left panel depicts the genetic homogeneity of the SyTASC cohort. The heatmap at 
the top shows the most frequently mutated genes stratified by outcome group. Dark grey: 
mutated, white: wild type, and light gray: NA. The Kaplan-Meier curve at the bottom displays the 
different relapse-free survival (RFS) for the outcome groups. The “bulk samples” were profiled by 
RNA-seq, xenotransplantation assays, and mutational analysis by panel or whole exome 
sequencing (WES). The right panel displays a representative example of the sorting strategy 
including markers CD34, GPR56, and NKG2DL. The “sorted populations” were profiled by RNA-
seq, DNA methylation, and xenotransplantation assays. The engrafting LSC-enriched populations 
are colored in green tones and highlighted by a red box. The FACS plot was created by Dr. Nadia 
Correia. 
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1.7 Aims of this thesis 

The SyTASC cohort and the novel sorting strategy target two main challenges of AML research. 

(i) Enrichment of LSCs is crucial to identify relevant biological mechanisms for effective 

treatment. LSCs produce all leukemic cells and often present resistance to standard therapy. 

Therefore, their complete therapeutic eradiation is essential for a lasting cure. The novel 

marker combination successfully enriches for LSCs as functionally validated by 

xenotransplantation assays. (ii) The prognosis of AML patients is strongly associated with 

leukemic driver mutations and further factors such as age and cytogenetic aberrations. 

Hence, patient stratification is essential to identify suitable therapies. The SyTASC cohort is 

balanced and genetically homogeneous (DNMT3A-R882 and NPM1-W288fs*12), allowing to 

study biological processes in an unconfounded data set and to identify relapse mechanisms. 

Despite the homogeneous background, there is a remaining unexplained part of the variance 

in outcome as some patients presented with early relapse while others achieved long-term 

remission. Identification of relapse mechanisms is key to identifying better treatment options 

for these patients. 

 

This unique cohort was submitted to multi-omics profiling (RNA-seq, DNA methylation, and 

genetic information). The aim of this thesis is the computational investigation of this data set 

to identify biological processes that pre-dispose for early relapse by primarily focusing on LSC-

enriched cell populations acquired by the novel sorting strategy. The objectives thus are: 

 

(i) Characterize the five different populations derived from the novel FACS sorting 

strategy, including two engrafting LSC-enriched populations. 

(ii) Investigate the differences between the outcome groups (ER and LTR), including 

the identification of biological processes facilitating early relapse that could 

potentially be used as therapeutic targets as well as a stratification of patients by 

training an outcome prediction signature.   

 

An additional aspect of the work was the metabolic analysis of the LSC-enriched populations. 

(iii) While working with metabolic data, in a technical side project, an interactive platform was 

set up to infer suitable extraction protocols for metabolomics studies. 
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2 Results 

The AML SyTASC data set provides different levels of information. First, the different data 

types and second, the different sorted populations of which two have already been 

characterized as LSC-enriched in xenotransplantation experiments. In the following sections, 

I present an unsupervised integrative analysis of the data set, characterize the sorted cell 

populations based on the various omics data layers and present the differences between the 

two outcome groups (ER: early relapse; LTR: long-term remission). Finally, I will present 

metabolomics data as another layer to investigate the differences between ER and LTR 

samples and, based on another smaller independent data set, a technical platform to infer 

suitable extraction protocols for metabolomics studies. 

2.1 Major drivers of variability: unsupervised integration of omics data 

Transcriptome, methylation, as well as mutation information were integrated using Multi-

Omics Factor Analysis (MOFA) to infer major drivers of variability in the data set (Figure 7a). 

Even though the total variance explained across all latent factors (LTs) was slightly lower for 

the transcriptome, LT1 is mainly driven by transcriptomic differences (Figure 7b,c). This factor, 

representing the primary source of variance, is strongly associated with the different sorted 

populations (Figure 7d,e). As shown in Figure 7e, there is a gradient between NKG2DL- and 

NKG2DL+ populations when clustering genes driving the variability encoded in LF1. Besides 

the striking difference between the different cell types represented by LF1 and LF15, most 

other LFs were associated with multiple clinical and biological sample features. (Figure 7d). 

MOFA results also showed that the intra-patient variability is highly associated with most LFs 

(Figure 7d). Hence, this confounding factor was taken into consideration in subsequent 

analysis whenever possible. The outcome group (ER vs. LTR) was clearly associated with LF3, 

LF10, and LF12. LF3 also showed a significant association with FLT3-IDT-mutant samples, 

whereas this effect was minor in LF10 and LF12 (Figure 7d, also cf. Figure 58). Taken together, 

the unsupervised multi-omics analysis showed that cell population and outcome group, as 

the two main dimensions of interest, were major drivers of variability in the data set. The next 

two sections aim to elucidate the biology of these effects in more detail. 
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Figure 7: Integration of multi-omics data with MOFA. a) Data layers, number of features, and 
coverage across all samples (n=137). Of note, mutated genes were only included if present in at 
least three samples (cf. Figure 58) b) Total variance explained per data layer. c) Variance explained 
per latent factor. d) Associations of LFs with clinical and biological sample features. Color coding 
according to p-values of Kruskal-Wallis Rank Sum Tests between respective groups and LFs. 
Engraftment: leukemic engraftment of bulk samples. e) Expression of genes with highest loadings 
for the transcriptomic layer in LF1. 
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2.2 A novel sorting strategy: enrichment for LSCs 

The novel sorting strategy to enrich for LSCs, implemented by Dr. Nadia Correia, was 

functionally validated by xenotransplantation experiments in NOD scid gamma (NSG) mice by 

Dr. Elisa Donato. LSCs were enriched in CD34+GPR56+NKG2DL- and CD34-GPR56+NKG2DL- 

populations, while CD34-GPR56-NKG2DL-, CD34-GPR56-NKG2DL+ and CD34+GPR56+NKG2DL+ 

populations did not show engraftment in these experiments (Table S 1). Transcriptomic 

analysis of marker genes used for flow cytometry showed that immunophenotypes were also 

largely reflected by gene expression. However, some NKG2D ligands presenting very low 

expression were not significantly altered between the sorted populations (Figure S 2). 

The following section aims to characterize the five sorted populations based on transcription 

and methylation data. I could show that GPR56+NKG2DL- LSCs are highly different from the 

other, more differentiated populations and present a phenotype strongly reflective of 

malignancy and stemness. While the CD34+ LSC population appears to contain, in addition to 

LSCs, retained healthy and pre-leukemic HSCs, the CD34- LSC population showed exclusive 

enrichment of LSCs. 

 

2.2.1 Sorted populations are highly different based on transcription and methylation 

Global analysis of RNA-seq and 850k array methylation data by principal component analysis 

(PCA) showed strong differences between NKG2DL- and NKG2DL+ populations. Both data 

layers showed that the distinct cell types in the sorted populations account for more 

variability than the difference between leukemic and healthy samples (Figure 8). Interestingly, 

for NKG2DL- populations, leukemic and healthy samples clearly separated along principal 

component (PC) 2 for RNA-seq whereas the NKG2DL+ populations were intermingled (Figure 

8a). 
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Figure 8: Variability between sorted populations of healthy compared to leukemic samples. a) 
PCA of RNA-seq. b) PCA of methylation data. 

 

Consensus partitioning also showed stable separation between NKG2DL- and NKG2DL+ 

populations in RNA-seq and methylation data (Figure 9a,b).  This observation confirmed that 

the used markers enriched for very distinct cell populations. Clustering the most variable 

expression and beta values displayed the same pattern, respectively. Interestingly, for the 

methylation data, this seemed to be mainly driven by CpG positions in open sea regions 

(Figure 9c). Enrichment analysis of this CpG cluster, located in open sea (marked by a black 

frame), showed that these positions are significantly bound by regulatory genes involved in 

hematopoietic differentiation (Figure 9d). This unsupervised clustering already indicated that 

NKG2DL- populations were enriched for more immature populations based on methylation 

and displayed striking differences in clustering. However, only the GPR56+NKG2DL- 

populations could be functionally validated to be enriched for LSCs as shown by the 

xenotransplantation assays. 
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Figure 9: Consensus clustering shows a striking difference between sorted cell populations. a) 
Consensus clustering of RNA-seq data. b) Consensus clustering of methylation data. c) Clustering 
of the 1000 most variably methyleted positions. Positions in the cluster marked by the black frame 
were submitted to LOLA (Locus Overlap Analysis). d) Over-representation analysis of binding 
regulatory genes inferred by enrichment for genomic region sets estimated by LOLA.  

 

2.2.2 LSC-enriched populations are more stem-like and cycle faster 

HSPCs are morphologically different from more differentiated cells.178 This is also reflected by 

the FACS measurements FSC A (forward scatter area) and SSC A (side scatter area). As 

observed for the clustering shown above, the CD34-GPR56-NKG2DL- population showed more 

similarity to the engrafting LSC-enriched population (CD34+GPR56+NKG2DL- and CD34-

GPR56+NKG2DL-) presenting a smaller diameter and a lower granularity (Figure 10).  
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Figure 10: Morphology of sorted populations represented by the FACS measures FSC and SSC. 
a) FSC reflecting the diameter of cells. b) SSC reflecting the granularity of cells. Statistical 
differences were calculated between groups using a one-way ANOVA:  *p ≤ 0.05; **p ≤ 0.01; *** 
p ≤ 0.001; NS: non-significant.  

 

However, when investigating LSC signatures published by Ng et al., the LSC17 signature scores 

and the correlation with the 104-gene LSC signature genes were significantly higher in the 

engrafting LSC-enriched compared to the non-engrafting populations. (Figure 11a,b).51 As 

previously observed with PCA, populations appear to exhibit an increasing gradient of 

differentiation from the stem-like populations CD34+GPR56+NKG2DL- and CD34-

GPR56+NKG2DL- over the populations CD34-GPR56-NKG2DL-, CD34-GPR56-NKG2DL+ to the 

most differentiated population CD34+GPR56+NKG2DL+ (Figure 11a,b and cf. Figure 8). The 

observation that engrafting populations are more stem-like was also confirmed by gene set 

enrichment analysis (GSEA). Comparing engrafting and non-engrafting populations showed 

significant enrichment of the Eppert LSC signature.50 On the contrary, the gene set for “KEGG 

Hematopoietic Lineage” was enriched in non-engrafting populations indicating that these 

cells are more differentiated (Figure 11c). 
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Figure 11: LSC signatures and gene sets are specific for engrafting LSC-enriched populations. a) 
LSC17 signature score. b) Correlation with 104-genes LSC signature.  Statistical differences were 
calculated between groups using one-way ANOVA:  *p ≤ 0.05; **p ≤ 0.01; *** p ≤ 0.001; NS: non-
significant. c) GSEA plots.  

 

The hypothesis, that engrafting LSC-enriched populations are more stem-like was further 

supported by embedding the sorted populations into single-cell data of healthy human 

hematopoiesis.40 The LSC populations CD34+GPR56+NKG2DL- and CD34-GPR56+NKG2DL- 

clustered with healthy HSCs and progenitor cells, in accordance with their stem-like 

phenotype. The CD34-GPR56-NKG2DL- population did not show a clear pattern, whereas 

CD34-GPR56-NKG2DL+ cells clustered to promonocytes or monocytes, and the most 

differentiated CD34+GPR56+NKG2DL+ population clustered clearly to monocytes (Figure 12). 

When embedding the sorted populations derived from healthy bone marrow samples, the 

clustering pattern was similar for the differentiated populations. However, 

CD34+GPR56+NKG2DL- and CD34-GPR56+NKG2DL- did not cluster to HSCs but to erythroid 

progenitor cells. This may indicate that the novel sorting strategy is only valid for leukemic 

samples, even though the more differentiated populations clustered similarly for leukemic 
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and healthy samples (Figure S 3). Interestingly, some of the CD34-GPR56+NKG2DL- and CD34-

GPR56-NKG2DL- samples clustered to NK cells (Figure 12). 

 

 
Figure 12: Embedding of sorted populations into UMAP of single-cell data published by van 
Galen et al. 40. Box in the left bottom shows a representative magnification of CTL and NK 
populations.   

 

 

Since the SyTASC cohort was selected for DNMT3A and NPM1 double-mutated samples, I 

investigated the expression and mutant allele frequency of these genes. Both genes, DNMT3A 

and NPM1, showed significantly higher counts in LSC-enriched populations than in the more 

differentiated cells (Figure 13b,d). Contrarily, the mutant allele frequency of NPM1 was 

significantly increased in the more differentiated samples while for DNMT3A no difference in 

allele frequency was observed (Figure 13a,c). Overall, the mutant allele frequencies were on 

average higher for DNMT3A (around 50%) compared to NPM1 (below 40%). Consequently, 

the higher frequency of DNMT3A indicated a higher abundance of DNMT3A-mutant clones, 

while NPM1 is not present in all cells. Notably, DNMT3A mutant allele frequency showed a 

large variability. 
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Figure 13: Box plots showing mutant allele frequency and expression of NPM1 and DNMT3A. 
Data were stratified by engrafting LSC-enriched populations compared to more differentiated 
populations. a) Mutant allele frequency of NPM1 based on RNA-seq data. b) Expression of NPM1. 
c) Mutant allele frequency of DNMT3A based on RNA-seq data. b) Expression of DNMT3A.  
Statistical differences were calculated between groups using a one-way ANOVA: *p ≤ 0.05; **p ≤ 
0.01; *** p ≤ 0.001; NS: non-significant.  

 

When investigating the global methylation pattern of the sorted population, I observed a 

similar differentiation gradient as described above. Across all regions and positions, 

increasing differentiation was associated with decreasing methylation (Figure 14a). This effect 

was mainly driven by open sea, shelf, and shore regions. Since island regions were almost 

completely demethylated, there was no difference between the sorted populations (Figure 

14b-e). Additionally, a data set published by Jung et al. was used to compare the sorted 

populations to probe-specific methylations patterns of healthy HSCPs. In contrast to RNA-seq 

data which showed clear differences between the sorted populations,  all sorted population 

from AML samples shared the highest similarity with methylation pattern of GMPs (Figure S 

4 and cf. Figure 12). 
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Figure 14: Global methylation across sorted populations. Distribution of beta values across a) all 
regions, b) island regions, c) shore regions, d) shelf regions, and e) open sea regions. Color code 
for populations applies to all items. 

 

Inferring cell cycle phases revealed that LSC samples were significantly more often in S phase 

than more differentiated samples (Figure 15a). Whereas the G2M score was not significantly 

different between the sorted populations, the S score was significantly higher in LSC 

populations. Again a gradient from LSC towards the more differentiated populations could be 

observed (Figure 15b,c). Accordingly, GSEA showed significant enrichment for cell cycle-

related processes in LSC populations, exemplarily represented by the curated gene sets 

“Fisher G1 S Cell Cycle”, “Whitfield Cell Cycle G1 S”, “Cell Cycle DNA Replication”, and “WP G1 

to S Cell Cycle Control” (Figure 16a). In line with this observation, gene sets related to DNA 

replication and strand elongation showed significant enrichment in LSC-enriched populations 

indicating a higher replication rate (Figure 17a). 
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Figure 15: Estimation of cell cycle phases. a) Stacked bar plot of inferred cell cycle phases based 
on G2M and S score. Fisher's Exact Test on numbers of samples: p-value = 1.5x10-3. Pairwise 
Fisher’s Exact Test between engrafting and non-engrafting population: p-value = 4.2x10-5. b) G2M 
score. c) S score. Statistical differences were calculated between groups using a one-way ANOVA: 
*p ≤ 0.05; **p ≤ 0.01; *** p ≤ 0.001; NS: non-significant.  

 

 
 

Figure 16: GSEA for cell cycle-related gene sets. GSEA plots for “Fisher G1 S Cell Cycle”, “Whitfield 
Cell Cycle G1 S”, “Cell Cycle DNA Replication”, and “WP G1 to S Cell Cycle Control”.  
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2.2.3 Expression of immunoregulatory genes and pathways in differentiated populations  

The direct comparison of the populations revealed marked enrichment of gene sets related 

to inflammatory processes in more differentiated, non-engrafting compared to engrafting 

LSC-enriched populations (Figure 17a). Enrichment of the most significantly different gene 

sets was strongly driven by Leukocyte Immunoglobulin-Like Receptors (e.g., LILRB1) but also 

S100 calcium-binding proteins (e.g., S100A9) and different interleukins (Figure 17b). The 

expression was strongly associated with the sorted population and significantly different 

between engrafting and non-engrafting cells (Figure 17c , Figure S 5, and also cf. LF1 of MOFA 

analysis in Figure 7e).  

 

Notably, also immunoglobin genes were differentially expressed between the sorted 

populations. Several immunoglobulins were markedly expressed in the LSC populations, while 

others showed high expression in the CD34-GPR56-NKG2DL- population (Figure S 6). 

Immunoglobin transcripts have been described to originate from ambient mRNA and 

therefore might not represent the actual expression of the respective population.179 The 

expression of immunoglobins appeared in multiple leading-edge analyses when performing 

GSEA in this study. Given the possibility that these expression differences may be erroneous, 

I further investigated the origin of the mRNA by comparing the frequency of spliced and 

unspliced transcripts. Gaidatzis et al. described a computational approach for this analysis, by 

quantifying intronic and exonic reads.180 The frequency of intronic counts was almost 

neglectable and originated mainly from one sample indicating that the expression of 

immunoglobulins were rather ambient mRNA than of intracellular origin (Figure S 7). 

Consequently, immunoglobulins were removed from all subsequent analyses in this study.  

 

Investigating the expression of stimulatory and inhibitory immune checkpoints showed 

population-specific expression for some genes (Figure 17d). The stimulatory checkpoints 

TNFRSF4 (also known as CD134 or OX40 receptor) and TNFRSF18 (also known as 

glucocorticoid-induced TNFR-related protein (GITR) or CD357) were highly expressed in 

NKG2DL- populations. Contrarily, the inhibitory checkpoints CYBB, HAVCR2, C10orf54, and 

SIGLEC7 were highly expressed in NKG2DL+ populations. Additionally, multiple Killer Cell 

Immunoglobulin Like Receptors (KIRs) were specifically expressed in the CD34-

GPR56+NKG2DL- population. This was in line with the observation of some CD34-

GPR56+NKG2DL- samples clustering to NK cells when embedded in healthy hematopoiesis (cf. 

Figure 12).  
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Figure 17: Immunoregulatory processes are highly enriched in differentiated populations. a) Bar 
plot showing GSEA gene sets with highest normalized enrichment scores (NES) between 
engrafting and non-engrafting populations. b) Selected genes identified by leading-edge analysis 
for the five most enriched gene sets. c) Heatmap showing expression of LILRs. d) Heatmap 
showing expression of inhibitory and stimulatory immune checkpoints. 
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2.2.4 Engrafting populations are transcriptionally very similar 

The two LSC-enriched populations were further investigated to identify transcriptional 

differences. However, as described above, various analyses showed high abundancy of NK 

cells in the CD34-GPR56+NKG2DL- population, and also differential expression analysis of 

these populations was corrupted by the presence of these cells (cf. Figure 12, Figure 17e, and 

Figure S 8). Therefore, Dr. Elisa Donato re-sorted populations from the SyTASC cohort using 

an improved sorting strategy that depleted lineage-positive cells including NK cells. This 

approach aimed at both, increasing the purity of LSCs and allowing comparison between 

populations. The percentage of NK cells in both data sets were inferred by cell type 

deconvolution of bulk tissue using the data set published by Corces et al. as a reference.20 The 

proportion of NK cells in the improved “NK-depleted” data set was marginal compared to the 

“original” data set described above (Figure 18).  Hence, the improved data set was suitable to 

compare the two engrafting populations on a transcriptional level. 

 

 
Figure 18: Proportion of NK cells in selected samples used for re-sorting by improved FACS 
sorting strategy. Left: “original” samples as used for analyses above. Right: “NK-depleted” 
samples sorted by improved FACS protocol. 

An initial PCA of engrafting AML LSC-enriched populations and their healthy counterparts 

showed that the AML populations clustered closely together, whereas healthy populations 

clustered separately far apart along PC1 (Figure 19a). As described above, embedding into 

healthy hematopoiesis indicated that the sorting strategy mainly enriched for erythroid 

progenitor cells when applied to healthy samples (Figure S 3). However, the LSC17 score and 

the correlation with the 104-genes LSC signature were comparably high for the healthy 
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CD34+GPR56+NKG2DL- population which also clustered closer to the AML LSC-enriched 

populations (Figure 19a-c). GSEA on PC1 showed enrichment of gene sets related to HSCs, 

LSCs, and NPM1-mutated AML for the two AML and the healthy CD34+GPR56+NKG2DL-

populations whereas healthy CD34-GPR56+NKG2DL- showed enrichment for G2 cell cycle-

related gene sets (Figure S 9). Hence, the healthy CD34+GPR56+NKG2DL- population seemed 

to be enriched for HSCs; likely because of the positive selection for CD34. This was also 

supported by the enrichment for HSC-related gene sets (e.g., Jaatinen hematopoietic stem 

cell up) in the healthy CD34+GPR56+NKG2DL- population compared to the AML samples 

(Figure 19d). Interestingly, normalized enrichment scores (NES) were very similar for both 

LSC-enriched populations (CD34+GPR56+NKG2DL- and CD34- GPR56+NKG2DL-) when 

compared to the healthy HSC-enriched (CD34+GPR56+NKG2DL-) population. However, 

especially the LSC17 score was significantly lower in the CD34-GPR56+NKG2DL- LSC-enriched 

AML population (Figure 19b).  

