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Abstract This paper presents a binary variant of a novel physics-based meta-heuristic optimization

algorithm, namely Light spectrum optimizer (LSO), for tackling both the 0–1 knapsack (KP01) and

multidimensional knapsack problems (MKP). Because of the continuous nature of the standard

LSO that contradicts the knapsack problem’s discrete nature, two various transfer functions: S-

shaped and X-shaped, are used to convert the continuous values produced by LSO into discrete

ones. Some binary solutions produced by the binary LSO (BLSO) may be infeasible, so an

improvement-repair strategy is used to convert those solutions into feasible ones by making some

improvements on them. Moreover, the classical LSO was modified in this study to propose a new

binary variant, namely BMLSO, with better exploration and exploitation operators for overcoming

the knapsack problems. Additionally, a novel method, which simulates the swarm intelligence

behaviors and the simulated binary crossover (SBX) to accelerate the convergence speed with avoid-

ing stuck into local minima, has been proposed for producing a new binary variant of MLSO

known as BHLSO. To verify the performance of the proposed binary variants of LSO, 45 bench-
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mark instances of KP01 and 30 benchmark instances of MKP used commonly in the literature have

been used in our experiments. The experimental findings show the superiority of BHLSO for both

KP01 and MKP compared with several well-known algorithms in terms of CPU time, convergence

speed, and accuracy.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

No doubt that solving the knapsack problems either the 0–1
knapsack problems (KP01) or the multidimensional knapsack
are indispensable for many fields, i.e, adaptive multimedia sys-
tems [1], principal budgeting [2], real estate property mainte-

nance optimization [3], resource allocation [4], energy
minimization [5,6], resource allocation [7], cargo loading [8],
and many others [9–12]. Therefore, several algorithms of all

kinds, including traditional ones such as dynamic program-
ming [13], branch and bound [14] and implicit enumeration
[15]; swarm intelligence algorithms such as equilibrium opti-

mizer [16], complex-valued encoding satin bowerbird optimiza-
tion algorithm [17], and marine predators algorithm [18]; and
evolutionary algorithms such as genetic algorithms [19], and

differential evolution [20]. Since solving knapsack problems
needs to check several permutations that may include the opti-
mal solution, the traditional methods’ performance will deteri-
orate with increasing the number of the permutations that

need to be checked, and this is also impractical in terms of
the time complexity [21]. Therefore, the swarm intelligence
algorithms and the evolutionary algorithms have widely con-

tributed to overcoming this problem and developing high-
quality outcomes due to their ability to solve several optimiza-
tion problems in a reasonable time [22,23].

Before speaking about the suggested algorithms in the liter-
ature for both KP01 and MKP, let’s expose each one’s math-
ematical model. At the outset, KP01 involves several n items
with a profit pi and a weight wi, which needs to be addressed

to select the items that maximize the total profit by keeping
the sum of their weights less than the knapsack capacity (c).
The mathematical formulation of the 0–1 KP is expressed as:

maximizef x!� � ¼ Xn

i¼1

xi � pi

subject to
Xn

i¼1

wi � xi < c ð1Þ

In the same context, Similar to the KP01, The MKP consist
of n items, where each one has m weights and a profit pi. There
is a knapsack of m dimensions, where the jth dimension has a

capacity cj. It also has m knapsacks, each of which has a capac-

ity cj. The objective of the MKP is finding the items that max-

imize the profit for each dimension of this knapsack with

satisfying the capacity of the same dimension. This problem
is mathematically defined as:

maximize f x!� � ¼ Xn

i¼1

xi � pisubject to
Xn

i¼1

wji � xi � cj;

j ¼ 0; 1; 2; � � � � � � � � � ;m ð2Þ
In the rest of this section, some of the recent papers pub-
lished for tackling the KP01 and the MKP will be reviewed.

At the outset, the improved quantum-inspired wolf pack algo-
rithm (QWPA) [24] has been proposed for tackling the KP01
problems. The QWPA was improved using two main opera-

tions: quantum rotation and quantum collapse. The former
is used to accelerate the convergence toward the optimal solu-
tion, while the latter is responsible for avoiding stuck into local

minima. Practically, QWPA was validated on datasets with
dimensions up to 1000 and compared with many optimization
algorithms to check its efficiency. Furthermore, the Butterfly
Optimization algorithms (MBO) improved by the

opposition-based learning strategy (OBL), and the Gaussian
perturbation has been proposed for tackling the KP01 [25].
OBL was applied to half population in the late phase of the

optimization to increase the convergence speed toward the
optimal solution. At the same time, Gaussian perturbation acts
on individuals with weak fitness at each iteration to avoid fall-

ing into local optima. This algorithm was verified on three
groups with 15 large-scale instances within each one.

In the same context, Feng [26] improved the efficiency of

the MBO by the chaos map to enhance global optimization.
Further, the MBO has also been improved by applying the
Gaussian perturbation to increase the convergence speed.
The flower pollination algorithm (FPA) [27] has been proposed

for tackling the KP01. Because the standard FPA has been
applied for tackling the continuous optimization problem, this
contradicts the nature of the KP01, a binary problem. There-

fore, the author used the sigmoid transfer function to convert
the continuous values produced by FPA into binary ones.
More than that, the author used a penalty function not to

select the infeasible solutions as the best-so-far solution.
Besides, those infeasible solutions were improved using an
improvement-repair strategy.

Lai et al [28] proposed a novel quantum particle swarm

optimization algorithm(QPSO) for tackling the 0–1 MKP
problem. QPSO integrated the distance-based diversity-
preserving strategy to manage the population and a local opti-

mization method based on variable neighborhood variables to
improve the solutions. This algorithm was verified on 250
benchmark instances and compared with a number of state-

of-the-art algorithms to check its competitiveness. Further-
more, the Harmony search (HS) [29] has also been suggested
for solving the single objective and multi-objective 0–1 knap-

sack problems. Garcı́a, J., et al. [30] used the clustering DB-
scan technique to obtain binary versions of the continuous
meta-heuristic algorithms for tackling the MKP. The experi-
mental results show that the algorithms integrated with the

DB-scan operator can produce better results than the transfer
function and random operators.

Beheshti, Z. [31] proposed a new transfer function known

as x-shaped to convert the continuous values into discrete

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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ones. This function has been applied to produce a binary vari-
ant of the particle swarm optimization (XBPSO) for the MKP.
This transfer function could increase the exploitation and

exploration capabilities for creating more binary permuta-
tions, which could achieve better outcomes. Experimentally,
XBPSO has been validated on 33 benchmark instances com-

pared with a number of the BPSO and the other discrete algo-
rithms to check its effectiveness. Abdel-Basset, M., et al. [32]
proposed the modified Multi-Verse optimization (MMVO)

for solving the KP01 and MKP using the V-shaped transfer
function to convert the continuous values into binary ones.
The MMVO has also been improved by re-initializing the pop-
ulation each a number of iterations to promote the exploration

capability of the algorithm.
Baykasoğlu [33] improved the firefly algorithm (FA) using

partial random restarts and an adaptive move procedure to

develop a strong variant able to effectively solve the dynamic
multidimensional knapsack (DMK) problems. This variant
has been compared to three competitors: the genetic algorithm

(GA), differential evolution (EO), and classical FA, to reveal
its performance. In [34], three different representations were
thoroughly compared in order to assess their performance on

the DMK problem. The experimental findings proved that
indirect representation is more suitable for this problem.
Ozsoydan [35] proposed an effective binary swarm-based opti-
mization technique based on particle swarm optimization

(PSO) and GA for solving the set-union knapsack problem,
which is widely used in real-life applications, like information
security systems. In addition, an optional mutation operator to

decrease the population diversity has been developed to
improve the performance of this swarm-based technique.

In [36], two strategies, namely the complex-value encoding

method and the greedy strategy, were designed to improve the
performance of the wind-driven optimization (WDO) algo-
rithm in terms of population diversity and premature conver-

gence when tackling the 0–1 knapsack problem; this
improved algorithm was named complex-valued encoding
WDO (CWDO). CWDO was verified using three classes of test
instances: small-scale, large-scale, and standard test cases, and

compared to several other algorithms. In terms of stability and
performance, CWDO could outperform all of the compared
optimizers. Zhou [37] proposed a novel complex-valued encod-

ing bat algorithm (CPBA) with better population diversity and
better convergence speed for solving the 0–1 knapsack prob-
lem. The CPBA improves the ability to explore, and it is useful

for solving both the small-scale and the large-scale 0–1 knap-
sack problem. There are several other works on the knapsack
problems that have been proposed over the last two decades
[38–44]. Unfortunately, the majority of the existing algorithms

proposed for the knapsack problems have one or more of the
following drawbacks: lack of population diversity, premature
convergence, and slow convergence speed. As a result, in this

paper, we attempt to propose a new powerful binary technique
capable of effectively diversifying the population while also
improving convergence speed.

A new physics-based meta-heuristic algorithm, namely
Light Spectrum Optimizer (LSO), inspired by the meteorolog-
ical phenomenon, has been proposed to tackle the continuous

optimization algorithms [45]. The significant success achieved
by the LSO for solving several challengeable CEC benchmarks
(CEC2014, CEC2017, CEC2020, and CEC2022) motivates us
to offer its binary variant using the sigmoid transfer function
for tackling KP01 and the X-shaped transfer function for
MKP [45]. Besides, the binary LSO (BLSO) was modified to
propose a new variant, namely the binary modified LSO

(BMLSO), to strengthen the exploration and exploitation
operator when tackling the knapsack problems, especially
the large-scale problems. As another attempt to promote the

exploration and exploitation capability of the modified LSO,
a new novel method based on integrating the swarm behaviors
with the simulated binary crossover (SBX) to help the algo-

rithm check more permutations that may involve better out-
comes was proposed. This method, abbreviated as SEI, is
effectively integrated with the BLSO to produce a new variant
known as BHLSO. These three binary variants used an

improvement-repair strategy to convert the infeasible solu-
tions, which don’t come true due to the constraints of both
KP01 and MKP, into feasible ones by making some improve-

ments on those solutions. To verify the performance of both
BLSO and BHLSO, 45 benchmark instances for KP01 and
30 instances for MKP commonly used in the literature have

been used. The experimental outcomes elaborate on the supe-
riority of BHLSO and BLSO compared to a number of recent
robust meta-heuristic algorithms in terms of convergence speed

and the quality of the outcomes. Finally, the contributions of
this paper are summarized as follows:

� Propose a binary variant of LSO for tackling KP01 and

MPK using the S- and X-shaped transfer functions,
respectively.

� Propose a modified variant of LSO, namely MLSO, with

stronger exploration and exploitation operators to effec-
tively tackle the KP01 and MPK problems.

� Propose a new novel method based on integrating the

swarm intelligence’s behavior with the simulated binary
crossover to further promote the exploration and exploita-
tion operators of MLSO. This method is combined with

MLSO to produce a binary variant known as BHLSO.
� These proposed variants were validated on well-known
instances of both KP01 and MKP and compared with many
well-known robust algorithms to check their competitive-

ness. The experimental outcomes show the superiority of
both BMLSO and BHLSO in terms of quality and conver-
gence speed.