 

As indicated by the proximity in the clustering, the similarity of the LSC-enriched populations 

was also reflected in a direct comparison by a low number of differentially expressed genes 

(99). But when deliberately investigating differential aspects, a high activity of the SRY-Box 

Transcription Factor 2 (SOX2) in the CD34+GPR56+NKG2DL- population was observed, which is 

essential for self-renewal and embryonic stem cell maintenance (Figure 20a,b).181 

Consistently, estimation of key pathway activity also showed striking enrichment for JAK-STAT 

signaling in the CD34+ population, which is also related to the regulation of hematopoiesis and 

HSC proliferation  (Figure 20c,d).165 Taken together, the significantly higher LSC17 score, 

comparable to healthy HSCs, in the CD34+GPR56+NKG2DL- AML population and the 

differential pathway activity led to the hypothesis this population might contain healthy and 

pre-leukemic HSCs. 
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Figure 19:  Engrafting LSC populations are similar when compared to healthy counterparts. a) 
PCA of healthy and AML CD34+GPR56+NKG2DL- and CD34-GPR56+NKG2DL- populations. b) LSC17 
score. c) Correlation with LSC 104 genes. Statistical differences were calculated between groups 
using a two-sided Student’s t-Test:  *p ≤ 0.05; **p ≤ 0.01; *** p ≤ 0.001; NS: non-significant. d) 
GSEA between healthy CD34+GPR56+NKG2DL- population and AML CD34+GPR56+NKG2DL- or 
CD34-GPR56+NKG2DL- populations. 
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Figure 20: Activity of transcription factors and key pathways. Activity was inferred by VIPER and 
PROGENy between CD34-GPR56-NKG2DL- and CD34+GPR56+NKG2DL- populations. a) NES for 25 
most differentially active transcription factors. b) Exemplary volcano plot for genes driving the 
enrichment for transcriptions factor SOX2. c) NES for key pathways. d) Exemplary expression and 
weights of genes driving the activity of the JAK-STAT pathway. 

 

2.2.5 CD34+ LSC populations contain healthy retained and pre-leukemic HSCs 

To further investigate the hypothesis of retained HSCs, the abundance of healthy HSCs in the 

samples was inferred using deconvolution with a data set of healthy hematopoietic cells 

published by Corces et al. as a reference.20 The fraction of healthy HSCs was clearly higher in 

the CD34+GPR56+NKG2DL- population compared to the CD34-GPR56+NKG2DL- population 

from AML samples. However, due to the low number of samples in the “NK-depleted” data 

set, statistical significance was not achieved. The deconvolution approach was also supported 

by fractions calculated in healthy samples. As expected, the proportion of HSC was highest in 

the healthy CD34+GPR56+NKG2DL- samples, while healthy HSCs were absent in the healthy 

CD34-GPR56+NKG2DL- population (Figure 21a). Consistently, HSC signatures were significantly 

enriched in CD34+GPR56+NKG2DL- samples compared to CD34-GPR56+NKG2DL- AML samples 

(Figure 21b). In line with the hypothesis, some of the CD34+GPR56+NKG2DL- samples 
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presented multi-lineage engraftment in xenotransplantation experiments, whereas CD34-

GPR56+NKG2DL- exclusively initiated in AML engraftment (Figure 21c, cf. Table S 1). 

 

 
Figure 21: Retained healthy HSCs in CD34+GPR56+NKG2DL- population. a) Percentage of healthy 
HSCs inferred by deconvolution using Corces et al. as a reference 20. Statistical differences were 
calculated between groups using a two-sided Student’s t-Test: *p ≤ 0.05; **p ≤ 0.01; *** p ≤ 0.001; 
NS: non-significant. b) Selected GSEA plots showing enrichment for the HSC signatures in the 
CD34+GPR56+NKG2DL- compared to CD34-GPR56+NKG2DL- AML populations.50,182 c) Stacked bar 
plot showing engraftment type of LSC populations in the “original” data set.  

 

Mutant allele frequencies are a proxy for the abundance of leukemic, pre-leukemic and 

healthy cells, and therefore mutant allele frequencies were assessed in the different cell 

populations. In the CD34+GPR56+NKG2DL- population, the mutant allele frequency of NPM1 

was lower compared to CD34-GPR56+NKG2DL- cells. Again, statistical significance was lacking 

in the “NK-depleted” data set. Still, the “original” data set showed a significantly lower 

percentage (Figure 22a,c). The mutant allele frequency of DNMT3A was not statistically 

different and only showed a minor trend in the “original” data set (Figure 22b,d). Interestingly, 

samples with very low mutant allele frequencies in the “original” data set showed rather 

multi-lineage engraftment in xenotransplantation experiments. However, assessment of the 
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engraftment type has not been performed for all samples (Figure 22c,d and cf. Figure 21c). 

This observation further supported the hypothesis of retained healthy and pre-leukemic HSCs 

in the CD34+GPR56+NKG2DL- AML population. 

 

 
Figure 22: Mutant allele frequency in RNA-seq data from CD34+GPR56+NKG2DL- and CD34-

GPR56+NKG2DL- AML populations. a) Percentage of NPM1-mutated counts in the “NK-depleted” 
cohort. b) Percentage of DNMT3A-mutated counts in the “NK-depleted” cohort. c) Percentage of 
NPM1-mutated counts in the “original” cohort. d) Percentage of DNMT3A-mutated counts in the 
“original” cohort. Statistical differences were calculated between groups using a two-sided 
Student’s t-Test:  *p ≤ 0.05; **p ≤ 0.01; *** p ≤ 0.001; NS: non-significant.  

 

2.2.6 Difference between CD34-GPR56-NKG2DL- and engrafting LSC-enriched populations  

Several analyses in the previous sections indicated similar phenotypical properties of the 

CD34-GPR56-NKG2DL- and the engrafting LSC-enriched populations (CD34+GPR56+NKG2DL- 
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and CD34-GPR56+NKG2DL-). For example, these cells were morphologically very similar based 

on size and granularity. In Addition, consensus clustering revealed two very distinct clusters 

separated by NLG2DL status (less differentiated NKG2DL- populations and more differentiated 

NKG2DL+ cells; cf. Figure 9 and Figure 10). For most analyses the CD34-GPR56-NKG2DL- 

population was located at the center of the gradient between the stem-like LSC populations 

and the more differentiated ones. This was observed in PCA plots, in the analyses of cell cycle 

and methylation, in the embedding into healthy hematopoiesis as well as in  immune-related 

expression (cf. Figure 8, Figure 12, Figure 14, Figure 15, and Figure 17). Also, when only the 

sorted AML populations were clustered, the described gradient was clearly represented in 

PC1 (Figure 23). However, according to the calculated LSC17 score, CD34-GPR56-NKG2DL- cells 

presented a less stem-like phenotype (Figure 11).  

 

 
Figure 23: PCA of sorted populations from AML samples.  

 

Since CD34-GPR56-NKG2DL- cells did not engraft in xenotransplantation experiments, a direct 

comparison between these cells and the engrafting populations was performed to identify 

processes that might explain the loss of engrafting potential (Table S 1). Analysis of 

transcription factor activity revealed enrichment for several genes involved in cell cycle and 

differentiation (Figure 24a). For example, Basic Helix-Loop-Helix Family Member E40 

(BHLHE40), involved in differentiation, and E2F Transcription Factor 4 (E2F4), a suppressor of 

cell cycle activity, were enriched in the CD34-GPR56-NKG2DL- population (Figure 24b,c).183–185 

Conversely, Spi-1 Proto-Oncogene (SPI1) activity was enriched in the LSC populations leading 

to the downregulation of target genes such as BCL6 Transcription Repressor (BCL6) and Toll 
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Like Receptor 4 (TLR4), which are expressed in differentiated hematopoietic cells (Figure 

24c).186–188 This was also in line with GSEA results which showed enrichment for gene sets 

related to LSC, HSC, and G1 S cell cycle in the engrafting LSC populations (Figure 25). Thus, the 

loss of immunophenotypical GPR56 positivity, together with a loss of engraftment potential 

and LSC properties, was associated with lower stemness and lower cell cycle activity. 

 

 

 

 
Figure 24: Activity of transcription factors inferred by VIPER between CD34-GPR56-NKG2DL- and 
engrafting LSC populations (CD34+GPR56+NKG2DL- and CD34-GPR56+NKG2DL-). a) NES for 25 
most differentially active transcription factors. Exemplary volcano plots for genes driving the 
enrichment for transcription factors b) BHLHE40, c) E2F4, and d) SPI1. 

 



Results 

 42 

 
Figure 25: Enrichment of HSC, LSC, and cell cycle-related gene sets in engrafting populations. 
GSEA plots for selected gene sets between CD34-GPR56-NKG2DL- and engrafting LSC populations 
(CD34+GPR56+NKG2DL- and CD34-GPR56+NKG2DL-). 
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2.3 Two distinct outcome groups in a genetically homogenous cohort 

After characterization of the different sorted populations, this section will focus on 

differences between the two outcome groups. Even though all patients went into complete 

remission after chemotherapy, 12 patients suffered from an early relapse (ER) while 26 

achieved long-term remission (LTR). The first part will focus on potential confounding factors 

and show that phenotypical differences based on RNA-seq and methylation data were more 

pronounced in the engrafting LSC-enriched populations. These biological differences included 

changes in key pathways and energy metabolism which were confirmed in metabolomics 

analyses. A second part aimed to train an outcome prediction signature that exhibited high 

predictive power in multiple AML cohorts. 

2.3.1 The SyTASC cohort has a homogeneous genetic background  

The SyTASC cohort was retrospectively selected for NPM1- and DNMT3A-mutant patients. 

However, also other genes were mutated in subsets of the patients. To investigate whether 

those mutations were statistically associated with relapse-free survival (RFS), cox 

proportional hazard regression was used. Table 3 shows results of these analyses for 

frequently mutated genes. Only FLT3-ITD was significantly associated with RFS. Most, but not 

all ER patients were mutant for this gene, while only some LTR patients were FLT3-ITD-mutant 

(cf. Figure 58). Hence, this mutation seemed to be correlated with the RFS but could not fully 

explain the differential relapse.  

 

Table 3: Statistical overview of mutated genes and their association with RFS. Genes were 
included if mutated in at least three samples or wild type in at least three samples. Hence, NPM1 
and DNMT3A were not included since these genes are mutated in all samples. Statistical 
parameters were calculated using a cox proportional hazards regression model. Mutations were 
not available for all samples indicated by the number of “NA”. mut: mutant: wt: wild type. 

Gene Data Beta HR (95% CI for HR) Wald test 
statistic P-value 

FLT3-ITD mut: 17, wt: 14 1.4 4 (1.3-12) 5.6 0.018 

IDH1 mut: 4, wt: 27 0.31 1.4 (0.39-4.8) 0.23 0.63 

IDH2 mut: 4, wt: 27 -0.14 0.87 (0.2-3.8) 0.04 0.85 

PTPN11 mut: 4, wt: 9, NA: 18 -0.37 0.69 (0.071-6.6) 0.1 0.75 

CEBPA mut: 3, wt: 8, NA: 20 -21 1.1e-09 (0-Inf) 0 1 

NRAS mut: 5, wt: 8, NA: 18 0.03 1 (0.17-6.3) 0 0.97 
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2.3.2 Potential confounding factors do not explain the distinct outcome groups 

Analogously to the mutational analysis, available clinical information was analyzed to identify 

potentially confounding factors. Age, gender, and white blood cells (WBC) were not 

significantly associated with the RFS. However, BM (bone marrow) blast counts were 

significantly correlated with relapse of patients. The abundance of BM blasts is a diagnostic 

parameter for AML and high levels have been described as an indicator of poor prognosis, 

likely due to an advanced progression.189 Even though statistical significance was observed, 

the hazard ratio showed a low risk increase. Thus, the BM blast count may be considered to 

not be a major confounding factor. 

 

Table 4: Statistics on available clinical information as potential confounding factors associated 
with RFS. Statistical parameters were calculated using a cox proportional hazards regression 
model. BM blast counts were not available for all samples indicated by the number of “NA”. 

Confounder Data Beta HR (95% CI for HR) Wald test 
statistic P-value 

Gender m: 19, f: 12 0.016 1 (0.37-2.8) 0 0.98 

Age 50 (22; 65) 0.024 1 (0.97-1.1) 0.88 0.35 

WBC 59.8 (4.9; 261.5) 0.0019 1 (0.99-1) 0.2 0.65 

BM blasts 75.75 (4; 93), 1 NA 0.031 1 (1-1.1) 4.8 0.028 
 

2.3.3 Variability between outcome groups is more pronounced in LSC populations  

Before focussing on the data set of sorted cell populations, analysis of bulk RNA-seq of whole 

patient samples was performed to identify transcriptional differences between the outcome 

groups. Gene expression analysis discovered that 40 genes were significantly differentially 

expressed (Figure 26), while GSEA did not reveal significant enrichment between the outcome 

groups (data not shown).  

 

Similarly, when performing an analysis on a merged cohort consisting of all sorted populations 

from all patients, the outcome group was shown to be only a minor source of variability. 

Statistical association of PCA results with clinical information revealed that the outcome 

group was significantly linked to the variability represented by PC4 and PC8 (4% and 2% of 

the variability, respectively) (Figure 27a,b). A direct comparison between the outcome groups 

in merged cohorts consisting of all sorted populations showed that MHC-II-related gene sets 
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and antigen-presenting processes were enriched in ER samples, whereas processes related to 

cell adhesion were enriched in LTR samples (Figure 27c). 

 

 

 
Figure 26: Volcano plot showing differentially expressed genes between ER and LTR samples in 
bulk RNA-seq. 

 

Based on the definition and concept of leukemic stem cells, the LSC populations are most 

likely the one to be enriched for those cells re-initiating the disease after complete remission 

of patients. The cohort was therefore subset to these populations (CD34+GPR56+NKG2DL- and 

CD34-GPR56+NKG2DL-). Analogous analysis to investigate the sources of variability as for all 

populations revealed that PC1, PC3, and PC4 were associated with outcome and accounted 

for 15%, 9% and 7% of the variability, respectively (Figure 28). Notably, for PC1, the 

association with the outcome group was even stronger than the patient-specific effect. This 

observation was similar or even more pronounced in the analysis of the methylation data set 

(Figure S 10). Consequently, analyses presented in the following subsections focus on the 

engrafting LSC populations if not stated otherwise. 
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Figure 27: The outcome group is a minor source of variability in RNA-seq data across all sorted 
populations. a) Heatmap showing p-values of Kruskal-Wallis Rank Sum Test between biological or 
clinical information and first 10 principal components. b) Scatter plot of loadings for PC4 and PC8 
(associated with the outcome groups). c) Bubble plot showing the most enriched gene sets among 
differentially expressed genes between outcome groups in a merged cohort consisting of all 
sorted populations from all patients. 



Results 

 47 

 

Figure 28: The outcome group is a major source of variability in RNA-seq data from engrafting 
LSC-enriched populations. a) Heatmap showing p-values of Kruskal-Wallis Rank Sum Test 
between biological or clinical information and first 10 principal components. b) Scatter plot of 
loadings for PC1 and PC3 associated with the outcome groups. 

 

2.3.4 ER LSCs are more stem-like than LTR LSCs 

A common hypothesis in cancer stem cell research is the quiescent or dormant phenotype of 

therapy-persistent cells allowing them to sustain chemotherapeutic intervention.30 

Therefore, potential differences in stemness between the outcome groups were investigated. 

The LSC17 score as well as correlation with the 104-gene signature were significantly higher 

in ER samples when analyzing the engrafting LSC populations. The LSC17 score calculated for 

the CD34+GPR56+NKG2DL- population showed a trend but was lacking significance. (Figure 

29a,b). Consistently, gene sets related to LSCs and HSCs signatures were enriched in ER 

samples (Figure 29c). This observation was further supported by embedding the LSC-enriched 

populations into the healthy single-cell data set.40 The relative median distance between 

healthy HSCs and ER samples (d = 1.62) was clearly lower than between HSCs and LTR samples 

(d = 2.75) (Figure 30). 
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Figure 29: ER samples present a higher stem-like phenotype compared to LTR samples. a) LSC17 
score. b) Correlation with LSC 104 genes. Statistical differences were calculated between groups 
using a two-sided Student’s t-Test: *p ≤ 0.05; **p ≤ 0.01; *** p ≤ 0.001; NS: non-significant. c) 
Selected GSEA plots showing enrichment for HSC or LSC signatures. 

 
Figure 30: Embedding of LSC-enriched populations into a UMAP of single-cell data published by 
van Galen et al. as a reference.40  
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The more stem-like phenotype of ER samples was also reflected in unsupervised integration 

of the data sets by MOFA (cf. Figure 7). GSEA was performed for the loadings of LF3 and LF10 

associated with the outcome groups. As shown in Figure 31a, ER samples were characterized 

by negative values of LF3 and gene sets related to HSC and LSC signatures were enriched in 

negative loadings of LF3. On the contrary, positive loadings of LF3 were associated to LTR.  

Positively enriched gene sets for LF3 were related to myeloid differentiation and 

development. (Figure 31a,b). Hence, the more stem-like phenotype in ER samples was 

reflected in multiple analyses. 

 

 
Figure 31: Association of MOFA LFs and outcome groups. a) Scatterplot showing loadings of LF3 
and LF10. b) Bubble plot showing selected gene sets enriched when running GSEA on loadings of 
LF3 or LF10. 

2.3.5 Potential effect of DNMT3A mutation on methylation and transcriptomic stability  

As described above, the outcome groups displayed different global methylation patterns (cf. 

Figure S 10). Analysis of methylation patterns was particularly of interest since the mutation 

of DNMT3A, present in all patients, has been described to cause hypomethylation of DNA.62 

Comparison between the outcome groups identified 120 differential methylated regions in 

the LSC-enriched populations which were almost exclusively hypomethylated in ER samples. 

Accordingly, analysis of global methylation patterns between the outcome groups revealed 

lower beta values in ER samples; this effect was mainly driven by shore regions (Figure 32). 

Methylation patterns are highly correlated to the differentiation stages of cells in general (cf. 

Figure 14).108 Therefore, differential methylation between the outcome groups might 

represent the differentiation stages of the LSC-enriched populations, or could reflect different 

cells of origin initiating the disease. However, the observation that ER samples had a more 
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stem-like phenotype is not in line with the global hypomethylation in this outcome group. 

Additionally, methylation was also lower in the more differentiated populations and clearly 

lower in AML compared to heathy samples (Figure S 11). This was particularly observed in the 

most differentiated populations (CD34+GPR56+NKG2DL+ and CD34-GPR56-NKG2DL+) that 

seemed to be phenotypically similar between healthy and AML based on RNA-seq (cf. Figure 

8a, Figure 12, and  Figure S 3). Hence, the DNMT3A mutation induced a global 

hypomethylation in this cohort. These observations led to a second hypothesis, that the 

DNMT3A mutation might have occurred earlier in the ER samples than in the LTR, leading to 

a more disturbed methylome, transcriptome and thus a more aggressive type of AML. 

 

 
Figure 32: Distribution of beta values across all regions, island, open sea, shelf, and shore 
regions for ER and LTR LSC-enriched populations. 

 

Alterations congruent with increased transcriptomic instability were also observed in an 

analysis of alternative splicing. Alternative splicing events were very frequent in the LSC-

enriched populations, although sufficiently recurrent coordinated differences of single events 

between the two outcome groups with inclusion level differences > 50% were not present 

(Figure 33). However, in total, a lower number of splicing events was observed in the ER 

samples. Particularly comparing outcome groups across all populations, the number of intron 

retention events was higher, whereas the number of exon skipping was lower in the ER group 

(Figure 33 and Table S 2). Comparing differentially methylated and alternatively spliced genes 

also indicated co-occurence of these processes (Table S 3). This further supported the 

hypothesis that the mutation of DNMT3A caused progressive hypomethylation that might 

lead to increased transcriptomic instability in ER samples, possibly by an earlier first 

mutational event in these samples and a longer time lapse before the second genetic hit, i.e., 

the NPM1 mutation. 
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Figure 33: Quantification of alternative splicing events between ER and LTR. a) All sorted 
populations. b) Engrafting LSC-enriched populations. RI: intron retention, MXE: mutually exclusive 
exons, SE: exon skipping, A5SS: alternative 5’ donor site, A3SS: alternative 3’ donor site. Statistics 
was filtered for events with an absolute inclusion level difference > 0.1 and an FDR < 0.05. 

2.3.6 Higher NPM1 mutant allele frequencies in ER samples 

Besides mutated DNMT3A-p.R882, the cohort harbors an NPM1-p.W288fs*12 mutation. 

While DNMT3A displayed no difference of mutant allele frequencies, the frequency of NPM1-

mutant alleles was significantly higher in ER compared to LTR samples (Figure 34). This trend 

could not fully be explained by the abundance of healthy retained HSCs in the 

CD34+GPR56+NKG2DL- population as described above (cf. subsection 2.2.5). The frequency for 

those samples, for which the type was determined, was particularly low in samples that 

showed multi-lineage. Interestingly, multi-lineage engraftment occurred more often in LTR 

compared to ER samples; particularly, in the unsorted bulk samples (Table S 1). Hence, the 

higher allele frequency might indicate an advanced AML type characterized by a more 

dominant NPM1-mutated clone.  

 
Figure 34: Mutant allele frequency based on RNA-seq data between ER and LTR for LSC-enriched 
populations. a) Percentage of NPM1-mutated counts. b) Percentage of DNMT3A-mutated counts. 
Statistical differences were calculated between groups using a two-sided Student’s t-Test:  *p ≤ 
0.05; **p ≤ 0.01; *** p ≤ 0.001; NS: non-significant.  
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2.3.7 Alteration of energy metabolism in engrafting LSC populations 

To understand underlying biological processes driving the differential outcome between ER 

and LTR samples in the engrafting LSC populations, differential expression analysis followed 

by GSEA was performed. Several dominant alterations were related to energy metabolism. As 

shown in Figure 35a, gene sets related to glycolytic processes were significantly enriched in 

LTR samples. This effect was more pronounced in the CD34+ LSC population. The enrichment 

was mainly driven by differentially expressed genes highlighted in Figure 35b; for example, 

Pyruvate Carboxylase (PC), Pyruvate Kinase L/R (PKLR), or Hexokinase 3 (HK3). 

 

 
Figure 35: Enrichment of glycolysis-related gene sets in LTR samples. a) GSEA for the two LSC 
populations separately. A positive NES indicates enrichment in LTR samples.  b) Volcano plot 
highlighting genes which are driving the enrichment of glycolysis-related processes based on 
leading-edge analysis. Differential expression statistics indicate the comparison between ER and 
LTR samples for both LSC-enriched populations combined. 

 

In contrast to LTR samples, mitochondrial genes involved in the respiratory chain complexes 

1,4, and 5 were overexpressed in ER samples indicating a higher activity of oxidative 

phosphorylation. Interestingly, gene sets related to oxidative phosphorylation, oxidative 

stress, and the TCA cycle also known as the citric acid cycle were enriched in the bulk data set 

even though statistical significance was lacking (Figure S 12). 
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Figure 36: Expression of mitochondrial genes involved in the respiratory chain complexes 1,4,5. 
a) Heatmap for CD34+GPR56+NKG2DL- LSC population. b) Heatmap for CD34-GPR56+NKG2DL- LSC 
population. 

To investigate this observation in more detail, metabolomics analysis of CD34+GPR56+ and 

CD34-GPR56+ populations from 3 ER and 3 LTR samples, derived from patient-derived 

xenograft (PDX) experiments, was performed. NKG2DL was not included in the sorting 

strategy. However, the samples processed by Dr. Elisa Donato were derived from engrafting 

PDX samples and thus mature human cells were not expected. Hence comparable populations 

(CD34+GPR56+NKG2DL- and CD34-GPR56+NKG2DL-) as used for RNA-seq and methylation 

could be assumed. The untargeted metabolomics measurements were performed by Prof. 

Nicola Zamboni and allowed quantification of 344 metabolites covering different metabolic 

pathways as presented in Figure S 13. 

 

Between ER and LTR, 4 and 15 metabolites were observed to be significantly differentially 

abundant, in the CD34+GPR56+ and CD34-GPR56+ populations respectively. Hexose 

bisphosphate levels were higher in ER in both sorted populations (Figure 37a,b). While 

oxoglutarate (a-ketoglutarate) was significantly more abundant in LTR in the CD34+GPR56+ 

population, intermediates of anaplerotic reactions replenishing the TCA cycle (e.g., 

urocanate) showed significantly higher concentrations in LTR in the CD34-GPR56+ population. 

Of note, the enrichment of hydroxyglutarate was mainly driven by SyT50, an IDH1-mutant 

patient sample. The abundance of other metabolites such as succinate was similar to the 

other LTR samples (Figure S 14 and cf. Figure 5). Hence, hydroxyglutarate was removed from 

the pathway enrichment analysis. Pathway enrichment partially reflected the differentially 

abundant metabolites. For example, amino acid metabolism (e.g. alanine, glutamate, 

histidine, tyrosine) was enriched in LTR (Figure 37c and cf. Figure 5). This observation could 

be reconciled with the hypothesis of altered energy metabolism. However, due to the low 

number of differentially abundant metabolites, clear conclusions could not be drawn. In 
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particular, the enrichment of pathways in LTR samples in the CD34+GPR56+ population was 

only based on a few metabolites.  

 

 
Figure 37: Metabolic differences between outcome groups in CD34+GPR56+ and CD34-GPR56+ 

populations. a) Volcano plot for CD34+GPR56+ populations. b) Volcano plot for CD34-GPR56+ 

populations. An absolute log2 fold change > 0.2 was considered differential. c) Heatmap showing 
the significance of enriched metabolic pathways between ER and LTR. 
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While most pathways showed enrichment for either of the populations, inositol phosphate 

metabolism was significantly enriched in ER samples for both populations (Figure 37c). This 

was in line with the analysis of key pathways based on RNA-seq data as shown in Figure 38. 

PI3K signaling was clearly more active in ER samples. Thus, metabolomics and RNA-seq data 

showed activity of similar biological processes.  

 
Figure 38: Activity of key pathways inferred by PROGENy between outcome groups in engrafting 
LSC-enriched populations. a) NES for key pathways. b) Exemplary expression and weights of 
genes driving the activity of the PI3K pathway. 

 

2.3.8 Increased TGFb signaling in LTR samples 

The analysis of key pathway activity revealed overall higher enrichment levels in LTR samples. 

TGFb signaling was enriched strongest in this outcome group (Figure 38a). The activity of TGFb 

signaling was mainly driven by ID4 (Inhibitor of Differentiation 4) which was one of the most 

significantly differentially expressed genes (Figure 39a,c). Within the cellular signaling 

network, this pathway shares signaling cascades with the bone morphogenetic protein (BMP) 

pathway as BMPs are part of the TGFb family.190 GSEA showed strong enrichment for of TGFb- 

and BMP-related gene sets for LTR samples in both LSC-enriched populations (Figure 39b). 

Interestingly, Noggin (NOG), which is an inhibitor of BMP signaling, was one of the most 

differentially overexpressed genes in LTR compared to ER samples (Figure 39c).  
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Figure 39: Enrichment of BMP and TGFb signaling in LTR LSC-enriched populations compared to 
ER samples. a) Exemplary expression and weights of genes driving the activity of the TGFb 
pathway inferred by PROGENy. b) GSEA for the two LSC populations separately. A positive NES 
indicates enrichment in LTR samples. c) Volcano plot highlighting genes driving the enrichment of 
BMP and TGFb-signaling based on leading-edge analysis. Differential expression statistics indicate 
the comparison between ER and LTR for both LSC populations combined. 

 

2.3.9 Trained outcome prediction signature is highly predictive in external AML cohorts 

The RNA-seq data was used to train an outcome prediction signature via LASSO regression 

with ER and LTR samples as two groups. Technical details are documented in the materials 

and methods chapter.  
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As expected, the trained 30-gene-signature showed high predictive power in its own training 

cohort when the median signature score was used for stratification into “low” and “high” 

groups associated with  “good” and “poor” prognosis, respectively (Figure 40). Accordingly, 

the signature genes were clearly differentially expressed between the outcome groups 

(Figure 41a and Table S 4). Over-representation analysis revealed that only few of the 

signature genes shared common biological functions or were specific for certain biological 

processes. For example, four genes shared enrichment for regionalization or pattern 

specification (Figure 41b). Interestingly, some of the signature genes also showed significantly 

differential methylation in their promoter region, e.g. Sortilin 1 (SORT1) and Ectonucleotide 

Pyrophosphatase/Phosphodiesterase 2 (ENPP2) between the outcome groups in the LSC-

enriched populations (Figure 42). 

 

 
Figure 40: Distribution of signature scores and Kaplan-Meier curves for training cohort. a,b) 
Results for population-sorted data set. c,d) Results for bulk data set. P-values were calculated 
using a log-rank test on the groups stratified by the median of the respective signature scores in 
cohorts. 
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Figure 41: Expression and biological function of signature genes. a) Heatmap showing the 
expression of signature genes stratified by the outcome groups in the population-sorted data set. 
Black frames indicate upregulation in either ER or LTR samples. b) Bar plot showing over-
representation analysis of signatures genes. 

 
Figure 42: Methylation of signature genes. Positions differentially methylated between 
engrafting populations of ER and LTR cohorts. q-values were calculated via differentially 
methylated position analysis. UCSC exonic regions in the bottom track correspond to genome 
version hg19. a,b) Methylation of SORT1. c,d) Methylation of ENPP2. Positions used for 
quantification of beta values as shown in violin-box plots in (b) and (d) are marked by red arrows 
in (a) and (c).  Statistical differences were calculated between groups using a two-sided Wilcoxon 
Rank Sum Test:  *p ≤ 0.05; **p ≤ 0.01; *** p ≤ 0.001; NS: non-significant. 
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To test whether the signature was also predictive in other AML cohorts, scores were 

calculated for six data sets and each cohort was stratified based on the respective median 

signature score. Since the RFS information was sparse for most cohorts, the overall survival 

(OS) was used for statistical testing. For the TCGA AML data sets, the signature showed high 

predictive power. Of note, the TCGA AML data set was downloaded from two different 

repositories referred to as “TCGA” and “GDC TCGA” since the documented survival data and 

preprocessed data were not identical in these repositories.59 Filtering for normal karyotype 

AMLs generally increased statistical significance. For the “TARGET “ data set only a trend 

toward correlation of high signature score and poor prognosis was observed; while the score 

showed significant predictive power after filtering of the “Beat (OSHU)” cohort (Figure 

43a).90,191 The signature prediction was also highly significant for the “Oellerich” cohort, while 

only a tendency was observed for the “Metzeler” microarray data set (Figure 43b).192,193 In 

summary, the trained signature showed high predictive power also in external AML cohorts. 



Results 

 60 

 
Figure 43: Kaplan-Meier curves for external cohorts. a) Curves for TCGA AML, GDC TCGA AML, 
TARGET AML, and the Beat (OSHU) cohort. The top row includes all AML samples. The bottom 
row was filtered for AML samples presenting a normal karyotype. b) Curve for the Metzeler 
cohort. c) Curve for the Oellerich cohort. P-values were calculated via a log-rank test on the groups 
stratified by the median of the respective signature scores in cohorts. Color code represents these 
strata as indicated in the bottom right corner applying to all plots. 
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To estimate the performance of the signature, the LSC17 score was analogously calculated 

for the external cohorts and the predictive power was assessed. The LSC17 score is a signature 

used to estimate the risk potential of AML.51 Comparison of the trained signature with the 

LSC17 results showed mixed results between the cohorts. While the TCGA cohorts and the 

“Oellerich” cohort were slightly more significant for the trained outcome prediction signature, 

the LSC17 performed strikingly better for the “TARGET” cohort and slightly better for the 

“Beat (OSHU)” cohort. The prediction for the “Metzeler” cohort was not significant for the 

outcome prediction signature but showed reversed strata for the LSC17 score (Figure 44 and 

Figure 45). Accordingly, the predictive power of the outcome signature was comparable, if 

not better compared to the LSC17 score. 

 

The LSC17 score was trained to predict malignant stemness in AML cohorts which is an 

indicator of prognosis.51 The outcome prediction signature, however, was trained using the 

time to relapse for samples taken at diagnosis. Consequently, I combined both scores to 

investigate whether the predictive power was additive. The median score was used for each 

cohort and signature separately to stratify the data sets into four groups; either “high” or 

“low” for both LSC17 and outcome prediction signature. For all cohorts, predictive power 

indicated by median survival time was increased when both signatures were combined, as 

was statistical significance; except for the “Beat (OSHU)” cohort (Figure 44 and Figure 45). The 

same applied to the combination of the outcome prediction signature with the ELN 

classification approach based on molecular risk (“good”, “intermediate” or “poor”). This 

classification was only available for the “TCGA” cohort and itself displayed high predictive 

power (Figure 46a). Combination with the outcome prediction signature was implemented 

analogously to the described procedure yielding six different strata. Again the median survival 

time showed increased discriminatory power for all risk groups and particularly separated the 

“intermediate” risk group with high statistical significance (Figure 46b). Taken together, I 

could show an additive effect of the trained outcome prediction signature with the 

established LSC17 score and the ELN classification. 
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Figure 44: Kaplan-Meier curves for external cohorts combining the trained signature and the 
LSC17 score. Left plots show Kaplan-Meier curves for LSC17 scores. Right plots show combinations 
of both signature scores. a) TCGA AML. b) GDC TCGA AML. c) TARGET AML. d) Beat (OSHU) cohort. 
P-values were calculated via a log-rank test on the groups stratified by the median of the 
respective signature scores in each cohort. The number in parentheses for each stratum indicates 
the median survival time corresponding to the dashed line in each plot. 
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Figure 45: Kaplan-Meier curves for external cohorts combining the trained signature and the 
LSC17 score. Left plots show Kaplan-Meier curves for LSC17 scores. Right plots show combinations 
of both signature scores. a) Oellerich. b) Metzeler. P-values were calculated via a log-rank test on 
the groups stratified by the median of the respective signature scores in each cohort. The number 
in parentheses for each stratum indicates the median survival time corresponding to the dashed 
line in each plot. 
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Figure 46: Kaplan-Meier curves for the TCGA cohort combining the trained signature and the 
molecular risk. a) Kaplan-Meier curve for molecular risk determined by the ELN classification 
scheme as documented by TCGA. b) Kaplan-Meier curves combining molecular risk and trained 
signature score. P-values were calculated via a log-rank test on the groups stratified by the median 
of the respective signature scores in each cohort. The number in parentheses for each stratum 
indicates the median survival time corresponding to the dashed line (only plot a)). 
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2.3.10 High expression of MHC-II in ER samples 

One of the signature genes with highest coefficients (i.e., predictive power for an early 

relapse) was HLA-DOA, an MHC-II gene (Figure 41a). MHC-II gene sets were also identified as 

highly enriched in ER compared to LTR samples across all populations (Figure 27c). Direct 

comparison between the outcome groups for engrafting LSC-enriched populations also 

revealed striking enrichment for MHC-II-related gene sets in ER samples. Again, this effect 

was more pronounced in the CD34+GPR56+NKG2DL- population (Figure 47a,b). Analysis of 

transcription factor activity showed that the differential expression was likely regulated it by 

RFX5, RFXANK, and RFXAP which are known to activate transcription in MHC-II promoters 

(Figure 48).194 

 

Notably, MHC-II genes were also differentially expressed in the bulk data set (Figure S 17). 

Taken together, MHC-II expression and antigen presentation were identified as one of the 

most strongly altered biological processed across all cell populations. 

 

 
Figure 47: Enrichment of MHC-II genes in differentially expressed genes between ER and LTR 
LSC-enriched populations. a) Bubble plot of enriched gene sets related to MHC-II expression by 
GSEA. Statistics are shown separately for CD34+ and CD34- LSC-enriched populations. b) Volcano 
plot of differentially expressed genes highlighting MHC-II genes. 
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Figure 48: Activity of transcription factors inferred by VIPER between ER and LTR LSC 
populations. a) NES for 25 most differentially active transcription factors. Exemplary volcano plots 
for genes driving the enrichment for transcription factors b) RFX5, c) RFXANK, and d) RFXAP. 

 

In summary, I could show that the SyTASC data set provides a homogenous genetic 

background with no major confounding factors. Differences based on RNA-seq and 

methylation data were more pronounced in the engrafting LSC-enriched populations. These 

biological differences included changes in key pathways such as TGFb/BMP and PI3K signaling. 

Increased hypomethylation and analysis of the mutant allele frequencies indicated a higher 

transcriptomic instability which may be caused by an earlier occurrence of the DNMT3A 

mutation. In addition, differences in the energy metabolism were observed which could 

partially be confirmed in metabolomics analyses. In a second part I trained an outcome 

prediction signature that exhibited high predictive power in multiple AML cohorts and 

additive discriminatory power in combination with established classifiers. 
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2.4 Optimization of intracellular metabolomics measurements 

Intracellular metabolite measurements require suitable protocols for their extraction. An 

optimal protocol allows efficient extraction of a wide range of metabolites as well as 

repeatability of results to ensure a low technical variation between samples and replicates. 

Independent from the SyTASC project, I worked on a comparative study to identify optimal 

extraction protocols for different human sample types. As outlined in Figure 49, this project 

included four sample types: liver, bone marrow, and two cell lines (adherent human 

embryonic kidney (HEK) and non-adherent human leukemia 60 (HL60)). These samples were 

used for intracellular metabolite extraction with ten different established protocols. 

Metabolite quantification was performed by a commercial kit (Biocrates MxP® Quant 500) 

covering a large range of up to 630 metabolites. 

 

During this study as well as in exchange with collaboration partners, a need for an easy-to-

use platform for customized analysis became apparent. Therefore, together with Nils 

Mechtel, I set up the R package “MetAlyzer” available on CRAN (https://CRAN.R-

project.org/package=MetAlyzer). This tool facilitates the reading and processing of the 

standardized output data from the MetIDQTM platform provided by Biocrates. Figure 50 

illustrates further functionalities including data handling, statistics, and downstream analysis. 

The optimal extraction protocol for a study depends on multiple factors such as sample type 

and metabolites of interest. Therefore, Nils Mechtel and I made the data set available as an 

interactive R Shiny app “MetaboExtract” (http://www.metaboextract.shiny.dkfz.de). This app 

allows users to explore and compare extractions protocols. Tissues, extraction protocols and 

metabolite classes can be (de)selected to focus on the data of interest. Additionally, the limit 

of detection (LOD) can be used to filter the data and the maximal coefficient of variation (CV) 

between replicates can be selected by users to identify the most suitable method. 

The following subsection describes the study results with default filtering options. As an 

application example, I outline the rationale for selecting the extraction method used for pre-

processing the untargeted metabolomics study for the SyTASC samples as presented in 

subsection 2.3.7. 
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Figure 49: Workflow of the comparative metabolomic study and associated analytic software. 
Four human sample types were extracted in triplicates using ten different extraction protocols. 
Metabolomics output was read and processed using the package “MetAlyzer”, programmed by 
Nils Mechtel and me. Statistics and data were made available online as the R Shiny app 
“MetaboExtract”, also programmed by Nils Mechtel and me, for the external user. 

 

 
Figure 50: Overview of MetAlyzer functionalities. The S4 MetAlyzer object is filled with output 
data from MetIDQTM. The object can be filtered, reformatted, and analyzed. Additionally, 
functions to summarize and extract data are available. Colors indicate S4 object (green), data 
(blue), and R functions (yellow). This figure is also part of the vignette of the package which 
provides detailed information for users. 
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2.4.1 Comparison of extraction methods for intracellular metabolomics 

The targeted metabolomics kit used for this study covers up to 630 metabolites from different 

chemical classes. These classes and the respective numbers of metabolites are displayed in 

Figure 51a. In an actual experiment, it may not be possible to quantify all metabolites 

simultaneously since reliable signal strength is required for effective quantification. A 

common approach is filtering by the LOD, defined as three times signal to noise ratio of the 

baseline. The filtered statistics for all extraction methods and sample types are shown in 

Figure 51b. The highest number of metabolites above the LOD was observed for liver tissue 

across all extraction methods (median: 391, range 171 - 456). The two investigated cell lines 

(HEK, median: 160.5, range 113 – 230 and HL60, median: 176, range 124 - 231) had very 

similar and intermediate total numbers of metabolites above LOD, while the lowest number 

was observed in bone marrow (median: 101, range 85 – 154).  

 

The metabolite class with the highest number of quantified metabolites were triacylglycerols 

and glycerophospholipids which accounted for 52.7% of potentially covered metabolites. 

Overall, the distribution of metabolites above the LOD was similar to the distribution of 

metabolites in the kit. The best-performing extraction method was not identical for all sample 

types. 75 EtOH/MTBE B and 100 IPA yielded the highest and second highest coverages for 

both liver tissue and HL60. For HEK cells 75 EtOH/MTBE A and 75 EtOH/MTBE B performed 

best, while 100 IPA and 75 EtOH/MTBE B achieved the highest number of metabolites in bone 

marrow samples. In general, across the different sample types, the highest number of 

metabolites above LOD was detected in 75 EtOH/MTBE B whereas MeOH/ACN/H2O achieved 

the lowest number. Notably, methods including handling with methanol provided on average 

a comparably low coverage (Figure 52a). 
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Figure 51: Metabolites in the kit and number of detectable metabolites. a) Metabolites covered 
by the Biocrates MxP® Quant 500 kit. Slices indicate the numbers of metabolites per class. b) 
Metabolites above LOD in the four different sample types for all extraction protocols. The color 
code at the top of this figure represents the different metabolite classes. 
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In addition to the number of metabolites above the LOD, it is crucial to take the repeatability 

of the extraction methods into account. To this end, I calculated the CV for replicates. Figure 

52b shows the number of metabolites above LOD and filtered for a CV < 30% to penalize those 

protocols that show high variability between replicates. After filtering, the number of 

metabolites was reduced for all experimental conditions but showed a similar distribution. 

Liver samples provided the highest number of metabolites whereas bone marrow yielded the 

lowest number (Figure 52a,b). Focusing on the overall distribution of median CVs for the 

extraction methods and sample types, most combinations showed low variation between 

replicates (around 20%). However, some outliers were highly variable, such as bone marrow 

using 100 IPA or MeOH/ACN/H20, HEK using EtOH/PP, and HL60 using extraction protocol 

100/20 MeOH (Figure 52c).  Figure 52d displays the distributions of CVs as histograms for the 

metabolites detected above LOD. For all experimental settings, the distributions showed a 

long tail towards high CVs. Hence, a small number of metabolites present low analytical 

repeatability and it is not advisable to include them into the group of efficiently quantified 

metabolites.  