The rest of this research is arranged as that: Section 2 over-
view the light Spectrum Optimizer, Section 3 explains the pro-

posed algorithm, Section 4 presents discussion and
comparison, and Section 5 shows a conclusion about our work
and future work.

2. Light spectrum optimizer

Recently, a novel meta-heuristic algorithm known as Light
Spectrum Optimizer (LSO) has been proposed for tackling

the single-objective optimization test functions. LSO has been
inspired by the meteorological phenomenon, which says that
the light rays reflection, refraction, and dispersions with differ-

ent angles because of going through the raindrops cause the
colorful rainbow spectrum rays with a reflective index ranging

between 1.331 as kred and 1.344 as kviolet. In the optimization
process, each ray out of the generated rays represents a candi-
date solution to the optimization problem. At the beginning of
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the process, a group of N rays are generated with d dimensions
for each one, which are randomly initialized within their upper
and lower bound of each dimension according to the following

equation:

xi
!¼ L

!þ U
!� L

!� �
: r!; i ¼ 1; 2; 3; � � � � � � :;N ð2Þ

where xi
! is a vector used to contain the values of the ith ray. L

!

and U
!

are two vectors, including the lower and upper search
space for the optimization problem’s dimensions, respectively.
In brief, like the metaheuristic algorithms, the optimization

process of LSO is divided into two stages: Generating new col-
orful ray as exploration, and Colorful rays scattering as
exploitation, which are extensively described in the next

sections.

2.1. Generating new colorful ray: Exploration mechanism

The optimization process will start with updating the reflective

index between kred and kviolet as that:

kr ¼ kred þ r1 � ðkviolet � kredÞ ð3Þ
where r1 is a random number ranging between 0 and 1. To con-

trol the reflection and refraction of light rays, a probability
between 0 and 1 abbreviated as p is used and assigned a value
of 0.8. But, to manage the scattering of the colorful rainbow
curve, a probability generated randomly between 0 and 1

known as q is used.
At the optimization process, the directions of the rainbow

spectrums are determined according to the normal vector of

inner refraction xnA
�!, inner reflection xnB

�!, and outer refrac-

tion xnC
�! generated successively using the following

equations:

xnA
�! ¼ xrðtÞ

��!
norm xrðtÞ

��!���!� � ð4Þ

xnB
�! ¼ xpðtÞ

��!
norm xpðtÞ

��!���!� � ð5Þ

xnC
�! ¼ x�!

norm x�!� � ð6Þ

where xrðtÞ
��!

is a solution selected arbitrarily from the popula-

tion in the current iteration t, xpðtÞ
��!

is the current solution of

the current ray, x�! is the best-so-far solution, norm :ð Þ is the

normalized vector. Regarding the incident light ray xL0
�!, eq.

(8) is used to compute it.

Xmean ¼
PN

i xi
!

N
ð7Þ

xL0
�! ¼ Xmean

norm Xmeanð Þ ð8Þ

where Xmean indicate the mean of the population at the current
iteration. And, the vectors of inside and outside refracted and
reflected light rays are computed as that:
xL1
�! ¼ 1

kr
xL0
�!� xnA

�! xnA
�! � xL0

�!� �	 


� xnA
�! 1� 1

krð Þ2 þ
1

krð Þ2 xnA
�! � xL0

�!� �2�����
�����
1
2

ð9Þ

xL2
�! ¼ xL1

�!� 2xnB
�! xL1

�! � xnB
�!� � ð10Þ

xL3
�! ¼ kr xL2

�!� xnC
�! xnC

�! � xL2
�!� �	 


þ xnC
�! 1� krð Þ2 þ krð Þ2 xnC

�! � xL2
�!� �2��� ���12 ð11Þ

where xL1
�!, xL2

�!, and xL3
�! are three vectors representing the

inner refracted, inner reflected, and outer refracted light rays,
successively.

After the calculation of the rays’ directions, the candidate
solutions are calculated based on the value of a probability
generated randomly between 0 and 1; this value is assigned

in a variable symbolized p. In particular, if the value of p is
smaller than a randomly generated value at the interval [0,
1], then the updated solution at the iteration tþ 1 is calculated
according to the following formula:

xtþ1
��! ¼ xt

!þ �RVn
1GI xL1

�!� xL3
�!� �� xr1

�!� xr2
�!� � ð12Þ

Otherwise, the updated solution will be calculated accord-

ing to the following formula:

xtþ1
��! ¼ xt

!þ �RVn
2GI xL2

�!� xL3
�!� �� xr3

�!� xr4
�!� � ð13Þ

where xtþ1
��! indicates the newly-generated solution, xt

! stands
for the current solution at iteration t. r1, r2, r3, and r4 are
indices of four solutions selected randomly from the current

population. RVn
1 and RVn

2 are uniformly-generated vectors. �

is a scaling factor calculated according to (14). GI is an adap-

tive control factor based on the inverse incomplete gamma
function and calculated by (15):

� ¼ a� RVn
3 ð14Þ

where RVn
3 is a vector of randomly generated numbers that are

normally distributed and have a mean and standard deviation
of zero and one, respectively. An adaptive parameter named a
is calculable using (16).

GI ¼ a� r�1 � P�1 a; 1ð Þ ð15Þ
GI stands for an adaptive control factor. r is a random

number generated uniformly between ½0; 1� that is inversed to

promote the exploration operator. P�1 is the inverse incom-

plete gamma function with respect to a.

a ¼ RV2 1� ð t

Tmax
Þ

� �
ð16Þ

where t indicates the current iteration number, RV2 is a numer-

ical value generated uniformly between ½0; 1� and Tmax is the
maximum iteration.

2.2. Colorful rays scattering: Exploitation mechanism

This stage assists in dispersing the light in the direction of the
current solution, the best-so-far solution, and a solution cho-
sen at random from the current population to enhance the

exploitation operator. The following is the mathematical rep-
resentation of scattering near the current solution:
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xtþ1
��! ¼ xt

!þ RV3 � xr1
�!� xr2

�!� �þ RVn
4 � ðR < bÞ � x�!� xt

!� �
ð17Þ

where x�! indicates the best-so-far solution, xr1
�! and xr1

�! are
two randomly-selected solutions from the current population.
RV3 includes a number generated randomly between 0 and 1.

RVn
4 is a vector initialized randomly between 0 and 1. The best-

so-far solution and the current solution are used to generate

rays in a new location for the second scattering phase using
the following formula:

xtþ1
��! ¼ 2 cos p�r1ð Þ x�!� �

xt
!� � ð18Þ

where r1 is a number between 0 and 1 that was generated at

random. p indicates the proportion of a circle’s perimeter to
its diameter. According to the following formula, switching
between the first and second scattering phases is accomplished

based on a predetermined probability Pe:

xtþ1
��! ¼ Eq: 17ð ÞifR < Pe

Eq: 18ð ÞOtherwise

�
ð19Þ

where R is a number chosen at random from 0 to 1. The final

scattering phase is based on creating a new solution using the
current one and a solution chosen at random from the popu-
lation using the following formula:

xtþ1
��! ¼ xp

r1

�!þ RV5j j � xr2
�!� xr3

�!� �� �
� U
!þ 1� U

!� �
� xt
!

ð20Þ
where RV5 is a random number based on the normal distribu-

tion, and U
!

is a vector generated randomly values between 0
and 1. Exchanging (19) and (20) is based on computing the dif-

ference in fitness values between each solution and the best-so-
far solution and normalizing this difference between 0 and 1
according to (21). If this difference is smaller than a threshold
value R1 which is assigned a random value between 0 and 1, (19)

will be applied; otherwise, (20) is executed as modeled in (22):

F0 ¼ F� Fb

Fb � Fw

����
���� ð21Þ

xtþ1
��! ¼ Eq: 19ð ÞifR < PsjF0 < R1

Eq: 20ð ÞOtherwise

�
ð22Þ

where R and R1 are randomly generated numbers between 0

and 1. The flowchart of LSO is shown in Fig. 1.

3. The proposed algorithm: BHLSO, and BMLSO

In this section, the binary variant of the LSO, in addition to
the improved one will be discussed in this section in detail.
The main steps of this section are organizationally surveyed
as follows: (1) the initialization step shows the way of distribut-

ing the individuals within the search space of the problem
before running the optimization process, (2) afterward, the fit-
ness function, and improving and repairing methodology are

secondly shown, (3) the binary variant of the classical LSO is
clearly presented, (4) the binary modified LSO (BMLSO) algo-
rithm are clearly explained, and (5) finally, the improvement

strategy and the proposed algorithm are clearly exposed to
the readers.
3.1. Initialization, evaluation, and repairing strategy

At the start, a group of N rays with d dimensions for each one
will be created and accurately distributed within the search
space of the problem according to the following formula:

xi;j ¼
1 ifr > 0:5

0 otherwise

�
ð23Þ

Afterward, each solution will be evaluated to see its quality
for tackling KP01 and MKP problems using the following
formula:

f xð Þ ¼
Xd

z¼1

wz � xz � c ð24Þ

where wz indicates the weight of the zth item, and xz shows if

the same item is selected (including a value of 1), or not
selected (including a value of 0). c includes the knapsack
capacity. After evaluating each solution, the infeasible solution

that maximizes the profits but doesn’t subject to the knapsack
capacity constraints couldn’t be used as the best-so-far solu-
tion x�. Therefore, it is discarded by using a penalty function

(PF) that gives it a negative fitness value not to be selected
as the best-so-far solution. In our work, those infeasible solu-
tions will be repaired using a repair algorithm shown in algo-

rithm 1 to be competitors (feasible ones) with the other
solutions within the population. Afterward, those repaired
solutions will be improved to search for better outcomes as
shown in algorithm 1.

Algorithm 1 Repairing and improving Algorithm (RA)

Input: infeasible solution xi
1. // Repairing algorithm

2. While(fðxiÞ > c)

3. Remove the item with the lowest prz
wz

from this solution

4. End while

5. // Improving algorithm

6. While(f xið Þ � c)

7. insert the items with the highest prz
wz

in the knapsack

8. End while

Return xi
3.2. Transfer functions

The LSO produces continuous values during the optimization
process, which need to be converted into binary values to
tackle knapsack problems. To do that, the sigmoid and x-

shaped transfer function is used. In our experiments, the sig-
moid transfer was described mathematically in eq. (26) and
depicted in Fig. 2 could come true better outcomes with the
continuous optimization algorithms when tackling the KP10

as shown in our papers [16,18], it is used in this research to
see the performance of the LSO under this function. This func-
tion is defined as follows:

Fð a!Þ ¼ 1

1þ e�2� a! ð25Þ



Fig. 1 Flowchart of LSO.
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Fbin ¼ 1ifF a!� � 	 rand

0otherwise

(
ð26Þ

On the other side, the x-shaped transfer function proved its
efficiency compared with the others when solving the 0–1 KP

[31]. As a result, this research is checked with our proposed
algorithm and some of the other optimization algorithms to
see its effectiveness. This function produces two binary solu-

tions of the continuous solution to promote the exploration
and exploitation capabilities for reaching better outcomes.
Afterward, those two solutions are compared with each other,

and the one with the highest fitness values is returned to be
Fig. 2 Depiction of X-shap
inserted in the next generation. This transfer function is math-
ematically defined as follows:

F1 a!� � ¼ � a!
1þ � a!�� �� � 0:5þ 0:5 ð27Þ

Fbin1 ¼ 1ifF1 a!� � 	 rand

0otherwise

(
ð28Þ

F2 a!� � ¼ a!� 1

1þ a!� 1
�� �� � 0:5þ 0:5 ð29Þ
ed and S-shaped curves.
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Fbin2 ¼ 1ifF2 a!� � 	 rand

0otherwise

(
ð30Þ

Fbin ¼
Fbin1iff Fbin1ð Þ > fðFbin2Þ

Fbin2otherwise

�
ð31Þ
3.3. Binary variant of classical LSO

The classical LSO has been recently proposed for tackling con-
tinuous optimization problems; hence, in its current form, it
cannot be applied to discrete optimization problems, like

knapsack problems. Therefore, in this section, the classical
LSO will be adapted using the transfer functions to be applica-
ble to the knapsack problem. In the beginning, the initializa-

tion step is discretely performed by randomly assigning a 0
or 1 value for N solutions, which are then evaluated to identify
the quality of each one using eq. (24) as the objective function.