 

Additionally, I calculated the sum of concentrations (SOC) i.e., the sum over all metabolite 

concentrations to estimate the overall analytical repeatability between biological replicates 

(Figure S 18). Depending on the extraction protocol and tissue, a consistent SOC over the 

biological replicates could be observed. For example, for MeOH/ChCl3 the variability for liver 

and bone marrow was low (CV: 0.03 and 0.05), while HEK and HL60 displayed high variability 

(CV: 0.18 and 0.44). Due to the different sample types (liver tissue, bone marrow cells, and 

cell lines), the units for concentrations were given as picomole per mg and picomole per 106 

cells, respectively. Hence, for liver tissue, the SOC is displayed on a different scale and the 

overall lower absolute number did not contradict the observation that liver tissues performed 

best based on the LOD as a quality control (QC) metric. For HEK, HL60, and bone marrow, an 

overall trend from high to low SOC for the sample types was observed, respectively. 

Comparing the SOC with the number of metabolites above the LOD indicated that these two 

measures did not correlate. Thus, the SOC provided additional information. For example, 100 

IPA performed best in most tissues based on the number of metabolites above the LOD while 

the SOC was comparable for multiple protocols including EtOH/PP and 75 EtOH/MTBE B 

(Figure S 18 and cf. Figure 51). 
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Figure 52: Statistics indicating repeatability for each extraction protocol and sample type. a) Bar 
plot showing number of metabolites above LOD. b) Bar plot showing number of metabolites 
above LOD and CV < 30%. c) Median CV and median absolute deviation (MAD). d) Histograms 
showing distributions of CVs for extraction protocols and sample types (only metabolites above 
LOD). Color code indicating sample type applies to all items. 
 

In order to provide an unsupervised analysis of all study samples, I performed a PCA on all 

metabolite concentrations. This analysis revealed that the first five PCs were mostly 

associated with sample types as main effect, while PC3-6 and PC9-10 were associated with 

the extraction methods (Figure 53a,c). When clustering only liver tissue, similar protocols 

clustered together, and the main variability was determined by the solvents used in the 

extraction methods. PC1 captures about 50% of total variance and was strongly associated 

with the use of IPA (isopropanol), but also influenced by methanol (MeOH) and acetonitrile 

(ACN) (Figure 53b,d). Among the metabolites with highest loadings for PC1 were 

triacylglycerides, while ceramides and sphingomyelins seemed to drive the variability of PC2. 

The PCA showed that extraction efficiencies for metabolites of different classes with different 

chemical properties were highly influenced by the used solvents (Figure 53e).  
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Figure 53: Clustering of extraction methods and sample types. a) PCA of different extraction 
methods across all sample types. b) PCA of different extraction methods for liver tissue. Colors 
and shape legend apply to both PCA plots. c) Heatmap showing the statistical association between 
sample type or extraction method and PCs. Color code represents p-values of Kruskal-Wallis Rank 
Sum Test. d) Heatmap showing the statistical association between solvents used in extraction 
methods and PCs. Color code represents p-values of Kruskal-Wallis Rank Sum Test. e) Bar plot 
showing the 15 highest loadings for PC1 and PC2 (ranked by absolute values). The color code 
represents signs of loadings. 
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2.4.2 Rationale for the choice of extraction protocol for SyTASC samples  

Based on the work presented above, I aimed to identify the optimal extraction protocol for 

untargeted metabolomics in the SyTASC project, results of which were presented in 

subsection 2.3.7. I assumed that the sorted populations generated from PDX samples are 

most similar to the sample type “HL-60” in the comparative study, which is a confluent 

hematopoietic cell line. Taking only the number of metabolites above the LOD and the median 

CV into account, the best choice is the extraction protocol 75 EtOH/MTBE B. This protocol 

resulted in the highest number of metabolites and a low median CV (Figure 54).  However, 

the untargeted metabolomics approach is mainly designed for small molecules rather than 

complex lipidomics measurements. Therefore, I filtered out lipid or chemically lipid-like 

metabolite classes (acylcarnitines, ceramides, cholesterol esters, diacylglycerols, 

dihydroceramides, fatty acids, glycerophospholipids, glycosylceramides, sphingolipids, and 

triacylglycerols). Besides filtering for the metabolites above the LOD, I also excluded 

metabolites with a CV ³ 0.3 and thus showed only low repeatability. Analogously to Figure 

54, Figure 55 shows the statistics after these filtering steps. Filtering had a massive impact on 

the quality measures for the different extraction protocols. The total number of metabolites 

was largely reduced to about one quarter on average. For the MeOH/ChCl3 protocol, there 

was no metabolite that fulfilled the quality requirement after filtering. As expected, the 

median CV was reduced for all extraction protocols. According to the new results, I chose the 

extraction method MeOH/ACN/H2O as a good trade-off between the number of metabolites 

and repeatability of the protocol represented by a low CV. This example emphasized the value 

of a cautious selection of pre-processing protocols, which can largely affect the scientific value 

of complex and time-consuming experiments such as metabolomic measurements. 
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Figure 54: Statistics across extraction protocols analogous to the available R Shiny app. a) 
Stacked bar plot showing the number of metabolites quantified only by filtering metabolites 
below the LOD. b) Bar plot showing median CV including median absolute deviation (MAD) of 
metabolites above the LOD. 

 
Figure 55: Statistics across extraction protocols based on filtering according to requirements of 
the SyTASC project. a) Stacked bar plot showing the number of metabolites quantified according 
to filtering options. b) Bar plot showing median CV and MAD calculated after filtering. 
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3 Discussion 

The SyTASC project generated a multi-omics data set that allows comprehensive investigation 

of biological processes associated with early relapse of patients in a genetically homogeneous 

AML cohort by providing LSC-enriched cell populations. Analysis of this complex data set 

aimed to (i) characterize the five different populations derived from a novel FACS sorting 

strategy, including two engrafting populations, termed LSC-enriched, and (ii) investigate the 

differences between outcome groups (ER and LTR). I analyzed and integrated the available 

data layers (transcriptomic, epigenetic, and genetic information) in order to identify 

differentially affected biological pathways and train an outcome prediction signature that is 

also valid in external AML cohorts. Additionally, the outcome groups were characterized 

metabolically. The latter was based on (iii) a technical sub-project leading to the setup of an 

interactive platform for the identification of suitable extraction protocols for metabolomics 

studies. 

3.1  A novel sorting strategy enriches functional and phenotypical LSCs 

LSCs are of great interest in AML research since these cells produce all leukemic cells, and 

therefore their complete therapeutic eradiation is crucial for a lasting cure.6 However, LSCs 

are often therapy-resistant, and their ability to self-renew and reinitiate the disease drives 

the relapse of patients.9,10 Dr. Nadia Correia established a novel FACS sorting strategy to 

enrich these cells. In xenotransplantation assays using NSG mice she could show that only 

populations positively selected for GPR56 and negatively selected for NKG2DL engraft, 

independent of the CD34 immunophenotype. In total, five different populations were sorted 

and submitted to RNA-seq and methylation profiling.  

 

These sorted populations contained different cell types, which accounted for the main 

variability in the data set. A strong stem-like phenotype of the engrafting LSC-enriched 

populations was observed. Embedding the samples into healthy single-cell data allowed to 

approximately map the differentiation stages of the sorted populations, which in a simplified 

model may be placed in a differentiation gradient (Figure 12). Figure 56 shows an overview 

of this model.  
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Figure 56: Overview of population characteristics.  

 

3.1.1 Characteristics of the sorted populations 

Hierarchic organization of leukemic cells has been observed in many AML samples.40–42 In the 

SyTASC cohort, this was reflected by the similarity of the sorted AML cell populations to 

different cell types in healthy hematopoiesis. Engrafting populations had a more stem-like 

phenotype as illustrated by increased levels of the LSC17 score, LSC 104-genes correlation, 

and GSEA results.51 Accordingly, the morphology was more stem-like; in the literature stem 

cells have been described as smaller in diameter and less granular since functional 

compartments are not yet developed.98,178 AML is characterized by the accumulation of 

myeloid progenitors that cannot differentiate into functional mature blood cells.41 Upon 

embedding into healthy hematopoiesis, these presumably not-functional leukemic blasts 

clustered to the (pro)monocytic populations, indicating a progression along a differentiation 

trajectory. Hierarchy within leukemic cells was furthermore supported by an assessment of 

mutant allele frequency. The number of mutant NPM1 alleles was higher in the more 

differentiated cells indicating that these are the progeny of the dominant, malignant LSC 

clones (Figure 13).32 
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Analyses of the cell cycle showed higher proliferation activity for the engrafting than for the 

non-engrafting populations, which fits the hypothesis of a proliferating LSC and/or 

intermediate progenitor population that produces leukemic blasts. These blasts are not 

further proliferating and therefore are comparably less cycling. Interestingly, it has been 

described that overall AML cells do not proliferate more than normal hematopoietic cells, and 

therapy-persistent LSCs are commonly characterized by cell cycle quiescence.41 With respect 

to proliferation, engrafting cell populations thus represent a heterogeneous mix of cells, but, 

as discussed above, are enriched for LSCs. Historically, LSCs were also referred to as leukemia-

initiating cells (LICs) and were estimated to be a very rare population (1 in 1 million leukemic 

blasts).49  The low abundance of these cells was reflected by the xenotransplantation results. 

Engraftment was almost exclusively observed in CD34-GPR56+NKG2DL- and 

CD34+GPR56+NKG2DL- populations, however, not all replicates showed engraftment (Table S 

1). Taken together, this indicates enrichment of slowly cycling therapy-resistant LSCs at the 

apex of AML and more progenitor-like cells driving the replenishment of leukemic blasts. 

Bioinformatic estimation of the cell cycle in bulk RNA-seq data only reflects averaged cell cycle 

fractions but does not allow analysis of differences between heterogenous subpopulations. 

Engraftment of non-sorted AML samples in xenotransplantation assays has been reported for 

many AMLs.195 Considering that engraftment occurs even at very high dilution of cells that 

actually mediate engraftment, the absence of engraftment and thus the depletion of LSCs in 

the more differentiated populations might even further support the enrichment of LSCs in the 

CD34-GPR56+NKG2DL- and CD34+GPR56+NKG2DL- populations. 

 

Along the hierarchical gradient illustrated in Figure 56, increasing hypomethylation was 

observed. This is consistent with publications describing a general hypomethylation along 

myeloid differentiation, although dynamical patterns at different stages were observed .108,109 

In contrast, DNA methylation increases with differentiation in other tissues, including 

lymphoid lineage.107 A former study by Jung et al. investigating DNA methylation in FACS-

purified populations showed that differentially methylated regions in LSC-

enriched/engrafting populations are mostly hypomethylated compared to non-engrafting 

populations.196 For LSC enrichment, Jung et al. used CD34 and CD38 as FACS markers. 

However, as opposed to our setting, only 3 out of 15 patients in that cohort harbored a 

DNMT3A-R882H mutation. It is thus very likely that the mutation status of DNMT3A plays a 

crucial role in the methylation pattern. 
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Methylation patterns are highly specific for cell populations in healthy hematopoiesis.108 

Interestingly, in the SyTASC data, the same pattern of decreasing methylation with increasing 

differentiation was also observed for healthy samples when considering the 

CD34+GPR56+NKG2DL- population the most HSC-enriched population in the healthy setting. 

While, as described by Ji et al., methylation decreases with myeloid differentiation, Hodges 

et al. observed that based on methylation patterns, HSCs are still more similar to 

differentiated myeloid cells than to lymphoid cells. 108,197 When investigating the cell of origin 

in the SyTASC data by clustering of methylation data, I showed that all sorted populations 

were in the same clade as GMPs, except for one CD34+GPR56+NKG2DL- sample that clustered 

to LMPPs (lymphoid-primed multipotential progenitors) (Figure S 4). As suggested by Goardon 

et al., LSCs seem to arise from progenitors that acquired self-renewal properties rather than 

from HSCs and most closely resemble GMPs.198 However, it must be considered that the 

reference data set only comprised HSPCs. Therefore, a more comprehensive reference might 

have shown more subtle effects in the dendrogram. Still, the methylation clustering 

recapitulated the findings of a study that proposed the coexistence of LMPP-like and GMP-

like LSCs in AML.198 These observations indicate that GMPs may be the cell of origin of the 

disease here.  

 

An observation in the exploratory analyses was the high expression of immunoglobulin genes 

in LSC-enriched populations. Most likely, this was due to ambient mRNA attached to the 

surface of the cells.179 This interpretation was supported by the lack of intronic mRNA. Hence, 

I removed immunoglobulin genes from further analyses. However, the difference in 

abundance between the populations was striking, which could either indicate that LSC 

populations reside in a specific niche or have different surface properties that facilitate the 

attachment of these mRNAs. Even though the function or origin of immunoglobulin mRNA 

could not be determined, it is yet another marked difference between on one hand the LSC-

enriched and on the other hand the more differentiated populations. 

 

Immune checkpoint therapy has largely improved the treatment of many solid tumors.199 For 

AML, these therapies showed less promising results.175,200 Among the most prominent 

differences between engrafting and non-engrafting populations in the SyTASC data were 

genes and gene sets related to immunoregulatory processes. Most likely, these expression 

patterns represent the differentiation stages of the populations. 201 The expression pattern of 

immune checkpoints could be one of the reasons for failing immune therapy in AML. Many 
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classic inhibitory immune checkpoint genes were not expressed in the LSC-enriched 

populations. One example was the apparent lack of expression of LILRs. LILRB4 has been 

described as a promising target for monocytic AMLs.201 It’s lack of expression in engrafting 

LSCs raises the question if a sustained response can be expected or if targeting this receptor 

would only affect the leukemic blasts. Taken together, this work gives hints to why checkpoint 

inhibition does not target LSCs and hence fails to eradicate the most critical AML cells. 

	

3.1.2 The “NK-depleted” sorting strategy reveals differences in LSC-enriched populations 

The analysis of immune checkpoint genes also showed high levels of KIRs in the CD34-

GPR56+NKG2DL- populations. These genes are specific for NK cells.202 This was in line with the 

observation of CD34-GPR56+NKG2DL-  clustering to NK cells when embedding the samples in 

normal hematopoiesis. The varying abundance of remaining NK cells was problematic for 

purity of the extracted expression signals from the LSC-enriched populations. These 

remaining NK cells were present in the CD34-GPR56+NKG2DL- but not in the 

CD34+GPR56+NKG2DL- population, leading to a great bias in the differential expression 

analysis. The FACS marker CD34 enriches HSPCs and therefore excludes differentiated 

immune cells such as NK cells in CD34+ populations. Additionally, GPR56 was described as a 

marker for NK cells. Thus, positive selection for this marker might facilitate the enrichment of 

NK cells in the CD34-GPR56+ population.97 In the “original” data set, a few samples were CD3-

depleted, which accounts for T cells and macrophages but not NK cells. A subset of samples 

was re-sorted by Dr. Elisa Donato using an improved FACS sorting strategy referred to as “NK-

depleted”. Besides CD3, the “NK-depleted” sorting strategy also comprised CD19, CD235a, 

and CD20 to exclude lineage-positive cells in the CD34- population. For the “NK-depleted” 

data set, the estimated NK cells via deconvolution were marginal and allowed effective 

comparison between the two engrafting populations (CD34-GPR56+NKG2DL- and 

CD34+GPR56+NKG2DL-) (Figure 18). All other analyses were not affected by the presence of 

NK cells. In particular, in all comparative analyses of the two outcomes groups (ER and LTR) 

shown in section 3.2, confounding effects due to remaining NK cells can most likely be 

excluded as both groups showed comparable abundances of NK cells. Additionally, one might 

speculate that the improved, “NK-depleted” sorting strategy with much lower remaining NK 

cells in the CD34- fraction leads to an even higher enrichment for LSCs, the cells of interest. 
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Overall, based on the clustering of transcriptomic data and on the low number of significantly 

differentially expressed genes, the CD34+ and CD34- engrafting populations appeared to be 

very similar. However, the direct comparison revealed differential activity of important 

transcription factors, e.g., high activity of SOX2 in the CD34+ LSC-enriched population. The role 

of this transcription factor in stem cell development and maintenance of stemness has been 

extensively studied in various stem cell populations and tissues.181 Interestingly, Sox2 

interacts with Npm1 in mice, which is mutated in all samples of the SyTASC cohort.203 

However, a role of SOX2 in hematopoiesis has not been described in literature.204 In the 

SyTASC data set, strong enrichment for JAK-STAT signaling in the CD34+ engrafting population 

was observed, and overexpression of SOX2 has been described to be induced by JAK2/STAT3 

activity. Signals from different sources of activation may thus be convoluted.205 The JAK-STAT 

pathway is a tightly regulated signaling cascade of Janus kinases (JAK) and signal transducers 

and activators of transcription (STATs), which regulates hematopoiesis, HSC proliferation, 

survival, and self-renewal.165 Constitutive activation of this pathway has been widely 

described for hematologic malignancies, including AML, even leading to inhibitors of JAK 

being approved for use in patients.206 A recent publication showed enrichment of JAK-STAT 

signaling and promotor accessibility in normal HSCs compared to DNMT3A-mutant HSCs 

indicating a possible deviant activity in these mutant HSC populations.207 This is in line with 

higher LSC17 scores, higher abundance of normal HSCs and enrichment of HSC-related gene 

sets in CD34+  population when compared to the CD34- population (Figure 19 and Figure 21). 

Strikingly, some of the CD34+ samples which had particularly low DNMT3A- and NPM1-mutant 

allele frequencies showed multi-lineage engraftment in xenotransplantation assays. Taken 

together, these were strong signs of the presence of retained healthy HSCs in the CD34+ 

population. This is consistent with common usage of CD34 to enrich HSPCs, and negative 

selection for CD34 excludes normal HSCs.  

 

3.1.3 Enriched populations from healthy bone marrow are different from AML 

Isolation of hematopoietic populations by FACS-sorting has been intensively studied but 

markers used within healthy hematopoiesis cannot necessarily be transferred to the diseased 

system and vice versa.93 In order to elucidate this further, in addition to the AML samples, the 

sorting strategy was also applied to healthy bone marrow samples. Overall variability 

between the sorted populations was higher than between the different disease statuses. For 

the most differentiated populations CD34-GPR56-NKG2DL+ and CD34+GPR56+NKG2DL+, PCA 
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on transcriptomic data showed intermingled clustering of healthy and AML samples. This was 

in line with the embedding of healthy samples into single-cell data from healthy 

hematopoiesis revealing that these populations, like AML, clustered to monocytes (Figure S 3 

and Figure 12). One might speculate that using a reference data set more fine-grained in the 

differentiated populations would show more distinct clustering. In contrast, PCA clustering of 

methylation data showed clear differences between healthy and AML CD34-GPR56-NKG2DL+ 

and CD34+GPR56+NKG2DL+ populations (Figure 8).  

 

The healthy counterpart to the AML progenitor-like population CD34-GPR56-NKG2DL- also 

clustered relatively diffuse when embedded in the healthy reference samples. The 

counterparts to the two LSC-enriched populations, CD34-+GPR56+NKG2DL- and CD34-

GPR56+NKG2DL-, showed a different picture. While leukemic cells clustered mostly to HSCs 

when embedded into normal hematopoiesis, healthy populations clustered to erythroid 

progenitors. Accordingly, clustering to a healthy methylation reference showed that the 

healthy CD34-+GPR56+NKG2DL- and CD34-GPR56+NKG2DL-  populations were most similar to 

CMPs (common myeloid progenitors) or MEPs (megakaryocytic-erythroid progenitors), which 

are progenitors that also give rise to erythroid cells.208 However, when clustering AML 

samples to a healthy methylation reference, all samples showed the highest similarity with 

GMPs. Hence, the CD34-+GPR56+NKG2DL- and CD34-GPR56+NKG2DL- populations from on one 

hand AML and on the other hand healthy samples behaved differently based on transcription 

and methylation data. As described above, stemness signatures and the abundance of HSCs 

were different for AML and healthy CD34-+GPR56+NKG2DL- and CD34-GPR56+NKG2DL- 

populations. Consequently, healthy and AML populations are not directly comparable since 

they do not recapitulate the same types of cells. Hence, a direct comparison between healthy 

and AML populations was not informative for most questions and the analyses of the 

populations suggested that sorting strategies might not be transferrable from healthy 

hematopoiesis to the diseased system. 

 

3.1.4 Advantage of combining the different markers to enrich for LSCs 

NKG2DL status explained the largest fraction of the variance observed in RNA-seq and 

methylation data in various complementary analyses. In line with observations by Paczulla et 

al., the NKG2DL immunophenotype was strongly associated with the differentiation stage of 

the sorted populations.98 However, only those cells which were additionally selected for 
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GPR56 positivity engrafted in xenotransplantation assays. Even though both markers alone 

have been shown to enrich for LSCs in AML, the complementary populations, CD34-GPR56-

NKG2DL- and CD34+GPR56+NKG2DL+ did not engraft.94,98 Therefore, a combination of both 

markers most likely enriches for LSCs in with greater purity. Based on morphological markers 

and on clustering of the data, the CD34-GPR56-NKG2DL- population was phenotypically similar 

to the engrafting LSC-enriched populations (CD34-+GPR56+NKG2DL- and CD34-

GPR56+NKG2DL-). However, in other analyses such as embedding into normal hematopoiesis 

it behaved quite differently. Direct comparison between the CD34-GPR56-NKG2DL- and the 

engrafting LSC-enriched populations revealed processes involved in cell cycle and 

differentiation as major differences. This was also supported by a lower LSC17 score in the 

CD34-GPR56-NKG2DL- population. Hence, this population seemed more differentiated and 

therefore lost its potential for engraftment, while immunophenotypically losing GPR56 

positivity. However, a specific pathway driving this development could not be identified. 

Additionally, it could not finally be determined if the loss of GPR56 positivity is the reason for 

or a consequence of the loss of stemness. Since the CD34+GPR56+NKG2DL+ population 

showed a differentiated phenotype with no engrafting potential, the latter is more likely.  Of 

note, the immunophenotypic absence of NKG2DL showed a higher impact on engraftment 

potential than the presence of GPR56. However, as stated above, absence of NKG2DL alone 

seemed to be a necessary but not sufficient marker for the enrichment of engrafting leukemic 

stem cells in this sorting scheme. In summary, the combination of GRP56 and NKG2DL 

enriches functional and phenotypical LSCs, and the combination showed an added value for 

a purer enrichment of LSCs. 

 

CD34, together with CD38, is one of the most commonly used markers in sorting strategies to 

enrich for healthy HSC, and is also intensively used to study LSCs.42,94 However, publications 

by Pabst et al. and Paczulla et al. already showed that GPR56 and NKG2DL are markers for 

LSCs independent of CD34.94,98 The SyTASC data confirmed these findings and even revealed 

that positive selection for CD34 and GPR56 does not necessarily enrich for LSCs since the 

CD34+GPR56+NKG2DL+ did not show engraftment (except for one sample; Table S 1). This 

independence from CD34 is of particular interest when studying CD34-negative AMLs, which 

account for about 25% of all cases. Especially, NPM1-mutated AMLs are enriched for samples 

that lack expression for CD34, defined as CD34 present on <10% of all leukemic blasts.41 In 

those samples, most LSCs seem to reside in the CD34- fraction, whereas only a few showed a 

CD34+ immunophenotype.93,101 Interestingly, Quek et al. hypothesized that based on 
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transcription, CD34+ and CD34- LSCs represent the same cell with different 

immunophenotypes and already advocated for alternative markers for LSC enrichment.209 

This is clearly in line with findings in this study, which showed high similarity between these 

populations and minor transcriptional differences that most likely originated from retained 

normal HSCs in the CD34+ population as described above. The novel sorting strategy 

overcomes the challenge of enriching for LSCs in CD34-negative AML, as shown for the NPM1-

mutated SyTASC cohort presented here. The novel sorting strategy and insights gained are 

presented in a manuscript currently in revision at Blood Advances (cf. chapter “Own 

publications”). In summary, multi-omics analyses shed light on the characteristics of the 

different sorted populations and were in accordance with the experimental findings on 

engraftment potential by xenotransplantation assays. 
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3.2 Two distinct outcome groups in a genetically homogenous cohort 

Understanding the biological changes associated with relapse of AML patients is crucial to 

improve treatment. This includes identifying genes or biological pathways that could be used 

as a therapeutic target and for stratification of patients. Particularly since cancer therapies 

are associated with major, sometimes life-threatening, side effects and quality-of-life 

impairments for patients, selecting an effective therapy option is of utmost importance.210 

The following subsections discuss the findings and differences observed between the two 

outcome groups (ER and LTR) in the SyTASC cohort. 

 

3.2.1 A genetically homogenous cohort to study LSCs 

The SyTASC cohort was retrospectively selected for NPM1-W288fs*12- and DNMT3A-R882-

mutant patients. However, other mutations co-occurred in a subgroup of patients, e.g., a 

large number of patients also carried an FLT3-ITD mutation which showed a low but 

statistically significant association with the outcome groups (Table 3). Nevertheless, this could 

not sufficiently explain the dramatic RFS difference between the two outcome groups. 

Another possible reason for the different RFS could be a non-dominant subclone that re-

initiates the AML after chemotherapy. This is unlikely since the outcome group is, particularly 

in the LSC-enriched populations, a major source of variability in RNA-seq and DNA 

methylation data which cannot be caused by a low abundant subclone (Figure 28 and Figure 

S 10). Particularly the integration using MOFA showed an association of the outcome groups 

with different LFs reflecting high variance explained, which are unlikely due to clones of minor 

frequency (Figure 7 and Figure 31).  

 

All samples were collected at diagnosis, went into complete remission after chemotherapy, 

and were retrospectively stratified by the time until relapse. Available clinical information was 

analyzed to identify potential confounding factors. For example, age is a major determinant 

of survival in AML and cancer in general.211 The SyTASC cohort includes only samples from 

young adults aged 22 to 65 years, and age showed no significant association with the outcome 

group. Among the tested features, only BM blast count showed a low and statistically 

significant increase in the hazard ratio (Table 4). High levels of BM blasts have been described 

as an indicator of poor prognosis, potentially due to a more advanced disease progression.189 

Notably, the percentage of BM blasts is also a diagnostic parameter. BM samples with more 
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than 20% blasts are considered leukemic.212 The percentage of BM blasts for the SyTASC 

cohort was reported between 4% and 93%, which is not in line with the requirements for 

diagnosis. Hence, it would be questionable if this data is valid to be used as a confounder. 

Since samples originate from two hospitals (Dresden and Ulm), a bias in acquiring this 

parameter is also likely, potentially due to personnel, equipment, or different standard 

operating procedures (SOPs), which are frequent sources of bias in clinical information.213 In 

summary, the SyTASC cohort showed a homogeneous genetic background and no major 

confounding factors could be identified. However, the batch effect from RNA-seq data 

remained, which had to be considered in all analyses comparing the outcome groups (cf. 

Figure S 1). 

 

It is essential to target LSCs for sustained therapy success.41 Hence, for the analysis comparing 

the outcome groups, I focused mainly on the LSC-enriched populations. This approach was 

also supported by the more pronounced differences in these two populations compared to 

analyses including the more differentiated ones (Figure 27, Figure 28 and Figure S 10). For 

example, unsupervised PCA of RNA-seq and DNA methylation data showed that the first PCs 

were statistically significantly associated with the outcome group in the LSC-enriched 

populations. Interestingly, the association with the outcome group as the major driver for 

variability was even stronger than the patient-specific effect. Still, patient-specific differences 

are a frequent source of variability also in the SyTASC data set. For example, many of the LFs 

identified by MOFA with lower explained variance were specific for individual patients (Figure 

7).  

 

In contrast, analysis of all cell populations merged showed less variability between the 

outcome groups. Hence, one might speculate that the leukemic phenotype is more similar in 

the differentiated populations. A similar observation was made for the RNA-seq bulk data 

from unsorted samples. Comparison between outcome groups in these samples revealed only 

40 significantly differentially expressed genes. However, some of the significantly differential 

processes discovered in LSC populations (e.g., MHC-II overexpression in ER samples) were also 

different in bulk samples even though significance was lacking. In summary, the differences 

between the outcome groups were more pronounced in the LSC-enriched population. This 

may support the hypothesis that the crucial differences leading to differential RFS are rooted 

in the LSCs and that these cells are indeed responsible for relapse. 
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3.2.2 ER samples present a more stem-like phenotype 

A critical mechanism for the resistance to anti-proliferative chemotherapy in LSCs is likely a 

quiescent or dormant state allowing them to sustain therapeutic interventions.30 Dormant 

HSCs, and most likely their malignant counterparts, are at the apex of the respective 

hierarchies.214 Healthy dormant HSCs have been characterized by their extremely low 

proliferation rates.28 Immunophenotypic analyses considered about 20-30% of all HSCs as 

dormant.29,214 As dormancy is intimately linked to stemness, differences in stemness between 

the outcome groups were investigated. Analysis of LSC17 scores and correlation with LSC 104-

genes signature as well as GSEA showed higher enrichment for stemness in ER compared to 

LTR samples (Figure 29). Additionally, the distance to healthy HSCs was smaller for ER samples 

than for LTR samples when embedded into healthy hematopoiesis (Figure 30). This does not 

necessarily prove a more dormant phenotype but indicates a more immature phenotype of 

the ER compared to the LTR LSC-enriched populations. However, the inferred cell of origin by 

comparison to HSPC methylation data indicated a similarity to GMPs but no difference 

between the outcome groups (Figure S 4). Consequently, the more stem-like transcriptional 

phenotype of ER samples could be either due to a priori differences during the onset of AML 

or posterior during to progression of the disease. Assuming that the cell of origin is indeed 

GMP-like for both outcome groups, the ER phenotype might be more accurately described as 

dedifferentiated. Analysis of the cell cycle phases did not reveal any difference between the 

outcome groups (data not shown). Even though the SyTASC sorting strategy strongly enriches 

for LSCs, likely few cells in the sorted populations show a dormant, chemo-resistant 

phenotype. Hence, specific patterns and differences of these low abundant cells may be 

diluted in the “population bulks”. This is particularly likely when considering the observation 

of overall high cell cycle activity in the LSC population discussed in subsection 3.1.1.  

 

The complex and context-dependent regulation of normal hematopoiesis by TGFb signaling 

has been intensively studied.190,215 TGFb signaling has been described as crucial for stem cell 

quiescence and the related BMPs are essential regulators in the HSC microenvironment 

maintaining hematopoietic progenitors in an undifferentiated state.215,216 In the SyTASC data 

set, significantly higher TGFb signaling activity was observed in LTR samples compared to ER 

samples by pathway enrichment analysis and was supported by striking enrichment of related 

genes and gene sets (Figure 39). This is not in line with the hypothesis that ER samples might 

be more quiescent than LTR samples. In contrast, other studies observed BMPs as initiators 
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of differentiation.217 Particularly in the leukemic context, the role of TGFb and BMP signaling 

was ambiguous in different studies depending of the AML subtype.46,190,218,219 Recently, Sun 

et al. showed that inhibition of BMP signaling promotes self-renewal in acute myeloid 

leukemia cells and thus BMP signaling may act as a tumor suppressive pathway.220 These 

findings are in line with the higher TGFb and BMP signaling activity in LTR samples which were 

characterized as more differentiated compared to ER samples. Interestingly, the striking 

upregulation of the BMP signaling inhibitor noggin (NOG) in LTR samples does not fit the 

downstream activation of BMP signaling.221 A potential explanation might be a 

posttranslational regulation of noggin. Additionally, the enrichment of BMP downstream 

signaling might be driven by the strong activation of the TGFb pathway which may 

outcompete inhibition by upregulated noggin. To investigate how stemness signatures and 

TGFb signaling are regulated in the LSC environment, further research is needed. 

 

Expression of MHC-II genes has already been described in the 80s for some AMLs.222,223 Later 

studies showed that downregulation and loss of surface presentation are associated with 

relapse in AML patients.177,224 The strongest differential signal between the outcome groups 

was the upregulation of MHC-II transcription in ER samples. This observation was present in 

all sorted populations, and the bulk RNA-seq showed clear differential expression. 

Hernandez-Malmierca et al. showed that HSPCs constitutively present antigens via MHC-II as 

an immunosurveillance mechanism.225 High expression and surface presentation of MHC-II 

have also been associated with stemness in AML patient samples and cell lines. Interestingly, 

the expression levels also seem to be dependent on the genetic status of the AML (e.g., FLT3-

ITD).225 However, in the LSC populations of the SyTASC cohort, neither a specific association 

with FLT3-ITD status nor differential expression of relevant immune checkpoints could be 

observed (data not shown). In summary, upregulation of MHC-II transcription fits to the 

observation of enhanced stemness in ER samples.  

 

3.2.3 Alteration of energy metabolism in engrafting LSC populations 

Reprogramming of energy metabolism in cancer cells has been intensively studied and is 

considered a hallmark of cancer.167 Accordingly, rapidly proliferating cancer cells rely on 

glycolysis rather than oxidative phosphorylation as the primary mode of energy production.167 

Comparison of the outcome groups in the SyTASC data showed that LSC-enriched populations 

sorted from LTR samples seemed to utilize glycolysis for energy production. In contrast, LSC-
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enriched ER samples showed evidence for higher oxidative phosphorylation activity. 

Interestingly, the analysis of bulk RNA-seq data also displayed enrichment for oxidative 

phosphorylation and mitochondrial complexes in ER samples but statistical significance was 

lacking. For HSCs and LSCs, it has been hypothesized that these cells generally favor glycolysis 

over oxidative phosphorylation, particularly since they reside in a relatively hypoxic niche in 

the bone marrow.161,226,227 However, recent studies have shown that especially quiescent LSCs 

or resistant AMLs can be targeted via inhibition of oxidative phosphorylation.86,162,228–230 

These studies are in line with the observation of higher oxidative phosphorylation 

dependency in ER samples with a resistant, potentially more quiescent phenotype. In 

contrast, LSCs in LTR samples presented a chemo-sensitive phenotype and exhibited a more 

glycolytic metabolic state, potentially resulting from a more differentiated cell state. 

Interestingly these effects were more dominant in the CD34+GPR56+NKG2DL- compared to 

the CD34-GPR56+NKG2DL- population. This may be caused by the presence of retained normal 

HSCs, which are potentially more abundant in LTR samples based on the observation of multi-

lineage engraftment of AML bulk samples (Table S 1, cf. subsection 3.1.2). Hence, these more 

glycolytic, healthy HSCs potentially contribute to a convolved signal of observed difference in 

energy metabolism. 

 

In addition to transcriptomic, epigenetic and mutational profiling, a subset of samples derived 

from the SyTASC cohort were subjected to metabolomics, however using a slightly different 

sorting strategy for enrichment of cell types. Metabolomics analysis revealed differences 

between the outcome groups which were in line with observations in the corresponding 

populations by RNA-seq (Figure 37). However, statistical evidence was low and only few 

metabolites showed significantly differential abundance. An explanation might be the fast 

turnover of metabolites, particularly those involved in energy metabolism.154 Pre-analytical 

sample processing for metabolic measurements has been described to critically affect its 

results.155 Preparation of the samples from the SyTASC cohort included FACS-sorting, which 

may not be suitable for measuring differences in energy metabolism. This procedure contains 

multiple time-consuming steps, including staining. In contrast, sampling for metabolomics 

usually recommends direct cooling of cells or tissues231–233. Particularly for the CD34+GPR56+ 

population, the number of significantly differentially abundant metabolites was relatively low 

with only four metabolites. In contrast, the most significantly enriched metabolic pathway 

was PI3K signaling in ER samples, also reflected by the differential abundance of inositol 

bisphosphate (hexose bisP). This was in line with the observed higher activity of PI3K signaling 
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in transcriptomic data of ER LSC-enriched samples. Constitutive activation of PI3K/AKT/mTOR 

signaling is often hyperactivated in AML and associated with poor survival.158 A recent study 

investigated the gain of accessibility of promotors in HSCs with induced Npm1 and Dnmt3a 

mutations and showed enrichment for PI3K/AKT/mTOR signaling together with mitochondria- 

and stem cell-related pathways.207 These findings are overall in line with the above described 

observations for the LSC-enriched population in ER samples. Metabolomics is a complex data 

type and conclusions from the metabolomics data of the SyTASC samples have to be drawn 

with care, but further mining of the already generated data may still yield additional insights 

in the future. 

 

3.2.4 Mutant allele frequencies and timing of mutations 

AML has been described to comprise a mixture of genetically distinct subclones. One method 

to  investigate clonal relationships is to infer the allele frequency of mutated genes.76 In the 

DNA derived from the SyTASC samples, DNMT3A and NPM1 variants were determined by 

panel sequencing or WGS. For the sorted cell populations deeply analyzed in this thesis, I 

computed the mutant allele frequencies based on mutated RNA-seq read counts using the 

prior knowledge of the expected variant positions. Hence, I termed this analysis “mutant 

allele frequency” in contrast to variant allele frequencies (VAF); a term reserved for the 

analysis of DNA sequencing data. Overall, the mutant allele frequency of DNMT3A was higher 

than that of NPM1. DNMT3A has been described as a pre-leukemic mutation priming the cell, 

and subsequent mutations such as NPM1 then initiate AML.32 In most samples, the DNMT3A 

mutant allele frequency was around 50%, confirming that on average most cells harbor this 

heterozygous pre-leukemic mutation. In contrast, about 40% of NPM1 alleles were mutated 

(Figure 13). Thus, potentially not all sorted cells were leukemic. Interestingly, the mutant 

allele frequency was significantly higher in the ER samples compared to LTR, indicating either 

lower abundance of non-leukemic cells or a potentially more progressed AML with a 

dominant NPM1-mutated clone. For DNMT3A, the mutant allele frequency was not 

significantly altered between the outcome groups. Particularly the DNMT3A-R882H mutation, 

which is the main variant in the SyTASC cohort (besides R882C and R882G), has been 

described to cause a loss of methyltransferase activity and, therefore, hypomethylation.62 

Despite absence of differences in mutant allele frequency, global analysis of methylation 

differences showed an increased hypomethylation in ER compared to LTR samples (Figure 32 

and Figure S 11). One explanation could be a different cell of origin since methylation is highly 
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specific for cellular differentiation stages.108,234 However, as described above, when samples 

were clustered to methylation patterns of normal HSPCs, a difference between the outcome 

groups could not be observed (Figure S 4). Additionally, the ER samples showed global 

hypomethylation, which would not fit a more stem-like phenotype suggested by 

transcriptomic analyses. These observations rather argue against a different cell of origin 

between ER and LTR. In general, when compared to healthy BM samples, AML samples 

showed clear global hypomethylation, also in the more differentiated populations reflecting 

the DNMT3A-mutant phenotype (Figure S 11). 

 

As a second hypothesis, different temporal occurrence of the mutations could account for the 

differential global methylation between the outcome groups. The DNMT3A mutation event 

might have happened earlier in the ER samples. Thus, leading to an accumulation of more 

perturbations in the methylome and transcriptome, resulting in a more advanced form of 

AML. Desai et al. showed that pre-leukemic mutations often occur a decade before diagnosis 

in patients.235 The temporal effect has been modeled in a study that introduced Dnmt3a-

R878H (homolog to human DNMT3A-R882H) and Npm1 mutations in mice with varying 

latency between events. Strikingly, increased latency led to a more aggressive disease with 

decreased overall survival in mice. In line with that, simultaneous mutations of Dnmt3a-

R878H and Npm1 did not cause a lethal hematologic malignancy within 45 weeks in 

mice.236,237 The authors hypothesized that accumulation of Dnmt3a-induced alterations 

synergizes with Npm1 mutations and causes an advanced aggressiveness. Other studies also 

highlight the effect of the temporal order of DNMT3A in combination with a JAK2 mutation 

on hematologic malignancies.238,239 More recent publications proposed that mutation of 

DNMT3A induced global methylation changes and particularly in HSCs triggered a selective 

advantage.207,240  

 

Further studies observed transcriptomic instability with increased erroneous RNA splicing in 

DNMT3A-mutated cell lines.124 Accordingly, differential splicing was also observed between 

outcome groups in the SyTASC cohort (Figure 33). Specific events with direct clinical 

implications (inclusion level differences > 50%, if not > 80%) could not be identified. Since the 

splicing machinery was not mutated or otherwise transcriptionally affected (data not shown), 

coordinated differences are probably not to be expected. The observed differences seem to 

manifest themselves mainly through a skewed distribution of event types, e.g., enhanced 

numbers of intron retention events in ER samples (Figure 33). In line with this observation, 
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reduction of alternative splicing and accordingly changes in specific event types has been 

previously described for cancer in general. Kim et al. observed higher levels of intron retention 

and lower levels of exon skipping in cancer compared to normal cells.241 Interestingly, analysis 

of alternative splicing events suggested a significant co-occurance in genes with changes in 

DNA methylation (Table S 3). The effect of DNA methylation on alternative splicing has been 

oberserved in mutiple studies.116 For example, Shukla et al. proposed a potential mechanism 

by modulation of elongation rates during transcription.117 Taken together, these findings 

support the hypothesis that the enhanced hypomethylation observed in ER samples 

compared to LTR samples may reflect a temporal difference in the mutational events. 

Accumulating instability by progressing hypomethylation as a consequence of mutated 

DNMT3A might be associated to this process. Since specific mechanistic hypotheses have not 

been proposed yet, further research is needed to understand the priming of pre-leukemic 

HSCs. To investigate these probably subclonal effects, particularly single cell technologies will 

be helpful. 

 

3.2.5 A trained outcome prediction signature is highly predictive in external AML cohorts 

The data set was further used to train an outcome prediction signature for patient 

stratification. The signature was trained on the population-sorted data set together with the 

bulk RNA-sequencing data. This approach was chosen on one hand to account for LSC-

enriched populations, which are most likely the origin of relapse, as well as on the other hand 

ensure applicability in external cohorts, which almost exclusively consist of bulk samples.7 

Additionally, this merging makes the training cohort bigger, and a larger cohort is better 

suited for machine learning, cross-validation, and avoiding overfitting of the training data 

set.242 Instead of cox regression using RFS data, logistic binomial regression was chosen using 

the two outcome groups. The rationale behind this approach was the extreme difference in 

RFS. While ER samples relapsed within six months, some LTR showed relapse only after ten 

years. Therefore a more simple model was chosen also considering that relapse after multiple 

years might not be reflected in the transcriptional data at diagnosis anymore but rather might 

have originated from a subclonal or therapy-induced effect. 

 

The signature showed overall high predictive power in external AML cohorts. Of the six tested 

cohorts, only two didn’t reach significance, but still showed a trend. For these latter cohorts, 

the lower predictive power may be explained by very specific differences: the “TARGET AML” 
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is a pediatric cohort (while the SyTASC data used for training were obtained from adult AML 

patients), and the “Metzeler” cohort was transcriptionally analyzed via microarray analysis 

(while the SyTASC data underwent RNA-seq).191,193 Also, the predictive power of the signature 

was better if cohorts were filtered for normal karyotype AML, indicating that the effect of 

complex cytogenetic rearrangements leads to processes not entirely represented in the 

SyTASC cohort. This observation might be a point of critisism, as the signature was trained on 

a genetically homogeneous cohort and a prediction for AML in general, may not necessarily 

be derived – or only if one assumes similar remission mechanisms in LSCs. Interestingly, 

filtering for only DNMT3A- and NPM1-mutated samples did not improve statistics (data not 

shown). This was possibly due to a low number of samples and other interfering mutations.  