Afterwards, the optimization process of LSO will be fired to
generate new continuous solutions, which are transformed into
discrete ones using the transfer function discussed before.
Unfortunately, some discrete solutions might not satisfy the

constraints of the knapsack problem; therefore, those solutions
will be repaired using algorithm 1 to become feasible to tackle
this problem. This procedure will be repeated until the maxi-

mum number of iterations is reached. Finally, the steps of
the binary LSO are stated in Algorithm 2.
Algorithm 2: Binary light spectrum optimizer (BLSO)

Input: a population of N rays, the maximum Iteration T
1
 Initialization
2
 While (t < T)
3
 for each i ray
4
 Convert xi to binary-one using the adequate transfer

function
5
 Evaluate the fitness value using eq. (24) and applying

Algorithm 1
6
 update the best x�
7
 determine normal lines xnA
�!, xnB

�!, &xnC
�!
8
 determine direction vectors xL0
�!, xL1

�!,xL2
�!, &xL3

�!

9
 update the refractive index kr
10
 update a, �, &GI
11
 Generate two random numbers: p, q between 0 and 1
%%%%Generating new ColorFul ray: Exploration phase
12
 if p � q
13
 update using Eq. (12)
14
 Else
15
 update using Eq. (13)
16
 end if
17
 Convert xi to binary-one using the adequate transfer

function
18
 evaluate the fitness value using eq. (24) and applying

Algorithm 1
19
 update the best x�
%%%%Scattering phase: exploitation phase
20
 Update using Eq. (22)
21
 end for
22
 end while
Return the best-so-far solution:x�
3.4. Binary modified light spectrum optimizer (BMLSO)

Unfortunately, the classical BLSO has some disadvantages,
including low population diversity, sticking to local minima,
and slow convergence speed, which prevent it from fulfilling

strong outcomes for discrete optimization problems like knap-
sack problems. Therefore, the exploration and exploitation
operators of the classical BLSO are improved in a new variant,
namely the modified LSO (MLSO), to improve its ability to

tackle the knapsack problems. The modified operators are
described in detail in the following sections.

3.4.1. Modified exploration operator

In this stage, the equations of the classical LSO used to gener-
ate the new colorful ray after determining the direction of the
rays are updated to improve its ability to explore several dis-

crete solutions, which might involve the near-optimal solution
to the knapsack problem. This modified exploration operator
generates the new candidate solution according to the follow-
ing two equations, which are exchanged with each other based

on the probability p. If p< 0.8, the current solution is updated
using eq. (32); otherwise, it is updated by eq. (33)

xðtþ 1Þ�����! ¼ r3
!:xt

!þ �: r!4: xL1
�!� xL3

�!� � ð32Þ

xðtþ 1Þ�����! ¼ r5
!:xðtÞ��!þ �:r6

!: xL2
�!� xL3

�!� � ð33Þ

where xðtÞ��!
is the current candidate solution, r3 and r5 are vec-

tors of random numbers generated uniformly between ½0; 1�, r4!
and r6

! are generated randomly using the normal distribution.

But, within our research, generating r4
! and r6

! uniformly

between 0 and 1 could come true better outcomes. � refers to
a scaling factor calculated as:

� ¼ a� r6
! ð34Þ

r6
! are generated randomly using the normal distribution.

Also, generating this vector within our research uniformly
between 0 and 1 could come true better outcomes based on
our experiments. a is a distance control factor computed using
the following equation:

a ¼ 1� ð t
T
Þ ð35Þ

T is the maximum iteration.

3.4.2. Modified exploitation operator

Regarding the exploitation capability of the modified LSO, it

is managed based on the q and z factors that determine if
the current candidate solution will be updated between the
best-so-far and its local best one or around the local best

one only. Specifically, If q is smaller than GI, the new solution
is updated between the local best solution of the current indi-
vidual and the global best solution as follows:

xtþ1
��! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�!� �2

þ xp
t

!� �2

þ 2 cos hrð Þ x�!� �
xp
t

!� �� �r
ð36Þ

where hr is a random angle between 0; 2p½ �, xp
t

!
indicates the last

best solution obtained by the current solution. However, if the
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probability z is greater than GI, then the newly updated solu-

tion will be updated as:

xtþ1
��! ¼ xp

t

!� RVn
4 � GI

ub� lb

2

� �
ð37Þ

where RVn
4 is a vector generating using the normal distribution

with a mean of 0 a standard deviation of one. lb and ub are

respectively the lower and upper bounds of the dimensions
in the optimization problem. The binary variant of this modi-
fied LSO is listed in Algorithm 3 which describes the steps of
adapted MLSO for tackling the knapsack problem, namely

BMLSO.
Algorithm 3: the BMLSO algorithm

Input: a population of N rays, the maximum Iteration T
1
 Initialization
2
 While (t < T)
3
 for each i ray
4
 Convert xi to binary-one using the adequate transfer function
5
 evaluate the fitness value using eq. (24) and applying

Algorithm 1
6
 update the best x�
7
 Compute normal lines xnA
�!, xnB

�!, &xnC
�!
8
 Specify direction vectors xL0
�!, xL1

�!,xL2
�!, &xL3

�!

9
 Generate the refractive index kr
10
 update a, and�
11
 Update p, q, and z randomly between 0 and 1
12
 if p � 0:8
13
 update the current using (32)
14
 Else
15
 update the current using (33)
16
 end if
17
 if q < GI
18
 update the current using eq. (36)
19
 end if
20
 if z > GI
21
 update the current using eq. (37)
22
 end if
23
 end for
24
 t++
25
 end while
26
 Return x�
3.5. Simulated binary crossover.

The Crossover operators are considered a critical component
for the evolutionary algorithms used to generate offspring
solutions from two or more parents [46]. Those operators are

classified into two types, i.e., the mean-centric operators and
the parent-centric operators. The simulated binary crossover
(SBX) belongs to the parent-centric operators, which generate

the offspring solutions around their parents, contradicted the
mean-centric operators, which produce the offspring around
the centroid of the parents [47]. The SBX is mathematically

described as follows to generate the offspring solutions:

x1 ¼ 0:5 x1 tð Þ þ x2 tð Þ þ b x1 tð Þ � x2 tð Þð Þ½ �

x2 ¼ 0:5 x1 tð Þ þ x2 tð Þ � b x1 tð Þ � x2 tð Þð Þ½ � ð38Þ
where x1 indicates the first generated offspring and x2 is the
second one. x1 tð Þandx2 tð Þ are two parents at iteration t. b is
a spreading factor to determine the absolute difference in the

generated offspring to that of the parents. To control the dis-
tribution of b, a parameter denoting as gc is used, making the
probability of generating the offsprings near the parents is so
high if it has a large value.

3.6. Swarm and evolutionary-based improvement strategy (SEI)

In our method, the behaviors of the swarm algorithms and the

SBX will be integrated in a novel way to produce a method
that has some merits of the swarm confined to the exploration
capability and the convergence speed of the SBX. Regarding

the swarm behaviors, similar to the whale optimization algo-
rithm, a novel way is suggested to explore the search space
to find promising regions, which include the optimal solutions.

This way is divided into three steps:

� The first step is used to explore the search space as an
attempt to finding better outcomes and mathematically

defined as follows:
x! tþ 1ð Þ ¼ xr
! tð Þ � A

!
:D
! ð39Þ

D
!¼ C

!
: x!r � x! tð Þ

��� ��� ð40Þ

A
!¼ 2: a!:rand

��!� a! ð41Þ

a!¼ cc� cc � t

T
ð42Þ

where x!r is a solution selected from the population at iter-

ation t. C
!

is a uniform random vector including values gen-

erated between 0 and 2. A
!

is a distance control factor to
determine the absolute difference of the current solution
to that of the randomly selected one. cc is a fixed value.

� The second step is suggested to promote the exploitation
capability of an optimization algorithm, which is mathe-
matically described as follows:
x! tþ 1ð Þ ¼ x�! tð Þ � A
!
:D
! ð43Þ

D
!¼ C

!
: x! tð Þ � x! tð Þ

��� ��� ð44Þ

The first step and the second step are exchanged with each
other to update the current dimension in the current solution

based on the distance control factor A
!
. If the absolute current

value in the A
!

vector is greater than a predefined constant
value b, then the first step will be applied to explore this dimen-

sion’s search space. Otherwise, the second step will be applied
to search around the best-so-far solution for a better solution.

� The third step is based on exploiting the solution around

the search space of the problem as an attempt to find better
outcomes. The difference between this step and the previous
one that the previous step was calculating the distance

between the current solution and the same one multiplied
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by a random value created between 0 and 2. This will make

the value of C controlling in the exploitation capability. To
be more specific, when C is greater than 1.5, or smaller than
0.5 will make the updated solution near the best-so-far solu-

tion and this will promote the exploitation capability. In the
third step, the current solution will be updated under the
absolute distance between the best-so-far and the current
one. Mathematically, this step is defined as follows:
x! tþ 1ð Þ ¼ x�! tð Þ þ cos 2plð Þ:el:D! ð45Þ

D
!¼ x�! tð Þ � x! tð Þ

��� ��� ð46Þ

where l is a randomly generated value between [-1, 1]. As a try-
ing to accelerate the optimization process’s convergence speed,
the third step is randomly exchanged under a probability of 0.5

with the SBX used two parents to generate the offsprings: the
best-so-far solution and the current one, which may accelerate
the convergence speed toward the optimal solution. The first

step and second step, and the third step and the SBX is
exchanged with each other to update the current solution with
a predefined probability P. Ultimately, the SEI strategy is

described in algorithm 4.

Algorithm 4: The proposed SEI strategy

1. for each i solution
2. r: choosing a random number between 0 and 1.

3. if (r < P)
4. for each j dimension in the i solution
5. if (|Aj > b)
6. Update xi;j t þ 1ð Þ using eq. (43)

7. else

8. Update xi;j t þ 1ð Þ using eq. (39)

9. end if

10. end for

11. else

12. r1: choosing a random number between 0 and 1.