 

However, comparison with the stemness-related LSC17 signature revealed comparable, if not 

better predictive power. Furthermore, a combination of the outcome prediction signature 

with the LSC17 signature or the ELN classification indicated an additive effect. This suggested 

that the biological processes reflected by the signatures or the ELN classification are different 

but independently predict patient outcomes. Accordingly, genes in the trained outcome 

prediction signature and the LSC17 signature did not overlap.  

 

Analysis of the 30 genes in the outcome prediction signature showed little shared biological 

function; among these, e.g., enrichment for regionalization or pattern specification could be 

identified. Some genes also showed differential methylation in the promoter region in the 

outcome groups of the SyTASC cohort. Particularly, SORT1 expression displayed high 

predictive power reflected by its signature coefficient. Modarres et al. proposed SORT1 to be 

involved in chemo-resistance in AML.243 A fast relapse indeed indicates a chemo-resistance of 

the LSC populations. Hence, the outcome prediction signature might also be referred to as a 

chemo-resistance signature. In summary, the trained signature showed high predictive power 

in external cohorts and an added value compared to established classifiers.  
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3.2.6 Concluding remarks on results obtained from the SyTASC data set 

One of the most striking advantages of the SyTASC cohort is the homogeneous genetic 

background. The leukemic phenotype highly depends on the exact mutations, and even 

different mutations within the same gene might cause different outcomes.3,62,209 The 

enrichment of LSCs allowed to study biological processes facilitating the early relapse and 

thus most likely causing the chemo-resistant phenotype. The enrichment of LSCs by the novel 

sorting strategy could be additionally confirmed by the multi-omics data analyses and 

presented clear advantages compared to previous enrichment strategies for LSCs. Still, the 

sorted populations are enrichments of different cells, potentially including fast-cycling LSCs 

producing the leukemic progeny as well as more quiescent, therapy-persistent LSCs. Biological 

differences between the outcome groups were much more pronounced in these LSC-enriched 

populations compared to the more differentiated populations. As graphically summarized in 

Figure 57, ER samples showed a more stem-like phenotype potentially linked to a more 

quiescent subpopulation. This was reflected by the different energy states leading to a higher 

dependency on oxidative phosphorylation in the more stem-like, resistant ER samples; while 

more differentiated LTR samples presented a more glycolytic phenotype. DNA methylation 

and NPM1 mutant allele frequencies led to the hypothesis of temporal differences between 

the outcome groups, potentially causing increased accumulated transcriptional instability. 

Evidence for a different cell of origin could not be found, and most likely, a posteriori 

processes led to the dedifferentiated, more stem-like phenotype in the ER samples. 

Furthermore, a predictive signature was trained that showed strong discriminatory power 

when compared to established prediction signatures – and the new signature was additive to 

the established ones potentially because it was liked to chemo-resistance mechanisms, an 

aspect not covered by the other expression signatures. In summary, important mechanisms 

could be identified which determine the relapse fate of patients. Nevertheless, further 

research is needed to study and validate these processes in vitro and in vivo. Notably, the 

differential expression of MHC-II genes and activity of TGFb/BMP signaling requires 

investigation to understand the biological mechanism and identify potential therapeutic 

targets. 



Discussion 

 96 

 
Figure 57: Overview of major differences between ER and LTR samples in engrafting LSC 
populations. 
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3.3 An interactive tool for metabolomics extraction protocol selection 

Metabolic measurements are particularly informative since they represent the biological 

endpoint of transcriptional and regulatory processes. While the metabolic analysis of body 

fluids is well established, protocols for intracellular analysis are less standardized.150–153 

Especially for metabolomics, the pre-analytical phase, including sample collection and 

handling, is error-prone and has tremendous effects on the results. Compared to RNA and 

DNA, many metabolites are much less stable and have fast turnover in the cells.155  These 

specifics must also be considered during the extraction of intracellular metabolites. The 

choice of an adequate extraction protocol for a given platform influences the range, 

robustness, and validity of the measurements.244,245 The comparative study (see section 2.4) 

for ten different extraction methods on four human sample types (liver and bone marrow, as 

well as the cell lines HEK (adherent) and HL60 (non-adherent)) aimed to identify optimal 

protocols for metabolomics analyses. I could show that the QC metrics LOD, CV, and SOC 

reveal complementary information on the efficiency and repeatability of the measurements. 

The number of metabolites above the LOD gave an impression of the extraction efficiency, 

whereas the CV reflected the variability and repeatability for each metabolite for different 

sample types and protocols. The SOC was used as a metric for the global variability between 

replicates and revealed that some protocols are more prone to accumulation of technical 

variability during sample processing as it reflects the variation of multi-step experimental 

extraction protocols. 

 

3.3.1 The optimal extraction protocol depends on sample type and metabolites of interest 

Overall analysis showed that for liver samples the extraction efficiency was significantly higher 

than for the other tissue types. For liver samples, 30 mg of tissue was used as input material, 

whereas 3x106 cells were used for HEK, HL60, and bone marrow samples. Comparing 

published values for liver cellularity, (65 – 185) · 106 cells/g or (139 ± 25) · 106 cells/g have 

been described.246,247 Thus, the used 30 mg of liver tissue corresponded to (1.95 – 5.55) · 106 

or (4.17 ± 0.75) · 106 cells, respectively. Therefore, the number of liver cells was in a similar 

range as for the other samples. Still, larger sample inputs probably increase extraction 

efficiency and repeatability. 
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Based on the QC metrics, the protocols 100 IPA and 75 EtOH/MTBE B showed the best results 

across the different sample types. This finding is in line with published comparisons in 

lipidomics and broad metabolic proofing; Calderón et al. showed that protocols containing 

isopropanol had good coverage, low technical variance, and absolute concentrations 

comparable to MTBE-based extraction protocols.248 The technical advantage of isopropanol-

based monophasic extractions is the lower volume of required solvents and laboratory 

scalability due to the rapid protocol which is potentially beneficial for stability and technical 

variance. With respect to coverage, MTBE- and chloroform-based extraction protocols were 

comparable. Notably, due to its toxicity, chloroform is a potential safety hazard, while MTBE 

is a non-toxic alternative that also showed less technical variance.248,249 

 

The identification of the optimal method highly depended on the sample type and 

metabolites of interest. For liver tissue 75 EtOH/MTBE B, 100 IPA, and 100/30 IPA resulted in 

the highest numbers of metabolites above LOD, respectively, allowing quantification of more 

than 400 metabolites. Hence, almost the full spectrum of the Biocrates MxP® Quant 500 kit 

could be covered. For bone marrow, 100 IPA clearly performed best while 75 EtOH/MTBE B 

and EtOH/PP also showed good results. However, for this tissue type, hardly more than 150 

metabolites were effectively measured, thus only about one quarter of the potentially 

covered metabolites were found in detectable concentrations. For the HEK and HL-60 cell 

lines, 75 EtOH/MTBE B showed by far the best yield of metabolites above the LOD covering 

slightly over 200 metabolites. Overall, extraction with protocol MeOH/ACN/H2O yielded the 

lowest number of detectable metabolites across all sample types, and generally, protocols 

containing methanol performed comparably weak. One reason for this might be that 

methanol is not nonpolar enough to extract the very nonpolar lipid species covered in this kit. 

In particular, clustering of PCA results showed that the solvents influence the profile of 

extracted metabolites. For the extraction of very hydrophobic lipid species, nonpolar solvents 

are required for effective quantification, e.g., isopropanol or MTBE which are used in classic 

lipidomics approaches.250 In contrast, for the extraction of polar compounds e.g., certain 

amino acids, the influence of the protocol seems rather minor. The PCA also highlights the 

overall influence of the extraction protocols on the metabolite concentration patterns 

extracted from the same samples. Even though the kit allowed absolute quantification, 

comparability appeared to be limited to the same experimental settings. This further 

demonstrated the importance of thoughtful selection of the extraction protocol for larger 

studies. 
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3.3.2 An interactive tool for customized analysis 

The comparative study showed that the optimal extraction protocol highly depends on the 

sample types and the chemical properties of measured metabolites. Therefore, the 

interactive R Shiny app “MetaboExtract” was implemented to explore and subset the data of 

this very data set in a tailored manner. The app allows to (de)select tissues, extraction 

protocols, and metabolite classes to focus on the data of interest and filter based on the LOD 

as well as the maximal CV. By applying this resource to identify a suitable protocol for the 

SyTASC data, I demonstrated the potential of this resource. Based on all metabolites, 75 

EtOH/MTBE B was identified as the protocol potentially yielding the best results. However, 

after filtering for lipids and adjusting the maximal variability, MeOH/ACN/H2O showed the 

best trade-off between range and repeatability, which was then also chosen for preprocessing 

for the metabolomics analysis of the SyTASC data. The app also includes a data set generated 

by Gegner et al. to identify optimal extraction methods for model organisms.249 Additionally, 

the underlying R package “MetAlyzer”, implemented by Nils Mechtel and me has been made 

available for data processing and conversion.  

 

Besides the QC metrics covered in the app, it may be essential to consider the complexity of 

protocols and availability of chemical components for an optimal choice. The presented 

resources can be a valuable tool to support this crucial decision of an adequate extraction 

protocol for future metabolomics studies. The results can potentially be transferred to 

measurement technologies other than the Biocrates MxP® Quant 500 kit.  

 

The results of this comparative study are presented in more detail in a joint publication 

published in Frontiers Molecular Biosciences (Andresen et al.251). In conclusion, the study 

provides a comprehensive comparison of different extraction methods for intracellular 

metabolic measurements and software for data processing as well as an online resource for 

interactive data exploration. Hence, it can improve the results of future studies while saving 

resources such as material and time. 
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4 Methods & Materials 
4.1 Data sets 

4.1.1 SyTASC cohort 

The SyTASC consortium retrospectively selected the AML patient samples from the 

biorepositories AMLSG (ethics vote #148/10, ethics committee of the University of Ulm) and 

SAL (ethics vote EK98032010, ethical board of the Technical University Dresden). All patients 

carrying an NPM1 (p.W288fs*12) and a DNMT3A (p.R882) mutation, received “7+3” 

chemotherapy and went into complete remission. Figure 58 shows an overview of the genetic 

profile of patients.  

 

Healthy bone marrow samples were obtained from pseudonymized left-over samples with 

written informed consent in accordance with vote #329/10 (ethics committee of the Goethe 

University Medical Center Frankfurt). Processing of healthy samples was done as previously 

described.252 

 

 

Figure 58: Heatmap showing the most frequently mutated genes in bulk AML samples stratified 
by ER and LTR. Genes were included if mutated in at least three samples. Dark grey: mutation, 
white: wt, and light grey: NA.  

 

Characteristics and statistics of the SyTASC cohort and healthy bone marrow donors are 

shown in Table 5. Of note, high-throughput methods were performed on a subset of the 38 

AML SyTASC patient samples. 37 samples were submitted to bulk RNA sequencing, samples 

from 31 patients were used for populations-based RNA-sequencing, and 26 samples for 

populations-based methylation analysis. Details on xenotransplantation results can also be 

found in Table S 1. 

NPM1
DNMT3A
FLT3_ITD
IDH1
IDH2
PTPN11
CEBPA
NRAS

Outcome group

Outcome group
ER
LTR
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Table 5: Statistics of SyTASC cohort and healthy donor samples. 

Parameter SyTASC Healthy 

Number of samples 38 4 

Sex [#] m: 20 (52.6%); f: 18 (47.4%) m: 2 (50.0%); f: 2 (50.0%) 

Median age [years] 49 (22-66) 48.5 (41-54) 

Median RFS [month] 40.2 (1.1-101.9) - 

Outcome group [#] ER: 12 (31.6%); LTR: 26 (68.4%) - 

Median BM blasts [%] 76.5 (4-95.5), 1 NA - 

WBC [mio.] 62.75 (4.9-261.5) - 

 

4.1.2 External Data sets 

External data sets used in this work are summarized in Table 6. 

 

Table 6: Names and sources of external data sets. Gene Expression Omnibus (GEO). 

Name Type Download/Availability Publication 

Oellerich RNA-seq EGA: EGAS00001005950 Jayavelu et al. 
(2022)192 

TCGA RNA-seq http://firebrowse.org Ley et al. (2013)253 

GDC 
TCGA RNA-seq https://xenabrowser.net/254 Ley et al. (2013)253 

GDC 
TARGET RNA-seq https://xenabrowser.net/254 Bolouri et al. (2018)191 

Beat RNA-seq https://github.com/radivot/AMLbeatR Tyner et al. (2018)90 

Metzeler Array GEO accession: GSE12417 Metzeler et al. 
(2008)193 

Corces GSE12417 GEO accession: GSE74912 Corces et al. (2016)20 
van 
Galen scRNA-seq GEO accession: GSE116256 van Galen et al. 

(2019)40 

Jung 450k 
methylation  GEO accession: GSE63409 Jung et al. (2015)196 
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4.2 Experimental methods - SyTASC 

All wet-lab experiments in context with the SyTASC samples were performed by Dr. Elisa 

Donato and Dr. Nadia Correia. Most experimental methods in this section have also been 

described in a manuscript submitted to Blood Advances (Donato*, Correia*, Andresen* et al., 

2022, currently in revision cf. chapter “Own publications”). 

 

4.2.1 Flow cytometry 

For primary AML or healthy bone marrow samples, staining was performed in phosphate-

buffered saline (PBS) + 2% fetal calf serum (FCS) using fluorescence conjugated antibodies 

targeting human CD3 (BioLegend), human CD19, human CD235a (eBiosciences), human CD20 

(BD Biosciences), human CD34 (eBiosciences), human CD38 (Life Technologies), human 

GPR56 (BioLegend). Recombinant biotinylated NKG2D-Fc chimera was added to the mix to 

stain all NKG2D ligands.98 DAPI (Sigma-Aldrich) or  7-AAD (BD Bioscience) were used for dead 

cell exclusion. Cells were FACS-sorted or analyzed using the gating strategy. Briefly, live cells 

were selected after the morphological gate and duplet exclusion. Therefore, SSCdim lineagelow 

cells were further selected with lineage positivity defined as CD3+CD20+CD19+CD235a+. 

Finally, five populations based on CD34, GPR56, and NKG2DL expression were defined: CD34-

GPR56+NKG2DL-, CD34+GPR56+NKG2DL-, CD34-GPR56-NKG2DL-, CD34+GPR56+NKG2DL+, 

CD34-GPR56-NKG2DL- (cf. Figure 6). For the “NK-depleted” data set, additionally CD45 

(BioLegend) was used to sort LineageLowSSCdimCD45dimCD34-GPR56+NKG2DL- and 

LineageLowSSCdimCD45dimCD34+GPR56+NKG2DL- populations. To check that NK cells were 

excluded from sorted populations, staining for NK cell markers CD94 (BD Bioscience) and 

CD56 (BioLegend) was performed. 

 

PDX samples were stained in PBS + 2% FCS using anti-human CD45 (BD), anti-human CD33 

(Life Technology), anti-human CD19 (eBioscience) and anti-murine CD45 (BioLegend) 

antibodies to evaluate the engraftment type (AML or multi-lineage). After morphological 

gate, exclusion of duplets and dead cells, PDX samples, were gated on mCD45-hCD45+hCD33+ 

or mCD45-hCD45+hCD19+. 

 

Samples were FACS-sorted using BD FACS Aria Fusion (BD Biosciences) or analyzed using BD 

LSR Fortessa or BD LSR II (BD Biosciences). 
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4.2.2 Xenotransplantation assays 

For xenotransplantation of bulk samples, primary patient samples were thawed, washed in 

Iscove's Modified Dulbecco's Medium (IMDM) (Gibco) + 10% FCS and treated with DNAse I 

(Roche) for 10 minutes at 37 °C. Cells were washed and CD3+ cells depletion was performed 

according to the manufacturer’s instructions using human CD3-conjugated microbeads from 

Miltenyi (130-050-101). CD3- cells were washed, counted, and transplanted intrafemorally in 

8-12 weeks old female NSG mice one day after sub-lethal irradiation (175 cGy). 

 

For xenotransplantation of populations sorted samples, thawed primary samples were 

washed in IMDM + 10% FCS and treated with DNAse I (Roche) for 10 minutes at 37 °C. Probes 

were then washed, stained, and sorted as described in the subsection “Flow cytometry”. 

Sorted populations were resuspended in PBS and between 2.2x103 and 1x105 cells per mouse 

were transplanted intrafemorally in 8-12 weeks old female NSG mice one day after sub-lethal 

irradiation (175 cGy). 

 

Human engraftment was monitored for 8 to 50 weeks by peripheral blood sampling or bone 

marrow aspiration (every 2 weeks or 6 weeks, respectively) or at signs of distress. 

Engraftment was defined as ³ 0.1% human cells in murine bone marrow measured by flow 

cytometry (BD LSR Fortessa or BD LSR II, BD Biosciences) using anti-human CD45 (BD), anti-

human CD33 (Life Technology), anti-human CD19 (eBioscience) and anti-murine CD45 

antibodies (BioLegend). 

 

NOD/SCID/IL2Rγnull (NSG) mice (Jackson Laboratory) were hosted under pathogen-free 

conditions according to the German federal and state regulations (approved by the 

Regierungspräsidium Karlsruhe, Tierversuchsantrag number G43/18 and Z110/02). 

 

4.2.3 RNA extraction  

Thawed primary samples were washed in IMDM + 10% FCS and treated with DNAse I (Roche) 

for 10 minutes at 37 °C. Probes were then washed, stained, and sorted as described in the 

subsection “Flow cytometry”. 1x103 to 50x103 cells from each population were directly sorted 

into RNA lysis buffer, and RNA was isolated using the Arcturus PicoPure RNA Isolation Kit (Life 

Technologies) according to the manufacturer’s instructions. RNA integrity was checked with 

Bioanalyzer using Agilent RNA 6000 Pico Reagents (Agilent).  
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4.2.4 RNA-seq library preparation  

Extracted RNA was converted into cDNA using the SMART Seq v4 ultra-low RNA kit (Takara). 

Libraries were produced using NEBNext® ChIP-Seq Library Prep Master Mix Set for Illumina® 

(New England Biolabs). Libraries were sequenced in paired-end mode with a read length of 

125 base pairs (bp) on the HiSeq2000 V4 (Illumina) system. The “NK-depleted” samples were 

pre-pared analogously but sequenced on the NextSeq 550 (Illumina) system. 

Of note, RNA-seq was performed in two batches. Hence, a prominent batch effect was 

observed, which was accounted for as described in the respective computational downstream 

analyses. If not otherwise indicated, of those samples sequenced in both batches, only 

samples from the “first” batch were included (Figure S 1). 

 

4.2.5 Methylation profiling 

DNA extraction was performed according to the manufacturer’s instructions using the 

QIAamp DNA Micro Kit (QIAGEN). DNA was quantified using Qubit dsDNA HS Assay Kit (Life 

Technologies). DNA methylation profiling was performed using the Infinium® 

MethylationEPIC Kit (Illumina) at the Genomics and Proteomics Core Facility of the German 

Cancer Research Center (DKFZ). 

 

4.2.6 Metabolomics  

For metabolomic analysis, bones from primary PDX mice (3 biological replicates for each 

patient sample) were collected and crashed in RPMI. Bone marrow cells were collected, and 

red blood cells were lysed using an ammonium-chloride-potassium (ACK) lysis puffer. Cells 

were then washed and stained in RPMI with fluorescence conjugated antibodies: anti-human 

CD45 (BD), anti-human CD34 (eBiosciences), anti-human CD38 (BD) anti-human GPR56 

(BioLegend), anti-human CD33 (Life Technologies), anti-human CD19 (eBioscience), anti-

human CD64 (BioLegend), and anti-murine CD45 antibodies (BioLegend). 7-AAD (BD 

Bioscience) staining was used for dead cell discrimination. After morphological gate and 

exclusion of duplets and dead cells, mCD45-hCD45+hCD34+hGPR56+ and mCD45-

hCD45+hCD34-hGPR56+ were FACS-sorted in RPMI + FCS. Cells were then spun down, washed 

with ammonium carbonate (75 mM, pH 7.4), spun down, and the dry pellet was snap-frozen 

in liquid nitrogen.  
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Metabolite extraction was performed by adding 50 µl of cold extraction solvent (40:40:20 

acetonitrile:methanol:water). After incubation for 20 minutes at -20 °C, cells were vortexed 

and spun down. The supernatant was collected and used for metabolite quantification.  

 

Untargeted metabolomics was performed by Prof. Dr. Nicola Zamboni by flow injection 

analysis (FIA) on an Agilent 6550 iFunnel Q-TOF LC/MS instrument in duplicates as previously 

described at the Institute of Molecular Systems Biology of the ETH Zurich.255 An unpublished 

in-house software was used to perform peak integration of mass spectra and processing, 

including visualization of covered metabolites. 

4.3 Experimental methods – Extraction comparison 

Experimental methods in this section have also been published as part of a paper in Frontiers 

in Molecular Sciences (Andresen et al.251). Sample collection and processing were performed 

by Dr. med. Tobias Boch and Andreas Narr. Mass spectrometry analysis was run by Dr. Gernot 

Poschet and Dr. Hagen M. Gegner. 

 

4.3.1 Sample preparation 

All primary human samples (liver and bone marrow) in this study were obtained and used 

following institutional review board approval by the Medical Ethics Committee II of the 

Medical Faculty Mannheim, University of Heidelberg, Germany, in accordance with the 

declaration of Helsinki after informed written consent.   

 

Liver tissue from a 75-year-old male patient with hepatocellular carcinoma was obtained 

during surgical liver resection. After surgical resection, part of the healthy liver tissue was 

immediately washed with ice-cold 0.9% NaCl solution and snap-frozen in liquid nitrogen. The 

frozen tissue was pulverized to a fine powder using a ball mill (2x 30 sec; 30 Hz; MM 400; 

Retsch) and pre-cooled stainless-steel beakers. Aliquots of 30 mg were stored at -80 °C until 

extraction. 

 

The bone marrow was obtained by aspiration from a healthy 39-year-old male volunteer and 

was performed according to standard clinical protocols. Mononuclear cells (MNCs) were 

isolated from fresh bone marrow by Ficoll density gradient centrifugation. To do so, bone 

marrow was diluted 1:2 with PBS and loaded on the Ficoll without disturbing the layer. 
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Samples were centrifuged at 400 x g at room temperature for 30 minutes. MNCs were 

extracted and washed twice with PBS. Aliquots of 3x106 cells were collected and snap-frozen 

using liquid nitrogen. 

 

The two cell lines, adherent human embryonic kidney (HEK) and non-adherent human 

leukemia 60 (HL60), were kept under cell culture conditions in Dulbecco’s Modified Eagle’s 

Medium (DMEM) GlutaMAX (Gibco) with 10% FCS and 1% Penicillin/Streptomycin. Cells were 

washed twice with ice-cold PBS and aliquots of 3x106 cells were collected and snap-frozen 

using liquid nitrogen. 

 

4.3.2 Metabolite extraction 

The ten extraction protocols for intracellular metabolomics measurements are outlined in 

(Figure 59). Briefly, metabolites from the frozen cell (3x106) or liver tissue (30 mg) samples 

were extracted using the respective solvents and subsequent steps of the different protocols. 

For the ultra-sonification ice bath Transsonic T460 (Elma) was used. After a final 

centrifugation step, the extraction solvents of the protocols 100/30 IPA, 100 IPA, 

MeOH/ACN/H2O, MeOH/ACN, and EtOH/PP was transferred into a new 1.5ml tube 

(Eppendorf) and snap-frozen until kit preparation. For all other protocols, the supernatant (in 

the biphasic extractions with MTBE or chloroform both phases) was dried using an Eppendorf 

Concentrator Plus set to no heat. Samples were stored at -80°C and reconstituted in 120 or 

60 μl isopropanol (60 or 30 μl of 100% isopropanol, followed by 60 or 30 μl of 30% isopropanol 

in water) directly before measurement. The protocol 75 EtOH/MTBE was applied with two 

resolving volumes “A” 120 μl and “B” 60 μl (Figure 59).  All chemicals and solvents used were 

of UHPLC-MS grade quality (Sigma-Aldrich). 
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Figure 59: Extraction protocols for comparative metabolomics study. IPA: isopropanol; MTBE: 
methyl tert-butyl ether; ACN: acetonitrile; EtOH: ethanol; MeOH: methanol; PP: polypropylene; 
ChCl3: chloroform; LN2: liquid nitrogen; RT: room temperature. (Adapted from Andresen et al.251) 

4.3.3 Sample analysis 

In total, 630 metabolites covering 14 small molecule and 9 different lipid classes were 

analyzed using the MxP® Quant 500 kit (Biocrates) following the manufacturer’s protocol on 

a SCIEX QTRAP 6500+ mass spectrometry system. As previously described in my publication  

(Andresen et al.251), measurements were performed by Dr. Gernot Poschet and Dr. Hagen M. 

Gegner at the Metabolomics Core Technology Platform core facility of the Heidelberg 

University. Data were recorded using the Analyst software suite (Sciex) and transferred to the 

MetIDQ™ software (version Oxygen-DB110-3005), which was used for further technical 

validation, quantification, and data export. 
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4.4 Computational Methods 

4.4.1 RNA-seq alignment 

RNA-seq alignment was performed by the DKFZ in-house One Touch Pipeline which 

implements the RNA-seq pipeline of the DKFZ Omics IT and Data Management Core Facility 

(https://github.com/DKFZ-ODCF/RNAseqWorkflow). Briefly, base calling was performed 

using Bcl2fastq2 2.20. Reads were trimmed for adapter sequences and aligned to the 1000 

Genomes Phase 2 assembly of the Genome Reference Consortium human genome (build 37, 

version hs37d5) with STAR (v2.5.3a)256. For alignment, the following parameters were used: 

alignIntronMax: 500.000, alignMatesGapMax: 500.000, outSAMunmapped: Within, 

outFilterMultimapNmax: 1, chimScoreMin: 1, outFilterMismatchNmax: 3, sjdbOverhang: 50, 

outFilterMismatchNoverLmax: 0.3, chimSegmentMin: 15, chimScoreJunctionNonGTAG: 0, 

chimJunctionOverhangMin: 15. For building the index, GENCODE gene annotation (GENCODE 

Release 19) was used.257 BAM files were generated using SAMtools (v1.6).258 Duplicates were 

marked with Sambamba (v0.6.5)259 and raw counts were generated using featureCounts 

(Subread version 1.5.3).260 

 

4.4.2 RNAseq analysis 

For calculation of transcripts per million (TPM), mitochondrial RNA, transfer RNA, ribosomal 

ribonucleic acid RNA, as well as all transcripts from the Y- and X-chromosome were removed. 

Subsequently, normalization was performed analogously to standard TPM calculation. 

 

Clustering analysis 

For downstream analysis, counts were processes using a variance-stabilizing transformation 

(vst) as implemented in DESeq2261 and corrected for batch effects using the function 

“rescaleBatches” implemented in the R package batchelor262 (cf. Figure S 1). PCA was 

performed on the top 500 variable genes using the function prcomp() with center = T 

and scale = T. Consensus partitioning was formed using the R package cola. Standard 

deviation (SD) was identified as the best top-value method and hierarchical clustering 

together with cutree() (hclust) was identified as the best partitioning method. A partition 

number of 2 was identified as optimal after iteration over k_max = 6. 
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Differential expression and GSEA 

Analysis of differential expression between samples was performed using DESeq2.261 The 

batch information was always included in the design term. The function lfcshrink()was 

used to define differentially expressed genes (abs(log2FC) ≥ 1, p.adj ≤ 0.05)263. 

Log2 fold changes (non-shrinked) were used for GSEA analysis with clusterProfiler264 and the 

Molecular Signatures Database v7.4.1265 as reference gene sets and pvalueCutoff set to 

0.25. GSEA plots were generated using the function gseaplot2() implemented in the R 

package enrichplot. 

 

For plotting of expression values, count data was divided by the size factor calculated by the 

function estimateSizeFactorsForMatrix() implemented in the R package DESeq2, 

log2-transformed and batch-corrected as described in the subsection “Clustering analysis”. 

These expression values are referred to as “log2(normCounts)”. 

 

LSC signatures 

LSC17 signature score was calculated on log2-transformed TPMs. Correlation with the 104-

gene LSC signature was calculated on log2-transformed TPMs using the “spearman” 

method.51 

 

Cell cycle analysis 

To estimate the cell cycle phase, functions implemented in the R package Seurat were used.266 

Count data were normalized by the function NormalizeData(). Variable features were 

identified using the function FindVariableFeatures() with selection.method = 

"vst" and scaled using the function ScaleData(). Cell cycle phase, S and G2M scores were 

estimated by the function CellCycleScoring(). 

 

Analysis of intronic and exonic counts 

Intronic and exonic read counts were analyzed by implementing the exon-intron split analysis 

(EISA) described by Gaidatzis et al. 180 based on featureCounts (Subread version 1.5.3). Read 

counting was set to “unstranded” and reads that overlapped regions of multiple genes were 

discarded. Counts were calculated for exon and gene bodies (parameter -t set to “exon” or 

“gene”). As described by Gaidatzis et al., exonic coordinates were extended by ten base pairs 

on both sides in the input gtf file (GENCODE Release 19, cf. “RNA-seq alignment”). This 

procedure ensures that exonic reads close to the exon junction were not counted as intronic. 
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To calculate intronic counts, exonic counts were subtracted from gene body counts. If intronic 

counts were negative, values were adjusted to zero. 

 

Embedding into healthy hematopoiesis 

For the embedding of samples into healthy hematopoiesis, the population-sorted RNA-seq 

data were integrated with data from the healthy samples from the van Galen data set using 

the R package Seurat.40,266 Data sets were normalized, variable features were identified and 

scaled separately (NormalizeData(), FindVariableFeatures() and ScaleData()). 

For integration, SelectIntegrationFeatures(), FindIntegrationAnchors(), 

IntegrateData() and ScaleData() was used with dims = 1:20, reduction = 

“rpca” and k.weight = 43. The integrated data set was subjected to the functions 

RunPCA() and RunUMAP() with dims = 1:20. Positions of labels indicate the mean of the 

respective cell types as indicated in the van Galen data. To calculate the distance between 

HSC samples and SyTASC samples, the Euclidian distance between the median positions in the 

UMAP was determined. 

 

Estimation of HSC proportions 

As a reference for healthy hematopoietic cells, the Corces data set was used. Corces and 

SyTASC sorted populations were integrated by the R package Seurat as described above 

setting dims = 1:10, npcs = 10, k.score = 20 and k.weight = 10. Non-negative 

least squares implemented in the R package nnls was used to deconvolve the sorted SyTASC 

populations with median expression of normalized and integrated Corces data as cell type-

specific reference expression signatures.267 

 

Transcription factor and pathway activity 

Virtual Inference of Protein-activity by Enriched Regulon (VIPER) was used to estimate 

transcription factor activity by the wrapper function run_viper() implemented in the R 

package dorothea based on the viper algorithm.268–270 As a reference, regulons published in 

the R annotation package hs_dorothea by Holland et al. were used.269 The parameter 

minsize was set to 5 and the stat result estimated by differential expression analysis via 

DESeq2 was used as input for the respective comparison. Volcano plots were created with 

the function volcano_nice(). 
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Pathway activities were estimated by the Pathway RespOnsive GENes for activity inference 

(PROGENy) method implemented in the R package progeny, again using the stat result from 

DESeq2 described above as input.271 The parameter perm was set to 10,000. The expression 

of pathway-related genes was plotted using the function scat_plots(). 

 

Alternative Splicing 

Alternative splicing events between outcome groups were analyzed with the software rMATS 

v 4.1.1 installed in a conda environment with anaconda3 (version 2019.07). The script 

rmats.py was run with the following settings in python version 3.7: Paired-end mode was 

chosen with a read length of 125 bp and novelSS was used to allow the identification of 

novel splice sites. Analysis was performed using BAM files as input. Significant events were 

filtered using a false discovery rate (FDR) ≤ 0.05. Alternative splicing analysis was only 

performed for the larger “second” sequencing batch (cf. Figure S 1). 

 

Allele frequencies 

Mutant allele frequencies from RNA-seq data were determined using the count() function 

implemented in igvtools (version 2.4.14).272 For DNMT3A (p.882) mutations position 

chr2:25457242-25457243 and for the NPM1 (p.W288fs*12) mutation position 

chr5:170837547-170837548 were inspected in BAM files.  

4.4.3 LASSO regression 

For the identification of genes discriminating between the two outcome groups, least 

absolute shrinkage and selection operator (LASSO) regression implemented in the R package 

glmnet was used in logistic regression “binomial” mode.273 All SyTASC samples from bulk and 

population-sorted sequencing were included. TPMs were used as input. Different batches 

were integrated by fitting a linear model for all genes separately for the overlapping samples 

and used to adjust the values of the “second” batch accordingly. Negative values were set to 

zero. Figure S 1 shows the concept and validation of the batch correction. 

Additionally, the input data was filtered for “protein-coding” genes according to the 

annotation gtf file (cf. subsection “RNA-seq alignment”). Only genes with TPM ≥ 10 in all 

samples were included and log2-transformed. To avoid overfitting, the function 

cv.glmnet() was used to identify the optimal l with and 10-fold cross-validation and the 

intercept was set to zero. 100 cross-validations were performed and the optimal l was chosen 

as a trade-off between the minimal mean cross-validated error, a low number of coefficients 
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and the calculated F1 score for the training cohort (Figure S 15). The signature was then fit 

with the function glmnet()with intercept set to zero. 

 

For external validation, the signature score was calculated for each sample on log2-

transformed values provided by the authors of the data sets (Oellerich: TPM, TCGA: Reads Per 

Kilobase Million (RPKM), GDC TCGA: Fragments Per Kilobase Million (FPKM), GDC TARGET: 

FPKM, Beat: RPKM, Metzeler: microarray output, SyTASC: TPM) (cf. Table 6). The median 

signature score for each cohort was used to stratify the cohort into “low” and “high”. These 

strata were used to calculate Kaplan-Meier estimators and log-rank tests were performed to 

estimate the significance as implemented in the R package survival.274,275 Plots were 

generated using the function ggsurvplot() implemented in the R package survminer.276 

 

4.4.4 Methylation analysis 

Processing 

Raw methylation data was imported and processed using the R package minfi277 and 

annotated by the R annotation package IlluminaHumanMethylationEPICanno.ilm10b2.hg19. 

The function preprocessIllumina() was used for processing and normalization. In 

addition, probes covering single-nucleotide polymorphism (SNP) loci were removed. 

 

Clustering analysis 

PCA was performed on the top 1000 variable genes using the function prcomp() with 

center = T and scale = T. Consensus partitioning was formed using the R package cola. 

Standard deviation (SD) was identified as the best top-value method, and k-means clustering 

(kmeans) was identified as the best partition method. A partition number of 2 was identified 

as optimal after iteration over k_max = 6. 

 

Enrichment analysis of genomic regions 

Enrichment analysis of the most variable genomic regions was performed by LOLA.278 This 

algorithm identifies enrichment for transcription factors interacting with the queried regions. 

Regions for all measured probes were used as the userUniverse and the CODEX database 

was used as the reference.279 For over-representation analysis, transcription factors were 

filtered for qvalues £ 0.05. Over-representation analysis was performed using the function 
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enrichGO() implemented in the R package clusterProfiler with ont = “ALL”. Results were 

visualized by the function dotplot() implemented in the R package enrichplot.280 

 

Differentially methylated positions and regions 

For differential analysis, the R package minfi was used. Differentially methylated positions 

(DMPs) were calculated using the function dmpFinder() with type = “categorical”. 

Differentially methylated regions (DMRs) were calculated using the function bumphunter() 

with cutoff = 0.15 and B = 1000. Significance was defined by an absolute beta value 

difference > 0.25 and family-wise error rate (FWER) < 0.05. DMPs were visualized using the R 

package Gviz and the annotation package TxDb.Hsapiens.UCSC.hg19.knownGene as genomic 

reference.  

 

Cell-of-origin of cancer 

Jung et al. published 216 DMRs specific for HSCPs.196 The cell of origin was estimated by 

clustering of beta values of probes in these DMRs. Not all probes could be matched because 

of differences in the kits. SyTASC data were profiled with the Infinium® MethylationEPIC Kit 

(Illumina), while the data published by Jung et al. were profiled using the Infinium® 

HumanMethylation450 BeadChip (Illumina). Withing the 216 regions, the euclidean distance 

for beta values of 455 probes was calculated and subsequent hierarchical clustering was 

performed before visualization with the R package dendextend.281 

 

4.4.5 Data integration 

For the integration of transcriptomic, methylation, and mutation data from population-sorted 

SyTASC AML samples, the R package MOFA was used.282 Transcriptomic data was normalized 

and batch-corrected as described in the “Clustering analysis” subsection. In addition, genes 

with an estimated variance < 0.1 were removed from the data set. Illumina normalized 

methylation data were used and probes with an estimated variance < 0.1 were removed. 

Moreover, probes with only “non-available" information were removed. Mutation 

information was included as a binary matrix analogous to Figure 58. Of note, genes were 

included if mutated in at least three and non-mutated in at least three samples. Model 

options were adjusted to numFactors = 30. Train options were set to 

DropFactorThreshold = 0.01, tolerance = 0.01, and maxiter = 1000. MOFA 

was run with ten different seeds and the optimal run was chosen using the function 
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selectModel(). The feature overview was plotted with the function 

plotDataOverview() and the explained variances were plotted with the function 

plotVarianceExplained(). GSEA was performed as described in the subsection 

“Differential expression and GSEA” but with loadings of LFs as input. 

4.4.6 Untargeted metabolomics 

After pre-processing (see above), the data were manually curated aiming to remove empty 

injections and outlier samples. The curated data was mean normalized and further analyzed 

in R version 4.0.0. Additionally, batch effects between biological replicates were corrected 

using the function ComBat() implemented in the R package sva. Differentially abundant 

metabolites were determined by fitting a linear model on log2-transformed values. 

Metabolite abundance was used as the response and the outcome group as the independent 

variable. Significant was calculated by a Wald chi-squared test using the variance-covariance 

matrix and the coefficients of the fitted model. qvalues were calculated using the R package 

qvalue to account for multiple testing. Significance was considered for abs(log2FC) > 0.2 and 

qvalue < 0.05. 

 

Enriched metabolic pathways were calculated based on Human Metabolome Database 

(HMDB) pathway version 3.0. Significance was estimated by a Fisher's exact test for 

significantly higher and lower abundance of metabolites between the outcome groups. All 

measured metabolites were grouped in the contingency table by presence in the respective 

pathway and significance. 

4.4.7 MetAlyzer, MetaboExtract, and extraction comparison analysis 

Together with Nils Mechtel, I developed the R package MetAlyzer and the R Shiny app in R 

version 4.0.0. MetAlyzer is available on the open repository CRAN (https://CRAN.R-

project.org/package=MetAlyzer). The code is also documented along with the most recent 

software version on GitHub (https://github.com/andresenc/MetAlyzer). MetaboExtract is 

accessible online (http://www.metaboextract.shiny.dkfz.de). The underlying code is available 

on GitHub (https://github.com/andresenc/MetaboExtract).  

 

The metabolomics analyses presented in this work can be analogously generated by 

MetaboExtract, except for the PCA. Metabolites were defined as “above LOD” when at least 

2 of the 3 replicates met this criterion. Prior to the analysis in MetaboExtract, LODs were 
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calculated by the MetIDQ™ software. For PCA, metabolites below LOD were filtered out from 

raw data in all samples. Zero values were replaced by taking the minimum of all measured 

concentrations per metabolite and adding 20% to this value. Filtered data were log2-

transformed and scaled using the Pareto method.283 To identify associations between 

principal components and the experimental setting, Kruskal-Wallis rank sum tests were 

applied. Significant was defined by p-values < 0.05. 

4.4.8 Visualization 

If not otherwise indicated, figures were created using the R packages graphics, ggplot2, 

ComplexHeatmap, and igraph. Figures 1-6, 56,57, and 59 were created with BioRender.com. 

Figures were assembled and visually optimized in Adobe Illustrator version 26.0.2. 

4.4.9 Statistics 

Statistical testing was performed as described in the respective figure captions, including 

significance levels. 

The function coxph() implemented in the R package survival was used to fit the Cox 

proportional hazard regression model. 274,275 

4.5 Software and Packages 

All computational analyses were run under CentOS Linux 7 (Core) cluster environment 

managed by the Omics IT and Data Management Core facility. Details on R packages and 

annotation packages are summarized in Table 7 and Table 8. R version 3.6.0 and RStudio 

version 1.4 was mainly used except for operations that required import of the packages 

Seurat, dorothea and progeny, as well as the development of MetaboExtract and MetAlyzer. 

These were run using R version 4.0.0.  

 

Table 7: R annotation packages and versions used in this work. 

Package v3.6.0 
BSgenome.Hsapiens.UCSC.hg19 1.4.0 
FlowSorted.Blood.450k 1.22.0 
FDb.InfiniumMethylation.hg19 2.2.0 
hgu133plus2.db 3.2.3 
IlluminaHumanMethylation450kanno.ilmn12.hg19 0.6.0 
IlluminaHumanMethylationEPICanno.ilm10b2.hg19 0.6.0 
TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2 
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Table 8: R packages and versions in different R versions used in this work. 