13. if (r1 < 0:5)

14. Update the current solution using the SBX

15. Else

16. Update the current solution using eq. (45)

17. end if

18. end if

19. Convert xi to binary-one using the adequate transfer

function.

20. evaluate the fitness value using eq. (24) and applying

Algorithm 1

21. update the best x�

22. end for

23. t þþ
3.7. Binary hybrid MLSO (BHLSO)

To further improve the performance of BMLSO when solving
knapsack problems, especially multidimensional knapsack
problems, an additional powerful binary variant based on
improving MLSO using the novel SEI strategy is presented
here; this variant is named BHLSO. The main advantage of
this variant is that it mixes genetic operators’ characteristics
with swarm characteristics to explore and exploit several

regions within the search space for better solutions. Finally,
the steps of this variant are clearly listed in Algorithm 5.
Algorithm 5: the BHLSO algorithm

Input: a population of N rays, the maximum Iteration T
1
 Initialization
2
 While (t < T)
3
 for each i ray
4
 Convert xi to binary-one using the adequate transfer

function
5
 evaluate the fitness value using eq. (24) and applying

Algorithm 1
6
 update the best x� and local best xl dispersion
7
 Compute normal lines xnA
�!, xnB

�!, &xnC
�!
8
 Specify direction vectors xL0
�!, xL1

�!,xL2
�!, &xL3

�!

9
 Generate the refractive index kr
10
 update a, and�
11
 Update p, q, and z randomly between 0 and 1
12
 if p � 0:8
13
 update the current using eq. (32)
14
 Else
15
 update the current using eq. (33)
16
 end if
17
 if q < GI
18
 update the current using eq. (36)
19
 end if
20
 if z > GI
21
 update the current using eq. (37)
22
 end if
23
 end for
24
 Update the current population using Algorithm 2
25
 t++
26
 end while
27
 Return x�
3.8. Advantage and disadvantage

This section is added to report the advantages and disadvan-
tages of the three binary variants of LSO presented in this
study. In summary, Table 1 demonstrates the advantages

and disadvantages of each proposed binary variant.

4. Experimental results

In this section, the proposed algorithm: BHLSO is validated
on KP01 and multidimensional knapsack problems to see its
effectiveness in tackling those two different optimization prob-

lems. Generally, this section is organized as follows:
Section 4.1: shows the performance metrics.
Section 4.2: exposes the first experiments conducted to com-

pare BLSO, BMLSO, and BHLSO.

Section 4.2: exposes the second experiments conducted on
KP01.

Section 4.3: discusses the third experiment conducted on

MKP.



Table 1 Advantages and disadvantages of three proposed binary variant: BLSO, BMLSO, and BHLSO.

BLSO BMLSO BHLSO

Advantage � Easy to implementStrong performance for

low-dimensionality

� Low computational cost

� Easy to implement

� Strong performance for low

dimensionality

� Low computational cost

� Strong performance for high

dimensionality

� Self-adaptive

� Easy to implement

� Strong performance for low and high

dimensionality

� Strong performance for low

dimensionality

Disadvantages � Stuck into local minima

� Lack of population diversity

� Slow convergence speed

� Low performance for high-dimensionality

� Parameter adjustment problem

� Low performance for MKP � Relative high computational cost

� Parameter adjustment problem
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4.1. Performance Metrics, parameter settings, and datasets
descriptions.

The proposed algorithms and the others are statistically com-
pared with each other based on five statistical metrics: best,

average, worst, standard deviation (SD), success rate (SR),
success iteration (SI), and CPU Time. Success rate (SR) indi-
cates the percentage of achieving the optimal solution by each

algorithm based on the following formula:

SR %ð Þ ¼ optimalvaluenumberinallruns

numberofruns
� 100 ð47Þ

Regarding SI, it is used to see the average of the success
iterations, which each algorithm could come true the optimal

solution within.
Table 2 Description of the KP01 instances.

IN Capacity D Opt IN Capacity

KP1 269 10 295 KP8a 1,863,633

KP2 878 20 1024 KP8b 1,822,718

KP3 20 4 35 KP8c 1,609,419

KP4 11 4 23 KP8d 2,112,292

KP5 375 15 481.069368 KP8e 2,493,250

KP7 50 7 107 KP12b 3,259,036

KP8 10,000 23 9767 KP12c 2,489,815

KP9 80 5 130 KP12d 3,453,702

KP6 60 10 52 KP12a 2,805,213

KP10 879 20 1025 KP12e 2,520,392

KP11 577 30 1437 KP1_100 995

KP12 655 35 1689.0 KP1_200 1008

KP13 819 40 1821 KP1_500 2543

KP14 907 45 2033 KP1_1000 5002

KP15 882 50 2440 KP1_2000 10,011

KP16 1050 55 2651 KP2_100 995

KP17 1006 60 2917 KP2_200 1008

KP18 1319 65 2817 KP2_500 2543

KP19 1426 70 3223 KP2_1000 5002

KP20 1433 75 3614 KP2_2000 10,011
With regards to the instances used for both KP01, 45
instances with various item sizes ranging between 4 and 2000

are used to check the performance of the proposed algorithm.
These instances are specifically used due to its wide utilization
in the literature [48–51]. In Table 2, those instances are

described based on four characteristics: the instance name
(IN), the number of items (D), the desired optimal solution
(Opt), and the knapsack capacity (Capacity). In the same con-

text, for MKP, the proposed algorithm and the other ones are
compared with each other on the WEISH benchmark Due to
the common use of this benchmark in recent researches
[20,32,52], which includes 30 instances with items sizes within

the range of 30 and 90 and 5 knapsacks for each instance. This
benchmark is descriptively presented in Table 3 in terms of the
number of items, the number of the used knapsack (KN), and

the optimal solution.
D Opt IN Capacity D Opt

8 3,924,400 KP3_100 997 100 2397

8 3,813,669 KP3_200 997 200 2697

8 3,347,452 KP3_500 2517 500 7117

8 4,187,707 KP3_1000 4990 1000 14,390

8 4,955,555 KP3_2000 9819 2000 28,919

12 6,473,019

12 5,170,626

12 6,941,564

12 5,688,887

12 5,337,472

100 9147

200 11,238

500 28,857

1000 54,503

2000 110,625

100 1514

200 1634

500 4566

1000 9052

2000 18,051



Table 3 Descriptions of MKP instances.

Instance(inst) Opt D kN Instance(inst) Opt D KN

weish01 4554 30 5 weish16 7289 60 5

weish02 4536 30 5 weish17 8633 60 5

weish03 4115 30 5 weish18 9580 70 5

weish04 4561 30 5 weish19 7698 70 5

weish05 4514 30 5 weish20 9450 70 5

weish06 5557 40 5 weish21 9074 70 5

weish07 5567 40 5 weish22 8947 70 5

weish08 5605 40 5 weish23 8344 80 5

weish09 5246 40 5 Weish24 10,220 80 5

weish10 6339 50 5 Weish25 9939 80 5

weish11 5643 50 5 Weish26 9584 90 5

weish12 6339 50 5 weish27 9819 90 5

weish13 6159 50 5 weish28 9492 90 5

weish14 6954 60 5 weish29 9410 90 5

weish15 7486 60 5 weish30 11,191 90 5
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Afterward, the most critical factors that affect the proposed
algorithm’s performance are getting to the optimal values of its

parameters. Therefore, in this section, extensive experiments
have been performed to find the optimal parameters for the
proposed algorithm’s four parameters, and they are gc, b, c,
Fig. 3 Tuning of the propos
and P. After running the proposed algorithm: BHLSO 25 inde-
pendent runs with various values for each parameter and

depicted the findings in Fig. 3, it is evident from this figure that
the best values for those four parameters: gc, b, c, and P are
5.0, 1.2, 1.5, and 0.6, respectively.
ed algorithm’s parameters.



Fig. 4 Comparison between BHLSO, BMLSO, and BLSO in terms of various performance metrics over the instances: KP1- KP12e.
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To check the effectiveness of the proposed algorithm, it is
compared with a number of the robust recent optimization
algorithms using their parameters in the cited paper. Those
algorithms are the binary whale optimization algorithm

(BWOA) [53], the binary Harris hawks algorithm (BHHA)
[54], the binary Sine Cosine algorithm(BSCA) [55], the binary
slap swarm algorithm(BSSA) [56], the binary marine predators

algorithm (BMPA) [18], the binary equilibrium optimizer
(BEOA) [16], elitism genetic algorithm (eGA) [57], and differ-
ential evolution (DE) [58]. All algorithms are executed 25 inde-

pendent runs for each instance with T = 1000 and N = 20 for
the KP01, and T= 5000 and N= 20 for the MKP To ensure a
fair comparison among the algorithms, Ultimately, it is worth
mentioning that our experiments have been conducted on a

device with 8 GB of RAM, Intel� CoreTM i3-2330 M CPU
@ 2.20 GHz, and 32-bit windows 10. Those experiments are
coded using Java programming language.

4.2. Experiment 1: Comparison between BLSO, BMLSO, and

BHLSO

This section reports the findings of several experiments con-
ducted to observe the performance of the classical BLSO,
BHLSO, and BMLSO as shown in Fig. 4. In general sense, this
figure shows the average of various performance metrics: Fit-
ness, SI, SR, and SD of the instances from KP1 to KP12e
for various proposed algorithms to show which one is the best.

Inspecting this figure affirms that BHLSO and BMLSO are
better than the classical BLSO for all reported performance
metrics, and hence the modified variant and hybrid one have

an effective performance compared to the classical one. There-
fore, our improvements to the classical LSO positively affect
its performance. This figure also affirms that BHLSO has a fas-

ter convergence to the optimal solutions because it could fulfill
the lowest SI in relative to BMLSO (See Fig. 4(c)). It is worth
mentioning that the performance of both BHLSO and
BMLSO is competitive for the other performance metrics, so

both of these will be used in the next experiments to be com-
pared with the other rival algorithms.

4.3. Experiment 2: 0–1 knapsack problem

In this section, our experiments conducted to check the efficacy
of BHLSO over the KP01 problems are shown in detail. After

running each algorithm 25 independent runs on the instances
from KP1 to KP10, the best, average, worst, SD, SR(%),



Table 4 Comparison of the instances from KP1 and KP10.

Name Opt BHLSO BMLSO BMPA

[18]

BSSA [56] BWOA

[53]

BSCA [55] BEOA [16] eGA [57] DE [59]

KP1 295 Best 295 295 295 295 295 295 295 293 295

Average 295 295 295 295 295 295 295 294 295

Worst 295 295 295 295 295 295 295 295 295

SD 0 0 0 0 0 0 0 1 0

SR(%) 100 100 100 100 100 100 100 25 100

SI 1.6 2.65 4.1 5 41.45 4.9 4.1 3750 3

KP2 1024 Best 1024 1024 1024 1024 1024 1024 1024 769 1024

Average 1024 1024 1024 1024 1024 1024 1024 867 1024

Worst 1024 1024 1024 1024 1024 1024 1024 999 1024

SD 0 0 0 0 0 0 0 64 0

SR(%) 100 100 100 100 100 100 100 0 100

SI 1.15 2.15 1.85 13 5.65 9.7 7.65 5000 3

KP3 35 Best 35 35 35 35 35 35 35 33 35

Average 35 35 35 35 35 35 35 35 35

Worst 35 35 35 35 35 35 35 35 35

SD 0 0 0 0 0 0 0 0 0

SR(%) 100 100 100 100 100 100 100 95 100

SI 0 0 0 0 0 0 0 250 0

KP4 23 Best 23 23 23 23 23 23 23 19 23

Average 23 23 23 23 23 23 23 23 23

Worst 23 23 23 23 23 23 23 23 23

SD 0 0 0 0 0 0 0 1 0

SR(%) 100 100 100 100 100 100 100 85 100

SI 0.5 0.15 0.15 0.4 0.85 0.2 0.4 750 1

KP5 481.069368 Best 481.069368 481.069368 481.069368 481.069368 481.069368 481.069368 481.069368 425 481.069368

Average 481.069368 481.069368 481.069368 481.069368 481.069368 481.069368 481.069368 474 481.069368

Worst 481.069368 481.069368 481.069368 481.069368 481.069368 481.069368 481.069368 481.069368 481.069368

SD 0 0 0 0 0 0 0 17 0

SR(%) 100 100 100 100 100 100 100 85 100

SI 0 0 0 0.45 0.35 0.25 0 751 0

KP6 52 Best 52 52 52 52 52 52 52 52 52

Average 52 52 52 52 52 52 52 52 52

Worst 52 52 52 52 52 52 52 52 52

SD 0 0 0 0 0 0 0 0 0

SR(%) 100 100 100 100 100 100 100 100 100

SI 0 0 0 0 0 0 0 1 0

KP7 107 Best 107 107 107 107 107 107 107 105 107

Average 107 107 107 107 107 107 107 107 107

Worst 107 107 107 107 107 107 107 107 107

SD 0 0 0 0 0 0 0 1 0

SR(%) 100 100 100 100 100 100 100 85 100

SI 0 0 0.05 0.25 4.85 1.05 0.05 751 0

KP8 9767 Best 9767 9767 9767 9767 9767 9767 9767 9733 9767

Average 9767 9767 9767 9766.8 9764.55 9766.4 9767 9743 9767

Worst 9767 9767 9767 9763 9763 9762 9767 9753 9767

SD 0 0 0 0.872 1.564 1.241 0 6 0

SR(%) 100 100 100 95 20 75 100 0 100

SI 30.85 107.15 42.5 280 780 452.95 49.2 5000 60

KP9 130 Best 130 130 130 130 130 130 130 130 130

Average 130 130 130 130 130 130 130 130 130

Worst 130 130 130 130 130 130 130 130 130

SD 0 0 0 0 0 0 0 0 0

SR(%) 100 100 100 100 100 100 100 100 100

SI 0 0 0 0.1 0.1 0 0 0 0

KP10 1025 Best 1025 1025 1025 1025 1025 1025 1025 771 1025

Average 1025 1025 1025 1024.7 1025 1025 1025 856 1025

Worst 1025 1025 1025 1019 1025 1025 1025 991 1025

SD 0 0 0 1.308 0 0 0 61 0

SR(%) 100 100 100 95 100 100 100 0 100

SI 1.35 1.7 1.4 55 5.3 6.2 6.3 5000 4
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Table 5 Summary of table 4.

BHLSO BMLSO BMPA [18] BSSA [56] BWOA [53] BSCA [55] BEOA [16] eGA [57] DE [59]

Avg. Fitness 1293.907 1293.907 1293.907 1293.857 1293.662 1293.847 1293.907 1258.043 1293.9069

Avg. SD 0 0 0 0.218 0.1564 0.1241 0 15.15978 0

Avg. SR(%) 100 100 100 99 92 97.5 100 57.5 100

Avg. SI 3.545 11.38 5.005 35.42 83.855 47.525 6.77 2125.31 7.13

Table 6 Comparison of the instances from KP11 and KP20.

Name Opt BHLSO BMLSO BMPA [18] BSSA [56] BWOA [53] BSCA [55] BEOA [16] eGA [57] DE [59]

KP11 1437 Best 1437 1437 1437 1437 1437 1437 1437 1026 1437

Average 1437 1437 1437 1436.7 1437 1437 1437 1169 1437

Worst 1437 1437 1437 1431 1437 1437 1437 1402 1437

SD 0 0 0 1.308 0 0 0 87 0

SR(%) 100 100 100 95 100 100 100 0 100

SI 1.5 4.3 2.3 89 1.7 1.55 47.1 5000 16

KP12 1689 Best 1689 1689 1689 1689 1689 1689 1689 1222 1689

Average 1689 1689 1689 1688.7 1689 1689 1689 1322 1689

Worst 1689 1689 1689 1686 1689 1689 1689 1573 1689

SD 0 0 0 0.900 0 0 0 94 0

SR(%) 100 100 100 90 100 100 100 0 100

SI 3.05 8.65 7.3 264 22.85 31.05 92.7 5000 44

KP13 1821 Best 1821 1821 1821 1821 1821 1821 1821 1236 1821

Average 1821 1821 1821 1815.45 1821 1821 1821 1342 1821

Worst 1821 1821 1821 1785 1821 1821 1821 1532 1821

SD 0 0 0 9.075 0 0 0 69 0

SR(%) 100 100 100 55 100 100 100 0 100

SI 5.4 17.9 6.9 500 49.5 38.25 240.2 5000 73

KP14 2033 Best 2033 2033 2033 2033 2033 2033 2033 1349 2033

Average 2033 2033 2033 2029.05 2033 2033 2033 1481 2033

Worst 2033 2033 2033 1995 2033 2033 2033 1683 2033

SD 0 0 0 10.210 0 0 0 95 0

SR(%) 100 100 100 85 100 100 100 0 100

SI 2.15 5 2.95 467.2 1.9 1.2 158.8 5000 35

KP15 2440 Best 2444 2444 2444 2444 2444 2444 2444 1572 2440

Average 2444 2444 2444 2438.21 2444 2444 2444 1747 2442

Worst 2444 2444 2444 2421 2444 2444 2444 2126 2444

SD 0 0 0 6.308 0 0 0 121 2

SR(%) 100 100 100 20 100 100 100 0 50

SI 3.5 14.9 5 807 210.75 364.6 67.55 5000 546

KP16 2651 Best 2651 2651 2651 2651 2651 2651 2651 1710 2651

Average 2651 2651 2651 2624.85 2651 2651 2651 1862 2651

Worst 2651 2651 2651 2523 2651 2651 2651 2058 2651

SD 0 0 0 31.399 0 0 0 89 0

SR(%) 100 100 100 15.0 100 100 100 0 100

SI 3.8 24.25 6 921 1.85 1.8 427.5 5000 169

KP17 2917 Best 2917 2917 2917 2917 2917 2917 2917 1771 2917

Average 2917 2917 2917 2880.9 2917 2917 2917 2013 2917

Worst 2917 2917 2917 2819 2917 2917 2917 2233 2917

SD 0 0 0 33.621 0 0 0 126 0

SR(%) 100 100 100 35 100 100 100 0 100

SI 1.65 9.25 3 929 1.75 1.3 431.3 5000 90

KP18 2817 Best 2818 2818 2818 2801 2818 2818 2818 1803 2817

Average 2818 2818 2818 2763.2 2818 2818 2818 1946 2817

Worst 2818 2818 2818 2675 2818 2818 2818 2097 2818

SD 0 0 0 34.599 0 0 0 77 0

SR(%) 100 100 100 0 100 100 100 0 70

SI 1.95 13.45 2.25 950 44 67.65 248.75 5000 440
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Table 6 (continued)

Name Opt BHLSO BMLSO BMPA [18] BSSA [56] BWOA [53] BSCA [55] BEOA [16] eGA [57] DE [59]

KP19 3223 Best 3223 3223 3223 3223 3223 3223 3223 1998 3220

Average 3223 3223 3222.9 3165.85 3221.5 3221.4 3222 2246 3222

Worst 3223 3223 3221 3078 3221 3221 3221 2471 3223

SD 0 0 0.436 40.566 0.866 0.800 1.322 109 1

SR(%) 100 100 95 5 25 20 65 0 75

SI 88 170.2 120 1000 580 868 446.6 5000 728

KP20 3614 Best 3614 3614 3614 3614 3614 3614 3614 2317 3614

Average 3614 3614 3614 3545.7 3614 3613.15 3614 2455 3614

Worst 3614 3614 3614 3388 3614 3597 3614 2707 3614

SD 0 0 0 53.101 0 3.705 0 135 0

SR(%) 100 100 100 5.0 100 95 100 0 100

SI 3.2 13.15 6 985.2 57.7 91.8 599.65 5000 269

Table 7 Summary of table 6.

BHLSO BMLSO BMPA [18] BSSA [56] BWOA [53] BSCA [55] BEOA [16] eGA [57] DE [59]

Avg. Fitness 2464.7 2464.7 2464.69 2438.861 2464.55 2464.455 2464.6 1758.3 2464.365

Avg. SD 0 0 0.0436 22.1087 0.0866 0.4505 0.1322 100.270 0.361042

Avg. SR(%) 100 100 99.5 40.5 92.5 91.5 96.5 0 89.5

Avg. SI 11.42 28.105 16.17 691.24 97.2 146.72 276.015 5000 241.09

Table 8 Comparison of the instances from KP11 and KP20.