Package v3.6.0 v4.0.0 Package v3.6.0 v4.0.0 
agricolae 1.3-5 - magrittr 2.0.1 2.0.1 
AnnotationDbi 1.46.1 - Matrix 1.2-17 - 
aod 1.3.1 - matrixStats 0.58.0 0.61.0 
apeglm 1.6.0 - methylumi 2.30.0 - 
batchelor 1.0.1 - mgcv - 1.8-40 
Biobase 2.44.0 2.48.0 minfi 1.30.0 - 
BiocGenerics 0.32.0 0.34.0 MLmetrics 1.1.1 - 
BiocParallel 1.18.1 1.22.0 MOFA 1.0.0 - 
biomaRt 2.40.5 2.44.4 msigdbr 7.4.1 - 
Biostrings 2.52.0 - MultiAssayExperiment 1.10.4 1.14.0 
BSgenome 1.52.0 - nlme - 3.1-157 
Bumphunter 1.26.0 - nnls 1.4 1.4 
CePa 0.7.0 - org.Hs.eg.db 3.8.2 - 
circlize 0.4.12 0.4.13 plotly 4.9.3 4.9.4.1 
ClusterProfiler 3.12.0 - progeny 1.6.0 1.10.0 
cola 1.0.1 - purr 0.3.4 0.3.4 
ComplexHeatmap 2.0.0 2.4.3 qvalue 2.16.0 2.20.0 
Cowplot 1.1.1 1.1.1 RColorBrewer 1.1-2 - 
data.table 1.14.0 1.14.0 Rcpp 1.0.6 - 
DelayedArray 1.10.0 0.14.1 reporttools 1.1.2 - 
dendextend 1.15.1 - reshape2 1.4.4 - 
DESeq2 1.24.0 1.28.1 ROC 1.60.0 - 
devtools 2.4.1 - rtracklayer 1.44.4 - 
dorothea - 1.0.1 Rtsne - 0.15 
dplyr 1.0.6 1.0.7 S4Vectors 0.22.1 0.26.1 
enrichplot 1.4.0 - scales 1.1.1 1.1.1 
fgsea 1.10.1 1.14.0 Seurat - 4.1.0 
genefilter - 1.70.0 simpleCache 0.4.2 - 
GenomeInfoDb 1.20.0 1.24.2 SingleCellExperiment 1.6.0 - 
GenomicFeatures 1.36.4 - stringi 1.6.2 - 
GenomicRanges 1.36.1 1.40.0 stringr 1.4.0 1.4.0 
ggplot2 3.3.3 3.3.5 SummarizedExperiment 1.14.1 1.18.2 
ggrepel 0.9.1 0.9.1 survival 3.2-11 - 
ggsignif 0.6.1 0.6.3 survminer 0.4.9 - 
glmnet 4.1-1 - sva - 3.36.0 
Gviz 1.28.3 - tibble 3.1.2 3.1.4 
igraph 1.2.6 - tidyr 1.1.3 1.1.3 
illuminaio 0.26.0 - tidytable 0.6.2 0.6.5 
IRanges 2.18.3 2.22.2 umap - 0.2.7.0 
limma 3.40.6 - viper 1.18.1 1.22.0 
locfit 1.5-9.4 - xlsx 0.6.5 - 
LOLA 1.14.0 - xtable 1.8-4 - 
lumi 2.36.0 - XVector 0.24.0 - 
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5 Contributions 

All wet lab experiments in context with the SyTASC samples were performed by Dr. Elisa 

Donato and Dr. Nadia Correia, who also developed the cell sorting strategy. 

 

SyTASC samples were selected by the SyTASC consortium (Prof. Dr. Frank Buchholz, Prof. Dr. 

med. Lars Bullinger, Prof. Dr. med. Christian Thiede, Prof. Dr. Andreas Trumpp, Prof. Dr. 

Michael A. Rieger, Prof. Dr. med. Hubert Serve, Prof. Dr. med. Daniela Krause, and Prof. Dr. 

Ingo Roeder) funded by the “Deutsche Krebshilfe”. 

 

Untargeted metabolomics analysis was performed by Prof. Dr. Nicola Zamboni, who also 

provided software, infrastructure, and scientific expertise for computational analyses.  

 

Eva Holtkamp (student in Molecular Biotechnology at Heidelberg University whom I co-

supervised during her bachelor’s thesis and a Master internship) implemented the EISA 

method and contributed to the bulk sample deconvolution approaches. Kamil Moskal 

(student in Molecular Biosciences at Heidelberg University whom I co-supervised during a 

Master internship) implemented the rMATS workflow for alternative splicing analysis and 

Ferdinand Popp (student in the Major in Cancer Biology at DKFZ and Heidelberg University 

whom I co-supervised during a Master internship) supported training of the signature by 

LASSO regression. 

 

RNA-seq alignment was performed at the DKFZ Omics IT and Data Management Core Facility. 

 

Sample collection and processing for the metabolomics extraction protocol evaluation were 

performed by Dr. med. Tobias Boch and Andreas Narr. Mass spectrometry analysis was 

performed at the Metabolomics Core Technology Platform (MCTP) core facility of the 

Heidelberg University by Dr. Gernot Poschet and Dr. Hagen Gegner, who also provided 

scientific expertise for metabolomics analysis. 

 

The R package MetAlyzer and the R shiny app MetaboExtract were implemented together 

with Nils Mechtel.  
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Scientific guidance throughout the projects was provided by Dr. Dr. med. Daniel Hübschmann 

and Prof. Dr. Andreas Trumpp, who were essential for the project’s shape and direction. 

 

This thesis has been proof-read and corrected by Dr. Dr. med. Daniel Hübschmann. 
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8 Appendix 
8.1 Supplementary Figures 

 
Figure S 1: Correction of two RNA-seq batches. a) PCA before batch correction. b) Kruskal-Wallis 
Rank Sum Test between batch information and first 10 principal components. c) PCA after batch 
correction. d) Kruskal-Wallis Rank Sum Test between batch information and first 10 principal 
components. 
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Figure S 2: Expression of marker genes in FACS negative and positive cells. NKG2D ligand RAER1L 
expression was not detected. RAET1E and RAET1G are also known as ULBP4 and ULBP5, 
respectively. Statistical differences were calculated between groups using a two-sided Wilcoxon 
Rank Sum Test:  *p ≤ 0.05; **p ≤ 0.01; *** p ≤ 0.001; NS: non-significant. 
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Figure S 3: Embedding of healthy sorted populations into UMAP of single-cell data published 

by van Galen et al. as reference.40 
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Figure S 4: Hierarchical clustering of 216 differentially methylated regions in healthy HSPCs 
compared with sorted populations. MEP: megakaryocytic-erythroid progenitor; GMP: 
granulocyte-macrophage progenitor; MPP: multipotent progenitor; HSC: hematopoietic stem 
cell; L-MPP: lymphoid-primed multipotential progenitor; CMP: common myeloid progenitor.196 
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Figure S 5: Expression of LILRs in engrafting compared to non-engrafting populations. Statistical 
differences were calculated between groups using a two-sided Wilcoxon Rank Sum Test: *p ≤ 
0.05; **p ≤ 0.01; *** p ≤ 0.001; NS: non-significant. 
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Figure S 6: Heatmap showing expression of immunoglobulin genes. The yellow box highlights 
genes that are clearly differential between sorted populations.  

 

 
Figure S 7: Intronic and exonic count analysis of immunoglobulin genes. The Scatter plot shows 
the sum of normalized intro- exon counts per sample. In total, 360 immunoglobulins could be 
quantified since only non-overlapping genes can be analyzed. Sum of exon counts: 10,379,021; 
sum of intron counts 142,581. 91% of intron counts can be assigned to one sample (SyT 74).  
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Figure S 8: Differential expression and GSEA between CD34+GPR56+NKG2DL- and CD34-

GPR56+NKG2DL- LSC populations in the “original” data set. a) GSEA of most significant gene sets. 
b) Volcano plot highlighting NK cell-related expression.  
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Figure S 9: Selected gene sets from GSEA of PC1 shown in Figure 19a. 
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Table S 1: Engraftment of samples for bulk and sorted populations. BMT: bone marrow 
transplantation; m.-lin.: multi-lineage. Samples with grey shading only bulk sequencing was 
performed. For sample SYT84* bulk sequencing was not performed. NA indicates that sample was 
not sequenced or transplanted, e.g., because of low cell numbers. 
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CD34+ 

GPR56+ 

NKG2DL- 

CD34- 

GPR56+ 

NKG2DL- 

CD34- 

GPR56- 

NKG2DL- 

CD34- 

GPR56- 

NKG2DL+ 

CD34+ 

GPR56+ 

NKG2DL+ 

SYT03 ER AML AML AML No No No BMT 
SYT06 ER AML NA NA NA NA NA 
SYT08 ER AML m.-lin. No No No NA 
SYT17 ER AML No No No No No 
SYT18 ER AML AML AML No No NA 
SYT20 ER AML AML AML No No NA 
SYT22 ER AML AML AML No No No 
SYT25 ER AML AML AML No No Yes [?] 
SYT27 ER AML AML No No No No 
SYT30 ER AML AML No No No NA 
SYT34 ER AML AML No No No No BMT 
SYT39 ER AML No Yes [?] No No NA 
SYT01 LTR AML m.-lin. AML No No No 
SYT02 LTR AML AML AML No No NA 
SYT07 LTR AML No No NA No AML 
SYT10 LTR m.-lin. NA No No No NA 
SYT14 LTR m.-lin. NA NA NA NA NA 
SYT23 LTR m.-lin. No No No No No 
SYT26 LTR AML NA NA NA NA NA 
SYT29 LTR AML m.-lin. No No No No 
SYT32 LTR No NA NA NA NA NA 
SYT37 LTR No NA NA NA NA NA 
SYT42 LTR m.-lin. No BMT No BMT No BMT No BMT No BMT 
SYT45 LTR AML No No No No NA 
SYT47 LTR AML AML AML No No NA 
SYT50 LTR m.-lin. m.-lin. AML No No NA 
SYT51 LTR AML AML No No No NA 
SYT52 LTR m.-lin. NA NA NA NA NA 
SYT56 LTR AML No AML NA No NA 
SYT59 LTR AML AML AML No No NA 
SYT61 LTR unclear NA NA NA NA NA 
SYT64 LTR AML AML AML No No No 
SYT67 LTR AML No No No No No BMT 
SYT74 LTR AML No No No No NA 
SYT76 LTR m.-lin. No No No No No 

  SYT84* LTR m.-lin. No BMT No BMT No BMT No BMT NA 
SYT88 LTR m.-lin. No No No No No BMT 
SYT90 LTR m.-lin. AML No No No No 
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Figure S 10: Sources of variability in methylation data. a,c) Heatmap showing p-values of Kruskal-
Wallis Rank Sum Test between biological or clinical information and first 10 principal components 
for: a) all populations. c) Only engrafting LSC populations. b,d) PCA for: b) all populations. d) Only 
engrafting LSC populations. 
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Figure S 11: Distribution of beta values for all regions, island, shore, shelf, and open sea and for 
all sorted populations between healthy, LTR, and ER samples. 

 

 

 

 

 

All Island Shore Shelf OpenSea

C
D

34+/G
PR

56+/N
KG

2D
L−

C
D

34−/G
PR

56+/N
KG

2D
L−

C
D

34−/G
PR

56−/N
KG

2D
L−

C
D

34−/G
PR

56−/N
KG

2D
L+

C
D

34+/G
PR

56+/N
KG

2D
L+

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Group

Be
ta

 v
al

ue

Group
healthy

LTR

ER



Appendix 

 140 

Table S 2: Quantification of alternative splicing events corresponding to the violin plots 
presented in Figure 33. RI: intron retention, MXE: mutually exclusive exons, SE: exon skipping, 
A5SS: alternative 5’ donor site, A3SS: alternative 3’ donor site. Statistics was filtered for event 
with an absolute inclusion level difference > 0.1 and an FDR < 0.05. 

 LSC-enriched populations All populations 

Event Types DIncLevel > 0 DIncLevel < 0 DIncLevel > 0 DIncLevel < 0 

A3SS 220 237 138 179 

A5SS 192 142 143 123 

MXE 1,017 871 1,233 855 

RI 306 103 172 62 

SE 1,277 1,164 738 1,168 
 

 
  
Table S 3: Comparison of differentially spliced and methylated genes. Significant alternative 
splicing was defined by an absolute inclusion level difference > 0.1 and an FDR < 0.05. Differential 
methylated regions were considered significant for an absolute beta value difference > 0.25 and 
FWER < 0.05. Fisher's Exact Test on numbers of genes estimated a p-value = 0.019. 

Event Types  Methylation 

 Significance Differential Not differential 

Alternative Splicing 
Differential 11 1,889 

Not Differential 145 55,620 
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Figure S 12: Enrichment of gene sets and pathways related to oxidative phosphorylation and 
mitochondrial complexes in the bulk data set. a) Bar plot showing selected GSEA gene sets 
between LTR and ER. b) Selected genes identified by leading-edge analysis. 

 

 



Appendix 

 142 

 
Figure S 13: Coverage of untargeted metabolomics measurements. 
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Figure S 14: Abundance of hydroxyglutarate and succinate. SYT50 is an IDH1-mutant AML, while 
the other samples were IDH1-wt. 

 

 

 
Figure S 15: Distribution of the number of coefficients and F1 scores for lambda min values 
calculated in 100 iterative training runs. The optimal lambda was chosen to be 0.0761. 

 

●

●

●

●

●●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●● ●●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

● ●● ●●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

● ●

●●

●●

●

Coefficients F1

0.06 0.07 0.08 0.06 0.07 0.08

0.965

0.970

0.975

0.980

0.985

28

30

32

34

Lambda min

Class
●

●

Coefficients

F1

Lambda opt: 0.0761



Appendix 

 144 

 
Figure S 16: Customized batch correction of TPMs for the training of outcome prediction 
signature. a) Overview approach. b-g) PCA and heatmap showing p-values of Kruskal-Wallis Rank 
Sum Test between batch information and first 10 principal components for: b-c) Population-
sorted data set before batch correction. d-e) Population-sorted data set after batch correction. f-
g) Population-sorted data set and bulk data set after batch correction. 
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Table S 4: Coefficients of signature genes. 

Gene Coefficient Ensembl Gene Type 
CAMK1D 0.2011423 ENSG00000183049.8 protein_coding 
SORT1 0.1632886 ENSG00000134243.7 protein_coding 
HLA-DOA 0.09528722 ENSG00000204252.8 protein_coding 
BTG2 0.09223349 ENSG00000159388.5 protein_coding 
C10orf128 0.08237871 ENSG00000204161.9 protein_coding 
ENPP2 0.05360229 ENSG00000136960.8 protein_coding 
MPZL2 0.04008115 ENSG00000149573.4 protein_coding 
PAX8 0.03936341 ENSG00000125618.12 protein_coding 
MRC1L1 0.03413372 ENSG00000183748.4 protein_coding 
S100B 0.01933282 ENSG00000160307.5 protein_coding 
AC061992.1 -0.0005678 ENSG00000268965.1 protein_coding 
PLD1 -0.0008052 ENSG00000075651.11 protein_coding 
RHD -0.0136507 ENSG00000187010.14 protein_coding 
TRIP6 -0.0238733 ENSG00000087077.7 protein_coding 
NDRG1 -0.0351277 ENSG00000104419.10 protein_coding 
SEMA4B -0.0377146 ENSG00000185033.10 protein_coding 
SLITRK4 -0.0436313 ENSG00000179542.11 protein_coding 
CLDN10 -0.0445897 ENSG00000134873.5 protein_coding 
CTH -0.0683028 ENSG00000116761.7 protein_coding 
RFX2 -0.0785434 ENSG00000087903.8 protein_coding 
TMEM99 -0.0788538 ENSG00000167920.4 protein_coding 
FGFR1 -0.0963102 ENSG00000077782.15 protein_coding 
CCL3L3 -0.1050339 ENSG00000256515.3 protein_coding 
NPIPA5 -0.1103931 ENSG00000183793.9 protein_coding 
ZNF672 -0.1264443 ENSG00000171161.8 protein_coding 
EIF2S3L -0.1607959 ENSG00000180574.3 protein_coding 
AZI2 -0.1674812 ENSG00000163512.9 protein_coding 
TBX6 -0.1676564 ENSG00000149922.6 protein_coding 
FAM131A -0.2143174 ENSG00000175182.9 protein_coding 
CLGN -0.2674335 ENSG00000153132.8 protein_coding 
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Figure S 17: Heatmap showing expression of MHC-II genes.  

 

 
Figure S 18: SOC between replicates across extraction protocols and sample types. Of note, one 
replicate of HEK was removed because of very low concentrations. HEK, HL60, and bone marrow 
Concentrations are given in picomole per 106 cells and picomole per mg for liver tissue. 
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8.2 List of abbreviations 

A3SS alternative 3’ donor site 

A5SS alternative 5’ donor site 

ACK ammonium-chloride-potassium 

ACN acetonitrile 

ADP adenosine diphosphate 

ALL acute lymphoblastic leukemia 

AML acute myeloid leukemia 

ANOVA analysis of variance 

APC antigen presenting cell 

ATP adenosine triphosphate 

BAM binary alignment map 

BCL6 BCL6 Transcription Repressor 

BHLHE40 Basic Helix-Loop-Helix Family Member E40  

BM bone marrow  

BMP bone morphogenetic protein  

BMT bone marrow transplantation 

bp base pairs 

CD cluster of differentiation 

CH3 methyl group  

ChCl3 chloroform 

CHIP Clonal hematopoiesis of indeterminate potential 

CLP common lymphoid progenitor 

CMP common myeloid progenitor 

CMP common myeloid progenitor 

CO2 carbon dioxide 

CSF cerebrospinal fluid 

CTL cytotxic T lymphocytes 

CV coefficient of variation 

DAPI 4’,6-diamidino-2-phenylindole  

DKFZ Deutsches Krebsforschungszentrum 

DMEM Dulbecco’s Modified Eagle’s Medium 

DMP differentially methylated positions  
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DMR differentially methylated regions 

DNMT3A DNA (cytosine-5)-Methyltransferase 3A 

E2F4 E2F Transcription Factor 4 

EGA European Genome-phenome Archive 

EISA exon-intron split analysis  

ELN European LeukemiaNet 

ENPP2 Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 

ER early relapse  

EtOH ethanol 

FAB French-American-British 

FACS fluorescence-activated cell sorting 

FCS fetal calf serum 

FDR false discovery rate  

FPKM Fragments Per Kilobase Million 

FSC A forward scatter area 

FWER family-wise error rate 

GMP granulocyte-macrophage progenitor 

GO gene ontology 

GPR56 (ADGRG1) adhesion G Protein-Coupled Receptor 56 

GSEA gene set enrichment analysis 

H2O water 

HEK human embryonic kidney 

HK3 Hexokinase 3 

HL60 human leukemia 60 

HLA-DOA Major Histocompatibility Complex, Class II, DO Alpha 

HMDB Human Metabolome Database 

hnRNP heterogeneous nuclear ribonucleoprotein 

HSC hematopoietic stem cell 

HSPC hematopoietic stem and progenitor cells 

ID4 Inhibitor of Differentiation 4 

IDH1 Isocitrate Dehydrogenase 1 

IMDM Iscove's Modified Dulbecco's Medium  

IPA isopropanol 

JAK Janus kinase 



Appendix 

 149 

KIR Killer Cell Immunoglobulin-Like Receptor  

LIC leukemia-initiating cell 

LILR Leukocyte Immunoglobulin-Like Receptor 

LMP lymphoid-primed multipotent progenitor 

LMPP lymphoid-primed multipotential progenitor 

LN2 liquid nitrogen 

LOD limit of detection 

LOLA Locus Overlap Analysis 

LSC leukemic stem cell 

LT latent factor 

LTR long-term remission  

MAD median absolute deviation  

MDS myelodysplastic syndrome 

MeOH methanol 

MEP megakaryocyte-erythroid progenitor 

MEP megakaryocytic-erythroid progenitor 

MHC major histocompatibility complex 

MICA MHC Class I Polypeptide-Related Sequence A 

MICB MHC Class I Polypeptide-Related Sequence B 

MNC mononuclear cells 

MOFA Multi-Omics Factor Analysis 

MPP multipotent progenitor 

mRNA messenger RNA  

MTBE methyl tert-butyl ether 

MXE mutually exclusive exons 

NaCl sodium chloride 

NAD+(H) nicotinamide adenine dinucleotide (oxidized/reduced) 

NES normalized enrichment score 

NGS next-generation sequencing 

NK natural killer 

NKG2D (KLRK1) Killer Cell Lectin Like Receptor K1 (ligands) 

NKG2DL NKG2D ligands 

NNLS non-negative least squares 

NOG Noggin 
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NPM1 Nucleophosmin 

NS non-significant 

NSG NOD scid gamma 

OS overall survival  

PBS phosphate-buffered saline 

PC principal component 

PC Pyruvate Carboxylase 

PCA principal component analysis  

PD-1 Programmed Cell Death Protein 1 

PD-L1 Programmed death-ligand 1 

PI3K Phosphoinositide 3-kinase 

PKLR pyruvate kinase L/R 

PP polypropylene 

PROGENy Pathway RespOnsive GENes for activity inference 

QC quality control 

RAET Retinoic Acid Early Transcript 

RBP RNA-binding protein 

RFS relapse-free survival 

RI intron retention 

ROS reactive oxygen species  

RPKM Reads Per Kilobase Million 

RT room temperature 

S100 S100 calcium-binding proteins 

SD standard deviation  

SE exon skipping 

SF3B1 Splicing Factor 3b Subunit 1 

SFRS2 Serine and Arginine-Rich Splicing Factor 2 

snRNP small ribonucleoprotein complex 

SOC sum of concentrations 

SOP standard operating procedure 

SORT1 Sortilin 1 

SOX2 SRY-Box Transcription Factor 2 

SPI1 Spi-1 Proto-Oncogene 

SR protein serine and argine-rich protein 
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SSC A side scatter area 

STAT Signal Transducer and Activator of transcription 

SyTASC Systems-based Therapy of AML Stem Cells 

TCA tricarboxylic acid 

TGFb Transforming Growth Factor b 

TLR4 Toll Like Receptor 4 

TPM transcripts per million 

ULBP UL16 Binding Protein 

UMAP Uniform Manifold Approximation and Projection 

VAF variant allele frequencies 

VIPER Virtual Inference of Protein-activity by Enriched Regulon 

vst variance-stabilizing transformation  

WBC white blood cells  

WES whole exome sequencing  

WGS whole genome sequencing 

WHO World Health Organization 
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