Name Opt BHLSO BMLSO BMPA

[18]

BSSA

[56]

BWOA

[53]

BSCA

[55]

BEOA

[16]

eGA [57] DE [59]

KP8a 3,924,400 Best 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400 3,865,959 3,924,400

Average 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400 3,921,478 3,924,400

Worst 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400 3,924,400

SD 0 0 0 0 0 0 0 12,737 0

SR(%) 100 100 100 100 100 100 100 95 100

SI 0 0 0 0 0 0 0 251 0

KP8b 3,813,669 Best 3,813,669 3,813,669 3,813,669 3,813,669 3,813,669 3,813,669 3,813,669 3,710,150 3,813,669

Average 3,813,669 3,813,669 3,813,669 3812119.4 3,813,669 3,813,669 3,813,669 3,786,166 3,813,669

Worst 3,813,669 3,813,669 3,813,669 3,782,677 3,813,669 3,813,669 3,813,669 3,813,669 3,813,669

SD 0 0 0 6754.550 0 0 0 32,897 0

SR(%) 100 100 100 95 100 100 100 50 100

SI 0 18.35 20.2 117.25 139.4 40.35 16.3 2500 11

KP8c 3,347,452 Best 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452 3,311,541 3,347,452

Average 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452 3,339,952 3,347,452

Worst 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452 3,347,452

SD 0 0 0 0 0 0 0 10,787 0

SR(%) 100 100 100 100 100 100 100 55 100

SI 0 1.55 1.75 3.05 5.05 1.8 2.1 2250 4

KP8d 4,187,707 Best 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707 4,072,147 4,187,707

Average 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707 4,179,168 4,187,707

Worst 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707 4,187,707

SD 0 0 0 0 0 0 0 27,336 0

SR(%) 100 100 100 100 100 100 100 90 100

SI 0 0 0 0 0.05 0 0 501 0

KP8e 4,955,555 Best 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555 4,856,657 4,955,555

Average 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555 4,945,665 4,955,555

Worst 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555 4,955,555

SD 0 0 0 0 0 0 0 29,669 0

SR(%) 100 100 100 100 100 100 100 90 100

SI 0 0.05 0.05 0.25 0.3 0 0.1 501 0

(continued on next page)
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Table 8 (continued)

Name Opt BHLSO BMLSO BMPA

[18]

BSSA

[56]

BWOA

[53]

BSCA

[55]

BEOA

[16]

eGA [57] DE [59]

KP12a 5,688,887 Best 5,688,887 5,688,887 5,688,887 5,688,887 5,688,887 5,688,887 5,688,887 5,636,813 5,688,887

Average 5,688,887 5,688,887 5,688,887 5686942.1 5685593.3 5688238.7 5,688,887 5,659,643 5,688,887

Worst 5,688,887 5,688,887 5,688,887 5,682,404 5,681,360 5,682,404 5,688,887 5,682,404 5,688,887

SD 0 0 0 2970.884 3301.7 1944.900 0 18,838 0

SR(%) 100 100 100 70 50 90 100 0 100

SI 0 76.75 28.15 146.2 363.1 121 25.4 5000 31

KP12b 6,473,019 Best 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597 6,414,452 6,473,019

Average 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597 6,472,950 6,480,692

Worst 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597 6,498,597

SD 0 0 0 0 0 0 0 18,157 11,721

SR(%) 100 100 100 100 100 100 100 55 70

SI 0 0 0 0.2 150.65 350 0 2251 300

KP12c 5,170,626 Best 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626 5,108,920 5,170,626

Average 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626 5,167,541 5,170,626

Worst 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626 5,170,626

SD 0 0 0 0 0 0 0 13,449 0

SR(%) 100 100 100 100 100 100 100 95 100

SI 0 0 0 0.05 0.1 0 0 251 0

KP12d 6,992,404 Best 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404 6,881,630 6,941,564

Average 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404 6,971,842 6,989,862

Worst 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404 6,992,404

SD 0 0 0 0 0 0 0 30,215 11,080

SR(%) 100 100 100 100 100 100 100 10 5

SI 0 0 0 950 750 950 0.05 4500 950

KP12e 5,337,472 Best 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472 5,289,570 5,337,472

Average 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472 5,308,731 5,337,472

Worst 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472 5,337,472

SD 0 0 0 0 0 0 0 23,467 0

SR(%) 100 100 100 100 100 100 100 40 100

SI 0 0 0.35 1.1 6.5 1.75 0.45 3000 1

Bold values indicate the best results.
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and SI are introduced in Table 4. Inspecting this table shows
that all algorithms are competitive in terms of the best, aver-
age, worst, SD, and SR(%). Also, this table confirms the

superiority of the proposed algorithm in terms of SI and this
shows that our proposed algorithm has a higher convergence
speed in comparison to the other algorithms. To confirm the

superiority of BHLSO on those instances, the average of the
fitness values, SD, SR(%), and SI on all the instances are
computed and introduced in Table 5. From this table, it is

clear that BHLSO, BMLSO, BEOA, and BMPA could come
true the same values for the average of the fitness values,
SD, and SR(%), but our proposed could outperform all for
the SI with a value of 3.545.

Likewise for the instances from KP11 to KP20, and the
instances from KP8a to KP12e, the algorithms are running
Table 9 Summary of table 8.

BHLSO BMLSO BMPA [18] BSSA [56] BW

Avg. Fitness 4,991,677 4,991,677 4,991,677 4,991,327 4,9

Avg. SD 0 0 0 972.5434 330

Avg. SR(%) 100 100 100 96.5 95

Avg. SI 0 9.67 5.05 121.81 141
on those instances, and the performance metrics outcomes
on each one are presented in Table 6 and 8, and the average
of the same metrics are in Table 7 and 9, respectively. From

those tables, it is observed that BHLSO, BMLSO, BSCA,
DE, and BEOA are competitive in terms of the average of
the fitness values, SD, and SR(%), while BHLSO could out-

perform all in terms of SI.
Table 10 shows the outcomes of the algorithms on large-

scale instances with various correlations between the profits

and weights to see their abilities in estimating the optimal solu-
tion under different conditions. Checking this table show that
the performance of all compared algorithms is competitive
with BHLSO and BMLSO even the instances with dimensions

up to 200. But, the efficiency of BHLSO and BMLSO is
competitive with DE and BMPA and superior to the other
OA [53] BSCA [55] BEOA [16] eGA [57] DE [59]

91,348 4,991,612 4,991,677 4975313.535 4989632.24

.17 194.49 0 21755.277 2280.163

99 100 58 87.5

.515 146.49 4.44 2100.51 129.7



Table 10 Comparison of the instances from KP1_100 and KP3_2000.

Instance Opt BHLSO BMLSO BMPA[18] BSSA[56] BWOA[53] BSCA[55] BEOA[16] DE [59]

KP1_100 9147 Best 9147 9147 9147 9147 9147 9147 9147 9147

Average 9147 9147 9147 9147 9147 9147 9147 9147

Worst 9147 9147 9147 9147 9147 9147 9147 9147

SD 0 0 0 0 0 0 0 0

SR(%) 100 100 100 100 100 100 100 100

KP1_200 11,238 Best 11,238 11,238 11,238 11,238 11,238 11,238 11,238 11,238

Average 11,238 11,238 11,238 11,238 11,238 11,238 11,238 11,238

Worst 11,238 11,238 11,238 11,238 11,238 11,238 11,238 11,238

SD 0 0 0 0 0 0 0 0

SR(%) 100 100 100 100 100 100 100 100

KP1_500 28,857 Best 28,857 28,857 28,857 28,857 28,857 28,857 28,857 28,857

Average 28,857 28,857 28,857 28821.1 28854.7 28850.1 28855.85 28,857

Worst 28,857 28,857 28,857 28,709 28,834 28,834 28,834 28,857

SD 0 0 0 41.244 6.900 10.540 5.013 0

SR(%) 100 100 100 25 90 70 95 100

KP1_1000 54,503 Best 54,503 54,503 54,503 54,011 54,460 54,394 54,503 54,389

Average 54,503 54,503 54,503 53350.2 53842.9 53769.15 54459.8 54,479

Worst 54,503 54,503 54,503 52,642 53,254 52,428 54,370 54,503

SD 0 0 0 372.154 366.443 545.127 39.135 32

SR(%) 100 100 100 0 0 5 30 45

KP1_2000 110,625 Best 110,625 110,625 110,625 106,409 101,162 100,649 110,582 108,500

Average 110606.4 110599.9 110593.25 105187.65 93568.65 95780.5 109845.6 109,328

Worst 110,578 110,578 110,578 102,734 89,332 92,409 109,047 110,547

SD 14.924 15.396 16.982 908.683 2760.740 2340.451 433.217 469

SR(%) 15 15 5.0 0 0 0 0 0

KP2_100 1514 Best 1514 1514 1514 1514 1514 1514 1514 1514

Average 1514 1514 1514 1514 1514 1514 1514 1514

Worst 1514 1514 1514 1514 1514 1514 1514 1514

SD 0 0 0 0 0 0 0 0

SR(%) 100 100 100 100 100 100 100 100

KP2_200 1634 Best 1634 1634 1634 1634 1634 1634 1634 1634

Average 1634 1634 1634 1634 1634 1634 1634 1634

Worst 1634 1634 1634 1634 1634 1634 1634 1634

SD 0 0 0 0 0 0 0 0

SR(%) 100 100 100 100 100 100 100 100

KP2_500 4566 Best 4566 4566 4566 4566 4552 4556 4566 4566

Average 4566 4565.4 4559.05 4559.9 4508.3 4530.3 4564.6 4566

Worst 4566 4559 4556 4552 4446 4497 4559 4566

SD 0 1.96 4.141 4.795 28.313 20.943 2.499 0

SR(%) 100 95 25 35 0 0 85 100

KP2_1000 9052 Best 9052 9052 9051 9041 8473 8676 9052 9051

Average 9051.2 9051.2 9051 9014.7 8212.85 8419.75 9050.75 9051

Worst 9051 9051 9051 8975 7966 8249 9048 9051

SD 0.357 0.400 0 19.756 135.720 132.221 1.299 0

SR(%) 15 20 0 0 0 0 30 0

KP2_2000 18,051 Best 18,050 18,050 18,050 17,888 15,225 15,367 18,048 17,919

Average 18049.3 18049.1 18048.2 17774.15 14710.65 15103.95 18032.15 18,015

Worst 18,046 18,046 18,046 17,575 14,387 14,711 17,992 18,046

SD 1.187 1.411 1.600 83.152 242.453 185.441 13.499 30

SR(%) 0 0 0 0 0 0 0 0

KP3_100 2397 Best 2397 2397 2397 2397 2397 2397 2397 2397

Average 2397 2397 2397 2396.9 2395.1 2396.75 2397 2397

Worst 2397 2397 2397 2396 2390 2396 2397 2397

SD 0 0 0 35.243 2.587 0.433 0 0

SR(%) 100 100 100 50 30 75 100 100

KP3_200 2697 Best 2697 2697 2697 2697 2697 2697 2697 2697

Average 2697 2697 2697 2697 2689.75 2662.2 2697 2697

Worst 2697 2697 2697 2697 2672 2497 2697 2697

SD 0 0 0 0 7.042 50.800 0 0

SR(%) 100 100 100 100 30 15 100 100

(continued on next page)
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Table 10 (continued)

Instance Opt BHLSO BMLSO BMPA[18] BSSA[56] BWOA[53] BSCA[55] BEOA[16] DE [59]

KP3_500 7117 Best 7117 7117 7117 7117 5714 5917 7117 7117

Average 7117 7117 7117 7100.25 5584.25 5732.35 7117 7117

Worst 7117 7117 7117 7017 5503 5517 7117 7117

SD 0 0 0 35.243 60.317 97.951 0 0

SR(%) 100 100 100 50 0 0 100 100

KP3_1000 14,390 Best 14,390 14,390 14,390 14,287 9690 9678 14,390 14,290

Average 14,390 14,390 14,390 14133.65 9374.95 9473.85 14324.8 14,363

Worst 14,390 14,390 14,390 14,074 9142 9288 14,290 14,390

SD 0 0 0 62.345 144.637 106.080 47.428 42

SR(%) 100 100 100 0 0 0 25 40

KP3_2000 28,919 Best 28,919 28,919 28,919 28,217 16,100 16,519 28,919 28,319

Average 28,919 28,919 28,919 27850.25 15853.5 16082.2 28723.6 28,573

Worst 28,919 28,919 28,919 27,617 15,495 15,805 28,419 28,815

SD 0 0 0 157.711 174.963 166.435 132.022 130

SR(%) 100 100 100 0 0 0 5 0

Fig. 5 Comparison in terms of SR(%).

Table 11 Significance analysis under Wilcoxon rank-sum test for la

Instance BMLSO BMPA[18] BSSA[56]

KP1_100 NaN NaN NaN

KP1_200 NaN NaN NaN

KP1_500 NaN NaN 2.7855E-06

KP1_1000 NaN NaN 8.0065E-09

KP1_2000 2.4275E-01 3.5772E-01 5.8941E-08

KP2_100 NaN NaN NaN

KP2_200 NaN NaN NaN

KP2_500 3.4211E-01 2.5944E-06 2.4955E-05

KP2_1000 6.9628E-01 8.0359E-02 1.9383E-08

KP2_2000 5.9936E-01 3.8016E-01 3.4516E-08

KP3_100 NaN NaN 1.6245E-01

KP3_200 NaN NaN NaN

KP3_500 NaN NaN 3.9744E-04

KP3_1000 NaN NaN 7.6751E-09

KP3_2000 NaN NaN 7.9334E-09
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for KP1_500 and KP1_1000. For KP1_2000, KP2_500 and
KP2_2000; in another word, the improved variant could be

competitive with BLSO and BMPA in terms of the best, worst,
and SR(%) values and superior in terms of the average value
and the SD. for the other instances, BHLSO, BLSO, and

BMPA were competitive with each other and superior to the
others. To check the efficiency of algorithms on all instances,
Fig. 5 is presented to compute the average of the SR on all

the instances. From this figure, BHLSO could occupy the first
rank with a value of 89.8, followed by BMLSO as the second-
best one, while BSSA comes in the last rank with an amount of
65.4.

In addition, Table 11 presents the p-value obtained under
the Wilcoxon rank-sum test for the large-scale instances to
show the difference between the outcomes of the proposed

algorithm and those of each rival algorithm. According to this
rge-scale instances.

BWOA[53] BSCA[55] BEOA[16] DE [59]

NaN NaN NaN NaN

NaN NaN NaN NaN

1.6245E-01 9.2800E-03 3.4211E-01 NaN

7.6609E-09 2.9661E-08 9.3664E-06 1.6585E-04

5.8941E-08 5.8941E-08 1.4491E-07 5.8941E-08

NaN NaN NaN NaN

NaN NaN NaN NaN

7.9043E-09 7.6327E-09 8.0359E-02 NaN

1.9447E-08 1.9447E-08 7.0084E-01 6.9628E-01

3.4569E-08 3.4569E-08 9.9175E-08 5.8615E-08

7.4346E-06 1.9450E-02 NaN NaN

9.2056E-06 3.4729E-07 NaN NaN

7.9772E-09 7.9772E-09 NaN NaN

7.9919E-09 7.9919E-09 1.9413E-06 6.5160E-05

8.0065E-09 7.9919E-09 2.6754E-08 7.8321E-09
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table, BHLSO has significantly different outcomes from the
majority of its competitors in most large-scale instances. Fur-
thermore, to check the speedup of the algorithms, Fig. 6 is
Table 12 Comparison of the instances from weish01 and weish11.

Id BHLSO BMLSO BMPA[18] BSS

weish01 Best 4554.0000 4554.0000 4554.0000 455

Avg 4554.0000 4553.4000 4552.8000 455

Worst 4554.0000 4549.0000 4549.0000 455

weish02 Best 4536.0000 4536.0000 4536.0000 453

Avg 4536.0000 4536.0000 4536.0000 453

Worst 4536.0000 4536.0000 4536.0000 453

weish03 Best 4115.0000 4115.0000 4115.0000 411

Avg 4112.8400 4109.2400 4106.3600 411

Worst 4106.0000 4106.0000 4106.0000 410

weish04 Best 4561.0000 4561.0000 4561.0000 456

Avg 4561.0000 4561.0000 4561.0000 456

Worst 4561.0000 4561.0000 4561.0000 456

weish05 Best 4514.0000 4514.0000 4514.0000 451

Avg 4514.0000 4514.0000 4514.0000 451

Worst 4514.0000 4514.0000 4514.0000 451

weish06 Best 5557.0000 5557.0000 5557.0000 555

Avg 5557.0000 5551.7600 5548.6000 555

Worst 5557.0000 5542.0000 5542.0000 554

weish07 Best 5567.0000 5567.0000 5567.0000 556

Avg 5567.0000 5567.0000 5567.0000 556

Worst 5567.0000 5567.0000 5567.0000 556

weish08 Best 5605.0000 5605.0000 5605.0000 560

Avg 5605.0000 5604.0400 5603.8000 560

Worst 5605.0000 5603.000 5603.0000 560

weish09 Best 5246.0000 5246.0000 5246.0000 524

Avg 5246.0000 5246.0000 5246.0000 524

Worst 5246.0000 5246.0000 5246.0000 524

Weish10 Best 6323.0000 6303.0000 6303.0000 632

Avg 6308.5200 6302.9200 6303.0000 630

Worst 6303.0000 6301.0000 6303.0000 630

Weish11 Best 5643.0000 5643.0000 5643.0000 564

Avg 5643.0000 5643.0000 5643.0000 564

Worst 5643.0000 5643.0000 5643.0000 564

Bold values indicate the best results.

Fig. 6 Comparison of the CPU time on the datasets from KP1

to KP12e.
introduced to show the average of the CPU time consumed
by each algorithm on the instances from KP01 to KP12e. This
figure reveals that both BHLSO and BMLSO need less CPU

time than all competitors.

4.4. Experiment 3: Multi-dimensional knapsack experiments

In the previous section, it was proved that BMLSO and
BHLSO could be superior compared to the other recent robust
optimization algorithms for KP01 problems on 45 common

instances. This significant success for KP01 motivates us to
check their performance in this section for MKP. After run-
ning each algorithm 25 independent runs on the instances from

weish01 to weish11, the best, avg and worst fitness values
obtained within those runs for each instance are introduced
in Table 12, and the average of the fitness values on all
instances are given in Fig. 7. Inspecting this figure shows that

our proposed algorithm could slightly outperform the other
algorithm. Therefore, in the next table, more instances with
a high number of items and knapsack dimensions are used

to see the stability of the algorithms.
A[56] BWOA[53] BSCA[55] MMVO[32] BEOA[16]

4.0000 4554.0000 4554.0000 4554.0000 4554.0000

4.0000 4542.2000 4542.6800 4554.0000 4554.0000

4.0000 4534.0000 4516.0000 4554.0000 4554.0000

6.0000 4536.0000 4536.0000 4536.0000 4536.0000

6.0000 4528.2000 4523.0000 4536.0000 4536.0000

6.0000 4504.0000 4504.0000 4536.0000 4536.0000

5.0000 4115.0000 4115.0000 4106.0000 4115.0000

4.9200 4095.5600 4052.0000 4101.7600 4113.4000

6.0000 4052.0000 4096.6400 4052.0000 4106.0000

1.0000 4561.0000 4561.0000 4561.0000 4561.0000

1.0000 4545.3200 4559.8000 4561.0000 4561.0000

1.0000 4505.0000 4531.0000 4561.0000 4561.0000

4.0000 4514.0000 4514.0000 4514.0000 4514.0000

4.0000 4514.0000 4514.0000 4514.0000 4514.0000

4.0000 4514.0000 4514.0000 4514.0000 4514.0000

7.0000 5557.0000 5557.0000 5542.0000 5557.0000

5.2800 5514.8400 5518.1200 5530.1600 5557.0000

2.0000 5506.0000 5542.0000 5517.0000 5557.0000

7.0000 5567.0000 5567.0000 5567.0000 5567.0000

7.0000 5548.4400 5546.6400 5567.0000 5567.0000

7.0000 5452.0000 5452.0000 5567.0000 5567.0000

5.0000 5605.0000 5605.0000 5605.0000 5605.0000

5.0000 5595.3200 5553.5600 5603.9600 5605.0000

5.0000 5506.0000 5452.0000 5603.0000 5605.0000

6.0000 5246.0000 5246.0000 5246.0000 5246.0000

6.0000 5226.9600 5241.9200 5246.0000 5246.0000

6.0000 5212.0000 5212.0000 5246.0000 5246.0000

3.0000 6323.0000 6323.0000 6323.0000 6323.0000

7.0000 6288.9200 6287.7200 6307.7600 6306.9600

3.0000 6265.0000 6242.0000 6265.0000 6303.0000

3.0000 5643.0000 5643.0000 5643.0000 5643.0000

3.0000 5526.4000 5626.3600 5591.2000 5643.0000

3.0000 5396.0000 5476.0000 5487.0000 5643.0000



Fig. 7 Comparison in terms of the average of the fitness on the instances from WEISH01 to WEISH11.

Table 13 Comparison of the instances from weish12 and weish22.

Id BHLSO BMLSO BMPA[18] BSSA[56] BWOA[53] BSCA[55] MMVO[32] BEOA[16]

Weish12 Best 6302.0000 6302.0000 6302.0000 6302.0000 6301.0000 6302.0000 6302.0000 6302.0000

Avg 6301.9200 6301.1600 6301.0400 6301.4400 6283.3600 6267.4000 6301.0400 6301.4800

Worst 6301.0000 6301.0000 6301.0000 6301.0000 6154.0000 6117.0000 6301.0000 6301.0000

Weish13 Best 6159.0000 6159.0000 6159.0000 6159.0000 6122.0000 6159.0000 6122.0000 6159.0000

Avg 6159.0000 6154.6400 6159.0000 6159.0000 6040.7600 6119.3200 6053.5200 6159.0000

Worst 6159.0000 6050.0000 6159.0000 6159.0000 6025.0000 5964.0000 6025.0000 6159.0000

Weish14 Best 6923.0000 6923.0000 6923.0000 6923.0000 6923.0000 6923.0000 6900.0000 6923.0000

Avg 6921.5200 6908.3600 6910.7600 6916.9200 6868.1200 6880.0400 6876.9600 6915.7200

Worst 6900.0000 6900.0000 6900.0000 6900.0000 6787.0000 6787.0000 6836.0000 6900.0000

Weish15 Best 7486.0000 7486.0000 7486.0000 7486.0000 7442.0000 7486.0000 7416.0000 7486.0000

Avg 7486.0000 7486.0000 7483.6000 7486.0000 7378.4800 7445.6400 7411.0000 7486.0000

Worst 7486.0000 7486.0000 7456.0000 7486.0000 7199.0000 7236.0000 7391.0000 7486.0000

Weish16 Best 7289.0000 7289.0000 7288.0000 7288.0000 7288.0000 7288.0000 7288.0000 7288.0000

Avg 7288.7667 7278.8800 7280.7600 7274.4000 7239.7600 7246.4400 7258.3200 7282.4667

Worst 7288.0000 7221.0000 7268.0000 7226.0000 7221.0000 7201.0000 7247.0000 7281.0000

Weish17 Best 8633.0000 8633.0000 8633.0000 8556.0000 8624.0000 8575.0000 8621.0000 8633.0000

Avg 8633.0000 8628.2000 8567.8800 8455.5200 8555.0000 8447.6400 8575.8800 8633.0000

Worst 8633.0000 8592.0000 8506.0000 8326.0000 8457.0000 8390.0000 8532.0000 8633.0000

Weish18 Best 9580.0000 9560.0000 9522.0000 9521.0000 9521.0000 9411.000 9485.0000 9580.0000

Avg 9577.4800 9537.4800 9465.4800 9408.2000 9438.3200 9352.4000 9399.0400 9565.6000

Worst 9573.0000 9521.0000 9403.0000 9247.0000 9336.0000 9560.0000 9390.0000 9521.0000

Weish19 Best 7698.0000 7698.0000 7698.0000 7698.0000 7636.0000 7698.0000 7629.0000 7698.0000

Avg 7698.0000 7695.5200 7680.6400 7667.6000 7546.2400 7542.4000 7432.0000 7698.0000

Worst 7698.0000 7636.0000 7636.0000 7620.0000 7330.0000 7194.0000 7577.5600 7698.0000

Weish20 Best 9450.0000 9450.0000 9450.0000 9450.0000 9408.0000 9450.0000 9400.0000 9450.0000

Avg 9450.0000 9447.1200 9430.8800 9400.2800 9371.7600 9266.3600 9389.6000 9449.8000

Worst 9450.0000 9433.0000 9430.8800 9343.0000 9244.0000 8844.0000 9380.0000 9445.0000

Weish21 Best 9074.0000 9074.0000 9074.0000 9074.0000 9074.0000 9074.0000 8972.0000 9074.0000

Avg 9074.0000 9070.8800 9048.0400 9070.0000 8902.6800 8946.2000 8867.6800 9074.0000

Worst 9074.0000 8996.0000 8972.0000 9024.0000 8714.0000 8582.0000 8790.0000 9074.0000

Weish22 Best 8929.0000 8912.0000 8886.0000 8912.0000 8908.0000 8912.0000 8908.0000 8929.0000

Avg 8929.0000 8895.7200 8886.0000 8875.8800 8888.6400 8796.9200 8908.0000 8908.3200

Worst 8929.0000 8886.0000 8886.0000 8723.0000 8886.0000 8275.0000 8908.0000 8886.0000

Bold values indicate the best results.
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Inspecting Table 13 shows that BHLSO could be competi-
tive and superior to all algorithms for all instances. To confirm

the superiority of the proposed algorithm, i.e, BHLSO, Fig. 8
is given to introduce the average of the fitness values on the
instances presented in Table 13. Based on this figure, BHLSO
could relatively outperform the other algorithm, where

BHLSO could fulfill an average value of 7956.2 as the best
one, and the second-best one is BEOA with a value of 7952.1.



Fig. 8 Comparison in terms of the average of the fitness on the instances from WEISH12 to WEISH22.

Table 14 Comparison of the instances from weish23 and weish30.

Id BHLSO BMLSO BMPA[18] BSSA[56] BWOA[53] BSCA[55] MMVO[32] BEOA[16]

Weish23 Best 8344.0000 8303.0000 8263.0000 8303.0000 8249.0000 8344.0000 8224.0000 8344.0000

Avg 8329.2400 8260.8800 8247.8400 8249.8800 8137.4800 8048.2800 8116.3200 8319.6000

Worst 8303.0000 8245.0000 8233.0000 8213.0000 7862.0000 7534.0000 8054.0000 8250.0000

Weish24 Best 10220.0000 10220.0000 10167.0000 10091.0000 10118.0000 10167.0000 10118.0000 10220.0000

Avg 10220.0000 10163.1600 10038.8400 9881.7200 9987.9600 9835.0400 10036.1600 10197.9200

Worst 10220.0000 10116.0000 9917.0000 9818.0000 9818.0 9590.0000 9980.0000 10167.0000

Weish25 Best 9939.0000 9939.0000 9915.0000 9910.0000 9847.0000 9939.0000 9832.0000 9939.0000

Avg 9939.0000 9930.4800 9861.3200 9796.7200 9756.1200 9699.1200 9796.7600 9939.0000

Worst 9939.0000 9910.0000 9787.0000 9664.0000 9518.0000 9294.0000 9787.0000 9939.0000

Weish26 Best 9578.0000 9575.0000 9575.0000 9476.0000 9543.0000 9500.0000 9476.0000 9575.0000

Avg 9569.8000 9493.6000 9482.7200 9452.2800 9364.6800 9407.4000 9383.9600 9555.9600

Worst 9516.0000 9476.0000 9476.0000 9287.0000 9191.0000 9191.0000 9328.0000 9476.0000

Weish27 Best 9781.0000 9764.0000 9764.0000 9764.0000 9778.0000 9764.0000 9764.0000 9781.0000

Avg 9775.5600 9743.1600 9517.0000 9589.3600 9563.0400 9348.1600 9717.0800 9764.6800

Worst 9648.0000 9671.0000 9639.0000 9381.0000 9325.0000 9052.0000 9614.0000 9764.0000

Weish28 Best 9454.0000 9454.0000 9454.0000 9454.0000 9454.0000 9454.0000 9360.0000 9454.0000

Avg 9452.6400 9421.3600 9371.7600 9325.1200 9204.8800 9152.9200 9142.7200 9430.7200

Worst 9443.0000 9400.0000 9204.0000 9161.0000 8779.0000 8671.0000 9003.0000 9400.0000

Weish29 Best 9378.0000 9369.0000 9369.0000 9369.0000 9369.0000 9369.0000 9303.0000 9372.0000

Avg 9373.6800 9367.8800 9287.3200 9274.4000 9148.7600 9014.0000 8987.2000 9369.2400

Worst 9369.0000 9341.0000 9149.0000 9021.0000 8667.0000 8511.0000 8797.0000 9369.0000

Weish30 Best 11191.0000 11182.0000 11130.0000 11111.0000 11010.0000 11023.0000 10879.0000 11182.0000

Avg 11186.3200 11166.6000 11036.5600 10849.1600 10865.1200 10693.8000 10720.0000 11172.0400

Worst 11165.0000 11149.0000 10857.0000 10849.1600 10564.0000 10380.0000 10792.2400 11154.0000

Bold values indicate the best results.
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Furthermore, more instances with a higher number of items
and knapsack dimensions are used to validate the performance

of the algorithms. After running the proposed algorithm on
those instances and introducing the best, Avg, and Worst in
Table 14, it was notified the superiority of the proposed

algorithm in comparison to the other in terms of the investi-
gated performance metrics in most instances. For each algo-
rithm, the average of the fitness values introduced in Table 14
are calculated and depicted in Fig. 9. This figure shows that
BHLSO is the best one with an amount of 9730.8, while BEOA

is the second one with a value of 9718.9. Finally, Table 15 is
presented to report the difference between the outcomes of
BHLSO and the rival algorithms under the Wilcoxon rank-

sum test for some MKP instances; this table demonstrates the
significant difference between the outcomes of BHLSO against
the rival algorithms for the vast majority of instances.



Fig. 9 Comparison in terms of the average of the fitness on the instances from WEISH23 to WEISH30.

Table 15 Significance analysis under Wilcoxon rank-sum test for some MKP instances.

Id BMLSO BMPA[18] BSSA[56] BWOA[53] BSCA[55] MMVO[32] BEOA[16]

Weish12 1.0047E-07 7.5684E-10 3.3136E-04 2.5822E-10 3.9032E-08 7.5684E-10 8.1299E-04

Weish13 3.3706E-01 NaN NaN 4.4354E-11 1.1684E-03 5.6021E-11 NaN

Weish14 9.4553E-06 4.8209E-04 7.2080E-02 2.6695E-09 1.6175E-06 3.5624E-10 1.9452E-02

Weish15 NaN 1.6143E-01 NaN 2.3203E-11 2.4874E-03 2.2712E-11 NaN

Weish16 8.9362E-11 8.9362E-11 1.1395E-09 3.0407E-09 1.4008E-09 1.3739E-09 5.5491E-10

Weish17 2.0857E-02 3.6043E-10 9.1502E-11 8.8835E-11 6.7491E-11 9.6488E-11 NaN

Weish18 4.5387E-10 6.4895E-10 6.5341E-10 5.8761E-10 5.3312E-10 4.2180E-10 4.0822E-04

Weish19 1.0000E + 00 3.6157E-03 1.0774E-04 2.8912E-11 3.6498E-06 2.6958E-11 3.3706E-01

Weish20 9.2584E-05 3.7928E-09 3.5840E-10 7.3725E-11 1.3520E-07 4.4075E-11 3.3706E-01

Weish21 3.3706E-01 2.4542E-04 1.6143E-01 3.8247E-09 3.9469E-07 7.8574E-11 NaN

Weish22 6.9233E-11 4.4325E-12 3.4539E-11 1.4782E-11 1.1231E-10 4.4325E-12 3.3379E-10

Weish23 3.9455E-09 5.3525E-10 1.6497E-09 5.5921E-10 7.6380E-08 5.2362E-10 3.9291E-01

Weish24 2.3949E-10 9.6829E-11 8.4211E-11 9.1502E-11 7.9616E-11 8.6444E-11 2.3234E-04

Weish25 1.1387E-03 9.5135E-11 9.6942E-11 5.4516E-11 1.4338E-08 1.7562E-11 NaN

Weish26 3.1470E-09 2.9302E-10 3.8738E-10 1.0569E-09 5.2519E-10 4.4929E-10 2.4663E-05

Weish27 1.4688E-09 6.7460E-10 3.5848E-10 5.7057E-10 3.1029E-10 4.1942E-09 1.5991E-09

Weish28 5.4902E-05 9.8617E-10 3.2929E-08 5.1629E-07 3.2539E-08 1.2822E-10 8.6651E-03

Weish29 8.3170E-10 1.9015E-09 1.4908E-09 2.2418E-09 1.6401E-09 7.3636E-10 9.2677E-09

Weish30 3.9101E-08 8.5513E-10 8.5676E-10 7.8392E-10 8.5757E-10 7.8016E-10 1.6161E-07
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5. Conclusion and future work

Recently, a new physics-based meta-heuristic optimization

algorithm known as light spectrum optimizer (LSO) has been
proposed for solving continuous optimization problems. This
algorithm could come true a significant success for these con-

tinuous problems, which motivates us to propose a binary
variant of it, namely BLSO, for tackling both KP01 and
MKP. The classical LSO was modified in this study to propose
a new variant, namely MLSO, with better exploration and

exploitation operators for overcoming the knapsack problems.
To further promote the exploration and exploitation capability
of the binary modified LSO (MBLSO), a novel method based

on integrating both the swarm intelligence behaviors and SBX
are proposed and integrated with the MLSO to produce a new
binary variant abbreviated as BHLSO. To validate the perfor-

mance of BLSO, BMLSO, and BHLSO, 45 KP01 instances
and 30 MKP instances used commonly in the literature have
been used in our experiments. In addition, the proposed binary
variants of LSO are compared with a number of the recently-

published algorithm to see their competitiveness. The empirical
outcomes show the superiority of BHLSO for both KP01 and
MKP in terms of final accuracy, CPU time, and convergence

speed.
Future work involves applying LSO for tackling image seg-

mentation problems, multi-objective optimization problems,

parameter identification problem of photovoltaic systems
and DNA fragment assembly problems,
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